-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmbsts.stan
377 lines (314 loc) · 15.5 KB
/
mbsts.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
functions {
matrix make_L(row_vector theta, matrix Omega) {
return diag_pre_multiply(sqrt(theta), Omega);
}
// Linear Trend
row_vector make_delta_t(row_vector alpha_trend, matrix beta_trend, matrix delta_past, row_vector nu) {
return alpha_trend + columns_dot_product(beta_trend, delta_past) + nu;
}
// Enforce stationarity of lineartrend and GARCH
row_vector pacf_to_acf(vector x) {
int n = num_elements(x);
matrix[n, n] y = diag_matrix(x);
row_vector[n] out;
for (k in 2:n) {
for (i in 1:(k - 1)) {
y[k, i] = y[k - 1, i] - x[k] * y[k - 1, k - i];
}
}
for (i in 1:n) {
out[i] = y[n, n - i + 1];
}
return out;
}
matrix constrain_stationary(matrix x) {
matrix[cols(x), rows(x)] out;
for (n in 1:cols(x)) {
out[n] = pacf_to_acf(col(x, n));
}
return out';
}
}
data {
int<lower=2> N; // Number of price points
int<lower=2> N_series; // Number of price series
int<lower=2> N_periods; // Number of periods
int<lower=1> N_features; // Number of features in the regression
// Parameters controlling the model
int<lower=2> periods_to_predict;
int<lower=1> ar; // AR period for the trend
int<lower=1> p; // GARCH
int<lower=1> q; // GARCH
int<lower=1> N_seasonality;
int<lower=1> s[N_seasonality]; // seasonality
real<lower=1> period_scale;
real<lower=3> cyclicality_prior; // Prior estimate of the number of periods in the business cycle
int<lower=0> corr_prior;
// Data
vector<lower=0>[N] y;
int<lower=1,upper=N_periods> period[N];
int<lower=1,upper=N_series> series[N];
vector<lower=0>[N] weight;
matrix[N_periods, N_features] x; // Regression predictors
}
transformed data {
vector<lower=0>[N] log_y;
real<lower=0> min_price = log1p(min(y));
real<lower=0> max_price = log1p(max(y));
row_vector[N_series] zero_vector = rep_row_vector(0, N_series);
vector[N_series] zero_vector_r = zero_vector';
vector<lower=0>[N] inv_weights;
real<lower=0> inv_period_scale = 1.0 / period_scale;
real min_beta_ar = ar == 1 ? 0 : -1;
real lambda_mean = 2 / cyclicality_prior;
real lambda_a = -lambda_mean * 2 / (lambda_mean - 1);
int max_s = max(s) - 1;
// Priors for beta_ar partial autocorrelations
vector<lower=0>[ar] beta_ar_alpha;
vector<lower=0>[ar] beta_ar_beta;
for (a in 1:ar) {
beta_ar_alpha[ar - a + 1] = floor((a + 1.0)/2.0);
beta_ar_beta[ar - a + 1] = floor(a / 2.0) + 1;
}
for (n in 1:N) {
log_y[n] = log1p(y[n]);
inv_weights[n] = 1.0 / weight[n];
}
}
parameters {
real<lower=0> sigma_y; // observation variance
// TREND delta_t
matrix[1, N_series] delta_t0; // Trend at time 0
row_vector[N_series] alpha_ar; // long-term trend
// Note that beta_ar is converted to beta_ar_c to enforce stationarity
matrix<lower=min_beta_ar,upper=1>[ar, N_series] beta_ar; // Learning rate of trend
row_vector[N_series] nu_trend[N_periods-1]; // Random changes in trend
row_vector<lower=0>[N_series] theta_ar; // Variance in changes in trend
cholesky_factor_corr[N_series] L_omega_ar; // Correlations among trend changes
// SEASONALITY
matrix[N_periods-1+max_s, N_series] w_t[N_seasonality]; // Random variation in seasonality
vector<lower=0>[N_series] theta_season[N_seasonality]; // Variance in seasonality
// CYCLICALITY
row_vector<lower=0, upper=pi()>[N_series] lambda; // Frequency
