-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDBScanImplementation.py
226 lines (206 loc) · 10.3 KB
/
DBScanImplementation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import Constants
from PyQt5.QtWidgets import *
from UtilityClasses import Cluster
from sklearn import KDTree, DBSCAN
class DBScanWindow(QMainWindow):
def __init__(self, parent):
super().__init__(parent)
# Глобальные переменные для пошагового исполнения алгоритма.
# Для того чтобы выполнить шаг нужно помнить состояние достигнутое прыдыдущими шагами.
# Это состояние хранится в следующих переменных
self.workData = self.parent().globalData
self.rowsToClusterize = list(self.workData)
self.rowsToConsider = list(self.workData)
self.resultClusters = []
self.supposedClusterElems = set()
self.stepIterator = 0
self.clusterIterator = 0
self.neighborsCurrent = set()
self.neighborsToConsider = set()
self.neighborsConsidered = set()
self.cluster = None
self.prevClusterSize = 0
self.currClusterSize = 0
self.centralWidget = QWidget()
self.setCentralWidget(self.centralWidget)
self.layout = QVBoxLayout(self.centralWidget)
self.vicinityLabel = QLabel("Радиус окрестности")
self.vicinityEdit = QLineEdit()
self.checkforamountLabel = QLabel("Число соседей")
self.checkforamountEdit = QLineEdit()
self.layout.addWidget(self.vicinityLabel)
self.layout.addWidget(self.vicinityEdit)
self.layout.addWidget(self.checkforamountLabel)
self.layout.addWidget(self.checkforamountEdit)
self.confirmationButton = QPushButton("Выполнить алгоритм")
self.confirmationButton.clicked.connect(self.performAlgorithm)
self.layout.addWidget(self.confirmationButton)
self.exstepbystepButton = QPushButton("Выполнить пошагово")
self.exstepbystepButton.clicked.connect(self.exstepbystep)
self.layout.addWidget(self.exstepbystepButton)
self.buttongroup = QWidget()
self.buttongrouplayout = QHBoxLayout(self.buttongroup)
self.nextstepButton = QPushButton("След Шаг")
self.nextstepButton.clicked.connect(self.stepAndVisualize)
self.nextstepButton.setEnabled(False)
self.continueButton = QPushButton("Завершить")
self.continueButton.setEnabled(False)
self.buttongrouplayout.addWidget(self.nextstepButton)
self.buttongrouplayout.addWidget(self.continueButton)
self.layout.addWidget(self.buttongroup)
self.multiplestepsbutton = QPushButton("Выполнить N шагов")
self.multiplestepsbutton.clicked.connect(self.takemultiplesteps)
self.multiplestepsbutton.setEnabled(False)
self.label = QLabel("N = ")
self.lineedit = QLineEdit()
self.lineedit.setPlaceholderText("N")
self.widgetgroup = QWidget()
self.widgetgrouplayout = QHBoxLayout(self.widgetgroup)
self.widgetgroup.setEnabled(False)
self.widgetgrouplayout.addWidget(self.label)
self.widgetgrouplayout.addWidget(self.lineedit)
self.layout.addWidget(self.multiplestepsbutton)
self.layout.addWidget(self.widgetgroup)
self.setGeometry(100, 100, 200, 200)
self.setWindowTitle("DBScan")
self.show()
def performAlgorithm(self):
if self.prepareData():
print(*self.rowsToClusterize)
iterCounter = 0
while len(self.rowsToClusterize) > 0:
iterCounter += 1
self.supposedClusterElems = set()
prevIterSize = 0
self.supposedClusterElems.add(self.rowsToClusterize[0])
while prevIterSize < len(self.supposedClusterElems):
prevIterSize = len(self.supposedClusterElems)
clusterExtension = set()
for item in self.supposedClusterElems:
neighbors = self.findNeighbors(item, self.radius)
for item in neighbors:
if self.isElemSuitable(item, self.radius, self.neighborsamount):
clusterExtension.add(item)
self.supposedClusterElems.update(clusterExtension)
cluster = Cluster(self.workData.buildClusterDataFromRows(list(self.supposedClusterElems)))
cluster.setColor(Constants.EXTENDED_COLOR_SET[(iterCounter-1) % len(Constants.EXTENDED_COLOR_SET)])
cluster.setName("dbscan" + str(iterCounter))
self.resultClusters.append(cluster)
# строки полученного кластера удаляем из исходного набора
for item in self.supposedClusterElems:
self.rowsToClusterize.remove(item)
