-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencode
executable file
·722 lines (628 loc) · 28.3 KB
/
encode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
#!/usr/bin/python3
import heapq
from scipy.io import wavfile
import numpy as np
from signal_processing_utilities import process_signal
import argparse
class Node:
"""Purpose: The Node class is used to sort the freqencies of the
hexadecimal values into a binary tree. The binary tree is
then used to identify a binary mapping that uniquely
represents each hexadecimal byte-pair. This is the atomic
unit of the Huffman encoding technique.
"""
def __init__(self, freq, data, left=None, right=None):
self.freq = freq
self.data = data
self.left = left
self.right = right
self.code = ""
def __lt__(self, nxt):
return self.freq < nxt.freq
def create_node_mapping_dictionary(node, val="", node_mapping_dict={}):
"""Creates a mapping of unique binary strings to unique bytes of
pairs of hexadecimal values found within the input wave file.
Args:
node (Node): This is a node of class Node. It is used to build
the binary tree.
val (str, optional): This is the huffman code that is being
built into the unique representation of the
hexadecimal pair. Defaults to ''.
node_mapping_dict (dict, optional): This is the dictionary that
contains the mapping of
hexadecimal values to unique
binary string representations.
Defaults to {}.
Returns:
bytes: This function returns the bytes of the wave file that was
read.
"""
# This creates the new value that will be assigned to the
# hexadecimal byte pair that corresponds to the path that was chosen
# in the created binary tree.
newVal = val + str(node.code)
# if node is not an edge node, traverse
if node.left:
create_node_mapping_dictionary(node.left, newVal, node_mapping_dict)
if node.right:
create_node_mapping_dictionary(node.right, newVal, node_mapping_dict)
if not node.left and not node.right:
node_mapping_dict[node.data] = newVal
return node_mapping_dict
def determine_hex_freq(input_wav):
"""This function determines how frequent a hexadecimal pair of
values occurs within a string of bytes.
Args:
input_wav (bytes): This is the string of bytes of the wav file
that was read into memory.
Returns:
sorted_hex_freq_dictionary: This function returns a dictionary
of hexadecimal pairs which are
mapped to frequency of occurence in
the input wave file.
"""
input_wav_hex = input_wav.hex()
hex_freq_dictionary = {}
for digit_position in range(0, len(input_wav.hex()), 2):
current_hex_pair = (
input_wav_hex[digit_position] + input_wav_hex[digit_position + 1]
)
try:
hex_freq_dictionary[current_hex_pair] += 1
except KeyError:
hex_freq_dictionary[current_hex_pair] = 1
sorted_hex_freq_dictionary = dict(
sorted(hex_freq_dictionary.items(), key=lambda x: x[1])
)
return sorted_hex_freq_dictionary
def convert_hex_to_bit(input_wav, node_mapping_dict):
"""This function uses a dictionary of node mappings to convert
the hexadecimal representation of the of the input wave file
to a string of bits. This representation is a compressed form
of the hexadecimal representation of the input wave file.
Args:
input_wav (bytes): This is the path of the file to be read into
memory.
node_mapping_dict (dict): This is the dictionary mapping bits to
the hexadecimal representation of the
input wav file.
Returns:
bit_string: This is the string of bits that will be written to
the output file.
len_end_zero_padding: This is the number of zeroes that have been
padded onto the end of the bit string to
make a complete set of bytes.
"""
hex_input_wav = input_wav.hex()
hex_pair_l = [
hex_input_wav[index : index + 2] for index in range(0, len(hex_input_wav), 2)
]
node_mapping_dict_l = [node_mapping_dict[hex_pair] for hex_pair in hex_pair_l]
bit_string = "".join(node_mapping_dict_l)
end_zero_padding = "0" * (8 - (len(bit_string) % 8))
bit_string += end_zero_padding
len_end_zero_padding = len(end_zero_padding)
return bit_string, len_end_zero_padding
def create_byte_string(
node_mapping_dict,
bit_string,
end_zero_padding,
method_of_compression,
unique_amplitudes_l=None,
):
"""This function writes the encoded outputfile.
