diff --git a/DESCRIPTION b/DESCRIPTION index 2a2c1b6..080f810 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -43,7 +43,7 @@ URL: https://ellessenne.github.io/rsimsum/ BugReports: https://github.com/ellessenne/rsimsum/issues VignetteBuilder: knitr Roxygen: list(markdown = TRUE) -RoxygenNote: 7.2.3 +RoxygenNote: 7.3.1 LazyData: true ByteCompile: true Encoding: UTF-8 diff --git a/Makefile b/Makefile index 28244b7..09849ad 100644 --- a/Makefile +++ b/Makefile @@ -9,8 +9,6 @@ pre_submission_test: R -e "devtools::check_win_oldrelease(quiet = TRUE)" R -e "devtools::check_mac_release(quiet = TRUE)" R -e "rhub::check_for_cran()" - R -e "rhub::check(platforms = 'macos-highsierra-release-cran')" - R -e "rhub::check(platforms = 'macos-highsierra-release')" make style docs: diff --git a/NEWS.md b/NEWS.md index 26266ac..e4aec09 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,6 +1,12 @@ # rsimsum (development version) -* Fixed issues with nested loop plot when the simulation design is not fully-factorial (#47, thanks @mikesweeting). +* Fixed issues with nested loop plot when the simulation design is not fully-factorial (#47, thanks @mikesweeting); + +* Fixed wrong calculations when the same column was used in `true` and in `by` or elsewhere (#48, thanks @mikesweeting); + +* Updated columns names for confidence intervals in the `tt` dataset; + +* Updated documentation regarding column names that are not allowed when calling `simsum()` or `multisimsum()`. # rsimsum 0.12.0 diff --git a/R/data.R b/R/data.R index 70a5dcc..7ae10dd 100644 --- a/R/data.R +++ b/R/data.R @@ -96,7 +96,7 @@ #' @format A data frame with 4,000 rows and 8 variables: #' * `diff` The difference in mean between groups estimated by the t-test; #' * `se` Standard error of the estimated difference; -#' * `lower`, `upper` Confidence interval for the difference in mean as reported by the t-test; +#' * `conf.low`, `conf.high` Confidence interval for the difference in mean as reported by the t-test; #' * `df` The number of degrees of freedom assumed by the t-test; #' * `repno` Identifies each replication, between 1 and 500; #' * `dgm` Identifies each data-generating mechanism: 1 corresponds to normal data with equal variance between the groups, 2 is normal data with unequal variance, 3 and 4 are skewed data (simulated from a Gamma distribution) with equal and unequal variance between groups, respectively; diff --git a/R/performance.R b/R/performance.R index ff71c97..c47445b 100644 --- a/R/performance.R +++ b/R/performance.R @@ -1,5 +1,8 @@ #' @keywords internal .performance <- function(data, estvarname, se, true, empse_ref = NULL, rho = NULL, ci.limits, df, control) { + ### Adjust 'true' to use internal column if not NULL + if (!is.null(true)) true <- ":true" + ### Make object to return obj <- list() @@ -22,29 +25,17 @@ } # Bias if (!is.null(true)) { - if (is.character(true)) { - bias <- 1 / nsim * sum(data[[estvarname]] - data[[true]], na.rm = control$na.rm) - } else { - bias <- 1 / nsim * sum(data[[estvarname]] - true, na.rm = control$na.rm) - } + bias <- 1 / nsim * sum(data[[estvarname]] - data[[":true"]], na.rm = control$na.rm) } # Relative bias if (!is.null(true)) { - if (is.character(true)) { - rbias <- 1 / nsim * sum((data[[estvarname]] - data[[true]]) / data[[true]], na.rm = control$na.rm) - } else { - rbias <- 1 / nsim * sum((data[[estvarname]] - true) / true, na.rm = control$na.rm) - } + rbias <- 1 / nsim * sum((data[[estvarname]] - data[[":true"]]) / data[[":true"]], na.rm = control$na.rm) } # Empirical standard error empse <- sqrt(1 / (nsim - 1) * sum((data[[estvarname]] - mean(data[[estvarname]], na.rm = control$na.rm))^2, na.rm = control$na.rm)) # Mean squared error if (!is.null(true)) { - if (is.character(true)) { - mse <- 1 / nsim * sum((data[[estvarname]] - data[[true]])^2, na.rm = control$na.rm) - } else { - mse <- 1 / nsim * sum((data[[estvarname]] - true)^2, na.rm = control$na.rm) - } + mse <- 1 / nsim * sum((data[[estvarname]] - data[[":true"]])^2, na.rm = control$na.rm) } # Relative change in precision if (!is.null(empse_ref) & !is.null(rho)) { @@ -68,26 +59,14 @@ # Coverage of a nominal (1 - level)% confidence interval if (!is.null(true) & !is.null(se)) { if (is.null(ci.limits)) { - if (is.character(true)) { - cover <- 1 / nsim * sum(data[[true]] >= data[[estvarname]] - crit * data[[se]] & data[[true]] <= data[[estvarname]] + crit * data[[se]], na.rm = control$na.rm) - } else { - cover <- 1 / nsim * sum(true >= data[[estvarname]] - crit * data[[se]] & true <= data[[estvarname]] + crit * data[[se]], na.rm = control$na.rm) - } + cover <- 1 / nsim * sum(data[[":true"]] >= data[[estvarname]] - crit * data[[se]] & data[[":true"]] <= data[[estvarname]] + crit * data[[se]], na.rm = control$na.rm) } else { if (is.character(ci.limits)) { - if (is.character(true)) { - cover <- 1 / nsim * sum(data[[true]] >= data[[ci.limits[1]]] & data[[true]] <= data[[ci.limits[2]]], na.rm = control$na.rm) - } else { - cover <- 1 / nsim * sum(true >= data[[ci.limits[1]]] & true <= data[[ci.limits[2]]], na.rm = control$na.rm) - } + cover <- 1 / nsim * sum(data[[":true"]] >= data[[ci.limits[1]]] & data[[":true"]] <= data[[ci.limits[2]]], na.rm = control$na.rm) } else if (is.numeric(ci.limits)) { data[["lower"]] <- ci.limits[1] data[["upper"]] <- ci.limits[2] - if (is.character(true)) { - cover <- 1 / nsim * sum(data[[true]] >= data[["lower"]] & data[[true]] <= data[["upper"]], na.rm = control$na.rm) - } else { - cover <- 1 / nsim * sum(true >= data[["lower"]] & true <= data[["upper"]], na.rm = control$na.rm) - } + cover <- 1 / nsim * sum(data[[":true"]] >= data[["lower"]] & data[[":true"]] <= data[["upper"]], na.rm = control$na.rm) } } } @@ -112,20 +91,12 @@ if (control$mcse) { if (!is.null(true)) { bias_mcse <- sqrt(1 / (nsim * (nsim - 1)) * sum((data[[estvarname]] - mean(data[[estvarname]], na.rm = control$na.rm))^2, na.rm = control$na.rm)) - if (is.character(true)) { - rbias_i <- (data[[estvarname]] - data[[true]]) / data[[true]] - } else { - rbias_i <- (data[[estvarname]] - true) / true - } + rbias_i <- (data[[estvarname]] - data[[":true"]]) / data[[":true"]] rbias_mcse <- sd(rbias_i) / sqrt(nsim) } empse_mcse <- empse / sqrt(2 * (nsim - 1)) if (!is.null(true)) { - if (is.character(true)) { - mse_mcse <- sqrt(sum(((data[[estvarname]] - data[[true]])^2 - mse)^2, na.rm = control$na.rm) / (nsim * (nsim - 1))) - } else { - mse_mcse <- sqrt(sum(((data[[estvarname]] - true)^2 - mse)^2, na.rm = control$na.rm) / (nsim * (nsim - 1))) - } + mse_mcse <- sqrt(sum(((data[[estvarname]] - data[[":true"]])^2 - mse)^2, na.rm = control$na.rm) / (nsim * (nsim - 1))) } if (!is.null(empse_ref) & !is.null(rho)) { relprec_mcse <- 200 * (empse_ref / empse)^2 * sqrt((1 - rho^2) / (nsim - 1)) diff --git a/R/simsum.R b/R/simsum.R index b34d78a..86576e3 100644 --- a/R/simsum.R +++ b/R/simsum.R @@ -6,25 +6,32 @@ #' @param data A `data.frame` in which variable names are interpreted. #' It has to be in tidy format, e.g. each variable forms a column and each observation forms a row. #' @param estvarname The name of the variable containing the point estimates. +#' Note that some column names are forbidden: these are listed below in the _Details_ section. #' @param se The name of the variable containing the standard errors of the point estimates. +#' Note that some column names are forbidden: these are listed below in the _Details_ section. #' @param true The true value of the parameter; this is used in calculations of bias, relative bias, coverage, and mean squared error and is required whenever these performance measures are requested. #' `true` can be a numeric value or a string that identifies a column in `data`. #' In the former setting, `simsum` will assume the same value for all replications; conversely, each replication will use a distinct value for `true` as identified by each row of `data`. #' See `vignette("E-custom-inputs", package = "rsimsum")` for more details. +#' Note that some column names are forbidden: these are listed below in the _Details_ section. #' @param methodvar The name of the variable containing the methods to compare. #' For instance, methods could be the models compared within a simulation study. #' Can be `NULL`. #' If a vector of column names is passed to `simsum()`, those columns will be combined into a single column named `:methodvar` using the [base::interaction()] function before computing all performance measures. +#' Note that some column names are forbidden: these are listed below in the _Details_ section. #' @param ref Specifies the reference method against which relative precision will be calculated. #' Only useful if `methodvar` is specified. #' @param by A vector of variable names to compute performance measures by a list of factors. Factors listed here are the (potentially several) data-generating mechanisms used to simulate data under different scenarios (e.g. sample size, true distribution of a variable, etc.). #' Can be `NULL`. +#' Note that some column names are forbidden: these are listed below in the _Details_ section. #' @param ci.limits Can be used to specify the limits (lower and upper) of confidence intervals used to calculate coverage and bias-eliminated coverage. #' Useful for non-Wald type estimators (e.g. bootstrap). #' Defaults to `NULL`, where Wald-type confidence intervals based on the provided SEs are calculated for coverage; otherwise, it can be a numeric vector (for fixed confidence intervals) or a vector of strings that identify columns in `data` with replication-specific lower and upper limits. #' See `vignette("E-custom-inputs", package = "rsimsum")` for more details. +#' Note that some column names are forbidden: these are listed below in the _Details_ section. #' @param df Can be used to specify that a column containing the replication-specific number of degrees of freedom that will be used to calculate confidence intervals for coverage (and bias-eliminated coverage) assuming t-distributed critical values (rather than normal theory intervals). #' See `vignette("E-custom-inputs", package = "rsimsum")` for more details. +#' Note that some column names are forbidden: these are listed below in the _Details_ section. #' @param dropbig Specifies that point estimates or standard errors beyond the maximum acceptable values should be dropped. Defaults to `FALSE`. #' @param x Set to `TRUE` to include the `data` argument used to calculate summary statistics (i.e. after pre-processing the input dataset e.g. removing values deemed too large via the `dropbig` argument) as a slot. Calling `simsum` with `x = TRUE` is required to produce zipper plots. The downside is that the size of the returned object increases considerably, therefore it is set to `FALSE` by default. #' @param control A list of parameters that control the behaviour of `simsum`. @@ -43,7 +50,7 @@ #' @references Gasparini, A. 2018. rsimsum: Summarise results from Monte Carlo simulation studies. Journal of Open Source Software 3(26):739, \doi{10.21105/joss.00739} #' @export #' @details -#' The following names are not allowed for `estvarname`, `se`, `methodvar`, `by`: `stat`, `est`, `mcse`, `lower`, `upper`, `:methodvar`. +#' The following names are not allowed for any column in `data` that is passed to [simsum()]: `stat`, `est`, `mcse`, `lower`, `upper`, `:methodvar`, `:true`. #' #' @examples #' data("MIsim", package = "rsimsum") @@ -62,22 +69,6 @@ simsum <- function(data, dropbig = FALSE, x = FALSE, control = list()) { - # data("nlp", package = "rsimsum") - # nlp.subset <- nlp %>% - # dplyr::filter(!(ss == 100 & esigma == 2)) - # data <- nlp.subset - # estvarname <- "b" - # true <- 0 - # se <- "se" - # methodvar <- "model" - # by <- c("baseline", "ss", "esigma") - # ci.limits <- NULL - # df <- NULL - # dropbig <- FALSE - # x <- FALSE - # control <- list() - # ref <- NULL - ### Check arguments arg_checks <- checkmate::makeAssertCollection() # 'data' must be a data.frame @@ -109,13 +100,13 @@ simsum <- function(data, checkmate::assert_subset(x = by, choices = names(data), add = arg_checks) checkmate::assert_subset(x = methodvar, choices = names(data), add = arg_checks) checkmate::assert_subset(x = df, choices = names(data), add = arg_checks) - # 'estvarname', 'se', 'methodvar', 'by' , 'df' must not be any in ('stat', 'est', 'mcse', 'lower', 'upper', ':methodvar') - .private_names <- c("stat", "est", "mcse", "lower", "upper", ":methodvar") - checkmate::assert_false(x = (estvarname %in% .private_names), add = arg_checks) - if (!is.null(se)) checkmate::assert_false(x = (se %in% .private_names), add = arg_checks) - if (!is.null(methodvar)) checkmate::assert_false(x = any(methodvar %in% .private_names), add = arg_checks) - if (!is.null(by)) checkmate::assert_false(x = any(by %in% .private_names), add = arg_checks) - if (!is.null(df)) checkmate::assert_false(x = any(df %in% .private_names), add = arg_checks) + # 'estvarname', 'se', 'methodvar', 'by' , 'df' must not be any in ('stat', 'est', 'mcse', 'lower', 'upper', ':methodvar', ':true') + .private_names <- c("stat", "est", "mcse", "lower", "upper", ":methodvar", ":true") + .check_private(var = estvarname, label = "estvarname", private_names = .private_names) + .check_private(var = se, label = "se", private_names = .private_names) + .check_private(var = methodvar, label = "methodvar", private_names = .private_names) + .check_private(var = by, label = "by", private_names = .private_names) + .check_private(var = df, label = "df", private_names = .private_names) # Process vector of 'methodvar' if a vector user_methodvar <- NULL if (length(methodvar) > 1) { @@ -134,6 +125,7 @@ simsum <- function(data, if (is.character(ci.limits)) { checkmate::assert_character(x = ci.limits, len = 2, add = arg_checks) checkmate::assert_true(x = all(ci.limits %in% names(data)), add = arg_checks) + lapply(X = ci.limits, FUN = function(x) .check_private(var = x, label = "ci.limits", private_names = .private_names)) } if (is.numeric(ci.limits)) { checkmate::assert_numeric(x = ci.limits, len = 2, add = arg_checks) @@ -164,6 +156,15 @@ simsum <- function(data, ), recursive = FALSE) control <- control.tmp + ### Add hidden column with true values + if (!is.null(true)) { + if (is.character(true)) { + data[[":true"]] <- data[[true]] + } else { + data[[":true"]] <- true + } + } + ### Factorise 'methodvar', 'by' data <- .factorise(data = data, cols = c(methodvar, by)) @@ -256,6 +257,7 @@ simsum <- function(data, obj$control <- control if (x) { obj$x <- .br(lapply(data, .br)) + if (!is.null(true)) obj$x[[":true"]] <- NULL rownames(obj$x) <- NULL } diff --git a/R/utils.R b/R/utils.R index 371bf4b..948f2a9 100644 --- a/R/utils.R +++ b/R/utils.R @@ -201,3 +201,13 @@ data <- data[nrs > 0] return(data) } + +### Check private names +.check_private <- function(var, label, private_names) { + if (!is.null(var)) { + if (any(var %in% private_names)) { + this <- which(var %in% private_names) + stop(paste0("'", var[this], "' is not an allowed name for '", label, "'; see help('simsum') for more details."), call. = FALSE) + } + } +} diff --git a/data-raw/tt-data.R b/data-raw/tt-data.R index b039c0d..1fe75de 100644 --- a/data-raw/tt-data.R +++ b/data-raw/tt-data.R @@ -142,6 +142,8 @@ for (i in seq(B)) { tt.df[[i]] <- out } tt <- do.call(rbind.data.frame, tt.df) +library(dplyr) +tt <- rename(tt, conf.low = lower, conf.high = upper) ### Export for use in the package usethis::use_data(tt, overwrite = TRUE) diff --git a/data/tt.rda b/data/tt.rda index 2ce8682..648133d 100644 Binary files a/data/tt.rda and b/data/tt.rda differ diff --git a/docs/articles/A-introduction.html b/docs/articles/A-introduction.html index 7ee784d..7687a1c 100644 --- a/docs/articles/A-introduction.html +++ b/docs/articles/A-introduction.html @@ -80,7 +80,7 @@

Alessandro Gasparini

-

2023-05-27

+

2023-05-28

Source: vignettes/A-introduction.Rmd
A-introduction.Rmd
diff --git a/docs/articles/B-relhaz.html b/docs/articles/B-relhaz.html index 45f0de6..ba51917 100644 --- a/docs/articles/B-relhaz.html +++ b/docs/articles/B-relhaz.html @@ -80,7 +80,7 @@

Alessandro Gasparini

-

2023-05-27

+

2023-05-28

Source: vignettes/B-relhaz.Rmd
B-relhaz.Rmd
diff --git a/docs/articles/C-plotting.html b/docs/articles/C-plotting.html index 86926ef..f7d73d8 100644 --- a/docs/articles/C-plotting.html +++ b/docs/articles/C-plotting.html @@ -80,7 +80,7 @@

Alessandro Gasparini

-

2023-05-27

+

2023-05-28

Source: vignettes/C-plotting.Rmd
C-plotting.Rmd
diff --git a/docs/articles/D-nlp.html b/docs/articles/D-nlp.html index 533767f..1a94983 100644 --- a/docs/articles/D-nlp.html +++ b/docs/articles/D-nlp.html @@ -80,7 +80,7 @@

Alessandro Gasparini

-

2023-05-27

+

2023-05-28

Source: vignettes/D-nlp.Rmd
D-nlp.Rmd
diff --git a/docs/articles/E-custom-inputs.html b/docs/articles/E-custom-inputs.html index 175d521..fdfab7c 100644 --- a/docs/articles/E-custom-inputs.html +++ b/docs/articles/E-custom-inputs.html @@ -80,7 +80,7 @@

Alessandro Gasparini

-

2023-05-27

+

2023-05-28

Source: vignettes/E-custom-inputs.Rmd
E-custom-inputs.Rmd
@@ -100,7 +100,7 @@

Single Estimandlibrary(rsimsum) data("tt", package = "rsimsum") head(tt) -#> diff se lower upper df repno dgm method +#> diff se conf.low conf.high df repno dgm method #> 1 -2.185467 1.130916 -4.432925 0.06199072 88.00000 1 1 1 #> 2 -3.359683 1.572366 -6.484430 -0.23493506 88.00000 1 2 1 #> 3 -2.185467 1.285290 -4.778318 0.40738411 42.53603 1 1 2 @@ -129,7 +129,7 @@

Single Estimanddata as the ci.limits argument:

-s1 <- simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm")
+s1 <- simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm")
 #> 'ref' method was not specified, 1 set as the reference
 summary(s1, stats = "cover")
 #> Values are:
@@ -175,8 +175,8 @@ 

Single Estimand#> 2 1.0000 (0.0000) 1.0000 (0.0000) #> 3 1.0000 (0.0000) 1.0000 (0.0000) #> 4 1.0000 (0.0000) 1.0000 (0.0000)

-

If you have a better example of the utility of this method please get in touch - I’d love to -hear from you!

+

If you have a better example of the utility of this method please get +in touch: I’d love to hear from you!

By default, simsum will calculate confidence intervals using normal-theory, Wald-type intervals. It is possible to use t-based critical values by providing a column for the (replication-specific) @@ -185,8 +185,8 @@

Single Estimand
 s4 <- simsum(data = tt, estvarname = "diff", true = -1, se = "se", df = "df", methodvar = "method", by = "dgm")
 #> 'ref' method was not specified, 1 set as the reference
-

Given that the confidence intervals in (lower, -upper) are obtained by using critical values from a t +

Given that the confidence intervals in (conf.low, +conf.high) are obtained by using critical values from a t distribution, the results of s4 will be equivalent to the results of s1:

@@ -195,7 +195,7 @@ 

Single EstimandWe can pass a column of values for true as well:

 tt$true <- -1
-s5 <- simsum(data = tt, estvarname = "diff", true = "true", se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm")
+s5 <- simsum(data = tt, estvarname = "diff", true = "true", se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm")
 #> 'ref' method was not specified, 1 set as the reference
 summary(s5, stats = "cover")
 #> Values are:
@@ -369,15 +369,15 @@ 

Multiple Estimands at OnceOf course, it can be combined with custom confidence interval limits for coverage as well:

-frailty$lower <- frailty$b - qt(1 - 0.05 / 2, df = 10) * frailty$se
-frailty$upper <- frailty$b + qt(1 - 0.05 / 2, df = 10) * frailty$se
+frailty$conf.low <- frailty$b - qt(1 - 0.05 / 2, df = 10) * frailty$se
+frailty$conf.high <- frailty$b + qt(1 - 0.05 / 2, df = 10) * frailty$se
 
 ms3 <- multisimsum(
   data = frailty,
   par = "par", true = "true",
   estvarname = "b", se = "se", methodvar = "model",
   by = "fv_dist",
-  ci.limits = c("lower", "upper")
+  ci.limits = c("conf.low", "conf.high")
 )
 #> 'ref' method was not specified, Cox, Gamma set as the reference
 summary(ms3, stats = "cover")
diff --git a/docs/articles/F-rsimsumtidyverse.html b/docs/articles/F-rsimsumtidyverse.html
index 19e2693..e65c680 100644
--- a/docs/articles/F-rsimsumtidyverse.html
+++ b/docs/articles/F-rsimsumtidyverse.html
@@ -80,7 +80,7 @@
                         

Alessandro Gasparini

-

2023-05-27

+

2023-05-28

Source: vignettes/F-rsimsumtidyverse.Rmd
F-rsimsumtidyverse.Rmd
diff --git a/docs/news/index.html b/docs/news/index.html index d443dab..9df527e 100644 --- a/docs/news/index.html +++ b/docs/news/index.html @@ -57,7 +57,10 @@

rsimsum (development version)

-
  • Fixed issues with nested loop plot when the simulation design is not fully-factorial (#47, thanks @mikesweeting).
  • +
    • Fixed issues with nested loop plot when the simulation design is not fully-factorial (#47, thanks @mikesweeting);

    • +
    • Fixed wrong calculations when the same column was used in true and in by or elsewhere (#48, thanks @mikesweeting);

    • +
    • Updated columns names for confidence intervals in the tt dataset;

    • +
    • Updated documentation regarding column names that are not allowed when calling simsum() or multisimsum().

rsimsum 0.12.0

diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index ba4126d..2652d2a 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -8,7 +8,7 @@ articles: D-nlp: D-nlp.html E-custom-inputs: E-custom-inputs.html F-rsimsumtidyverse: F-rsimsumtidyverse.html -last_built: 2023-05-27T10:43Z +last_built: 2023-05-28T14:41Z urls: reference: https://ellessenne.github.io/rsimsum/reference article: https://ellessenne.github.io/rsimsum/articles diff --git a/docs/reference/multisimsum.html b/docs/reference/multisimsum.html index 6b6ef0b..d7b8024 100644 --- a/docs/reference/multisimsum.html +++ b/docs/reference/multisimsum.html @@ -107,25 +107,29 @@

Argumentsvignette("E-custom-inputs", package = "rsimsum") for more details.

+See vignette("E-custom-inputs", package = "rsimsum") for more details. +Note that some column names are forbidden: these are listed below in the Details section.

methodvar

The name of the variable containing the methods to compare. For instance, methods could be the models compared within a simulation study. Can be NULL. -If a vector of column names is passed to simsum(), those columns will be combined into a single column named :methodvar using the base::interaction() function before computing all performance measures.

+If a vector of column names is passed to simsum(), those columns will be combined into a single column named :methodvar using the base::interaction() function before computing all performance measures. +Note that some column names are forbidden: these are listed below in the Details section.

ref
@@ -135,19 +139,22 @@

Argumentsvignette("E-custom-inputs", package = "rsimsum") for more details.

+See vignette("E-custom-inputs", package = "rsimsum") for more details. +Note that some column names are forbidden: these are listed below in the Details section.

df

Can be used to specify that a column containing the replication-specific number of degrees of freedom that will be used to calculate confidence intervals for coverage (and bias-eliminated coverage) assuming t-distributed critical values (rather than normal theory intervals). -See vignette("E-custom-inputs", package = "rsimsum") for more details.

+See vignette("E-custom-inputs", package = "rsimsum") for more details. +Note that some column names are forbidden: these are listed below in the Details section.

dropbig
diff --git a/docs/reference/simsum.html b/docs/reference/simsum.html index 2d337cc..059132e 100644 --- a/docs/reference/simsum.html +++ b/docs/reference/simsum.html @@ -95,25 +95,29 @@

Argumentsvignette("E-custom-inputs", package = "rsimsum") for more details.

+See vignette("E-custom-inputs", package = "rsimsum") for more details. +Note that some column names are forbidden: these are listed below in the Details section.

methodvar

The name of the variable containing the methods to compare. For instance, methods could be the models compared within a simulation study. Can be NULL. -If a vector of column names is passed to simsum(), those columns will be combined into a single column named :methodvar using the base::interaction() function before computing all performance measures.

+If a vector of column names is passed to simsum(), those columns will be combined into a single column named :methodvar using the base::interaction() function before computing all performance measures. +Note that some column names are forbidden: these are listed below in the Details section.

ref
@@ -123,19 +127,22 @@

Argumentsvignette("E-custom-inputs", package = "rsimsum") for more details.

+See vignette("E-custom-inputs", package = "rsimsum") for more details. +Note that some column names are forbidden: these are listed below in the Details section.

df

Can be used to specify that a column containing the replication-specific number of degrees of freedom that will be used to calculate confidence intervals for coverage (and bias-eliminated coverage) assuming t-distributed critical values (rather than normal theory intervals). -See vignette("E-custom-inputs", package = "rsimsum") for more details.

+See vignette("E-custom-inputs", package = "rsimsum") for more details. +Note that some column names are forbidden: these are listed below in the Details section.

dropbig
@@ -167,7 +174,7 @@

Value

Details

-

The following names are not allowed for estvarname, se, methodvar, by: stat, est, mcse, lower, upper, :methodvar.

+

The following names are not allowed for any column in data that is passed to simsum(): stat, est, mcse, lower, upper, :methodvar, :true.

References

diff --git a/docs/reference/tt.html b/docs/reference/tt.html index 2dc7b58..c2f8538 100644 --- a/docs/reference/tt.html +++ b/docs/reference/tt.html @@ -75,7 +75,7 @@

Usage

Format

A data frame with 4,000 rows and 8 variables:

  • diff The difference in mean between groups estimated by the t-test;

  • se Standard error of the estimated difference;

  • -
  • lower, upper Confidence interval for the difference in mean as reported by the t-test;

  • +
  • conf.low, conf.high Confidence interval for the difference in mean as reported by the t-test;

  • df The number of degrees of freedom assumed by the t-test;

  • repno Identifies each replication, between 1 and 500;

  • dgm Identifies each data-generating mechanism: 1 corresponds to normal data with equal variance between the groups, 2 is normal data with unequal variance, 3 and 4 are skewed data (simulated from a Gamma distribution) with equal and unequal variance between groups, respectively;

