-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig.py
87 lines (74 loc) · 4.66 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python
# -----------------------------------------------------------------------------
# Copyright (C)
# Software Competence Center Hagenberg GmbH (SCCH)
# Institute of Computational Perception (CP) @ JKU Linz
# All rights reserved.
# -----------------------------------------------------------------------------
# This document contains proprietary information belonging to SCCH.
# Passing on and copying of this document, use and communication of its
# contents is not permitted without prior written authorization.
# -----------------------------------------------------------------------------
# Created on : 17.09.2018 $
# by : fischer $
# Developers: Hamid Eghbalzadeh, Lukas Fischer
# --- imports -----------------------------------------------------------------
class ConfigFlags:
def __init__(self):
"""
DeepSNP parameter configuration
"""
self.data_dir = r'\data' # Path and name of data directory
self.save_dir = r'\results' # Path and name of save directory
self.model_dir = r'\models' # Path and name of model directory
self.log_dir = r'\logs' # Path and name of logging directory
# Model to train
self.model_name = None # Name of the model to train. DeepSNP or Baselines
# Data generation parameters
self.margin = 1 # Window margin
self.use_jitter = True # Use jittered data
# Training parameters
self.epochs = 200 # Number of epochs
self.lr = 0.001 # Learning rate
self.batch_size = 25 # Batch size
self.n_splits = 6 # Number of cross validation splits
# todo implement continue train
# self.fold = -1 # Cross validation fold. For re-runs
# self.continue_train = False # Continue training
self.early_stopping_min_delta = 0.0001 # Early stopping min loss delta
self.early_stopping_patience = None # Early stopping patience
self.ref_factor = 0.5 # Refinement factor
self.ref_min_lr = 0.00001 # Minimum refinement learning rate
self.ref_patience = None # Refinement patience
self.optimizer = 'adam' # Optimizer used for training
self.amsgrad = True # Use AMSGrad for Adam optimizer
self.loss = 'categorical_crossentropy' # training loss
self.dense_clf = True # todo description
self.save_interval = 10 # Intervall to save models/checkpoints during
# training in epochs
self.lr_reduce_rates = [1 / 2, 2 / 3, 3 / 4] # Learning rate reduction rates (epochs/rate).
# Architecture specific parameters
self.first_dilation = 5 # First dilation
self.hidden_dilation = 2 # Hidden dilation
self.first_filter = 10 # First filter
self.hidden_filter = 5 # Hidden filter
self.dropout_rate = 0.2 # Dropout rate
self.conv_architecture = 'DenseNet' # Convolution architecture to use.
self.use_input_attention = False # Use input attention
self.use_output_attention = False # Use output attention
# Evaluation parameters
self.eval_num_classes = 2 # Number of classes, needed for evaluation
self.pred_thresh = .5 # Threshold for BP prediction
self.gen_loc_output = False # Generate localization unit output
self.plot_loc_results = False # Plot localization unit results
# Raw data processing parameters
self.hop_modifiers = [0.125, 0.125 / 2, 0.025, 0.0125, 0.006, 0.0025] # Hop modifiers for margin/window
# size generation
self.default_data_gen_margin = 10000 # Default window margin used for data generation
self.bp_delta_thresh = 0.001 # Threshold for breakpoints
self.plot_data_gen = False # Plot generated data windows
# GPU config
self.per_process_gpu_mem_frac = 0.8 # Per process GPU Memory fraction
self.allow_gpu_growth = True # Allow GPU growth
# general config
self.random_seed = 47 # Random seed for cross validation, etc.