Args:
node_mapping_dict (dict): This is the dictionary which maps each
hexadecimal representation of the
bytes of the input wave file to a
string of bits whose length is
dependent on frequency of the
hexadecimal pair.
bit_string (str): This is the string of bits that is
interpreted from the original input wave
file and parsed using the node_mapping_dict.
end_zero_padding (str): This is the number of zeroes that are
padded to the end of the bit_string to
create a full set of bytes to be
written to the output data file.
method_of_compression (str): This is an indicator of the method
used to compress the data. This
will be useful in intelligently
decoding the data. Expected
values are 'u', 'h', or 'n'
where 'u' indicates a unique
dictionary of amplitudes and
huffman encoding was
implemented, 'h' indicates the
fastest method of compression
(huffman encoding exclusively),
and 'n' indicates encoding
using the neural spike detection
method. This is a single byte.
unique_amplitudes_l (list): This is a list of integers each of
which are unique amplitudes that are
detected in the original data. The
amplitudes are 16-bit signed
integers. These values are only
included when the
method_of_compression is equal to
'u' which indicates that the data
was compressed using the
encode_unique_amplitude_indices
function before huffman encoding.
This data is mandatory if
method_of_compression is set to
'u'. Otherwise, it is not used.
Defaults to None.
Returns:
byte_string (bytes): This function returns a bytes object of the
compressed data.
Notes:
The encoding is the node_mapping_dictionary keys written as
bytes, the run-length-encoded node_mapping_dictionary values
written as bytes, the run-length-encoded lengths of the rle
node_mapping_dictionary values written as bytes, the
run-length-encoding of the node_mapping_dictionary value
lengths, huffman encoded data as bytes, the indices of the start
and end of each data portion as mentioned here, and the size in
bytes of the indices. The last index of the indices array
contains the value of the number of zeros that the encoded data
is padded with. This is because the last index would be the
length of the encoded data file, but this information can be
interpreted otherwise.
"""
if method_of_compression == "u" or method_of_compression == "w":
try:
if unique_amplitudes_l.any():
# Verify unique_amplitudes_l exists
pass
except Exception as e:
error_string = (
"Error unique_amplitudes_l does not exist "
+ "and method_of_compression_is_set to "
+ f"{method_of_compression}."
)
raise Exception(f"{error_string} : {e}")
num_bytes = 1
byteorder = "big"
indices = []
byte_string = b""
node_mapping_dict_values_list = list(node_mapping_dict.values())
# Node Mapping Dictionary Keys appended to byte_string:
byte_string = bytes("".join(node_mapping_dict.keys()), encoding="utf-8")
# Node Mapping Dictionary Keys: indices[0]
indices.append(len(byte_string))
# Node Mapping Dictionary Values appended to byte_string:
node_mapping_dict_values_byte_string = bytes(
"".join(node_mapping_dict.values()), encoding="utf-8"
)
# Converting the node_mapping_dictionary_values_byte_string
# From a string of bytes to a string of bits
node_mapping_dict_values_byte_string_byte_padding_length = 8 - (
len(node_mapping_dict_values_byte_string) % 8
)
node_mapping_dict_values_byte_string_byte_padding = b"".join(
[
b"0"
for bit in range(node_mapping_dict_values_byte_string_byte_padding_length)
]
)
node_mapping_dict_values_byte_string_rounded_bytes = (
node_mapping_dict_values_byte_string
+ node_mapping_dict_values_byte_string_byte_padding
)
node_mapping_dict_values_byte_string_bits_to_bytes = b""
for index in range(0, len(node_mapping_dict_values_byte_string_rounded_bytes), 8):
byte_to_write = node_mapping_dict_values_byte_string_rounded_bytes[
index : index + 8
]
int_of_byte_to_write = int(byte_to_write, base=2)
node_mapping_dict_values_byte_string_bits_to_bytes += (
int_of_byte_to_write.to_bytes(num_bytes, byteorder)
)
node_mapping_dict_values_byte_string_bits_to_bytes += (
node_mapping_dict_values_byte_string_byte_padding_length.to_bytes()
)
byte_string += node_mapping_dict_values_byte_string_bits_to_bytes
# node_mapping_dict_values_byte_string_bits_to_bytes: indices[1]
indices.append(len(byte_string))
# Run-Length-Encoding the node mapping dictionary value lengths
node_mapping_dict_values_indices_length_list = [
len(node_mapping_dict_values_list[index])
for index in range(len(node_mapping_dict_values_list))
]
