-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
261 lines (227 loc) · 8.71 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# %% Imports
from __future__ import print_function
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import util
import fid_score
from tqdm import tqdm
cudnn.benchmark = True
#set manual seed to a constant get a consistent output
manualSeed = random.randint(1, 10000)
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
#loading the dataset
dataset = dset.CIFAR10(root="./data", download=True,
transform=transforms.Compose([
transforms.Resize(64),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
nc=3
dataloader = torch.utils.data.DataLoader(dataset, batch_size=128,
shuffle=True, num_workers=0)
#checking the availability of cuda devices
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# %% Configs
ngpu = 1
# input noise dimension
nz = 100
# number of generator filters
ngf = 64
#number of discriminator filters
ndf = 64
# custom weights initialization called on netG and netD
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
# %% Generator
class Generator(nn.Module):
def __init__(self, ngpu):
super(Generator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64
)
def forward(self, input):
if input.is_cuda and self.ngpu > 1:
output = nn.parallel.data_parallel(self.main, input, range(self.ngpu))
else:
output = self.main(input)
return output
netG = Generator(ngpu).to(device)
netG.apply(weights_init)
#load weights to test the model
#netG.load_state_dict(torch.load('weights/netG_epoch_24.pth',map_location=torch.device('cpu')))
print(netG)
# %% Discriminator
class Discriminator(nn.Module):
def __init__(self, ngpu):
super(Discriminator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
# input is (nc) x 64 x 64
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*2) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
if input.is_cuda and self.ngpu > 1:
output = nn.parallel.data_parallel(self.main, input, range(self.ngpu))
else:
output = self.main(input)
return output.view(-1, 1).squeeze(1)
netD = Discriminator(ngpu).to(device)
netD.apply(weights_init)
#load weights to test the model
#netD.load_state_dict(torch.load('weights/netD_epoch_24.pth'))
print(netD)
# %% optimizer & Loss Config
criterion = nn.BCELoss()
# setup optimizer
optimizerD = optim.Adam(netD.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=0.0002, betas=(0.5, 0.999))
fixed_noise = torch.randn(128, nz, 1, 1, device=device)
fixed_noise2 = torch.randn(49920, nz, 1, 1, device=device)
real_label = 1
fake_label = 0
niter = 25
g_loss = []
d_loss = []
# %% Train Loop
aug_type_vec = ['colorNoise']
lambda_vec = np.arange(0.1, 1.1, 0.1).round(2)
for aug_type in aug_type_vec:
for lam in lambda_vec:
print(aug_type, lam)
util.createDir(aug_type,lam)
util.train_loop(lam,aug_type,niter,dataloader,netG,netD,criterion,device,real_label,fake_label,nz,optimizerG,optimizerD,fixed_noise)
print('finish Train Loop')
# %% create folders
## aug_type_vec = ['translationX']
# lambda_vec = np.arange(0.6, 1.1, 0.1).round(2)
for aug_type in aug_type_vec:
for lam in lambda_vec:
print(aug_type, lam)
folder_name = aug_type + '_' + str(lam) # .replace('.','p')
dirType = '/weights/'
pathMkdir = os.getcwd() + dirType + folder_name + '/fake_samples/'
# mkdir
print(pathMkdir)
try:
os.mkdir(pathMkdir)
except OSError:
print("Creation of the directory %s failed" % pathMkdir)
else:
print("Successfully created the directory %s " % pathMkdir)
#end mkdir
path = os.getcwd() + dirType + folder_name
netG = util.load_weights(netG, path=path+'/netG_epoch_23.pth', device=device)
torch.manual_seed(42)
for i in tqdm(range(20000)):
fixed_noise2 = torch.randn(1, nz, 1, 1, device=device)
fake = netG(fixed_noise2)
vutils.save_image(fake[0, :, :, :].detach(), path + '/fake_samples/fake_sample_%03d.png' % (i),
normalize=True)
print('finish create folders')
# create Real Data folder
# for i, data in enumerate(dataloader, 0):
# real = data[0]
# for j in range(real.shape[0]):
# vutils.save_image(real[j, :, :, :].detach(), 'output/real_samples/real_sample_%03d.png' % (i*real.shape[0]+j), normalize=True)
# %% prepare FID
paths = ['output/real_samples', 'output/translationX/fake_samples/']
batch_size = 32
cuda = (device == 'cuda')
dims = 2048
model = fid_score.getInceptionModel(batch_size, cuda, dims)
m1, s1 = fid_score.getRealm1s1(paths, batch_size, cuda, dims, model)
print('finish prepare FID')
# %% calc FID per dir
# aug_type_vec = ['translationX']
# lambda_vec = np.arange(0.1, 1.1, 0.1).round(2)
matplotlib.use('Agg')
for aug_type in aug_type_vec:
fid_vec = []
for lam in lambda_vec:
print(aug_type, lam)
folder_name = aug_type + '_' + str(lam) # .replace('.','p')
paths = ['output/real_samples', 'weights/'+folder_name+'/fake_samples/']
fid = fid_score.calculate_fid_given_paths(paths, batch_size, cuda, dims, model, m1, s1)
file = open("output/"+folder_name+"/result_FID.txt", "w")
file.write(str(fid))
file.close()
fid_vec.append(fid)
p = plt.plot(lambda_vec, np.array(fid_vec))
plt.title(aug_type)
plt.xlabel("lambda_aug")
plt.ylabel("fid score")
plt.savefig("output/"+aug_type+"_result_FID.png")
print("FINISH calc FID per dir")
# %% read FID per dir
# matplotlib.use('Agg')
# for aug_type in aug_type_vec:
# fid_vec = []
# for lam in lambda_vec:
# print(aug_type, lam)
# folder_name = aug_type + '_' + str(lam) # .replace('.','p')
# file = open("output/"+folder_name+"/result_FID.txt", "r")
# fid = file.read()
# file.close()
# fid_vec.append(float(fid))
# print(aug_type,fid)
# p = plt.plot(lambda_vec, np.array(fid_vec))
# plt.title(aug_type)
# plt.xlabel("lambda_aug")
# plt.ylabel("fid score")
# plt.savefig("output/" + aug_type + "_result_FID.png")
# print("FINISH calc FID per dir")