-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheffidehead.py
220 lines (208 loc) · 7.17 KB
/
effidehead.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
import torch.nn as nn
import math
from yolov6.layers.common import *
class Detect(nn.Module):
'''Efficient Decoupled Head
With hardware-aware degisn, the decoupled head is optimized with
hybridchannels methods.
'''
def __init__(self, num_classes=80, anchors=1, num_layers=3, inplace=True, tensorrt=False, head_layers=None): # detection layer
super().__init__()
assert head_layers is not None
self.nc = num_classes # number of classes
self.no = num_classes + 5 # number of outputs per anchor
self.nl = num_layers # number of detection layers
if isinstance(anchors, (list, tuple)):
self.na = len(anchors[0]) // 2
else:
self.na = anchors
self.anchors = anchors
self.grid = [torch.zeros(1)] * num_layers
self.prior_prob = 1e-2
self.inplace = inplace
self.tensorrt = tensorrt
stride = [8, 16, 32] # strides computed during build
self.stride = torch.tensor(stride)
# Init decouple head
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
self.cls_preds = nn.ModuleList()
self.reg_preds = nn.ModuleList()
self.obj_preds = nn.ModuleList()
self.stems = nn.ModuleList()
# Efficient decoupled head layers
for i in range(num_layers):
idx = i*6
self.stems.append(head_layers[idx])
self.cls_convs.append(head_layers[idx+1])
self.reg_convs.append(head_layers[idx+2])
self.cls_preds.append(head_layers[idx+3])
self.reg_preds.append(head_layers[idx+4])
self.obj_preds.append(head_layers[idx+5])
def initialize_biases(self):
for conv in self.cls_preds:
b = conv.bias.view(self.na, -1)
b.data.fill_(-math.log((1 - self.prior_prob) / self.prior_prob))
conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
for conv in self.obj_preds:
b = conv.bias.view(self.na, -1)
b.data.fill_(-math.log((1 - self.prior_prob) / self.prior_prob))
conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
def forward(self, x):
z = []
for i in range(self.nl):
x[i] = self.stems[i](x[i])
cls_x = x[i]
reg_x = x[i]
cls_feat = self.cls_convs[i](cls_x)
cls_output = self.cls_preds[i](cls_feat)
reg_feat = self.reg_convs[i](reg_x)
reg_output = self.reg_preds[i](reg_feat)
obj_output = self.obj_preds[i](reg_feat)
if self.training:
x[i] = torch.cat([reg_output, obj_output, cls_output], 1)
bs, _, ny, nx = x[i].shape
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
else:
y = torch.cat([reg_output, obj_output.sigmoid(), cls_output.sigmoid()], 1)
if(self.tensorrt): # <---- add by yeah
z.append(y)
continue
bs, _, ny, nx = y.shape
y = y.view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if self.grid[i].shape[2:4] != y.shape[2:4]:
d = self.stride.device
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
self.grid[i] = torch.stack((xv, yv), 2).view(1, self.na, ny, nx, 2).float()
if self.inplace:
y[..., 0:2] = (y[..., 0:2] + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = torch.exp(y[..., 2:4]) * self.stride[i] # wh
else:
xy = (y[..., 0:2] + self.grid[i]) * self.stride[i] # xy
wh = torch.exp(y[..., 2:4]) * self.stride[i] # wh
y = torch.cat((xy, wh, y[..., 4:]), -1)
z.append(y.view(bs, -1, self.no))
if(self.tensorrt): return z # <--- add by yeah
return x if self.training else torch.cat(z, 1)
def build_effidehead_layer(channels_list, num_anchors, num_classes):
head_layers = nn.Sequential(
# stem0
Conv(
in_channels=channels_list[6],
out_channels=channels_list[6],
kernel_size=1,
stride=1
),
# cls_conv0
Conv(
in_channels=channels_list[6],
out_channels=channels_list[6],
kernel_size=3,
stride=1
),
# reg_conv0
Conv(
in_channels=channels_list[6],
out_channels=channels_list[6],
kernel_size=3,
stride=1
),
# cls_pred0
nn.Conv2d(
in_channels=channels_list[6],
out_channels=num_classes * num_anchors,
kernel_size=1
),
# reg_pred0
nn.Conv2d(
in_channels=channels_list[6],
out_channels=4 * num_anchors,
kernel_size=1
),
# obj_pred0
nn.Conv2d(
in_channels=channels_list[6],
out_channels=1 * num_anchors,
kernel_size=1
),
# stem1
Conv(
in_channels=channels_list[8],
out_channels=channels_list[8],
kernel_size=1,
stride=1
),
# cls_conv1
Conv(
in_channels=channels_list[8],
out_channels=channels_list[8],
kernel_size=3,
stride=1
),
# reg_conv1
Conv(
in_channels=channels_list[8],
out_channels=channels_list[8],
kernel_size=3,
stride=1
),
# cls_pred1
nn.Conv2d(
in_channels=channels_list[8],
out_channels=num_classes * num_anchors,
kernel_size=1
),
# reg_pred1
nn.Conv2d(
in_channels=channels_list[8],
out_channels=4 * num_anchors,
kernel_size=1
),
# obj_pred1
nn.Conv2d(
in_channels=channels_list[8],
out_channels=1 * num_anchors,
kernel_size=1
),
# stem2
Conv(
in_channels=channels_list[10],
out_channels=channels_list[10],
kernel_size=1,
stride=1
),
# cls_conv2
Conv(
in_channels=channels_list[10],
out_channels=channels_list[10],
kernel_size=3,
stride=1
),
# reg_conv2
Conv(
in_channels=channels_list[10],
out_channels=channels_list[10],
kernel_size=3,
stride=1
),
# cls_pred2
nn.Conv2d(
in_channels=channels_list[10],
out_channels=num_classes * num_anchors,
kernel_size=1
),
# reg_pred2
nn.Conv2d(
in_channels=channels_list[10],
out_channels=4 * num_anchors,
kernel_size=1
),
# obj_pred2
nn.Conv2d(
in_channels=channels_list[10],
out_channels=1 * num_anchors,
kernel_size=1
)
)
return head_layers