  • diff --git a/docs/search.json b/docs/search.json index 660bad9..08f4ecb 100644 --- a/docs/search.json +++ b/docs/search.json @@ -1 +1 @@ -[{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"interest fostering open welcoming environment, contributors maintainers pledge making participation project community harassment-free experience everyone, regardless age, body size, disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, religion, sexual identity orientation.","code":""},{"path":"https://ellessenne.github.io/rsimsum/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes creating positive environment include: Using welcoming inclusive language respectful differing viewpoints experiences Gracefully accepting constructive criticism Focusing best community Showing empathy towards community members Examples unacceptable behavior participants include: use sexualized language imagery unwelcome sexual attention advances Trolling, insulting/derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical electronic address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"https://ellessenne.github.io/rsimsum/CODE_OF_CONDUCT.html","id":"our-responsibilities","dir":"","previous_headings":"","what":"Our Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Project maintainers responsible clarifying standards acceptable behavior expected take appropriate fair corrective action response instances unacceptable behavior. Project maintainers right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, ban temporarily permanently contributor behaviors deem inappropriate, threatening, offensive, harmful.","code":""},{"path":"https://ellessenne.github.io/rsimsum/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within project spaces public spaces individual representing project community. Examples representing project community include using official project e-mail address, posting via official social media account, acting appointed representative online offline event. Representation project may defined clarified project maintainers.","code":""},{"path":"https://ellessenne.github.io/rsimsum/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported contacting project team alessandro.gasparini@ki.se. complaints reviewed investigated result response deemed necessary appropriate circumstances. project team obligated maintain confidentiality regard reporter incident. details specific enforcement policies may posted separately. Project maintainers follow enforce Code Conduct good faith may face temporary permanent repercussions determined members project’s leadership.","code":""},{"path":"https://ellessenne.github.io/rsimsum/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 1.4, available https://www.contributor-covenant.org/version/1/4/code--conduct.html answers common questions code conduct, see https://www.contributor-covenant.org/faq","code":""},{"path":"https://ellessenne.github.io/rsimsum/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contributing","title":"Contributing","text":"want contribute project make better, help welcome. small, simple changes fixing typos can edit file directly GitHub clicking Edit button opening . complicated changes, manually create pull request (PR) forking repository. See next section information. submit non-trivial pull request (e.g. just fixing typo), may add name Authors@R field contributor (ctb) R package DESCRIPTION file wish.","code":""},{"path":"https://ellessenne.github.io/rsimsum/CONTRIBUTING.html","id":"pull-request-workflow","dir":"","previous_headings":"","what":"Pull Request Workflow","title":"Contributing","text":"Create personal fork project Github, clone fork local machine; Create new branch work ; Implement/fix feature, comment code; Follow code style project, including indentation; Run tests using devtools: devtools::test(); Write adapt tests needed; Add change documentation needed. Please run roxygen2, include changes .Rd files pull request - re-roxygenise documentation ; Push branch fork Github; fork open pull request correct branch. step--step workflow adapted https://github.com/MarcDiethelm/contributing. Working first Pull Request? can learn free series Contribute Open Source Project GitHub.","code":""},{"path":"https://ellessenne.github.io/rsimsum/CONTRIBUTING.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contributing","text":"contributing project agree adhere Contributors Code Conduct: please read CONDUCT.md proposing change.","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"rsimsum","dir":"Articles","previous_headings":"","what":"rsimsum","title":"Introduction to rsimsum","text":"rsimsum R package can compute summary statistics simulation studies. inspired user-written command simsum Stata (White .R., 2010). aim rsimsum helping reporting simulation studies, including understanding role chance results simulation studies. Specifically, rsimsum can compute Monte Carlo standard errors summary statistics, defined standard deviation estimated summary statistic; reported default. Formula summary statistics Monte Carlo standard errors presented next section. Note terms summary statistic performance measure used interchangeably.","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"notation","dir":"Articles","previous_headings":"","what":"Notation","title":"Introduction to rsimsum","text":"use th following notation throughout vignette: \\(\\theta\\): estimand, true value \\(n_{\\text{sim}}\\): number simulations \\(= 1, \\dots, n_{\\text{sim}}\\): indexes given simulation \\(\\hat{\\theta}_i\\): estimated value \\(\\theta\\) \\(^{\\text{th}}\\) replication \\(\\widehat{\\text{Var}}(\\hat{\\theta}_i)\\): estimated variance \\(\\text{Var}(\\hat{\\theta}_i)\\) \\(\\hat{\\theta}_i\\) \\(^{\\text{th}}\\) replication \\(\\text{Var}(\\hat{\\theta})\\): empirical variance \\(\\hat{\\theta}\\) \\(\\alpha\\): nominal significance level","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"performance-measures","dir":"Articles","previous_headings":"","what":"Performance measures","title":"Introduction to rsimsum","text":"first performance measure interest bias, quantifies whether estimator targets true value \\(\\theta\\) average. Bias calculated : \\[\\text{Bias} = \\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} \\hat{\\theta}_i - \\theta\\] Monte Carlo standard error bias calculated : \\[\\text{MCSE(Bias)} = \\sqrt{\\frac{\\frac{1}{n_{\\text{sim}} - 1} \\sum_{= 1} ^ {n_{\\text{sim}}} (\\hat{\\theta}_i - \\bar{\\theta}) ^ 2}{n_{\\text{sim}}}}\\] rsimsum can also compute relative bias (relative true value \\(\\theta\\)), can interpreted similarly bias, relative terms rather absolute. calculated : \\[\\text{Relative Bias} = \\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} \\frac{\\hat{\\theta}_i - \\theta}{\\theta}\\] Monte Carlo standard error calculated : \\[ \\text{MCSE(Relative Bias)} = \\sqrt{\\frac{1}{n_{\\text{sim}} (n_{\\text{sim}} - 1)} \\sum_i^{n_{\\text{sim} \\left[ \\frac{\\hat{\\theta}_i - \\theta}{\\theta} - \\widehat{\\text{Relative Bias}} \\right]^2} \\] empirical standard error \\(\\theta\\) depends \\(\\hat{\\theta}\\) require knowledge \\(\\theta\\). estimates standard deviation \\(\\hat{\\theta}\\) \\(n_{\\text{sim}}\\) replications: \\[\\text{Empirical SE} = \\sqrt{\\frac{1}{n_{\\text{sim}} - 1} \\sum_{= 1} ^ {n_{\\text{sim}}} (\\hat{\\theta}_i - \\bar{\\theta}) ^ 2}\\] Monte Carlo standard error calculated : \\[\\text{MCSE(Emp. SE)} = \\frac{\\widehat{\\text{Emp. SE}}}{\\sqrt{2 (n_{\\text{sim}} - 1)}}\\] comparing different methods, relative precision given method B reference method computed : \\[\\text{Relative % increase precision} = 100 \\left[ \\left( \\frac{\\widehat{\\text{Emp. SE}}_A}{\\widehat{\\text{Emp. SE}}_B} \\right) ^ 2 - 1 \\right]\\] (approximated) Monte Carlo standard error : \\[\\text{MCSE(Relative % increase precision)} \\simeq 200 \\left( \\frac{\\widehat{\\text{Emp. SE}}_A}{\\widehat{\\text{Emp. SE}}_B} \\right)^2 \\sqrt{\\frac{1 - \\rho^2_{AB}}{n_{\\text{sim}} - 1}}\\] \\(\\rho^2_{AB}\\) correlation \\(\\hat{\\theta}_A\\) \\(\\hat{\\theta}_B\\). measure takes account precision accuracy method mean squared error, sum squared bias variance \\(\\hat{\\theta}\\): \\[\\text{MSE} = \\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} (\\hat{\\theta}_i - \\theta) ^ 2\\] Monte Carlo standard error : \\[\\text{MCSE(MSE)} = \\sqrt{\\frac{\\sum_{= 1} ^ {n_{\\text{sim}}} \\left[ (\\hat{\\theta}_i - \\theta) ^2 - \\text{MSE} \\right] ^ 2}{n_{\\text{sim}} (n_{\\text{sim}} - 1)}}\\] model based standard error computed averaging estimated standard errors replication: \\[\\text{Model SE} = \\sqrt{\\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} \\widehat{\\text{Var}}(\\hat{\\theta}_i)}\\] (approximated) Monte Carlo standard error computed : \\[\\text{MCSE(Model SE)} \\simeq \\sqrt{\\frac{\\text{Var}[\\widehat{\\text{Var}}(\\hat{\\theta}_i)]}{4 n_{\\text{sim}} \\widehat{\\text{Model SE}}}}\\] model standard error targets empirical standard error. Hence, relative error model standard error informative performance measure: \\[\\text{Relative % error model SE} = 100 \\left( \\frac{\\text{Model SE}}{\\text{Empirical SE}} - 1\\right)\\] Monte Carlo standard error computed : \\[\\text{MCSE(Relative % error model SE)} = 100 \\left( \\frac{\\text{Model SE}}{\\text{Empirical SE}} \\right) \\sqrt{\\frac{\\text{Var}[\\widehat{\\text{Var}}(\\hat{\\theta}_i)]}{4 n_{\\text{sim}} \\widehat{\\text{Model SE}} ^ 4} + \\frac{1}{2(n_{\\text{sim}} - 1)}}\\] Coverage another key property estimator. defined probability confidence interval contains true value \\(\\theta\\), computed : \\[\\text{Coverage} = \\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} (\\hat{\\theta}_{, \\text{low}} \\le \\theta \\le \\hat{\\theta}_{, \\text{upp}})\\] \\((\\cdot)\\) indicator function. Monte Carlo standard error computed : \\[\\text{MCSE(Coverage)} = \\sqrt{\\frac{\\text{Coverage} \\times (1 - \\text{Coverage})}{n_{\\text{sim}}}}\\] coverage expected : \\(\\text{Bias} \\ne 0\\), \\(\\text{Models SE} < \\text{Empirical SE}\\), distribution \\(\\hat{\\theta}\\) normal intervals constructed assuming normality, \\(\\widehat{\\text{Var}}(\\hat{\\theta}_i)\\) variable coverage occurs result \\(\\text{Models SE} > \\text{Empirical SE}\\). coverage may result bias, another useful summary statistic bias-eliminated coverage: \\[\\text{Bias-eliminated coverage} = \\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} (\\hat{\\theta}_{, \\text{low}} \\le \\bar{\\theta} \\le \\hat{\\theta}_{, \\text{upp}}) \\] Monte Carlo standard error analogously coverage: \\[\\text{MCSE(Bias-eliminated coverage)} = \\sqrt{\\frac{\\text{Bias-eliminated coverage} \\times (1 - \\text{Bias-eliminated coverage})}{n_{\\text{sim}}}}\\] Finally, power significance test \\(\\alpha\\) level defined : \\[\\text{Power} = \\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} \\left[ |\\hat{\\theta}_i| \\ge z_{\\alpha/2} \\times \\sqrt{\\widehat{\\text{Var}}(\\hat{\\theta_i})} \\right]\\] Monte Carlo standard error analogously coverage: \\[\\text{MCSE(Power)} = \\sqrt{\\frac{\\text{Power} \\times (1 - \\text{Power})}{n_{\\text{sim}}}}\\] information summary statistics simulation studies can found White (2010) Morris, White, Crowther (2019).","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"example-1-simulation-study-on-missing-data","dir":"Articles","previous_headings":"","what":"Example 1: Simulation study on missing data","title":"Introduction to rsimsum","text":"example dataset included rsimsum aim summarise simulation study comparing different ways handle missing covariates fitting Cox model (White Royston, 2009). One thousand datasets simulated, containing normally distributed covariates \\(x\\) \\(z\\) time--event outcome. covariates \\(20\\%\\) values deleted independently variables data became missing completely random (Little Rubin, 2002). simulated dataset analysed three ways. Cox model fit complete cases (CC). two methods multiple imputation using chained equations (van Buuren, Boshuizen, Knook, 1999) used. MI_LOGT method multiply imputes missing values \\(x\\) \\(z\\) outcome included \\(\\log(t)\\) \\(d\\), \\(t\\) survival time \\(d\\) event indicator. MI_T method except \\(\\log(t)\\) replaced \\(t\\) imputation model. load data usual way: Let’s look first 10 rows dataset: included variables : dataset, number simulated dataset; method, method used (CC, MI_LOGT MI_T); b, point estimate; se, standard error point estimate. summarise results simulation study method using simsum function: set true = 0.50 true value point estimate b - data simulated - 0.50. select CC reference method consider complete cases analysis reference method benchmark ; set reference method, simsum picks one automatically. Using default settings, Monte Carlo standard errors computed returned. Summarising simsum object, obtain following output: output begins brief overview setting simulation study (e.g. method variable, unique methods, etc.), continues summary statistic method (defined, case). values reported point estimates Monte Carlo standard errors brackets; however, also possible require confidence intervals based Monte Carlo standard errors reported instead: Highlighting points interest summary results : CC method small-sample bias away null (point estimate 0.0168, 95% confidence interval: 0.0074 - 0.0261); CC inefficient compared MI_LOGT MI_T: relative gain precision two methods 1.3105% 1.2637% compared CC, respectively; Model-based standard errors close empirical standard errors; Coverage nominal 95% confidence intervals also seems fine, surprising view generally low (lack ) bias good model-based standard errors; CC lower power compared MI_LOGT MI_T, surprising view inefficiency.","code":"library(rsimsum) data(\"MIsim\", package = \"rsimsum\") head(MIsim, n = 10) #> # A tibble: 10 × 4 #> dataset method b se #> #> 1 1 CC 0.707 0.147 #> 2 1 MI_T 0.684 0.126 #> 3 1 MI_LOGT 0.712 0.141 #> 4 2 CC 0.349 0.160 #> 5 2 MI_T 0.406 0.141 #> 6 2 MI_LOGT 0.429 0.136 #> 7 3 CC 0.650 0.152 #> 8 3 MI_T 0.503 0.130 #> 9 3 MI_LOGT 0.560 0.117 #> 10 4 CC 0.432 0.126 str(MIsim) #> tibble [3,000 × 4] (S3: tbl_df/tbl/data.frame) #> $ dataset: num [1:3000] 1 1 1 2 2 2 3 3 3 4 ... #> $ method : chr [1:3000] \"CC\" \"MI_T\" \"MI_LOGT\" \"CC\" ... #> $ b : num [1:3000] 0.707 0.684 0.712 0.349 0.406 ... #> $ se : num [1:3000] 0.147 0.126 0.141 0.16 0.141 ... #> - attr(*, \"label\")= chr \"simsum example: data from a simulation study comparing 3 ways to handle missing\" s1 <- simsum(data = MIsim, estvarname = \"b\", true = 0.50, se = \"se\", methodvar = \"method\", ref = \"CC\") ss1 <- summary(s1) ss1 #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 (0.0048) 0.0009 (0.0042) -0.0012 (0.0043) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 (0.0096) 0.0018 (0.0083) -0.0024 (0.0085) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 (0.0034) 0.1320 (0.0030) 0.1344 (0.0030) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000) 31.0463 (3.9375) 26.3682 (3.8424) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 (0.0011) 0.0174 (0.0009) 0.0181 (0.0009) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 (0.0005) 0.1349 (0.0006) 0.1338 (0.0006) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 (2.2055) 2.2233 (2.3323) -0.4412 (2.2695) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 (0.0073) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 (0.0075) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 (0.0071) 0.9690 (0.0055) 0.9630 (0.0060) print(ss1, mcse = FALSE) #> Values are: #> Point Estimate (95% Confidence Interval based on Monte Carlo Standard Errors) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 (0.0074, 0.0261) 0.0009 (-0.0073, 0.0091) -0.0012 (-0.0095, 0.0071) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 (0.0148, 0.0523) 0.0018 (-0.0145, 0.0182) -0.0024 (-0.0190, 0.0143) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 (0.1445, 0.1577) 0.1320 (0.1262, 0.1378) 0.1344 (0.1285, 0.1403) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000, 0.0000) 31.0463 (23.3290, 38.7636) 26.3682 (18.8372, 33.8991) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 (0.0209, 0.0253) 0.0174 (0.0157, 0.0191) 0.0181 (0.0163, 0.0198) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 (0.1461, 0.1481) 0.1349 (0.1338, 0.1361) 0.1338 (0.1327, 0.1350) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 (-6.9820, 1.6633) 2.2233 (-2.3480, 6.7946) -0.4412 (-4.8894, 4.0070) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 (0.9286, 0.9574) 0.9490 (0.9354, 0.9626) 0.9430 (0.9286, 0.9574) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 (0.9253, 0.9547) 0.9490 (0.9354, 0.9626) 0.9430 (0.9286, 0.9574) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 (0.9320, 0.9600) 0.9690 (0.9583, 0.9797) 0.9630 (0.9513, 0.9747)"},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"tabulating-summary-statistics","dir":"Articles","previous_headings":"Example 1: Simulation study on missing data","what":"Tabulating summary statistics","title":"Introduction to rsimsum","text":"straightforward produce table summary statistics use R Markdown document: Using tidy() combination R packages xtable, kableExtra, tables can yield variety tables suit purposes. information producing tables directly R can found CRAN Task View Reproducible Research.","code":"library(knitr) #> #> Attaching package: 'knitr' #> The following object is masked from 'package:rsimsum': #> #> kable kable(tidy(ss1))"},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"plotting-summary-statistics","dir":"Articles","previous_headings":"Example 1: Simulation study on missing data","what":"Plotting summary statistics","title":"Introduction to rsimsum","text":"section, show plot compare summary statistics using popular R package ggplot. Plotting bias method \\(95\\%\\) confidence intervals based Monte Carlo standard errors: Conversely, say want visually compare coverage three methods compared simulation study:","code":"library(ggplot2) ggplot(tidy(ss1, stats = \"bias\"), aes(x = method, y = est, ymin = lower, ymax = upper)) + geom_hline(yintercept = 0, color = \"red\", lty = \"dashed\") + geom_point() + geom_errorbar(width = 1 / 3) + theme_bw() + labs(x = \"Method\", y = \"Bias\") ggplot(tidy(ss1, stats = \"cover\"), aes(x = method, y = est, ymin = lower, ymax = upper)) + geom_hline(yintercept = 0.95, color = \"red\", lty = \"dashed\") + geom_point() + geom_errorbar(width = 1 / 3) + coord_cartesian(ylim = c(0, 1)) + theme_bw() + labs(x = \"Method\", y = \"Coverage\")"},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"dropping-large-estimates-and-standard-errors","dir":"Articles","previous_headings":"Example 1: Simulation study on missing data","what":"Dropping large estimates and standard errors","title":"Introduction to rsimsum","text":"rsimsum allows automatically drop estimates standard errors larger predefined value. Specifically, argument simsum control behaviour dropbig, tuning parameters dropbig.max dropbig.semax can passed via control argument. Set dropbig TRUE standardised estimates larger max absolute value dropped; standard errors larger semax times average standard error dropped . default, robust standardisation used (based median inter-quartile range); however, also possible request regular standardisation (based mean standard deviation) setting control parameter dropbig.robust = FALSE. instance, say want drop standardised estimates larger \\(3\\) absolute value standard errors larger \\(1.5\\) times average standard error: estimates dropped, can see number non-missing point estimates, standard errors: Everything else works analogously ; instance, summarise results:","code":"s1.2 <- simsum(data = MIsim, estvarname = \"b\", true = 0.50, se = \"se\", methodvar = \"method\", ref = \"CC\", dropbig = TRUE, control = list(dropbig.max = 4, dropbig.semax = 1.5)) summary(s1.2, stats = \"nsim\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 958 951 944 summary(s1.2) #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 958 951 944 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5142 0.4978 0.4973 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5065 0.4934 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0213 0.0175 0.0173 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0170 0.0167 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0142 (0.0048) -0.0022 (0.0043) -0.0027 (0.0043) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0283 (NA) -0.0044 (NA) -0.0055 (NA) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1493 (0.0034) 0.1320 (0.0030) 0.1323 (0.0030) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000) 27.9890 (3.9442) 27.4611 (4.0317) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0225 (0.0011) 0.0174 (0.0009) 0.0175 (0.0009) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1459 (0.0005) 0.1323 (0.0005) 0.1314 (0.0005) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.2821 (2.2545) 0.2271 (2.3291) -0.6949 (2.3128) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9447 (0.0074) 0.9464 (0.0073) 0.9417 (0.0076) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9426 (0.0075) 0.9453 (0.0074) 0.9439 (0.0075) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9457 (0.0073) 0.9685 (0.0057) 0.9661 (0.0059)"},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"example-2-simulation-study-on-survival-modelling","dir":"Articles","previous_headings":"","what":"Example 2: Simulation study on survival modelling","title":"Introduction to rsimsum","text":"Let’s look first 10 rows dataset: included variables : dataset, simulated dataset number; n, sample size simulate dataset; baseline, baseline hazard function simulated dataset; model, method used (Cox model Royston-Parmar model 2 degrees freedom); theta, point estimate log-hazard ratio; se, standard error point estimate. rsimsum can summarise results simulation studies several data-generating mechanisms. instance, example show compute summary statistics baseline hazard function sample size. order summarise results data-generating factors, sufficient define “” factors call simsum: difference methodvar follows: methodvar represents methods (e.g. two models, example) compared simulation study, represents possible data-generating factors varied simulating data (case, sample size true baseline hazard function). Summarising results printed method combination data-generating factors:","code":"data(\"relhaz\", package = \"rsimsum\") head(relhaz, n = 10) #> dataset n baseline theta se model #> 1 1 50 Exponential -0.88006151 0.3330172 Cox #> 2 2 50 Exponential -0.81460242 0.3253010 Cox #> 3 3 50 Exponential -0.14262887 0.3050516 Cox #> 4 4 50 Exponential -0.33251820 0.3144033 Cox #> 5 5 50 Exponential -0.48269940 0.3064726 Cox #> 6 6 50 Exponential -0.03160756 0.3097203 Cox #> 7 7 50 Exponential -0.23578090 0.3121350 Cox #> 8 8 50 Exponential -0.05046332 0.3136058 Cox #> 9 9 50 Exponential -0.22378715 0.3066037 Cox #> 10 10 50 Exponential -0.45326446 0.3330173 Cox str(relhaz) #> 'data.frame': 1200 obs. of 6 variables: #> $ dataset : int 1 2 3 4 5 6 7 8 9 10 ... #> $ n : num 50 50 50 50 50 50 50 50 50 50 ... #> $ baseline: chr \"Exponential\" \"Exponential\" \"Exponential\" \"Exponential\" ... #> $ theta : num -0.88 -0.815 -0.143 -0.333 -0.483 ... #> $ se : num 0.333 0.325 0.305 0.314 0.306 ... #> $ model : chr \"Cox\" \"Cox\" \"Cox\" \"Cox\" ... s2 <- simsum(data = relhaz, estvarname = \"theta\", true = -0.50, se = \"se\", methodvar = \"model\", by = c(\"baseline\", \"n\")) #> 'ref' method was not specified, Cox set as the reference s2 #> Summary of a simulation study with a single estimand. #> True value of the estimand: -0.5 #> #> Method variable: model #> Unique methods: Cox, Exp, RP(2) #> Reference method: Cox #> #> By factors: baseline, n #> #> Monte Carlo standard errors were computed. ss2 <- summary(s2) ss2 #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> baseline n Cox Exp RP(2) #> Exponential 50 100 100 100 #> Exponential 250 100 100 100 #> Weibull 50 100 100 100 #> Weibull 250 100 100 100 #> #> Average point estimate: #> baseline n Cox Exp RP(2) #> Exponential 50 -0.4785 -0.4761 -0.4817 #> Exponential 250 -0.5215 -0.5214 -0.5227 #> Weibull 50 -0.5282 -0.3491 -0.5348 #> Weibull 250 -0.5120 -0.3518 -0.5139 #> #> Median point estimate: #> baseline n Cox Exp RP(2) #> Exponential 50 -0.4507 -0.4571 -0.4574 #> Exponential 250 -0.5184 -0.5165 -0.5209 #> Weibull 50 -0.5518 -0.3615 -0.5425 #> Weibull 250 -0.5145 -0.3633 -0.5078 #> #> Average variance: #> baseline n Cox Exp RP(2) #> Exponential 50 0.1014 0.0978 0.1002 #> Exponential 250 0.0195 0.0191 0.0194 #> Weibull 50 0.0931 0.0834 0.0898 #> Weibull 250 0.0174 0.0164 0.0172 #> #> Median variance: #> baseline n Cox Exp RP(2) #> Exponential 50 0.1000 0.0972 0.0989 #> Exponential 250 0.0195 0.0190 0.0194 #> Weibull 50 0.0914 0.0825 0.0875 #> Weibull 250 0.0174 0.0164 0.0171 #> #> Bias in point estimate: #> baseline n Cox Exp RP(2) #> Exponential 50 0.0215 (0.0328) 0.0239 (0.0326) 0.0183 (0.0331) #> Exponential 250 -0.0215 (0.0149) -0.0214 (0.0151) -0.0227 (0.0149) #> Weibull 50 -0.0282 (0.0311) 0.1509 (0.0204) -0.0348 (0.0311) #> Weibull 250 -0.0120 (0.0133) 0.1482 (0.0093) -0.0139 (0.0137) #> #> Relative bias in point estimate: #> baseline n Cox Exp RP(2) #> Exponential 50 -0.0430 (0.0657) -0.0478 (0.0652) -0.0366 (0.0662) #> Exponential 250 0.0430 (0.0298) 0.0427 (0.0301) 0.0455 (0.0298) #> Weibull 50 0.0564 (0.0623) -0.3018 (0.0408) 0.0695 (0.0622) #> Weibull 250 0.0241 (0.0267) -0.2963 (0.0186) 0.0279 (0.0274) #> #> Empirical standard error: #> baseline n Cox Exp RP(2) #> Exponential 50 0.3285 (0.0233) 0.3258 (0.0232) 0.3312 (0.0235) #> Exponential 250 0.1488 (0.0106) 0.1506 (0.0107) 0.1489 (0.0106) #> Weibull 50 0.3115 (0.0221) 0.2041 (0.0145) 0.3111 (0.0221) #> Weibull 250 0.1333 (0.0095) 0.0929 (0.0066) 0.1368 (0.0097) #> #> % gain in precision relative to method Cox: #> baseline n Cox Exp RP(2) #> Exponential 50 -0.0000 (0.0000) 1.6773 (3.2902) -1.6228 (1.7887) #> Exponential 250 0.0000 (0.0000) -2.3839 (3.0501) -0.1491 (0.9916) #> Weibull 50 -0.0000 (0.0000) 132.7958 (16.4433) 0.2412 (3.7361) #> Weibull 250 -0.0000 (0.0000) 105.8426 (12.4932) -4.9519 (2.0647) #> #> Mean squared error: #> baseline n Cox Exp RP(2) #> Exponential 50 0.1073 (0.0149) 0.1056 (0.0146) 0.1089 (0.0154) #> Exponential 250 0.0224 (0.0028) 0.0229 (0.0028) 0.0225 (0.0028) #> Weibull 50 0.0968 (0.0117) 0.0640 (0.0083) 0.0970 (0.0117) #> Weibull 250 0.0177 (0.0027) 0.0305 (0.0033) 0.0187 (0.0028) #> #> Model-based standard error: #> baseline n Cox Exp RP(2) #> Exponential 50 0.3185 (0.0013) 0.3127 (0.0010) 0.3165 (0.0012) #> Exponential 250 0.1396 (0.0002) 0.1381 (0.0002) 0.1394 (0.0002) #> Weibull 50 0.3052 (0.0014) 0.2888 (0.0005) 0.2996 (0.0012) #> Weibull 250 0.1320 (0.0002) 0.1281 (0.0001) 0.1313 (0.0002) #> #> Relative % error in standard error: #> baseline n Cox Exp RP(2) #> Exponential 50 -3.0493 (6.9011) -4.0156 (6.8286) -4.4305 (6.8013) #> Exponential 250 -6.2002 (6.6679) -8.3339 (6.5160) -6.4133 (6.6528) #> Weibull 50 -2.0115 (6.9776) 41.4993 (10.0594) -3.6873 (6.8549) #> Weibull 250 -0.9728 (7.0397) 37.7762 (9.7917) -4.0191 (6.8228) #> #> Coverage of nominal 95% confidence interval: #> baseline n Cox Exp RP(2) #> Exponential 50 0.9500 (0.0218) 0.9400 (0.0237) 0.9500 (0.0218) #> Exponential 250 0.9300 (0.0255) 0.9200 (0.0271) 0.9300 (0.0255) #> Weibull 50 0.9700 (0.0171) 0.9900 (0.0099) 0.9500 (0.0218) #> Weibull 250 0.9400 (0.0237) 0.8500 (0.0357) 0.9400 (0.0237) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> baseline n Cox Exp RP(2) #> Exponential 50 0.9500 (0.0218) 0.9500 (0.0218) 0.9500 (0.0218) #> Exponential 250 0.9400 (0.0237) 0.9400 (0.0237) 0.9400 (0.0237) #> Weibull 50 0.9500 (0.0218) 1.0000 (0.0000) 0.9500 (0.0218) #> Weibull 250 0.9500 (0.0218) 0.9900 (0.0099) 0.9400 (0.0237) #> #> Power of 5% level test: #> baseline n Cox Exp RP(2) #> Exponential 50 0.3600 (0.0480) 0.3800 (0.0485) 0.3700 (0.0483) #> Exponential 250 0.9800 (0.0140) 0.9900 (0.0099) 0.9900 (0.0099) #> Weibull 50 0.4300 (0.0495) 0.0900 (0.0286) 0.4700 (0.0499) #> Weibull 250 0.9700 (0.0171) 0.8600 (0.0347) 0.9700 (0.0171)"},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"plotting-summary-statistics-1","dir":"Articles","previous_headings":"Example 2: Simulation study on survival modelling","what":"Plotting summary statistics","title":"Introduction to rsimsum","text":"Tables get cumbersome many different data-generating mechanisms. Plots generally easier interpret, can generated easily . Say want compare bias method baseline hazard function sample size using faceting:","code":"ggplot(tidy(ss2, stats = \"bias\"), aes(x = model, y = est, ymin = lower, ymax = upper)) + geom_hline(yintercept = 0, color = \"red\", lty = \"dashed\") + geom_point() + geom_errorbar(width = 1 / 3) + facet_grid(baseline ~ n) + theme_bw() + labs(x = \"Method\", y = \"Bias\")"},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"references","dir":"Articles","previous_headings":"","what":"References","title":"Introduction to rsimsum","text":"White, .R. 2010. simsum: Analyses simulation studies including Monte Carlo error. Stata Journal 10(3): 369-385 Morris, T.P., White, .R. Crowther, M.J. 2019. Using simulation studies evaluate statistical methods. Statistics Medicine 38:2074-2102 White, .R., P. Royston. 2009. Imputing missing covariate values Cox model. Statistics Medicine 28(15):1982-1998 Little, R.J.., D.B. Rubin. 2002. Statistical analysis missing data. 2nd ed. Hoboken, NJ: Wiley van Buuren, S., H.C. Boshuizen, D.L. Knook. 1999. Multiple imputation missing blood pressure covariates survival analysis. Statistics Medicine 18(6):681-694","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Simulating a simulation study","text":"vignette, show simulated data included example dataset simsum generated.","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"motivation","dir":"Articles","previous_headings":"","what":"Motivation","title":"Simulating a simulation study","text":"Say want run simulation study want compare sensitivity parametric semiparametric survival models relative risk estimates.","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"data-generating-mechanisms","dir":"Articles","previous_headings":"","what":"Data generating mechanisms","title":"Simulating a simulation study","text":"simulate hypothetical trial binary treatment. fix log-treatment effect \\(-0.50\\), generate treatment indicator variable simulated individual via \\(Binom(1, 0.5)\\) random variable. simulate two different sample sizes (50 250 individuals) assume two different baseline hazard functions: exponential scale parameter \\(\\lambda = 0.5\\), Weibull scale parameter \\(\\lambda = 0.5\\) shape parameter \\(\\gamma = 1.5\\). Finally, apply administrative censoring time \\(t = 5\\). survival times estimated using approach Bender et al. (2005), based drawing \\(U(0, 1)\\) random variable applying following transformations: exponential baseline hazard, survival time \\(t\\) simulated : \\[t = -\\frac{log(U)}{\\lambda \\exp(\\beta ^ T X)}\\] Weibull baseline hazard, survival time \\(t\\) simulated : \\[t = \\left(-\\frac{log(U)}{\\lambda \\exp(\\beta ^ T X)}\\right) ^ {1 / \\gamma}\\] R function simulate dataset simulation study defined follows:","code":"exp_basehaz <- function(t, lambda = 0.5) lambda * 1 * t^0 exp_weibull <- function(t, lambda = 0.5, gamma = 1.5) lambda * gamma * t^(gamma - 1) curve(exp_basehaz, from = 0, to = 5, lty = 1, ylim = c(0, 2), ylab = expression(h[0](t)), xlab = \"Follow-up time t\") curve(exp_weibull, from = 0, to = 5, lty = 2, add = TRUE) legend(x = \"topleft\", lty = 1:2, legend = c(\"Exponential baseline hazard\", \"Weibull baseline hazard\"), bty = \"n\") simulate_data <- function(dataset, n, baseline, params = list(), coveff = -0.50) { # Simulate treatment indicator variable x <- rbinom(n = n, size = 1, prob = 0.5) # Draw from a U(0,1) random variable u <- runif(n) # Simulate survival times depending on the baseline hazard if (baseline == \"Exponential\") { t <- -log(u) / (params$lambda * exp(x * coveff)) } else { t <- (-log(u) / (params$lambda * exp(x * coveff)))^(1 / params$gamma) } # Winsorising tiny values for t (smaller than one day on a yearly-scale, e.g. 1 / 365.242), and adding a tiny amount of white noise not to have too many concurrent values t <- ifelse(t < 1 / 365.242, 1 / 365.242, t) t[t == 1 / 365.242] <- t[t == 1 / 365.242] + rnorm(length(t[t == 1 / 365.242]), mean = 0, sd = 1e-4) # ...and make sure that the resulting value is positive t <- abs(t) # Make event indicator variable applying administrative censoring at t = 5 d <- as.numeric(t < 5) t <- pmin(t, 5) # Return a data.frame data.frame(dataset = dataset, x = x, t = t, d = d, n = n, baseline = baseline, stringsAsFactors = FALSE) }"},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"methods","dir":"Articles","previous_headings":"","what":"Methods","title":"Simulating a simulation study","text":"compare Cox model (Cox, 1972) fully parametric survival model assuming exponential baseline hazard flexible parametric model 2 degrees freedom modelling baseline hazard (Royston Parmar, 2002). Cox model can fit via coxph function survival package, exponential model can fit via phreg function eha package, Royston-Parmar model can fixed via stpm2 function rstpm2 package.","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"performance-measures","dir":"Articles","previous_headings":"","what":"Performance measures","title":"Simulating a simulation study","text":"Say interested following performance measures: Bias estimated log-treatment effect, corresponding \\(95\\%\\) Monte Carlo confidence intervals Coverage confidence intervals log-treatment effect, defined proportion simulated data sets true log-treatment effect \\(-0.50\\) lies within \\(95\\%\\) confidence intervals obtained model","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"sample-size","dir":"Articles","previous_headings":"","what":"Sample size","title":"Simulating a simulation study","text":"primarily interested bias, assume variance estimated log-treatment effect \\(0.1\\). Monte Carlo standard error bias : \\[\\text{MCSE} = \\sqrt{\\frac{\\text{variance}}{\\# \\text{simulations}}}\\] Aiming Monte Carlo standard error 0.01 estimated bias, require \\(1,000\\) replications. Monte Carlo standard error coverage : \\[\\text{MCSE} = \\sqrt{\\frac{\\text{coverage} \\times (1 - \\text{coverage})}{\\# \\text{simulations}}}\\] Monte Carlo standard error maximised coverage = \\(0.5\\). setting, Monte Carlo standard error \\(1,000\\) replications \\(0.01581139\\), deemed acceptable. Therefore, run \\(1,000\\) replications simulation study. However, simplicity, run \\(100\\) replications speed process.","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"generate-data","dir":"Articles","previous_headings":"Running the simulation study","what":"Generate data","title":"Simulating a simulation study","text":"generate \\(100\\) datasets data-generating mechanism. First, set random seed reproducibility: , simulate data:","code":"set.seed(755353002) reps <- 1:100 data <- list() data[[\"n = 50, baseline = Exp\"]] <- lapply( X = reps, FUN = simulate_data, n = 50, baseline = \"Exponential\", params = list(lambda = 0.5) ) data[[\"n = 250, baseline = Exp\"]] <- lapply( X = reps, FUN = simulate_data, n = 250, baseline = \"Exponential\", params = list(lambda = 0.5) ) data[[\"n = 50, baseline = Wei\"]] <- lapply( X = reps, FUN = simulate_data, n = 50, baseline = \"Weibull\", params = list(lambda = 0.5, gamma = 1.5) ) data[[\"n = 250, baseline = Wei\"]] <- lapply( X = reps, FUN = simulate_data, n = 250, baseline = \"Weibull\", params = list(lambda = 0.5, gamma = 1.5) )"},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"run-models","dir":"Articles","previous_headings":"Running the simulation study","what":"Run models","title":"Simulating a simulation study","text":"define function fit models interest: now run models simulated dataset:","code":"library(survival) library(rstpm2) #> Loading required package: splines #> #> Attaching package: 'rstpm2' #> The following object is masked from 'package:survival': #> #> colon library(eha) fit_models <- function(data, model) { # Fit model if (model == \"Cox\") { fit <- survival::coxph(Surv(t, d) ~ x, data = data) } else if (model == \"RP(2)\") { fit <- rstpm2::stpm2(Surv(t, d) ~ x, data = data, df = 2) } else { fit <- eha::phreg(Surv(t, d) ~ x, data = data, dist = \"weibull\", shape = 1) } # Return relevant coefficients data.frame( dataset = unique(data$dataset), n = unique(data$n), baseline = unique(data$baseline), theta = coef(fit)[\"x\"], se = sqrt(ifelse(model == \"Exp\", fit$var[\"x\", \"x\"], vcov(fit)[\"x\", \"x\"])), model = model, stringsAsFactors = FALSE, row.names = NULL ) } results <- list() results[[\"n = 50, baseline = Exp, model = Cox\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 50, baseline = Exp\"]], FUN = fit_models, model = \"Cox\" ) ) results[[\"n = 250, baseline = Exp, model = Cox\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 250, baseline = Exp\"]], FUN = fit_models, model = \"Cox\" ) ) results[[\"n = 50, baseline = Wei, model = Cox\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 50, baseline = Wei\"]], FUN = fit_models, model = \"Cox\" ) ) results[[\"n = 250, baseline = Wei, model = Cox\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 250, baseline = Wei\"]], FUN = fit_models, model = \"Cox\" ) ) results[[\"n = 50, baseline = Exp, model = Exp\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 50, baseline = Exp\"]], FUN = fit_models, model = \"Exp\" ) ) results[[\"n = 250, baseline = Exp, model = Exp\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 250, baseline = Exp\"]], FUN = fit_models, model = \"Exp\" ) ) results[[\"n = 50, baseline = Wei, model = Exp\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 50, baseline = Wei\"]], FUN = fit_models, model = \"Exp\" ) ) results[[\"n = 250, baseline = Wei, model = Exp\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 250, baseline = Wei\"]], FUN = fit_models, model = \"Exp\" ) ) results[[\"n = 50, baseline = Exp, model = RP(2)\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 50, baseline = Exp\"]], FUN = fit_models, model = \"RP(2)\" ) ) results[[\"n = 250, baseline = Exp, model = RP(2)\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 250, baseline = Exp\"]], FUN = fit_models, model = \"RP(2)\" ) ) results[[\"n = 50, baseline = Wei, model = RP(2)\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 50, baseline = Wei\"]], FUN = fit_models, model = \"RP(2)\" ) ) results[[\"n = 250, baseline = Wei, model = RP(2)\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 250, baseline = Wei\"]], FUN = fit_models, model = \"RP(2)\" ) )"},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"aggregating-results","dir":"Articles","previous_headings":"Running the simulation study","what":"Aggregating results","title":"Simulating a simulation study","text":"save final results, included example R package rsimsum.","code":"relhaz <- do.call( rbind.data.frame, results ) row.names(relhaz) <- NULL library(usethis) usethis::use_data(relhaz, overwrite = TRUE)"},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"summarising-results","dir":"Articles","previous_headings":"Running the simulation study","what":"Summarising results","title":"Simulating a simulation study","text":"Finally, obtain summary statistics calling simsum function:","code":"library(rsimsum) #> #> Attaching package: 'rsimsum' #> The following object is masked _by_ '.GlobalEnv': #> #> relhaz s <- rsimsum::simsum(data = relhaz, estvarname = \"theta\", se = \"se\", true = -0.50, methodvar = \"model\", ref = \"Cox\", by = c(\"n\", \"baseline\")) s #> Summary of a simulation study with a single estimand. #> True value of the estimand: -0.5 #> #> Method variable: model #> Unique methods: Cox, Exp, RP(2) #> Reference method: Cox #> #> By factors: n, baseline #> #> Monte Carlo standard errors were computed. summary(s) #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> n baseline Cox Exp RP(2) #> 50 Exponential 100 100 100 #> 50 Weibull 100 100 100 #> 250 Exponential 100 100 100 #> 250 Weibull 100 100 100 #> #> Average point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.4785 -0.4761 -0.4817 #> 50 Weibull -0.5282 -0.3491 -0.5345 #> 250 Exponential -0.5215 -0.5214 -0.5227 #> 250 Weibull -0.5120 -0.3518 -0.5139 #> #> Median point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.4507 -0.4571 -0.4574 #> 50 Weibull -0.5518 -0.3615 -0.5425 #> 250 Exponential -0.5184 -0.5165 -0.5209 #> 250 Weibull -0.5145 -0.3633 -0.5078 #> #> Average variance: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.1014 0.0978 0.1002 #> 50 Weibull 0.0931 0.0834 0.0898 #> 250 Exponential 0.0195 0.0191 0.0194 #> 250 Weibull 0.0174 0.0164 0.0172 #> #> Median variance: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.1000 0.0972 0.0989 #> 50 Weibull 0.0914 0.0825 0.0875 #> 250 Exponential 0.0195 0.0190 0.0194 #> 250 Weibull 0.0174 0.0164 0.0171 #> #> Bias in point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.0215 (0.0328) 0.0239 (0.0326) 0.0183 (0.0331) #> 50 Weibull -0.0282 (0.0311) 0.1509 (0.0204) -0.0345 (0.0311) #> 250 Exponential -0.0215 (0.0149) -0.0214 (0.0151) -0.0227 (0.0149) #> 250 Weibull -0.0120 (0.0133) 0.1482 (0.0093) -0.0139 (0.0137) #> #> Relative bias in point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.0430 (0.0657) -0.0478 (0.0652) -0.0366 (0.0662) #> 50 Weibull 0.0564 (0.0623) -0.3018 (0.0408) 0.0690 (0.0622) #> 250 Exponential 0.0430 (0.0298) 0.0427 (0.0301) 0.0455 (0.0298) #> 250 Weibull 0.0241 (0.0267) -0.2963 (0.0186) 0.0279 (0.0274) #> #> Empirical standard error: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.3285 (0.0233) 0.3258 (0.0232) 0.3312 (0.0235) #> 50 Weibull 0.3115 (0.0221) 0.2041 (0.0145) 0.3109 (0.0221) #> 250 Exponential 0.1488 (0.0106) 0.1506 (0.0107) 0.1489 (0.0106) #> 250 Weibull 0.1333 (0.0095) 0.0929 (0.0066) 0.1368 (0.0097) #> #> % gain in precision relative to method Cox: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.0000 (0.0000) 1.6773 (3.2902) -1.6262 (1.7888) #> 50 Weibull 0.0000 (0.0000) 132.7958 (16.4433) 0.3583 (3.7387) #> 250 Exponential 0.0000 (0.0000) -2.3839 (3.0501) -0.1491 (0.9917) #> 250 Weibull 0.0000 (0.0000) 105.8426 (12.4932) -4.9534 (2.0649) #> #> Mean squared error: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.1073 (0.0149) 0.1056 (0.0146) 0.1089 (0.0154) #> 50 Weibull 0.0968 (0.0117) 0.0640 (0.0083) 0.0969 (0.0117) #> 250 Exponential 0.0224 (0.0028) 0.0229 (0.0028) 0.0225 (0.0028) #> 250 Weibull 0.0177 (0.0027) 0.0305 (0.0033) 0.0187 (0.0028) #> #> Model-based standard error: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.3185 (0.0013) 0.3127 (0.0010) 0.3165 (0.0012) #> 50 Weibull 0.3052 (0.0014) 0.2888 (0.0005) 0.2996 (0.0012) #> 250 Exponential 0.1396 (0.0002) 0.1381 (0.0002) 0.1394 (0.0002) #> 250 Weibull 0.1320 (0.0002) 0.1281 (0.0001) 0.1313 (0.0002) #> #> Relative % error in standard error: #> n baseline Cox Exp RP(2) #> 50 Exponential -3.0493 (6.9011) -4.0156 (6.8286) -4.4322 (6.8012) #> 50 Weibull -2.0115 (6.9776) 41.4993 (10.0594) -3.6354 (6.8586) #> 250 Exponential -6.2002 (6.6679) -8.3339 (6.5160) -6.4133 (6.6528) #> 250 Weibull -0.9728 (7.0397) 37.7762 (9.7917) -4.0199 (6.8228) #> #> Coverage of nominal 95% confidence interval: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.9500 (0.0218) 0.9400 (0.0237) 0.9500 (0.0218) #> 50 Weibull 0.9700 (0.0171) 0.9900 (0.0099) 0.9500 (0.0218) #> 250 Exponential 0.9300 (0.0255) 0.9200 (0.0271) 0.9300 (0.0255) #> 250 Weibull 0.9400 (0.0237) 0.8500 (0.0357) 0.9400 (0.0237) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.9500 (0.0218) 0.9500 (0.0218) 0.9500 (0.0218) #> 50 Weibull 0.9500 (0.0218) 1.0000 (0.0000) 0.9500 (0.0218) #> 250 Exponential 0.9400 (0.0237) 0.9400 (0.0237) 0.9400 (0.0237) #> 250 Weibull 0.9500 (0.0218) 0.9900 (0.0099) 0.9400 (0.0237) #> #> Power of 5% level test: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.3600 (0.0480) 0.3800 (0.0485) 0.3700 (0.0483) #> 50 Weibull 0.4300 (0.0495) 0.0900 (0.0286) 0.4700 (0.0499) #> 250 Exponential 0.9800 (0.0140) 0.9900 (0.0099) 0.9900 (0.0099) #> 250 Weibull 0.9700 (0.0171) 0.8600 (0.0347) 0.9700 (0.0171)"},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"conclusions","dir":"Articles","previous_headings":"","what":"Conclusions","title":"Simulating a simulation study","text":"vignette showed simulate survival data run small, simple simulation study.","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"references","dir":"Articles","previous_headings":"","what":"References","title":"Simulating a simulation study","text":"Cox D.R. Regression models life-tables. Journal Royal Statistical Society, Series B (Methodological), 1972, 34(2):187-220 Royston P. Parmar M.K. Flexible parametric proportional-hazards proportional-odds models censored survival data, application prognostic modelling estimation treatment effects. Statistics Medicine, 2002, 21(15):2175-2197 Bender R., Augustin T., Blettner M. Generating survival times simulate Cox proportional hazards models. Statistics Medicine, 2005, 