-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilities.py
54 lines (39 loc) · 1.6 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import torch
import torchvision.transforms as transforms
from torch.utils.data import Dataset
from PIL import Image
import pandas as pd
import numpy as np
class Sample(Dataset):
def __init__(self, dataDir):
self.dataDir = dataDir
self.images = [os.path.join(self.dataDir, f) for f in os.listdir(self.dataDir)]
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
images = self.images[idx]
return images
class Dataset(torch.utils.data.Dataset):
def __init__(self, dataframe: pd.DataFrame, inputWidth: int, inputHeight: int) -> None:
self.dataframe = dataframe
self.transformEntry = transforms.Compose([
transforms.Resize((inputHeight, inputWidth), antialias=True),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
self.transformLabel = transforms.Compose([
transforms.Resize((inputHeight, inputWidth), antialias=True),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485), std=(0.229))
])
def __len__(self) -> int:
return len(self.dataframe)
def __getitem__(self, index: int):
entryPath = self.dataframe.iloc[index, 0]
targetPath = self.dataframe.iloc[index, 1]
entry = Image.fromarray(np.load(entryPath).astype(np.uint8))
target = Image.fromarray((np.load(targetPath) * 255.0).astype(np.uint8))
entry = self.transformEntry(entry)
target = self.transformLabel(target)
return (entry, target)