row_vector<lower=0, upper=1>[N_series] rho; // Damping factor
vector<lower=0>[N_series] theta_cycle; // Variance in cyclicality
row_vector[N_series] kappa[N_periods - 1]; // Random changes in cyclicality
row_vector[N_series] kappa_star[N_periods - 1]; // Random changes in counter-cycle
// REGRESSION
matrix[N_features, N_series] beta_xi; // Coefficients of the regression parameters
// INNOVATIONS
matrix[N_periods-1, N_series] epsilon; // Innovations
row_vector<lower=0>[N_series] omega_garch; // Baseline volatility of innovations
// Note that beta_p and q are converted to beta_p_c and q_c to enforce stationarity
matrix<lower=0,upper=1>[p, N_series] beta_p; // Univariate GARCH coefficients on prior volatility
matrix<lower=0,upper=1>[q, N_series] beta_q; // Univariate GARCH coefficients on prior innovations
cholesky_factor_corr[N_series] L_omega_garch; // Constant correlations among innovations
row_vector<lower=min_price,upper=max_price>[N_series] starting_prices;
}
transformed parameters {
matrix[N_periods, N_series] log_prices; // Observable prices
matrix[N_periods-1, N_series] delta; // Trend at time t
matrix[N_periods-1, N_series] tau_s[N_seasonality]; // Seasonality for each periodicity
matrix[N_periods-1, N_series] tau; // Total seasonality
matrix[N_periods-1, N_series] omega; // Cyclicality at time t
matrix[N_periods-1, N_series] omega_star; // Anti-cyclicality at time t
matrix[N_periods-1, N_series] theta; // Conditional variance of innovations
matrix[N_periods, N_series] xi = x * beta_xi; // Predictors
vector[N] log_y_hat;
matrix[N_series, N_series] L_Omega_ar = make_L(theta_ar, L_omega_ar);
row_vector[N_series] rho_cos_lambda = rho .* cos(lambda);
row_vector[N_series] rho_sin_lambda = rho .* sin(lambda);
// Constrain to stationarity
matrix[ar, N_series] beta_ar_c = ar == 1 ? beta_ar : constrain_stationary(beta_ar);
matrix[p, N_series] beta_p_c = p == 1 ? beta_p : constrain_stationary(beta_p);
// TREND
delta[1] = make_delta_t(alpha_ar, block(beta_ar, ar, 1, 1, N_series), delta_t0, nu_trend[1]);
for (t in 2:(N_periods-1)) {
if (t <= ar) {
delta[t] = make_delta_t(alpha_ar,
constrain_stationary(block(beta_ar, ar - t + 2, 1, t - 1, N_series)),
block(delta, 1, 1, t - 1, N_series), nu_trend[t]);
} else {
delta[t] = make_delta_t(alpha_ar, beta_ar_c, block(delta, t - ar, 1, ar, N_series), nu_trend[t]);
}
}
// ----- SEASONALITY ------
for (ss in 1:N_seasonality) {
int periodicity = s[ss] - 1;
matrix[N_periods - 1 + periodicity, N_series] tau_s_temp;
tau_s_temp[1] = w_t[ss][1];
for (t in 2:(N_periods -1 + periodicity)) {
for (d in 1:N_series) tau_s_temp[t, d] = -sum(sub_col(tau_s_temp, max(1, t - periodicity), d, min(periodicity, t-1)));
tau_s_temp[t] += w_t[ss][t];
}
tau_s[ss] = block(tau_s_temp, periodicity + 1, 1, N_periods - 1, N_series);
if (ss == 1) tau = tau_s[ss];
else tau += tau_s[ss];
}
// ----- CYCLICALITY ------
omega[1] = kappa[1];
omega_star[1] = kappa_star[1];
for (t in 2:(N_periods-1)) {
omega[t] = (rho_cos_lambda .* omega[t - 1]) + (rho_sin_lambda .* omega_star[t-1]) + kappa[t];
omega_star[t] = - (rho_sin_lambda .* omega[t - 1]) + (rho_cos_lambda .* omega_star[t-1]) + kappa_star[t];
}
// ----- UNIVARIATE GARCH ------
theta[1] = omega_garch;
{
matrix[N_periods-1, N_series] epsilon_squared = square(epsilon);