24(11):1713-1723","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"data","dir":"Articles","previous_headings":"","what":"Data","title":"Visualising results from rsimsum","text":"use data simulation study misspecification baseline hazard survival models. dataset included rsimsum can loaded : Inspecting structure dataset first 15 rows data:","code":"data(\"relhaz\", package = \"rsimsum\") str(relhaz) #> 'data.frame': 1200 obs. of 6 variables: #> $ dataset : int 1 2 3 4 5 6 7 8 9 10 ... #> $ n : num 50 50 50 50 50 50 50 50 50 50 ... #> $ baseline: chr \"Exponential\" \"Exponential\" \"Exponential\" \"Exponential\" ... #> $ theta : num -0.88 -0.815 -0.143 -0.333 -0.483 ... #> $ se : num 0.333 0.325 0.305 0.314 0.306 ... #> $ model : chr \"Cox\" \"Cox\" \"Cox\" \"Cox\" ... head(relhaz, n = 15) #> dataset n baseline theta se model #> 1 1 50 Exponential -0.88006151 0.3330172 Cox #> 2 2 50 Exponential -0.81460242 0.3253010 Cox #> 3 3 50 Exponential -0.14262887 0.3050516 Cox #> 4 4 50 Exponential -0.33251820 0.3144033 Cox #> 5 5 50 Exponential -0.48269940 0.3064726 Cox #> 6 6 50 Exponential -0.03160756 0.3097203 Cox #> 7 7 50 Exponential -0.23578090 0.3121350 Cox #> 8 8 50 Exponential -0.05046332 0.3136058 Cox #> 9 9 50 Exponential -0.22378715 0.3066037 Cox #> 10 10 50 Exponential -0.45326446 0.3330173 Cox #> 11 11 50 Exponential -0.71402510 0.3251902 Cox #> 12 12 50 Exponential -0.32956944 0.3073481 Cox #> 13 13 50 Exponential -0.15351788 0.3056453 Cox #> 14 14 50 Exponential -0.82742207 0.3283561 Cox #> 15 15 50 Exponential -0.14594648 0.3255636 Cox"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"summarise-results","dir":"Articles","previous_headings":"","what":"Summarise results","title":"Visualising results from rsimsum","text":"use simsum function summarise results: call simsum x = TRUE required types plots (e.g. zip plots, scatter plots, etc.). rsimsum implements autoplot method objects classes: simsum, summary.simsum, multisimsum, summary.multisimsum. See ?ggplot2::autoplot() details S3 generic function.","code":"s1 <- simsum( data = relhaz, estvarname = \"theta\", se = \"se\", true = -0.50, methodvar = \"model\", by = c(\"n\", \"baseline\"), x = TRUE ) #> 'ref' method was not specified, Cox set as the reference s1 #> Summary of a simulation study with a single estimand. #> True value of the estimand: -0.5 #> #> Method variable: model #> Unique methods: Cox, Exp, RP(2) #> Reference method: Cox #> #> By factors: n, baseline #> #> Monte Carlo standard errors were computed. summary(s1) #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> n baseline Cox Exp RP(2) #> 50 Exponential 100 100 100 #> 50 Weibull 100 100 100 #> 250 Exponential 100 100 100 #> 250 Weibull 100 100 100 #> #> Average point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.4785 -0.4761 -0.4817 #> 50 Weibull -0.5282 -0.3491 -0.5348 #> 250 Exponential -0.5215 -0.5214 -0.5227 #> 250 Weibull -0.5120 -0.3518 -0.5139 #> #> Median point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.4507 -0.4571 -0.4574 #> 50 Weibull -0.5518 -0.3615 -0.5425 #> 250 Exponential -0.5184 -0.5165 -0.5209 #> 250 Weibull -0.5145 -0.3633 -0.5078 #> #> Average variance: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.1014 0.0978 0.1002 #> 50 Weibull 0.0931 0.0834 0.0898 #> 250 Exponential 0.0195 0.0191 0.0194 #> 250 Weibull 0.0174 0.0164 0.0172 #> #> Median variance: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.1000 0.0972 0.0989 #> 50 Weibull 0.0914 0.0825 0.0875 #> 250 Exponential 0.0195 0.0190 0.0194 #> 250 Weibull 0.0174 0.0164 0.0171 #> #> Bias in point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.0215 (0.0328) 0.0239 (0.0326) 0.0183 (0.0331) #> 50 Weibull -0.0282 (0.0311) 0.1509 (0.0204) -0.0348 (0.0311) #> 250 Exponential -0.0215 (0.0149) -0.0214 (0.0151) -0.0227 (0.0149) #> 250 Weibull -0.0120 (0.0133) 0.1482 (0.0093) -0.0139 (0.0137) #> #> Relative bias in point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.0430 (0.0657) -0.0478 (0.0652) -0.0366 (0.0662) #> 50 Weibull 0.0564 (0.0623) -0.3018 (0.0408) 0.0695 (0.0622) #> 250 Exponential 0.0430 (0.0298) 0.0427 (0.0301) 0.0455 (0.0298) #> 250 Weibull 0.0241 (0.0267) -0.2963 (0.0186) 0.0279 (0.0274) #> #> Empirical standard error: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.3285 (0.0233) 0.3258 (0.0232) 0.3312 (0.0235) #> 50 Weibull 0.3115 (0.0221) 0.2041 (0.0145) 0.3111 (0.0221) #> 250 Exponential 0.1488 (0.0106) 0.1506 (0.0107) 0.1489 (0.0106) #> 250 Weibull 0.1333 (0.0095) 0.0929 (0.0066) 0.1368 (0.0097) #> #> % gain in precision relative to method Cox: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.0000 (0.0000) 1.6773 (3.2902) -1.6228 (1.7887) #> 50 Weibull -0.0000 (0.0000) 132.7958 (16.4433) 0.2412 (3.7361) #> 250 Exponential 0.0000 (0.0000) -2.3839 (3.0501) -0.1491 (0.9916) #> 250 Weibull -0.0000 (0.0000) 105.8426 (12.4932) -4.9519 (2.0647) #> #> Mean squared error: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.1073 (0.0149) 0.1056 (0.0146) 0.1089 (0.0154) #> 50 Weibull 0.0968 (0.0117) 0.0640 (0.0083) 0.0970 (0.0117) #> 250 Exponential 0.0224 (0.0028) 0.0229 (0.0028) 0.0225 (0.0028) #> 250 Weibull 0.0177 (0.0027) 0.0305 (0.0033) 0.0187 (0.0028) #> #> Model-based standard error: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.3185 (0.0013) 0.3127 (0.0010) 0.3165 (0.0012) #> 50 Weibull 0.3052 (0.0014) 0.2888 (0.0005) 0.2996 (0.0012) #> 250 Exponential 0.1396 (0.0002) 0.1381 (0.0002) 0.1394 (0.0002) #> 250 Weibull 0.1320 (0.0002) 0.1281 (0.0001) 0.1313 (0.0002) #> #> Relative % error in standard error: #> n baseline Cox Exp RP(2) #> 50 Exponential -3.0493 (6.9011) -4.0156 (6.8286) -4.4305 (6.8013) #> 50 Weibull -2.0115 (6.9776) 41.4993 (10.0594) -3.6873 (6.8549) #> 250 Exponential -6.2002 (6.6679) -8.3339 (6.5160) -6.4133 (6.6528) #> 250 Weibull -0.9728 (7.0397) 37.7762 (9.7917) -4.0191 (6.8228) #> #> Coverage of nominal 95% confidence interval: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.9500 (0.0218) 0.9400 (0.0237) 0.9500 (0.0218) #> 50 Weibull 0.9700 (0.0171) 0.9900 (0.0099) 0.9500 (0.0218) #> 250 Exponential 0.9300 (0.0255) 0.9200 (0.0271) 0.9300 (0.0255) #> 250 Weibull 0.9400 (0.0237) 0.8500 (0.0357) 0.9400 (0.0237) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.9500 (0.0218) 0.9500 (0.0218) 0.9500 (0.0218) #> 50 Weibull 0.9500 (0.0218) 1.0000 (0.0000) 0.9500 (0.0218) #> 250 Exponential 0.9400 (0.0237) 0.9400 (0.0237) 0.9400 (0.0237) #> 250 Weibull 0.9500 (0.0218) 0.9900 (0.0099) 0.9400 (0.0237) #> #> Power of 5% level test: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.3600 (0.0480) 0.3800 (0.0485) 0.3700 (0.0483) #> 50 Weibull 0.4300 (0.0495) 0.0900 (0.0286) 0.4700 (0.0499) #> 250 Exponential 0.9800 (0.0140) 0.9900 (0.0099) 0.9900 (0.0099) #> 250 Weibull 0.9700 (0.0171) 0.8600 (0.0347) 0.9700 (0.0171)"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"scatter-plots","dir":"Articles","previous_headings":"","what":"Scatter plots","title":"Visualising results from rsimsum","text":"Scatter plots allow assess serial trends estimates standard errors. instance, want compare point estimates different methods (across data-generating mechanisms): Analogously, want compare standard errors: two plot types allow comparing estimates (standard errors) obtained different methods ease; ideal settings, points scatterplots lay diagonal (dashed line). estimated regression line (X vs Y, blue line) superimposed default ease comparison even . addition plots comparing estimates standard errors, Bland-Altman-type plots supported well: Bland-Altman plots compare difference estimates two competing methods (y-axis) mean estimates two methods (x-axis). ideal scenario, trend points scatter plot lay around horizontal dashed line. ease comparison, regression line included well. Bland-Altman plots standard errors obtained setting argument type = \"se_ba\".","code":"autoplot(s1, type = \"est\") #> `geom_smooth()` using formula = 'y ~ x' autoplot(s1, type = \"se\") #> `geom_smooth()` using formula = 'y ~ x' autoplot(s1, type = \"est_ba\") #> `geom_smooth()` using formula = 'y ~ x'"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"ridgeline-plots","dir":"Articles","previous_headings":"Scatter plots","what":"Ridgeline plots","title":"Visualising results from rsimsum","text":"Another way visually comparing estimates different methods given ridgeline plots. According documentation ggridges package (source), Ridgeline plots partially overlapping line plots create impression mountain range. can quite useful visualizing changes distributions time space. settings simulation studies, aim visualise changes distribution data-generating mechanisms. instance, say want compare estimates across data-generating mechanisms methods: allows us see estimates Exp method different methods two four data-generating mechanisms: 50, Weibull 250, Weibull. obtain similar plot standard errors, call autoplot method type = \"se_ridge instead.","code":"autoplot(s1, type = \"est_ridge\") #> Picking joint bandwidth of 0.077"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"lolly-plots","dir":"Articles","previous_headings":"","what":"Lolly plots","title":"Visualising results from rsimsum","text":"Lolly plots used present estimates given summary statistic confidence intervals based Monte Carlo standard errors (calling autoplot method summary objects). allow easily compare methods. Say interested bias: straightforward identify exponential model yielding biased results true baseline hazard Weibull, irrespectively sample size. relative scale, can plot relative bias well: confidence intervals based Monte Carlo errors required, sufficient call autoplot method simsum object: Analogously, coverage:","code":"autoplot(summary(s1), type = \"lolly\", stats = \"bias\") autoplot(summary(s1), type = \"lolly\", stats = \"rbias\") autoplot(s1, type = \"lolly\", stats = \"bias\") autoplot(summary(s1), type = \"lolly\", stats = \"cover\")"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"forest-plots","dir":"Articles","previous_headings":"","what":"Forest plots","title":"Visualising results from rsimsum","text":"Forest plots alternative lolly plots, similar interpretation:","code":"autoplot(s1, type = \"forest\", stats = \"bias\") autoplot(summary(s1), type = \"forest\", stats = \"bias\")"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"zipper-plots","dir":"Articles","previous_headings":"","what":"Zipper plots","title":"Visualising results from rsimsum","text":"Zipper plots (zip plots), introduced Morris et al. (2019), help understand coverage visualising confidence intervals directly. data-generating mechanism method, confidence intervals centile-ranked according significance null hypothesis \\(H_0: \\theta\\) = \\(\\theta_{\\text{true}}\\), assessed via Wald-type test. ranking used vertical axis plotted intervals . method 95% coverage, colour intervals switches 95 vertical axis. Finally, horizontal lines represent confidence intervals estimated coverage based Monte Carlo standard errors. zipper plot exponential model n = 50 true Weibull baseline hazard shows coverage approximately 95%; however, intervals right \\(\\theta\\) = -0.50 left: indicates model standard errors must overestimating empirical standard error, coverage appropriate despite bias. also possible zoom top x% zip plot increase readability, e.g. top 30%:","code":"autoplot(s1, type = \"zip\") autoplot(s1, type = \"zip\", zoom = 0.3)"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"heat-plots","dir":"Articles","previous_headings":"","what":"Heat plots","title":"Visualising results from rsimsum","text":"Heat plots new visualisation suggest include first time. heat plots, produce heat-map-like plot filling tile represents given summary statistic, say bias: visualisation type automatically puts data-generating mechanisms y-axis; default, methods included x axis. Therefore, plot useful simulation study includes different methods compared many data-generating mechanisms. Using heat plot, immediate identify visually method performs better data-generating mechanisms. default, heat plots use default ggplot scale filling aesthetic. recommended use different colour palette better characteristics, e.g. viridis colour palette matplotlib; see next section details , details viridis colour palette.","code":"autoplot(s1, type = \"heat\", stats = \"bias\")"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"contour-plots-and-hexbin-plots","dir":"Articles","previous_headings":"","what":"Contour plots and hexbin plots","title":"Visualising results from rsimsum","text":"Individual point estimates standard errors also plotted using contour plots hexbin plots. Contour plots represent 3-dimensional surface plotting constant z slices (called contours) 2-dimensional format. , given value z, lines drawn connecting (x, y) coordinates value z (relatively) homogenous. Hexbin plots useful represent relationship 2 numerical variables lot data points: instead overlapping, plotting window split several hexbins, number points per hexbin counted. colour filling denotes number points. plots provide alternative scatter plots large number data points overlap. Contour plots hexbin plots can easily obtained using autoplot method , using argument type = \"est_density\", type = \"se_density\", type = \"est_hex\", type = \"se_hex\". instance, focussing point estimates: course, analogous plots obtained standard errors.","code":"autoplot(s1, type = \"est_density\") #> `geom_smooth()` using formula = 'y ~ x' autoplot(s1, type = \"est_hex\") #> `geom_smooth()` using formula = 'y ~ x'"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"custom-plotting","dir":"Articles","previous_headings":"","what":"Custom plotting","title":"Visualising results from rsimsum","text":"plots produced rsimsum meant quick explorations results Monte Carlo simulation studies: meant final manuscript-like-quality plots (although can useful starting point). Generally, output types autoplot calls ggplot objects; hence, generally straightforward customise plots. instance, say want add custom theme: Compare default plot: also mentioned colour palette heat plots customised. Say want use default viridis colour palette: Analogously, say want customise colour palette ridgeline plots, using viridis colour palette:","code":"autoplot(summary(s1), type = \"lolly\", stats = \"bias\") + ggplot2::theme_bw() autoplot(summary(s1), type = \"lolly\", stats = \"bias\") autoplot(s1, type = \"heat\", stats = \"bias\") + ggplot2::scale_fill_viridis_c() autoplot(s1, type = \"est_ridge\") + scale_fill_viridis_d() + scale_colour_viridis_d() #> Picking joint bandwidth of 0.077"},{"path":"https://ellessenne.github.io/rsimsum/articles/D-nlp.html","id":"references","dir":"Articles","previous_headings":"","what":"References","title":"Nested loop plots","text":"Rücker, G. Schwarzer, G. 2014 Presenting simulation results nested loop plot. BMC Medical Research Methodology 14(1) ","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/E-custom-inputs.html","id":"single-estimand","dir":"Articles","previous_headings":"","what":"Single Estimand","title":"Custom input values for confidence intervals and true values","text":"rsimsum supports custom input values true value estimand confidence intervals limits (used calculate coverage probability). illustrate feature, can use tt dataset (bundled rsimsum): includes results simulation study assessing robustness t-test estimating difference means. t-test assumes t distribution, hence confidence intervals estimated mean generally based t distribution. See instance example t-test documentation (?t.test): can incorporate custom confidence intervals passing name two columns data ci.limits argument: , can incorporate different types confidence intervals analysis Monte Carlo simulation studies. Compare default setting: ci.limits also useful using non-symmetrical confidence intervals, e.g. using bootstrapped confidence intervals. pair values can also passed rsimsum ci.limits argument: better example utility method please get touch - ’d love hear ! default, simsum calculate confidence intervals using normal-theory, Wald-type intervals. possible use t-based critical values providing column (replication-specific) degrees freedom (analogously passing confidence bounds ci.limits): Given confidence intervals (lower, upper) obtained using critical values t distribution, results s4 equivalent results s1: can pass column values true well: Compare default settings: Finally, multiple columns identifying methods well. uses MIsim MIsim2 datasets, bundled {rsimsum}: syntax calling simsum() pretty much : See inferred methods: course, estimated performance measures :","code":"library(rsimsum) data(\"tt\", package = \"rsimsum\") head(tt) #> diff se lower upper df repno dgm method #> 1 -2.185467 1.130916 -4.432925 0.06199072 88.00000 1 1 1 #> 2 -3.359683 1.572366 -6.484430 -0.23493506 88.00000 1 2 1 #> 3 -2.185467 1.285290 -4.778318 0.40738411 42.53603 1 1 2 #> 4 -3.359683 2.016465 -7.458611 0.73924596 33.78117 1 2 2 #> 5 -2.989333 1.150093 -5.274900 -0.70376532 88.00000 1 3 1 #> 6 -1.152852 1.368553 -3.872563 1.56685875 88.00000 1 4 1 t.test(extra ~ group, data = sleep) #> #> Welch Two Sample t-test #> #> data: extra by group #> t = -1.8608, df = 17.776, p-value = 0.07939 #> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0 #> 95 percent confidence interval: #> -3.3654832 0.2054832 #> sample estimates: #> mean in group 1 mean in group 2 #> 0.75 2.33 s1 <- simsum(data = tt, estvarname = \"diff\", true = -1, se = \"se\", ci.limits = c(\"lower\", \"upper\"), methodvar = \"method\", by = \"dgm\") #> 'ref' method was not specified, 1 set as the reference summary(s1, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Coverage of nominal 95% confidence interval: #> dgm 1 2 #> 1 0.9400 (0.0106) 0.9400 (0.0106) #> 2 0.8780 (0.0146) 0.9420 (0.0105) #> 3 0.9380 (0.0108) 0.9500 (0.0097) #> 4 0.9020 (0.0133) 0.9420 (0.0105) s2 <- simsum(data = tt, estvarname = \"diff\", true = -1, se = \"se\", methodvar = \"method\", by = \"dgm\") #> 'ref' method was not specified, 1 set as the reference summary(s2, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Coverage of nominal 95% confidence interval: #> dgm 1 2 #> 1 0.9400 (0.0106) 0.9360 (0.0109) #> 2 0.8680 (0.0151) 0.9320 (0.0113) #> 3 0.9380 (0.0108) 0.9420 (0.0105) #> 4 0.8940 (0.0138) 0.9360 (0.0109) s3 <- simsum(data = tt, estvarname = \"diff\", true = -1, se = \"se\", ci.limits = c(-1.5, -0.5), methodvar = \"method\", by = \"dgm\") #> 'ref' method was not specified, 1 set as the reference summary(s3, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Coverage of nominal 95% confidence interval: #> dgm 1 2 #> 1 1.0000 (0.0000) 1.0000 (0.0000) #> 2 1.0000 (0.0000) 1.0000 (0.0000) #> 3 1.0000 (0.0000) 1.0000 (0.0000) #> 4 1.0000 (0.0000) 1.0000 (0.0000) s4 <- simsum(data = tt, estvarname = \"diff\", true = -1, se = \"se\", df = \"df\", methodvar = \"method\", by = \"dgm\") #> 'ref' method was not specified, 1 set as the reference all.equal(tidy(s1), tidy(s4)) #> [1] TRUE tt$true <- -1 s5 <- simsum(data = tt, estvarname = \"diff\", true = \"true\", se = \"se\", ci.limits = c(\"lower\", \"upper\"), methodvar = \"method\", by = \"dgm\") #> 'ref' method was not specified, 1 set as the reference summary(s5, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Coverage of nominal 95% confidence interval: #> dgm 1 2 #> 1 0.9400 (0.0106) 0.9400 (0.0106) #> 2 0.8780 (0.0146) 0.9420 (0.0105) #> 3 0.9380 (0.0108) 0.9500 (0.0097) #> 4 0.9020 (0.0133) 0.9420 (0.0105) summary(s2, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Coverage of nominal 95% confidence interval: #> dgm 1 2 #> 1 0.9400 (0.0106) 0.9360 (0.0109) #> 2 0.8680 (0.0151) 0.9320 (0.0113) #> 3 0.9380 (0.0108) 0.9420 (0.0105) #> 4 0.8940 (0.0138) 0.9360 (0.0109) data(\"MIsim\", package = \"rsimsum\") data(\"MIsim2\", package = \"rsimsum\") head(MIsim) #> # A tibble: 6 × 4 #> dataset method b se #> #> 1 1 CC 0.707 0.147 #> 2 1 MI_T 0.684 0.126 #> 3 1 MI_LOGT 0.712 0.141 #> 4 2 CC 0.349 0.160 #> 5 2 MI_T 0.406 0.141 #> 6 2 MI_LOGT 0.429 0.136 head(MIsim2) #> # A tibble: 6 × 5 #> dataset m1 m2 b se #> #> 1 1 CC \"\" 0.707 0.147 #> 2 1 MI \"T\" 0.684 0.126 #> 3 1 MI \"LOGT\" 0.712 0.141 #> 4 2 CC \"\" 0.349 0.160 #> 5 2 MI \"T\" 0.406 0.141 #> 6 2 MI \"LOGT\" 0.429 0.136 s6 <- simsum(data = MIsim, estvarname = \"b\", true = 0.50, se = \"se\", methodvar = \"method\") #> 'ref' method was not specified, CC set as the reference s7 <- simsum(data = MIsim2, estvarname = \"b\", true = 0.50, se = \"se\", methodvar = c(\"m1\", \"m2\")) #> 'ref' method was not specified, CC: set as the reference print(s6) #> Summary of a simulation study with a single estimand. #> True value of the estimand: 0.5 #> #> Method variable: method #> Unique methods: CC, MI_LOGT, MI_T #> Reference method: CC #> #> By factors: none #> #> Monte Carlo standard errors were computed. print(s7) #> Summary of a simulation study with a single estimand. #> True value of the estimand: 0.5 #> #> Columns identifying methods: m1, m2 #> Unique methods: CC:, MI:LOGT, MI:T #> #> By factors: none #> #> Monte Carlo standard errors were computed. all.equal(tidy(s6)$est, tidy(s7)$est) #> [1] TRUE"},{"path":"https://ellessenne.github.io/rsimsum/articles/E-custom-inputs.html","id":"multiple-estimands-at-once","dir":"Articles","previous_headings":"","what":"Multiple Estimands at Once","title":"Custom input values for confidence intervals and true values","text":"multisimsum can flexible simsum. Remember default behaviour: example, pass true values estimand named vector c(trt = -0.50, fv = 0.75). Say instead stored true value estimand column dataset: data structure, can pass string value multisimsum identify true column dataset: can confirm obtain results two approaches: approach particularly useful true value might vary across replications (e.g. depends simulated dataset). course, can combined custom confidence interval limits coverage well: completely different : Multiple columns identifying methods supported multisimsum() well; examples omitted , works analogously simsum().","code":"data(\"frailty\", package = \"rsimsum\") ms1 <- multisimsum( data = frailty, par = \"par\", true = c(trt = -0.50, fv = 0.75), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\" ) #> 'ref' method was not specified, Cox, Gamma set as the reference summary(ms1, stats = \"bias\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0124 (0.0045) 0.2299 (0.0076) -0.0179 (0.0044) 0.2347 (0.0077) #> Log-Normal -0.1064 (0.0043) -0.0175 (0.0049) -0.1066 (0.0041) -0.0152 (0.0050) #> #> ------------------------------------------------------------------------------------------------------------------------------------------------------ #> #> Parameter: trt #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0006 (0.0016) -0.0013 (0.0016) -0.0003 (0.0016) -0.0015 (0.0016) #> Log-Normal -0.0006 (0.0015) -0.0014 (0.0015) -0.0006 (0.0015) -0.0016 (0.0015) frailty$true <- ifelse(frailty$par == \"trt\", -0.50, 0.75) head(frailty) #> i b se par fv_dist model true #> 1 1 0.6569546 0.1256964 fv Gamma Cox, Gamma 0.75 #> 2 1 0.8396248 0.1663368 fv Gamma Cox, Log-Normal 0.75 #> 3 1 0.6583130 0.1260354 fv Gamma RP(P), Gamma 0.75 #> 4 1 0.8410503 0.1804898 fv Gamma RP(P), Log-Normal 0.75 #> 5 1 0.6394722 0.1223808 fv Log-Normal Cox, Gamma 0.75 #> 6 1 0.7573628 0.1235062 fv Log-Normal Cox, Log-Normal 0.75 ms2 <- multisimsum( data = frailty, par = \"par\", true = \"true\", estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\" ) #> 'ref' method was not specified, Cox, Gamma set as the reference summary(ms2, stats = \"bias\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0124 (0.0045) 0.2299 (0.0076) -0.0179 (0.0044) 0.2347 (0.0077) #> Log-Normal -0.1064 (0.0043) -0.0175 (0.0049) -0.1066 (0.0041) -0.0152 (0.0050) #> #> ------------------------------------------------------------------------------------------------------------------------------------------------------ #> #> Parameter: trt #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0006 (0.0016) -0.0013 (0.0016) -0.0003 (0.0016) -0.0015 (0.0016) #> Log-Normal -0.0006 (0.0015) -0.0014 (0.0015) -0.0006 (0.0015) -0.0016 (0.0015) identical(tidy(ms1), tidy(ms2)) #> [1] TRUE frailty$lower <- frailty$b - qt(1 - 0.05 / 2, df = 10) * frailty$se frailty$upper <- frailty$b + qt(1 - 0.05 / 2, df = 10) * frailty$se ms3 <- multisimsum( data = frailty, par = \"par\", true = \"true\", estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\", ci.limits = c(\"lower\", \"upper\") ) #> 'ref' method was not specified, Cox, Gamma set as the reference summary(ms3, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9477 (0.0071) 0.9680 (0.0056) 0.9516 (0.0069) 0.9640 (0.0059) #> Log-Normal 0.8046 (0.0128) 0.9330 (0.0079) 0.8235 (0.0121) 0.9460 (0.0071) #> #> ------------------------------------------------------------------------------------------------------------------------------------------------------ #> #> Parameter: trt #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9730 (0.0051) 0.9710 (0.0053) 0.9732 (0.0052) 0.9710 (0.0053) #> Log-Normal 0.9710 (0.0053) 0.9690 (0.0055) 0.9719 (0.0052) 0.9690 (0.0055) summary(ms2, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9201 (0.0087) 0.9220 (0.0085) 0.9300 (0.0082) 0.9030 (0.0094) #> Log-Normal 0.7503 (0.0140) 0.9020 (0.0094) 0.7683 (0.0134) 0.9280 (0.0082) #> #> ------------------------------------------------------------------------------------------------------------------------------------------------------ #> #> Parameter: trt #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9500 (0.0069) 0.9490 (0.0070) 0.9506 (0.0070) 0.9500 (0.0069) #> Log-Normal 0.9410 (0.0075) 0.9420 (0.0074) 0.9428 (0.0074) 0.9430 (0.0073)"},{"path":"https://ellessenne.github.io/rsimsum/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Alessandro Gasparini. Author, maintainer. Ian R. White. Author.","code":""},{"path":"https://ellessenne.github.io/rsimsum/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Gasparini, (2018). rsimsum: Summarise results Monte Carlo simulation studies. Journal Open Source Software, 3(26), 739, https://doi.org/10.21105/joss.00739","code":"@Article{, author = {Alessandro Gasparini}, title = {rsimsum: Summarise results from Monte Carlo simulation studies}, journal = {Journal of Open Source Software}, year = {2018}, volume = {3}, issue = {26}, pages = {739}, doi = {10.21105/joss.00739}, url = {https://doi.org/10.21105/joss.00739}, }"},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"rsimsum-","dir":"","previous_headings":"","what":"Analysis of Simulation Studies Including Monte Carlo Error","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"rsimsum R package can compute summary statistics simulation studies. rsimsum modelled upon similar package available Stata, user-written command simsum (White .R., 2010). aim rsimsum help report simulation studies, including understanding role chance results simulation studies: Monte Carlo standard errors confidence intervals based computed presented user default. rsimsum can compute wide variety summary statistics: bias, empirical model-based standard errors, relative precision, relative error model standard error, mean squared error, coverage, bias. details summary statistic presented elsewhere (White .R., 2010; Morris et al, 2019). main function rsimsum called simsum can handle simulation studies single estimand interest time. Missing values excluded default, possible define boundary values drop estimated values standard errors exceeding limits. possible define variable representing methods compared simulation study, possible define factors, , factors vary different simulated scenarios (data-generating mechanisms, DGMs). However, methods DGMs strictly required: case, simulation study single scenario single method assumed. Finally, rsimsum provides function named multisimsum allows summarising simulation studies multiple estimands well. important step reporting simulation study consists visualising results; therefore, rsimsum exploits R package ggplot2 produce portfolio opinionated data visualisations quick exploration results, inferring colours facetting data-generating mechanisms. rsimsum includes methods produce (1) plots summary statistics confidence intervals based Monte Carlo standard errors (forest plots, lolly plots), (2) zipper plots graphically visualise coverage directly plotting confidence intervals, (3) plots method-wise comparisons estimates standard errors (scatter plots, Bland-Altman plots, ridgeline plots), (4) heat plots. latter visualisation type traditionally used present results simulation studies, consists mosaic plot factor x-axis methods compared current simulation study factor y-axis data-generating factors. tile mosaic plot coloured according value summary statistic interest, red colour representing values target value blue colour representing values target.","code":""},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"can install rsimsum CRAN: Alternatively, possible install development version GitHub using remotes package:","code":"install.packages(\"rsimsum\") # install.packages(\"remotes\") remotes::install_github(\"ellessenne/rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"example","dir":"","previous_headings":"","what":"Example","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"basic example using data simulation study missing data (type help(\"MIsim\", package = \"rsimsum\") R console information): set x = TRUE required plot types. Summarising results:","code":"library(rsimsum) data(\"MIsim\", package = \"rsimsum\") s <- simsum(data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\", x = TRUE) #> 'ref' method was not specified, CC set as the reference s #> Summary of a simulation study with a single estimand. #> True value of the estimand: 0.5 #> #> Method variable: method #> Unique methods: CC, MI_LOGT, MI_T #> Reference method: CC #> #> By factors: none #> #> Monte Carlo standard errors were computed. summary(s) #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 (0.0048) 0.0009 (0.0042) -0.0012 (0.0043) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 (0.0096) 0.0018 (0.0083) -0.0024 (0.0085) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 (0.0034) 0.1320 (0.0030) 0.1344 (0.0030) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000) 31.0463 (3.9375) 26.3682 (3.8424) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 (0.0011) 0.0174 (0.0009) 0.0181 (0.0009) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 (0.0005) 0.1349 (0.0006) 0.1338 (0.0006) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 (2.2055) 2.2233 (2.3323) -0.4412 (2.2695) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 (0.0073) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 (0.0075) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 (0.0071) 0.9690 (0.0055) 0.9630 (0.0060)"},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"vignettes","dir":"","previous_headings":"","what":"Vignettes","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"rsimsum comes 5 vignettes. particular, check introductory one: list vignettes obtained typing following R console:","code":"vignette(topic = \"A-introduction\", package = \"rsimsum\") vignette(package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"visualising-results","dir":"","previous_headings":"","what":"Visualising results","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"version 0.2.0, rsimsum can produce variety plots: among others, lolly plots, forest plots, zipper plots, etc.: rsimsum 0.5.0 plotting functionality completely rewritten, new plot types implemented: Scatter plots method-wise comparisons, including Bland-Altman type plots; Ridgeline plots. Nested loop plots implemented rsimsum 0.6.0: Finally, rsimsum 0.7.1 contour plots hexbin plots implemented well: provide useful alternative several data points large overlap (e.g. scatterplot). plotting functionality now extend S3 generic autoplot: see ?ggplot2::autoplot ?rsimsum::autoplot.simsum details. details information can found vignettes dedicated plotting:","code":"library(ggplot2) autoplot(s, type = \"lolly\", stats = \"bias\") autoplot(s, type = \"zip\") autoplot(s, type = \"est_ba\") #> `geom_smooth()` using formula = 'y ~ x' autoplot(s, type = \"est_ridge\") #> Picking joint bandwidth of 0.0295 data(\"nlp\", package = \"rsimsum\") s.nlp <- rsimsum::simsum( data = nlp, estvarname = \"b\", true = 0, se = \"se\", methodvar = \"model\", by = c(\"baseline\", \"ss\", \"esigma\") ) #> 'ref' method was not specified, 1 set as the reference autoplot(s.nlp, stats = \"bias\", type = \"nlp\") autoplot(s, type = \"est_density\") #> `geom_smooth()` using formula = 'y ~ x' autoplot(s, type = \"est_hex\") #> `geom_smooth()` using formula = 'y ~ x' vignette(topic = \"C-plotting\", package = \"rsimsum\") vignette(topic = \"D-nlp\", package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"find rsimsum useful, please cite publications:","code":"citation(\"rsimsum\") #> To cite package 'rsimsum' in publications use: #> #> Gasparini, (2018). rsimsum: Summarise results from Monte Carlo simulation studies. #> Journal of Open Source Software, 3(26), 739, https://doi.org/10.21105/joss.00739 #> #> A BibTeX entry for LaTeX users is #> #> @Article{, #> author = {Alessandro Gasparini}, #> title = {rsimsum: Summarise results from Monte Carlo simulation studies}, #> journal = {Journal of Open Source Software}, #> year = {2018}, #> volume = {3}, #> issue = {26}, #> pages = {739}, #> doi = {10.21105/joss.00739}, #> url = {https://doi.org/10.21105/joss.00739}, #> }"},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"references","dir":"","previous_headings":"","what":"References","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"White, .R. 2010. simsum: Analyses simulation studies including Monte Carlo error. Stata Journal, 10(3): 369-385 Morris, T.P., White, .R. Crowther, M.J. 2019. Using simulation studies evaluate statistical methods. Statistics Medicine, 38: 2074-2102 Gasparini, . 2018. rsimsum: Summarise results Monte Carlo simulation studies. Journal Open Source Software, 3(26):739","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/MIsim.html","id":null,"dir":"Reference","previous_headings":"","what":"Example of a simulation study on missing data — MIsim","title":"Example of a simulation study on missing data — MIsim","text":"dataset simulation study comparing different ways handle missing covariates fitting Cox model (White Royston, 2009). One thousand datasets simulated, containing normally distributed covariates \\(x\\) \\(z\\) time--event outcome. covariates 20\\ simulated dataset analysed three ways. Cox model fit complete cases (CC). two methods multiple imputation using chained equations (van Buuren, Boshuizen, Knook, 1999) used. MI_LOGT method multiply imputes missing values \\(x\\) \\(z\\) outcome included \\(\\log (t)\\) \\(d\\), \\(t\\) survival time \\(d\\) event indicator. MI_T method except \\(\\log (t)\\) replaced \\(t\\) imputation model. results stored long format.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/MIsim.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example of a simulation study on missing data — MIsim","text":"","code":"MIsim MIsim2"},{"path":"https://ellessenne.github.io/rsimsum/reference/MIsim.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example of a simulation study on missing data — MIsim","text":"data frame 3,000 rows 4 variables: dataset Simulated dataset number. method Method used (CC, MI_LOGT MI_T). b Point estimate. se Standard error point estimate. object class tbl_df (inherits tbl, data.frame) 3000 rows 5 columns.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/MIsim.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Example of a simulation study on missing data — MIsim","text":"MIsim2 version dataset method column split two columns, m1 m2.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/MIsim.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Example of a simulation study on missing data — MIsim","text":"White, .R., P. Royston. 2009. Imputing missing covariate values Cox model. Statistics Medicine 28(15):1982-1998 doi:10.1002/sim.3618","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/MIsim.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Example of a simulation study on missing data — MIsim","text":"","code":"data(\"MIsim\", package = \"rsimsum\") data(\"MIsim2\", package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"autoplot method for multisimsum objects — autoplot.multisimsum","title":"autoplot method for multisimsum objects — autoplot.multisimsum","text":"autoplot can produce series plot summarise results simulation studies. See vignette(\"C-plotting\", package = \"rsimsum\") details.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"autoplot method for multisimsum objects — autoplot.multisimsum","text":"","code":"# S3 method for multisimsum autoplot( object, par, type = \"forest\", stats = \"nsim\", target = NULL, fitted = TRUE, scales = \"fixed\", top = TRUE, density.legend = TRUE, zoom = 1, ... )"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"autoplot method for multisimsum objects — autoplot.multisimsum","text":"object object class multisimsum. par parameter results plot. type type plot produced. Possible choices : forest, lolly, zip, est, se, est_ba, se_ba, est_density, se_density, est_hex, se_hex, est_ridge, se_ridge, heat, nlp, forest default. stats Summary statistic plot, defaults bias. See summary.simsum() details supported summary statistics. target Target summary statistic, e.g. 0 bias. Defaults NULL, case target inferred. fitted Superimpose fitted regression line, useful type = (est, se, est_ba, se_ba, est_density, se_density, est_hex, se_hex). Defaults TRUE. scales scales fixed (fixed, default), free (free), free one dimension (free_x, free_y)? top legend nested loop plot top side plot? Defaults TRUE. density.legend legend density hexbin plots included? Defaults TRUE. zoom numeric value 0 1 signalling zip plot zoom top x% plot (ease interpretation). Defaults 1, whole zip plot displayed. ... used.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.multisimsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"autoplot method for multisimsum objects — autoplot.multisimsum","text":"ggplot object.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.multisimsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"autoplot method for multisimsum objects — autoplot.multisimsum","text":"","code":"data(\"frailty\", package = \"rsimsum\") ms <- multisimsum( data = frailty, par = \"par\", true = c(trt = -0.50, fv = 0.75), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\", x = TRUE ) #> 'ref' method was not specified, Cox, Gamma set as the reference library(ggplot2) autoplot(ms, par = \"trt\") autoplot(ms, par = \"trt\", type = \"lolly\", stats = \"cover\") autoplot(ms, par = \"trt\", type = \"zip\") #> Warning: Removed 32 rows containing missing values (`geom_segment()`). autoplot(ms, par = \"trt\", type = \"est_ba\") #> `geom_smooth()` using formula = 'y ~ x' #> Warning: Removed 96 rows containing non-finite values (`stat_smooth()`). #> Warning: Removed 96 rows containing missing values (`geom_point()`)."},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"autoplot method for simsum objects — autoplot.simsum","title":"autoplot method for simsum objects — autoplot.simsum","text":"autoplot can produce series plot summarise results simulation studies. See vignette(\"C-plotting\", package = \"rsimsum\") details.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"autoplot method for simsum objects — autoplot.simsum","text":"","code":"# S3 method for simsum autoplot( object, type = \"forest\", stats = \"nsim\", target = NULL, fitted = TRUE, scales = \"fixed\", top = TRUE, density.legend = TRUE, zoom = 1, ... )"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"autoplot method for simsum objects — autoplot.simsum","text":"object object class simsum. type type plot produced. Possible choices : forest, lolly, zip, est, se, est_ba, se_ba, est_ridge, se_ridge, est_density, se_density, est_hex, se_hex, heat, nlp, forest default. stats Summary statistic plot, defaults nsim (number replications non-missing point estimates/SEs). See summary.simsum() details supported summary statistics. target Target summary statistic, e.g. 0 bias. Defaults NULL, case target inferred. fitted Superimpose fitted regression line, useful type = (est, se, est_ba, se_ba, est_density, se_density, est_hex, se_hex). Defaults TRUE. scales scales fixed (fixed, default), free (free), free one dimension (free_x, free_y)? top legend nested loop plot top side plot? Defaults TRUE. density.legend legend density hexbin plots included? Defaults TRUE. zoom numeric value 0 1 signalling zip plot zoom top x% plot (ease interpretation). Defaults 1, whole zip plot displayed. ... used.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.simsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"autoplot method for simsum objects — autoplot.simsum","text":"ggplot object.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.simsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"autoplot method for simsum objects — autoplot.simsum","text":"","code":"data(\"MIsim\", package = \"rsimsum\") s <- rsimsum::simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\", x = TRUE ) #> 'ref' method was not specified, CC set as the reference library(ggplot2) autoplot(s) autoplot(s, type = \"lolly\") autoplot(s, type = \"est_hex\") #> `geom_smooth()` using formula = 'y ~ x' autoplot(s, type = \"zip\", zoom = 0.5) # Nested loop plot: data(\"nlp\", package = \"rsimsum\") s1 <- rsimsum::simsum( data = nlp, estvarname = \"b\", true = 0, se = \"se\", methodvar = \"model\", by = c(\"baseline\", \"ss\", \"esigma\") ) #> 'ref' method was not specified, 1 set as the reference autoplot(s1, stats = \"bias\", type = \"nlp\")"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"autoplot method for summary.multisimsum objects — autoplot.summary.multisimsum","title":"autoplot method for summary.multisimsum objects — autoplot.summary.multisimsum","text":"autoplot method summary.multisimsum objects","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"autoplot method for summary.multisimsum objects — autoplot.summary.multisimsum","text":"","code":"# S3 method for summary.multisimsum autoplot( object, par, type = \"forest\", stats = \"nsim\", target = NULL, fitted = TRUE, scales = \"fixed\", top = TRUE, density.legend = TRUE, zoom = 1, ... )"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"autoplot method for summary.multisimsum objects — autoplot.summary.multisimsum","text":"object object class summary.multisimsum. par parameter results plot. type type plot produced. Possible choices : forest, lolly, zip, est, se, est_ba, se_ba, est_density, se_density, est_hex, se_hex, est_ridge, se_ridge, heat, nlp, forest default. stats Summary statistic plot, defaults bias. See summary.simsum() details supported summary statistics. target Target summary statistic, e.g. 0 bias. Defaults NULL, case target inferred. fitted Superimpose fitted regression line, useful type = (est, se, est_ba, se_ba, est_density, se_density, est_hex, se_hex). Defaults TRUE. scales scales fixed (fixed, default), free (free), free one dimension (free_x, free_y)? top legend nested loop plot top side plot? Defaults TRUE. density.legend legend density hexbin plots included? Defaults TRUE. zoom numeric value 0 1 signalling zip plot zoom top x% plot (ease interpretation). Defaults 1, whole zip plot displayed. ... used.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.multisimsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"autoplot method for summary.multisimsum objects — autoplot.summary.multisimsum","text":"ggplot object.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.multisimsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"autoplot method for summary.multisimsum objects — autoplot.summary.multisimsum","text":"","code":"data(\"frailty\", package = \"rsimsum\") ms <- multisimsum( data = frailty, par = \"par\", true = c(trt = -0.50, fv = 0.75), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\", x = TRUE ) #> 'ref' method was not specified, Cox, Gamma set as the reference sms <- summary(ms) library(ggplot2) autoplot(sms, par = \"trt\")"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"autoplot method for summary.simsum objects — autoplot.summary.simsum","title":"autoplot method for summary.simsum objects — autoplot.summary.simsum","text":"autoplot method summary.simsum objects","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"autoplot method for summary.simsum objects — autoplot.summary.simsum","text":"","code":"# S3 method for summary.simsum autoplot( object, type = \"forest\", stats = \"nsim\", target = NULL, fitted = TRUE, scales = \"fixed\", top = TRUE, density.legend = TRUE, zoom = 1, ... )"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"autoplot method for summary.simsum objects — autoplot.summary.simsum","text":"object object class summary.simsum. type type plot produced. Possible choices : forest, lolly, zip, est, se, est_ba, se_ba, est_ridge, se_ridge, est_density, se_density, est_hex, se_hex, heat, nlp, forest default. stats Summary statistic plot, defaults nsim (number replications non-missing point estimates/SEs). See summary.simsum() details supported summary statistics. target Target summary statistic, e.g. 0 bias. Defaults NULL, case target inferred. fitted Superimpose fitted regression line, useful type = (est, se, est_ba, se_ba, est_density, se_density, est_hex, se_hex). Defaults TRUE. scales scales fixed (fixed, default), free (free), free one dimension (free_x, free_y)? top legend nested loop plot top side plot? Defaults TRUE. density.legend legend density hexbin plots included? Defaults TRUE. zoom numeric value 0 1 signalling zip plot zoom top x% plot (ease interpretation). Defaults 1, whole zip plot displayed. ... used.