# This information is non-binary ∴ encode_rle is used as encoding.
# node_mapping_dict_values_indices_length_list_compresed has a known
# format index pair of "value, frequency" for each "index, index+1"
# within the array.
node_mapping_dict_values_indices_length_list_compresed, rle_locations = (
process_signal.encode_rle(node_mapping_dict_values_indices_length_list)
)
node_mapping_dict_values_indices_length_compressed_byte_string_l = [
node_mapping_dict_values_indices_length_list_compresed[index].to_bytes(
1, byteorder="big"
)
for index in range(len(node_mapping_dict_values_indices_length_list_compresed))
]
byte_string += b"".join(
node_mapping_dict_values_indices_length_compressed_byte_string_l
)
# Node Mapping Dictionary Values Indices
# (rle_compressed via encode_rle): indices[2]
indices.append(len(byte_string))
for index in range(0, len(bit_string), 8):
byte_to_write = bit_string[index : index + 8]
int_of_byte_to_write = int(byte_to_write, base=2)
byte_string += int_of_byte_to_write.to_bytes(num_bytes, byteorder)
# This is the length of the huffman encoded string of bits stored as
# rle bytes: indices[3]
indices.append(len(byte_string))
if method_of_compression == "u" or method_of_compression == "w":
# This is the length of the unique_amplitudes_l
# This only exists when the methods_of_compression are set to 'u'.
# unique_amplitudes_l: indices[4]
byte_string += unique_amplitudes_l.tobytes()
indices.append(len(byte_string))
# This is the number of zeros that have been padded to the
# penultimate byte_string index in order to make it equal to a byte.
# end_zero_padding: indices[4] (ultimate location: always the last index)
# (indices[5] when methods_of_compression is set to 'u')
indices.append(end_zero_padding)
bytes_indices_list = [index.to_bytes(4, "big") for index in indices]
byte_string += b"".join(bytes_indices_list)
bytes_indices_size = 4 * len(bytes_indices_list)
# The line of code below is presuming the
# "bytes_indices_size" is < 256
byte_string += bytes_indices_size.to_bytes(2, byteorder=byteorder)
byte_string += bytes(method_of_compression, encoding="utf-8")
return byte_string
def huffman_encoding(
input_data: np.ndarray,
):
"""Main method to drive the encoding operation implementing huffman
encoding.
Args:
input_data (np.ndarray): This is the input wave file
as a numpy array. If this
input is given, the data will
be converted to bytes.
Returns:
node_mapping_dict (dict): This is the dictionary containing
hexadecimal keys and their corresponding
binary string values.
bit_string (str): This is the string of bits that represent the
huffman encoded data.
end_zero_padding (int): This is the integer that indicates how
many zeros have been added to the bit
string to make the length evenly divisible
by eight such that each eight bits may be
converted into individual bytes.
"""
sorted_hex_freq_dict = determine_hex_freq(
input_data if type(input_data) == bytes else input_data.tobytes()
)
hex_freq_values = list(sorted_hex_freq_dict.values())
hex_freq_keys = list(sorted_hex_freq_dict.keys())
# Create a list of nodes
nodes = []
for item in range(len(hex_freq_keys)):
heapq.heappush(nodes, Node(hex_freq_values[item], hex_freq_keys[item]))
# Build the node tree
while len(nodes) > 1:
left = heapq.heappop(nodes)
right = heapq.heappop(nodes)
left.code = 0
right.code = 1
newNode = Node(
left.freq + right.freq, left.data + right.data, left=left, right=right
)
heapq.heappush(nodes, newNode)
node_mapping_dict = create_node_mapping_dictionary(
nodes[0], val="", node_mapping_dict={}
)
# The hexadecimal representation of the bytes of the input wave file
# is converted to a string of bits to write
bit_string, end_zero_padding = convert_hex_to_bit(
input_data if type(input_data) == bytes else input_data.tobytes(),
node_mapping_dict,
)
return node_mapping_dict, bit_string, end_zero_padding
def create_huffman_encoded_file(input_wav):
"""This driver function will read the data before huffman encoding
the data and writing the resulting string of bytes to a file.
Args:
input_wav (list): This is the array of integers which represent
the amplitudes of the raw neural data.
Returns:
byte_string (bytes): This is the string of bytes that represent
the compressed version of the raw neural
data.
"""
node_mapping_dict, bit_string, end_zero_padding = huffman_encoding(
input_data=input_wav
)
byte_string = create_byte_string(
node_mapping_dict, bit_string, end_zero_padding, method_of_compression="h"
)
return byte_string
def implement_spike_detection_module_and_huffman_encode_file(sample_rate, input_wav):
"""This driver function will preprocess the data, detect neural
spikes, create an object containing only the detected spikes,
convert this object to a string of bytes, huffman encode those
bytes, and return the string of bytes.