self.rowsToConsider.remove(item)
self.parent().addClusters(self.resultClusters)
def performStep(self):
if self.cluster is None:
if len(self.rowsToClusterize) is 0:
self.close()
else:
self.clusterIterator += 1
self.staterow = self.rowsToClusterize[0]
self.neighborsConsidered.add(self.staterow)
self.neighborsCurrent = self.findNeighbors(self.staterow, self.radius)
self.neighborsToConsider = set(self.neighborsCurrent)
self.cluster = Cluster(self.workData.buildClusterDataFromRows([self.staterow]))
self.cluster.setName("dbscan" + str(self.clusterIterator))
self.cluster.setColor(Constants.EXTENDED_COLOR_SET[(self.clusterIterator-1) % len(Constants.EXTENDED_COLOR_SET)])
self.rowsToClusterize.remove(self.staterow)
self.parent().addCluster(self.cluster)
self.currClusterSize = 1
self.prevClusterSize = 0
else:
if len(self.neighborsToConsider) is not 0:
self.staterow = self.neighborsToConsider.pop()
self.neighborsConsidered.add(self.staterow)
if self.isElemSuitable(self.staterow, self.radius, self.neighborsamount):
self.cluster.addRow(self.staterow)
if self.staterow in self.rowsToClusterize:
self.rowsToClusterize.remove(self.staterow)
else:
self.prevClusterSize = self.currClusterSize
self.currClusterSize = len(self.cluster)
if self.currClusterSize != self.prevClusterSize:
for elem in self.neighborsCurrent:
self.neighborsToConsider.update(self.findNeighbors(elem, self.radius))
self.neighborsToConsider = self.neighborsToConsider - self.neighborsConsidered
self.neighborsCurrent = set(self.neighborsToConsider)
else:
for elem in self.cluster:
self.rowsToConsider.remove(elem)
self.cluster = None
def isElemSuitable(self, sourcerow, radius, amount):
neighbors = self.findNeighbors(sourcerow, radius)
if len(neighbors) >= amount:
return True
else:
return False
def findNeighbors(self, sourcerow, radius):
significancefactors = self.parent().globalData.getSignificanceFactors()
neighbors = set()
rowsToIterateOver = set(self.rowsToConsider) - set([sourcerow])
for row in rowsToIterateOver:
if sourcerow.distanceTo(row, significancefactors) < radius:
neighbors.add(row)
return neighbors
def visualize(self, sourcerow, radius):
self.parent().sphere = (sourcerow, radius)
self.parent().refreshCanvas()
def stepAndVisualize(self):
self.performStep()
self.visualize(self.staterow, self.radius)
def takemultiplesteps(self):
try:
amount = int(self.lineedit.text())
for i in range(0, amount):
self.performStep()
self.visualize(self.staterow, self.radius)
except ValueError:
msg = QMessageBox()
msg.setIcon(QMessageBox.Warning)
msg.setText("Число шагов задано некорректно")
msg.setWindowTitle("Внимание")
msg.exec_()
def exstepbystep(self):
if self.prepareData():
self.confirmationButton.setEnabled(False)
self.continueButton.setEnabled(True)
self.nextstepButton.setEnabled(True)
self.checkforamountEdit.setEnabled(False)
self.vicinityEdit.setEnabled(False)
self.exstepbystepButton.setEnabled(False)
self.multiplestepsbutton.setEnabled(True)
self.widgetgroup.setEnabled(True)
self.stepAndVisualize()
def prepareData(self):
""" Подготавилвает данные, нужные для работы алгоритма
:return: возвращает True если подготовка выполнена успешно и False в противном случае
"""
try:
self.radius = float(self.vicinityEdit.text())
except ValueError:
msg = QMessageBox()
msg.setIcon(QMessageBox.Warning)
msg.setText("Радиус задан некорректно")
msg.setWindowTitle("Внимание")
msg.exec_()
return False
try:
self.neighborsamount = int(self.checkforamountEdit.text())
except ValueError:
msg = QMessageBox()
msg.setIcon(QMessageBox.Warning)
msg.setText("Число соседей задано некорректно")
msg.setWindowTitle("Внимание")
msg.exec_()
return False
self.workData = self.parent().globalData
self.rowsToClusterize = list(self.workData)
self.resultClusters = []
self.supposedClusterElems = set()
return True
def closeEvent(self, event):
self.parent().sphere = None
self.parent().circle = None
self.parent().refreshCanvas()
self.parent().refreshClusterTable()
event.accept()