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.simsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"autoplot method for summary.simsum objects — autoplot.summary.simsum","text":"ggplot object.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.simsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"autoplot method for summary.simsum objects — autoplot.summary.simsum","text":"","code":"data(\"MIsim\", package = \"rsimsum\") s <- rsimsum::simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\", x = TRUE ) #> 'ref' method was not specified, CC set as the reference ss <- summary(s) library(ggplot2) autoplot(ss) autoplot(ss, type = \"lolly\") #> Warning: Removed 3 rows containing missing values (`geom_point()`). #> Warning: Removed 3 rows containing missing values (`geom_point()`)."},{"path":"https://ellessenne.github.io/rsimsum/reference/dropbig.html","id":null,"dir":"Reference","previous_headings":"","what":"Identify replications with large point estimates, standard errors — dropbig","title":"Identify replications with large point estimates, standard errors — dropbig","text":"dropbig useful identify replications large point estimates standard errors. Large values defined standardised values given threshold, defined calling dropbig. Regular standardisation using mean standard deviation implemented, well robust standardisation using median inter-quartile range. , standardisation process stratified data-generating mechanism factors defined.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/dropbig.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Identify replications with large point estimates, standard errors — dropbig","text":"","code":"dropbig( data, estvarname, se = NULL, methodvar = NULL, by = NULL, max = 10, semax = 100, robust = TRUE )"},{"path":"https://ellessenne.github.io/rsimsum/reference/dropbig.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Identify replications with large point estimates, standard errors — dropbig","text":"data data.frame variable names interpreted. tidy format, e.g. variable forms column observation forms row. estvarname name variable containing point estimates. se name variable containing standard errors point estimates. methodvar name variable containing methods compare. instance, methods models compared within simulation study. Can NULL. vector variable names compute performance measures list factors. Factors listed (potentially several) data-generating mechanisms used simulate data different scenarios (e.g. sample size, true distribution variable, etc.). Can NULL. max Specifies maximum acceptable absolute value point estimates, standardisation. Defaults 10. semax Specifies maximum acceptable absolute value standard error, standardisation. Defaults 100. robust Specifies whether use robust standardisation (using median inter-quartile range) rather normal standardisation (using mean standard deviation). Defaults TRUE.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/dropbig.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Identify replications with large point estimates, standard errors — dropbig","text":"data.frame given input additional column named .dropbig identifying rows classified large (.dropbig = TRUE) according specified criterion.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/dropbig.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Identify replications with large point estimates, standard errors — dropbig","text":"","code":"data(\"frailty\", package = \"rsimsum\") frailty2 <- subset(frailty, par == \"fv\") # Using low values of max, semax for illustration purposes: dropbig( data = frailty2, estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\", max = 2, semax = 2 ) #> i b se par fv_dist model .dropbig #> 1 1 0.6569546 0.125696425 fv Gamma Cox, Gamma FALSE #> 17 2 0.6613376 0.129510423 fv Gamma Cox, Gamma FALSE #> 33 3 1.0953274 0.206427350 fv Gamma Cox, Gamma TRUE #> 49 4 0.8406551 0.156744704 fv Gamma Cox, Gamma FALSE #> 65 5 0.7027899 0.135173710 fv Gamma Cox, Gamma FALSE #> 81 6 0.7745830 0.145766148 fv Gamma Cox, Gamma FALSE #> 97 7 0.6471639 0.124092810 fv Gamma Cox, Gamma FALSE #> 113 8 0.9999895 0.185104048 fv Gamma Cox, Gamma FALSE #> 129 9 0.8249801 0.156193824 fv Gamma Cox, Gamma FALSE #> 145 10 0.8173031 0.154691420 fv Gamma Cox, Gamma FALSE #> 161 11 0.8131207 0.155467829 fv Gamma Cox, Gamma FALSE #> 177 12 0.9917031 0.183639448 fv Gamma Cox, Gamma FALSE #> 193 13 0.9497115 0.177544292 fv Gamma Cox, Gamma FALSE #> 209 14 0.5818812 0.115038898 fv Gamma Cox, Gamma FALSE #> 225 15 0.8821317 NA fv Gamma Cox, Gamma NA #> 241 16 1.0080549 0.185306797 fv Gamma Cox, Gamma FALSE #> 257 17 0.5966007 NA fv Gamma Cox, Gamma NA #> 273 18 0.4670966 0.096268874 fv Gamma Cox, Gamma FALSE #> 289 19 0.7333278 0.139560619 fv Gamma Cox, Gamma FALSE #> 305 20 0.9569888 0.178946282 fv Gamma Cox, Gamma FALSE #> 321 21 0.5534068 0.111432621 fv Gamma Cox, Gamma FALSE #> 337 22 0.8922715 0.168260755 fv Gamma Cox, Gamma FALSE #> 353 23 0.6148386 0.118749326 fv Gamma Cox, Gamma FALSE #> 369 24 0.7503412 0.141751724 fv Gamma Cox, Gamma FALSE #> 385 25 0.7795077 0.147239297 fv Gamma Cox, Gamma FALSE #> 401 26 0.7226755 0.138933052 fv Gamma Cox, Gamma FALSE #> 417 27 1.1454385 0.211444516 fv Gamma Cox, Gamma TRUE #> 433 28 1.0146311 0.187317613 fv Gamma Cox, Gamma FALSE #> 449 29 0.9243730 0.171650779 fv Gamma Cox, Gamma FALSE #> 465 30 0.9627598 0.180455732 fv Gamma Cox, Gamma FALSE #> 481 31 0.6097090 0.120254015 fv Gamma Cox, Gamma FALSE #> 497 32 0.7776626 0.148059501 fv Gamma Cox, Gamma FALSE #> 513 33 0.5967068 0.115380144 fv Gamma Cox, Gamma FALSE #> 529 34 0.5604221 0.109501220 fv Gamma Cox, Gamma FALSE #> 545 35 0.7513179 0.145994135 fv Gamma Cox, Gamma FALSE #> 561 36 0.6005370 0.119633066 fv Gamma Cox, Gamma FALSE #> 577 37 0.5965864 0.115755917 fv Gamma Cox, Gamma FALSE #> 593 38 0.5250277 0.103624408 fv Gamma Cox, Gamma FALSE #> 609 39 0.7131612 0.135237995 fv Gamma Cox, Gamma FALSE #> 625 40 0.4799652 0.095913495 fv Gamma Cox, Gamma FALSE #> 641 41 1.1936478 0.213913615 fv Gamma Cox, Gamma TRUE #> 657 42 0.7119055 0.138537976 fv Gamma Cox, Gamma FALSE #> 673 43 0.8157571 0.153496265 fv Gamma Cox, Gamma FALSE #> 689 44 0.8510680 0.159321249 fv Gamma Cox, Gamma FALSE #> 705 45 0.7759695 0.146268948 fv Gamma Cox, Gamma FALSE #> 721 46 0.7346442 0.139055138 fv Gamma Cox, Gamma FALSE #> 737 47 0.9080543 0.172117120 fv Gamma Cox, Gamma FALSE #> 753 48 0.7536020 0.144378149 fv Gamma Cox, Gamma FALSE #> 769 49 0.7841137 0.149576489 fv Gamma Cox, Gamma FALSE #> 785 50 0.7177537 0.136129350 fv Gamma Cox, Gamma FALSE #> 801 51 0.8978122 0.167355928 fv Gamma Cox, Gamma FALSE #> 817 52 0.6175795 0.122643583 fv Gamma Cox, Gamma FALSE #> 833 53 0.6747666 0.130004394 fv Gamma Cox, Gamma FALSE #> 849 54 0.5300899 0.104816453 fv Gamma Cox, Gamma FALSE #> 865 55 0.7787970 0.147506719 fv Gamma Cox, Gamma FALSE #> 881 56 0.7118185 0.137916725 fv Gamma Cox, Gamma FALSE #> 897 57 0.7858698 0.147909226 fv Gamma Cox, Gamma FALSE #> 913 58 0.6599301 0.129157781 fv Gamma Cox, Gamma FALSE #> 929 59 0.7204171 0.137316794 fv Gamma Cox, Gamma FALSE #> 945 60 0.7932676 0.149975681 fv Gamma Cox, Gamma FALSE #> 961 61 0.6694679 0.127685261 fv Gamma Cox, Gamma FALSE #> 977 62 0.6581751 0.128702271 fv Gamma Cox, Gamma FALSE #> 993 63 0.8591200 0.161433261 fv Gamma Cox, Gamma FALSE #> 1009 64 0.6534059 0.125264584 fv Gamma Cox, Gamma FALSE #> 1025 65 0.6942950 0.131759071 fv Gamma Cox, Gamma FALSE #> 1041 66 0.5443571 0.107289026 fv Gamma Cox, Gamma FALSE #> 1057 67 0.8156791 0.152361675 fv Gamma Cox, Gamma FALSE #> 1073 68 0.7439907 0.141612286 fv Gamma Cox, Gamma FALSE #> 1089 69 0.5563484 0.109062941 fv Gamma Cox, Gamma FALSE #> 1105 70 0.7094223 0.138731564 fv Gamma Cox, Gamma FALSE #> 1121 71 0.9385094 0.173908062 fv Gamma Cox, Gamma FALSE #> 1137 72 0.6524139 0.125365577 fv Gamma Cox, Gamma FALSE #> 1153 73 0.4720556 0.093786069 fv Gamma Cox, Gamma FALSE #> 1169 74 0.6739725 0.128962357 fv Gamma Cox, Gamma FALSE #> 1185 75 0.6948754 0.133454468 fv Gamma Cox, Gamma FALSE #> 1201 76 0.6981009 0.137070297 fv Gamma Cox, Gamma FALSE #> 1217 77 0.7876992 0.150774294 fv Gamma Cox, Gamma FALSE #> 1233 78 1.0321320 0.191564904 fv Gamma Cox, Gamma FALSE #> 1249 79 1.3305115 0.241107247 fv Gamma Cox, Gamma TRUE #> 1265 80 0.6233959 NA fv Gamma Cox, Gamma NA #> 1281 81 0.9222954 0.175122280 fv Gamma Cox, Gamma FALSE #> 1297 82 0.7312982 0.138898303 fv Gamma Cox, Gamma FALSE #> 1313 83 0.4805826 0.099069389 fv Gamma Cox, Gamma FALSE #> 1329 84 0.7162687 0.135900182 fv Gamma Cox, Gamma FALSE #> 1345 85 0.7361328 0.139875756 fv Gamma Cox, Gamma FALSE #> 1361 86 0.7164863 0.136540922 fv Gamma Cox, Gamma FALSE #> 1377 87 0.5816154 0.112900191 fv Gamma Cox, Gamma FALSE #> 1393 88 0.7229512 0.137090004 fv Gamma Cox, Gamma FALSE #> 1409 89 0.7304707 0.138664712 fv Gamma Cox, Gamma FALSE #> 1425 90 0.8836079 0.164198901 fv Gamma Cox, Gamma FALSE #> 1441 91 0.7189481 NA fv Gamma Cox, Gamma NA #> 1457 92 0.6588464 0.126022294 fv Gamma Cox, Gamma FALSE #> 1473 93 0.9816849 0.189387187 fv Gamma Cox, Gamma FALSE #> 1489 94 0.8230985 0.157285147 fv Gamma Cox, Gamma FALSE #> 1505 95 0.7466798 0.141511812 fv Gamma Cox, Gamma FALSE #> 1521 96 0.4641167 0.092989583 fv Gamma Cox, Gamma FALSE #> 1537 97 0.5859572 0.113349778 fv Gamma Cox, Gamma FALSE #> 1553 98 0.8012617 0.151058934 fv Gamma Cox, Gamma FALSE #> 1569 99 0.5711848 0.112322499 fv Gamma Cox, Gamma FALSE #> 1585 100 0.8500351 0.158095260 fv Gamma Cox, Gamma FALSE #> 1601 101 0.8357950 0.155451666 fv Gamma Cox, Gamma FALSE #> 1617 102 0.7019364 0.133488910 fv Gamma Cox, Gamma FALSE #> 1633 103 0.8787124 0.167784796 fv Gamma Cox, Gamma FALSE #> 1649 104 0.7382161 0.139205129 fv Gamma Cox, Gamma FALSE #> 1665 105 0.8438084 0.159385939 fv Gamma Cox, Gamma FALSE #> 1681 106 0.7100979 0.135186030 fv Gamma Cox, Gamma FALSE #> 1697 107 0.8909452 0.169147434 fv Gamma Cox, Gamma FALSE #> 1713 108 0.7774559 0.150824798 fv Gamma Cox, Gamma FALSE #> 1729 109 0.6953965 0.134268584 fv Gamma Cox, Gamma FALSE #> 1745 110 0.7992946 0.150758285 fv Gamma Cox, Gamma FALSE #> 1761 111 0.8471403 0.159125513 fv Gamma Cox, Gamma FALSE #> 1777 112 0.4643017 0.092950661 fv Gamma Cox, Gamma FALSE #> 1793 113 0.5483133 0.107644803 fv Gamma Cox, Gamma FALSE #> 1809 114 1.1737434 0.213064251 fv Gamma Cox, Gamma TRUE #> 1825 115 0.6447690 0.123844155 fv Gamma Cox, Gamma FALSE #> 1841 116 0.5122411 0.101175678 fv Gamma Cox, Gamma FALSE #> 1857 117 0.7563907 0.142289904 fv Gamma Cox, Gamma FALSE #> 1873 118 0.5579905 0.109454501 fv Gamma Cox, Gamma FALSE #> 1889 119 0.6022598 0.116858325 fv Gamma Cox, Gamma FALSE #> 1905 120 0.7124728 0.135859121 fv Gamma Cox, Gamma FALSE #> 1921 121 0.6402494 0.124028005 fv Gamma Cox, Gamma FALSE #> 1937 122 0.6346064 0.122733103 fv Gamma Cox, Gamma FALSE #> 1953 123 0.7902516 0.149333148 fv Gamma Cox, Gamma FALSE #> 1969 124 0.7329650 0.138554104 fv Gamma Cox, Gamma FALSE #> 1985 125 0.8161002 0.155025922 fv Gamma Cox, Gamma FALSE #> 2001 126 0.9990640 0.191074644 fv Gamma Cox, Gamma FALSE #> 2017 127 0.8700787 0.162375752 fv Gamma Cox, Gamma FALSE #> 2033 128 0.8619723 0.161242325 fv Gamma Cox, Gamma FALSE #> 2049 129 0.5981983 0.118892839 fv Gamma Cox, Gamma FALSE #> 2065 130 0.6716077 0.128978878 fv Gamma Cox, Gamma FALSE #> 2081 131 0.6123596 0.117347356 fv Gamma Cox, Gamma FALSE #> 2097 132 0.7632396 0.147960034 fv Gamma Cox, Gamma FALSE #> 2113 133 0.7684878 0.147084782 fv Gamma Cox, Gamma FALSE #> 2129 134 0.7563895 0.143358097 fv Gamma Cox, Gamma FALSE #> 2145 135 0.5840973 0.113775282 fv Gamma Cox, Gamma FALSE #> 2161 136 0.8139715 0.154214677 fv Gamma Cox, Gamma FALSE #> 2177 137 0.8279570 0.155323396 fv Gamma Cox, Gamma FALSE #> 2193 138 0.9684096 0.181892869 fv Gamma Cox, Gamma FALSE #> 2209 139 0.6380475 0.122896692 fv Gamma Cox, Gamma FALSE #> 2225 140 0.7126356 NA fv Gamma Cox, Gamma NA #> 2241 141 0.5544497 0.005829212 fv Gamma Cox, Gamma TRUE #> 2257 142 0.6984548 0.133299410 fv Gamma Cox, Gamma FALSE #> 2273 143 1.1447313 0.218348635 fv Gamma Cox, Gamma TRUE #> 2289 144 0.8534851 0.158864910 fv Gamma Cox, Gamma FALSE #> 2305 145 0.6954310 0.132985154 fv Gamma Cox, Gamma FALSE #> 2321 146 0.6862429 0.131920086 fv Gamma Cox, Gamma FALSE #> 2337 147 0.8487307 0.158487657 fv Gamma Cox, Gamma FALSE #> 2353 148 0.5181133 0.101967871 fv Gamma Cox, Gamma FALSE #> 2369 149 0.6841244 0.131624816 fv Gamma Cox, Gamma FALSE #> 2385 150 0.8869154 0.165727435 fv Gamma Cox, Gamma FALSE #> 2401 151 0.8331944 0.156397071 fv Gamma Cox, Gamma FALSE #> 2417 152 0.7961492 0.152467958 fv Gamma Cox, Gamma FALSE #> 2433 153 0.4915269 0.097749704 fv Gamma Cox, Gamma FALSE #> 2449 154 0.8353449 0.156425229 fv Gamma Cox, Gamma FALSE #> 2465 155 0.6917804 0.135298989 fv Gamma Cox, Gamma FALSE #> 2481 156 0.7141483 0.135622707 fv Gamma Cox, Gamma FALSE #> 2497 157 0.9579114 0.180865947 fv Gamma Cox, Gamma FALSE #> 2513 158 0.9919173 0.186831104 fv Gamma Cox, Gamma FALSE #> 2529 159 0.5056687 0.100572196 fv Gamma Cox, Gamma FALSE #> 2545 160 0.5668849 0.110729771 fv Gamma Cox, Gamma FALSE #> 2561 161 1.1593267 0.211623189 fv Gamma Cox, Gamma TRUE #> 2577 162 0.6686198 0.129654468 fv Gamma Cox, Gamma FALSE #> 2593 163 0.5947095 0.115432055 fv Gamma Cox, Gamma FALSE #> 2609 164 0.9409729 0.174195456 fv Gamma Cox, Gamma FALSE #> 2625 165 0.7712525 0.145156218 fv Gamma Cox, Gamma FALSE #> 2641 166 0.7944783 0.152945382 fv Gamma Cox, Gamma FALSE #> 2657 167 0.8759279 0.163421782 fv Gamma Cox, Gamma FALSE #> 2673 168 0.9305016 0.172681632 fv Gamma Cox, Gamma FALSE #> 2689 169 0.6998018 0.134466938 fv Gamma Cox, Gamma FALSE #> 2705 170 0.6956819 0.133436242 fv Gamma Cox, Gamma FALSE #> 2721 171 0.6792319 0.131731221 fv Gamma Cox, Gamma FALSE #> 2737 172 0.8680243 0.162039061 fv Gamma Cox, Gamma FALSE #> 2753 173 0.5991408 0.117150299 fv Gamma Cox, Gamma FALSE #> 2769 174 0.8197266 0.154957877 fv Gamma Cox, Gamma FALSE #> 2785 175 0.6402142 0.124225276 fv Gamma Cox, Gamma FALSE #> 2801 176 0.6677623 0.127397054 fv Gamma Cox, Gamma FALSE #> 2817 177 0.5600635 0.111041351 fv Gamma Cox, Gamma FALSE #> 2833 178 0.8664575 0.161085253 fv Gamma Cox, Gamma FALSE #> 2849 179 0.5696270 0.110580250 fv Gamma Cox, Gamma FALSE #> 2865 180 0.7490451 0.145597001 fv Gamma Cox, Gamma FALSE #> 2881 181 0.8332298 0.156165685 fv Gamma Cox, Gamma FALSE #> 2897 182 0.7299111 0.138267866 fv Gamma Cox, Gamma FALSE #> 2913 183 0.5643054 0.109921943 fv Gamma Cox, Gamma FALSE #> 2929 184 0.6713498 0.129903821 fv Gamma Cox, Gamma FALSE #> 2945 185 0.8565735 0.161036493 fv Gamma Cox, Gamma FALSE #> 2961 186 0.9053793 0.172727818 fv Gamma Cox, Gamma FALSE #> 2977 187 0.7412392 0.141072766 fv Gamma Cox, Gamma FALSE #> 2993 188 0.5539059 0.108329615 fv Gamma Cox, Gamma FALSE #> 3009 189 0.7630802 0.144798954 fv Gamma Cox, Gamma FALSE #> 3025 190 0.7739996 0.145679338 fv Gamma Cox, Gamma FALSE #> 3041 191 0.7531330 0.142505520 fv Gamma Cox, Gamma FALSE #> 3057 192 0.7746974 0.149498584 fv Gamma Cox, Gamma FALSE #> 3073 193 0.6405375 0.123698525 fv Gamma Cox, Gamma FALSE #> 3089 194 0.5955132 0.115145832 fv Gamma Cox, Gamma FALSE #> 3105 195 0.8745908 0.162591705 fv Gamma Cox, Gamma FALSE #> 3121 196 0.8178457 0.154589268 fv Gamma Cox, Gamma FALSE #> 3137 197 0.7511736 0.141661815 fv Gamma Cox, Gamma FALSE #> 3153 198 0.7769079 0.146017528 fv Gamma Cox, Gamma FALSE #> 3169 199 0.5582030 0.109200412 fv Gamma Cox, Gamma FALSE #> 3185 200 0.8259496 0.154374691 fv Gamma Cox, Gamma FALSE #> 3201 201 0.7413535 0.141501117 fv Gamma Cox, Gamma FALSE #> 3217 202 0.7883145 0.147891265 fv Gamma Cox, Gamma FALSE #> 3233 203 0.7376850 0.139098696 fv Gamma Cox, Gamma FALSE #> 3249 204 0.7431473 0.145125912 fv Gamma Cox, Gamma FALSE #> 3265 205 0.5968534 0.116380154 fv Gamma Cox, Gamma FALSE #> 3281 206 0.7364319 0.139955581 fv Gamma Cox, Gamma FALSE #> 3297 207 0.5674448 0.110932711 fv Gamma Cox, Gamma FALSE #> 3313 208 0.7440635 0.141631276 fv Gamma Cox, Gamma FALSE #> 3329 209 0.6788077 0.130198366 fv Gamma Cox, Gamma FALSE #> 3345 210 0.6888451 0.132771993 fv Gamma Cox, Gamma FALSE #> 3361 211 0.9803778 0.184836601 fv Gamma Cox, Gamma FALSE #> 3377 212 0.7256449 0.141318320 fv Gamma Cox, Gamma FALSE #> 3393 213 0.8183619 0.154776877 fv Gamma Cox, Gamma FALSE #> 3409 214 0.6497936 0.125621597 fv Gamma Cox, Gamma FALSE #> 3425 215 0.8793079 0.164432320 fv Gamma Cox, Gamma FALSE #> 3441 216 0.9162205 0.170569691 fv Gamma Cox, Gamma FALSE #> 3457 217 0.6777625 0.131187108 fv Gamma Cox, Gamma FALSE #> 3473 218 0.6131194 0.119393013 fv Gamma Cox, Gamma FALSE #> 3489 219 0.8569040 0.162515848 fv Gamma Cox, Gamma FALSE #> 3505 220 0.5628894 0.109933688 fv Gamma Cox, Gamma FALSE #> 3521 221 0.7097276 0.136447984 fv Gamma Cox, Gamma FALSE #> 3537 222 0.7727905 0.147170732 fv Gamma Cox, Gamma FALSE #> 3553 223 0.7964844 0.154284092 fv Gamma Cox, Gamma FALSE #> 3569 224 0.7614475 0.144615174 fv Gamma Cox, Gamma FALSE #> 3585 225 0.6722549 0.129075014 fv Gamma Cox, Gamma FALSE #> 3601 226 0.8333519 0.160111938 fv Gamma Cox, Gamma FALSE #> 3617 227 0.6560251 0.126793123 fv Gamma Cox, Gamma FALSE #> 3633 228 0.8900574 0.165684363 fv Gamma Cox, Gamma FALSE #> 3649 229 0.7783440 0.147316655 fv Gamma Cox, Gamma FALSE #> 3665 230 0.7010892 0.133597427 fv Gamma Cox, Gamma FALSE #> 3681 231 0.7965352 0.151151697 fv Gamma Cox, Gamma FALSE #> 3697 232 0.7331452 0.142033787 fv Gamma Cox, Gamma FALSE #> 3713 233 0.8746416 0.164268652 fv Gamma Cox, Gamma FALSE #> 3729 234 0.6285312 0.121126267 fv Gamma Cox, Gamma FALSE #> 3745 235 0.7432271 0.143094417 fv Gamma Cox, Gamma FALSE #> 3761 236 0.4979838 0.099104026 fv Gamma Cox, Gamma FALSE #> 3777 237 0.6728080 0.130707771 fv Gamma Cox, Gamma FALSE #> 3793 238 0.5840668 0.114928913 fv Gamma Cox, Gamma FALSE #> 3809 239 0.7097176 0.134414945 fv Gamma Cox, Gamma FALSE #> 3825 240 0.8599517 0.164169343 fv Gamma Cox, Gamma FALSE #> 3841 241 0.6564593 0.126134874 fv Gamma Cox, Gamma FALSE #> 3857 242 0.5141763 0.101693306 fv Gamma Cox, Gamma FALSE #> 3873 243 0.8631191 0.166522993 fv Gamma Cox, Gamma FALSE #> 3889 244 0.5648038 0.110152544 fv Gamma Cox, Gamma FALSE #> 3905 245 0.9067207 0.169979694 fv Gamma Cox, Gamma FALSE #> 3921 246 0.6699933 0.127877304 fv Gamma Cox, Gamma FALSE #> 3937 247 0.7658413 0.145211179 fv Gamma Cox, Gamma FALSE #> 3953 248 0.9431198 0.174221858 fv Gamma Cox, Gamma FALSE #> 3969 249 0.9559739 0.179913652 fv Gamma Cox, Gamma FALSE #> 3985 250 0.7309363 0.139895733 fv Gamma Cox, Gamma FALSE #> 4001 251 0.7953055 0.152686790 fv Gamma Cox, Gamma FALSE #> 4017 252 0.8009815 0.153887446 fv Gamma Cox, Gamma FALSE #> 4033 253 0.9063613 0.176153220 fv Gamma Cox, Gamma FALSE #> 4049 254 0.5192107 0.101929593 fv Gamma Cox, Gamma FALSE #> 4065 255 0.7741374 0.145083036 fv Gamma Cox, Gamma FALSE #> 4081 256 0.7237488 0.138470282 fv Gamma Cox, Gamma FALSE #> 4097 257 0.5354834 0.104354126 fv Gamma Cox, Gamma FALSE #> 4113 258 0.7012728 0.138891396 fv Gamma Cox, Gamma FALSE #> 4129 259 0.7423993 0.141143911 fv Gamma Cox, Gamma FALSE #> 4145 260 0.8676835 0.162799994 fv Gamma Cox, Gamma FALSE #> 4161 261 0.4985565 0.098347563 fv Gamma Cox, Gamma FALSE #> 4177 262 0.7309571 0.140660952 fv Gamma Cox, Gamma FALSE #> 4193 263 0.6045868 0.117674653 fv Gamma Cox, Gamma FALSE #> 4209 264 0.5101925 0.100166533 fv Gamma Cox, Gamma FALSE #> 4225 265 0.5926958 0.114423413 fv Gamma Cox, Gamma FALSE #> 4241 266 0.6141473 0.118472417 fv Gamma Cox, Gamma FALSE #> 4257 267 0.7089350 0.135707003 fv Gamma Cox, Gamma FALSE #> 4273 268 0.7461537 0.141208361 fv Gamma Cox, Gamma FALSE #> 4289 269 1.0603612 0.198754812 fv Gamma Cox, Gamma FALSE #> 4305 270 0.9058827 0.173864681 fv Gamma Cox, Gamma FALSE #> 4321 271 0.8913131 0.167006421 fv Gamma Cox, Gamma FALSE #> 4337 272 0.5385219 0.106340887 fv Gamma Cox, Gamma FALSE #> 4353 273 0.6611358 0.127691135 fv Gamma Cox, Gamma FALSE #> 4369 274 0.7211689 0.136721186 fv Gamma Cox, Gamma FALSE #> 4385 275 0.8557535 0.159471673 fv Gamma Cox, Gamma FALSE #> 4401 276 0.8100907 0.155893661 fv Gamma Cox, Gamma FALSE #> 4417 277 0.6766183 0.128987177 fv Gamma Cox, Gamma FALSE #> 4433 278 0.7339860 0.138921953 fv Gamma Cox, Gamma FALSE #> 4449 279 0.7292968 0.138338078 fv Gamma Cox, Gamma FALSE #> 4465 280 0.7607655 0.143846232 fv Gamma Cox, Gamma FALSE #> 4481 281 1.0222759 0.191682241 fv Gamma Cox, Gamma FALSE #> 4497 282 0.6012837 0.116686105 fv Gamma Cox, Gamma FALSE #> 4513 283 0.8065287 0.008370025 fv Gamma Cox, Gamma TRUE #> 4529 284 0.6538202 0.125329340 fv Gamma Cox, Gamma FALSE #> 4545 285 0.5004678 0.098826427 fv Gamma Cox, Gamma FALSE #> 4561 286 0.7617749 0.144340603 fv Gamma Cox, Gamma FALSE #> 4577 287 0.6411900 0.124111128 fv Gamma Cox, Gamma FALSE #> 4593 288 1.2156838 0.222204393 fv Gamma Cox, Gamma TRUE #> 4609 289 0.6293359 0.121873921 fv Gamma Cox, Gamma FALSE #> 4625 290 0.5973796 0.115942379 fv Gamma Cox, Gamma FALSE #> 4641 291 0.6142454 NA fv Gamma Cox, Gamma NA #> 4657 292 0.6275111 0.121149223 fv Gamma Cox, Gamma FALSE #> 4673 293 0.8857171 0.166063448 fv Gamma Cox, Gamma FALSE #> 4689 294 0.6322969 0.122255267 fv Gamma Cox, Gamma FALSE #> 4705 295 1.0640640 0.195201183 fv Gamma Cox, Gamma FALSE #> 4721 296 0.7341485 0.140160744 fv Gamma Cox, Gamma FALSE #> 4737 297 1.1991235 0.216487970 fv Gamma Cox, Gamma TRUE #> 4753 298 0.5712964 0.111273754 fv Gamma Cox, Gamma FALSE #> 4769 299 0.5672383 0.111172863 fv Gamma Cox, Gamma FALSE #> 4785 300 0.8495776 0.158426390 fv Gamma Cox, Gamma FALSE #> 4801 301 0.5310383 0.104267983 fv Gamma Cox, Gamma FALSE #> 4817 302 0.7523369 0.141562397 fv Gamma Cox, Gamma FALSE #> 4833 303 0.6689623 0.129247470 fv Gamma Cox, Gamma FALSE #> 4849 304 0.7352516 0.140697289 fv Gamma Cox, Gamma FALSE #> 4865 305 0.8685145 0.162232921 fv Gamma Cox, Gamma FALSE #> 4881 306 0.7403740 0.140931785 fv Gamma Cox, Gamma FALSE #> 4897 307 0.7625273 0.146362956 fv Gamma Cox, Gamma FALSE #> 4913 308 0.6529047 0.125331572 fv Gamma Cox, Gamma FALSE #> 4929 309 0.7335789 0.138755400 fv Gamma Cox, Gamma FALSE #> 4945 310 1.0352441 0.191706968 fv Gamma Cox, Gamma FALSE #> 4961 311 0.8210888 0.154167236 fv Gamma Cox, Gamma FALSE #> 4977 312 1.1316319 0.214506331 fv Gamma Cox, Gamma TRUE #> 4993 313 0.7858570 0.148363040 fv Gamma Cox, Gamma FALSE #> 5009 314 0.6270082 0.121419429 fv Gamma Cox, Gamma FALSE #> 5025 315 0.7580926 0.143019862 fv Gamma Cox, Gamma FALSE #> 5041 316 1.0442184 0.191879128 fv Gamma Cox, Gamma FALSE #> 5057 317 0.6437053 0.124174313 fv Gamma Cox, Gamma FALSE #> 5073 318 0.8451586 0.162886989 fv Gamma Cox, Gamma FALSE #> 5089 319 0.6154748 0.119202669 fv Gamma Cox, Gamma FALSE #> 5105 320 0.6052390 0.117161496 fv Gamma Cox, Gamma FALSE #> 5121 321 0.8562321 0.161151124 fv Gamma Cox, Gamma FALSE #> 5137 322 0.5475235 0.107601448 fv Gamma Cox, Gamma FALSE #> 5153 323 0.8516726 0.159610025 fv Gamma Cox, Gamma FALSE #> 5169 324 0.6284455 0.122771029 fv Gamma Cox, Gamma FALSE #> 5185 325 0.7340504 0.139368912 fv Gamma Cox, Gamma FALSE #> 5201 326 0.7039394 0.134465568 fv Gamma Cox, Gamma FALSE #> 5217 327 0.7570131 0.143284492 fv Gamma Cox, Gamma FALSE #> 5233 328 1.0241436 0.191230022 fv Gamma Cox, Gamma FALSE #> 5249 329 0.8762071 0.165668652 fv Gamma Cox, Gamma FALSE #> 5265 330 0.6943285 0.133117878 fv Gamma Cox, Gamma FALSE #> 5281 331 0.8439616 0.157763791 fv Gamma Cox, Gamma FALSE #> 5297 332 0.5597510 0.110415552 fv Gamma Cox, Gamma FALSE #> 5313 333 0.5408626 0.105579808 fv Gamma Cox, Gamma FALSE #> 5329 334 0.9467958 0.173919137 fv Gamma Cox, Gamma FALSE #> 5345 335 0.7653749 0.145590511 fv Gamma Cox, Gamma FALSE #> 5361 336 0.4797265 0.096031622 fv Gamma Cox, Gamma FALSE #> 5377 337 0.6413684 0.124650010 fv Gamma Cox, Gamma FALSE #> 5393 338 0.6035586 NA fv Gamma Cox, Gamma NA #> 5409 339 0.8262291 0.156546194 fv Gamma Cox, Gamma FALSE #> 5425 340 0.7801398 0.152957082 fv Gamma Cox, Gamma FALSE #> 5441 341 0.5609456 0.109188392 fv Gamma Cox, Gamma FALSE #> 5457 342 0.4505560 0.089857208 fv Gamma Cox, Gamma FALSE #> 5473 343 0.6379761 0.123470515 fv Gamma Cox, Gamma FALSE #> 5489 344 0.9821211 0.184488378 fv Gamma Cox, Gamma FALSE #> 5505 345 0.8685154 0.163017679 fv Gamma Cox, Gamma FALSE #> 5521 346 0.7913166 0.148203721 fv Gamma Cox, Gamma FALSE #> 5537 347 0.7336193 0.139101579 fv Gamma Cox, Gamma FALSE #> 5553 348 0.9254888 0.171694360 fv Gamma Cox, Gamma FALSE #> 5569 349 0.8488816 0.159294203 fv Gamma Cox, Gamma FALSE #> 5585 350 0.8160615 0.152965564 fv Gamma Cox, Gamma FALSE #> 5601 351 0.8759466 0.167886380 fv Gamma Cox, Gamma FALSE #> 5617 352 0.7981894 0.153964217 fv Gamma Cox, Gamma FALSE #> 5633 353 0.5791672 0.113057885 fv Gamma Cox, Gamma FALSE #> 5649 354 0.7416095 0.141018326 fv Gamma Cox, Gamma FALSE #> 5665 355 0.8010796 0.149943272 fv Gamma Cox, Gamma FALSE #> 5681 356 0.8282803 0.158193917 fv Gamma Cox, Gamma FALSE #> 5697 357 0.6938562 0.132663709 fv Gamma Cox, Gamma FALSE #> 5713 358 0.6402635 0.122101470 fv Gamma Cox, Gamma FALSE #> 5729 359 0.6742980 0.132978427 fv Gamma Cox, Gamma FALSE #> 5745 360 0.6040056 0.117051665 fv Gamma Cox, Gamma FALSE #> 5761 361 0.9421937 0.178772166 fv Gamma Cox, Gamma FALSE #> 5777 362 0.4601477 0.091085384 fv Gamma Cox, Gamma FALSE #> 5793 363 0.7026636 0.135100787 fv Gamma Cox, Gamma FALSE #> 5809 364 0.5302217 0.104442908 fv Gamma Cox, Gamma FALSE #> 5825 365 0.7690703 0.150669849 fv Gamma Cox, Gamma FALSE #> 5841 366 0.8267876 0.157050939 fv Gamma Cox, Gamma FALSE #> 5857 367 0.8874453 0.165351401 fv Gamma Cox, Gamma FALSE #> 5873 368 0.8804541 0.171672792 fv Gamma Cox, Gamma FALSE #> 5889 369 0.5558909 0.108356937 fv Gamma Cox, Gamma FALSE #> 5905 370 0.5224601 0.102908943 fv Gamma Cox, Gamma FALSE #> 5921 371 0.8876388 0.168386174 fv Gamma Cox, Gamma FALSE #> 5937 372 0.6286268 0.125304837 fv Gamma Cox, Gamma FALSE #> 5953 373 0.6690070 0.127890066 fv Gamma Cox, Gamma FALSE #> 5969 374 0.6330213 0.122146795 fv Gamma Cox, Gamma FALSE #> 5985 375 0.6227287 0.120453980 fv Gamma Cox, Gamma FALSE #> 6001 376 0.6703751 0.129140001 fv Gamma Cox, Gamma FALSE #> 6017 377 0.8079140 0.155596402 fv Gamma Cox, Gamma FALSE #> 6033 378 0.7798553 0.146544187 fv Gamma Cox, Gamma FALSE #> 6049 379 0.6475737 0.124463927 fv Gamma Cox, Gamma FALSE #> 6065 380 0.7688097 0.145489816 fv Gamma Cox, Gamma FALSE #> 6081 381 0.6649357 0.128253722 fv Gamma Cox, Gamma FALSE #> 6097 382 0.6807352 0.130459416 fv Gamma Cox, Gamma FALSE #> 6113 383 1.0192008 0.186327756 fv Gamma Cox, Gamma FALSE #> 6129 384 0.8434297 0.158539964 fv Gamma Cox, Gamma FALSE #> 6145 385 0.5428752 0.106117665 fv Gamma Cox, Gamma FALSE #> 6161 386 0.3967401 0.081332469 fv Gamma Cox, Gamma FALSE #> 6177 387 0.5406499 0.105272643 fv Gamma Cox, Gamma FALSE #> 6193 388 0.6602657 0.126552615 fv Gamma Cox, Gamma FALSE #> 6209 389 0.5332555 0.104791180 fv Gamma Cox, Gamma FALSE #> 6225 390 0.6045228 0.117241227 fv Gamma Cox, Gamma FALSE #> 6241 391 0.4999031 NA fv Gamma Cox, Gamma NA #> 6257 392 0.9248187 0.171305899 fv Gamma Cox, Gamma FALSE #> 6273 393 0.5798027 0.113219618 fv Gamma Cox, Gamma FALSE #> 6289 394 0.8907170 0.167374282 fv Gamma Cox, Gamma FALSE #> 6305 395 0.7016240 0.135025361 fv Gamma Cox, Gamma FALSE #> 6321 396 0.7121455 0.139294610 fv Gamma Cox, Gamma FALSE #> 6337 397 0.8229104 0.153784172 fv Gamma Cox, Gamma FALSE #> 6353 398 0.7712521 0.146309386 fv Gamma Cox, Gamma FALSE #> 6369 399 0.6190504 0.119937746 fv Gamma Cox, Gamma FALSE #> 6385 400 0.6672967 0.128315064 fv Gamma Cox, Gamma FALSE #> 6401 401 0.8584411 0.163304952 fv Gamma Cox, Gamma FALSE #> 6417 402 0.7225680 0.141193789 fv Gamma Cox, Gamma FALSE #> 6433 403 0.6821864 0.130069717 fv Gamma Cox, Gamma FALSE #> 6449 404 0.8921011 0.169978122 fv Gamma Cox, Gamma FALSE #> 6465 405 0.6364897 0.121986924 fv Gamma Cox, Gamma FALSE #> 6481 406 0.6312721 0.122132709 fv Gamma Cox, Gamma FALSE #> 6497 407 0.7537675 0.143468500 fv Gamma Cox, Gamma FALSE #> 6513 408 0.4830750 0.100264446 fv Gamma Cox, Gamma FALSE #> 6529 409 0.9120263 0.168875217 fv Gamma Cox, Gamma FALSE #> 6545 410 0.9317740 0.176472419 fv Gamma Cox, Gamma FALSE #> 6561 411 0.7853073 0.155061040 fv Gamma Cox, Gamma FALSE #> 6577 412 0.6760708 0.129238258 fv Gamma Cox, Gamma FALSE #> 6593 413 0.7106746 NA fv Gamma Cox, Gamma NA #> 6609 414 0.7126918 0.136010675 fv Gamma Cox, Gamma FALSE #> 6625 415 0.8278815 0.154436751 fv Gamma Cox, Gamma FALSE #> 6641 416 0.6144755 0.118999790 fv Gamma Cox, Gamma FALSE #> 6657 417 0.7064656 0.134614387 fv Gamma Cox, Gamma FALSE #> 6673 418 0.7280710 0.138588048 fv Gamma Cox, Gamma FALSE #> 6689 419 0.5977421 0.117049099 fv Gamma Cox, Gamma FALSE #> 6705 420 0.7984141 0.153630576 fv Gamma Cox, Gamma FALSE #> 6721 421 0.7789264 0.146973632 fv Gamma Cox, Gamma FALSE #> 6737 422 0.7189249 0.136830403 fv Gamma Cox, Gamma FALSE #> 6753 423 0.7767172 0.146505554 fv Gamma Cox, Gamma FALSE #> 6769 424 0.6711159 0.129971477 fv Gamma Cox, Gamma FALSE #> 6785 425 0.5421033 0.106506310 fv Gamma Cox, Gamma FALSE #> 6801 426 0.9738877 0.180388841 fv Gamma Cox, Gamma FALSE #> 6817 427 0.4334204 0.087612339 fv Gamma Cox, Gamma FALSE #> 6833 428 0.9192375 0.174367363 fv Gamma Cox, Gamma FALSE #> 6849 429 0.6307533 0.121860719 fv Gamma Cox, Gamma FALSE #> 6865 430 0.5862901 0.113931845 fv Gamma Cox, Gamma FALSE #> 6881 431 0.8326353 0.156104642 fv Gamma Cox, Gamma FALSE #> 6897 432 0.5651382 0.111271681 fv Gamma Cox, Gamma FALSE #> 6913 433 0.7605602 0.146061740 fv Gamma Cox, Gamma FALSE #> 6929 434 0.9151370 0.168917938 fv Gamma Cox, Gamma FALSE #> 6945 435 0.6420012 0.123004617 fv Gamma Cox, Gamma FALSE #> 6961 436 0.8857909 0.167510125 fv Gamma Cox, Gamma FALSE #> 6977 437 0.6462434 0.124127766 fv Gamma Cox, Gamma FALSE #> 6993 438 0.4972460 0.098754303 fv Gamma Cox, Gamma FALSE #> 7009 439 0.6779588 0.130863527 fv Gamma Cox, Gamma FALSE #> 7025 440 0.6825645 0.130306052 fv Gamma Cox, Gamma FALSE #> 7041 441 0.4502677 0.089999523 fv Gamma Cox, Gamma FALSE #> 7057 442 0.8187358 0.153159795 fv Gamma Cox, Gamma FALSE #> 7073 443 0.4864113 0.097415951 fv Gamma Cox, Gamma FALSE #> 7089 444 0.6307093 NA fv Gamma Cox, Gamma NA #> 7105 445 0.8960691 0.172700705 fv Gamma Cox, Gamma FALSE #> 7121 446 0.7375956 0.139800669 fv Gamma Cox, Gamma FALSE #> 7137 447 0.7060355 0.134536437 fv Gamma Cox, Gamma FALSE #> 7153 448 0.7606137 0.144593023 fv Gamma Cox, Gamma FALSE #> 7169 449 0.8188267 0.152908387 fv Gamma Cox, Gamma FALSE #> 7185 450 0.6649946 0.127035238 fv Gamma Cox, Gamma FALSE #> 7201 451 0.7889763 0.148648185 fv Gamma Cox, Gamma FALSE #> 7217 452 0.5385995 0.106107012 fv Gamma Cox, Gamma FALSE #> 7233 453 0.7976309 0.149294907 fv Gamma Cox, Gamma FALSE #> 7249 454 0.6812803 0.133807496 fv Gamma Cox, Gamma FALSE #> 7265 455 0.7853285 0.148442373 fv Gamma Cox, Gamma FALSE #> 7281 456 0.8013663 0.150752027 fv Gamma Cox, Gamma FALSE #> 7297 457 0.7567226 0.143306581 fv Gamma Cox, Gamma FALSE #> 7313 458 0.8390265 0.158325038 fv Gamma Cox, Gamma FALSE #> 7329 459 0.6846816 0.131871936 fv Gamma Cox, Gamma FALSE #> 7345 460 0.5993262 NA fv Gamma Cox, Gamma NA #> 7361 461 0.7089733 0.135818026 fv Gamma Cox, Gamma FALSE #> 7377 462 0.9322032 0.176108434 fv Gamma Cox, Gamma FALSE #> 7393 463 0.5899818 0.113578435 fv Gamma Cox, Gamma FALSE #> 7409 464 0.5457337 0.107935854 fv Gamma Cox, Gamma FALSE #> 7425 465 0.6924278 0.131950434 fv Gamma Cox, Gamma FALSE #> 7441 466 0.8586186 0.164067739 fv Gamma Cox, Gamma FALSE #> 7457 467 0.8607295 0.162516222 fv Gamma Cox, Gamma FALSE #> 7473 468 0.5840632 0.113431719 fv Gamma Cox, Gamma FALSE #> 7489 469 0.7721755 0.148974573 fv Gamma Cox, Gamma FALSE #> 7505 470 0.7864966 0.147551158 fv Gamma Cox, Gamma FALSE #> 7521 471 0.6014325 0.116605603 fv Gamma Cox, Gamma FALSE #> 7537 472 0.7782183 0.146490838 fv Gamma Cox, Gamma FALSE #> 7553 473 0.6782043 0.129840010 fv Gamma Cox, Gamma FALSE #> 7569 474 0.6246471 0.122746003 fv Gamma Cox, Gamma FALSE #> 7585 475 1.1066875 0.208302683 fv Gamma Cox, Gamma TRUE #> 7601 476 0.5556522 0.108984002 fv Gamma Cox, Gamma FALSE #> 7617 477 0.8566296 0.159877492 fv Gamma Cox, Gamma FALSE #> 7633 478 0.6815679 0.131090134 fv Gamma Cox, Gamma FALSE #> 7649 479 0.8652759 0.161735280 fv Gamma Cox, Gamma FALSE #> 7665 480 0.7542582 0.144197098 fv Gamma Cox, Gamma FALSE #> 7681 481 0.6792317 0.131026222 fv Gamma Cox, Gamma FALSE #> 7697 482 0.6255814 0.124083667 fv Gamma Cox, Gamma FALSE #> 7713 483 0.6524135 0.127114059 fv Gamma Cox, Gamma FALSE #> 7729 484 0.7084909 0.134146311 fv Gamma Cox, Gamma FALSE #> 7745 485 0.7116749 0.135010465 fv Gamma Cox, Gamma FALSE #> 7761 486 0.5675852 0.111128327 fv Gamma Cox, Gamma FALSE #> 7777 487 0.8227084 0.154214426 fv Gamma Cox, Gamma FALSE #> 7793 488 0.6805839 0.132475141 fv Gamma Cox, Gamma FALSE #> 7809 489 0.8828861 0.168922643 fv Gamma Cox, Gamma FALSE #> 7825 490 1.0616372 0.193890898 fv Gamma Cox, Gamma FALSE #> 7841 491 0.6822397 0.130612568 fv Gamma Cox, Gamma FALSE #> 7857 492 0.8222004 0.155512481 fv Gamma Cox, Gamma FALSE #> 7873 493 0.7750104 0.151083906 fv Gamma Cox, Gamma FALSE #> 7889 494 0.7222312 0.137802429 fv Gamma Cox, Gamma FALSE #> 7905 495 0.7690374 0.146304536 fv Gamma Cox, Gamma FALSE #> 7921 496 0.5161178 0.102242565 fv Gamma Cox, Gamma FALSE #> 7937 497 0.6616442 0.126467428 fv Gamma Cox, Gamma FALSE #> 7953 498 0.6310750 0.122098317 fv Gamma Cox, Gamma FALSE #> 7969 499 0.9368503 0.175074305 fv Gamma Cox, Gamma FALSE #> 7985 500 0.8980660 0.169636790 fv Gamma Cox, Gamma FALSE #> 8001 501 0.6945294 0.132580566 fv Gamma Cox, Gamma FALSE #> 8017 502 0.7586970 0.143861263 fv Gamma Cox, Gamma FALSE #> 8033 503 0.6796761 0.130505602 fv Gamma Cox, Gamma FALSE #> 8049 504 0.8750771 0.162492220 fv Gamma Cox, Gamma FALSE #> 8065 505 0.9242294 0.173034278 fv Gamma Cox, Gamma FALSE #> 8081 506 0.6642908 0.127078492 fv Gamma Cox, Gamma FALSE #> 8097 507 0.6220734 0.120661088 fv Gamma Cox, Gamma FALSE #> 8113 508 0.6638922 0.127459533 fv Gamma Cox, Gamma FALSE #> 8129 509 0.7011241 0.133602323 fv Gamma Cox, Gamma FALSE #> 8145 510 0.9146957 0.169745733 fv Gamma Cox, Gamma FALSE #> 8161 511 0.7417783 0.141579855 fv Gamma Cox, Gamma FALSE #> 8177 512 0.8087679 0.152328374 fv Gamma Cox, Gamma FALSE #> 8193 513 0.5954906 0.116001360 fv Gamma Cox, Gamma FALSE #> 8209 514 0.6569979 0.126927260 fv Gamma Cox, Gamma FALSE #> 8225 515 0.6212970 0.120107176 fv Gamma Cox, Gamma FALSE #> 8241 516 0.7542450 0.144369845 fv Gamma Cox, Gamma FALSE #> 8257 517 0.7857159 0.148313320 fv Gamma Cox, Gamma FALSE #> 8273 518 0.8537068 0.158622013 fv Gamma Cox, Gamma FALSE #> 8289 519 0.7034337 0.134310592 fv Gamma Cox, Gamma FALSE #> 8305 520 0.6197376 0.119943182 fv Gamma Cox, Gamma FALSE #> 8321 521 0.5610014 0.109140591 fv Gamma Cox, Gamma FALSE #> 8337 522 0.5438508 0.106296184 fv Gamma Cox, Gamma FALSE #> 8353 523 0.6698531 0.129490382 fv Gamma Cox, Gamma FALSE #> 8369 524 0.6020242 0.117226384 fv Gamma Cox, Gamma FALSE #> 8385 525 1.0516324 0.192496879 fv Gamma Cox, Gamma FALSE #> 8401 526 0.7609652 0.144096404 fv Gamma Cox, Gamma FALSE #> 8417 527 0.6881981 0.133087351 fv Gamma Cox, Gamma FALSE #> 8433 528 0.6054273 0.117775780 fv Gamma Cox, Gamma FALSE #> 8449 529 0.8516933 0.159701160 fv Gamma Cox, Gamma FALSE #> 8465 530 0.8926019 0.166575907 fv Gamma Cox, Gamma FALSE #> 8481 531 0.7916298 0.148159862 fv Gamma Cox, Gamma FALSE #> 8497 532 0.7897519 0.149192705 fv Gamma Cox, Gamma FALSE #> 8513 533 0.7284274 0.138699326 fv Gamma Cox, Gamma FALSE #> 8529 534 0.7790291 0.146354155 fv Gamma Cox, Gamma FALSE #> 8545 535 0.9538809 0.176303899 fv Gamma Cox, Gamma FALSE #> 8561 536 0.8270741 0.154370683 fv Gamma Cox, Gamma FALSE #> 8577 537 0.7138513 0.139534596 fv Gamma Cox, Gamma FALSE #> 8593 538 0.6246478 NA fv Gamma Cox, Gamma NA #> 8609 539 0.8627532 0.161183355 fv Gamma Cox, Gamma FALSE #> 8625 540 0.7660902 0.149389899 fv Gamma Cox, Gamma FALSE #> 8641 541 0.6295377 0.122597777 fv Gamma Cox, Gamma FALSE #> 8657 542 0.8369873 0.157179557 fv Gamma Cox, Gamma FALSE #> 8673 543 0.9027111 0.167848994 fv Gamma Cox, Gamma FALSE #> 8689 544 0.8231412 0.154281762 fv Gamma Cox, Gamma FALSE #> 8705 545 0.6971651 0.133999902 fv Gamma Cox, Gamma FALSE #> 8721 546 0.6917187 0.132692058 fv Gamma Cox, Gamma FALSE #> 8737 547 0.6612332 0.126891190 fv Gamma Cox, Gamma FALSE #> 8753 548 0.6319194 0.006583581 fv Gamma Cox, Gamma TRUE #> 8769 549 0.8020343 0.153784386 fv Gamma Cox, Gamma FALSE #> 8785 550 0.8857710 0.173416696 fv Gamma Cox, Gamma FALSE #> 8801 551 0.7206925 0.137282217 fv Gamma Cox, Gamma FALSE #> 8817 552 0.5655243 0.111609299 fv Gamma Cox, Gamma FALSE #> 8833 553 0.5894449 0.115099271 fv Gamma Cox, Gamma FALSE #> 8849 554 0.6799194 0.131022822 fv Gamma Cox, Gamma FALSE #> 8865 555 0.5942723 0.116121667 fv Gamma Cox, Gamma FALSE #> 8881 556 0.5409466 0.106333958 fv Gamma Cox, Gamma FALSE #> 8897 557 1.1276785 0.208600321 fv Gamma Cox, Gamma TRUE #> 8913 558 0.8056241 0.152243016 fv Gamma Cox, Gamma FALSE #> 8929 559 0.6165829 0.122550777 fv Gamma Cox, Gamma FALSE #> 8945 560 0.7506013 0.143366986 fv Gamma Cox, Gamma FALSE #> 8961 561 0.7560469 0.142619604 fv Gamma Cox, Gamma FALSE #> 8977 562 0.4475603 0.089294336 fv Gamma Cox, Gamma FALSE #> 8993 563 0.7697251 0.146259739 fv Gamma Cox, Gamma FALSE #> 9009 564 0.7596255 0.143001550 fv Gamma Cox, Gamma FALSE #> 9025 565 0.8209886 0.158901699 fv Gamma Cox, Gamma FALSE #> 9041 566 0.8540708 0.160172577 fv Gamma Cox, Gamma FALSE #> 9057 567 0.7239583 0.138160326 fv Gamma Cox, Gamma FALSE #> 9073 568 0.7918967 0.152246336 fv Gamma Cox, Gamma FALSE #> 9089 569 0.6846417 0.132938759 fv Gamma Cox, Gamma FALSE #> 9105 570 0.7180058 0.136793903 fv Gamma Cox, Gamma FALSE #> 9121 571 0.7534625 0.142541419 fv Gamma Cox, Gamma FALSE #> 9137 572 0.8277711 0.154274630 fv Gamma Cox, Gamma FALSE #> 9153 573 0.5338253 0.105713447 fv Gamma Cox, Gamma FALSE #> 9169 574 0.8516856 0.162398703 fv Gamma Cox, Gamma FALSE #> 9185 575 0.7042959 0.134581473 fv Gamma Cox, Gamma FALSE #> 9201 576 0.7417747 0.142360056 fv Gamma Cox, Gamma FALSE #> 9217 577 0.6314368 0.122446267 fv Gamma Cox, Gamma FALSE #> 9233 578 0.6519440 0.125000623 fv Gamma Cox, Gamma FALSE #> 9249 579 0.6465344 NA fv Gamma Cox, Gamma NA #> 9265 580 0.6101363 0.117780410 fv Gamma Cox, Gamma FALSE #> 9281 581 0.8567743 0.159745166 fv Gamma Cox, Gamma FALSE #> 9297 582 0.4249017 0.084684463 fv Gamma Cox, Gamma FALSE #> 9313 583 0.7812605 0.147186401 fv Gamma Cox, Gamma FALSE #> 9329 584 0.6289872 NA fv Gamma Cox, Gamma NA #> 9345 585 1.1129083 0.202616476 fv Gamma Cox, Gamma TRUE #> 9361 586 1.0020180 0.183131340 fv Gamma Cox, Gamma FALSE #> 9377 587 0.7823646 0.147627151 fv Gamma Cox, Gamma FALSE #> 9393 588 0.7965984 0.151873142 fv Gamma Cox, Gamma FALSE #> 9409 589 0.5848703 0.113875946 fv Gamma Cox, Gamma FALSE #> 9425 590 0.6723444 0.129201859 fv Gamma Cox, Gamma FALSE #> 9441 591 0.7146685 0.136960728 fv Gamma Cox, Gamma FALSE #> 9457 592 0.8875873 0.165449957 fv Gamma Cox, Gamma FALSE #> 9473 593 0.6956131 0.136694985 fv Gamma Cox, Gamma FALSE #> 9489 594 0.7214667 0.138957335 fv Gamma Cox, Gamma FALSE #> 9505 595 0.7101161 0.135025353 fv Gamma Cox, Gamma FALSE #> 9521 596 0.8418777 0.157263827 fv Gamma Cox, Gamma FALSE #> 9537 597 0.9729782 0.183742916 fv Gamma Cox, Gamma FALSE #> 9553 598 0.7302043 0.138489839 fv Gamma Cox, Gamma FALSE #> 9569 599 1.0924857 0.198613543 fv Gamma Cox, Gamma FALSE #> 9585 600 0.9354165 0.172435311 fv Gamma Cox, Gamma FALSE #> 9601 601 0.6883910 0.131587270 fv Gamma Cox, Gamma FALSE #> 9617 602 0.8070003 0.154414727 fv Gamma Cox, Gamma FALSE #> 9633 603 0.6856989 0.130901389 fv Gamma Cox, Gamma FALSE #> 9649 604 0.8376770 0.164630472 fv Gamma Cox, Gamma FALSE #> 9665 605 0.8981670 0.170534144 fv Gamma Cox, Gamma FALSE #> 9681 606 0.7882221 0.148789284 fv Gamma Cox, Gamma FALSE #> 9697 607 0.6476463 0.125475048 fv Gamma Cox, Gamma FALSE #> 9713 608 0.8155224 0.153555972 fv Gamma Cox, Gamma FALSE #> 9729 609 0.8892325 0.166132966 fv Gamma Cox, Gamma FALSE #> 9745 610 0.7927409 0.149226966 fv Gamma Cox, Gamma FALSE #> 9761 611 0.6492237 0.125252832 fv Gamma Cox, Gamma FALSE #> 9777 612 0.8847558 0.164946654 fv Gamma Cox, Gamma FALSE #> 9793 613 0.7555553 0.143065459 fv Gamma Cox, Gamma FALSE #> 9809 614 0.6999420 0.133898539 fv Gamma Cox, Gamma FALSE #> 9825 615 0.6323970 0.121998668 fv Gamma Cox, Gamma FALSE #> 9841 616 0.9258004 0.171970867 fv Gamma Cox, Gamma FALSE #> 9857 617 0.9810413 0.184675944 fv Gamma Cox, Gamma FALSE #> 9873 618 0.5773346 0.112316606 fv Gamma Cox, Gamma FALSE #> 9889 619 0.6347891 0.122523189 fv Gamma Cox, Gamma FALSE #> 9905 620 0.6827832 0.131100442 fv Gamma Cox, Gamma FALSE #> 9921 621 0.7975355 0.150353049 fv Gamma Cox, Gamma FALSE #> 9937 622 1.1223277 0.204313520 fv Gamma Cox, Gamma TRUE #> 9953 623 0.5579222 0.108700678 fv Gamma Cox, Gamma FALSE #> 9969 624 0.7128043 0.135198610 fv Gamma Cox, Gamma FALSE #> 9985 625 0.6645098 0.127866473 fv Gamma Cox, Gamma FALSE #> 10001 626 0.5434477 0.107111683 fv Gamma Cox, Gamma FALSE #> 10017 627 0.6384977 0.127531672 fv Gamma Cox, Gamma FALSE #> 10033 628 0.7155575 0.135607273 fv Gamma Cox, Gamma FALSE #> 10049 629 0.5743986 0.113030438 fv Gamma Cox, Gamma FALSE #> 10065 630 0.9263040 0.171879492 fv Gamma Cox, Gamma FALSE #> 10081 631 0.8454909 0.163553297 fv Gamma Cox, Gamma FALSE #> 10097 632 0.5915189 0.115112532 fv Gamma Cox, Gamma FALSE #> 10113 633 0.5378909 0.105342707 fv Gamma Cox, Gamma FALSE #> 10129 634 0.5606903 0.109482541 fv Gamma Cox, Gamma FALSE #> 10145 635 0.4726450 0.094667526 fv Gamma Cox, Gamma FALSE #> 10161 636 0.6834728 0.132595448 fv Gamma Cox, Gamma FALSE #> 10177 637 0.7517155 0.142228970 fv Gamma Cox, Gamma FALSE #> 10193 638 0.6135361 0.122501483 fv Gamma Cox, Gamma FALSE #> 10209 639 0.7014499 0.133681174 fv Gamma Cox, Gamma FALSE #> 10225 640 0.6128640 NA fv Gamma Cox, Gamma NA #> 10241 641 0.6673911 0.127458375 fv Gamma Cox, Gamma FALSE #> 10257 642 0.6815744 0.131201354 fv Gamma Cox, Gamma FALSE #> 10273 643 0.6395380 0.123473684 fv Gamma Cox, Gamma FALSE #> 10289 644 0.9281496 0.178044104 fv Gamma Cox, Gamma FALSE #> 10305 645 0.5058058 0.099576567 fv Gamma Cox, Gamma FALSE #> 10321 646 0.5752018 0.112537616 fv Gamma Cox, Gamma FALSE #> 10337 647 1.0966623 0.201529503 fv Gamma Cox, Gamma FALSE #> 10353 648 0.7244534 0.137071261 fv Gamma Cox, Gamma FALSE #> 10369 649 0.8332207 0.156331374 fv Gamma Cox, Gamma FALSE #> 10385 650 0.9649527 0.179069982 fv Gamma Cox, Gamma FALSE #> 10401 651 0.9464873 0.175101726 fv Gamma Cox, Gamma FALSE #> 10417 652 0.7609635 0.144258476 fv Gamma Cox, Gamma FALSE #> 10433 653 0.9382049 0.177882581 fv Gamma Cox, Gamma FALSE #> 10449 654 0.6062464 0.117645954 fv Gamma Cox, Gamma FALSE #> 10465 655 0.6767305 0.129314528 fv Gamma Cox, Gamma FALSE #> 10481 656 0.7862486 0.148608077 fv Gamma Cox, Gamma FALSE #> 10497 657 0.7137173 0.136369085 fv Gamma Cox, Gamma FALSE #> 10513 658 0.8178731 0.154550758 fv Gamma Cox, Gamma FALSE #> 10529 659 0.8561291 0.161265853 fv Gamma Cox, Gamma FALSE #> 10545 660 0.7951042 0.153064842 fv Gamma Cox, Gamma FALSE #> 10561 661 0.5838602 0.113215726 fv Gamma Cox, Gamma FALSE #> 10577 662 0.4485783 0.089198580 fv Gamma Cox, Gamma FALSE #> 10593 663 0.6581613 NA fv Gamma Cox, Gamma NA #> 10609 664 0.7241489 0.137001157 fv Gamma Cox, Gamma FALSE #> 10625 665 0.6926612 0.133197792 fv Gamma Cox, Gamma FALSE #> 10641 666 0.6778013 0.132901048 fv Gamma Cox, Gamma FALSE #> 10657 667 0.8867749 0.168166698 fv Gamma Cox, Gamma FALSE #> 10673 668 0.8301043 0.158911230 fv Gamma Cox, Gamma FALSE #> 10689 669 0.5407391 0.106146295 fv Gamma Cox, Gamma FALSE #> 10705 670 0.8485756 0.162192318 fv Gamma Cox, Gamma FALSE #> 10721 671 0.8766589 0.163763076 fv Gamma Cox, Gamma FALSE #> 10737 672 0.6153715 NA fv Gamma Cox, Gamma NA #> 10753 673 0.6107089 0.117370604 fv Gamma Cox, Gamma FALSE #> 10769 674 0.9545713 0.180865051 fv Gamma Cox, Gamma FALSE #> 10785 675 0.6959295 0.132291736 fv Gamma Cox, Gamma FALSE #> 10801 676 0.5082065 0.102830300 fv Gamma Cox, Gamma FALSE #> 10817 677 0.6335714 0.121472662 fv Gamma Cox, Gamma FALSE #> 10833 678 0.8358190 0.157360400 fv Gamma Cox, Gamma FALSE #> 10849 679 0.9489850 0.175902516 fv Gamma Cox, Gamma FALSE #> 10865 680 0.6831995 0.135084593 fv Gamma Cox, Gamma FALSE #> 10881 681 0.5643254 0.110253548 fv Gamma Cox, Gamma FALSE #> 10897 682 0.7617965 0.143922368 fv Gamma Cox, Gamma FALSE #> 10913 683 0.8612983 0.164005648 fv Gamma Cox, Gamma FALSE #> 10929 684 0.9306887 0.172309343 fv Gamma Cox, Gamma FALSE #> 10945 685 0.6426137 0.123487366 fv Gamma Cox, Gamma FALSE #> 10961 686 0.5504300 0.108056938 fv Gamma Cox, Gamma FALSE #> 10977 687 1.0715471 0.195861853 fv Gamma Cox, Gamma FALSE #> 10993 688 0.7247087 0.137711351 fv Gamma Cox, Gamma FALSE #> 11009 689 0.7044312 0.134177121 fv Gamma Cox, Gamma FALSE #> 11025 690 0.9424856 0.173674021 fv Gamma Cox, Gamma FALSE #> 11041 691 0.7890166 0.149550201 fv Gamma Cox, Gamma FALSE #> 11057 692 0.7272266 0.137587457 fv Gamma Cox, Gamma FALSE #> 11073 693 0.8573916 0.162747887 fv Gamma Cox, Gamma FALSE #> 11089 694 0.8534868 0.161603640 fv Gamma Cox, Gamma FALSE #> 11105 695 0.7322424 0.142478400 fv Gamma Cox, Gamma FALSE #> 11121 696 0.7257254 0.140591529 fv Gamma Cox, Gamma FALSE #> 11137 697 0.7333151 0.139148123 fv Gamma Cox, Gamma FALSE #> 11153 698 0.7079694 0.135061149 fv Gamma Cox, Gamma FALSE #> 11169 699 0.7213398 0.136395589 fv Gamma Cox, Gamma FALSE #> 11185 700 1.1804472 0.212933204 fv Gamma Cox, Gamma TRUE #> 11201 701 0.6387989 0.122746463 fv Gamma Cox, Gamma FALSE #> 11217 702 0.7190115 0.141352091 fv Gamma Cox, Gamma FALSE #> 11233 703 0.5731256 0.112207992 fv Gamma Cox, Gamma FALSE #> 11249 704 0.9037123 0.167031332 fv Gamma Cox, Gamma FALSE #> 11265 705 0.9728518 0.179527679 fv Gamma Cox, Gamma FALSE #> 11281 706 0.7500375 0.141850521 fv Gamma Cox, Gamma FALSE #> 11297 707 0.5756002 0.113226216 fv Gamma Cox, Gamma FALSE #> 11313 708 0.8181883 0.157337000 fv Gamma Cox, Gamma FALSE #> 11329 709 0.7474298 0.141423613 fv Gamma Cox, Gamma FALSE #> 11345 710 0.7454622 0.140549261 fv Gamma Cox, Gamma FALSE #> 11361 711 0.3894059 0.079382350 fv Gamma Cox, Gamma FALSE #> 11377 712 0.7212272 0.137524828 fv Gamma Cox, Gamma FALSE #> 11393 713 0.7565196 0.142332022 fv Gamma Cox, Gamma FALSE #> 11409 714 0.8595678 0.164830902 fv Gamma Cox, Gamma FALSE #> 11425 715 0.9462299 0.175784475 fv Gamma Cox, Gamma FALSE #> 11441 716 0.8149458 0.154563840 fv Gamma Cox, Gamma FALSE #> 11457 717 0.6258843 0.125296314 fv Gamma Cox, Gamma FALSE #> 11473 718 0.7241018 0.138809353 fv Gamma Cox, Gamma FALSE #> 11489 719 0.6472919 0.124029879 fv Gamma Cox, Gamma FALSE #> 11505 720 0.6462965 0.124507001 fv Gamma Cox, Gamma FALSE #> 11521 721 0.8668431 0.163374189 fv Gamma Cox, Gamma FALSE #> 11537 722 0.8751804 0.163803285 fv Gamma Cox, Gamma FALSE #> 11553 723 0.7688477 0.148856537 fv Gamma Cox, Gamma FALSE #> 11569 724 0.6330552 0.122262688 fv Gamma Cox, Gamma FALSE #> 11585 725 0.6439821 0.123472393 fv Gamma Cox, Gamma FALSE #> 11601 726 0.6382621 0.124017757 fv Gamma Cox, Gamma FALSE #> 11617 727 0.8274516 0.157670945 fv Gamma Cox, Gamma FALSE #> 11633 728 0.5470298 0.110455707 fv Gamma Cox, Gamma FALSE #> 11649 729 0.7934510 0.149151202 fv Gamma Cox, Gamma FALSE #> 11665 730 0.9028028 0.172657452 fv Gamma Cox, Gamma FALSE #> 11681 731 0.9106973 0.169985677 fv Gamma Cox, Gamma FALSE #> 11697 732 0.8609186 0.159667483 fv Gamma Cox, Gamma FALSE #> 11713 733 0.5696342 0.111161534 fv Gamma Cox, Gamma FALSE #> 11729 734 0.5714461 0.111644351 fv Gamma Cox, Gamma FALSE #> 11745 735 0.7858057 0.147794812 fv Gamma Cox, Gamma FALSE #> 11761 736 0.8311006 0.159563715 fv Gamma Cox, Gamma FALSE #> 11777 737 0.7011583 0.133559009 fv Gamma Cox, Gamma FALSE #> 11793 738 0.6425217 0.129359897 fv Gamma Cox, Gamma FALSE #> 11809 739 0.6952162 0.132859258 fv Gamma Cox, Gamma FALSE #> 11825 740 0.6816161 0.130493619 fv Gamma Cox, Gamma FALSE #> 11841 741 0.7984124 0.151405815 fv Gamma Cox, Gamma FALSE #> 11857 742 0.6113573 0.118351933 fv Gamma Cox, Gamma FALSE #> 11873 743 0.7768640 0.146725181 fv Gamma Cox, Gamma FALSE #> 11889 744 1.0010037 0.187976904 fv Gamma Cox, Gamma FALSE #> 11905 745 0.6369326 0.124638617 fv Gamma Cox, Gamma FALSE #> 11921 746 0.4547392 0.090878742 fv Gamma Cox, Gamma FALSE #> 11937 747 0.6243564 NA fv Gamma Cox, Gamma NA #> 11953 748 0.8321617 0.155213104 fv Gamma Cox, Gamma FALSE #> 11969 749 0.6214388 0.120268760 fv Gamma Cox, Gamma FALSE #> 11985 750 0.5547780 0.108170284 fv Gamma Cox, Gamma FALSE #> 12001 751 0.9029269 0.167251872 fv Gamma Cox, Gamma FALSE #> 12017 752 0.8158367 0.153701903 fv Gamma Cox, Gamma FALSE #> 12033 753 0.6268532 0.122830159 fv Gamma Cox, Gamma FALSE #> 12049 754 0.7604952 0.143957643 fv Gamma Cox, Gamma FALSE #> 12065 755 0.7755205 0.146754514 fv Gamma Cox, Gamma FALSE #> 12081 756 1.1338308 0.205371520 fv Gamma Cox, Gamma TRUE #> 12097 757 0.6141619 0.119190168 fv Gamma Cox, Gamma FALSE #> 12113 758 0.5421448 0.106441629 fv Gamma Cox, Gamma FALSE #> 12129 759 0.6135692 0.118641503 fv Gamma Cox, Gamma FALSE #> 12145 760 0.6039901 NA fv Gamma Cox, Gamma NA #> 12161 761 0.7675576 0.146194900 fv Gamma Cox, Gamma FALSE #> 12177 762 0.6497935 0.124892235 fv Gamma Cox, Gamma FALSE #> 12193 763 0.6141013 0.119005700 fv Gamma Cox, Gamma FALSE #> 12209 764 0.7138323 0.136853512 fv Gamma Cox, Gamma FALSE #> 12225 765 0.6968334 0.134411196 fv Gamma Cox, Gamma FALSE #> 12241 766 0.5653622 0.110834209 fv Gamma Cox, Gamma FALSE #> 12257 767 0.7773964 0.147674261 fv Gamma Cox, Gamma FALSE #> 12273 768 0.7275932 0.138104443 fv Gamma Cox, Gamma FALSE #> 12289 769 0.8012518 0.150258739 fv Gamma Cox, Gamma FALSE #> 12305 770 0.5881467 0.115918836 fv Gamma Cox, Gamma FALSE #> 12321 771 0.5582652 0.109204974 fv Gamma Cox, Gamma FALSE #> 12337 772 0.8615970 0.165608183 fv Gamma Cox, Gamma FALSE #> 12353 773 0.6832303 0.131879273 fv Gamma Cox, Gamma FALSE #> 12369 774 0.7392229 0.139984302 fv Gamma Cox, Gamma FALSE #> 12385 775 0.9718989 0.182805349 fv Gamma Cox, Gamma FALSE #> 12401 776 0.7453084 0.140746137 fv Gamma Cox, Gamma FALSE #> 12417 777 0.6330554 0.122393589 fv Gamma Cox, Gamma FALSE #> 12433 778 0.7985011 0.151646980 fv Gamma Cox, Gamma FALSE #> 12449 779 0.8074756 0.152531003 fv Gamma Cox, Gamma FALSE #> 12465 780 0.8180757 0.154987196 fv Gamma Cox, Gamma FALSE #> 12481 781 0.6082118 0.119222818 fv Gamma Cox, Gamma FALSE #> 12497 782 0.6587172 0.131465834 fv Gamma Cox, Gamma FALSE #> 12513 783 0.7736700 0.145777095 fv Gamma Cox, Gamma FALSE #> 12529 784 0.6471594 0.123949451 fv Gamma Cox, Gamma FALSE #> 12545 785 0.6391755 0.122834514 fv Gamma Cox, Gamma FALSE #> 12561 786 0.9004978 0.168639083 fv Gamma Cox, Gamma FALSE #> 12577 787 0.8098357 0.157221614 fv Gamma Cox, Gamma FALSE #> 12593 788 0.7364478 0.140602985 fv Gamma Cox, Gamma FALSE #> 12609 789 0.8480764 0.161362989 fv Gamma Cox, Gamma FALSE #> 12625 790 0.9009634 0.172274725 fv Gamma Cox, Gamma FALSE #> 12641 791 0.9429739 0.177975160 fv Gamma Cox, Gamma FALSE #> 12657 792 0.9334192 0.173662065 fv Gamma Cox, Gamma FALSE #> 12673 793 0.6720125 0.128866983 fv Gamma Cox, Gamma FALSE #> 12689 794 0.3839860 0.077645568 fv Gamma Cox, Gamma FALSE #> 12705 795 0.6986569 0.134254162 fv Gamma Cox, Gamma FALSE #> 12721 796 0.7909092 0.149755855 fv Gamma Cox, Gamma FALSE #> 12737 797 0.6261971 0.121737443 fv Gamma Cox, Gamma FALSE #> 12753 798 0.5844054 0.114012882 fv Gamma Cox, Gamma FALSE #> 12769 799 0.9180832 0.177794269 fv Gamma Cox, Gamma FALSE #> 12785 800 0.8898310 0.009215322 fv Gamma Cox, Gamma TRUE #> 12801 801 0.6029141 0.118004690 fv Gamma Cox, Gamma FALSE #> 12817 802 0.6136151 0.118209030 fv Gamma Cox, Gamma FALSE #> 12833 803 0.7643843 0.144107978 fv Gamma Cox, Gamma FALSE #> 12849 804 0.7880555 0.148940888 fv Gamma Cox, Gamma FALSE #> 12865 805 0.7998431 0.151085310 fv Gamma Cox, Gamma FALSE #> 12881 806 0.5799163 0.112694012 fv Gamma Cox, Gamma FALSE #> 12897 807 0.9651011 0.178731784 fv Gamma Cox, Gamma FALSE #> 12913 808 0.7025718 0.137651644 fv Gamma Cox, Gamma FALSE #> 12929 809 0.8694688 0.167063978 fv Gamma Cox, Gamma FALSE #> 12945 810 0.7524828 0.142292627 fv Gamma Cox, Gamma FALSE #> 12961 811 0.9760360 0.179659577 fv Gamma Cox, Gamma FALSE #> 12977 812 0.6752901 0.129939984 fv Gamma Cox, Gamma FALSE #> 12993 813 0.8548886 0.159815547 fv Gamma Cox, Gamma FALSE #> 13009 814 0.8475993 0.160224215 fv Gamma Cox, Gamma FALSE #> 13025 815 1.0378135 0.193339139 fv Gamma Cox, Gamma FALSE #> 13041 816 0.6058893 0.118810341 fv Gamma Cox, Gamma FALSE #> 13057 817 0.8294245 0.160278552 fv Gamma Cox, Gamma FALSE #> 13073 818 0.6699606 0.129819938 fv Gamma Cox, Gamma FALSE #> 13089 819 0.9026802 0.171814094 fv Gamma Cox, Gamma FALSE #> 13105 820 0.6607045 0.126534866 fv Gamma Cox, Gamma FALSE #> 13121 821 0.7740695 0.148978813 fv Gamma Cox, Gamma FALSE #> 13137 822 0.5192049 0.101919886 fv Gamma Cox, Gamma FALSE #> 13153 823 0.7124120 0.136595828 fv Gamma Cox, Gamma FALSE #> 13169 824 0.7414032 0.141357073 fv Gamma Cox, Gamma FALSE #> 13185 825 0.5626547 0.109971816 fv Gamma Cox, Gamma FALSE #> 13201 826 0.7043875 0.133119162 fv Gamma Cox, Gamma FALSE #> 13217 827 0.6514503 0.124574860 fv Gamma Cox, Gamma FALSE #> 13233 828 0.9596989 0.181593656 fv Gamma Cox, Gamma FALSE #> 13249 829 0.6007949 0.116361517 fv Gamma Cox, Gamma FALSE #> 13265 830 0.8469501 0.159224212 fv Gamma Cox, Gamma FALSE #> 13281 831 0.5408164 0.107608019 fv Gamma Cox, Gamma FALSE #> 13297 832 0.7255851 0.137920926 fv Gamma Cox, Gamma FALSE #> 13313 833 0.7233601 0.137867717 fv Gamma Cox, Gamma FALSE #> 13329 834 0.5366763 0.106094653 fv Gamma Cox, Gamma FALSE #> 13345 835 0.6807868 0.129887049 fv Gamma Cox, Gamma FALSE #> 13361 836 0.7233304 0.138523590 fv Gamma Cox, Gamma FALSE #> 13377 837 0.6975474 0.134553921 fv Gamma Cox, Gamma FALSE #> 13393 838 0.9069225 0.168108493 fv Gamma Cox, Gamma FALSE #> 13409 839 0.6369026 NA fv Gamma Cox, Gamma NA #> 13425 840 0.7404369 0.141071662 fv Gamma Cox, Gamma FALSE #> 13441 841 0.7236781 0.136543217 fv Gamma Cox, Gamma FALSE #> 13457 842 0.7269617 0.139559720 fv Gamma Cox, Gamma FALSE #> 13473 843 0.9404634 0.175372253 fv Gamma Cox, Gamma FALSE #> 13489 844 0.7591388 0.146210176 fv Gamma Cox, Gamma FALSE #> 13505 845 0.8950945 0.167596204 fv Gamma Cox, Gamma FALSE #> 13521 846 0.6293815 0.123382026 fv Gamma Cox, Gamma FALSE #> 13537 847 0.6395938 0.126059073 fv Gamma Cox, Gamma FALSE #> 13553 848 0.5252646 0.103677785 fv Gamma Cox, Gamma FALSE #> 13569 849 0.7224527 0.136457894 fv Gamma Cox, Gamma FALSE #> 13585 850 0.6655871 0.127329444 fv Gamma Cox, Gamma FALSE #> 13601 851 0.7693731 0.146390092 fv Gamma Cox, Gamma FALSE #> 13617 852 0.4630289 0.092204110 fv Gamma Cox, Gamma FALSE #> 13633 853 0.7458003 0.141114834 fv Gamma Cox, Gamma FALSE #> 13649 854 0.5495523 0.107672747 fv Gamma Cox, Gamma FALSE #> 13665 855 0.9345197 0.173532238 fv Gamma Cox, Gamma FALSE #> 13681 856 0.8111527 0.152332420 fv Gamma Cox, Gamma FALSE #> 13697 857 0.5890767 0.115410240 fv Gamma Cox, Gamma FALSE #> 13713 858 0.6332795 0.122745694 fv Gamma Cox, Gamma FALSE #> 13729 859 0.6800949 0.133382028 fv Gamma Cox, Gamma FALSE #> 13745 860 0.6622329 0.127201962 fv Gamma Cox, Gamma FALSE #> 13761 861 0.8276490 0.155843336 fv Gamma Cox, Gamma FALSE #> 13777 862 0.6250495 0.119957952 fv Gamma Cox, Gamma FALSE #> 13793 863 0.7531449 0.143142148 fv Gamma Cox, Gamma FALSE #> 13809 864 0.7254803 0.138882972 fv Gamma Cox, Gamma FALSE #> 13825 865 0.7898965 0.149750258 fv Gamma Cox, Gamma FALSE #> 13841 866 0.6936516 0.132582282 fv Gamma Cox, Gamma FALSE #> 13857 867 0.7247385 0.138061579 fv Gamma Cox, Gamma FALSE #> 13873 868 0.7636970 0.144736951 fv Gamma Cox, Gamma FALSE #> 13889 869 0.7396685 0.140631206 fv Gamma Cox, Gamma FALSE #> 13905 870 0.6878653 0.134946113 fv Gamma Cox, Gamma FALSE #> 13921 871 0.9322391 0.174943111 fv Gamma Cox, Gamma FALSE #> 13937 872 0.8718313 0.164024706 fv Gamma Cox, Gamma FALSE #> 13953 873 0.8129908 0.152112199 fv Gamma Cox, Gamma FALSE #> 13969 874 1.0572431 0.200675949 fv Gamma Cox, Gamma FALSE #> 13985 875 0.6157512 0.118829283 fv Gamma Cox, Gamma FALSE #> 14001 876 0.6630098 0.126690567 fv Gamma Cox, Gamma FALSE #> 14017 877 0.7466926 0.141466654 fv Gamma Cox, Gamma FALSE #> 14033 878 0.7914158 0.152095093 fv Gamma Cox, Gamma FALSE #> 14049 879 0.7052097 0.139283078 fv Gamma Cox, Gamma FALSE #> 14065 880 0.9210401 0.170865848 fv Gamma Cox, Gamma FALSE #> 14081 881 0.8075285 0.152978998 fv Gamma Cox, Gamma FALSE #> 14097 882 0.9622325 0.177253168 fv Gamma Cox, Gamma FALSE #> 14113 883 0.6113031 0.118690674 fv Gamma Cox, Gamma FALSE #> 14129 884 0.5963768 0.115010525 fv Gamma Cox, Gamma FALSE #> 14145 885 0.5900931 0.114649215 fv Gamma Cox, Gamma FALSE #> 14161 886 0.5895583 0.114812076 fv Gamma Cox, Gamma FALSE #> 14177 887 0.7148329 0.136753996 fv Gamma Cox, Gamma FALSE #> 14193 888 0.9594745 0.176947839 fv Gamma Cox, Gamma FALSE #> 14209 889 0.8042972 0.150368824 fv Gamma Cox, Gamma FALSE #> 14225 890 0.6175176 0.120106236 fv Gamma Cox, Gamma FALSE #> 14241 891 0.5137172 0.100840519 fv Gamma Cox, Gamma FALSE #> 14257 892 0.6850107 0.131015607 fv Gamma Cox, Gamma FALSE #> 14273 893 0.8293255 0.157982630 fv Gamma Cox, Gamma FALSE #> 14289 894 0.5677705 0.110836627 fv Gamma Cox, Gamma FALSE #> 14305 895 0.7644482 0.145093246 fv Gamma Cox, Gamma FALSE #> 14321 896 0.8710288 0.162208151 fv Gamma Cox, Gamma FALSE #> 14337 897 0.7168600 0.136395174 fv Gamma Cox, Gamma FALSE #> 14353 898 0.9065450 0.167962428 fv Gamma Cox, Gamma FALSE #> 14369 899 0.7682189 0.146120927 fv Gamma Cox, Gamma FALSE #> 14385 900 0.7950990 0.152564307 fv Gamma Cox, Gamma FALSE #> 14401 901 0.6035077 NA fv Gamma Cox, Gamma NA #> 14417 902 0.5803465 0.112617990 fv Gamma Cox, Gamma FALSE #> 14433 903 0.6449096 0.123722630 fv Gamma Cox, Gamma FALSE #> 14449 904 1.0645195 0.202580828 fv Gamma Cox, Gamma FALSE #> 14465 905 0.6154062 0.118202301 fv Gamma Cox, Gamma FALSE #> 14481 906 0.9287891 0.171263363 fv Gamma Cox, Gamma FALSE #> 14497 907 0.7180920 0.136679548 fv Gamma Cox, Gamma FALSE #> 14513 908 0.6552036 0.129720385 fv Gamma Cox, Gamma FALSE #> 14529 909 0.6176879 0.120066685 fv Gamma Cox, Gamma FALSE #> 14545 910 0.5521694 0.107962585 fv Gamma Cox, Gamma FALSE #> 14561 911 0.7069066 0.138490781 fv Gamma Cox, Gamma FALSE #> 14577 912 0.5462190 0.106165748 fv Gamma Cox, Gamma FALSE #> 14593 913 0.7016262 0.133463712 fv Gamma Cox, Gamma FALSE #> 14609 914 0.6332994 0.123546571 fv Gamma Cox, Gamma FALSE #> 14625 915 0.8871169 0.168167223 fv Gamma Cox, Gamma FALSE #> 14641 916 0.5314523 0.103737093 fv Gamma Cox, Gamma FALSE #> 14657 917 0.8251601 0.158076990 fv Gamma Cox, Gamma FALSE #> 14673 918 0.7812981 0.146882310 fv Gamma Cox, Gamma FALSE #> 14689 919 0.5633497 0.109510022 fv Gamma Cox, Gamma FALSE #> 14705 920 0.7551588 0.142268945 fv Gamma Cox, Gamma FALSE #> 14721 921 0.8233179 0.155619571 fv Gamma Cox, Gamma FALSE #> 14737 922 1.0592208 0.198177894 fv Gamma Cox, Gamma FALSE #> 14753 923 0.7166090 0.136329906 fv Gamma Cox, Gamma FALSE #> 14769 924 0.7695951 0.144746860 fv Gamma Cox, Gamma FALSE #> 14785 925 0.8674089 0.165902857 fv Gamma Cox, Gamma FALSE #> 14801 926 0.7045694 0.133491756 fv Gamma Cox, Gamma FALSE #> 14817 927 0.4593230 0.091649779 fv Gamma Cox, Gamma FALSE #> 14833 928 0.6908884 0.131414692 fv Gamma Cox, Gamma FALSE #> 14849 929 0.7466114 0.142611050 fv Gamma Cox, Gamma FALSE #> 14865 930 0.8842713 0.169298190 fv Gamma Cox, Gamma FALSE #> 14881 931 0.6753965 0.128818557 fv Gamma Cox, Gamma FALSE #> 14897 932 0.8354712 0.155898458 fv Gamma Cox, Gamma FALSE #> 14913 933 0.6292981 0.121754957 fv Gamma Cox, Gamma FALSE #> 14929 934 0.6014700 0.116226490 fv Gamma Cox, Gamma FALSE #> 14945 935 0.5048390 0.100465756 fv Gamma Cox, Gamma FALSE #> 14961 936 0.5914851 0.114415232 fv Gamma Cox, Gamma FALSE #> 14977 937 1.1046727 0.204362478 fv Gamma Cox, Gamma FALSE #> 14993 938 0.7889907 0.149274856 fv Gamma Cox, Gamma FALSE #> 15009 939 0.8269311 0.155176151 fv Gamma Cox, Gamma FALSE #> 15025 940 0.7645462 0.144080751 fv Gamma Cox, Gamma FALSE #> 15041 941 0.6339856 0.122117198 fv Gamma Cox, Gamma FALSE #> 15057 942 0.6443675 0.124341205 fv Gamma Cox, Gamma FALSE #> 15073 943 0.4804556 0.095616415 fv Gamma Cox, Gamma FALSE #> 15089 944 0.6182545 0.118864711 fv Gamma Cox, Gamma FALSE #> 15105 945 0.6165893 0.119585898 fv Gamma Cox, Gamma FALSE #> 15121 946 0.7660069 0.148721347 fv Gamma Cox, Gamma FALSE #> 15137 947 0.6810811 0.132003647 fv Gamma Cox, Gamma FALSE #> 15153 948 0.5142477 0.102747891 fv Gamma Cox, Gamma FALSE #> 15169 949 0.6180526 0.120672028 fv Gamma Cox, Gamma FALSE #> 15185 950 0.6232314 0.121836187 fv Gamma Cox, Gamma FALSE #> 15201 951 0.7127207 0.135731437 fv Gamma Cox, Gamma FALSE #> 15217 952 0.6730731 0.129521227 fv Gamma Cox, Gamma FALSE #> 15233 953 1.0916190 0.201684689 fv Gamma Cox, Gamma FALSE #> 15249 954 0.6736457 0.128998241 fv Gamma Cox, Gamma FALSE #> 15265 955 0.8188607 0.153567795 fv Gamma Cox, Gamma FALSE #> 15281 956 0.6635977 0.128355306 fv Gamma Cox, Gamma FALSE #> 15297 957 0.6342700 0.123055464 fv Gamma Cox, Gamma FALSE #> 15313 958 0.5356595 0.105054232 fv Gamma Cox, Gamma FALSE #> 15329 959 0.5970231 0.115463296 fv Gamma Cox, Gamma FALSE #> 15345 960 0.7817517 0.148307504 fv Gamma Cox, Gamma FALSE #> 15361 961 0.5115240 0.101112635 fv Gamma Cox, Gamma FALSE #> 15377 962 0.9019772 0.168201411 fv Gamma Cox, Gamma FALSE #> 15393 963 0.8333257 0.157848012 fv Gamma Cox, Gamma FALSE #> 15409 964 0.6911721 0.132489255 fv Gamma Cox, Gamma FALSE #> 15425 965 0.6365177 NA fv Gamma Cox, Gamma NA #> 15441 966 0.7677420 0.146639440 fv Gamma Cox, Gamma FALSE #> 15457 967 0.6649532 0.127278523 fv Gamma Cox, Gamma FALSE #> 15473 968 0.5605857 NA fv Gamma Cox, Gamma NA #> 15489 969 0.7488110 0.144103923 fv Gamma Cox, Gamma FALSE #> 15505 970 0.7009266 0.138336093 fv Gamma Cox, Gamma FALSE #> 15521 971 0.6355460 0.123055558 fv Gamma Cox, Gamma FALSE #> 15537 972 0.6550597 0.129518392 fv Gamma Cox, Gamma FALSE #> 15553 973 0.9634266 0.184669702 fv Gamma Cox, Gamma FALSE #> 15569 974 0.5254167 0.103755606 fv Gamma Cox, Gamma FALSE #> 15585 975 0.5023696 0.099748952 fv Gamma Cox, Gamma FALSE #> 15601 976 0.7553050 0.143657040 fv Gamma Cox, Gamma FALSE #> 15617 977 0.8486740 0.158219365 fv Gamma Cox, Gamma FALSE #> 15633 978 0.8302479 0.159751197 fv Gamma Cox, Gamma FALSE #> 15649 979 0.8144014 0.157040892 fv Gamma Cox, Gamma FALSE #> 15665 980 0.5347503 0.104809583 fv Gamma Cox, Gamma FALSE #> 15681 981 0.7146458 0.137812497 fv Gamma Cox, Gamma FALSE #> 15697 982 0.9672795 0.181190607 fv Gamma Cox, Gamma FALSE #> 15713 983 0.5328782 0.105163422 fv Gamma Cox, Gamma FALSE #> 15729 984 0.7516136 0.142836565 fv Gamma Cox, Gamma FALSE #> 15745 985 0.8197373 0.157629048 fv Gamma Cox, Gamma FALSE #> 15761 986 0.6112163 0.117185425 fv Gamma Cox, Gamma FALSE #> 15777 987 0.5479787 0.107370042 fv Gamma Cox, Gamma FALSE #> 15793 988 0.6274646 0.121024201 fv Gamma Cox, Gamma FALSE #> 15809 989 0.7944407 0.149409280 fv Gamma Cox, Gamma FALSE #> 15825 990 0.7107532 0.134620748 fv Gamma Cox, Gamma FALSE #> 15841 991 0.7552528 0.144020517 fv Gamma Cox, Gamma FALSE #> 15857 992 0.7777255 0.148341692 fv Gamma Cox, Gamma FALSE #> 15873 993 0.9434033 0.174832389 fv Gamma Cox, Gamma FALSE #> 15889 994 0.6601987 0.127035638 fv Gamma Cox, Gamma FALSE #> 15905 995 0.8169684 0.154338190 fv Gamma Cox, Gamma FALSE #> 15921 996 0.6693038 0.128326952 fv Gamma Cox, Gamma FALSE #> 15937 997 0.6015899 0.120247558 fv Gamma Cox, Gamma FALSE #> 15953 998 0.6444796 NA fv Gamma Cox, Gamma NA #> 15969 999 0.5082930 0.099750960 fv Gamma Cox, Gamma FALSE #> 15985 1000 0.4986563 0.099227493 fv Gamma Cox, Gamma FALSE #> 2 1 0.8396248 0.166336769 fv Gamma Cox, Log-Normal FALSE #> 18 2 0.8654809 0.287973324 fv Gamma Cox, Log-Normal FALSE #> 34 3 1.5533362 0.443124033 fv Gamma Cox, Log-Normal TRUE #> 50 4 1.2021700 0.231528152 fv Gamma Cox, Log-Normal FALSE #> 66 5 0.9069256 0.231546211 fv Gamma Cox, Log-Normal FALSE #> 82 6 0.9705696 0.123099170 fv Gamma Cox, Log-Normal FALSE #> 98 7 0.9037494 0.210255478 fv Gamma Cox, Log-Normal FALSE #> 114 8 1.3330730 0.290669413 fv Gamma Cox, Log-Normal FALSE #> 130 9 1.2289061 0.328816511 fv Gamma Cox, Log-Normal FALSE #> 146 10 0.9917595 0.216966969 fv Gamma Cox, Log-Normal FALSE #> 162 11 1.0384351 0.279205813 fv Gamma Cox, Log-Normal FALSE #> 178 12 1.4401730 0.363584050 fv Gamma Cox, Log-Normal FALSE #> 194 13 1.1820887 0.272273545 fv Gamma Cox, Log-Normal FALSE #> 210 14 0.7876591 0.215587735 fv Gamma Cox, Log-Normal FALSE #> 226 15 1.1958391 0.297749174 fv Gamma Cox, Log-Normal FALSE #> 242 16 1.2056374 0.239853982 fv Gamma Cox, Log-Normal FALSE #> 258 17 0.7638555 0.152259647 fv Gamma Cox, Log-Normal FALSE #> 274 18 0.5600481 0.242034309 fv Gamma Cox, Log-Normal FALSE #> 290 19 0.8972620 0.206362814 fv Gamma Cox, Log-Normal FALSE #> 306 20 1.2974784 0.351726424 fv Gamma Cox, Log-Normal FALSE #> 322 21 0.6876797 0.226521087 fv Gamma Cox, Log-Normal FALSE #> 338 22 1.2148856 0.314376529 fv Gamma Cox, Log-Normal FALSE #> 354 23 0.8145580 0.191955407 fv Gamma Cox, Log-Normal FALSE #> 370 24 1.0265042 0.210536939 fv Gamma Cox, Log-Normal FALSE #> 386 25 1.1179286 0.310945298 fv Gamma Cox, Log-Normal FALSE #> 402 26 0.9579917 0.258514556 fv Gamma Cox, Log-Normal FALSE #> 418 27 1.7975474 0.493417117 fv Gamma Cox, Log-Normal TRUE #> 434 28 1.4423476 0.315633062 fv Gamma Cox, Log-Normal FALSE #> 450 29 1.2699356 0.241097065 fv Gamma Cox, Log-Normal FALSE #> 466 30 1.4047494 0.406179915 fv Gamma Cox, Log-Normal FALSE #> 482 31 0.8005746 0.266232147 fv Gamma Cox, Log-Normal FALSE #> 498 32 0.9957436 0.261294995 fv Gamma Cox, Log-Normal FALSE #> 514 33 0.8044589 0.172836665 fv Gamma Cox, Log-Normal FALSE #> 530 34 0.7033578 0.165484797 fv Gamma Cox, Log-Normal FALSE #> 546 35 1.0301148 0.275033997 fv Gamma Cox, Log-Normal FALSE #> 562 36 0.7542718 0.277262843 fv Gamma Cox, Log-Normal FALSE #> 578 37 0.7112477 0.143086191 fv Gamma Cox, Log-Normal FALSE #> 594 38 0.6321543 0.120638937 fv Gamma Cox, Log-Normal FALSE #> 610 39 0.9190196 0.162403199 fv Gamma Cox, Log-Normal FALSE #> 626 40 0.5901511 0.153295406 fv Gamma Cox, Log-Normal FALSE #> 642 41 1.6955260 0.274068495 fv Gamma Cox, Log-Normal TRUE #> 658 42 0.9786594 0.338436250 fv Gamma Cox, Log-Normal FALSE #> 674 43 1.0846014 0.238001169 fv Gamma Cox, Log-Normal FALSE #> 690 44 1.0670686 0.209168137 fv Gamma Cox, Log-Normal FALSE #> 706 45 0.9094972 0.153713130 fv Gamma Cox, Log-Normal FALSE #> 722 46 0.8628380 0.143624017 fv Gamma Cox, Log-Normal FALSE #> 738 47 1.3744833 0.379085783 fv Gamma Cox, Log-Normal FALSE #> 754 48 0.9447438 0.241373759 fv Gamma Cox, Log-Normal FALSE #> 770 49 1.2051056 0.332843614 fv Gamma Cox, Log-Normal FALSE #> 786 50 1.0122736 0.235362960 fv Gamma Cox, Log-Normal FALSE #> 802 51 1.2202208 0.297438475 fv Gamma Cox, Log-Normal FALSE #> 818 52 0.6319282 0.158343089 fv Gamma Cox, Log-Normal FALSE #> 834 53 0.7892154 0.148666919 fv Gamma Cox, Log-Normal FALSE #> 850 54 0.6218626 0.147453939 fv Gamma Cox, Log-Normal FALSE #> 866 55 1.0992895 0.242091300 fv Gamma Cox, Log-Normal FALSE #> 882 56 0.7880115 0.207821575 fv Gamma Cox, Log-Normal FALSE #> 898 57 1.0838536 0.252999308 fv Gamma Cox, Log-Normal FALSE #> 914 58 0.9053863 0.269296974 fv Gamma Cox, Log-Normal FALSE #> 930 59 0.8521828 0.183532101 fv Gamma Cox, Log-Normal FALSE #> 946 60 1.1226700 0.315581488 fv Gamma Cox, Log-Normal FALSE #> 962 61 0.8470775 0.165184536 fv Gamma Cox, Log-Normal FALSE #> 978 62 0.6807293 0.158237205 fv Gamma Cox, Log-Normal FALSE #> 994 63 1.1740857 0.253571694 fv Gamma Cox, Log-Normal FALSE #> 1010 64 0.8143805 0.154909462 fv Gamma Cox, Log-Normal FALSE #> 1026 65 0.8776911 0.151461233 fv Gamma Cox, Log-Normal FALSE #> 1042 66 0.6450936 0.146446549 fv Gamma Cox, Log-Normal FALSE #> 1058 67 1.1252565 0.202649366 fv Gamma Cox, Log-Normal FALSE #> 1074 68 0.9440104 0.190197229 fv Gamma Cox, Log-Normal FALSE #> 1090 69 0.6562820 0.142885574 fv Gamma Cox, Log-Normal FALSE #> 1106 70 0.8936893 0.304947589 fv Gamma Cox, Log-Normal FALSE #> 1122 71 1.2357687 0.253047569 fv Gamma Cox, Log-Normal FALSE #> 1138 72 0.7974302 0.195318813 fv Gamma Cox, Log-Normal FALSE #> 1154 73 0.5968091 0.117975560 fv Gamma Cox, Log-Normal FALSE #> 1170 74 0.8786436 0.164497228 fv Gamma Cox, Log-Normal FALSE #> 1186 75 0.9750754 0.226532064 fv Gamma Cox, Log-Normal FALSE #> 1202 76 0.9645318 0.277393275 fv Gamma Cox, Log-Normal FALSE #> 1218 77 1.0142834 0.249169464 fv Gamma Cox, Log-Normal FALSE #> 1234 78 1.4324625 0.392466363 fv Gamma Cox, Log-Normal FALSE #> 1250 79 2.0973063 0.420079538 fv Gamma Cox, Log-Normal TRUE #> 1266 80 0.7760451 0.266768649 fv Gamma Cox, Log-Normal FALSE #> 1282 81 1.2518287 0.326399591 fv Gamma Cox, Log-Normal FALSE #> 1298 82 0.9445711 0.170469026 fv Gamma Cox, Log-Normal FALSE #> 1314 83 0.6203977 0.269831486 fv Gamma Cox, Log-Normal FALSE #> 1330 84 0.9623414 0.181377810 fv Gamma Cox, Log-Normal FALSE #> 1346 85 0.8411381 0.151718027 fv Gamma Cox, Log-Normal FALSE #> 1362 86 0.8777074 0.173496863 fv Gamma Cox, Log-Normal FALSE #> 1378 87 0.7852935 0.148358262 fv Gamma Cox, Log-Normal FALSE #> 1394 88 0.8880239 0.169358612 fv Gamma Cox, Log-Normal FALSE #> 1410 89 1.0105583 0.218935211 fv Gamma Cox, Log-Normal FALSE #> 1426 90 1.1248867 0.226352162 fv Gamma Cox, Log-Normal FALSE #> 1442 91 0.9313413 0.176657570 fv Gamma Cox, Log-Normal FALSE #> 1458 92 0.8291607 0.161043102 fv Gamma Cox, Log-Normal FALSE #> 1474 93 1.4062271 0.492947581 fv Gamma Cox, Log-Normal TRUE #> 1490 94 1.1792259 0.371694722 fv Gamma Cox, Log-Normal FALSE #> 1506 95 0.9422527 0.186808785 fv Gamma Cox, Log-Normal FALSE #> 1522 96 0.5352317 0.122349552 fv Gamma Cox, Log-Normal FALSE #> 1538 97 0.7041875 0.129219142 fv Gamma Cox, Log-Normal FALSE #> 1554 98 1.0580233 0.191281068 fv Gamma Cox, Log-Normal FALSE #> 1570 99 0.7207367 0.195627282 fv Gamma Cox, Log-Normal FALSE #> 1586 100 1.2143961 0.232039398 fv Gamma Cox, Log-Normal FALSE #> 1602 101 1.1645575 0.202974678 fv Gamma Cox, Log-Normal FALSE #> 1618 102 0.9260904 0.205704353 fv Gamma Cox, Log-Normal FALSE #> 1634 103 1.3313203 0.415434246 fv Gamma Cox, Log-Normal FALSE #> 1650 104 1.0674271 0.230488475 fv Gamma Cox, Log-Normal FALSE #> 1666 105 1.2580642 0.312120608 fv Gamma Cox, Log-Normal FALSE #> 1682 106 0.8964461 0.176933658 fv Gamma Cox, Log-Normal FALSE #> 1698 107 1.3021989 0.320620447 fv Gamma Cox, Log-Normal FALSE #> 1714 108 1.1976726 0.374873974 fv Gamma Cox, Log-Normal FALSE #> 1730 109 0.9569265 0.273685851 fv Gamma Cox, Log-Normal FALSE #> 1746 110 1.0515898 0.268561562 fv Gamma Cox, Log-Normal FALSE #> 1762 111 1.1520637 0.261829502 fv Gamma Cox, Log-Normal FALSE #> 1778 112 0.5659670 0.130417896 fv Gamma Cox, Log-Normal FALSE #> 1794 113 0.6317424 0.122015603 fv Gamma Cox, Log-Normal FALSE #> 1810 114 1.6902270 0.334508909 fv Gamma Cox, Log-Normal TRUE #> 1826 115 0.8076343 0.168987445 fv Gamma Cox, Log-Normal FALSE #> 1842 116 0.5972826 0.130764421 fv Gamma Cox, Log-Normal FALSE #> 1858 117 1.0718606 0.210925331 fv Gamma Cox, Log-Normal FALSE #> 1874 118 0.6408203 0.135263593 fv Gamma Cox, Log-Normal FALSE #> 1890 119 0.7973938 0.174571464 fv Gamma Cox, Log-Normal FALSE #> 1906 120 0.9153147 0.177857493 fv Gamma Cox, Log-Normal FALSE #> 1922 121 0.7644599 0.150392418 fv Gamma Cox, Log-Normal FALSE #> 1938 122 0.8651735 0.261036284 fv Gamma Cox, Log-Normal FALSE #> 1954 123 0.9257951 0.187252850 fv Gamma Cox, Log-Normal FALSE #> 1970 124 0.9726617 0.154366389 fv Gamma Cox, Log-Normal FALSE #> 1986 125 1.2347948 0.317895986 fv Gamma Cox, Log-Normal FALSE #> 2002 126 1.5107344 0.412559767 fv Gamma Cox, Log-Normal FALSE #> 2018 127 1.0864985 0.244291312 fv Gamma Cox, Log-Normal FALSE #> 2034 128 1.0878460 0.217467789 fv Gamma Cox, Log-Normal FALSE #> 2050 129 0.7731209 0.303435174 fv Gamma Cox, Log-Normal FALSE #> 2066 130 0.8530204 0.197021469 fv Gamma Cox, Log-Normal FALSE #> 2082 131 0.8648655 0.165310174 fv Gamma Cox, Log-Normal FALSE #> 2098 132 1.0140972 0.302995158 fv Gamma Cox, Log-Normal FALSE #> 2114 133 0.9104868 0.221438344 fv Gamma Cox, Log-Normal FALSE #> 2130 134 1.0784862 0.271217304 fv Gamma Cox, Log-Normal FALSE #> 2146 135 0.7869113 0.180651674 fv Gamma Cox, Log-Normal FALSE #> 2162 136 0.9755650 0.258643410 fv Gamma Cox, Log-Normal FALSE #> 2178 137 1.2555462 0.298280359 fv Gamma Cox, Log-Normal FALSE #> 2194 138 1.2653651 0.320038448 fv Gamma Cox, Log-Normal FALSE #> 2210 139 0.7961798 0.144604970 fv Gamma Cox, Log-Normal FALSE #> 2226 140 1.0511116 0.243823137 fv Gamma Cox, Log-Normal FALSE #> 2242 141 0.7462247 0.208792390 fv Gamma Cox, Log-Normal FALSE #> 2258 142 0.9738903 0.212138716 fv Gamma Cox, Log-Normal FALSE #> 2274 143 1.5330380 0.537623136 fv Gamma Cox, Log-Normal TRUE #> 2290 144 1.1149075 0.230445555 fv Gamma Cox, Log-Normal FALSE #> 2306 145 0.8547372 0.185823683 fv Gamma Cox, Log-Normal FALSE #> 2322 146 0.8861187 0.183574772 fv Gamma Cox, Log-Normal FALSE #> 2338 147 1.0399587 0.194159810 fv Gamma Cox, Log-Normal FALSE #> 2354 148 0.6173024 0.109281577 fv Gamma Cox, Log-Normal FALSE #> 2370 149 0.8373295 0.191571256 fv Gamma Cox, Log-Normal FALSE #> 2386 150 1.1780887 0.217442230 fv Gamma Cox, Log-Normal FALSE #> 2402 151 1.1285433 0.226278803 fv Gamma Cox, Log-Normal FALSE #> 2418 152 1.1992517 0.394939611 fv Gamma Cox, Log-Normal FALSE #> 2434 153 0.6319684 0.172725513 fv Gamma Cox, Log-Normal FALSE #> 2450 154 1.1200567 0.236910662 fv Gamma Cox, Log-Normal FALSE #> 2466 155 0.9404373 0.309352450 fv Gamma Cox, Log-Normal FALSE #> 2482 156 0.9335558 0.170459226 fv Gamma Cox, Log-Normal FALSE #> 2498 157 1.4355503 0.361703696 fv Gamma Cox, Log-Normal FALSE #> 2514 158 1.4701395 0.366841193 fv Gamma Cox, Log-Normal FALSE #> 2530 159 0.6612553 0.189431483 fv Gamma Cox, Log-Normal FALSE #> 2546 160 0.6884649 0.160081027 fv Gamma Cox, Log-Normal FALSE #> 2562 161 1.7235061 0.366167519 fv Gamma Cox, Log-Normal TRUE #> 2578 162 0.9637307 0.277366991 fv Gamma Cox, Log-Normal FALSE #> 2594 163 0.6826128 0.123999357 fv Gamma Cox, Log-Normal FALSE #> 2610 164 1.2137278 0.254986878 fv Gamma Cox, Log-Normal FALSE #> 2626 165 1.0759865 0.243107518 fv Gamma Cox, Log-Normal FALSE #> 2642 166 1.1514913 0.353009050 fv Gamma Cox, Log-Normal FALSE #> 2658 167 1.3171715 0.267054689 fv Gamma Cox, Log-Normal FALSE #> 2674 168 1.0866206 0.235629785 fv Gamma Cox, Log-Normal FALSE #> 2690 169 0.9467015 0.224115190 fv Gamma Cox, Log-Normal FALSE #> 2706 170 0.9395929 0.217597367 fv Gamma Cox, Log-Normal FALSE #> 2722 171 0.9618300 0.263408111 fv Gamma Cox, Log-Normal FALSE #> 2738 172 1.1425683 0.242325710 fv Gamma Cox, Log-Normal FALSE #> 2754 173 0.7877272 0.217794070 fv Gamma Cox, Log-Normal FALSE #> 2770 174 1.1282426 0.267735233 fv Gamma Cox, Log-Normal FALSE #> 2786 175 0.8178924 0.230738271 fv Gamma Cox, Log-Normal FALSE #> 2802 176 0.8741514 0.162586064 fv Gamma Cox, Log-Normal FALSE #> 2818 177 0.7687814 0.283467846 fv Gamma Cox, Log-Normal FALSE #> 2834 178 1.1744687 0.211056326 fv Gamma Cox, Log-Normal FALSE #> 2850 179 0.7526095 0.150027385 fv Gamma Cox, Log-Normal FALSE #> 2866 180 1.0216310 0.316148826 fv Gamma Cox, Log-Normal FALSE #> 2882 181 1.1712040 0.260266639 fv Gamma Cox, Log-Normal FALSE #> 2898 182 0.9333976 0.175417306 fv Gamma Cox, Log-Normal FALSE #> 2914 183 0.7609429 0.152764885 fv Gamma Cox, Log-Normal FALSE #> 2930 184 0.9364676 0.263118357 fv Gamma Cox, Log-Normal FALSE #> 2946 185 1.1970108 0.256427056 fv Gamma Cox, Log-Normal FALSE #> 2962 186 1.3811930 0.386834280 fv Gamma Cox, Log-Normal FALSE #> 2978 187 0.9677626 0.218961822 fv Gamma Cox, Log-Normal FALSE #> 2994 188 0.6677381 0.129193425 fv Gamma Cox, Log-Normal FALSE #> 3010 189 1.0300136 0.181675457 fv Gamma Cox, Log-Normal FALSE #> 3026 190 0.9781161 0.186623640 fv Gamma Cox, Log-Normal FALSE #> 3042 191 1.0047812 0.234422284 fv Gamma Cox, Log-Normal FALSE #> 3058 192 1.0481335 0.313856424 fv Gamma Cox, Log-Normal FALSE #> 3074 193 0.8578876 0.206851646 fv Gamma Cox, Log-Normal FALSE #> 3090 194 0.8025329 0.177765199 fv Gamma Cox, Log-Normal FALSE #> 3106 195 1.0948348 0.189268663 fv Gamma Cox, Log-Normal FALSE #> 3122 196 1.1531601 0.315355691 fv Gamma Cox, Log-Normal FALSE #> 3138 197 0.9174118 0.146017107 fv Gamma Cox, Log-Normal FALSE #> 3154 198 0.9822719 0.160214536 fv Gamma Cox, Log-Normal FALSE #> 3170 199 0.7665154 0.178048907 fv Gamma Cox, Log-Normal FALSE #> 3186 200 1.0827449 0.216626911 fv Gamma Cox, Log-Normal FALSE #> 3202 201 1.0550061 0.243012425 fv Gamma Cox, Log-Normal FALSE #> 3218 202 1.0972858 0.215662323 fv Gamma Cox, Log-Normal FALSE #> 3234 203 0.9855765 0.182481322 fv Gamma Cox, Log-Normal FALSE #> 3250 204 1.0561904 0.348906497 fv Gamma Cox, Log-Normal FALSE #> 3266 205 0.7564109 0.205512464 fv Gamma Cox, Log-Normal FALSE #> 3282 206 1.0125371 0.222694936 fv Gamma Cox, Log-Normal FALSE #> 3298 207 0.6826566 0.147213825 fv Gamma Cox, Log-Normal FALSE #> 3314 208 0.9760813 0.224712745 fv Gamma Cox, Log-Normal FALSE #> 3330 209 0.9269613 0.220844066 fv Gamma Cox, Log-Normal FALSE #> 3346 210 0.9133674 0.231763968 fv Gamma Cox, Log-Normal FALSE #> 3362 211 1.4904914 0.390725669 fv Gamma Cox, Log-Normal FALSE #> 3378 212 0.9920371 0.255836508 fv Gamma Cox, Log-Normal FALSE #> 3394 213 1.1118333 0.294714345 fv Gamma Cox, Log-Normal FALSE #> 3410 214 1.0039471 0.304092232 fv Gamma Cox, Log-Normal FALSE #> 3426 215 1.1241297 0.264189786 fv Gamma Cox, Log-Normal FALSE #> 3442 216 1.2582014 0.301083523 fv Gamma Cox, Log-Normal FALSE #> 3458 217 0.8366225 0.210156062 fv Gamma Cox, Log-Normal FALSE #> 3474 218 0.8448105 0.236493852 fv Gamma Cox, Log-Normal FALSE #> 3490 219 1.2107113 0.347155926 fv Gamma Cox, Log-Normal FALSE #> 3506 220 0.7158888 0.136382455 fv Gamma Cox, Log-Normal FALSE #> 3522 221 0.9339555 0.266680492 fv Gamma Cox, Log-Normal FALSE #> 3538 222 1.1192118 0.312072336 fv Gamma Cox, Log-Normal FALSE #> 3554 223 1.0452753 0.280574246 fv Gamma Cox, Log-Normal FALSE #> 3570 224 1.0115289 0.233439970 fv Gamma Cox, Log-Normal FALSE #> 3586 225 0.8032168 0.161726631 fv Gamma Cox, Log-Normal FALSE #> 3602 226 1.3087768 0.413967329 fv Gamma Cox, Log-Normal FALSE #> 3618 227 0.8661987 0.237439745 fv Gamma Cox, Log-Normal FALSE #> 3634 228 1.1166755 0.216930095 fv Gamma Cox, Log-Normal FALSE #> 3650 229 1.1105627 0.275511999 fv Gamma Cox, Log-Normal FALSE #> 3666 230 0.8823663 0.147648628 fv Gamma Cox, Log-Normal FALSE #> 3682 231 1.1464490 0.264342378 fv Gamma Cox, Log-Normal FALSE #> 3698 232 1.0282286 0.294509349 fv Gamma Cox, Log-Normal FALSE #> 3714 233 1.1858851 0.308748988 fv Gamma Cox, Log-Normal FALSE #> 3730 234 0.9141730 0.234737862 fv Gamma Cox, Log-Normal FALSE #> 3746 235 1.1254600 0.356891640 fv Gamma Cox, Log-Normal FALSE #> 3762 236 0.6441731 0.174629945 fv Gamma Cox, Log-Normal FALSE #> 3778 237 0.8396326 0.205428196 fv Gamma Cox, Log-Normal FALSE #> 3794 238 0.8108753 0.210967352 fv Gamma Cox, Log-Normal FALSE #> 3810 239 0.9353923 0.175452236 fv Gamma Cox, Log-Normal FALSE #> 3826 240 1.1534031 0.316909074 fv Gamma Cox, Log-Normal FALSE #> 3842 241 0.8525632 0.153161651 fv Gamma Cox, Log-Normal FALSE #> 3858 242 0.6325823 0.110859718 fv Gamma Cox, Log-Normal FALSE #> 3874 243 1.3438274 0.504696267 fv Gamma Cox, Log-Normal TRUE #> 3890 244 0.6847331 0.117664089 fv Gamma Cox, Log-Normal FALSE #> 3906 245 1.5084013 0.416220066 fv Gamma Cox, Log-Normal FALSE #> 3922 246 0.8600815 0.160092148 fv Gamma Cox, Log-Normal FALSE #> 3938 247 1.0459691 0.247888885 fv Gamma Cox, Log-Normal FALSE #> 3954 248 1.3774923 0.295724239 fv Gamma Cox, Log-Normal FALSE #> 3970 249 1.4544026 0.401018407 fv Gamma Cox, Log-Normal FALSE #> 3986 250 0.9930866 0.252367133 fv Gamma Cox, Log-Normal FALSE #> 4002 251 1.0750961 0.286717462 fv Gamma Cox, Log-Normal FALSE #> 4018 252 1.1463194 0.342407069 fv Gamma Cox, Log-Normal FALSE #> 4034 253 1.2383183 0.401788395 fv Gamma Cox, Log-Normal FALSE #> 4050 254 0.6184252 0.098351797 fv Gamma Cox, Log-Normal FALSE #> 4066 255 0.9288740 0.135923481 fv Gamma Cox, Log-Normal FALSE #> 4082 256 0.9116082 0.198199738 fv Gamma Cox, Log-Normal FALSE #> 4098 257 0.6749869 0.129906431 fv Gamma Cox, Log-Normal FALSE #> 4114 258 1.0142908 0.337359222 fv Gamma Cox, Log-Normal FALSE #> 4130 259 0.9440221 0.210134843 fv Gamma Cox, Log-Normal FALSE #> 4146 260 1.1202138 0.249898993 fv Gamma Cox, Log-Normal FALSE #> 4162 261 0.5960250 0.118672454 fv Gamma Cox, Log-Normal FALSE #> 4178 262 0.8366969 0.176398436 fv Gamma Cox, Log-Normal FALSE #> 4194 263 0.7871702 0.205713317 fv Gamma Cox, Log-Normal FALSE #> 4210 264 0.6057126 0.113149327 fv Gamma Cox, Log-Normal FALSE #> 4226 265 0.7758375 0.147043597 fv Gamma Cox, Log-Normal FALSE #> 4242 266 0.8500845 0.224891518 fv Gamma Cox, Log-Normal FALSE #> 4258 267 0.9199981 0.195893000 fv Gamma Cox, Log-Normal FALSE #> 4274 268 0.9880338 0.209263821 fv Gamma Cox, Log-Normal FALSE #> 4290 269 1.6572488 0.438643117 fv Gamma Cox, Log-Normal TRUE #> 4306 270 1.2169293 0.315454041 fv Gamma Cox, Log-Normal FALSE #> 4322 271 1.2092937 0.306710304 fv Gamma Cox, Log-Normal FALSE #> 4338 272 0.7054006 0.192228252 fv Gamma Cox, Log-Normal FALSE #> 4354 273 0.8125655 0.154642396 fv Gamma Cox, Log-Normal FALSE #> 4370 274 0.9034828 0.186117871 fv Gamma Cox, Log-Normal FALSE #> 4386 275 1.1334718 0.225436721 fv Gamma Cox, Log-Normal FALSE #> 4402 276 1.0808167 0.354131546 fv Gamma Cox, Log-Normal FALSE #> 4418 277 0.8663479 0.141176671 fv Gamma Cox, Log-Normal FALSE #> 4434 278 1.0154270 0.195194389 fv Gamma Cox, Log-Normal FALSE #> 4450 279 0.9972416 0.246791708 fv Gamma Cox, Log-Normal FALSE #> 4466 280 0.9485671 0.192665901 fv Gamma Cox, Log-Normal FALSE #> 4482 281 1.5419471 0.432963938 fv Gamma Cox, Log-Normal TRUE #> 4498 282 0.7366272 0.154485998 fv Gamma Cox, Log-Normal FALSE #> 4514 283 1.1387523 0.351311035 fv Gamma Cox, Log-Normal FALSE #> 4530 284 0.7606273 0.130651621 fv Gamma Cox, Log-Normal FALSE #> 4546 285 0.5940809 0.114410663 fv Gamma Cox, Log-Normal FALSE #> 4562 286 0.9980889 0.165993278 fv Gamma Cox, Log-Normal FALSE #> 4578 287 0.7786292 0.173527925 fv Gamma Cox, Log-Normal FALSE #> 4594 288 1.8012469 0.384382846 fv Gamma Cox, Log-Normal TRUE #> 4610 289 0.8352625 0.230080256 fv Gamma Cox, Log-Normal FALSE #> 4626 290 0.7462650 0.161150218 fv Gamma Cox, Log-Normal FALSE #> 4642 291 0.7581738 0.185194416 fv Gamma Cox, Log-Normal FALSE #> 4658 292 0.7315072 0.136632050 fv Gamma Cox, Log-Normal FALSE #> 4674 293 1.1794738 0.263230250 fv Gamma Cox, Log-Normal FALSE #> 4690 294 0.8364797 0.177888851 fv Gamma Cox, Log-Normal FALSE #> 4706 295 1.5702252 0.363660287 fv Gamma Cox, Log-Normal FALSE #> 4722 296 1.0030032 0.212419723 fv Gamma Cox, Log-Normal FALSE #> 4738 297 1.7048282 0.324692247 fv Gamma Cox, Log-Normal TRUE #> 4754 298 0.6792576 0.124013511 fv Gamma Cox, Log-Normal FALSE #> 4770 299 0.7179893 0.156934076 fv Gamma Cox, Log-Normal FALSE #> 4786 300 1.1245685 0.198322193 fv Gamma Cox, Log-Normal FALSE #> 4802 301 0.6708749 0.171248942 fv Gamma Cox, Log-Normal FALSE #> 4818 302 1.0425587 0.181386611 fv Gamma Cox, Log-Normal FALSE #> 4834 303 0.7687011 0.144588971 fv Gamma Cox, Log-Normal FALSE #> 4850 304 0.8183131 0.180688666 fv Gamma Cox, Log-Normal FALSE #> 4866 305 1.1994373 0.254185287 fv Gamma Cox, Log-Normal FALSE #> 4882 306 0.9480399 0.206670969 fv Gamma Cox, Log-Normal FALSE #> 4898 307 1.0547876 0.317754660 fv Gamma Cox, Log-Normal FALSE #> 4914 308 0.8707234 0.206289074 fv Gamma Cox, Log-Normal FALSE #> 4930 309 1.0009221 0.187321610 fv Gamma Cox, Log-Normal FALSE #> 4946 310 1.5183534 0.350397464 fv Gamma Cox, Log-Normal FALSE #> 4962 311 1.2122527 0.296579713 fv Gamma Cox, Log-Normal FALSE #> 4978 312 1.8443405 0.479858067 fv Gamma Cox, Log-Normal TRUE #> 4994 313 1.1266272 0.250518734 fv Gamma Cox, Log-Normal FALSE #> 5010 314 0.9134451 0.223254762 fv Gamma Cox, Log-Normal FALSE #> 5026 315 1.0694137 0.206784794 fv Gamma Cox, Log-Normal FALSE #> 5042 316 1.5557750 0.331763485 fv Gamma Cox, Log-Normal FALSE #> 5058 317 0.7900325 0.184343319 fv Gamma Cox, Log-Normal FALSE #> 5074 318 0.9676750 0.285161091 fv Gamma Cox, Log-Normal FALSE #> 5090 319 0.7534842 0.186475417 fv Gamma Cox, Log-Normal FALSE #> 5106 320 0.7587523 0.158245032 fv Gamma Cox, Log-Normal FALSE #> 5122 321 1.3296280 0.289607929 fv Gamma Cox, Log-Normal FALSE #> 5138 322 0.6540554 0.153362582 fv Gamma Cox, Log-Normal FALSE #> 5154 323 1.1866786 0.246796331 fv Gamma Cox, Log-Normal FALSE #> 5170 324 0.7879666 0.235532790 fv Gamma Cox, Log-Normal FALSE #> 5186 325 0.9063958 0.177813514 fv Gamma Cox, Log-Normal FALSE #> 5202 326 0.8994038 0.180708837 fv Gamma Cox, Log-Normal FALSE #> 5218 327 0.9343756 0.199207745 fv Gamma Cox, Log-Normal FALSE #> 5234 328 1.4427292 0.367840271 fv Gamma Cox, Log-Normal FALSE #> 5250 329 1.2314166 0.320033252 fv Gamma Cox, Log-Normal FALSE #> 5266 330 0.9467010 0.225445798 fv Gamma Cox, Log-Normal FALSE #> 5282 331 1.1330281 0.231943006 fv Gamma Cox, Log-Normal FALSE #> 5298 332 0.7331899 0.197574585 fv Gamma Cox, Log-Normal FALSE #> 5314 333 0.6844227 0.140883756 fv Gamma Cox, Log-Normal FALSE #> 5330 334 1.3781416 0.249637577 fv Gamma Cox, Log-Normal FALSE #> 5346 335 1.0702186 0.271371029 fv Gamma Cox, Log-Normal FALSE #> 5362 336 0.6209932 0.164255992 fv Gamma Cox, Log-Normal FALSE #> 5378 337 0.8421416 0.206148684 fv Gamma Cox, Log-Normal FALSE #> 5394 338 0.7236815 0.112024580 fv Gamma Cox, Log-Normal FALSE #> 5410 339 1.0388795 0.295391600 fv Gamma Cox, Log-Normal FALSE #> 5426 340 1.1095304 0.403572705 fv Gamma Cox, Log-Normal FALSE #> 5442 341 0.6719273 0.137761634 fv Gamma Cox, Log-Normal FALSE #> 5458 342 0.5332889 0.101209542 fv Gamma Cox, Log-Normal FALSE #> 5474 343 0.7748324 0.181756300 fv Gamma Cox, Log-Normal FALSE #> 5490 344 1.3667207 0.352452784 fv Gamma Cox, Log-Normal FALSE #> 5506 345 1.1973392 0.238025218 fv Gamma Cox, Log-Normal FALSE #> 5522 346 1.0638629 0.203973708 fv Gamma Cox, Log-Normal FALSE #> 5538 347 0.9372712 0.157409347 fv Gamma Cox, Log-Normal FALSE #> 5554 348 1.4096446 0.303746493 fv Gamma Cox, Log-Normal FALSE #> 5570 349 1.1515909 0.267338558 fv Gamma Cox, Log-Normal FALSE #> 5586 350 1.0566777 0.204651400 fv Gamma Cox, Log-Normal FALSE #> 5602 351 1.2270499 0.365187960 fv Gamma Cox, Log-Normal FALSE #> 5618 352 1.1384745 0.320730548 fv Gamma Cox, Log-Normal FALSE #> 5634 353 0.6761084 0.151468116 fv Gamma Cox, Log-Normal FALSE #> 5650 354 0.9381758 0.195546224 fv Gamma Cox, Log-Normal FALSE #> 5666 355 1.1119338 0.223665047 fv Gamma Cox, Log-Normal FALSE #> 5682 356 1.0905507 0.292129252 fv Gamma Cox, Log-Normal FALSE #> 5698 357 0.8452529 0.184177665 fv Gamma Cox, Log-Normal FALSE #> 5714 358 0.8066733 0.115900961 fv Gamma Cox, Log-Normal FALSE #> 5730 359 0.8677696 0.265080079 fv Gamma Cox, Log-Normal FALSE #> 5746 360 0.7287289 0.131955369 fv Gamma Cox, Log-Normal FALSE #> 5762 361 1.3008883 0.360862820 fv Gamma Cox, Log-Normal FALSE #> 5778 362 0.5904270 0.130278388 fv Gamma Cox, Log-Normal FALSE #> 5794 363 0.9529346 0.266922925 fv Gamma Cox, Log-Normal FALSE #> 5810 364 0.6480905 0.167160297 fv Gamma Cox, Log-Normal FALSE #> 5826 365 0.9971018 0.330971308 fv Gamma Cox, Log-Normal FALSE #> 5842 366 1.1939180 0.294834729 fv Gamma Cox, Log-Normal FALSE #> 5858 367 1.1703409 0.220120120 fv Gamma Cox, Log-Normal FALSE #> 5874 368 1.1791884 0.429781697 fv Gamma Cox, Log-Normal TRUE #> 5890 369 0.6704603 0.124258362 fv Gamma Cox, Log-Normal FALSE #> 5906 370 0.6437177 0.144677882 fv Gamma Cox, Log-Normal FALSE #> 5922 371 1.0793130 0.276618474 fv Gamma Cox, Log-Normal FALSE #> 5938 372 0.7821637 0.249248520 fv Gamma Cox, Log-Normal FALSE #> 5954 373 0.9198681 0.214796254 fv Gamma Cox, Log-Normal FALSE #> 5970 374 0.7206397 0.140563196 fv Gamma Cox, Log-Normal FALSE #> 5986 375 0.7455317 0.156345249 fv Gamma Cox, Log-Normal FALSE #> 6002 376 0.7820201 0.164687256 fv Gamma Cox, Log-Normal FALSE #> 6018 377 1.2011353 0.333770351 fv Gamma Cox, Log-Normal FALSE #> 6034 378 1.0732917 0.230685922 fv Gamma Cox, Log-Normal FALSE #> 6050 379 0.7956228 0.135068436 fv Gamma Cox, Log-Normal FALSE #> 6066 380 0.9821977 0.202408585 fv Gamma Cox, Log-Normal FALSE #> 6082 381 0.7109656 0.149643496 fv Gamma Cox, Log-Normal FALSE #> 6098 382 0.9332571 0.225055001 fv Gamma Cox, Log-Normal FALSE #> 6114 383 1.4525060 0.252050709 fv Gamma Cox, Log-Normal FALSE #> 6130 384 1.1156376 0.225314386 fv Gamma Cox, Log-Normal FALSE #> 6146 385 0.6937414 0.130805747 fv Gamma Cox, Log-Normal FALSE #> 6162 386 0.4539095 0.143952602 fv Gamma Cox, Log-Normal FALSE #> 6178 387 0.6909378 0.131527306 fv Gamma Cox, Log-Normal FALSE #> 6194 388 0.8732335 0.176442179 fv Gamma Cox, Log-Normal FALSE #> 6210 389 0.6361769 0.145037919 fv Gamma Cox, Log-Normal FALSE #> 6226 390 0.7550553 0.176928641 fv Gamma Cox, Log-Normal FALSE #> 6242 391 0.6148799 0.135829174 fv Gamma Cox, Log-Normal FALSE #> 6258 392 1.1216041 0.230266849 fv Gamma Cox, Log-Normal FALSE #> 6274 393 0.6766989 0.155586331 fv Gamma Cox, Log-Normal FALSE #> 6290 394 1.2809946 0.303295151 fv Gamma Cox, Log-Normal FALSE #> 6306 395 0.9574912 0.257132721 fv Gamma Cox, Log-Normal FALSE #> 6322 396 0.9517729 0.286349874 fv Gamma Cox, Log-Normal FALSE #> 6338 397 1.1124126 0.212177754 fv Gamma Cox, Log-Normal FALSE #> 6354 398 0.9331498 0.195380303 fv Gamma Cox, Log-Normal FALSE #> 6370 399 0.7590104 0.183901117 fv Gamma Cox, Log-Normal FALSE #> 6386 400 0.8141348 0.209282394 fv Gamma Cox, Log-Normal FALSE #> 6402 401 1.1725501 0.302794794 fv Gamma Cox, Log-Normal FALSE #> 6418 402 0.8902602 0.257412268 fv Gamma Cox, Log-Normal FALSE #> 6434 403 0.8519330 0.172126937 fv Gamma Cox, Log-Normal FALSE #> 6450 404 1.0476725 0.336457821 fv Gamma Cox, Log-Normal FALSE #> 6466 405 0.7691769 0.130780437 fv Gamma Cox, Log-Normal FALSE #> 6482 406 0.7361662 0.138962491 fv Gamma Cox, Log-Normal FALSE #> 6498 407 1.0450332 0.255588768 fv Gamma Cox, Log-Normal FALSE #> 6514 408 0.6282204 0.263436321 fv Gamma Cox, Log-Normal FALSE #> 6530 409 1.2675705 0.255827563 fv Gamma Cox, Log-Normal FALSE #> 6546 410 1.4027855 0.405498694 fv Gamma Cox, Log-Normal FALSE #> 6562 411 1.0909367 0.364351515 fv Gamma Cox, Log-Normal FALSE #> 6578 412 0.8247547 0.147850429 fv Gamma Cox, Log-Normal