Args:
sample_rate (int): This is the sample rate of the input wave
file.
input_wav (list): This is the array of integers which represent
the amplitudes of the raw neural data.
Returns:
byte_string (bytes): This is the string of bytes that represent
the compressed version of the raw neural
data.
"""
# Preprocess Data & Detect Spikes
filtered_data_bandpass = process_signal.preprocess_signal(
raw_neural_signal=input_wav, sample_rate=sample_rate
)
spike_train_time_index_list = process_signal.detect_neural_spikes(
filtered_data_bandpass
)
encoded_data = process_signal.create_encoded_data(
sample_rate=sample_rate,
number_of_samples=len(filtered_data_bandpass),
spike_train_time_index_list=spike_train_time_index_list,
neural_data=filtered_data_bandpass,
)
encoded_data_byte_string = process_signal.convert_encoded_data_to_byte_string(
encoded_data
)
node_mapping_dict, bit_string, end_zero_padding = huffman_encoding(
input_data=encoded_data_byte_string,
)
byte_string = create_byte_string(
node_mapping_dict, bit_string, end_zero_padding, method_of_compression="n"
)
return byte_string
def encode_using_amplitude_indices(data):
"""This function will identify the number of unique amplitudes in
the data. It will leverage this information to interpolate the
amplitudes of the data as indices among the unique amplitudes list.
This allows for the data to be compressed as each amplitude may be
written as a single unsigned byte rather than a 16-bit signed
integer. This approximately reduces the file size by half in less
time than the neural spike detection module. This algorithm is only
useful when the number of unique amplitudes is less than 256.
Otherwise, the number of bits needed to represent the indices is
greater than the number of bits needed to represent the original
amplitudes.
Args:
data (numpy.ndarray): This is the array of amplitudes to be
compressed.
Returns:
unique_amplitudes_l (list): This is an array containing all the
unique amplitudes in the original
data.
indices_unit8 (list): These are the amplitudes of the original
data interpolated as indicies in the
unique_amplitudes_l.
"""
data_l = data.tolist()
unique_amplitudes = np.unique(data_l).tolist()
if len(unique_amplitudes) < 256:
indices = np.array(
[unique_amplitudes.index(value) for value in data_l], dtype=np.uint8
)
elif len(unique_amplitudes) < 65536:
indices = np.array(
[unique_amplitudes.index(value) for value in data_l], dtype=np.uint16
)
else:
error_string = (
"The number of unique_amplitudes is greater "
+ "than 65535. The indices will not be properly expressed "
+ "by unsigned 16-bit integers. Please select another "
+ "method of compression for this data."
)
raise ValueError(error_string)
unique_amplitudes_l = np.array(unique_amplitudes, dtype=np.int16)
node_mapping_dict, bit_string, end_zero_padding = huffman_encoding(
input_data=indices
)
if len(unique_amplitudes) < 256:
byte_string = create_byte_string(
node_mapping_dict,
bit_string,
end_zero_padding,
method_of_compression="u",
unique_amplitudes_l=unique_amplitudes_l,
)
else:
byte_string = create_byte_string(
node_mapping_dict,
bit_string,
end_zero_padding,
method_of_compression="w",
unique_amplitudes_l=unique_amplitudes_l,
)
return byte_string
def compress(
file: str = None,
sample_rate: int = None,
input_wav: list = None,
quick: bool = None,
):
"""This function accepts a file path to compress. It will read data,
preprocess the data, detect neural spikes, create an object
containing only the detected spikes, convert this object to a string
of bytes, huffman encode those bytes, and return a bytes object
containing the compressed data. Using the file name & the quick
option are acceptable input parameters.
Args:
file (str): This is the path to the file to be compressed.
Either this value is present or sample_rate, data,
and quick are present. Defaults to None.
sample_rate (int): This is the rate at which the data was
sampled. Defaults to None.
data (list): This is the list of amplitudes to compress.
quick (bool): This is the enabler variable that will allow the
data to be either compressed strictly using
huffman encoding (the fastest method) or to be
compressed with the maximum level of
compression. Defaults to None.