for (t in 2:(N_periods-1)) {
row_vector[N_series] p_component;
row_vector[N_series] q_component;
if (t <= p) {
p_component = columns_dot_product(
constrain_stationary(block(beta_p, p - t + 2, 1, t - 1, N_series)),
block(theta, 1, 1, t - 1, N_series)
);
} else {
p_component = columns_dot_product(beta_p_c, block(theta, t - p, 1, p, N_series));
}
if (t <= q) {
q_component = columns_dot_product(block(beta_q, q - t + 2, 1, t - 1, N_series), block(epsilon_squared, 1, 1, t - 1, N_series));
} else {
q_component = columns_dot_product(beta_q, block(epsilon_squared, t - q, 1, q, N_series));
}
theta[t] = omega_garch + p_component + q_component;
}
}
// ----- ASSEMBLE TIME SERIES ------
log_prices[1] = starting_prices;
for (t in 2:N_periods) {
log_prices[t] = log_prices[t-1] + delta[t-1] + tau[t-1] + omega[t-1] + xi[t-1] + epsilon[t-1];
}
for (n in 1:N) {
log_y_hat[n] = log_prices[period[n], series[n]];
}
}
model {
vector[N] price_error = log_y - log_y_hat;
// ----- PRIORS ------
// TREND
to_vector(alpha_ar) ~ normal(0, inv_period_scale);
to_vector(delta_t0) ~ normal(alpha_ar, inv_period_scale);
// Jones (1984) Prior on the partial autocorrelations
// Sets a uniform prior on partial autocorrelations
for (ss in 1:N_series) {
.5 + (col(beta_ar, ss) / 2) ~ beta(beta_ar_alpha, beta_ar_beta);
}
to_vector(beta_ar) ~ cauchy(0, 0.3);
to_vector(theta_ar) ~ cauchy(0, inv_period_scale);
L_omega_ar ~ lkj_corr_cholesky(corr_prior);
// SEASONALITY
for (ss in 1:N_seasonality) {
theta_season[ss] ~ cauchy(0, inv_period_scale);
for (t in 1:max_s) w_t[ss, t] ~ normal(zero_vector, theta_season[ss]);
}
// CYCLICALITY
(lambda / pi()) ~ beta(lambda_a, 2);
rho ~ normal(0, 1);
theta_cycle ~ cauchy(0, inv_period_scale);
// REGRESSION
to_vector(beta_xi) ~ cauchy(0, inv_period_scale);
// INNOVATIONS
omega_garch ~ normal(0, inv_period_scale);
to_vector(beta_p) ~ cauchy(0, .3);
to_vector(beta_q) ~ cauchy(0, .3);
L_omega_garch ~ lkj_corr_cholesky(corr_prior);
// ----- TIME SERIES ------
// Time series
to_vector(starting_prices) ~ uniform(min_price, max_price);
nu_trend ~ multi_normal_cholesky(zero_vector, L_Omega_ar);
for (t in 1:(N_periods-1)) {
for (ss in 1:N_seasonality) w_t[ss][t] ~ normal(zero_vector, theta_season[ss]);
epsilon[t] ~ multi_normal_cholesky(zero_vector, make_L(theta[t], L_omega_garch));
kappa[t] ~ normal(zero_vector, theta_cycle);
kappa_star[t] ~ normal(zero_vector, theta_cycle);
}
for (t in N_periods:(N_periods + max_s - 1)) {
for (ss in 1:N_seasonality) w_t[ss][t] ~ normal(zero_vector, theta_season[ss]);
}
// ----- OBSERVATIONS ------
sigma_y ~ cauchy(0, 0.01);
price_error ~ normal(0, inv_weights * sigma_y);
}
generated quantities {
matrix[periods_to_predict, N_series] log_prices_hat;
matrix[periods_to_predict, N_series] delta_hat; // Expected trend at time t
matrix[periods_to_predict, N_series] tau_hat_all;
matrix[periods_to_predict, N_series] omega_hat; // Cyclicality at time t
matrix[periods_to_predict, N_series] omega_star_hat; // Anti-cyclicality at time t
matrix[periods_to_predict, N_series] theta_hat; // Conditional variance of innovations
matrix[periods_to_predict, N_series] epsilon_hat;
matrix[periods_to_predict, N_series] nu_ar_hat;
matrix[periods_to_predict, N_series] kappa_hat;
matrix[periods_to_predict, N_series] kappa_star_hat;