FALSE #> 6594 413 0.9001954 0.207926748 fv Gamma Cox, Log-Normal FALSE #> 6610 414 0.8922666 0.205074388 fv Gamma Cox, Log-Normal FALSE #> 6626 415 1.1201345 0.235581947 fv Gamma Cox, Log-Normal FALSE #> 6642 416 0.7256155 0.151266912 fv Gamma Cox, Log-Normal FALSE #> 6658 417 0.9635329 0.165467319 fv Gamma Cox, Log-Normal FALSE #> 6674 418 0.9579341 0.221398430 fv Gamma Cox, Log-Normal FALSE #> 6690 419 0.8134821 0.226987586 fv Gamma Cox, Log-Normal FALSE #> 6706 420 1.1122495 0.304778954 fv Gamma Cox, Log-Normal FALSE #> 6722 421 1.0634088 0.195189997 fv Gamma Cox, Log-Normal FALSE #> 6738 422 0.9576175 0.239546727 fv Gamma Cox, Log-Normal FALSE #> 6754 423 1.0594321 0.228721736 fv Gamma Cox, Log-Normal FALSE #> 6770 424 0.9597868 0.276897329 fv Gamma Cox, Log-Normal FALSE #> 6786 425 0.7315512 0.180004030 fv Gamma Cox, Log-Normal FALSE #> 6802 426 1.2737580 0.295162754 fv Gamma Cox, Log-Normal FALSE #> 6818 427 0.5082034 0.138832393 fv Gamma Cox, Log-Normal FALSE #> 6834 428 1.4427275 0.408389941 fv Gamma Cox, Log-Normal FALSE #> 6850 429 0.7931159 0.177763555 fv Gamma Cox, Log-Normal FALSE #> 6866 430 0.6869118 0.109383857 fv Gamma Cox, Log-Normal FALSE #> 6882 431 1.0984440 0.245113401 fv Gamma Cox, Log-Normal FALSE #> 6898 432 0.6733838 0.147400668 fv Gamma Cox, Log-Normal FALSE #> 6914 433 1.1186541 0.329798430 fv Gamma Cox, Log-Normal FALSE #> 6930 434 1.2398972 0.222930487 fv Gamma Cox, Log-Normal FALSE #> 6946 435 0.8050301 0.140179777 fv Gamma Cox, Log-Normal FALSE #> 6962 436 1.2438138 0.307965337 fv Gamma Cox, Log-Normal FALSE #> 6978 437 0.8224460 0.126221473 fv Gamma Cox, Log-Normal FALSE #> 6994 438 0.6359268 0.189779025 fv Gamma Cox, Log-Normal FALSE #> 7010 439 0.9316025 0.286812594 fv Gamma Cox, Log-Normal FALSE #> 7026 440 0.8116677 0.150546885 fv Gamma Cox, Log-Normal FALSE #> 7042 441 0.4957894 0.090606260 fv Gamma Cox, Log-Normal FALSE #> 7058 442 0.9920610 0.183115913 fv Gamma Cox, Log-Normal FALSE #> 7074 443 0.6649345 0.222904431 fv Gamma Cox, Log-Normal FALSE #> 7090 444 0.8035197 0.183494932 fv Gamma Cox, Log-Normal FALSE #> 7106 445 1.2090738 0.358004906 fv Gamma Cox, Log-Normal FALSE #> 7122 446 1.0087995 0.220975718 fv Gamma Cox, Log-Normal FALSE #> 7138 447 0.9565913 0.200822801 fv Gamma Cox, Log-Normal FALSE #> 7154 448 1.0441738 0.260365565 fv Gamma Cox, Log-Normal FALSE #> 7170 449 1.1615839 0.216975618 fv Gamma Cox, Log-Normal FALSE #> 7186 450 0.7740953 0.140879888 fv Gamma Cox, Log-Normal FALSE #> 7202 451 1.0692578 0.222198213 fv Gamma Cox, Log-Normal FALSE #> 7218 452 0.6524954 0.123359523 fv Gamma Cox, Log-Normal FALSE #> 7234 453 1.0336945 0.199674407 fv Gamma Cox, Log-Normal FALSE #> 7250 454 0.8403049 0.274222788 fv Gamma Cox, Log-Normal FALSE #> 7266 455 1.0557566 0.225824987 fv Gamma Cox, Log-Normal FALSE #> 7282 456 1.0962428 0.243979297 fv Gamma Cox, Log-Normal FALSE #> 7298 457 1.1029915 0.213750191 fv Gamma Cox, Log-Normal FALSE #> 7314 458 1.2720893 0.351284624 fv Gamma Cox, Log-Normal FALSE #> 7330 459 0.8717904 0.217191101 fv Gamma Cox, Log-Normal FALSE #> 7346 460 0.8326436 0.222186414 fv Gamma Cox, Log-Normal FALSE #> 7362 461 1.0365468 0.264064386 fv Gamma Cox, Log-Normal FALSE #> 7378 462 1.3924264 0.387524188 fv Gamma Cox, Log-Normal FALSE #> 7394 463 0.7356121 0.119417840 fv Gamma Cox, Log-Normal FALSE #> 7410 464 0.6727029 0.179079073 fv Gamma Cox, Log-Normal FALSE #> 7426 465 0.9358999 0.191441499 fv Gamma Cox, Log-Normal FALSE #> 7442 466 1.0797508 0.320286330 fv Gamma Cox, Log-Normal FALSE #> 7458 467 1.2546135 0.331880843 fv Gamma Cox, Log-Normal FALSE #> 7474 468 0.6594459 0.127506910 fv Gamma Cox, Log-Normal FALSE #> 7490 469 1.0773071 0.306539717 fv Gamma Cox, Log-Normal FALSE #> 7506 470 0.9831728 0.182063344 fv Gamma Cox, Log-Normal FALSE #> 7522 471 0.7441140 0.128457720 fv Gamma Cox, Log-Normal FALSE #> 7538 472 1.1705633 0.275046221 fv Gamma Cox, Log-Normal FALSE #> 7554 473 0.7944060 0.160426950 fv Gamma Cox, Log-Normal FALSE #> 7570 474 0.7893312 0.236801144 fv Gamma Cox, Log-Normal FALSE #> 7586 475 1.6420040 0.472204521 fv Gamma Cox, Log-Normal TRUE #> 7602 476 0.6907611 0.179152271 fv Gamma Cox, Log-Normal FALSE #> 7618 477 1.2306596 0.240740348 fv Gamma Cox, Log-Normal FALSE #> 7634 478 0.9703432 0.280043037 fv Gamma Cox, Log-Normal FALSE #> 7650 479 1.2556369 0.278832138 fv Gamma Cox, Log-Normal FALSE #> 7666 480 1.0316289 0.262194195 fv Gamma Cox, Log-Normal FALSE #> 7682 481 0.9069980 0.240001733 fv Gamma Cox, Log-Normal FALSE #> 7698 482 0.8651847 0.324883873 fv Gamma Cox, Log-Normal FALSE #> 7714 483 0.9195134 0.324966495 fv Gamma Cox, Log-Normal FALSE #> 7730 484 0.9354766 0.158821908 fv Gamma Cox, Log-Normal FALSE #> 7746 485 1.0036369 0.235477830 fv Gamma Cox, Log-Normal FALSE #> 7762 486 0.7230942 0.191080579 fv Gamma Cox, Log-Normal FALSE #> 7778 487 1.0953227 0.216107707 fv Gamma Cox, Log-Normal FALSE #> 7794 488 0.9509228 0.341422686 fv Gamma Cox, Log-Normal FALSE #> 7810 489 1.2438654 0.335909184 fv Gamma Cox, Log-Normal FALSE #> 7826 490 1.6108304 0.304536731 fv Gamma Cox, Log-Normal TRUE #> 7842 491 0.8306550 0.168517444 fv Gamma Cox, Log-Normal FALSE #> 7858 492 1.2528581 0.347548040 fv Gamma Cox, Log-Normal FALSE #> 7874 493 1.1141412 0.417141114 fv Gamma Cox, Log-Normal FALSE #> 7890 494 0.8588516 0.179209258 fv Gamma Cox, Log-Normal FALSE #> 7906 495 0.9641937 0.220531498 fv Gamma Cox, Log-Normal FALSE #> 7922 496 0.6759623 0.166289250 fv Gamma Cox, Log-Normal FALSE #> 7938 497 0.9033618 0.200323244 fv Gamma Cox, Log-Normal FALSE #> 7954 498 0.8062435 0.190505432 fv Gamma Cox, Log-Normal FALSE #> 7970 499 1.0779911 0.255751410 fv Gamma Cox, Log-Normal FALSE #> 7986 500 1.2670375 0.297555986 fv Gamma Cox, Log-Normal FALSE #> 8002 501 0.8648506 0.180810911 fv Gamma Cox, Log-Normal FALSE #> 8018 502 1.0364983 0.208051259 fv Gamma Cox, Log-Normal FALSE #> 8034 503 0.7537958 0.149464952 fv Gamma Cox, Log-Normal FALSE #> 8050 504 1.2053252 0.210116068 fv Gamma Cox, Log-Normal FALSE #> 8066 505 1.4316809 0.361150122 fv Gamma Cox, Log-Normal FALSE #> 8082 506 0.8599211 0.164904216 fv Gamma Cox, Log-Normal FALSE #> 8098 507 0.6803896 0.132319900 fv Gamma Cox, Log-Normal FALSE #> 8114 508 0.8321579 0.174584707 fv Gamma Cox, Log-Normal FALSE #> 8130 509 0.8577265 0.171261565 fv Gamma Cox, Log-Normal FALSE #> 8146 510 1.0840758 0.191525801 fv Gamma Cox, Log-Normal FALSE #> 8162 511 0.9751571 0.228962046 fv Gamma Cox, Log-Normal FALSE #> 8178 512 0.9171955 0.141575466 fv Gamma Cox, Log-Normal FALSE #> 8194 513 0.7704456 0.179734941 fv Gamma Cox, Log-Normal FALSE #> 8210 514 0.9767960 0.270516974 fv Gamma Cox, Log-Normal FALSE #> 8226 515 0.8482220 0.193164393 fv Gamma Cox, Log-Normal FALSE #> 8242 516 1.0376892 0.256220330 fv Gamma Cox, Log-Normal FALSE #> 8258 517 1.1357326 0.273350115 fv Gamma Cox, Log-Normal FALSE #> 8274 518 1.2253076 0.238917068 fv Gamma Cox, Log-Normal FALSE #> 8290 519 0.8713882 0.184042855 fv Gamma Cox, Log-Normal FALSE #> 8306 520 0.7926449 0.167454593 fv Gamma Cox, Log-Normal FALSE #> 8322 521 0.7127690 0.140016713 fv Gamma Cox, Log-Normal FALSE #> 8338 522 0.6570335 0.147981785 fv Gamma Cox, Log-Normal FALSE #> 8354 523 0.9035491 0.240796228 fv Gamma Cox, Log-Normal FALSE #> 8370 524 0.7910639 0.197298251 fv Gamma Cox, Log-Normal FALSE #> 8386 525 1.3295251 0.263165691 fv Gamma Cox, Log-Normal FALSE #> 8402 526 1.1085831 0.260362630 fv Gamma Cox, Log-Normal FALSE #> 8418 527 0.9930652 0.328052452 fv Gamma Cox, Log-Normal FALSE #> 8434 528 0.7418328 0.169881227 fv Gamma Cox, Log-Normal FALSE #> 8450 529 1.2037156 0.256995886 fv Gamma Cox, Log-Normal FALSE #> 8466 530 1.3353275 0.308725331 fv Gamma Cox, Log-Normal FALSE #> 8482 531 1.0724559 0.185489763 fv Gamma Cox, Log-Normal FALSE #> 8498 532 1.1767181 0.288783024 fv Gamma Cox, Log-Normal FALSE #> 8514 533 0.9461511 0.224624441 fv Gamma Cox, Log-Normal FALSE #> 8530 534 1.0525213 0.206749296 fv Gamma Cox, Log-Normal FALSE #> 8546 535 1.4301389 0.327696069 fv Gamma Cox, Log-Normal FALSE #> 8562 536 1.0021084 0.171694724 fv Gamma Cox, Log-Normal FALSE #> 8578 537 0.9908633 0.334784893 fv Gamma Cox, Log-Normal FALSE #> 8594 538 0.7459350 0.166232904 fv Gamma Cox, Log-Normal FALSE #> 8610 539 1.1963909 0.302554905 fv Gamma Cox, Log-Normal FALSE #> 8626 540 1.0600937 0.334538983 fv Gamma Cox, Log-Normal FALSE #> 8642 541 0.7824209 0.191635059 fv Gamma Cox, Log-Normal FALSE #> 8658 542 1.0469726 0.186010712 fv Gamma Cox, Log-Normal FALSE #> 8674 543 1.1353147 0.200048549 fv Gamma Cox, Log-Normal FALSE #> 8690 544 1.0727346 0.223928441 fv Gamma Cox, Log-Normal FALSE #> 8706 545 0.9542188 0.258825073 fv Gamma Cox, Log-Normal FALSE #> 8722 546 0.7626356 0.145367051 fv Gamma Cox, Log-Normal FALSE #> 8738 547 0.7998809 0.146606750 fv Gamma Cox, Log-Normal FALSE #> 8754 548 0.8468470 0.311423205 fv Gamma Cox, Log-Normal FALSE #> 8770 549 1.0343320 0.291774386 fv Gamma Cox, Log-Normal FALSE #> 8786 550 1.3436451 0.531137533 fv Gamma Cox, Log-Normal TRUE #> 8802 551 0.9109458 0.190163812 fv Gamma Cox, Log-Normal FALSE #> 8818 552 0.7473400 0.168944580 fv Gamma Cox, Log-Normal FALSE #> 8834 553 0.7435618 0.152999604 fv Gamma Cox, Log-Normal FALSE #> 8850 554 0.9450358 0.248564971 fv Gamma Cox, Log-Normal FALSE #> 8866 555 0.6737041 0.126162135 fv Gamma Cox, Log-Normal FALSE #> 8882 556 0.6772282 0.151785951 fv Gamma Cox, Log-Normal FALSE #> 8898 557 1.6904828 0.395312396 fv Gamma Cox, Log-Normal TRUE #> 8914 558 1.0339234 0.212529669 fv Gamma Cox, Log-Normal FALSE #> 8930 559 0.7993772 0.259858142 fv Gamma Cox, Log-Normal FALSE #> 8946 560 0.9719681 0.242674636 fv Gamma Cox, Log-Normal FALSE #> 8962 561 1.0261247 0.212406152 fv Gamma Cox, Log-Normal FALSE #> 8978 562 0.5757420 0.150997039 fv Gamma Cox, Log-Normal FALSE #> 8994 563 1.0409490 0.228433773 fv Gamma Cox, Log-Normal FALSE #> 9010 564 1.0615467 0.193348628 fv Gamma Cox, Log-Normal FALSE #> 9026 565 1.1679880 0.390837268 fv Gamma Cox, Log-Normal FALSE #> 9042 566 1.2199602 0.278996060 fv Gamma Cox, Log-Normal FALSE #> 9058 567 0.9822957 0.244996294 fv Gamma Cox, Log-Normal FALSE #> 9074 568 1.0201589 0.280017514 fv Gamma Cox, Log-Normal FALSE #> 9090 569 0.9406773 0.270807399 fv Gamma Cox, Log-Normal FALSE #> 9106 570 0.9279776 0.161765327 fv Gamma Cox, Log-Normal FALSE #> 9122 571 0.9326456 0.179721507 fv Gamma Cox, Log-Normal FALSE #> 9138 572 1.1013126 0.198471955 fv Gamma Cox, Log-Normal FALSE #> 9154 573 0.6222332 0.126446396 fv Gamma Cox, Log-Normal FALSE #> 9170 574 1.1432237 0.294379732 fv Gamma Cox, Log-Normal FALSE #> 9186 575 0.9600009 0.226550540 fv Gamma Cox, Log-Normal FALSE #> 9202 576 1.0609559 0.287309234 fv Gamma Cox, Log-Normal FALSE #> 9218 577 0.9115962 0.250289364 fv Gamma Cox, Log-Normal FALSE #> 9234 578 0.9202321 0.181635402 fv Gamma Cox, Log-Normal FALSE #> 9250 579 0.7970005 0.198574996 fv Gamma Cox, Log-Normal FALSE #> 9266 580 0.8541770 0.199446336 fv Gamma Cox, Log-Normal FALSE #> 9282 581 1.1327424 0.203938321 fv Gamma Cox, Log-Normal FALSE #> 9298 582 0.5324844 0.110727241 fv Gamma Cox, Log-Normal FALSE #> 9314 583 1.2170472 0.265887560 fv Gamma Cox, Log-Normal FALSE #> 9330 584 0.7405038 0.190327265 fv Gamma Cox, Log-Normal FALSE #> 9346 585 1.4674663 0.296880097 fv Gamma Cox, Log-Normal FALSE #> 9362 586 1.3357663 0.233595693 fv Gamma Cox, Log-Normal FALSE #> 9378 587 1.0434712 0.197298685 fv Gamma Cox, Log-Normal FALSE #> 9394 588 1.0601227 0.260760641 fv Gamma Cox, Log-Normal FALSE #> 9410 589 0.7426001 0.163007177 fv Gamma Cox, Log-Normal FALSE #> 9426 590 0.8895731 0.197968824 fv Gamma Cox, Log-Normal FALSE #> 9442 591 0.9799824 0.254028822 fv Gamma Cox, Log-Normal FALSE #> 9458 592 1.2819594 0.227298189 fv Gamma Cox, Log-Normal FALSE #> 9474 593 0.9126781 0.272510318 fv Gamma Cox, Log-Normal FALSE #> 9490 594 0.9415930 0.242944719 fv Gamma Cox, Log-Normal FALSE #> 9506 595 0.8669225 0.154822055 fv Gamma Cox, Log-Normal FALSE #> 9522 596 1.2023114 0.234135962 fv Gamma Cox, Log-Normal FALSE #> 9538 597 1.1852910 0.306402855 fv Gamma Cox, Log-Normal FALSE #> 9554 598 1.0144108 0.236994186 fv Gamma Cox, Log-Normal FALSE #> 9570 599 1.5141491 0.267682298 fv Gamma Cox, Log-Normal FALSE #> 9586 600 1.3093034 0.231071705 fv Gamma Cox, Log-Normal FALSE #> 9602 601 0.9685267 0.220530237 fv Gamma Cox, Log-Normal FALSE #> 9618 602 0.9567572 0.270622698 fv Gamma Cox, Log-Normal FALSE #> 9634 603 0.9007697 0.220945058 fv Gamma Cox, Log-Normal FALSE #> 9650 604 1.2452340 0.442246635 fv Gamma Cox, Log-Normal TRUE #> 9666 605 1.2222252 0.357745466 fv Gamma Cox, Log-Normal FALSE #> 9682 606 1.0475542 0.230114466 fv Gamma Cox, Log-Normal FALSE #> 9698 607 0.8173250 0.184012955 fv Gamma Cox, Log-Normal FALSE #> 9714 608 1.0264445 0.211869827 fv Gamma Cox, Log-Normal FALSE #> 9730 609 1.3393035 0.328197864 fv Gamma Cox, Log-Normal FALSE #> 9746 610 1.1612145 0.269944445 fv Gamma Cox, Log-Normal FALSE #> 9762 611 0.8716488 0.218240481 fv Gamma Cox, Log-Normal FALSE #> 9778 612 1.2478780 0.254679202 fv Gamma Cox, Log-Normal FALSE #> 9794 613 0.9089129 0.180981311 fv Gamma Cox, Log-Normal FALSE #> 9810 614 0.8236289 0.176298875 fv Gamma Cox, Log-Normal FALSE #> 9826 615 0.7781034 0.172342440 fv Gamma Cox, Log-Normal FALSE #> 9842 616 1.3207941 0.299666982 fv Gamma Cox, Log-Normal FALSE #> 9858 617 1.3523404 0.308465331 fv Gamma Cox, Log-Normal FALSE #> 9874 618 0.7054131 0.154359305 fv Gamma Cox, Log-Normal FALSE #> 9890 619 0.7621622 0.144288017 fv Gamma Cox, Log-Normal FALSE #> 9906 620 0.9294349 0.245020462 fv Gamma Cox, Log-Normal FALSE #> 9922 621 1.0852212 0.238577452 fv Gamma Cox, Log-Normal FALSE #> 9938 622 1.6889800 0.375733753 fv Gamma Cox, Log-Normal TRUE #> 9954 623 0.6497480 0.112506675 fv Gamma Cox, Log-Normal FALSE #> 9970 624 0.9417119 0.185039732 fv Gamma Cox, Log-Normal FALSE #> 9986 625 0.9615533 0.250108888 fv Gamma Cox, Log-Normal FALSE #> 10002 626 0.6491316 0.143634254 fv Gamma Cox, Log-Normal FALSE #> 10018 627 0.7991016 0.265477031 fv Gamma Cox, Log-Normal FALSE #> 10034 628 0.9209861 0.166585647 fv Gamma Cox, Log-Normal FALSE #> 10050 629 0.7470039 0.203007785 fv Gamma Cox, Log-Normal FALSE #> 10066 630 1.0690011 0.196367163 fv Gamma Cox, Log-Normal FALSE #> 10082 631 1.2764893 0.441219524 fv Gamma Cox, Log-Normal TRUE #> 10098 632 0.6869833 0.163540177 fv Gamma Cox, Log-Normal FALSE #> 10114 633 0.7001066 0.175297359 fv Gamma Cox, Log-Normal FALSE #> 10130 634 0.7032764 0.156311954 fv Gamma Cox, Log-Normal FALSE #> 10146 635 0.5491568 0.134395251 fv Gamma Cox, Log-Normal FALSE #> 10162 636 0.8513401 0.270874157 fv Gamma Cox, Log-Normal FALSE #> 10178 637 0.9566533 0.176784838 fv Gamma Cox, Log-Normal FALSE #> 10194 638 0.7933296 0.280428246 fv Gamma Cox, Log-Normal FALSE #> 10210 639 0.8824408 0.186779642 fv Gamma Cox, Log-Normal FALSE #> 10226 640 0.6936361 0.161515249 fv Gamma Cox, Log-Normal FALSE #> 10242 641 0.8355947 0.150330827 fv Gamma Cox, Log-Normal FALSE #> 10258 642 0.9279600 0.209555469 fv Gamma Cox, Log-Normal FALSE #> 10274 643 0.8074046 0.197113858 fv Gamma Cox, Log-Normal FALSE #> 10290 644 1.3611674 0.423889750 fv Gamma Cox, Log-Normal FALSE #> 10306 645 0.6554522 0.148982743 fv Gamma Cox, Log-Normal FALSE #> 10322 646 0.7228923 0.181773449 fv Gamma Cox, Log-Normal FALSE #> 10338 647 1.8011240 0.416701461 fv Gamma Cox, Log-Normal TRUE #> 10354 648 0.9024813 0.147263424 fv Gamma Cox, Log-Normal FALSE #> 10370 649 1.1228993 0.247566629 fv Gamma Cox, Log-Normal FALSE #> 10386 650 1.3658269 0.347823938 fv Gamma Cox, Log-Normal FALSE #> 10402 651 1.3826703 0.312517206 fv Gamma Cox, Log-Normal FALSE #> 10418 652 0.9966013 0.263252969 fv Gamma Cox, Log-Normal FALSE #> 10434 653 1.3938498 0.378569327 fv Gamma Cox, Log-Normal FALSE #> 10450 654 0.7498765 0.198991232 fv Gamma Cox, Log-Normal FALSE #> 10466 655 0.8188198 0.148632081 fv Gamma Cox, Log-Normal FALSE #> 10482 656 0.9838947 0.237718941 fv Gamma Cox, Log-Normal FALSE #> 10498 657 0.9509122 0.222243095 fv Gamma Cox, Log-Normal FALSE #> 10514 658 1.0495215 0.221859992 fv Gamma Cox, Log-Normal FALSE #> 10530 659 1.1024600 0.246582294 fv Gamma Cox, Log-Normal FALSE #> 10546 660 1.1214802 0.345331077 fv Gamma Cox, Log-Normal FALSE #> 10562 661 0.8252543 0.208741101 fv Gamma Cox, Log-Normal FALSE #> 10578 662 0.5439256 0.113712777 fv Gamma Cox, Log-Normal FALSE #> 10594 663 0.7762586 0.185818017 fv Gamma Cox, Log-Normal FALSE #> 10610 664 0.9321685 0.141486786 fv Gamma Cox, Log-Normal FALSE #> 10626 665 0.9641151 0.245897886 fv Gamma Cox, Log-Normal FALSE #> 10642 666 0.9707480 0.281544181 fv Gamma Cox, Log-Normal FALSE #> 10658 667 1.1775076 0.327488577 fv Gamma Cox, Log-Normal FALSE #> 10674 668 1.2100674 0.383647041 fv Gamma Cox, Log-Normal FALSE #> 10690 669 0.7079595 0.202483076 fv Gamma Cox, Log-Normal FALSE #> 10706 670 1.1701748 0.308158336 fv Gamma Cox, Log-Normal FALSE #> 10722 671 1.2338212 0.274821951 fv Gamma Cox, Log-Normal FALSE #> 10738 672 0.7795158 0.186065151 fv Gamma Cox, Log-Normal FALSE #> 10754 673 0.8208763 0.152826786 fv Gamma Cox, Log-Normal FALSE #> 10770 674 1.3740360 0.392376078 fv Gamma Cox, Log-Normal FALSE #> 10786 675 0.9580433 0.177217021 fv Gamma Cox, Log-Normal FALSE #> 10802 676 0.6479120 0.215451916 fv Gamma Cox, Log-Normal FALSE #> 10818 677 0.8237457 0.173619019 fv Gamma Cox, Log-Normal FALSE #> 10834 678 1.1448183 0.294799498 fv Gamma Cox, Log-Normal FALSE #> 10850 679 1.4160710 0.319465728 fv Gamma Cox, Log-Normal FALSE #> 10866 680 1.0010333 0.366282201 fv Gamma Cox, Log-Normal FALSE #> 10882 681 0.7361065 0.213144710 fv Gamma Cox, Log-Normal FALSE #> 10898 682 0.9640440 0.204357977 fv Gamma Cox, Log-Normal FALSE #> 10914 683 1.1832964 0.328296114 fv Gamma Cox, Log-Normal FALSE #> 10930 684 1.2352413 0.256935059 fv Gamma Cox, Log-Normal FALSE #> 10946 685 0.8576592 0.208323295 fv Gamma Cox, Log-Normal FALSE #> 10962 686 0.6559387 0.148327340 fv Gamma Cox, Log-Normal FALSE #> 10978 687 1.3955422 0.274232845 fv Gamma Cox, Log-Normal FALSE #> 10994 688 0.9477181 0.185695063 fv Gamma Cox, Log-Normal FALSE #> 11010 689 0.8098337 0.146404742 fv Gamma Cox, Log-Normal FALSE #> 11026 690 1.2282291 0.224138226 fv Gamma Cox, Log-Normal FALSE #> 11042 691 1.0052381 0.169059700 fv Gamma Cox, Log-Normal FALSE #> 11058 692 0.9559934 0.175651808 fv Gamma Cox, Log-Normal FALSE #> 11074 693 1.3037994 0.320750495 fv Gamma Cox, Log-Normal FALSE #> 11090 694 1.0887350 0.262845102 fv Gamma Cox, Log-Normal FALSE #> 11106 695 1.0245538 0.316179341 fv Gamma Cox, Log-Normal FALSE #> 11122 696 1.0057025 0.279965660 fv Gamma Cox, Log-Normal FALSE #> 11138 697 1.0332112 0.228229709 fv Gamma Cox, Log-Normal FALSE #> 11154 698 1.0008029 0.230392985 fv Gamma Cox, Log-Normal FALSE #> 11170 699 0.9448768 0.148606204 fv Gamma Cox, Log-Normal FALSE #> 11186 700 1.6100507 0.301322970 fv Gamma Cox, Log-Normal TRUE #> 11202 701 0.8168552 0.166749623 fv Gamma Cox, Log-Normal FALSE #> 11218 702 0.7951008 0.229465092 fv Gamma Cox, Log-Normal FALSE #> 11234 703 0.7124699 0.176676006 fv Gamma Cox, Log-Normal FALSE #> 11250 704 1.2850043 0.227968238 fv Gamma Cox, Log-Normal FALSE #> 11266 705 1.4407282 0.311041525 fv Gamma Cox, Log-Normal FALSE #> 11282 706 1.0292844 0.184432785 fv Gamma Cox, Log-Normal FALSE #> 11298 707 0.7592113 0.220094759 fv Gamma Cox, Log-Normal FALSE #> 11314 708 1.1536924 0.378570168 fv Gamma Cox, Log-Normal FALSE #> 11330 709 0.9301348 0.152019700 fv Gamma Cox, Log-Normal FALSE #> 11346 710 0.9747393 0.152258390 fv Gamma Cox, Log-Normal FALSE #> 11362 711 0.4419933 0.091587040 fv Gamma Cox, Log-Normal FALSE #> 11378 712 0.9574598 0.232824090 fv Gamma Cox, Log-Normal FALSE #> 11394 713 0.9989393 0.196517724 fv Gamma Cox, Log-Normal FALSE #> 11410 714 1.2846766 0.430198645 fv Gamma Cox, Log-Normal TRUE #> 11426 715 1.3765564 0.287137467 fv Gamma Cox, Log-Normal FALSE #> 11442 716 1.0736204 0.271160711 fv Gamma Cox, Log-Normal FALSE #> 11458 717 0.8447250 0.275879055 fv Gamma Cox, Log-Normal FALSE #> 11474 718 1.0081585 0.250844357 fv Gamma Cox, Log-Normal FALSE #> 11490 719 0.7888853 0.143021641 fv Gamma Cox, Log-Normal FALSE #> 11506 720 0.8275914 0.169821218 fv Gamma Cox, Log-Normal FALSE #> 11522 721 1.0362940 0.250343175 fv Gamma Cox, Log-Normal FALSE #> 11538 722 1.2802454 0.333262567 fv Gamma Cox, Log-Normal FALSE #> 11554 723 1.0636312 0.323034788 fv Gamma Cox, Log-Normal FALSE #> 11570 724 0.7908268 0.162506524 fv Gamma Cox, Log-Normal FALSE #> 11586 725 0.8741268 0.195905074 fv Gamma Cox, Log-Normal FALSE #> 11602 726 0.7664078 0.217471393 fv Gamma Cox, Log-Normal FALSE #> 11618 727 1.1345593 0.312048852 fv Gamma Cox, Log-Normal FALSE #> 11634 728 0.6815268 0.256231339 fv Gamma Cox, Log-Normal FALSE #> 11650 729 1.0012762 0.190967467 fv Gamma Cox, Log-Normal FALSE #> 11666 730 1.3645868 0.417363902 fv Gamma Cox, Log-Normal FALSE #> 11682 731 1.4012566 0.325484691 fv Gamma Cox, Log-Normal FALSE #> 11698 732 1.2333383 0.213696113 fv Gamma Cox, Log-Normal FALSE #> 11714 733 0.7422468 0.180001456 fv Gamma Cox, Log-Normal FALSE #> 11730 734 0.7656523 0.212408503 fv Gamma Cox, Log-Normal FALSE #> 11746 735 1.1366086 0.281915857 fv Gamma Cox, Log-Normal FALSE #> 11762 736 1.0835050 0.304493693 fv Gamma Cox, Log-Normal FALSE #> 11778 737 0.9811711 0.246886659 fv Gamma Cox, Log-Normal FALSE #> 11794 738 0.8368011 0.340475523 fv Gamma Cox, Log-Normal FALSE #> 11810 739 0.9087165 0.200542432 fv Gamma Cox, Log-Normal FALSE #> 11826 740 0.8700050 0.193399163 fv Gamma Cox, Log-Normal FALSE #> 11842 741 1.0493966 0.242318925 fv Gamma Cox, Log-Normal FALSE #> 11858 742 0.7285165 0.152167499 fv Gamma Cox, Log-Normal FALSE #> 11874 743 1.0809077 0.253157125 fv Gamma Cox, Log-Normal FALSE #> 11890 744 1.3116924 0.349032088 fv Gamma Cox, Log-Normal FALSE #> 11906 745 0.8668810 0.255673856 fv Gamma Cox, Log-Normal FALSE #> 11922 746 0.5031063 0.086395670 fv Gamma Cox, Log-Normal FALSE #> 11938 747 0.8514091 0.212312538 fv Gamma Cox, Log-Normal FALSE #> 11954 748 1.0763630 0.181266049 fv Gamma Cox, Log-Normal FALSE #> 11970 749 0.8902869 0.251796213 fv Gamma Cox, Log-Normal FALSE #> 11986 750 0.6972912 0.147370632 fv Gamma Cox, Log-Normal FALSE #> 12002 751 1.1695505 0.209407579 fv Gamma Cox, Log-Normal FALSE #> 12018 752 1.0586978 0.231401972 fv Gamma Cox, Log-Normal FALSE #> 12034 753 0.7359262 0.219724376 fv Gamma Cox, Log-Normal FALSE #> 12050 754 1.0893551 0.230029873 fv Gamma Cox, Log-Normal FALSE #> 12066 755 0.9971904 0.175161437 fv Gamma Cox, Log-Normal FALSE #> 12082 756 1.5691599 0.295112101 fv Gamma Cox, Log-Normal FALSE #> 12098 757 0.7713164 0.186796598 fv Gamma Cox, Log-Normal FALSE #> 12114 758 0.6428408 0.152198490 fv Gamma Cox, Log-Normal FALSE #> 12130 759 0.7885099 0.154161821 fv Gamma Cox, Log-Normal FALSE #> 12146 760 0.7606324 0.162254956 fv Gamma Cox, Log-Normal FALSE #> 12162 761 1.0477843 0.279182770 fv Gamma Cox, Log-Normal FALSE #> 12178 762 0.8354850 0.168909484 fv Gamma Cox, Log-Normal FALSE #> 12194 763 0.7569949 0.166489594 fv Gamma Cox, Log-Normal FALSE #> 12210 764 0.9842876 0.267116745 fv Gamma Cox, Log-Normal FALSE #> 12226 765 0.7749107 0.196827870 fv Gamma Cox, Log-Normal FALSE #> 12242 766 0.6556944 0.126006011 fv Gamma Cox, Log-Normal FALSE #> 12258 767 0.9765773 0.221128587 fv Gamma Cox, Log-Normal FALSE #> 12274 768 1.0265077 0.226275490 fv Gamma Cox, Log-Normal FALSE #> 12290 769 1.0165964 0.206041439 fv Gamma Cox, Log-Normal FALSE #> 12306 770 0.7551010 0.216493504 fv Gamma Cox, Log-Normal FALSE #> 12322 771 0.6450434 0.111705699 fv Gamma Cox, Log-Normal FALSE #> 12338 772 1.1912443 0.351233857 fv Gamma Cox, Log-Normal FALSE #> 12354 773 0.8052817 0.219677124 fv Gamma Cox, Log-Normal FALSE #> 12370 774 0.9495006 0.183682679 fv Gamma Cox, Log-Normal FALSE #> 12386 775 1.4295249 0.357730455 fv Gamma Cox, Log-Normal FALSE #> 12402 776 0.9464133 0.161655065 fv Gamma Cox, Log-Normal FALSE #> 12418 777 0.7990472 0.188022633 fv Gamma Cox, Log-Normal FALSE #> 12434 778 1.1233230 0.279950067 fv Gamma Cox, Log-Normal FALSE #> 12450 779 1.1826743 0.287929833 fv Gamma Cox, Log-Normal FALSE #> 12466 780 1.1225019 0.260847577 fv Gamma Cox, Log-Normal FALSE #> 12482 781 0.8087508 0.219948457 fv Gamma Cox, Log-Normal FALSE #> 12498 782 0.9323221 0.354579850 fv Gamma Cox, Log-Normal FALSE #> 12514 783 0.9546923 0.172823948 fv Gamma Cox, Log-Normal FALSE #> 12530 784 0.8109267 0.135871785 fv Gamma Cox, Log-Normal FALSE #> 12546 785 0.8227292 0.153966550 fv Gamma Cox, Log-Normal FALSE #> 12562 786 1.0155313 0.221229923 fv Gamma Cox, Log-Normal FALSE #> 12578 787 1.2265997 0.381780641 fv Gamma Cox, Log-Normal FALSE #> 12594 788 0.9968011 0.271020910 fv Gamma Cox, Log-Normal FALSE #> 12610 789 0.9961110 0.264108258 fv Gamma Cox, Log-Normal FALSE #> 12626 790 1.3866559 0.403052216 fv Gamma Cox, Log-Normal FALSE #> 12642 791 1.2942187 0.345936087 fv Gamma Cox, Log-Normal FALSE #> 12658 792 1.3274802 0.294559219 fv Gamma Cox, Log-Normal FALSE #> 12674 793 0.8710422 0.188337532 fv Gamma Cox, Log-Normal FALSE #> 12690 794 0.4656342 0.086212385 fv Gamma Cox, Log-Normal FALSE #> 12706 795 0.9488004 0.249943737 fv Gamma Cox, Log-Normal FALSE #> 12722 796 1.0833683 0.238579911 fv Gamma Cox, Log-Normal FALSE #> 12738 797 0.7134433 0.174971445 fv Gamma Cox, Log-Normal FALSE #> 12754 798 0.7488683 0.203887403 fv Gamma Cox, Log-Normal FALSE #> 12770 799 1.4826244 0.460159427 fv Gamma Cox, Log-Normal TRUE #> 12786 800 1.2555919 0.228477636 fv Gamma Cox, Log-Normal FALSE #> 12802 801 0.7767814 0.216792490 fv Gamma Cox, Log-Normal FALSE #> 12818 802 0.8039006 0.143589898 fv Gamma Cox, Log-Normal FALSE #> 12834 803 0.9486562 0.154256665 fv Gamma Cox, Log-Normal FALSE #> 12850 804 1.0328948 0.231771198 fv Gamma Cox, Log-Normal FALSE #> 12866 805 0.9798605 0.228212803 fv Gamma Cox, Log-Normal FALSE #> 12882 806 0.7306827 0.144691202 fv Gamma Cox, Log-Normal FALSE #> 12898 807 1.2700539 0.278143788 fv Gamma Cox, Log-Normal FALSE #> 12914 808 0.9736841 0.293168234 fv Gamma Cox, Log-Normal FALSE #> 12930 809 1.3303860 0.442691890 fv Gamma Cox, Log-Normal TRUE #> 12946 810 0.9218010 0.172303136 fv Gamma Cox, Log-Normal FALSE #> 12962 811 1.3147421 0.258687544 fv Gamma Cox, Log-Normal FALSE #> 12978 812 0.8372171 0.211667829 fv Gamma Cox, Log-Normal FALSE #> 12994 813 1.1669162 0.244223344 fv Gamma Cox, Log-Normal FALSE #> 13010 814 0.9559600 0.260826010 fv Gamma Cox, Log-Normal FALSE #> 13026 815 1.4235527 0.327459602 fv Gamma Cox, Log-Normal FALSE #> 13042 816 0.7081849 0.196971428 fv Gamma Cox, Log-Normal FALSE #> 13058 817 1.2131452 0.372971263 fv Gamma Cox, Log-Normal FALSE #> 13074 818 0.8741341 0.256450653 fv Gamma Cox, Log-Normal FALSE #> 13090 819 1.3459854 0.408062364 fv Gamma Cox, Log-Normal FALSE #> 13106 820 0.8721563 0.225198849 fv Gamma Cox, Log-Normal FALSE #> 13122 821 0.9494623 0.270727048 fv Gamma Cox, Log-Normal FALSE #> 13138 822 0.6048632 0.109814168 fv Gamma Cox, Log-Normal FALSE #> 13154 823 1.0187693 0.277289565 fv Gamma Cox, Log-Normal FALSE #> 13170 824 0.9878398 0.232512666 fv Gamma Cox, Log-Normal FALSE #> 13186 825 0.6361843 0.116639807 fv Gamma Cox, Log-Normal FALSE #> 13202 826 0.9407440 0.186621880 fv Gamma Cox, Log-Normal FALSE #> 13218 827 0.9250230 0.206624297 fv Gamma Cox, Log-Normal FALSE #> 13234 828 1.4586544 0.400674246 fv Gamma Cox, Log-Normal FALSE #> 13250 829 0.7062700 0.123119510 fv Gamma Cox, Log-Normal FALSE #> 13266 830 1.2702881 0.292952627 fv Gamma Cox, Log-Normal FALSE #> 13282 831 0.7167738 0.210742781 fv Gamma Cox, Log-Normal FALSE #> 13298 832 0.8667566 0.156346725 fv Gamma Cox, Log-Normal FALSE #> 13314 833 0.9890096 0.226437277 fv Gamma Cox, Log-Normal FALSE #> 13330 834 0.6529406 0.148180979 fv Gamma Cox, Log-Normal FALSE #> 13346 835 0.9492850 0.219981130 fv Gamma Cox, Log-Normal FALSE #> 13362 836 0.9453736 0.258429879 fv Gamma Cox, Log-Normal FALSE #> 13378 837 0.9578582 0.272680782 fv Gamma Cox, Log-Normal FALSE #> 13394 838 1.2202325 0.219416306 fv Gamma Cox, Log-Normal FALSE #> 13410 839 0.7622538 0.136150062 fv Gamma Cox, Log-Normal FALSE #> 13426 840 1.0482271 0.241604455 fv Gamma Cox, Log-Normal FALSE #> 13442 841 0.9043676 0.148058562 fv Gamma Cox, Log-Normal FALSE #> 13458 842 0.9913150 0.280168128 fv Gamma Cox, Log-Normal FALSE #> 13474 843 1.3223045 0.330990887 fv Gamma Cox, Log-Normal FALSE #> 13490 844 1.0021235 0.292823919 fv Gamma Cox, Log-Normal FALSE #> 13506 845 1.4004414 0.318104284 fv Gamma Cox, Log-Normal FALSE #> 13522 846 0.8416453 0.250660878 fv Gamma Cox, Log-Normal FALSE #> 13538 847 0.8243172 0.288155697 fv Gamma Cox, Log-Normal FALSE #> 13554 848 0.5899439 0.122537752 fv Gamma Cox, Log-Normal FALSE #> 13570 849 0.9414000 0.178355553 fv Gamma Cox, Log-Normal FALSE #> 13586 850 0.8407891 0.160878072 fv Gamma Cox, Log-Normal FALSE #> 13602 851 0.9823066 0.238544662 fv Gamma Cox, Log-Normal FALSE #> 13618 852 0.5618333 0.110283440 fv Gamma Cox, Log-Normal FALSE #> 13634 853 0.9624791 0.197866836 fv Gamma Cox, Log-Normal FALSE #> 13650 854 0.7179179 0.157504403 fv Gamma Cox, Log-Normal FALSE #> 13666 855 1.2551276 0.310599897 fv Gamma Cox, Log-Normal FALSE #> 13682 856 1.0833605 0.207529494 fv Gamma Cox, Log-Normal FALSE #> 13698 857 0.7307127 0.179278420 fv Gamma Cox, Log-Normal FALSE #> 13714 858 0.8702718 0.224544233 fv Gamma Cox, Log-Normal FALSE #> 13730 859 0.8669632 0.270433850 fv Gamma Cox, Log-Normal FALSE #> 13746 860 0.7547683 0.132468609 fv Gamma Cox, Log-Normal FALSE #> 13762 861 1.1262160 0.257465167 fv Gamma Cox, Log-Normal FALSE #> 13778 862 0.8389212 0.161464653 fv Gamma Cox, Log-Normal FALSE #> 13794 863 1.0119069 0.212102924 fv Gamma Cox, Log-Normal FALSE #> 13810 864 0.9537157 0.216189336 fv Gamma Cox, Log-Normal FALSE #> 13826 865 1.0120405 0.205255774 fv Gamma Cox, Log-Normal FALSE #> 13842 866 0.7974231 0.133804459 fv Gamma Cox, Log-Normal FALSE #> 13858 867 0.9060825 0.156806604 fv Gamma Cox, Log-Normal FALSE #> 13874 868 0.9688863 0.217092971 fv Gamma Cox, Log-Normal FALSE #> 13890 869 1.0266109 0.254779900 fv Gamma Cox, Log-Normal FALSE #> 13906 870 0.9479034 0.327682086 fv Gamma Cox, Log-Normal FALSE #> 13922 871 1.2468126 0.291359832 fv Gamma Cox, Log-Normal FALSE #> 13938 872 1.3083943 0.333635934 fv Gamma Cox, Log-Normal FALSE #> 13954 873 1.1743319 0.209116592 fv Gamma Cox, Log-Normal FALSE #> 13970 874 1.5305586 0.443951756 fv Gamma Cox, Log-Normal TRUE #> 13986 875 0.7607191 0.145312089 fv Gamma Cox, Log-Normal FALSE #> 14002 876 0.8779484 0.192866111 fv Gamma Cox, Log-Normal FALSE #> 14018 877 0.9984085 0.211132798 fv Gamma Cox, Log-Normal FALSE #> 14034 878 1.0891524 0.319090619 fv Gamma Cox, Log-Normal FALSE #> 14050 879 0.8993115 0.342239070 fv Gamma Cox, Log-Normal FALSE #> 14066 880 1.4072146 0.315934948 fv Gamma Cox, Log-Normal FALSE #> 14082 881 1.1304945 0.294741363 fv Gamma Cox, Log-Normal FALSE #> 14098 882 1.2693027 0.233265611 fv Gamma Cox, Log-Normal FALSE #> 14114 883 0.7511724 0.169083381 fv Gamma Cox, Log-Normal FALSE #> 14130 884 0.7769513 0.153621573 fv Gamma Cox, Log-Normal FALSE #> 14146 885 0.7564225 0.181152611 fv Gamma Cox, Log-Normal FALSE #> 14162 886 0.7533057 0.187639873 fv Gamma Cox, Log-Normal FALSE #> 14178 887 0.9411945 0.197051463 fv Gamma Cox, Log-Normal FALSE #> 14194 888 1.3209266 0.241801270 fv Gamma Cox, Log-Normal FALSE #> 14210 889 1.0464163 0.206246274 fv Gamma Cox, Log-Normal FALSE #> 14226 890 0.7922736 0.208611946 fv Gamma Cox, Log-Normal FALSE #> 14242 891 0.6048097 0.093277354 fv Gamma Cox, Log-Normal FALSE #> 14258 892 0.9090234 0.181751021 fv Gamma Cox, Log-Normal FALSE #> 14274 893 1.1860418 0.343862998 fv Gamma Cox, Log-Normal FALSE #> 14290 894 0.7139899 0.164547200 fv Gamma Cox, Log-Normal FALSE #> 14306 895 0.8511802 0.176060960 fv Gamma Cox, Log-Normal FALSE #> 14322 896 1.1897072 0.217763226 fv Gamma Cox, Log-Normal FALSE #> 14338 897 0.8726068 0.157842972 fv Gamma Cox, Log-Normal FALSE #> 14354 898 1.1845061 0.237803283 fv Gamma Cox, Log-Normal FALSE #> 14370 899 1.0443795 0.246772790 fv Gamma Cox, Log-Normal FALSE #> 14386 900 1.1583504 0.323680854 fv Gamma Cox, Log-Normal FALSE #> 14402 901 0.7415650 0.170452452 fv Gamma Cox, Log-Normal FALSE #> 14418 902 0.7003490 0.139088567 fv Gamma Cox, Log-Normal FALSE #> 14434 903 0.7841447 0.149742194 fv Gamma Cox, Log-Normal FALSE #> 14450 904 1.5901697 0.482677057 fv Gamma Cox, Log-Normal TRUE #> 14466 905 0.7896432 0.138737460 fv Gamma Cox, Log-Normal FALSE #> 14482 906 1.3915225 0.266295262 fv Gamma Cox, Log-Normal FALSE #> 14498 907 1.0235347 0.258435199 fv Gamma Cox, Log-Normal FALSE #> 14514 908 0.8794528 0.274871726 fv Gamma Cox, Log-Normal FALSE #> 14530 909 0.7616585 0.153069885 fv Gamma Cox, Log-Normal FALSE #> 14546 910 0.6709826 0.127266750 fv Gamma Cox, Log-Normal FALSE #> 14562 911 0.9426690 0.305758226 fv Gamma Cox, Log-Normal FALSE #> 14578 912 0.6876512 0.115011789 fv Gamma Cox, Log-Normal FALSE #> 14594 913 0.9720124 0.200778297 fv Gamma Cox, Log-Normal FALSE #> 14610 914 0.8574690 0.251944490 fv Gamma Cox, Log-Normal FALSE #> 14626 915 1.1770862 0.283699685 fv Gamma Cox, Log-Normal FALSE #> 14642 916 0.6674906 0.129719682 fv Gamma Cox, Log-Normal FALSE #> 14658 917 1.0089240 0.301683903 fv Gamma Cox, Log-Normal FALSE #> 14674 918 1.0180468 0.176241349 fv Gamma Cox, Log-Normal FALSE #> 14690 919 0.6774361 0.111074751 fv Gamma Cox, Log-Normal FALSE #> 14706 920 0.9816049 0.176035972 fv Gamma Cox, Log-Normal FALSE #> 14722 921 1.1225462 0.265504818 fv Gamma Cox, Log-Normal FALSE #> 14738 922 1.6005520 0.403568432 fv Gamma Cox, Log-Normal FALSE #> 14754 923 0.9384639 0.171544257 fv Gamma Cox, Log-Normal FALSE #> 14770 924 0.9551133 0.151122096 fv Gamma Cox, Log-Normal FALSE #> 14786 925 1.2062083 0.344311268 fv Gamma Cox, Log-Normal FALSE #> 14802 926 0.9341805 0.185300287 fv Gamma Cox, Log-Normal FALSE #> 14818 927 0.5496008 0.113479221 fv Gamma Cox, Log-Normal FALSE #> 14834 928 0.9298163 0.196767579 fv Gamma Cox, Log-Normal FALSE #> 14850 929 1.0148063 0.250301564 fv Gamma Cox, Log-Normal FALSE #> 14866 930 1.4671972 0.477190164 fv Gamma Cox, Log-Normal TRUE #> 14882 931 0.9037657 0.193220022 fv Gamma Cox, Log-Normal FALSE #> 14898 932 1.2131691 0.230914741 fv Gamma Cox, Log-Normal FALSE #> 14914 933 0.7664552 0.172978498 fv Gamma Cox, Log-Normal FALSE #> 14930 934 0.7235467 0.099478559 fv Gamma Cox, Log-Normal FALSE #> 14946 935 0.5651276 0.109392225 fv Gamma Cox, Log-Normal FALSE #> 14962 936 0.7738704 0.156934151 fv Gamma Cox, Log-Normal FALSE #> 14978 937 1.4874432 0.363632319 fv Gamma Cox, Log-Normal FALSE #> 14994 938 1.0628662 0.267143882 fv Gamma Cox, Log-Normal FALSE #> 15010 939 1.0222365 0.192388758 fv Gamma Cox, Log-Normal FALSE #> 15026 940 1.0277460 0.196087165 fv Gamma Cox, Log-Normal FALSE #> 15042 941 0.8016317 0.159316442 fv Gamma Cox, Log-Normal FALSE #> 15058 942 0.8411527 0.182284638 fv Gamma Cox, Log-Normal FALSE #> 15074 943 0.5594256 0.113623496 fv Gamma Cox, Log-Normal FALSE #> 15090 944 0.7729183 0.124686294 fv Gamma Cox, Log-Normal FALSE #> 15106 945 0.7428305 0.151083868 fv Gamma Cox, Log-Normal FALSE #> 15122 946 1.1677163 0.377504451 fv Gamma Cox, Log-Normal FALSE #> 15138 947 0.8375811 0.210228463 fv Gamma Cox, Log-Normal FALSE #> 15154 948 0.6906720 0.230450716 fv Gamma Cox, Log-Normal FALSE #> 15170 949 0.8148721 0.226169057 fv Gamma Cox, Log-Normal FALSE #> 15186 950 0.7721582 0.203677104 fv Gamma Cox, Log-Normal FALSE #> 15202 951 0.9992324 0.220599272 fv Gamma Cox, Log-Normal FALSE #> 15218 952 0.8222391 0.179491347 fv Gamma Cox, Log-Normal FALSE #> 15234 953 1.6443296 0.391757692 fv Gamma Cox, Log-Normal TRUE #> 15250 954 0.8622421 0.193926799 fv Gamma Cox, Log-Normal FALSE #> 15266 955 1.0271637 0.198165599 fv Gamma Cox, Log-Normal FALSE #> 15282 956 0.7877326 0.190345590 fv Gamma Cox, Log-Normal FALSE #> 15298 957 0.7332077 0.170648591 fv Gamma Cox, Log-Normal FALSE #> 15314 958 0.6742120 0.141736639 fv Gamma Cox, Log-Normal FALSE #> 15330 959 0.8116423 0.176636628 fv Gamma Cox, Log-Normal FALSE #> 15346 960 1.0381126 0.247132858 fv Gamma Cox, Log-Normal FALSE #> 15362 961 0.6263490 0.119573651 fv Gamma Cox, Log-Normal FALSE #> 15378 962 1.2298672 0.279659616 fv Gamma Cox, Log-Normal FALSE #> 15394 963 1.3100317 0.351291999 fv Gamma Cox, Log-Normal FALSE #> 15410 964 0.9385725 0.212853684 fv Gamma Cox, Log-Normal FALSE #> 15426 965 0.7237833 0.136184000 fv Gamma Cox, Log-Normal FALSE #> 15442 966 1.0774498 0.255201646 fv Gamma Cox, Log-Normal FALSE #> 15458 967 0.8661890 0.186999729 fv Gamma Cox, Log-Normal FALSE #> 15474 968 0.7440313 0.163577636 fv Gamma Cox, Log-Normal FALSE #> 15490 969 1.0548245 0.323917765 fv Gamma Cox, Log-Normal FALSE #> 15506 970 1.0335275 0.417785729 fv Gamma Cox, Log-Normal FALSE #> 15522 971 0.8920170 0.217781465 fv Gamma Cox, Log-Normal FALSE #> 15538 972 0.8443654 0.262375588 fv Gamma Cox, Log-Normal FALSE #> 15554 973 1.4316470 0.431582164 fv Gamma Cox, Log-Normal TRUE #> 15570 974 0.6408896 0.154553156 fv Gamma Cox, Log-Normal FALSE #> 15586 975 0.5818109 0.121328131 fv Gamma Cox, Log-Normal FALSE #> 15602 976 0.9803179 0.204723535 fv Gamma Cox, Log-Normal FALSE #> 15618 977 1.1977389 0.247126848 fv Gamma Cox, Log-Normal FALSE #> 15634 978 1.1178645 0.327386366 fv Gamma Cox, Log-Normal FALSE #> 15650 979 1.2145658 0.344268311 fv Gamma Cox, Log-Normal FALSE #> 15666 980 0.6638111 0.139988436 fv Gamma Cox, Log-Normal FALSE #> 15682 981 0.9741935 0.298000366 fv Gamma Cox, Log-Normal FALSE #> 15698 982 1.2667102 0.291885120 fv Gamma Cox, Log-Normal FALSE #> 15714 983 0.6366284 0.142543764 fv Gamma Cox, Log-Normal FALSE #> 15730 984 0.9916257 0.230161087 fv Gamma Cox, Log-Normal FALSE #> 15746 985 1.1673924 0.329455282 fv Gamma Cox, Log-Normal FALSE #> 15762 986 0.8093946 0.131512474 fv Gamma Cox, Log-Normal FALSE #> 15778 987 0.6809663 0.166413324 fv Gamma Cox, Log-Normal FALSE #> 15794 988 0.8090418 0.168468434 fv Gamma Cox, Log-Normal FALSE #> 15810 989 1.1203963 0.254390270 fv Gamma Cox, Log-Normal FALSE #> 15826 990 0.8937730 0.181708706 fv Gamma Cox, Log-Normal FALSE #> 15842 991 1.0581390 0.254618273 fv Gamma Cox, Log-Normal FALSE #> 15858 992 1.1236897 0.339523124 fv Gamma Cox, Log-Normal FALSE #> 15874 993 1.4089872 0.331849490 fv Gamma Cox, Log-Normal FALSE #> 15890 994 0.9304340 0.200697045 fv Gamma Cox, Log-Normal FALSE #> 15906 995 0.9726530 0.218311522 fv Gamma Cox, Log-Normal FALSE #> 15922 996 0.8111108 0.164699823 fv Gamma Cox, Log-Normal FALSE #> 15938 997 0.7307507 0.230449780 fv Gamma Cox, Log-Normal FALSE #> 15954 998 0.8727082 0.192062571 fv Gamma Cox, Log-Normal FALSE #> 15970 999 0.6342790 0.116767975 fv Gamma Cox, Log-Normal FALSE #> 15986 1000 0.6557219 0.167090143 fv Gamma Cox, Log-Normal FALSE #> 3 1 0.6583130 0.126035398 fv Gamma RP(P), Gamma FALSE #> 19 2 0.6622712 0.129798360 fv Gamma RP(P), Gamma FALSE #> 35 3 1.0983598 0.207128706 fv Gamma RP(P), Gamma TRUE #> 51 4 0.8432273 0.157280985 fv Gamma RP(P), Gamma FALSE #> 67 5 0.7044549 0.135560564 fv Gamma RP(P), Gamma FALSE #> 83 6 NA NA fv Gamma RP(P), Gamma NA #> 99 7 0.6501343 0.124699716 fv Gamma RP(P), Gamma FALSE #> 115 8 1.0008371 0.185404780 fv Gamma RP(P), Gamma FALSE #> 131 9 0.8262565 0.156514195 fv Gamma RP(P), Gamma FALSE #> 147 10 0.8201887 0.155263227 fv Gamma RP(P), Gamma FALSE #> 163 11 0.8137370 0.155704386 fv Gamma RP(P), Gamma FALSE #> 179 12 0.9939974 0.184176616 fv Gamma RP(P), Gamma FALSE #> 195 13 0.9504802 0.177824029 fv Gamma RP(P), Gamma FALSE #> 211 14 0.5829730 0.115298145 fv Gamma RP(P), Gamma FALSE #> 227 15 0.8822492 0.165491846 fv Gamma RP(P), Gamma FALSE #> 243 16 1.0082479 0.185522929 fv Gamma RP(P), Gamma FALSE #> 259 17 0.5973382 0.115826569 fv Gamma RP(P), Gamma FALSE #> 275 18 0.4678429 0.096466091 fv Gamma RP(P), Gamma FALSE #> 291 19 0.7328936 0.139614821 fv Gamma RP(P), Gamma FALSE #> 307 20 0.9565953 0.179037879 fv Gamma RP(P), Gamma FALSE #> 323 21 0.5538343 0.111582907 fv Gamma RP(P), Gamma FALSE #> 339 22 0.8928450 0.168502035 fv Gamma RP(P), Gamma FALSE #> 355 23 0.6152640 0.118919219 fv Gamma RP(P), Gamma FALSE #> 371 24 0.7529937 0.142318629 fv Gamma RP(P), Gamma FALSE #> 387 25 0.7807405 0.147597737 fv Gamma RP(P), Gamma FALSE #> 403 26 0.7246273 0.139343002 fv Gamma RP(P), Gamma FALSE #> 419 27 1.1459225 0.211761785 fv Gamma RP(P), Gamma TRUE #> 435 28 1.0210508 0.188347485 fv Gamma RP(P), Gamma FALSE #> 451 29 NA NA fv Gamma RP(P), Gamma NA #> 467 30 0.9633830 0.180741692 fv Gamma RP(P), Gamma FALSE #> 483 31 0.6172289 0.121507402 fv Gamma RP(P), Gamma FALSE #> 499 32 0.7787334 0.148374349 fv Gamma RP(P), Gamma FALSE #> 515 33 0.5966043 0.115428078 fv Gamma RP(P), Gamma FALSE #> 531 34 0.5606909 0.109628967 fv Gamma RP(P), Gamma FALSE #> 547 35 0.7528722 0.146377360 fv Gamma RP(P), Gamma FALSE #> 563 36 0.6003364 0.119702219 fv Gamma RP(P), Gamma FALSE #> 579 37 0.5981520 0.116125997 fv Gamma RP(P), Gamma FALSE #> 595 38 0.5258415 0.103812772 fv Gamma RP(P), Gamma FALSE #> 611 39 0.7151039 0.135677110 fv Gamma RP(P), Gamma FALSE #> 627 40 0.4805411 0.096069472 fv Gamma RP(P), Gamma FALSE #> 643 41 1.1955770 0.214465980 fv Gamma RP(P), Gamma TRUE #> 659 42 0.7131938 0.138882554 fv Gamma RP(P), Gamma FALSE #> 675 43 0.8178025 0.153932387 fv Gamma RP(P), Gamma FALSE #> 691 44 0.8517164 0.159552144 fv Gamma RP(P), Gamma FALSE #> 707 45 0.7770909 0.146570656 fv Gamma RP(P), Gamma FALSE #> 723 46 0.7352140 0.139274517 fv Gamma RP(P), Gamma FALSE #> 739 47 0.9088789 0.172401938 fv Gamma RP(P), Gamma FALSE #> 755 48 0.7543666 0.144637452 fv Gamma RP(P), Gamma FALSE #> 771 49 0.7861070 0.150029967 fv Gamma RP(P), Gamma FALSE #> 787 50 0.7194816 0.136551253 fv Gamma RP(P), Gamma FALSE #> 803 51 0.8995177 0.167805917 fv Gamma RP(P), Gamma FALSE #> 819 52 0.6174492 0.122678304 fv Gamma RP(P), Gamma FALSE #> 835 53 0.6750597 0.130159913 fv Gamma RP(P), Gamma FALSE #> 851 54 0.5309038 0.105027975 fv Gamma RP(P), Gamma FALSE #> 867 55 0.7826463 0.148256356 fv Gamma RP(P), Gamma FALSE #> 883 56 0.7107366 0.137819603 fv Gamma RP(P), Gamma FALSE #> 899 57 0.7873837 0.148295624 fv Gamma RP(P), Gamma FALSE #> 915 58 0.6604236 0.129333742 fv Gamma RP(P), Gamma FALSE #> 931 59 0.7204677 0.137455234 fv Gamma RP(P), Gamma FALSE #> 947 60 0.7937934 0.150215116 fv Gamma RP(P), Gamma FALSE #> 963 61 0.6713512 0.128115321 fv Gamma RP(P), Gamma FALSE #> 979 62 0.6573296 0.128650691 fv Gamma RP(P), Gamma FALSE #> 995 63 0.8607833 0.161828019 fv Gamma RP(P), Gamma FALSE #> 1011 64 0.6543734 0.125543532 fv Gamma RP(P), Gamma FALSE #> 1027 65 0.6954612 0.132073413 fv Gamma RP(P), Gamma FALSE #> 1043 66 0.5448760 0.107425993 fv Gamma RP(P), Gamma FALSE #> 1059 67 0.8194453 0.153073618 fv Gamma RP(P), Gamma FALSE #> 1075 68 0.7446814 0.141854001 fv Gamma RP(P), Gamma FALSE #> 1091 69 0.5579674 0.109410924 fv Gamma RP(P), Gamma FALSE #> 1107 70 0.7098810 0.138933383 fv Gamma RP(P), Gamma FALSE #> 1123 71 0.9406454 0.174400598 fv Gamma RP(P), Gamma FALSE #> 1139 72 0.6530136 0.125588844 fv Gamma RP(P), Gamma FALSE #> 1155 73 0.4734941 0.094092884 fv Gamma RP(P), Gamma FALSE #> 1171 74 0.6754394 0.129318464 fv Gamma RP(P), Gamma FALSE #> 1187 75 0.6957309 0.133701552 fv Gamma RP(P), Gamma FALSE #> 1203 76 0.6999121 0.137477919 fv Gamma RP(P), Gamma FALSE #> 1219 77 0.7887771 0.151086397 fv Gamma RP(P), Gamma FALSE #> 1235 78 1.0335900 0.192017708 fv Gamma RP(P), Gamma FALSE #> 1251 79 NA NA fv Gamma RP(P), Gamma NA #> 1267 80 0.6232660 0.123397871 fv Gamma RP(P), Gamma FALSE #> 1283 81 0.9226520 0.175330403 fv Gamma RP(P), Gamma FALSE #> 1299 82 0.7323600 0.139191757 fv Gamma RP(P), Gamma FALSE #> 1315 83 0.4818189 0.099344646 fv Gamma RP(P), Gamma FALSE #> 1331 84 0.7176281 0.136243403 fv Gamma RP(P), Gamma FALSE #> 1347 85 0.7361589 0.140006217 fv Gamma RP(P), Gamma FALSE #> 1363 86 0.7168970 0.136729680 fv Gamma RP(P), Gamma FALSE #> 1379 87 0.5834150 0.113285946 fv Gamma RP(P), Gamma FALSE #> 1395 88 0.7231209 0.137245493 fv Gamma RP(P), Gamma FALSE #> 1411 89 0.7319681 0.139036681 fv Gamma RP(P), Gamma FALSE #> 1427 90 0.8849887 0.164574278 fv Gamma RP(P), Gamma FALSE #> 1443 91 0.7182218 0.136983847 fv Gamma RP(P), Gamma FALSE #> 1459 92 0.6588262 0.126126153 fv Gamma RP(P), Gamma FALSE #> 1475 93 0.9819063 0.189623911 fv Gamma RP(P), Gamma FALSE #> 1491 94 0.8240654 0.157587552 fv Gamma RP(P), Gamma FALSE #> 1507 95 0.7488191 0.141983395 fv Gamma RP(P), Gamma FALSE #> 1523 96 0.4645649 0.093124853 fv Gamma RP(P), Gamma FALSE #> 1539 97 0.5863916 0.113518710 fv Gamma RP(P), Gamma FALSE #> 1555 98 0.8032145 0.151506486 fv Gamma RP(P), Gamma FALSE #> 1571 99 0.5726988 0.112665995 fv Gamma RP(P), Gamma FALSE #> 1587 100 0.8511137 0.158396953 fv Gamma RP(P), Gamma FALSE #> 1603 101 0.8372638 0.155812635 fv Gamma RP(P), Gamma FALSE #> 1619 102 0.7029086 0.133768529 fv Gamma RP(P), Gamma FALSE #> 1635 103 0.8836859 0.168715151 fv Gamma RP(P), Gamma FALSE #> 1651 104 0.7399044 0.139619137 fv Gamma RP(P), Gamma FALSE #> 1667 105 0.8444006 0.159608342 fv Gamma RP(P), Gamma FALSE #> 1683 106 0.7104030 0.135352973 fv Gamma RP(P), Gamma FALSE #> 1699 107 0.8920210 0.169462833 fv Gamma RP(P), Gamma FALSE #> 1715 108 0.7782067 0.151086705 fv Gamma RP(P), Gamma FALSE #> 1731 109 0.6967850 0.134601272 fv Gamma RP(P), Gamma FALSE #> 1747 110 0.8004486 0.151100596 fv Gamma RP(P), Gamma FALSE #> 1763 111 0.8477821 0.159358489 fv Gamma RP(P), Gamma FALSE #> 1779 112 0.4652326 0.093174135 fv Gamma RP(P), Gamma FALSE #> 1795 113 0.5514675 0.108252595 fv Gamma RP(P), Gamma FALSE #> 1811 114 1.1754267 0.213550148 fv Gamma RP(P), Gamma TRUE #> 1827 115 0.6453176 0.124038453 fv Gamma