"""
if file:
sample_rate, input_wav = wavfile.read(file)
else:
try:
if sample_rate is not None and input_wav is not None:
# Verify that sample_rate & data are present if
# file is not.
pass
except Exception as e:
print("Error: compress requires either file to be ", end="")
print("defined or sample_rate and data ", end="")
print("to be defined.")
print(f"\n{e}")
if len(np.unique(input_wav)) < 256:
# implement unique dictionary and huffman encode for maximum
# compression in the shortest period of time.
method_of_compression = "u"
byte_string = encode_using_amplitude_indices(data=input_wav)
elif len(np.unique(input_wav)) < 65536:
method_of_compression = "w"
byte_string = encode_using_amplitude_indices(data=input_wav)
elif quick:
method_of_compression = "h"
input_data = input_wav
else:
# perform neural spike detection as a means of compression.
method_of_compression = "n"
filtered_data_bandpass = process_signal.preprocess_signal(
raw_neural_signal=input_wav, sample_rate=sample_rate
)
spike_train_time_index_list = process_signal.detect_neural_spikes(
filtered_data_bandpass
)
encoded_data = process_signal.create_encoded_data(
sample_rate=sample_rate,
number_of_samples=len(filtered_data_bandpass),
spike_train_time_index_list=spike_train_time_index_list,
neural_data=filtered_data_bandpass,
)
encoded_data_byte_string = process_signal.convert_encoded_data_to_byte_string(
encoded_data
)
input_data = encoded_data_byte_string
if method_of_compression == "h" or method_of_compression == "n":
node_mapping_dict, bit_string, end_zero_padding = huffman_encoding(
input_data=input_data
)
byte_string = create_byte_string(
node_mapping_dict,
bit_string,
end_zero_padding,
method_of_compression=method_of_compression,
)
return byte_string
def initialize_argument_parser():
"""This function will initialize the argument parser with command
line arguments.
Returns:
This function will return the parser to parse arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"file_path",
help=(
"This is the absolute file path to the raw neural data "
+ "with a '.wav' file extension.",
),
)
parser.add_argument(
"compressed_file_path",
help=(
"This is the compressed output file path. It is "
+ "presumed to end this new file name with a "
+ "'.brainwire' file extension.",
),
)
parser.add_argument(
"-q",
"--quick",
action="store_true",
help=(
"This option will increase compression speed at the "
+ "cost of compression size by exclusively implementing a "
+ "huffman-encoding algorithm.",
),
)
parser.add_argument(
"-m",
"--method_of_compression",
choices=["u", "h", "n"],
help=(
"Used to select the method of compression. Explicitly "
+ "selecting the method of compression overrides the quick "
+ "argument. 'u' indicates using a list of unique amplitudes "
+ "to interpret the each sample amplitude as an one of these "
+ "indices. In this method, there are expected to be less than "
+ "256 unique amplitudes such that each interpreted amplitude "
+ "can be expressed as a single byte of information. If "
+ "there are more than 256 bytes, the method of "
+ "compression will be indicated by a 'w' and the indices "
+ "will be stored using unsigned 16-bit integers. After "
+ "this process, huffman encoding is implemented to increase "
+ "the compression ratio. 'h' will exclusively use huffman "
+ "encoding as a means of compression. 'n' "
+ "will implement the neural spike detection method in order "
+ "to compress the data.",
),
)
return parser
def parse_arguments():
"""This function will parse arguments and print the file paths of
the parsed arguments.
Args:
parser (ArgumentParser): This is the initialized argument parser.
Returns:
args (str): This is the sequence of the string of arguments.
"""
parser = initialize_argument_parser()
args = parser.parse_args()
print("file: {}".format(args.file_path))
print("compressed_file_path: {}".format(args.compressed_file_path))
return args
def main(args):
"""This is the main driver of the code."""
# Read Data
sample_rate, input_wav = wavfile.read(filename=args.file_path)
if args.method_of_compression:
if args.method_of_compression == "u":
# encode using unique dictionary list and huffman encode.
byte_string = encode_using_amplitude_indices(data=input_wav)
elif args.method_of_compression == "h":
# encode using huffman encoding exclusively.
byte_string = create_huffman_encoded_file(input_wav)
else:
# encode using the neural spike detection module.
byte_string = implement_spike_detection_module_and_huffman_encode_file(
sample_rate, input_wav
)
else:
if len(np.unique(input_wav)) < 65536:
# method of compression = u
byte_string = encode_using_amplitude_indices(data=input_wav)
elif args.quick:
# method of compression = h
byte_string = create_huffman_encoded_file(input_wav)
else:
# method of compression = n
byte_string = implement_spike_detection_module_and_huffman_encode_file(
sample_rate, input_wav
)
process_signal.write_file_bytes(
file_path=args.compressed_file_path, data_bytes=byte_string
)
if __name__ == "__main__":
args = parse_arguments()
main(args)