matrix[periods_to_predict, N_series] w_t_hat[N_seasonality];
matrix[N_series, N_series] trend_corr = crossprod(L_omega_ar);
matrix[N_series, N_series] innovation_corr = crossprod(L_omega_garch);
for (t in 1:periods_to_predict) {
nu_ar_hat[t] = multi_normal_cholesky_rng(zero_vector_r, L_Omega_ar)';
kappa_hat[t] = multi_normal_rng(zero_vector_r, diag_matrix(theta_cycle))';
kappa_star_hat[t] = multi_normal_rng(zero_vector_r, diag_matrix(theta_cycle))';
for (ss in 1:N_seasonality) w_t_hat[ss][t] = multi_normal_rng(zero_vector_r, diag_matrix(theta_season[ss]))';
}
// TREND
{
matrix[ar + periods_to_predict, N_series] delta_temp = append_row(
block(delta, N_periods - ar, 1, ar, N_series),
rep_matrix(0, periods_to_predict, N_series)
);
for (t in 1:periods_to_predict) delta_temp[ar + t] = make_delta_t(alpha_ar, beta_ar_c,
block(delta_temp, t, 1, ar, N_series),
nu_ar_hat[1]);
delta_hat = block(delta_temp, ar + 1, 1, periods_to_predict, N_series);
}
// SEASONALITY
for (ss in 1:N_seasonality) {
int periodicity = s[ss] - 1;
matrix[periodicity + periods_to_predict, N_series] tau_temp = append_row(
block(tau_s[ss], N_periods - periodicity, 1, periodicity, N_series),
rep_matrix(0, periods_to_predict, N_series)
);
for (t in 1:(periods_to_predict)) {
for (d in 1:N_series) tau_temp[periodicity + t, d] = -sum(sub_col(tau_temp, t, d, periodicity));
tau_temp[periodicity + t] += w_t_hat[ss][t];
}
if (ss == 1) tau_hat_all = block(tau_temp, periodicity + 1, 1, periods_to_predict, N_series);
else tau_hat_all += block(tau_temp, periodicity + 1, 1, periods_to_predict, N_series);
}
// Cyclicality
for (t in 1:(periods_to_predict)) {
if (t == 1) {
omega_hat[t] = (rho_cos_lambda .* omega[N_periods-1]) + (rho_sin_lambda .* omega_star[N_periods-1]) + kappa_hat[t];
omega_star_hat[t] = -(rho_sin_lambda .* omega[N_periods-1]) + (rho_cos_lambda .* omega_star[N_periods-1]) + kappa_star_hat[t];
} else {
omega_hat[t] = (rho_cos_lambda .* omega_hat[t-1]) + (rho_sin_lambda .* omega_star_hat[t-1]) + kappa_hat[t];
omega_star_hat[t] = -(rho_sin_lambda .* omega_hat[t-1]) + (rho_cos_lambda .* omega_star_hat[t-1]) + kappa_star_hat[t];
}
}
// Univariate GARCH
{
matrix[p + periods_to_predict, N_series] theta_temp = append_row(
block(theta, N_periods - p, 1, p, N_series),
rep_matrix(0, periods_to_predict, N_series)
);
matrix[q + periods_to_predict, N_series] epsilon_temp = append_row(
block(epsilon, N_periods - q, 1, q, N_series),
rep_matrix(0, periods_to_predict, N_series)
);
for (t in 1:periods_to_predict) {
row_vector[N_series] p_component;
row_vector[N_series] q_component;
p_component = columns_dot_product(beta_p_c, block(theta_temp, t, 1, p, N_series));
q_component = columns_dot_product(beta_q, square(block(epsilon_temp, t, 1, q, N_series)));
theta_temp[t + p] = omega_garch + p_component + q_component;
epsilon_temp[t + q] = multi_normal_cholesky_rng(zero_vector_r, make_L(theta_temp[t + p], L_omega_garch))';
}
theta_hat = block(theta_temp, p + 1, 1, periods_to_predict, N_series);
epsilon_hat = block(epsilon_temp, q + 1, 1, periods_to_predict, N_series);
}
log_prices_hat[1] = log_prices[N_periods] + delta_hat[1] + tau_hat_all[1] + omega_hat[1] + epsilon_hat[1];
for (t in 2:periods_to_predict) {
log_prices_hat[t] = log_prices_hat[t-1] + delta_hat[t] + tau_hat_all[t] + omega_hat[t] + epsilon_hat[t];
}
}