RP(P), Gamma FALSE #> 1843 116 0.5128212 0.101337623 fv Gamma RP(P), Gamma FALSE #> 1859 117 0.7576375 0.142629401 fv Gamma RP(P), Gamma FALSE #> 1875 118 0.5586394 0.109635442 fv Gamma RP(P), Gamma FALSE #> 1891 119 0.6029588 0.117070228 fv Gamma RP(P), Gamma FALSE #> 1907 120 0.7150186 0.136386100 fv Gamma RP(P), Gamma FALSE #> 1923 121 0.6403640 0.124114963 fv Gamma RP(P), Gamma FALSE #> 1939 122 0.6358076 0.123045049 fv Gamma RP(P), Gamma FALSE #> 1955 123 0.7902879 0.149476111 fv Gamma RP(P), Gamma FALSE #> 1971 124 0.7337196 0.138801406 fv Gamma RP(P), Gamma FALSE #> 1987 125 0.8200071 0.155766631 fv Gamma RP(P), Gamma FALSE #> 2003 126 1.0013545 0.191643283 fv Gamma RP(P), Gamma FALSE #> 2019 127 0.8700811 0.162504747 fv Gamma RP(P), Gamma FALSE #> 2035 128 0.8632368 0.161576650 fv Gamma RP(P), Gamma FALSE #> 2051 129 0.5996664 0.119267007 fv Gamma RP(P), Gamma FALSE #> 2067 130 0.6725998 0.129252647 fv Gamma RP(P), Gamma FALSE #> 2083 131 0.6140982 0.117746976 fv Gamma RP(P), Gamma FALSE #> 2099 132 0.7648175 0.148356745 fv Gamma RP(P), Gamma FALSE #> 2115 133 0.7689487 0.147279141 fv Gamma RP(P), Gamma FALSE #> 2131 134 0.7587084 0.143867770 fv Gamma RP(P), Gamma FALSE #> 2147 135 0.5861381 0.114200376 fv Gamma RP(P), Gamma FALSE #> 2163 136 0.8141926 0.154375749 fv Gamma RP(P), Gamma FALSE #> 2179 137 0.8289906 0.155615181 fv Gamma RP(P), Gamma FALSE #> 2195 138 0.9755553 0.183087173 fv Gamma RP(P), Gamma FALSE #> 2211 139 0.6394931 0.123231427 fv Gamma RP(P), Gamma FALSE #> 2227 140 0.7139152 0.135322499 fv Gamma RP(P), Gamma FALSE #> 2243 141 0.5553028 0.110080872 fv Gamma RP(P), Gamma FALSE #> 2259 142 0.6996978 0.133621865 fv Gamma RP(P), Gamma FALSE #> 2275 143 1.1445345 0.218513226 fv Gamma RP(P), Gamma TRUE #> 2291 144 0.8547572 0.159213535 fv Gamma RP(P), Gamma FALSE #> 2307 145 0.6957523 0.133145347 fv Gamma RP(P), Gamma FALSE #> 2323 146 0.6861047 0.131992921 fv Gamma RP(P), Gamma FALSE #> 2339 147 NA NA fv Gamma RP(P), Gamma NA #> 2355 148 0.5179757 0.102001564 fv Gamma RP(P), Gamma FALSE #> 2371 149 0.6846178 0.131810489 fv Gamma RP(P), Gamma FALSE #> 2387 150 NA NA fv Gamma RP(P), Gamma NA #> 2403 151 0.8349086 0.156790347 fv Gamma RP(P), Gamma FALSE #> 2419 152 0.7973294 0.152804025 fv Gamma RP(P), Gamma FALSE #> 2435 153 0.4923993 0.097955760 fv Gamma RP(P), Gamma FALSE #> 2451 154 0.8363995 0.156721844 fv Gamma RP(P), Gamma FALSE #> 2467 155 0.6940619 0.135793329 fv Gamma RP(P), Gamma FALSE #> 2483 156 0.7151754 0.135913072 fv Gamma RP(P), Gamma FALSE #> 2499 157 0.9592753 0.181238490 fv Gamma RP(P), Gamma FALSE #> 2515 158 0.9946384 0.187427777 fv Gamma RP(P), Gamma FALSE #> 2531 159 0.5061336 0.100702406 fv Gamma RP(P), Gamma FALSE #> 2547 160 0.5671472 0.110846444 fv Gamma RP(P), Gamma FALSE #> 2563 161 1.1633775 0.212438568 fv Gamma RP(P), Gamma TRUE #> 2579 162 0.6706864 0.130117295 fv Gamma RP(P), Gamma FALSE #> 2595 163 0.5941737 0.115420188 fv Gamma RP(P), Gamma FALSE #> 2611 164 NA NA fv Gamma RP(P), Gamma NA #> 2627 165 0.7721841 0.145456395 fv Gamma RP(P), Gamma FALSE #> 2643 166 0.7965391 0.153433961 fv Gamma RP(P), Gamma FALSE #> 2659 167 0.8767056 0.163672379 fv Gamma RP(P), Gamma FALSE #> 2675 168 0.9296400 0.172682823 fv Gamma RP(P), Gamma FALSE #> 2691 169 0.7003157 0.134657034 fv Gamma RP(P), Gamma FALSE #> 2707 170 0.6969487 0.133752385 fv Gamma RP(P), Gamma FALSE #> 2723 171 0.6804580 0.132041501 fv Gamma RP(P), Gamma FALSE #> 2739 172 0.8676534 0.162110574 fv Gamma RP(P), Gamma FALSE #> 2755 173 0.6007524 0.117520007 fv Gamma RP(P), Gamma FALSE #> 2771 174 0.8205264 0.155211088 fv Gamma RP(P), Gamma FALSE #> 2787 175 0.6411124 0.124482470 fv Gamma RP(P), Gamma FALSE #> 2803 176 0.6685131 0.127629256 fv Gamma RP(P), Gamma FALSE #> 2819 177 0.5612191 0.111324967 fv Gamma RP(P), Gamma FALSE #> 2835 178 0.8696153 0.161721652 fv Gamma RP(P), Gamma FALSE #> 2851 179 0.5719307 0.111038706 fv Gamma RP(P), Gamma FALSE #> 2867 180 0.7498661 0.145859719 fv Gamma RP(P), Gamma FALSE #> 2883 181 0.8342400 0.156449843 fv Gamma RP(P), Gamma FALSE #> 2899 182 0.7307317 0.138530913 fv Gamma RP(P), Gamma FALSE #> 2915 183 0.5660622 0.110296482 fv Gamma RP(P), Gamma FALSE #> 2931 184 0.6722313 0.130153600 fv Gamma RP(P), Gamma FALSE #> 2947 185 0.8576717 0.161343877 fv Gamma RP(P), Gamma FALSE #> 2963 186 0.9062698 0.173016643 fv Gamma RP(P), Gamma FALSE #> 2979 187 0.7414907 0.141220753 fv Gamma RP(P), Gamma FALSE #> 2995 188 0.5549364 0.108588007 fv Gamma RP(P), Gamma FALSE #> 3011 189 NA NA fv Gamma RP(P), Gamma NA #> 3027 190 0.7746357 0.145922206 fv Gamma RP(P), Gamma FALSE #> 3043 191 0.7551856 0.142985236 fv Gamma RP(P), Gamma FALSE #> 3059 192 0.7775915 0.150107716 fv Gamma RP(P), Gamma FALSE #> 3075 193 0.6430137 0.124203106 fv Gamma RP(P), Gamma FALSE #> 3091 194 0.5962792 0.115366357 fv Gamma RP(P), Gamma FALSE #> 3107 195 0.8757453 0.162926509 fv Gamma RP(P), Gamma FALSE #> 3123 196 0.8185691 0.154828956 fv Gamma RP(P), Gamma FALSE #> 3139 197 0.7523839 0.141992354 fv Gamma RP(P), Gamma FALSE #> 3155 198 0.7791112 0.146503900 fv Gamma RP(P), Gamma FALSE #> 3171 199 0.5594019 0.109474490 fv Gamma RP(P), Gamma FALSE #> 3187 200 0.8269718 0.154676067 fv Gamma RP(P), Gamma FALSE #> 3203 201 0.7421167 0.141738015 fv Gamma RP(P), Gamma FALSE #> 3219 202 0.7899331 0.148298132 fv Gamma RP(P), Gamma FALSE #> 3235 203 0.7402666 0.139639494 fv Gamma RP(P), Gamma FALSE #> 3251 204 0.7440994 0.145413762 fv Gamma RP(P), Gamma FALSE #> 3267 205 0.5970540 0.116504438 fv Gamma RP(P), Gamma FALSE #> 3283 206 0.7403789 0.140695149 fv Gamma RP(P), Gamma FALSE #> 3299 207 0.5683539 0.111182081 fv Gamma RP(P), Gamma FALSE #> 3315 208 0.7459009 0.142060451 fv Gamma RP(P), Gamma FALSE #> 3331 209 0.6797062 0.130454189 fv Gamma RP(P), Gamma FALSE #> 3347 210 0.6908023 0.133192700 fv Gamma RP(P), Gamma FALSE #> 3363 211 0.9814670 0.185180252 fv Gamma RP(P), Gamma FALSE #> 3379 212 0.7275717 0.141752091 fv Gamma RP(P), Gamma FALSE #> 3395 213 0.8195451 0.155112422 fv Gamma RP(P), Gamma FALSE #> 3411 214 0.6510424 0.125935368 fv Gamma RP(P), Gamma FALSE #> 3427 215 0.8809648 0.164847839 fv Gamma RP(P), Gamma FALSE #> 3443 216 0.9160453 0.170696980 fv Gamma RP(P), Gamma FALSE #> 3459 217 0.6786443 0.131436644 fv Gamma RP(P), Gamma FALSE #> 3475 218 0.6130170 0.119462464 fv Gamma RP(P), Gamma FALSE #> 3491 219 0.8587860 0.162940219 fv Gamma RP(P), Gamma FALSE #> 3507 220 0.5645745 0.110301667 fv Gamma RP(P), Gamma FALSE #> 3523 221 0.7121007 0.136949273 fv Gamma RP(P), Gamma FALSE #> 3539 222 0.7729783 0.147339017 fv Gamma RP(P), Gamma FALSE #> 3555 223 0.7974666 0.154576435 fv Gamma RP(P), Gamma FALSE #> 3571 224 0.7615940 0.144773736 fv Gamma RP(P), Gamma FALSE #> 3587 225 0.6728903 0.129293781 fv Gamma RP(P), Gamma FALSE #> 3603 226 0.8358787 0.160645352 fv Gamma RP(P), Gamma FALSE #> 3619 227 0.6563351 0.126951384 fv Gamma RP(P), Gamma FALSE #> 3635 228 0.8883501 0.165539138 fv Gamma RP(P), Gamma FALSE #> 3651 229 0.7794882 0.147653006 fv Gamma RP(P), Gamma FALSE #> 3667 230 0.7046264 0.134302636 fv Gamma RP(P), Gamma FALSE #> 3683 231 0.7995473 0.151758843 fv Gamma RP(P), Gamma FALSE #> 3699 232 0.7343045 0.142360273 fv Gamma RP(P), Gamma FALSE #> 3715 233 0.8751457 0.164490904 fv Gamma RP(P), Gamma FALSE #> 3731 234 0.6297026 0.121422242 fv Gamma RP(P), Gamma FALSE #> 3747 235 0.7447860 0.143473450 fv Gamma RP(P), Gamma FALSE #> 3763 236 0.4983589 0.099237135 fv Gamma RP(P), Gamma FALSE #> 3779 237 0.6746635 0.131114127 fv Gamma RP(P), Gamma FALSE #> 3795 238 0.5865575 0.115419368 fv Gamma RP(P), Gamma FALSE #> 3811 239 0.7115553 0.134845742 fv Gamma RP(P), Gamma FALSE #> 3827 240 0.8624671 0.164706486 fv Gamma RP(P), Gamma FALSE #> 3843 241 0.6575508 0.126415736 fv Gamma RP(P), Gamma FALSE #> 3859 242 0.5155896 0.101988080 fv Gamma RP(P), Gamma FALSE #> 3875 243 0.8672063 0.167331273 fv Gamma RP(P), Gamma FALSE #> 3891 244 0.5652190 0.110299698 fv Gamma RP(P), Gamma FALSE #> 3907 245 0.9099031 0.170615102 fv Gamma RP(P), Gamma FALSE #> 3923 246 0.6715121 0.128245541 fv Gamma RP(P), Gamma FALSE #> 3939 247 0.7666596 0.145481254 fv Gamma RP(P), Gamma FALSE #> 3955 248 0.9441329 0.174552266 fv Gamma RP(P), Gamma FALSE #> 3971 249 0.9565287 0.180161217 fv Gamma RP(P), Gamma FALSE #> 3987 250 0.7319608 0.140182669 fv Gamma RP(P), Gamma FALSE #> 4003 251 0.7972592 0.153143991 fv Gamma RP(P), Gamma FALSE #> 4019 252 0.8050622 0.154700370 fv Gamma RP(P), Gamma FALSE #> 4035 253 0.9078567 0.176560322 fv Gamma RP(P), Gamma FALSE #> 4051 254 0.5209792 0.102295614 fv Gamma RP(P), Gamma FALSE #> 4067 255 0.7747142 0.145325614 fv Gamma RP(P), Gamma FALSE #> 4083 256 0.7249451 0.138771215 fv Gamma RP(P), Gamma FALSE #> 4099 257 0.5361170 0.104550822 fv Gamma RP(P), Gamma FALSE #> 4115 258 0.7026252 0.139222844 fv Gamma RP(P), Gamma FALSE #> 4131 259 0.7429085 0.141357296 fv Gamma RP(P), Gamma FALSE #> 4147 260 NA NA fv Gamma RP(P), Gamma NA #> 4163 261 0.4996380 0.098593653 fv Gamma RP(P), Gamma FALSE #> 4179 262 0.7307282 0.140705499 fv Gamma RP(P), Gamma FALSE #> 4195 263 0.6060010 0.118004035 fv Gamma RP(P), Gamma FALSE #> 4211 264 0.5116451 0.100491965 fv Gamma RP(P), Gamma FALSE #> 4227 265 0.5946271 0.114842799 fv Gamma RP(P), Gamma FALSE #> 4243 266 0.6163830 0.118942533 fv Gamma RP(P), Gamma FALSE #> 4259 267 0.7102904 0.136036062 fv Gamma RP(P), Gamma FALSE #> 4275 268 0.7470312 0.141482234 fv Gamma RP(P), Gamma FALSE #> 4291 269 1.0631565 0.199380875 fv Gamma RP(P), Gamma FALSE #> 4307 270 0.9061584 0.174043080 fv Gamma RP(P), Gamma FALSE #> 4323 271 0.8927398 0.167378590 fv Gamma RP(P), Gamma FALSE #> 4339 272 0.5411831 0.106864266 fv Gamma RP(P), Gamma FALSE #> 4355 273 0.6638746 0.128232822 fv Gamma RP(P), Gamma FALSE #> 4371 274 0.7225398 0.137091182 fv Gamma RP(P), Gamma FALSE #> 4387 275 0.8562018 0.159672512 fv Gamma RP(P), Gamma FALSE #> 4403 276 0.8120395 0.156356817 fv Gamma RP(P), Gamma FALSE #> 4419 277 0.6780585 0.129342060 fv Gamma RP(P), Gamma FALSE #> 4435 278 0.7362699 0.139418618 fv Gamma RP(P), Gamma FALSE #> 4451 279 0.7312040 0.138791432 fv Gamma RP(P), Gamma FALSE #> 4467 280 0.7617472 0.144139706 fv Gamma RP(P), Gamma FALSE #> 4483 281 1.0239004 0.192140750 fv Gamma RP(P), Gamma FALSE #> 4499 282 0.6014472 0.116810971 fv Gamma RP(P), Gamma FALSE #> 4515 283 0.8070494 0.156406698 fv Gamma RP(P), Gamma FALSE #> 4531 284 0.6547454 0.125591638 fv Gamma RP(P), Gamma FALSE #> 4547 285 0.5017963 0.099125117 fv Gamma RP(P), Gamma FALSE #> 4563 286 0.7664404 0.145194703 fv Gamma RP(P), Gamma FALSE #> 4579 287 0.6417145 0.124295516 fv Gamma RP(P), Gamma FALSE #> 4595 288 1.2160035 0.222504503 fv Gamma RP(P), Gamma TRUE #> 4611 289 0.6310461 0.122257396 fv Gamma RP(P), Gamma FALSE #> 4627 290 0.5976140 0.116077104 fv Gamma RP(P), Gamma FALSE #> 4643 291 0.6144723 0.119062165 fv Gamma RP(P), Gamma FALSE #> 4659 292 0.6279208 0.121314205 fv Gamma RP(P), Gamma FALSE #> 4675 293 0.8865261 0.166337950 fv Gamma RP(P), Gamma FALSE #> 4691 294 0.6338803 0.122601043 fv Gamma RP(P), Gamma FALSE #> 4707 295 1.0653819 0.195613485 fv Gamma RP(P), Gamma FALSE #> 4723 296 0.7351061 0.140428978 fv Gamma RP(P), Gamma FALSE #> 4739 297 NA NA fv Gamma RP(P), Gamma NA #> 4755 298 0.5714635 0.111383939 fv Gamma RP(P), Gamma FALSE #> 4771 299 0.5687379 0.111502873 fv Gamma RP(P), Gamma FALSE #> 4787 300 0.8507623 0.158735467 fv Gamma RP(P), Gamma FALSE #> 4803 301 0.5324432 0.104591380 fv Gamma RP(P), Gamma FALSE #> 4819 302 0.7542968 0.142000299 fv Gamma RP(P), Gamma FALSE #> 4835 303 0.6702254 0.129544084 fv Gamma RP(P), Gamma FALSE #> 4851 304 0.7359526 0.140947337 fv Gamma RP(P), Gamma FALSE #> 4867 305 0.8686497 0.162388264 fv Gamma RP(P), Gamma FALSE #> 4883 306 0.7459705 0.141847704 fv Gamma RP(P), Gamma FALSE #> 4899 307 0.7645224 0.146818849 fv Gamma RP(P), Gamma FALSE #> 4915 308 0.6534080 0.125521136 fv Gamma RP(P), Gamma FALSE #> 4931 309 0.7355909 0.139210502 fv Gamma RP(P), Gamma FALSE #> 4947 310 NA NA fv Gamma RP(P), Gamma NA #> 4963 311 0.8223787 0.154504491 fv Gamma RP(P), Gamma FALSE #> 4979 312 1.1338355 0.215053067 fv Gamma RP(P), Gamma TRUE #> 4995 313 0.7878946 0.148828816 fv Gamma RP(P), Gamma FALSE #> 5011 314 0.6331384 0.122483624 fv Gamma RP(P), Gamma FALSE #> 5027 315 0.7590237 0.143303796 fv Gamma RP(P), Gamma FALSE #> 5043 316 1.0456069 0.192281909 fv Gamma RP(P), Gamma FALSE #> 5059 317 0.6438263 0.124298460 fv Gamma RP(P), Gamma FALSE #> 5075 318 0.8458746 0.163143415 fv Gamma RP(P), Gamma FALSE #> 5091 319 0.6167836 0.119519907 fv Gamma RP(P), Gamma FALSE #> 5107 320 0.6054894 0.117299351 fv Gamma RP(P), Gamma FALSE #> 5123 321 0.8581595 0.161575543 fv Gamma RP(P), Gamma FALSE #> 5139 322 0.5470126 0.107569123 fv Gamma RP(P), Gamma FALSE #> 5155 323 0.8521730 0.159824438 fv Gamma RP(P), Gamma FALSE #> 5171 324 0.6293737 0.123041276 fv Gamma RP(P), Gamma FALSE #> 5187 325 0.7351303 0.139660930 fv Gamma RP(P), Gamma FALSE #> 5203 326 0.7037406 0.134539252 fv Gamma RP(P), Gamma FALSE #> 5219 327 0.7573005 0.143468222 fv Gamma RP(P), Gamma FALSE #> 5235 328 1.0260740 0.191722687 fv Gamma RP(P), Gamma FALSE #> 5251 329 0.8785208 0.166167340 fv Gamma RP(P), Gamma FALSE #> 5267 330 0.6958925 0.133498433 fv Gamma RP(P), Gamma FALSE #> 5283 331 0.8444511 0.157981839 fv Gamma RP(P), Gamma FALSE #> 5299 332 0.5635456 0.111106954 fv Gamma RP(P), Gamma FALSE #> 5315 333 0.5430382 0.106020576 fv Gamma RP(P), Gamma FALSE #> 5331 334 0.9485748 0.174368602 fv Gamma RP(P), Gamma FALSE #> 5347 335 0.7668800 0.145970993 fv Gamma RP(P), Gamma FALSE #> 5363 336 0.4803202 0.096188584 fv Gamma RP(P), Gamma FALSE #> 5379 337 0.6414976 0.124756829 fv Gamma RP(P), Gamma FALSE #> 5395 338 0.6042093 0.116438825 fv Gamma RP(P), Gamma FALSE #> 5411 339 0.8270540 0.156836453 fv Gamma RP(P), Gamma FALSE #> 5427 340 0.7812948 0.153293387 fv Gamma RP(P), Gamma FALSE #> 5443 341 0.5615693 0.109395593 fv Gamma RP(P), Gamma FALSE #> 5459 342 0.4507156 0.089944670 fv Gamma RP(P), Gamma FALSE #> 5475 343 0.6379126 0.123551359 fv Gamma RP(P), Gamma FALSE #> 5491 344 0.9832700 0.184814008 fv Gamma RP(P), Gamma FALSE #> 5507 345 0.8700732 0.163382934 fv Gamma RP(P), Gamma FALSE #> 5523 346 0.7930586 0.148638590 fv Gamma RP(P), Gamma FALSE #> 5539 347 0.7362875 0.139653656 fv Gamma RP(P), Gamma FALSE #> 5555 348 0.9288355 0.172358490 fv Gamma RP(P), Gamma FALSE #> 5571 349 0.8545774 0.160193152 fv Gamma RP(P), Gamma FALSE #> 5587 350 0.8162435 0.153114319 fv Gamma RP(P), Gamma FALSE #> 5603 351 0.8768429 0.168170983 fv Gamma RP(P), Gamma FALSE #> 5619 352 0.7998651 0.154372925 fv Gamma RP(P), Gamma FALSE #> 5635 353 0.5789433 0.113105924 fv Gamma RP(P), Gamma FALSE #> 5651 354 0.7427434 0.141322244 fv Gamma RP(P), Gamma FALSE #> 5667 355 0.8022031 0.150273181 fv Gamma RP(P), Gamma FALSE #> 5683 356 0.8292656 0.158481791 fv Gamma RP(P), Gamma FALSE #> 5699 357 0.6949861 0.132957253 fv Gamma RP(P), Gamma FALSE #> 5715 358 0.6410077 0.122340318 fv Gamma RP(P), Gamma FALSE #> 5731 359 0.6758443 0.133342092 fv Gamma RP(P), Gamma FALSE #> 5747 360 0.6048735 0.117286870 fv Gamma RP(P), Gamma FALSE #> 5763 361 0.9452275 0.179410146 fv Gamma RP(P), Gamma FALSE #> 5779 362 0.4613285 0.091336265 fv Gamma RP(P), Gamma FALSE #> 5795 363 NA NA fv Gamma RP(P), Gamma NA #> 5811 364 0.5305074 0.104571551 fv Gamma RP(P), Gamma FALSE #> 5827 365 0.7692393 0.150826618 fv Gamma RP(P), Gamma FALSE #> 5843 366 0.8281260 0.157369897 fv Gamma RP(P), Gamma FALSE #> 5859 367 0.8879069 0.165562059 fv Gamma RP(P), Gamma FALSE #> 5875 368 0.8819495 0.172077745 fv Gamma RP(P), Gamma FALSE #> 5891 369 0.5571989 0.108663257 fv Gamma RP(P), Gamma FALSE #> 5907 370 0.5240141 0.103230461 fv Gamma RP(P), Gamma FALSE #> 5923 371 0.8850740 0.167914113 fv Gamma RP(P), Gamma FALSE #> 5939 372 0.6292203 0.125493047 fv Gamma RP(P), Gamma FALSE #> 5955 373 0.6711393 0.128355923 fv Gamma RP(P), Gamma FALSE #> 5971 374 0.6330126 0.122222933 fv Gamma RP(P), Gamma FALSE #> 5987 375 0.6232037 0.120619676 fv Gamma RP(P), Gamma FALSE #> 6003 376 0.6709763 0.129346165 fv Gamma RP(P), Gamma FALSE #> 6019 377 0.8081042 0.155740601 fv Gamma RP(P), Gamma FALSE #> 6035 378 0.7807703 0.146835814 fv Gamma RP(P), Gamma FALSE #> 6051 379 0.6489020 0.124780001 fv Gamma RP(P), Gamma FALSE #> 6067 380 0.7690472 0.145653760 fv Gamma RP(P), Gamma FALSE #> 6083 381 0.6655172 0.128470538 fv Gamma RP(P), Gamma FALSE #> 6099 382 0.6834100 0.131022145 fv Gamma RP(P), Gamma FALSE #> 6115 383 1.0199434 0.186627092 fv Gamma RP(P), Gamma FALSE #> 6131 384 0.8425240 0.158501752 fv Gamma RP(P), Gamma FALSE #> 6147 385 0.5435103 0.106298014 fv Gamma RP(P), Gamma FALSE #> 6163 386 0.3974050 0.081499042 fv Gamma RP(P), Gamma FALSE #> 6179 387 0.5426046 0.105687478 fv Gamma RP(P), Gamma FALSE #> 6195 388 0.6611317 0.126806617 fv Gamma RP(P), Gamma FALSE #> 6211 389 0.5349625 0.105162575 fv Gamma RP(P), Gamma FALSE #> 6227 390 0.6059506 0.117577612 fv Gamma RP(P), Gamma FALSE #> 6243 391 0.5031306 0.099223928 fv Gamma RP(P), Gamma FALSE #> 6259 392 0.9247264 0.171447639 fv Gamma RP(P), Gamma FALSE #> 6275 393 0.5799003 0.113309467 fv Gamma RP(P), Gamma FALSE #> 6291 394 0.8923633 0.167756406 fv Gamma RP(P), Gamma FALSE #> 6307 395 0.7025183 0.135296087 fv Gamma RP(P), Gamma FALSE #> 6323 396 0.7120067 0.139386238 fv Gamma RP(P), Gamma FALSE #> 6339 397 0.8245329 0.154169882 fv Gamma RP(P), Gamma FALSE #> 6355 398 0.7714605 0.146465081 fv Gamma RP(P), Gamma FALSE #> 6371 399 0.6201603 0.120225120 fv Gamma RP(P), Gamma FALSE #> 6387 400 0.6674704 0.128448157 fv Gamma RP(P), Gamma FALSE #> 6403 401 0.8591833 0.163558247 fv Gamma RP(P), Gamma FALSE #> 6419 402 0.7237335 0.141496085 fv Gamma RP(P), Gamma FALSE #> 6435 403 0.6842458 0.130528240 fv Gamma RP(P), Gamma FALSE #> 6451 404 0.8914124 0.170001726 fv Gamma RP(P), Gamma FALSE #> 6467 405 0.6372709 0.122209769 fv Gamma RP(P), Gamma FALSE #> 6483 406 0.6333429 0.122577106 fv Gamma RP(P), Gamma FALSE #> 6499 407 0.7540527 0.143640882 fv Gamma RP(P), Gamma FALSE #> 6515 408 0.4838950 0.100461103 fv Gamma RP(P), Gamma FALSE #> 6531 409 0.9146888 0.169439375 fv Gamma RP(P), Gamma FALSE #> 6547 410 0.9330222 0.176834198 fv Gamma RP(P), Gamma FALSE #> 6563 411 0.7883049 0.155697900 fv Gamma RP(P), Gamma FALSE #> 6579 412 0.6774845 0.129576379 fv Gamma RP(P), Gamma FALSE #> 6595 413 0.7116535 0.136948608 fv Gamma RP(P), Gamma FALSE #> 6611 414 0.7132797 0.136232402 fv Gamma RP(P), Gamma FALSE #> 6627 415 0.8286193 0.154693246 fv Gamma RP(P), Gamma FALSE #> 6643 416 0.6156083 0.119284639 fv Gamma RP(P), Gamma FALSE #> 6659 417 0.7087812 0.135096167 fv Gamma RP(P), Gamma FALSE #> 6675 418 0.7293437 0.138932311 fv Gamma RP(P), Gamma FALSE #> 6691 419 0.5997472 0.117475840 fv Gamma RP(P), Gamma FALSE #> 6707 420 0.7993144 0.153914851 fv Gamma RP(P), Gamma FALSE #> 6723 421 0.7797894 0.147239639 fv Gamma RP(P), Gamma FALSE #> 6739 422 0.7196492 0.137084047 fv Gamma RP(P), Gamma FALSE #> 6755 423 0.7782277 0.146884783 fv Gamma RP(P), Gamma FALSE #> 6771 424 0.6735367 0.130483600 fv Gamma RP(P), Gamma FALSE #> 6787 425 0.5438044 0.106872272 fv Gamma RP(P), Gamma FALSE #> 6803 426 0.9765959 0.180951859 fv Gamma RP(P), Gamma FALSE #> 6819 427 0.4342931 0.087816670 fv Gamma RP(P), Gamma FALSE #> 6835 428 NA NA fv Gamma RP(P), Gamma NA #> 6851 429 0.6326812 0.122272867 fv Gamma RP(P), Gamma FALSE #> 6867 430 0.5864832 0.114045582 fv Gamma RP(P), Gamma FALSE #> 6883 431 0.8330418 0.156297552 fv Gamma RP(P), Gamma FALSE #> 6899 432 0.5660420 0.111497263 fv Gamma RP(P), Gamma FALSE #> 6915 433 0.7633897 0.146680676 fv Gamma RP(P), Gamma FALSE #> 6931 434 0.9157854 0.169179334 fv Gamma RP(P), Gamma FALSE #> 6947 435 0.6436417 0.123386611 fv Gamma RP(P), Gamma FALSE #> 6963 436 0.8894330 0.168215631 fv Gamma RP(P), Gamma FALSE #> 6979 437 0.6466005 0.124257627 fv Gamma RP(P), Gamma FALSE #> 6995 438 0.4983309 0.099003740 fv Gamma RP(P), Gamma FALSE #> 7011 439 0.6788690 0.131122725 fv Gamma RP(P), Gamma FALSE #> 7027 440 0.6840970 0.130674970 fv Gamma RP(P), Gamma FALSE #> 7043 441 0.4509432 0.090190377 fv Gamma RP(P), Gamma FALSE #> 7059 442 0.8197896 0.153466848 fv Gamma RP(P), Gamma FALSE #> 7075 443 0.4883504 0.097806334 fv Gamma RP(P), Gamma FALSE #> 7091 444 0.6309643 0.121865041 fv Gamma RP(P), Gamma FALSE #> 7107 445 0.8964975 0.172918156 fv Gamma RP(P), Gamma FALSE #> 7123 446 0.7383350 0.140046750 fv Gamma RP(P), Gamma FALSE #> 7139 447 0.7068869 0.134798962 fv Gamma RP(P), Gamma FALSE #> 7155 448 0.7623019 0.144996154 fv Gamma RP(P), Gamma FALSE #> 7171 449 0.8202607 0.153262713 fv Gamma RP(P), Gamma FALSE #> 7187 450 0.6652518 0.127192030 fv Gamma RP(P), Gamma FALSE #> 7203 451 0.7929428 0.149414357 fv Gamma RP(P), Gamma FALSE #> 7219 452 0.5390468 0.106252035 fv Gamma RP(P), Gamma FALSE #> 7235 453 0.7983611 0.149574089 fv Gamma RP(P), Gamma FALSE #> 7251 454 0.6809155 0.133855974 fv Gamma RP(P), Gamma FALSE #> 7267 455 0.7867915 0.148808687 fv Gamma RP(P), Gamma FALSE #> 7283 456 0.8027674 0.151115965 fv Gamma RP(P), Gamma FALSE #> 7299 457 0.7599211 0.143934714 fv Gamma RP(P), Gamma FALSE #> 7315 458 0.8392784 0.158497506 fv Gamma RP(P), Gamma FALSE #> 7331 459 0.6859136 0.132185682 fv Gamma RP(P), Gamma FALSE #> 7347 460 0.5989569 0.116734400 fv Gamma RP(P), Gamma FALSE #> 7363 461 0.7104775 0.136171002 fv Gamma RP(P), Gamma FALSE #> 7379 462 0.9353550 0.176644991 fv Gamma RP(P), Gamma FALSE #> 7395 463 0.5917203 0.113971563 fv Gamma RP(P), Gamma FALSE #> 7411 464 0.5466129 0.108141319 fv Gamma RP(P), Gamma FALSE #> 7427 465 0.6924133 0.132057038 fv Gamma RP(P), Gamma FALSE #> 7443 466 0.8595890 0.164380309 fv Gamma RP(P), Gamma FALSE #> 7459 467 0.8621341 0.162880467 fv Gamma RP(P), Gamma FALSE #> 7475 468 0.5844938 0.113603790 fv Gamma RP(P), Gamma FALSE #> 7491 469 0.7748601 0.149549630 fv Gamma RP(P), Gamma FALSE #> 7507 470 0.7885976 0.148029828 fv Gamma RP(P), Gamma FALSE #> 7523 471 0.6020256 0.116789527 fv Gamma RP(P), Gamma FALSE #> 7539 472 0.7796100 0.146855855 fv Gamma RP(P), Gamma FALSE #> 7555 473 0.6785752 0.130008471 fv Gamma RP(P), Gamma FALSE #> 7571 474 0.6250698 0.122879162 fv Gamma RP(P), Gamma FALSE #> 7587 475 1.1078072 0.208724589 fv Gamma RP(P), Gamma TRUE #> 7603 476 0.5563729 0.109196239 fv Gamma RP(P), Gamma FALSE #> 7619 477 0.8587266 0.160352193 fv Gamma RP(P), Gamma FALSE #> 7635 478 0.6830960 0.131457533 fv Gamma RP(P), Gamma FALSE #> 7651 479 0.8681593 0.162333605 fv Gamma RP(P), Gamma FALSE #> 7667 480 0.7574428 0.144816517 fv Gamma RP(P), Gamma FALSE #> 7683 481 NA NA fv Gamma RP(P), Gamma NA #> 7699 482 0.6266013 0.124370257 fv Gamma RP(P), Gamma FALSE #> 7715 483 0.6528467 0.127306631 fv Gamma RP(P), Gamma FALSE #> 7731 484 0.7127943 0.134930802 fv Gamma RP(P), Gamma FALSE #> 7747 485 0.7125054 0.135276927 fv Gamma RP(P), Gamma FALSE #> 7763 486 0.5687850 0.111413020 fv Gamma RP(P), Gamma FALSE #> 7779 487 0.8243935 0.154600910 fv Gamma RP(P), Gamma FALSE #> 7795 488 0.6812360 0.132703870 fv Gamma RP(P), Gamma FALSE #> 7811 489 0.8845371 0.169323636 fv Gamma RP(P), Gamma FALSE #> 7827 490 1.0653722 0.194660353 fv Gamma RP(P), Gamma FALSE #> 7843 491 0.6826541 0.130776905 fv Gamma RP(P), Gamma FALSE #> 7859 492 0.8235202 0.155848858 fv Gamma RP(P), Gamma FALSE #> 7875 493 0.7768356 0.151524876 fv Gamma RP(P), Gamma FALSE #> 7891 494 0.7218053 0.137841570 fv Gamma RP(P), Gamma FALSE #> 7907 495 0.7695705 0.146521336 fv Gamma RP(P), Gamma FALSE #> 7923 496 0.5166882 0.102399021 fv Gamma RP(P), Gamma FALSE #> 7939 497 0.6627873 0.126766292 fv Gamma RP(P), Gamma FALSE #> 7955 498 0.6342445 0.122728374 fv Gamma RP(P), Gamma FALSE #> 7971 499 0.9374378 0.175338174 fv Gamma RP(P), Gamma FALSE #> 7987 500 0.9019653 0.170409658 fv Gamma RP(P), Gamma FALSE #> 8003 501 0.6962305 0.132980257 fv Gamma RP(P), Gamma FALSE #> 8019 502 0.7603688 0.144250280 fv Gamma RP(P), Gamma FALSE #> 8035 503 0.6803697 0.130734079 fv Gamma RP(P), Gamma FALSE #> 8051 504 0.8753725 0.162673418 fv Gamma RP(P), Gamma FALSE #> 8067 505 0.9260534 0.173473955 fv Gamma RP(P), Gamma FALSE #> 8083 506 0.6660089 0.127478067 fv Gamma RP(P), Gamma FALSE #> 8099 507 0.6217409 0.120696018 fv Gamma RP(P), Gamma FALSE #> 8115 508 0.6657625 0.127882730 fv Gamma RP(P), Gamma FALSE #> 8131 509 0.7035885 0.134122091 fv Gamma RP(P), Gamma FALSE #> 8147 510 0.9153649 0.169975579 fv Gamma RP(P), Gamma FALSE #> 8163 511 0.7435226 0.141999828 fv Gamma RP(P), Gamma FALSE #> 8179 512 0.8092206 0.152504675 fv Gamma RP(P), Gamma FALSE #> 8195 513 0.5970830 0.116342118 fv Gamma RP(P), Gamma FALSE #> 8211 514 0.6584162 0.127259558 fv Gamma RP(P), Gamma FALSE #> 8227 515 0.6218205 0.120288402 fv Gamma RP(P), Gamma FALSE #> 8243 516 0.7564849 0.144835314 fv Gamma RP(P), Gamma FALSE #> 8259 517 0.7866480 0.148609375 fv Gamma RP(P), Gamma FALSE #> 8275 518 0.8554770 0.159037294 fv Gamma RP(P), Gamma FALSE #> 8291 519 0.7052320 0.134728823 fv Gamma RP(P), Gamma FALSE #> 8307 520 0.6204574 0.120158025 fv Gamma RP(P), Gamma FALSE #> 8323 521 0.5621929 0.109422753 fv Gamma RP(P), Gamma FALSE #> 8339 522 0.5443101 0.106427943 fv Gamma RP(P), Gamma FALSE #> 8355 523 0.6711061 0.129798304 fv Gamma RP(P), Gamma FALSE #> 8371 524 0.6038576 0.117617477 fv Gamma RP(P), Gamma FALSE #> 8387 525 1.0537419 0.193004302 fv Gamma RP(P), Gamma FALSE #> 8403 526 0.7616132 0.144330441 fv Gamma RP(P), Gamma FALSE #> 8419 527 0.6897576 0.133491604 fv Gamma RP(P), Gamma FALSE #> 8435 528 0.6067378 0.118097165 fv Gamma RP(P), Gamma FALSE #> 8451 529 0.8534833 0.160118465 fv Gamma RP(P), Gamma FALSE #> 8467 530 0.8925411 0.166714870 fv Gamma RP(P), Gamma FALSE #> 8483 531 0.7934168 0.148589902 fv Gamma RP(P), Gamma FALSE #> 8499 532 0.7905062 0.149455790 fv Gamma RP(P), Gamma FALSE #> 8515 533 0.7295545 0.139010779 fv Gamma RP(P), Gamma FALSE #> 8531 534 0.7802222 0.146683135 fv Gamma RP(P), Gamma FALSE #> 8547 535 0.9550213 0.176657581 fv Gamma RP(P), Gamma FALSE #> 8563 536 0.8285902 0.154754825 fv Gamma RP(P), Gamma FALSE #> 8579 537 0.7142590 0.139710304 fv Gamma RP(P), Gamma FALSE #> 8595 538 0.6242860 0.121665242 fv Gamma RP(P), Gamma FALSE #> 8611 539 0.8641128 0.161545364 fv Gamma RP(P), Gamma FALSE #> 8627 540 0.7678492 0.149811233 fv Gamma RP(P), Gamma FALSE #> 8643 541 0.6289813 0.122609687 fv Gamma RP(P), Gamma FALSE #> 8659 542 0.8359050 0.157109048 fv Gamma RP(P), Gamma FALSE #> 8675 543 0.9027601 0.167995185 fv Gamma RP(P), Gamma FALSE #> 8691 544 0.8244925 0.154618216 fv Gamma RP(P), Gamma FALSE #> 8707 545 0.6980857 0.134268057 fv Gamma RP(P), Gamma FALSE #> 8723 546 0.6933300 0.133073387 fv Gamma RP(P), Gamma FALSE #> 8739 547 NA NA fv Gamma RP(P), Gamma NA #> 8755 548 0.6333770 0.125231052 fv Gamma RP(P), Gamma FALSE #> 8771 549 0.8023245 0.153987219 fv Gamma RP(P), Gamma FALSE #> 8787 550 0.8868958 0.173752332 fv Gamma RP(P), Gamma FALSE #> 8803 551 0.7222047 0.137638041 fv Gamma RP(P), Gamma FALSE #> 8819 552 0.5671938 0.111950384 fv Gamma RP(P), Gamma FALSE #> 8835 553 0.5909826 0.115431956 fv Gamma RP(P), Gamma FALSE #> 8851 554 0.6819668 0.131463459 fv Gamma RP(P), Gamma FALSE #> 8867 555 0.5949893 0.116327674 fv Gamma RP(P), Gamma FALSE #> 8883 556 0.5424623 0.106665952 fv Gamma RP(P), Gamma FALSE #> 8899 557 1.1345537 0.209862447 fv Gamma RP(P), Gamma TRUE #> 8915 558 0.8058485 0.152388030 fv Gamma RP(P), Gamma FALSE #> 8931 559 0.6173724 0.122782335 fv Gamma RP(P), Gamma FALSE #> 8947 560 0.7512495 0.143599104 fv Gamma RP(P), Gamma FALSE #> 8963 561 0.7585141 0.143155705 fv Gamma RP(P), Gamma FALSE #> 8979 562 0.4484573 0.089532416 fv Gamma RP(P), Gamma FALSE #> 8995 563 0.7698720 0.146396748 fv Gamma RP(P), Gamma FALSE #> 9011 564 0.7607873 0.143322348 fv Gamma RP(P), Gamma FALSE #> 9027 565 0.8222472 0.159236501 fv Gamma RP(P), Gamma FALSE #> 9043 566 0.8548495 0.160429756 fv Gamma RP(P), Gamma FALSE #> 9059 567 0.7245818 0.138376691 fv Gamma RP(P), Gamma FALSE #> 9075 568 0.7931173 0.152597975 fv Gamma RP(P), Gamma FALSE #> 9091 569 0.6850610 0.133116653 fv Gamma RP(P), Gamma FALSE #> 9107 570 NA NA fv Gamma RP(P), Gamma NA #> 9123 571 0.7549228 0.142914728 fv Gamma RP(P), Gamma FALSE #> 9139 572 0.8278657 0.154426950 fv Gamma RP(P), Gamma FALSE #> 9155 573 0.5344300 0.105884223 fv Gamma RP(P), Gamma FALSE #> 9171 574 0.8527038 0.162694626 fv Gamma RP(P), Gamma FALSE #> 9187 575 0.7057682 0.134947723 fv Gamma RP(P), Gamma FALSE #> 9203 576 0.7448504 0.142986350 fv Gamma RP(P), Gamma FALSE #> 9219 577 0.6324739 0.122708071 fv Gamma RP(P), Gamma FALSE #> 9235 578 0.6535771 0.125371078 fv Gamma RP(P), Gamma FALSE #> 9251 579 0.6463148 0.124602683 fv Gamma RP(P), Gamma FALSE #> 9267 580 0.6122098 0.118229398 fv Gamma RP(P), Gamma FALSE #> 9283 581 0.8581943 0.160096945 fv Gamma RP(P), Gamma FALSE #> 9299 582 0.4255333 0.084857238 fv Gamma RP(P), Gamma FALSE #> 9315 583 0.7830994 0.147615332 fv Gamma RP(P), Gamma FALSE #> 9331 584 0.6297757 0.122421778 fv Gamma RP(P), Gamma FALSE #> 9347 585 1.1118116 0.202600547 fv Gamma RP(P), Gamma TRUE #> 9363 586 NA NA fv Gamma RP(P), Gamma NA #> 9379 587 0.7835051 0.147939858 fv Gamma RP(P), Gamma FALSE #> 9395 588 0.7974640 0.152143429 fv Gamma RP(P), Gamma FALSE #> 9411 589 0.5862546 0.114190230 fv Gamma RP(P), Gamma FALSE #> 9427 590 0.6735269 0.129506738 fv Gamma RP(P), Gamma FALSE #> 9443 591 0.7163856 0.137360805 fv Gamma RP(P), Gamma FALSE #> 9459 592 0.8887836 0.165763416 fv Gamma RP(P), Gamma FALSE #> 9475 593 0.6961761 0.136894275 fv Gamma RP(P), Gamma FALSE #> 9491 594 0.7225011 0.139237787 fv Gamma RP(P), Gamma FALSE #> 9507 595 0.7110869 0.135311991 fv Gamma RP(P), Gamma FALSE #> 9523 596 0.8419027 0.157392494 fv Gamma RP(P), Gamma FALSE #> 9539 597 0.9726863 0.183877561 fv Gamma RP(P), Gamma FALSE #> 9555 598 0.7321676 0.138931246 fv Gamma RP(P), Gamma FALSE #> 9571 599 1.0933409 0.198947458 fv Gamma RP(P), Gamma FALSE #> 9587 600 0.9365142 0.172756965 fv Gamma RP(P), Gamma FALSE #> 9603 601 0.6900339 0.131971647 fv Gamma RP(P), Gamma FALSE #> 9619 602 0.8071034 0.154541397 fv Gamma RP(P), Gamma FALSE #> 9635 603 0.6864634 0.131149003 fv Gamma RP(P), Gamma FALSE #> 9651 604 0.8388411 0.164957900 fv Gamma RP(P), Gamma FALSE #> 9667 605 0.8991808 0.170856264 fv Gamma RP(P), Gamma FALSE #> 9683 606 0.7896722 0.149157106 fv Gamma RP(P), Gamma FALSE #> 9699 607 0.6483373 0.125688013 fv Gamma RP(P), Gamma FALSE #> 9715 608 0.8165667 0.153820340 fv Gamma RP(P), Gamma FALSE #> 9731 609 0.8902387 0.166429149 fv Gamma RP(P), Gamma FALSE #> 9747 610 0.7933518 0.149471334 fv Gamma RP(P), Gamma FALSE #> 9763 611 0.6512893 0.125696501 fv Gamma RP(P), Gamma FALSE #> 9779 612 0.8855873 0.165210328 fv Gamma RP(P), Gamma FALSE #> 9795 613 0.7551929 0.143131416 fv Gamma RP(P), Gamma FALSE #> 9811 614 0.7010086 0.134204870 fv Gamma RP(P), Gamma FALSE #> 9827 615 0.6334929 0.122282301 fv Gamma RP(P), Gamma FALSE #> 9843 616 NA NA fv Gamma RP(P), Gamma NA #> 9859 617 0.9807549 0.184785018 fv Gamma RP(P), Gamma FALSE #> 9875 618 0.5779344 0.112517396 fv Gamma RP(P), Gamma FALSE #> 9891 619 0.6355496 0.122741929 fv Gamma RP(P), Gamma FALSE #> 9907 620 0.6841379 0.131439881 fv Gamma RP(P), Gamma FALSE #> 9923 621 0.7994067 0.150798986 fv Gamma RP(P), Gamma FALSE #> 9939 622 1.1226630 0.204596360 fv Gamma RP(P), Gamma TRUE #> 9955 623 0.5592545 0.109014752 fv Gamma RP(P), Gamma FALSE #> 9971 624 0.7146248 0.135617788 fv Gamma RP(P), Gamma FALSE #> 9987 625 0.6678007 0.128544119 fv Gamma RP(P), Gamma FALSE #> 10003 626 0.5438265 0.107223540 fv Gamma RP(P), Gamma FALSE #> 10019 627 0.6402631 0.127929319 fv Gamma RP(P), Gamma FALSE #> 10035 628 0.7161136 0.135821754 fv Gamma RP(P), Gamma FALSE #> 10051 629 0.5761695 0.113413852 fv Gamma RP(P), Gamma FALSE #> 10067 630 0.9265988 0.172078476 fv Gamma RP(P), Gamma FALSE #> 10083 631 0.8463990 0.163840387 fv Gamma RP(P), Gamma FALSE #> 10099 632 0.5918212 0.115253393 fv Gamma RP(P), Gamma FALSE #> 10115 633 0.5392676 0.105659170 fv Gamma RP(P), Gamma FALSE #> 10131 634 0.5612710 0.109666236 fv Gamma RP(P), Gamma FALSE #> 10147 635 0.4758954 0.095277949 fv Gamma RP(P), Gamma FALSE #> 10163 636 0.6850059 0.132963753 fv Gamma RP(P), Gamma FALSE #> 10179 637 0.7534974 0.142630643 fv Gamma RP(P), Gamma FALSE #> 10195 638 0.6156667 0.122944131 fv Gamma RP(P), Gamma FALSE #> 10211 639 0.7024871 0.133973160 fv Gamma RP(P), Gamma FALSE #> 10227 640 0.6138612 0.120005152 fv Gamma RP(P), Gamma FALSE #> 10243 641 0.6687009 0.127792012 fv Gamma RP(P), Gamma FALSE #> 10259 642 0.6827599 0.131499855 fv Gamma RP(P), Gamma FALSE #> 10275 643 0.6416117 0.123916292 fv Gamma RP(P), Gamma FALSE #> 10291 644 0.9303135 0.178541883 fv Gamma RP(P), Gamma FALSE #> 10307 645 0.5072111 0.099892269 fv Gamma RP(P), Gamma FALSE #> 10323 646 0.5770236 0.112923822 fv Gamma RP(P), Gamma FALSE #> 10339 647 1.0987860 0.202063919 fv Gamma RP(P), Gamma TRUE #> 10355 648 0.7249466 0.137273492 fv Gamma RP(P), Gamma FALSE #> 10371 649 0.8361975 0.156905913 fv Gamma RP(P), Gamma FALSE #> 10387 650 0.9657631 0.179386120 fv Gamma RP(P), Gamma FALSE #> 10403 651 0.9480153 0.175508178 fv Gamma RP(P), Gamma FALSE #> 10419 652 0.7609753 0.144403263 fv Gamma RP(P), Gamma FALSE #> 10435 653 0.9390345 0.178175424 fv Gamma RP(P), Gamma FALSE #> 10451 654 0.6071795 0.117910755 fv Gamma RP(P), Gamma FALSE #> 10467 655 0.6768799 0.129452910 fv Gamma RP(P), Gamma FALSE #> 10483 656 0.7872342 0.148934201 fv Gamma RP(P), Gamma FALSE #> 10499 657 0.7155506 0.136779245 fv Gamma RP(P), Gamma FALSE #> 10515 658 0.8186467 0.154783223 fv Gamma RP(P), Gamma FALSE #> 10531 659 0.8561195 0.161384412 fv Gamma RP(P), Gamma FALSE #> 10547 660 0.7969361 0.153486464 fv Gamma RP(P), Gamma FALSE #> 10563 661 0.5847750 0.113459778 fv Gamma RP(P), Gamma FALSE #> 10579 662 0.4491533 0.089376759 fv Gamma RP(P), Gamma FALSE #> 10595 663 0.6583715 0.127150411 fv Gamma RP(P), Gamma FALSE #> 10611 664 0.7245792 0.137191115 fv Gamma RP(P), Gamma FALSE #> 10627 665 0.6935069 0.133446603 fv Gamma RP(P), Gamma FALSE #> 10643 666 0.6789625 0.133210260 fv Gamma RP(P), Gamma FALSE #> 10659 667 NA NA fv Gamma RP(P), Gamma NA #> 10675 668 0.8326042 0.159460222 fv Gamma RP(P), Gamma FALSE #> 10691 669 0.5423378 0.106498804 fv Gamma RP(P), Gamma FALSE #> 10707 670 0.8502685 0.162585636 fv Gamma RP(P), Gamma FALSE #> 10723 671 0.8776545 0.164067176 fv Gamma RP(P), Gamma FALSE #> 10739 672 0.6152927 0.119051797 fv Gamma RP(P), Gamma FALSE #> 10755 673 0.6122459 0.117726094 fv Gamma RP(P), Gamma FALSE #> 10771 674 0.9559380 0.181254051 fv Gamma RP(P), Gamma FALSE #> 10787 675 0.6980390 0.132753824 fv Gamma RP(P), Gamma FALSE #> 10803 676 0.5088804 0.102994006 fv Gamma RP(P), Gamma FALSE #> 10819 677 0.6339165 0.121646475 fv Gamma RP(P), Gamma FALSE #> 10835 678 0.8369559 0.157675553 fv Gamma RP(P), Gamma FALSE #> 10851 679 0.9492848 0.176109260 fv Gamma RP(P), Gamma FALSE #> 10867 680 0.6841460 0.135356905 fv Gamma RP(P), Gamma FALSE #> 10883 681 0.5654321 0.110524762 fv Gamma RP(P), Gamma FALSE #> 10899 682 0.7617394 0.144044913 fv Gamma RP(P), Gamma FALSE #> 10915 683 0.8624482 0.164333849 fv Gamma RP(P), Gamma FALSE #> 10931 684 0.9321014 0.172684748 fv Gamma RP(P), Gamma FALSE #> 10947 685 0.6441355 0.123847642 fv Gamma RP(P), Gamma FALSE #> 10963 686 0.5512106 0.108266248 fv Gamma RP(P), Gamma FALSE #> 10979 687 NA NA fv Gamma RP(P), Gamma NA #> 10995 688 0.7248728 0.137856421 fv Gamma RP(P), Gamma FALSE #> 11011 689 0.7052454 0.134429054 fv Gamma RP(P), Gamma FALSE #> 11027 690 NA NA fv Gamma RP(P), Gamma NA #> 11043 691 NA NA fv Gamma RP(P), Gamma NA #> 11059 692 0.7287757 0.137960478 fv Gamma RP(P), Gamma FALSE #> 11075 693 0.8591672 0.163147539 fv Gamma RP(P), Gamma FALSE #> 11091 694 0.8546217 0.161886212 fv Gamma RP(P), Gamma FALSE #> 11107 695 0.7359517 0.143204482 fv Gamma RP(P), Gamma FALSE #> 11123 696 0.7274184 0.140975651 fv Gamma RP(P), Gamma FALSE #> 11139 697 0.7343352 0.139432429 fv Gamma RP(P), Gamma FALSE #> 11155 698 0.7107206 0.135622115 fv Gamma RP(P), Gamma FALSE #> 11171 699 0.7219693 0.136624664 fv Gamma RP(P), Gamma FALSE #> 11187 700 NA NA fv Gamma RP(P), Gamma NA #> 11203 701 0.6390749 0.122901167 fv Gamma RP(P), Gamma FALSE #> 11219 702 0.7207084 0.141765393 fv Gamma RP(P), Gamma FALSE #> 11235 703 0.5731972 0.112301241 fv Gamma RP(P), Gamma FALSE #> 11251 704 0.9050465 0.167387536 fv Gamma RP(P), Gamma FALSE #> 11267 705 0.9729034 0.179704350 fv Gamma RP(P), Gamma FALSE #> 11283 706 0.7510740 0.142142712 fv Gamma RP(P), Gamma FALSE #> 11299 707 0.5762848 0.113425276 fv Gamma RP(P), Gamma FALSE #> 11315 708 0.8182433 0.157478515 fv Gamma RP(P), Gamma FALSE #> 11331 709 0.7488299 0.141777904 fv Gamma RP(P), Gamma FALSE #> 11347 710 0.7464753 0.140839219 fv Gamma RP(P), Gamma FALSE #> 11363 711 0.3895724 0.079456850 fv Gamma RP(P), Gamma FALSE #> 11379 712 0.7226782 0.137898089 fv Gamma RP(P), Gamma FALSE #> 11395 713 0.7579136 0.142711103 fv Gamma RP(P), Gamma FALSE #> 11411 714 0.8613708 0.165279895 fv Gamma RP(P), Gamma FALSE #> 11427 715 0.9499191 0.176494223 fv Gamma RP(P), Gamma FALSE #> 11443 716 0.8153731 0.154756057 fv Gamma RP(P), Gamma FALSE #> 11459 717 0.6266283 0.125506065 fv Gamma RP(P), Gamma FALSE #> 11475 718 NA NA fv Gamma RP(P), Gamma NA #> 11491 719 0.6487120 0.124374007 fv Gamma RP(P), Gamma FALSE #> 11507 720 0.6467946 0.124681595 fv Gamma RP(P), Gamma FALSE #> 11523 721 0.8677451 0.163658213 fv Gamma RP(P), Gamma FALSE #> 11539 722 0.8762603 0.164114507 fv Gamma RP(P), Gamma FALSE #> 11555 723 0.7702204 0.149232323 fv Gamma RP(P), Gamma FALSE #> 11571 724 NA NA fv Gamma RP(P), Gamma NA #> 11587 725 0.6452807 0.123798465 fv Gamma RP(P), Gamma FALSE #> 11603 726 0.6388286 0.124187802 fv Gamma RP(P), Gamma FALSE #> 11619 727 0.8294437 0.158131813 fv Gamma RP(P), Gamma FALSE #> 11635 728 0.5498798 0.110995415 fv Gamma RP(P), Gamma FALSE #> 11651 729 0.7956737 0.149669575 fv Gamma RP(P), Gamma FALSE #> 11667 730 0.9039416 0.172983881 fv Gamma RP(P), Gamma FALSE #> 11683 731 0.9129412 0.170480535 fv Gamma RP(P), Gamma FALSE #> 11699 732 0.8631376 0.160142721 fv Gamma RP(P), Gamma FALSE #> 11715 733 0.5700636 0.111318610 fv Gamma RP(P), Gamma FALSE #> 11731 734 0.5720887 0.111838652 fv Gamma RP(P), Gamma FALSE #> 11747 735 0.7865514 0.148067100 fv Gamma RP(P), Gamma FALSE #> 11763 736 0.8314412 0.159749066 fv Gamma RP(P), Gamma FALSE #> 11779 737 0.7051831 0.134332472 fv Gamma RP(P), Gamma FALSE #> 11795 738 0.6441563 0.129738565 fv Gamma RP(P), Gamma FALSE #> 11811 739 0.6962830 0.133154711 fv Gamma RP(P), Gamma FALSE #> 11827 740 0.6820458 0.130662984 fv Gamma RP(P), Gamma FALSE #> 11843 741 NA NA fv Gamma RP(P), Gamma NA #> 11859 742 0.6129049 0.118716275 fv Gamma RP(P), Gamma FALSE #> 11875 743 0.7773048 0.146924665 fv Gamma RP(P), Gamma FALSE #> 11891 744 1.0015653 0.188279252 fv Gamma RP(P), Gamma FALSE #> 11907 745 0.6374989 0.124833327 fv Gamma RP(P), Gamma FALSE #> 11923 746 0.4555035 0.091061162 fv Gamma RP(P), Gamma FALSE #> 11939 747 0.6241370 0.120584114 fv Gamma RP(P), Gamma FALSE #> 11955 748 0.8319601 0.155303605 fv Gamma RP(P), Gamma FALSE #> 11971 749 0.6239035 0.120784818 fv Gamma RP(P), Gamma FALSE #> 11987 750 0.5559165 0.108448974 fv Gamma RP(P), Gamma FALSE #> 12003 751 0.9025966 0.167345296 fv Gamma RP(P), Gamma FALSE #> 12019 752 0.8153572 0.153739062 fv Gamma RP(P), Gamma FALSE #> 12035 753 0.6272796 0.122999496 fv Gamma RP(P), Gamma FALSE #> 12051 754 0.7630634 0.144501360 fv Gamma RP(P), Gamma FALSE #> 12067 755 0.7765286 0.147048699 fv Gamma RP(P), Gamma FALSE #> 12083 756 1.1339230 0.205593685 fv Gamma RP(P), Gamma TRUE #> 12099 757 0.6148180 0.119394869 fv Gamma RP(P), Gamma FALSE #> 12115 758 0.5432530 0.106690499 fv Gamma RP(P), Gamma FALSE #> 12131 759 0.6139540 0.118795452 fv Gamma RP(P), Gamma FALSE #> 12147 760 0.6053061 0.117009343 fv Gamma RP(P), Gamma FALSE #> 12163 761 0.7687177 0.146506742 fv Gamma RP(P), Gamma FALSE #> 12179 762 0.6503456 0.125085698 fv Gamma RP(P), Gamma FALSE #> 12195 763 0.6147158 0.119201346 fv Gamma RP(P), Gamma FALSE #> 12211 764 0.7158499 0.137306674 fv Gamma RP(P), Gamma FALSE #> 12227 765 0.7002176 0.134930951 fv Gamma RP(P), Gamma FALSE #> 12243 766 0.5657031 0.110972938 fv Gamma RP(P), Gamma FALSE #> 12259 767 0.7776944 0.147857952 fv Gamma RP(P), Gamma FALSE #> 12275 768 0.7286661 0.138405976 fv Gamma RP(P), Gamma FALSE #> 12291 769 0.8013336 0.150430910 fv Gamma RP(P), Gamma FALSE #> 12307 770 0.5887824 0.116113997 fv Gamma RP(P), Gamma FALSE #> 12323 771 0.5586792 0.109343864 fv Gamma RP(P), Gamma FALSE #> 12339 772 0.8625072 0.165893739 fv Gamma RP(P), Gamma FALSE #> 12355 773 0.6841501 0.132154034 fv Gamma RP(P), Gamma FALSE #> 12371 774 0.7403145 0.140287332 fv Gamma RP(P), Gamma FALSE #> 12387 775 0.9725393 0.183070759 fv Gamma RP(P), Gamma FALSE #> 12403 776 0.7450303 0.140817496 fv Gamma RP(P), Gamma FALSE #> 12419 777 0.6343648 0.122711321 fv Gamma RP(P), Gamma FALSE #> 12435 778 0.7993270 0.151902110 fv Gamma RP(P), Gamma FALSE #> 12451 779 0.8088646 0.152875106 fv Gamma RP(P), Gamma FALSE #> 12467 780 NA NA fv Gamma RP(P), Gamma NA #> 12483 781 0.6087847 0.119407501 fv Gamma RP(P), Gamma FALSE #> 12499 782 0.6605803 0.131867548 fv Gamma RP(P), Gamma FALSE #> 12515 783 0.7750586 0.146132801 fv Gamma RP(P), Gamma FALSE #> 12531 784 0.6495380 0.124443981 fv Gamma RP(P), Gamma FALSE #> 12547 785 0.6407272 0.123198032 fv Gamma RP(P), Gamma FALSE #> 12563 786 0.9000376 0.168714826 fv Gamma RP(P), Gamma FALSE #> 12579 787 0.8111483 0.157542078 fv Gamma RP(P), Gamma FALSE #> 12595 788 0.7380264 0.140992473 fv Gamma RP(P), Gamma FALSE #> 12611 789 0.8476976 0.161406608 fv Gamma RP(P), Gamma FALSE #> 12627 790 0.9024427 0.172655911 fv Gamma RP(P), Gamma FALSE #> 12643 791 0.9430376 0.178166763 fv Gamma RP(P), Gamma FALSE #> 12659 792 0.9351843 0.174085705 fv Gamma RP(P), Gamma FALSE #> 12675 793 0.6732365 0.129192553 fv Gamma RP(P), Gamma FALSE #> 12691 794 0.3859247 0.078027842 fv Gamma RP(P), Gamma FALSE #> 12707 795 0.6998057 0.134561671 fv Gamma RP(P), Gamma FALSE #> 12723 796 0.7919689 0.150058245 fv Gamma RP(P), Gamma FALSE #> 12739 797 0.6275349 0.122051366 fv Gamma RP(P), Gamma FALSE #> 12755 798 0.5850261 0.114219338 fv Gamma RP(P), Gamma FALSE #> 12771 799 0.9191908 0.178128093 fv Gamma RP(P), Gamma FALSE #> 12787 800 0.8922223 0.166340459 fv Gamma RP(P), Gamma FALSE #> 12803 801 0.6043574 0.118347117 fv Gamma RP(P), Gamma FALSE #> 12819 802 0.6171306 0.118894255 fv Gamma RP(P), Gamma FALSE #> 12835 803 0.7658729 0.144480842 fv Gamma RP(P), Gamma FALSE #> 12851 804 0.7889772 0.149222466 fv Gamma RP(P), Gamma FALSE #> 12867 805 0.8005181 0.151346516 fv Gamma RP(P), Gamma FALSE #> 12883 806 0.5808515 0.112939967 fv Gamma RP(P), Gamma FALSE #> 12899 807 0.9661626 0.179076575 fv Gamma RP(P), Gamma FALSE #> 12915 808 0.7042314 0.138042522 fv Gamma RP(P), Gamma FALSE #> 12931 809 0.8734012 0.167819080 fv Gamma RP(P), Gamma FALSE #> 12947 810 0.7531191 0.142535233 fv Gamma RP(P), Gamma FALSE #> 12963 811 0.9776521 0.180079230 fv Gamma RP(P), Gamma FALSE #> 12979 812 0.6756066 0.130110250 fv Gamma RP(P), Gamma FALSE #> 12995 813 0.8547872 0.159923942 fv Gamma RP(P), Gamma FALSE #> 13011 814 0.8478379 0.160402232 fv Gamma RP(P), Gamma FALSE #> 13027 815 1.0381546 0.193586062 fv Gamma RP(P), Gamma FALSE #> 13043 816 0.6065386 0.119016822 fv Gamma RP(P), Gamma FALSE #> 13059 817 0.8312686 0.160699876 fv Gamma RP(P), Gamma FALSE #> 13075 818 0.6723233 0.130326892 fv Gamma RP(P), Gamma FALSE #> 13091 819 0.9040734 0.172206834 fv Gamma RP(P), Gamma FALSE #> 13107 820 0.6626870 0.126985479 fv Gamma RP(P), Gamma FALSE #> 13123 821 0.7749392 0.149228961 fv Gamma RP(P), Gamma FALSE #> 13139 822 0.5198505 0.102096349 fv Gamma RP(P), Gamma FALSE #> 13155 823 0.7135305 0.136903270 fv Gamma RP(P), Gamma FALSE #> 13171 824 0.7431181 0.141763121 fv Gamma RP(P), Gamma FALSE #> 13187 825 0.5631657 0.110129879 fv Gamma RP(P), Gamma FALSE #> 13203 826 0.7061344 0.133539029 fv Gamma RP(P), Gamma FALSE #> 13219 827 0.6528873 0.124927870 fv Gamma RP(P), Gamma FALSE #> 13235 828 0.9604082 0.181879005 fv Gamma RP(P), Gamma FALSE #> 13251 829 0.6024186 0.116726974 fv Gamma RP(P), Gamma FALSE #> 13267 830 0.8517937 0.160118257 fv Gamma RP(P), Gamma FALSE #> 13283 831 0.5413722 0.107776935 fv Gamma RP(P), Gamma FALSE #> 13299 832 0.7271789 0.138304720 fv Gamma RP(P), Gamma FALSE #> 13315 833 0.7249351 0.138256244 fv Gamma RP(P), Gamma FALSE #> 13331 834 0.5385471 0.106479275 fv Gamma RP(P), Gamma FALSE #> 13347 835 0.6823086 0.130247610 fv Gamma RP(P), Gamma FALSE #> 13363 836 0.7231375 0.138611031 fv Gamma RP(P), Gamma FALSE #> 13379 837 0.6984835 0.134825376 fv Gamma RP(P), Gamma FALSE #> 13395 838 0.9073089 0.168321113 fv Gamma RP(P), Gamma FALSE #> 13411 839 0.6372419 0.123018519 fv Gamma RP(P), Gamma FALSE #> 13427 840 0.7448403 0.141879837 fv Gamma RP(P), Gamma FALSE #> 13443 841 0.7244250 0.136804241 fv Gamma RP(P), Gamma FALSE #> 13459 842 0.7297928 0.140145685 fv Gamma RP(P), Gamma FALSE #> 13475 843 0.9415358 0.175690499 fv Gamma RP(P), Gamma FALSE #> 13491 844 0.7608448 0.146469678 fv Gamma RP(P), Gamma FALSE #> 13507 845 0.8961165 0.167892095 fv Gamma RP(P), Gamma FALSE #> 13523 846 0.6313314 0.123796847 fv Gamma RP(P), Gamma FALSE #> 13539 847 0.6408113 0.126385690 fv Gamma RP(P), Gamma FALSE #> 13555 848 0.5258133 0.103834384 fv Gamma RP(P), Gamma FALSE #> 13571 849 0.7230815 0.136689050 fv Gamma RP(P), Gamma FALSE #> 13587 850 0.6668834 0.127661821 fv Gamma RP(P), Gamma FALSE #> 13603 851 0.7700720 0.146643873 fv Gamma RP(P), Gamma FALSE #> 13619 852 0.4635693 0.092359411 