forked from malemi/cold-start-recommender
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclass-benchmark.py
53 lines (41 loc) · 1.59 KB
/
class-benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import random
from csrec import Recommender
import math
import numpy as np
engine = Recommender()
# Monte Carlo:
n_books = 10000
n_users = 10000
n_purchases = 5000
n_authors = 100
n_publishers = 10
authors = ['A' + str(i) for i in range(1, n_authors + 1)]
publishers = ['P' + str(i) for i in range(1, n_publishers + 1)]
print ("Info: insertion of random generated items: %d" % n_books)
# generate books
for b in range(0, n_books + 1):
# Author "AnN" is n^2 times more productive than "AN".
attributes = {'author': authors[int(math.sqrt(random.randrange(0, n_authors)**2))], 'publisher': publishers[int(math.sqrt(random.randrange(0, n_publishers)**2))]}
engine.db.insert_item(item_id=str(b), attributes=attributes)
print ("Info: generation and insert of random generated preferences: %d" % n_purchases)
purchase = 0
while purchase < n_purchases:
book_n = np.random.zipf(1.05)
user_n = np.random.zipf(1.5)
if book_n <= n_books and user_n <= n_users:
purchase += 1
user_id = str(user_n)
item_id = str(book_n)
rating = random.randrange(1, 6)
#print 'user', user_id, 'rated', code, 'stars item', item_id
engine.db.insert_item_action(user_id=user_id, item_id=item_id, code=3.0)
print ("Info: compute_items_by_popularity")
engine.compute_items_by_popularity()
for i in [1, 10, 100, 1000, 10000]:
print ("Info: generating recommendations for user: " + str(i))
print engine.get_recommendations(str(i))
print ("Serialization")
engine.db.serialize(filepath="database.bin")
print ("Restore")
engine.db.restore(filepath="database.bin")
print "End"