fv Gamma RP(P), Gamma FALSE #> 13635 853 0.7474297 0.141513530 fv Gamma RP(P), Gamma FALSE #> 13651 854 0.5512805 0.108040252 fv Gamma RP(P), Gamma FALSE #> 13667 855 0.9322641 0.173321281 fv Gamma RP(P), Gamma FALSE #> 13683 856 0.8130425 0.152735715 fv Gamma RP(P), Gamma FALSE #> 13699 857 0.5913117 0.115856491 fv Gamma RP(P), Gamma FALSE #> 13715 858 0.6348206 0.123095885 fv Gamma RP(P), Gamma FALSE #> 13731 859 0.6829374 0.133973853 fv Gamma RP(P), Gamma FALSE #> 13747 860 0.6630881 0.127449186 fv Gamma RP(P), Gamma FALSE #> 13763 861 0.8296646 0.156284689 fv Gamma RP(P), Gamma FALSE #> 13779 862 0.6256559 0.120163322 fv Gamma RP(P), Gamma FALSE #> 13795 863 0.7547157 0.143508193 fv Gamma RP(P), Gamma FALSE #> 13811 864 0.7274700 0.139329512 fv Gamma RP(P), Gamma FALSE #> 13827 865 0.7915269 0.150148411 fv Gamma RP(P), Gamma FALSE #> 13843 866 0.6938166 0.132710273 fv Gamma RP(P), Gamma FALSE #> 13859 867 0.7270595 0.138558270 fv Gamma RP(P), Gamma FALSE #> 13875 868 0.7646349 0.145030386 fv Gamma RP(P), Gamma FALSE #> 13891 869 0.7412567 0.141031242 fv Gamma RP(P), Gamma FALSE #> 13907 870 0.6928811 0.135884346 fv Gamma RP(P), Gamma FALSE #> 13923 871 NA NA fv Gamma RP(P), Gamma NA #> 13939 872 0.8741667 0.164519963 fv Gamma RP(P), Gamma FALSE #> 13955 873 0.8141794 0.152418868 fv Gamma RP(P), Gamma FALSE #> 13971 874 1.0582781 0.201045860 fv Gamma RP(P), Gamma FALSE #> 13987 875 0.6152695 0.118843687 fv Gamma RP(P), Gamma FALSE #> 14003 876 0.6653659 0.127197470 fv Gamma RP(P), Gamma FALSE #> 14019 877 0.7482744 0.141869490 fv Gamma RP(P), Gamma FALSE #> 14035 878 0.7940041 0.152669508 fv Gamma RP(P), Gamma FALSE #> 14051 879 0.7056140 0.139457238 fv Gamma RP(P), Gamma FALSE #> 14067 880 0.9237356 0.171450639 fv Gamma RP(P), Gamma FALSE #> 14083 881 NA NA fv Gamma RP(P), Gamma NA #> 14099 882 0.9622642 0.177419442 fv Gamma RP(P), Gamma FALSE #> 14115 883 0.6122745 0.118943858 fv Gamma RP(P), Gamma FALSE #> 14131 884 0.6036147 0.116254204 fv Gamma RP(P), Gamma FALSE #> 14147 885 0.5917685 0.115023471 fv Gamma RP(P), Gamma FALSE #> 14163 886 0.5903262 0.115035223 fv Gamma RP(P), Gamma FALSE #> 14179 887 0.7178929 0.137358795 fv Gamma RP(P), Gamma FALSE #> 14195 888 0.9596692 0.177126009 fv Gamma RP(P), Gamma FALSE #> 14211 889 0.8047857 0.150574821 fv Gamma RP(P), Gamma FALSE #> 14227 890 0.6195377 0.120542563 fv Gamma RP(P), Gamma FALSE #> 14243 891 0.5142069 0.100991313 fv Gamma RP(P), Gamma FALSE #> 14259 892 0.6862121 0.131311434 fv Gamma RP(P), Gamma FALSE #> 14275 893 0.8301538 0.158225903 fv Gamma RP(P), Gamma FALSE #> 14291 894 0.5690579 0.111132288 fv Gamma RP(P), Gamma FALSE #> 14307 895 0.7646876 0.145255201 fv Gamma RP(P), Gamma FALSE #> 14323 896 0.8736150 0.162750200 fv Gamma RP(P), Gamma FALSE #> 14339 897 0.7174357 0.136603078 fv Gamma RP(P), Gamma FALSE #> 14355 898 0.9077453 0.168301401 fv Gamma RP(P), Gamma FALSE #> 14371 899 0.7703075 0.146578385 fv Gamma RP(P), Gamma FALSE #> 14387 900 0.7968261 0.152992830 fv Gamma RP(P), Gamma FALSE #> 14403 901 0.6041539 0.117492458 fv Gamma RP(P), Gamma FALSE #> 14419 902 0.5806196 0.112757680 fv Gamma RP(P), Gamma FALSE #> 14435 903 0.6449749 0.123830439 fv Gamma RP(P), Gamma FALSE #> 14451 904 1.0648896 0.202836264 fv Gamma RP(P), Gamma FALSE #> 14467 905 0.6172244 0.118612589 fv Gamma RP(P), Gamma FALSE #> 14483 906 0.9307485 0.171739678 fv Gamma RP(P), Gamma FALSE #> 14499 907 0.7212674 0.137324092 fv Gamma RP(P), Gamma FALSE #> 14515 908 0.6557254 0.129913240 fv Gamma RP(P), Gamma FALSE #> 14531 909 0.6191823 0.120399527 fv Gamma RP(P), Gamma FALSE #> 14547 910 0.5543950 0.108411251 fv Gamma RP(P), Gamma FALSE #> 14563 911 0.7093924 0.139027722 fv Gamma RP(P), Gamma FALSE #> 14579 912 0.5474285 0.106437830 fv Gamma RP(P), Gamma FALSE #> 14595 913 0.7027527 0.133771400 fv Gamma RP(P), Gamma FALSE #> 14611 914 0.6350090 0.123912603 fv Gamma RP(P), Gamma FALSE #> 14627 915 0.8877144 0.168402032 fv Gamma RP(P), Gamma FALSE #> 14643 916 0.5324769 0.103993777 fv Gamma RP(P), Gamma FALSE #> 14659 917 0.8257094 0.158306447 fv Gamma RP(P), Gamma FALSE #> 14675 918 0.7822604 0.147161994 fv Gamma RP(P), Gamma FALSE #> 14691 919 0.5649634 0.109871170 fv Gamma RP(P), Gamma FALSE #> 14707 920 0.7581416 0.142890003 fv Gamma RP(P), Gamma FALSE #> 14723 921 0.8239834 0.155853841 fv Gamma RP(P), Gamma FALSE #> 14739 922 1.0610788 0.198654926 fv Gamma RP(P), Gamma FALSE #> 14755 923 0.7195818 0.136933304 fv Gamma RP(P), Gamma FALSE #> 14771 924 0.7698761 0.144921933 fv Gamma RP(P), Gamma FALSE #> 14787 925 0.8687568 0.166258634 fv Gamma RP(P), Gamma FALSE #> 14803 926 0.7069269 0.133988760 fv Gamma RP(P), Gamma FALSE #> 14819 927 0.4598690 0.091786557 fv Gamma RP(P), Gamma FALSE #> 14835 928 0.6924455 0.131790224 fv Gamma RP(P), Gamma FALSE #> 14851 929 NA NA fv Gamma RP(P), Gamma NA #> 14867 930 0.8848479 0.169540478 fv Gamma RP(P), Gamma FALSE #> 14883 931 0.6753327 0.128916825 fv Gamma RP(P), Gamma FALSE #> 14899 932 0.8372623 0.156313520 fv Gamma RP(P), Gamma FALSE #> 14915 933 0.6307088 0.122091618 fv Gamma RP(P), Gamma FALSE #> 14931 934 0.6027997 0.116538645 fv Gamma RP(P), Gamma FALSE #> 14947 935 0.5052707 0.100596407 fv Gamma RP(P), Gamma FALSE #> 14963 936 0.5930017 0.114762813 fv Gamma RP(P), Gamma FALSE #> 14979 937 1.1060700 0.204812720 fv Gamma RP(P), Gamma TRUE #> 14995 938 0.7900036 0.149577687 fv Gamma RP(P), Gamma FALSE #> 15011 939 0.8269911 0.155312585 fv Gamma RP(P), Gamma FALSE #> 15027 940 0.7651135 0.144304466 fv Gamma RP(P), Gamma FALSE #> 15043 941 0.6356078 0.122487768 fv Gamma RP(P), Gamma FALSE #> 15059 942 0.6473050 0.124922562 fv Gamma RP(P), Gamma FALSE #> 15075 943 0.4807370 0.095724602 fv Gamma RP(P), Gamma FALSE #> 15091 944 0.6194064 0.119154705 fv Gamma RP(P), Gamma FALSE #> 15107 945 0.6175935 0.119838731 fv Gamma RP(P), Gamma FALSE #> 15123 946 0.7670644 0.149036648 fv Gamma RP(P), Gamma FALSE #> 15139 947 0.6811637 0.132119739 fv Gamma RP(P), Gamma FALSE #> 15155 948 0.5151351 0.102962455 fv Gamma RP(P), Gamma FALSE #> 15171 949 0.6194144 0.120993729 fv Gamma RP(P), Gamma FALSE #> 15187 950 0.6245088 0.122145644 fv Gamma RP(P), Gamma FALSE #> 15203 951 0.7155764 0.136307065 fv Gamma RP(P), Gamma FALSE #> 15219 952 0.6737609 0.129729678 fv Gamma RP(P), Gamma FALSE #> 15235 953 1.0941966 0.202309534 fv Gamma RP(P), Gamma FALSE #> 15251 954 0.6752267 0.129373036 fv Gamma RP(P), Gamma FALSE #> 15267 955 0.8191963 0.153734262 fv Gamma RP(P), Gamma FALSE #> 15283 956 0.6642468 0.128557962 fv Gamma RP(P), Gamma FALSE #> 15299 957 0.6334643 0.123008889 fv Gamma RP(P), Gamma FALSE #> 15315 958 0.5365145 0.105276009 fv Gamma RP(P), Gamma FALSE #> 15331 959 0.5981546 0.115741211 fv Gamma RP(P), Gamma FALSE #> 15347 960 0.7820444 0.148491202 fv Gamma RP(P), Gamma FALSE #> 15363 961 0.5120426 0.101261877 fv Gamma RP(P), Gamma FALSE #> 15379 962 0.9039760 0.168664395 fv Gamma RP(P), Gamma FALSE #> 15395 963 0.8351072 0.158257000 fv Gamma RP(P), Gamma FALSE #> 15411 964 0.6922496 0.132776055 fv Gamma RP(P), Gamma FALSE #> 15427 965 0.6365475 0.123530828 fv Gamma RP(P), Gamma FALSE #> 15443 966 0.7682227 0.146838969 fv Gamma RP(P), Gamma FALSE #> 15459 967 0.6676674 0.127821817 fv Gamma RP(P), Gamma FALSE #> 15475 968 0.5625265 0.109741850 fv Gamma RP(P), Gamma FALSE #> 15491 969 0.7509732 0.144589636 fv Gamma RP(P), Gamma FALSE #> 15507 970 0.7023211 0.138688899 fv Gamma RP(P), Gamma FALSE #> 15523 971 0.6365563 0.123319119 fv Gamma RP(P), Gamma FALSE #> 15539 972 0.6556819 0.129732139 fv Gamma RP(P), Gamma FALSE #> 15555 973 0.9647090 0.185057265 fv Gamma RP(P), Gamma FALSE #> 15571 974 0.5263112 0.103972669 fv Gamma RP(P), Gamma FALSE #> 15587 975 0.5028392 0.099877710 fv Gamma RP(P), Gamma FALSE #> 15603 976 0.7556945 0.143837742 fv Gamma RP(P), Gamma FALSE #> 15619 977 0.8499235 0.158553778 fv Gamma RP(P), Gamma FALSE #> 15635 978 0.8299769 0.159832741 fv Gamma RP(P), Gamma FALSE #> 15651 979 0.8153734 0.157312216 fv Gamma RP(P), Gamma FALSE #> 15667 980 0.5361506 0.105128657 fv Gamma RP(P), Gamma FALSE #> 15683 981 0.7147316 0.137951031 fv Gamma RP(P), Gamma FALSE #> 15699 982 0.9684844 0.181555375 fv Gamma RP(P), Gamma FALSE #> 15715 983 0.5330180 0.105260888 fv Gamma RP(P), Gamma FALSE #> 15731 984 0.7522072 0.143060278 fv Gamma RP(P), Gamma FALSE #> 15747 985 0.8205779 0.157882770 fv Gamma RP(P), Gamma FALSE #> 15763 986 0.6120942 0.117431990 fv Gamma RP(P), Gamma FALSE #> 15779 987 0.5490514 0.107616085 fv Gamma RP(P), Gamma FALSE #> 15795 988 0.6296822 0.121481511 fv Gamma RP(P), Gamma FALSE #> 15811 989 0.7954111 0.149703493 fv Gamma RP(P), Gamma FALSE #> 15827 990 0.7113507 0.134852556 fv Gamma RP(P), Gamma FALSE #> 15843 991 0.7586014 0.144688767 fv Gamma RP(P), Gamma FALSE #> 15859 992 0.7789712 0.148678906 fv Gamma RP(P), Gamma FALSE #> 15875 993 0.9452686 0.175283351 fv Gamma RP(P), Gamma FALSE #> 15891 994 0.6625835 0.127525541 fv Gamma RP(P), Gamma FALSE #> 15907 995 0.8179336 0.154628613 fv Gamma RP(P), Gamma FALSE #> 15923 996 0.6698410 0.128532500 fv Gamma RP(P), Gamma FALSE #> 15939 997 0.6029261 0.120579994 fv Gamma RP(P), Gamma FALSE #> 15955 998 0.6444980 0.124308172 fv Gamma RP(P), Gamma FALSE #> 15971 999 0.5097824 0.100070485 fv Gamma RP(P), Gamma FALSE #> 15987 1000 0.5002252 0.099547221 fv Gamma RP(P), Gamma FALSE #> 4 1 0.8410503 0.180489790 fv Gamma RP(P), Log-Normal FALSE #> 20 2 0.8678277 0.194181070 fv Gamma RP(P), Log-Normal FALSE #> 36 3 1.5656905 0.354448508 fv Gamma RP(P), Log-Normal FALSE #> 52 4 1.2089109 0.260522826 fv Gamma RP(P), Log-Normal FALSE #> 68 5 0.9105106 0.200479265 fv Gamma RP(P), Log-Normal FALSE #> 84 6 0.9727359 0.207142387 fv Gamma RP(P), Log-Normal FALSE #> 100 7 0.9091356 0.198318108 fv Gamma RP(P), Log-Normal FALSE #> 116 8 1.3377013 0.293288046 fv Gamma RP(P), Log-Normal FALSE #> 132 9 1.2350450 0.276016839 fv Gamma RP(P), Log-Normal FALSE #> 148 10 0.9974789 0.217294847 fv Gamma RP(P), Log-Normal FALSE #> 164 11 1.0414795 0.229502409 fv Gamma RP(P), Log-Normal FALSE #> 180 12 1.4499625 0.321000485 fv Gamma RP(P), Log-Normal FALSE #> 196 13 1.2289253 0.270499075 fv Gamma RP(P), Log-Normal FALSE #> 212 14 0.7903710 0.178471107 fv Gamma RP(P), Log-Normal FALSE #> 228 15 1.1996110 0.263087699 fv Gamma RP(P), Log-Normal FALSE #> 244 16 1.2290670 0.262683325 fv Gamma RP(P), Log-Normal FALSE #> 260 17 0.7668133 0.166707205 fv Gamma RP(P), Log-Normal FALSE #> 276 18 0.5614283 0.129201981 fv Gamma RP(P), Log-Normal FALSE #> 292 19 0.8973139 0.194570679 fv Gamma RP(P), Log-Normal FALSE #> 308 20 1.2979832 0.290290296 fv Gamma RP(P), Log-Normal FALSE #> 324 21 0.6887073 0.156427688 fv Gamma RP(P), Log-Normal FALSE #> 340 22 1.2170119 0.272426758 fv Gamma RP(P), Log-Normal FALSE #> 356 23 0.8168514 0.177990111 fv Gamma RP(P), Log-Normal FALSE #> 372 24 1.0319698 0.223783982 fv Gamma RP(P), Log-Normal FALSE #> 388 25 1.1205947 0.246445015 fv Gamma RP(P), Log-Normal FALSE #> 404 26 0.9638065 0.214741205 fv Gamma RP(P), Log-Normal FALSE #> 420 27 1.8077166 0.405187974 fv Gamma RP(P), Log-Normal TRUE #> 436 28 1.4582922 0.319696485 fv Gamma RP(P), Log-Normal FALSE #> 452 29 1.2743998 0.277048737 fv Gamma RP(P), Log-Normal FALSE #> 468 30 1.4103568 0.311798652 fv Gamma RP(P), Log-Normal FALSE #> 484 31 0.8138218 0.185276938 fv Gamma RP(P), Log-Normal FALSE #> 500 32 0.9982089 0.220955990 fv Gamma RP(P), Log-Normal FALSE #> 516 33 0.8061031 0.175345832 fv Gamma RP(P), Log-Normal FALSE #> 532 34 0.7039887 0.153529988 fv Gamma RP(P), Log-Normal FALSE #> 548 35 1.0346859 0.233365573 fv Gamma RP(P), Log-Normal FALSE #> 564 36 0.7549084 0.171089345 fv Gamma RP(P), Log-Normal FALSE #> 580 37 0.7130831 0.152936839 fv Gamma RP(P), Log-Normal FALSE #> 596 38 0.6323124 0.137321184 fv Gamma RP(P), Log-Normal FALSE #> 612 39 0.9223978 0.197745952 fv Gamma RP(P), Log-Normal FALSE #> 628 40 0.5917448 0.131429331 fv Gamma RP(P), Log-Normal FALSE #> 644 41 1.7030475 0.362512848 fv Gamma RP(P), Log-Normal TRUE #> 660 42 0.9836085 0.221167054 fv Gamma RP(P), Log-Normal FALSE #> 676 43 1.0892011 0.236781660 fv Gamma RP(P), Log-Normal FALSE #> 692 44 1.0691287 0.229946817 fv Gamma RP(P), Log-Normal FALSE #> 708 45 0.9125777 0.193490742 fv Gamma RP(P), Log-Normal FALSE #> 724 46 0.8640446 0.183399015 fv Gamma RP(P), Log-Normal FALSE #> 740 47 1.3812417 0.310356076 fv Gamma RP(P), Log-Normal FALSE #> 756 48 0.9461687 0.209437725 fv Gamma RP(P), Log-Normal FALSE #> 772 49 1.2123569 0.272535046 fv Gamma RP(P), Log-Normal FALSE #> 788 50 1.0157173 0.219640404 fv Gamma RP(P), Log-Normal FALSE #> 804 51 1.2240924 0.266048868 fv Gamma RP(P), Log-Normal FALSE #> 820 52 0.6314951 0.135520991 fv Gamma RP(P), Log-Normal FALSE #> 836 53 0.7902155 0.170518782 fv Gamma RP(P), Log-Normal FALSE #> 852 54 0.6234466 0.136430712 fv Gamma RP(P), Log-Normal FALSE #> 868 55 1.1077144 0.243206554 fv Gamma RP(P), Log-Normal FALSE #> 884 56 0.8032454 0.176040775 fv Gamma RP(P), Log-Normal FALSE #> 900 57 1.0879018 0.236307364 fv Gamma RP(P), Log-Normal FALSE #> 916 58 0.9079961 0.206563826 fv Gamma RP(P), Log-Normal FALSE #> 932 59 0.8521420 0.182802754 fv Gamma RP(P), Log-Normal FALSE #> 948 60 1.1246211 0.247632446 fv Gamma RP(P), Log-Normal FALSE #> 964 61 0.8496498 0.182406159 fv Gamma RP(P), Log-Normal FALSE #> 980 62 0.6798459 0.145192799 fv Gamma RP(P), Log-Normal FALSE #> 996 63 1.1786060 0.259638432 fv Gamma RP(P), Log-Normal FALSE #> 1012 64 0.8159884 0.175037739 fv Gamma RP(P), Log-Normal FALSE #> 1028 65 0.8800785 0.187329515 fv Gamma RP(P), Log-Normal FALSE #> 1044 66 0.6475174 0.141594919 fv Gamma RP(P), Log-Normal FALSE #> 1060 67 1.1346861 0.243224867 fv Gamma RP(P), Log-Normal FALSE #> 1076 68 0.9451782 0.204530548 fv Gamma RP(P), Log-Normal FALSE #> 1092 69 0.6591367 0.142421595 fv Gamma RP(P), Log-Normal FALSE #> 1108 70 0.8957225 0.201454630 fv Gamma RP(P), Log-Normal FALSE #> 1124 71 1.2425651 0.269862801 fv Gamma RP(P), Log-Normal FALSE #> 1140 72 0.7988484 0.172472083 fv Gamma RP(P), Log-Normal FALSE #> 1156 73 0.5992919 0.131137709 fv Gamma RP(P), Log-Normal FALSE #> 1172 74 0.8804460 0.189838649 fv Gamma RP(P), Log-Normal FALSE #> 1188 75 0.9777687 0.216420261 fv Gamma RP(P), Log-Normal FALSE #> 1204 76 0.9693736 0.219502318 fv Gamma RP(P), Log-Normal FALSE #> 1220 77 1.0165404 0.226139509 fv Gamma RP(P), Log-Normal FALSE #> 1236 78 1.4399271 0.315071555 fv Gamma RP(P), Log-Normal FALSE #> 1252 79 2.1221995 0.470009490 fv Gamma RP(P), Log-Normal TRUE #> 1268 80 0.7791535 0.174703739 fv Gamma RP(P), Log-Normal FALSE #> 1284 81 1.2547237 0.280827316 fv Gamma RP(P), Log-Normal FALSE #> 1300 82 0.9467868 0.204477217 fv Gamma RP(P), Log-Normal FALSE #> 1316 83 0.6230714 0.145922655 fv Gamma RP(P), Log-Normal FALSE #> 1332 84 0.9656183 0.208305949 fv Gamma RP(P), Log-Normal FALSE #> 1348 85 0.8409584 0.179338509 fv Gamma RP(P), Log-Normal FALSE #> 1364 86 0.8783902 0.188634107 fv Gamma RP(P), Log-Normal FALSE #> 1380 87 0.7891754 0.171683960 fv Gamma RP(P), Log-Normal FALSE #> 1396 88 0.8889765 0.189117565 fv Gamma RP(P), Log-Normal FALSE #> 1412 89 1.0136504 0.220546193 fv Gamma RP(P), Log-Normal FALSE #> 1428 90 1.1286349 0.241320253 fv Gamma RP(P), Log-Normal FALSE #> 1444 91 0.9312858 0.201825397 fv Gamma RP(P), Log-Normal FALSE #> 1460 92 0.8289786 0.178341610 fv Gamma RP(P), Log-Normal FALSE #> 1476 93 1.4146168 0.330757275 fv Gamma RP(P), Log-Normal FALSE #> 1492 94 1.1853824 0.265460198 fv Gamma RP(P), Log-Normal FALSE #> 1508 95 0.9465371 0.204446330 fv Gamma RP(P), Log-Normal FALSE #> 1524 96 0.5360025 0.117580795 fv Gamma RP(P), Log-Normal FALSE #> 1540 97 0.7049504 0.150930049 fv Gamma RP(P), Log-Normal FALSE #> 1556 98 1.0626450 0.230692215 fv Gamma RP(P), Log-Normal FALSE #> 1572 99 0.7236906 0.160439565 fv Gamma RP(P), Log-Normal FALSE #> 1588 100 1.2194488 0.261578712 fv Gamma RP(P), Log-Normal FALSE #> 1604 101 1.0668733 0.228523775 fv Gamma RP(P), Log-Normal FALSE #> 1620 102 0.9285004 0.200447554 fv Gamma RP(P), Log-Normal FALSE #> 1636 103 1.3458088 0.304378913 fv Gamma RP(P), Log-Normal FALSE #> 1652 104 1.0710874 0.231465125 fv Gamma RP(P), Log-Normal FALSE #> 1668 105 1.2613946 0.281394393 fv Gamma RP(P), Log-Normal FALSE #> 1684 106 0.8969644 0.193536579 fv Gamma RP(P), Log-Normal FALSE #> 1700 107 1.3073644 0.291540572 fv Gamma RP(P), Log-Normal FALSE #> 1716 108 1.2015396 0.273156263 fv Gamma RP(P), Log-Normal FALSE #> 1732 109 0.9608367 0.215133741 fv Gamma RP(P), Log-Normal FALSE #> 1748 110 1.0549760 0.230967027 fv Gamma RP(P), Log-Normal FALSE #> 1764 111 1.1546607 0.253379239 fv Gamma RP(P), Log-Normal FALSE #> 1780 112 0.5673895 0.125437515 fv Gamma RP(P), Log-Normal FALSE #> 1796 113 0.6343064 0.137652658 fv Gamma RP(P), Log-Normal FALSE #> 1812 114 1.6994774 0.372630539 fv Gamma RP(P), Log-Normal TRUE #> 1828 115 0.8096436 0.174316311 fv Gamma RP(P), Log-Normal FALSE #> 1844 116 0.5983113 0.130571723 fv Gamma RP(P), Log-Normal FALSE #> 1860 117 1.0752666 0.230788747 fv Gamma RP(P), Log-Normal FALSE #> 1876 118 0.6424306 0.138884328 fv Gamma RP(P), Log-Normal FALSE #> 1892 119 0.7987293 0.174838654 fv Gamma RP(P), Log-Normal FALSE #> 1908 120 0.9198102 0.199426585 fv Gamma RP(P), Log-Normal FALSE #> 1924 121 0.7655232 0.165876205 fv Gamma RP(P), Log-Normal FALSE #> 1940 122 0.8673380 0.192315723 fv Gamma RP(P), Log-Normal FALSE #> 1956 123 0.9257457 0.199557099 fv Gamma RP(P), Log-Normal FALSE #> 1972 124 0.9741059 0.208749126 fv Gamma RP(P), Log-Normal FALSE #> 1988 125 1.2460856 0.279458468 fv Gamma RP(P), Log-Normal FALSE #> 2004 126 1.5223418 0.348979386 fv Gamma RP(P), Log-Normal FALSE #> 2020 127 1.0897918 0.233748704 fv Gamma RP(P), Log-Normal FALSE #> 2036 128 1.0913695 0.235245203 fv Gamma RP(P), Log-Normal FALSE #> 2052 129 0.7759233 0.174810378 fv Gamma RP(P), Log-Normal FALSE #> 2068 130 0.8542536 0.185655091 fv Gamma RP(P), Log-Normal FALSE #> 2084 131 0.8677951 0.186392333 fv Gamma RP(P), Log-Normal FALSE #> 2100 132 1.0182273 0.229239447 fv Gamma RP(P), Log-Normal FALSE #> 2116 133 0.9314544 0.204039232 fv Gamma RP(P), Log-Normal FALSE #> 2132 134 1.0852088 0.238460386 fv Gamma RP(P), Log-Normal FALSE #> 2148 135 0.7909149 0.173975625 fv Gamma RP(P), Log-Normal FALSE #> 2164 136 0.9778860 0.214124322 fv Gamma RP(P), Log-Normal FALSE #> 2180 137 1.2598163 0.276133548 fv Gamma RP(P), Log-Normal FALSE #> 2196 138 1.2809055 0.281451627 fv Gamma RP(P), Log-Normal FALSE #> 2212 139 0.7995624 0.172343978 fv Gamma RP(P), Log-Normal FALSE #> 2228 140 1.0542020 0.228792828 fv Gamma RP(P), Log-Normal FALSE #> 2244 141 0.7478963 0.168448746 fv Gamma RP(P), Log-Normal FALSE #> 2260 142 0.9760714 0.213021566 fv Gamma RP(P), Log-Normal FALSE #> 2276 143 1.7801465 0.420367979 fv Gamma RP(P), Log-Normal TRUE #> 2292 144 1.1180069 0.240026858 fv Gamma RP(P), Log-Normal FALSE #> 2308 145 0.8550480 0.185257078 fv Gamma RP(P), Log-Normal FALSE #> 2324 146 0.8869459 0.194368374 fv Gamma RP(P), Log-Normal FALSE #> 2340 147 1.0416163 0.222624864 fv Gamma RP(P), Log-Normal FALSE #> 2356 148 0.6177941 0.133321319 fv Gamma RP(P), Log-Normal FALSE #> 2372 149 0.8384950 0.183594689 fv Gamma RP(P), Log-Normal FALSE #> 2388 150 1.1818709 0.256428027 fv Gamma RP(P), Log-Normal FALSE #> 2404 151 1.1336835 0.246106754 fv Gamma RP(P), Log-Normal FALSE #> 2420 152 1.2047244 0.274407174 fv Gamma RP(P), Log-Normal FALSE #> 2436 153 0.6319178 0.140024355 fv Gamma RP(P), Log-Normal FALSE #> 2452 154 1.1227542 0.243273981 fv Gamma RP(P), Log-Normal FALSE #> 2468 155 0.9472756 0.213435649 fv Gamma RP(P), Log-Normal FALSE #> 2484 156 0.9353948 0.201845857 fv Gamma RP(P), Log-Normal FALSE #> 2500 157 1.4443196 0.325027201 fv Gamma RP(P), Log-Normal FALSE #> 2516 158 1.4804150 0.332558943 fv Gamma RP(P), Log-Normal FALSE #> 2532 159 0.6630153 0.148287051 fv Gamma RP(P), Log-Normal FALSE #> 2548 160 0.6900087 0.149587077 fv Gamma RP(P), Log-Normal FALSE #> 2564 161 1.7387701 0.385887845 fv Gamma RP(P), Log-Normal TRUE #> 2580 162 0.9687233 0.217750869 fv Gamma RP(P), Log-Normal FALSE #> 2596 163 0.6827167 0.145583781 fv Gamma RP(P), Log-Normal FALSE #> 2612 164 1.2172745 0.262189900 fv Gamma RP(P), Log-Normal FALSE #> 2628 165 1.0784115 0.233084303 fv Gamma RP(P), Log-Normal FALSE #> 2644 166 1.1583751 0.261285259 fv Gamma RP(P), Log-Normal FALSE #> 2660 167 1.3212424 0.288994706 fv Gamma RP(P), Log-Normal FALSE #> 2676 168 1.0892162 0.232654723 fv Gamma RP(P), Log-Normal FALSE #> 2692 169 0.9488717 0.210488425 fv Gamma RP(P), Log-Normal FALSE #> 2708 170 0.9425105 0.207346315 fv Gamma RP(P), Log-Normal FALSE #> 2724 171 0.9648281 0.217152696 fv Gamma RP(P), Log-Normal FALSE #> 2740 172 1.1441352 0.247932693 fv Gamma RP(P), Log-Normal FALSE #> 2756 173 0.7910405 0.176024495 fv Gamma RP(P), Log-Normal FALSE #> 2772 174 1.1316952 0.249970141 fv Gamma RP(P), Log-Normal FALSE #> 2788 175 0.8198924 0.180989910 fv Gamma RP(P), Log-Normal FALSE #> 2804 176 0.8753872 0.188037677 fv Gamma RP(P), Log-Normal FALSE #> 2820 177 0.7720114 0.176313354 fv Gamma RP(P), Log-Normal FALSE #> 2836 178 1.1816336 0.253573112 fv Gamma RP(P), Log-Normal FALSE #> 2852 179 0.7570887 0.163987104 fv Gamma RP(P), Log-Normal FALSE #> 2868 180 1.0248482 0.231084001 fv Gamma RP(P), Log-Normal FALSE #> 2884 181 1.1758148 0.255526928 fv Gamma RP(P), Log-Normal FALSE #> 2900 182 0.9353048 0.200381412 fv Gamma RP(P), Log-Normal FALSE #> 2916 183 0.7649203 0.166913250 fv Gamma RP(P), Log-Normal FALSE #> 2932 184 0.9391842 0.210675866 fv Gamma RP(P), Log-Normal FALSE #> 2948 185 1.2001237 0.263877714 fv Gamma RP(P), Log-Normal FALSE #> 2964 186 1.3870806 0.315929817 fv Gamma RP(P), Log-Normal FALSE #> 2980 187 0.9699397 0.211577834 fv Gamma RP(P), Log-Normal FALSE #> 2996 188 0.6690904 0.144881941 fv Gamma RP(P), Log-Normal FALSE #> 3012 189 1.0329302 0.225123247 fv Gamma RP(P), Log-Normal FALSE #> 3028 190 0.9803038 0.208776860 fv Gamma RP(P), Log-Normal FALSE #> 3044 191 1.0084836 0.219927110 fv Gamma RP(P), Log-Normal FALSE #> 3060 192 1.0550664 0.236314960 fv Gamma RP(P), Log-Normal FALSE #> 3076 193 0.8630140 0.189691189 fv Gamma RP(P), Log-Normal FALSE #> 3092 194 0.8052466 0.175195362 fv Gamma RP(P), Log-Normal FALSE #> 3108 195 1.0968900 0.233922924 fv Gamma RP(P), Log-Normal FALSE #> 3124 196 1.1559404 0.256854876 fv Gamma RP(P), Log-Normal FALSE #> 3140 197 0.9197354 0.195423075 fv Gamma RP(P), Log-Normal FALSE #> 3156 198 0.9870597 0.210203075 fv Gamma RP(P), Log-Normal FALSE #> 3172 199 0.7693873 0.169248931 fv Gamma RP(P), Log-Normal FALSE #> 3188 200 1.0852385 0.232970650 fv Gamma RP(P), Log-Normal FALSE #> 3204 201 1.0582087 0.233919328 fv Gamma RP(P), Log-Normal FALSE #> 3220 202 1.1012224 0.237450055 fv Gamma RP(P), Log-Normal FALSE #> 3236 203 0.9917678 0.212158246 fv Gamma RP(P), Log-Normal FALSE #> 3252 204 1.0600987 0.242348250 fv Gamma RP(P), Log-Normal FALSE #> 3268 205 0.7573698 0.166925875 fv Gamma RP(P), Log-Normal FALSE #> 3284 206 1.0214815 0.222696133 fv Gamma RP(P), Log-Normal FALSE #> 3300 207 0.6835123 0.147794118 fv Gamma RP(P), Log-Normal FALSE #> 3316 208 0.9790364 0.214484170 fv Gamma RP(P), Log-Normal FALSE #> 3332 209 0.9284396 0.203537107 fv Gamma RP(P), Log-Normal FALSE #> 3348 210 0.9177248 0.203825830 fv Gamma RP(P), Log-Normal FALSE #> 3364 211 1.4985260 0.338006117 fv Gamma RP(P), Log-Normal FALSE #> 3380 212 0.9970864 0.223396310 fv Gamma RP(P), Log-Normal FALSE #> 3396 213 1.1144267 0.246404561 fv Gamma RP(P), Log-Normal FALSE #> 3412 214 1.0088299 0.226415030 fv Gamma RP(P), Log-Normal FALSE #> 3428 215 1.1291796 0.244563544 fv Gamma RP(P), Log-Normal FALSE #> 3444 216 1.2609631 0.275896977 fv Gamma RP(P), Log-Normal FALSE #> 3460 217 0.8389670 0.184949511 fv Gamma RP(P), Log-Normal FALSE #> 3476 218 0.8453860 0.188622069 fv Gamma RP(P), Log-Normal FALSE #> 3492 219 1.2183609 0.274303728 fv Gamma RP(P), Log-Normal FALSE #> 3508 220 0.7187300 0.156561885 fv Gamma RP(P), Log-Normal FALSE #> 3524 221 0.9388220 0.208447345 fv Gamma RP(P), Log-Normal FALSE #> 3540 222 1.1209367 0.250349485 fv Gamma RP(P), Log-Normal FALSE #> 3556 223 1.0480275 0.237133986 fv Gamma RP(P), Log-Normal FALSE #> 3572 224 1.0128154 0.221061644 fv Gamma RP(P), Log-Normal FALSE #> 3588 225 0.8044790 0.173788213 fv Gamma RP(P), Log-Normal FALSE #> 3604 226 1.3216154 0.300532131 fv Gamma RP(P), Log-Normal FALSE #> 3620 227 0.8680673 0.191662277 fv Gamma RP(P), Log-Normal FALSE #> 3636 228 1.1162978 0.238070849 fv Gamma RP(P), Log-Normal FALSE #> 3652 229 1.1133721 0.244781394 fv Gamma RP(P), Log-Normal FALSE #> 3668 230 0.8878602 0.190636787 fv Gamma RP(P), Log-Normal FALSE #> 3684 231 1.1544228 0.255759683 fv Gamma RP(P), Log-Normal FALSE #> 3700 232 1.0320456 0.230128037 fv Gamma RP(P), Log-Normal FALSE #> 3716 233 1.1888143 0.263237985 fv Gamma RP(P), Log-Normal FALSE #> 3732 234 0.9164521 0.201120134 fv Gamma RP(P), Log-Normal FALSE #> 3748 235 1.1327970 0.257687761 fv Gamma RP(P), Log-Normal FALSE #> 3764 236 0.6460332 0.144131419 fv Gamma RP(P), Log-Normal FALSE #> 3780 237 0.8430326 0.186855350 fv Gamma RP(P), Log-Normal FALSE #> 3796 238 0.8158895 0.183957007 fv Gamma RP(P), Log-Normal FALSE #> 3812 239 0.9394292 0.201459225 fv Gamma RP(P), Log-Normal FALSE #> 3828 240 1.1606621 0.257905170 fv Gamma RP(P), Log-Normal FALSE #> 3844 241 0.8538658 0.185111653 fv Gamma RP(P), Log-Normal FALSE #> 3860 242 0.6336259 0.138341079 fv Gamma RP(P), Log-Normal FALSE #> 3876 243 1.3611347 0.316943569 fv Gamma RP(P), Log-Normal FALSE #> 3892 244 0.6853487 0.148004398 fv Gamma RP(P), Log-Normal FALSE #> 3908 245 1.5239087 0.341431129 fv Gamma RP(P), Log-Normal FALSE #> 3924 246 0.8620671 0.184937320 fv Gamma RP(P), Log-Normal FALSE #> 3940 247 1.0483086 0.230069168 fv Gamma RP(P), Log-Normal FALSE #> 3956 248 1.3814399 0.299598493 fv Gamma RP(P), Log-Normal FALSE #> 3972 249 1.4587490 0.332527808 fv Gamma RP(P), Log-Normal FALSE #> 3988 250 0.9961178 0.219966795 fv Gamma RP(P), Log-Normal FALSE #> 4004 251 1.0802323 0.239577478 fv Gamma RP(P), Log-Normal FALSE #> 4020 252 1.1573802 0.260140925 fv Gamma RP(P), Log-Normal FALSE #> 4036 253 1.2435742 0.287752260 fv Gamma RP(P), Log-Normal FALSE #> 4052 254 0.6213066 0.133993890 fv Gamma RP(P), Log-Normal FALSE #> 4068 255 0.9306108 0.196210153 fv Gamma RP(P), Log-Normal FALSE #> 4084 256 0.9142294 0.199393458 fv Gamma RP(P), Log-Normal FALSE #> 4100 257 0.6756633 0.145660199 fv Gamma RP(P), Log-Normal FALSE #> 4116 258 1.0192314 0.236693687 fv Gamma RP(P), Log-Normal FALSE #> 4132 259 0.9446257 0.205216936 fv Gamma RP(P), Log-Normal FALSE #> 4148 260 1.1233469 0.244803377 fv Gamma RP(P), Log-Normal FALSE #> 4164 261 0.5981253 0.129981226 fv Gamma RP(P), Log-Normal FALSE #> 4180 262 0.8469669 0.185096728 fv Gamma RP(P), Log-Normal FALSE #> 4196 263 0.7899133 0.174604035 fv Gamma RP(P), Log-Normal FALSE #> 4212 264 0.6078800 0.131030433 fv Gamma RP(P), Log-Normal FALSE #> 4228 265 0.7793063 0.167770678 fv Gamma RP(P), Log-Normal FALSE #> 4244 266 0.8557823 0.187576892 fv Gamma RP(P), Log-Normal FALSE #> 4260 267 0.9221636 0.200920447 fv Gamma RP(P), Log-Normal FALSE #> 4276 268 0.9907061 0.213920651 fv Gamma RP(P), Log-Normal FALSE #> 4292 269 1.6707648 0.379565298 fv Gamma RP(P), Log-Normal TRUE #> 4308 270 1.2213651 0.278069743 fv Gamma RP(P), Log-Normal FALSE #> 4324 271 1.2134813 0.268186948 fv Gamma RP(P), Log-Normal FALSE #> 4340 272 0.7105029 0.158227375 fv Gamma RP(P), Log-Normal FALSE #> 4356 273 0.8171010 0.178367886 fv Gamma RP(P), Log-Normal FALSE #> 4372 274 0.9050407 0.193402733 fv Gamma RP(P), Log-Normal FALSE #> 4388 275 1.1353543 0.243983601 fv Gamma RP(P), Log-Normal FALSE #> 4404 276 1.0858343 0.244403762 fv Gamma RP(P), Log-Normal FALSE #> 4420 277 0.8684428 0.186238953 fv Gamma RP(P), Log-Normal FALSE #> 4436 278 1.0203287 0.220451182 fv Gamma RP(P), Log-Normal FALSE #> 4452 279 1.0011619 0.217423012 fv Gamma RP(P), Log-Normal FALSE #> 4468 280 0.9509821 0.203861367 fv Gamma RP(P), Log-Normal FALSE #> 4484 281 1.5506510 0.348875344 fv Gamma RP(P), Log-Normal FALSE #> 4500 282 0.7365934 0.158887674 fv Gamma RP(P), Log-Normal FALSE #> 4516 283 1.1427590 0.261767217 fv Gamma RP(P), Log-Normal FALSE #> 4532 284 0.7622570 0.162455472 fv Gamma RP(P), Log-Normal FALSE #> 4548 285 0.5961491 0.129287813 fv Gamma RP(P), Log-Normal FALSE #> 4564 286 1.0061213 0.217649530 fv Gamma RP(P), Log-Normal FALSE #> 4580 287 0.7806262 0.169733695 fv Gamma RP(P), Log-Normal FALSE #> 4596 288 1.8098902 0.399947941 fv Gamma RP(P), Log-Normal TRUE #> 4612 289 0.8393518 0.185200626 fv Gamma RP(P), Log-Normal FALSE #> 4628 290 0.7468449 0.162723595 fv Gamma RP(P), Log-Normal FALSE #> 4644 291 0.7601939 0.165843465 fv Gamma RP(P), Log-Normal FALSE #> 4660 292 0.7323268 0.156954458 fv Gamma RP(P), Log-Normal FALSE #> 4676 293 1.2258149 0.268151985 fv Gamma RP(P), Log-Normal FALSE #> 4692 294 0.8404157 0.183782801 fv Gamma RP(P), Log-Normal FALSE #> 4708 295 1.5766100 0.346101076 fv Gamma RP(P), Log-Normal FALSE #> 4724 296 1.0056320 0.220767234 fv Gamma RP(P), Log-Normal FALSE #> 4740 297 1.7157538 0.372587669 fv Gamma RP(P), Log-Normal TRUE #> 4756 298 0.6795482 0.146389054 fv Gamma RP(P), Log-Normal FALSE #> 4772 299 0.7207333 0.158465129 fv Gamma RP(P), Log-Normal FALSE #> 4788 300 1.1288850 0.241916357 fv Gamma RP(P), Log-Normal FALSE #> 4804 301 0.6731434 0.147303733 fv Gamma RP(P), Log-Normal FALSE #> 4820 302 1.0472072 0.224351808 fv Gamma RP(P), Log-Normal FALSE #> 4836 303 0.7717841 0.166341408 fv Gamma RP(P), Log-Normal FALSE #> 4852 304 0.8192309 0.175783833 fv Gamma RP(P), Log-Normal FALSE #> 4868 305 1.2026302 0.261708291 fv Gamma RP(P), Log-Normal FALSE #> 4884 306 0.9576788 0.208093071 fv Gamma RP(P), Log-Normal FALSE #> 4900 307 1.0605048 0.238865352 fv Gamma RP(P), Log-Normal FALSE #> 4916 308 0.8711031 0.189633570 fv Gamma RP(P), Log-Normal FALSE #> 4932 309 1.0053989 0.216562485 fv Gamma RP(P), Log-Normal FALSE #> 4948 310 1.6051705 0.357305337 fv Gamma RP(P), Log-Normal TRUE #> 4964 311 1.2178320 0.266118483 fv Gamma RP(P), Log-Normal FALSE #> 4980 312 1.8621584 0.430025773 fv Gamma RP(P), Log-Normal TRUE #> 4996 313 1.1324318 0.248100889 fv Gamma RP(P), Log-Normal FALSE #> 5012 314 0.9259319 0.204944464 fv Gamma RP(P), Log-Normal FALSE #> 5028 315 1.0717161 0.231194628 fv Gamma RP(P), Log-Normal FALSE #> 5044 316 1.5632161 0.343308715 fv Gamma RP(P), Log-Normal FALSE #> 5060 317 0.7911773 0.172163115 fv Gamma RP(P), Log-Normal FALSE #> 5076 318 1.0257467 0.229465201 fv Gamma RP(P), Log-Normal FALSE #> 5092 319 0.7560379 0.164851201 fv Gamma RP(P), Log-Normal FALSE #> 5108 320 0.7598209 0.164946075 fv Gamma RP(P), Log-Normal FALSE #> 5124 321 1.3366113 0.296232365 fv Gamma RP(P), Log-Normal FALSE #> 5140 322 0.6541514 0.142874097 fv Gamma RP(P), Log-Normal FALSE #> 5156 323 1.1888806 0.259384609 fv Gamma RP(P), Log-Normal FALSE #> 5172 324 0.7895205 0.174817665 fv Gamma RP(P), Log-Normal FALSE #> 5188 325 0.9089904 0.195887537 fv Gamma RP(P), Log-Normal FALSE #> 5204 326 0.8991867 0.194800348 fv Gamma RP(P), Log-Normal FALSE #> 5220 327 0.9354573 0.200972552 fv Gamma RP(P), Log-Normal FALSE #> 5236 328 1.4508772 0.321883010 fv Gamma RP(P), Log-Normal FALSE #> 5252 329 1.2389575 0.278410321 fv Gamma RP(P), Log-Normal FALSE #> 5268 330 0.9497564 0.208683102 fv Gamma RP(P), Log-Normal FALSE #> 5284 331 1.1348318 0.243830181 fv Gamma RP(P), Log-Normal FALSE #> 5300 332 0.7406454 0.165819274 fv Gamma RP(P), Log-Normal FALSE #> 5316 333 0.6882928 0.148784950 fv Gamma RP(P), Log-Normal FALSE #> 5332 334 1.3842558 0.296929851 fv Gamma RP(P), Log-Normal FALSE #> 5348 335 1.0741546 0.237337608 fv Gamma RP(P), Log-Normal FALSE #> 5364 336 0.6223286 0.139826644 fv Gamma RP(P), Log-Normal FALSE #> 5380 337 0.8436957 0.186307291 fv Gamma RP(P), Log-Normal FALSE #> 5396 338 0.7251021 0.154411004 fv Gamma RP(P), Log-Normal FALSE #> 5412 339 1.0911888 0.239706177 fv Gamma RP(P), Log-Normal FALSE #> 5428 340 1.1139385 0.259970148 fv Gamma RP(P), Log-Normal FALSE #> 5444 341 0.6722575 0.144746633 fv Gamma RP(P), Log-Normal FALSE #> 5460 342 0.5335198 0.115837477 fv Gamma RP(P), Log-Normal FALSE #> 5476 343 0.7759368 0.168497568 fv Gamma RP(P), Log-Normal FALSE #> 5492 344 1.3745439 0.304745479 fv Gamma RP(P), Log-Normal FALSE #> 5508 345 1.2019517 0.264238640 fv Gamma RP(P), Log-Normal FALSE #> 5524 346 1.0680673 0.228681184 fv Gamma RP(P), Log-Normal FALSE #> 5540 347 0.9424073 0.202173546 fv Gamma RP(P), Log-Normal FALSE #> 5556 348 1.4206305 0.311160176 fv Gamma RP(P), Log-Normal FALSE #> 5572 349 1.1631266 0.253819909 fv Gamma RP(P), Log-Normal FALSE #> 5588 350 1.0587565 0.227239061 fv Gamma RP(P), Log-Normal FALSE #> 5604 351 1.2314624 0.279628007 fv Gamma RP(P), Log-Normal FALSE #> 5620 352 1.1441911 0.257794647 fv Gamma RP(P), Log-Normal FALSE #> 5636 353 0.6759264 0.146595798 fv Gamma RP(P), Log-Normal FALSE #> 5652 354 0.9403395 0.204457172 fv Gamma RP(P), Log-Normal FALSE #> 5668 355 1.1145079 0.239429075 fv Gamma RP(P), Log-Normal FALSE #> 5684 356 1.0944187 0.241452823 fv Gamma RP(P), Log-Normal FALSE #> 5700 357 0.8472675 0.182834330 fv Gamma RP(P), Log-Normal FALSE #> 5716 358 0.8078994 0.171141015 fv Gamma RP(P), Log-Normal FALSE #> 5732 359 0.8715760 0.197056186 fv Gamma RP(P), Log-Normal FALSE #> 5748 360 0.7305572 0.157575039 fv Gamma RP(P), Log-Normal FALSE #> 5764 361 1.3093898 0.295995439 fv Gamma RP(P), Log-Normal FALSE #> 5780 362 0.5932042 0.128820637 fv Gamma RP(P), Log-Normal FALSE #> 5796 363 0.9537684 0.211563876 fv Gamma RP(P), Log-Normal FALSE #> 5812 364 0.6500835 0.143060235 fv Gamma RP(P), Log-Normal FALSE #> 5828 365 0.9988684 0.230090658 fv Gamma RP(P), Log-Normal FALSE #> 5844 366 1.2002573 0.268259798 fv Gamma RP(P), Log-Normal FALSE #> 5860 367 1.1732540 0.253572484 fv Gamma RP(P), Log-Normal FALSE #> 5876 368 1.1839640 0.274942607 fv Gamma RP(P), Log-Normal FALSE #> 5892 369 0.6725999 0.144571959 fv Gamma RP(P), Log-Normal FALSE #> 5908 370 0.6474614 0.141195590 fv Gamma RP(P), Log-Normal FALSE #> 5924 371 1.0778251 0.237098302 fv Gamma RP(P), Log-Normal FALSE #> 5940 372 0.7840598 0.178284497 fv Gamma RP(P), Log-Normal FALSE #> 5956 373 0.9240125 0.200650555 fv Gamma RP(P), Log-Normal FALSE #> 5972 374 0.7215876 0.154150935 fv Gamma RP(P), Log-Normal FALSE #> 5988 375 0.7472158 0.161834638 fv Gamma RP(P), Log-Normal FALSE #> 6004 376 0.7840256 0.168608101 fv Gamma RP(P), Log-Normal FALSE #> 6020 377 1.2063017 0.272271466 fv Gamma RP(P), Log-Normal FALSE #> 6036 378 1.0759738 0.232885696 fv Gamma RP(P), Log-Normal FALSE #> 6052 379 0.7991445 0.171767634 fv Gamma RP(P), Log-Normal FALSE #> 6068 380 0.9835843 0.213394452 fv Gamma RP(P), Log-Normal FALSE #> 6084 381 0.7117307 0.151443197 fv Gamma RP(P), Log-Normal FALSE #> 6100 382 0.9374011 0.204621752 fv Gamma RP(P), Log-Normal FALSE #> 6116 383 1.4564452 0.312580654 fv Gamma RP(P), Log-Normal FALSE #> 6132 384 1.1166026 0.243039524 fv Gamma RP(P), Log-Normal FALSE #> 6148 385 0.6950395 0.150883736 fv Gamma RP(P), Log-Normal FALSE #> 6164 386 0.4544464 0.102122826 fv Gamma RP(P), Log-Normal FALSE #> 6180 387 0.6941927 0.149352262 fv Gamma RP(P), Log-Normal FALSE #> 6196 388 0.8740749 0.189471295 fv Gamma RP(P), Log-Normal FALSE #> 6212 389 0.6379024 0.138928630 fv Gamma RP(P), Log-Normal FALSE #> 6228 390 0.7579377 0.165386684 fv Gamma RP(P), Log-Normal FALSE #> 6244 391 0.6208441 0.135164000 fv Gamma RP(P), Log-Normal FALSE #> 6260 392 1.1388947 0.243164287 fv Gamma RP(P), Log-Normal FALSE #> 6276 393 0.6777050 0.146669241 fv Gamma RP(P), Log-Normal FALSE #> 6292 394 1.2875572 0.285500045 fv Gamma RP(P), Log-Normal FALSE #> 6308 395 0.9594942 0.212902410 fv Gamma RP(P), Log-Normal FALSE #> 6324 396 0.9535688 0.214993979 fv Gamma RP(P), Log-Normal FALSE #> 6340 397 1.1170706 0.239961536 fv Gamma RP(P), Log-Normal FALSE #> 6356 398 0.9337227 0.201800746 fv Gamma RP(P), Log-Normal FALSE #> 6372 399 0.7611877 0.165402284 fv Gamma RP(P), Log-Normal FALSE #> 6388 400 0.8163529 0.177586051 fv Gamma RP(P), Log-Normal FALSE #> 6404 401 1.1755879 0.260480234 fv Gamma RP(P), Log-Normal FALSE #> 6420 402 0.8926168 0.200255305 fv Gamma RP(P), Log-Normal FALSE #> 6436 403 0.8545840 0.183751295 fv Gamma RP(P), Log-Normal FALSE #> 6452 404 1.1315518 0.257023968 fv Gamma RP(P), Log-Normal FALSE #> 6468 405 0.7711867 0.164072761 fv Gamma RP(P), Log-Normal FALSE #> 6484 406 0.7394725 0.158175027 fv Gamma RP(P), Log-Normal FALSE #> 6500 407 1.0465095 0.229942406 fv Gamma RP(P), Log-Normal FALSE #> 6516 408 0.6300849 0.149381842 fv Gamma RP(P), Log-Normal FALSE #> 6532 409 1.2759445 0.275964040 fv Gamma RP(P), Log-Normal FALSE #> 6548 410 1.4092819 0.317311958 fv Gamma RP(P), Log-Normal FALSE #> 6564 411 1.0991484 0.254405935 fv Gamma RP(P), Log-Normal FALSE #> 6580 412 0.8267034 0.177108154 fv Gamma RP(P), Log-Normal FALSE #> 6596 413 0.9031192 0.199459030 fv Gamma RP(P), Log-Normal FALSE #> 6612 414 0.8929692 0.192911734 fv Gamma RP(P), Log-Normal FALSE #> 6628 415 1.1226055 0.241604742 fv Gamma RP(P), Log-Normal FALSE #> 6644 416 0.7277533 0.157426254 fv Gamma RP(P), Log-Normal FALSE #> 6660 417 0.9685098 0.210134619 fv Gamma RP(P), Log-Normal FALSE #> 6676 418 0.9593147 0.209686673 fv Gamma RP(P), Log-Normal FALSE #> 6692 419 0.8180942 0.182657405 fv Gamma RP(P), Log-Normal FALSE #> 6708 420 1.1163400 0.250241104 fv Gamma RP(P), Log-Normal FALSE #> 6724 421 1.0662506 0.230681634 fv Gamma RP(P), Log-Normal FALSE #> 6740 422 0.9590765 0.208021402 fv Gamma RP(P), Log-Normal FALSE #> 6756 423 1.0631685 0.230888818 fv Gamma RP(P), Log-Normal FALSE #> 6772 424 0.9657118 0.217152814 fv Gamma RP(P), Log-Normal FALSE #> 6788 425 0.7349995 0.162179797 fv Gamma RP(P), Log-Normal FALSE #> 6804 426 1.2825616 0.279074728 fv Gamma RP(P), Log-Normal FALSE #> 6820 427 0.5095550 0.112703591 fv Gamma RP(P), Log-Normal FALSE #> 6836 428 1.4523732 0.327933855 fv Gamma RP(P), Log-Normal FALSE #> 6852 429 0.7978037 0.173408480 fv Gamma RP(P), Log-Normal FALSE #> 6868 430 0.6875011 0.147810346 fv Gamma RP(P), Log-Normal FALSE #> 6884 431 1.1006941 0.238750756 fv Gamma RP(P), Log-Normal FALSE #> 6900 432 0.6748862 0.147308411 fv Gamma RP(P), Log-Normal FALSE #> 6916 433 1.1282877 0.250568935 fv Gamma RP(P), Log-Normal FALSE #> 6932 434 1.2431724 0.265520208 fv Gamma RP(P), Log-Normal FALSE #> 6948 435 0.8078352 0.172249398 fv Gamma RP(P), Log-Normal FALSE #> 6964 436 1.2539909 0.282120990 fv Gamma RP(P), Log-Normal FALSE #> 6980 437 0.8230815 0.177122345 fv Gamma RP(P), Log-Normal FALSE #> 6996 438 0.6367504 0.141576527 fv Gamma RP(P), Log-Normal FALSE #> 7012 439 0.9345544 0.208661903 fv Gamma RP(P), Log-Normal FALSE #> 7028 440 0.8145396 0.174404632 fv Gamma RP(P), Log-Normal FALSE #> 7044 441 0.4963037 0.107331468 fv Gamma RP(P), Log-Normal FALSE #> 7060 442 0.9945112 0.210487712 fv Gamma RP(P), Log-Normal FALSE #> 7076 443 0.6687881 0.151032821 fv Gamma RP(P), Log-Normal FALSE #> 7092 444 0.8057132 0.174622153 fv Gamma RP(P), Log-Normal FALSE #> 7108 445 1.2113594 0.278671053 fv Gamma RP(P), Log-Normal FALSE #> 7124 446 1.0112616 0.219825528 fv Gamma RP(P), Log-Normal FALSE #> 7140 447 0.9580334 0.208122592 fv Gamma RP(P), Log-Normal FALSE #> 7156 448 1.0480268 0.231358840 fv Gamma RP(P), Log-Normal FALSE #> 7172 449 1.1654833 0.250305711 fv Gamma RP(P), Log-Normal FALSE #> 7188 450 0.7747101 0.164631434 fv Gamma RP(P), Log-Normal FALSE #> 7204 451 1.0778703 0.233850216 fv Gamma RP(P), Log-Normal FALSE #> 7220 452 0.6532856 0.142936025 fv Gamma RP(P), Log-Normal FALSE #> 7236 453 1.0354556 0.220201966 fv Gamma RP(P), Log-Normal FALSE #> 7252 454 0.8410267 0.188393838 fv Gamma RP(P), Log-Normal FALSE #> 7268 455 1.0590126 0.231017540 fv Gamma RP(P), Log-Normal FALSE #> 7284 456 1.1002554 0.239040113 fv Gamma RP(P), Log-Normal FALSE #> 7300 457 1.1113213 0.242020836 fv Gamma RP(P), Log-Normal FALSE #> 7316 458 1.2737451 0.283902711 fv Gamma RP(P), Log-Normal FALSE #> 7332 459 0.8741005 0.192529765 fv Gamma RP(P), Log-Normal FALSE #> 7348 460 0.8343565 0.185513409 fv Gamma RP(P), Log-Normal FALSE #> 7364 461 1.0413598 0.229681208 fv Gamma RP(P), Log-Normal FALSE #> 7380 462 1.4058311 0.313874121 fv Gamma RP(P), Log-Normal FALSE #> 7396 463 0.7385880 0.157268096 fv Gamma RP(P), Log-Normal FALSE #> 7412 464 0.6749140 0.150334899 fv Gamma RP(P), Log-Normal FALSE #> 7428 465 0.9372626 0.202416087 fv Gamma RP(P), Log-Normal FALSE #> 7444 466 1.0819470 0.240560277 fv Gamma RP(P), Log-Normal FALSE #> 7460 467 1.2583393 0.280960356 fv Gamma RP(P), Log-Normal FALSE #> 7476 468 0.6603316 0.141287880 fv Gamma RP(P), Log-Normal FALSE #> 7492 469 1.0850180 0.243295647 fv Gamma RP(P), Log-Normal FALSE #> 7508 470 0.9881027 0.210406927 fv Gamma RP(P), Log-Normal FALSE #> 7524 471 0.7454241 0.160990011 fv Gamma RP(P), Log-Normal FALSE #> 7540 472 1.1745015 0.256706796 fv Gamma RP(P), Log-Normal FALSE #> 7556 473 0.7959574 0.170031541 fv Gamma RP(P), Log-Normal FALSE #> 7572 474 0.7918319 0.177803843 fv Gamma RP(P), Log-Normal FALSE #> 7588 475 1.6522706 0.375398426 fv Gamma RP(P), Log-Normal TRUE #> 7604 476 0.6916373 0.152453433 fv Gamma RP(P), Log-Normal FALSE #> 7620 477 1.2375353 0.268085782 fv Gamma RP(P), Log-Normal FALSE #> 7636 478 0.9740985 0.216425920 fv Gamma RP(P), Log-Normal FALSE #> 7652 479 1.2632676 0.276699164 fv Gamma RP(P), Log-Normal FALSE #> 7668 480 1.0387783 0.230531068 fv Gamma RP(P), Log-Normal FALSE #> 7684 481 0.9091348 0.201095913 fv Gamma RP(P), Log-Normal FALSE #> 7700 482 0.8691584 0.198334797 fv Gamma RP(P), Log-Normal FALSE #> 7716 483 0.9225715 0.209461889 fv Gamma RP(P), Log-Normal FALSE #> 7732 484 0.9439964 0.201865531 fv Gamma RP(P), Log-Normal FALSE #> 7748 485 1.0052738 0.218556409 fv Gamma RP(P), Log-Normal FALSE #> 7764 486 0.7260035 0.159970767 fv Gamma RP(P), Log-Normal FALSE #> 7780 487 1.1001328 0.238315614 fv Gamma RP(P), Log-Normal FALSE #> 7796 488 0.9538392 0.216822184 fv Gamma RP(P), Log-Normal FALSE #> 7812 489 1.2501391 0.282675830 fv Gamma RP(P), Log-Normal FALSE #> 7828 490 1.6236317 0.352529801 fv Gamma RP(P), Log-Normal TRUE #> 7844 491 0.8316296 0.178919604 fv Gamma RP(P), Log-Normal FALSE #> 7860 492 1.2586735 0.281277951 fv Gamma RP(P), Log-Normal FALSE #> 7876 493 1.1213778 0.258755786 fv Gamma RP(P), Log-Normal FALSE #> 7892 494 0.8594317 0.184538921 fv Gamma RP(P), Log-Normal FALSE #> 7908 495 0.9649592 0.211567053 fv Gamma RP(P), Log-Normal FALSE #> 7924 496 0.6773521 0.150596337 fv Gamma RP(P), Log-Normal FALSE #> 7940 497 0.9052519 0.196094400 fv Gamma RP(P), Log-Normal FALSE #> 7956 498 0.8116850 0.178283650 fv Gamma RP(P), Log-Normal FALSE #> 7972 499 1.1086720 0.241326577 fv Gamma RP(P), Log-Normal FALSE #> 7988 500 1.2773651 0.281428323 fv Gamma RP(P), Log-Normal FALSE #> 8004 501 0.8676161 0.186252713 fv Gamma RP(P), Log-Normal FALSE #> 8020 502 1.0407176 0.226742031 fv Gamma RP(P), Log-Normal FALSE #> 8036 503 0.7548621 0.161416065 fv Gamma RP(P), Log-Normal FALSE #> 8052 504 1.2077979 0.258824089 fv Gamma RP(P), Log-Normal FALSE #> 8068 505 1.4398156 0.321294471 fv Gamma RP(P), Log-Normal FALSE #> 8084 506 0.8624584 0.186157457 fv Gamma RP(P), Log-Normal FALSE #> 8100 507 0.6802796 0.145481059 fv Gamma RP(P), Log-Normal FALSE #> 8116 508 0.8342436 0.181087868 fv Gamma RP(P), Log-Normal FALSE #> 8132 509 0.8612357 0.185773025 fv Gamma RP(P), Log-Normal FALSE #> 8148 510 1.0875058 0.231453325 fv Gamma RP(P), Log-Normal FALSE #> 8164 511 0.9780855 0.214288070 fv Gamma RP(P), Log-Normal FALSE #> 8180 512 0.9185424 0.195605141 fv Gamma RP(P), Log-Normal FALSE #> 8196 513 0.7742017 0.169231006 fv Gamma RP(P), Log-Normal FALSE #> 8212 514 0.9812394 0.218050507 fv Gamma RP(P), Log-Normal FALSE #> 8228 515 0.8492711 0.186072576 fv Gamma RP(P), Log-Normal FALSE #> 8244 516 1.0440155 0.231448528 fv Gamma RP(P), Log-Normal FALSE #> 8260 517 1.1390878 0.249921695 fv Gamma RP(P), Log-Normal FALSE #> 8276 518 1.2314535 0.263976453 fv Gamma RP(P), Log-Normal FALSE #> 8292 519 0.8741643 0.188132491 fv Gamma RP(P), Log-Normal FALSE #> 8308 520 0.7946016 0.172820195 fv Gamma RP(P), Log-Normal FALSE #> 8324 521 0.7155341 0.154658107 fv Gamma RP(P), Log-Normal FALSE #> 8340 522 0.6586910 0.142144906 fv Gamma RP(P), Log-Normal FALSE #> 8356 523 0.9070928 0.201961629 fv Gamma RP(P), Log-Normal FALSE #> 8372 524 0.7949849 0.175434365 fv Gamma RP(P), Log-Normal FALSE #> 8388 525 1.3355748 0.288021411 fv Gamma RP(P), Log-Normal FALSE #> 8404 526 1.1111854 0.243883438 fv Gamma RP(P), Log-Normal FALSE #> 8420 527 0.9980110 0.225250690 fv Gamma RP(P), Log-Normal FALSE #> 8436 528 0.7536701 0.165035815 fv Gamma RP(P), Log-Normal FALSE #> 8452 529 1.2088138 0.264226878 fv Gamma RP(P), Log-Normal FALSE #> 8468 530 1.3388039 0.295083388 fv Gamma RP(P), Log-Normal FALSE #> 8484 531 1.0765928 0.230423607 fv Gamma RP(P), Log-Normal FALSE #> 8500 532 1.1797360 0.260368744 fv Gamma RP(P), Log-Normal FALSE #> 8516 533 0.9477534 0.207558206 fv Gamma RP(P), Log-Normal FALSE #> 8532 534 1.0563309 0.227002868 fv Gamma RP(P), Log-Normal FALSE #> 8548 535 1.4357549 0.313963101 fv Gamma RP(P), Log-Normal FALSE #> 8564 536 1.0051141 0.212301508 fv Gamma RP(P), Log-Normal FALSE #> 8580 537 0.9940413 0.229846666 fv Gamma RP(P), Log-Normal FALSE #> 8596 538 0.7485919 0.163118834 fv Gamma RP(P), Log-Normal FALSE #> 8612 539 1.2009352 0.262424788 fv Gamma RP(P), Log-Normal FALSE #> 8628 540 1.0656493 0.243252483 fv Gamma RP(P), Log-Normal FALSE #> 8644 541 0.7818527 0.171862648 fv Gamma RP(P), Log-Normal FALSE #> 8660 542 1.0476007 0.225722387 fv Gamma RP(P), Log-Normal FALSE #> 8676 543 1.1371033 0.243339241 fv Gamma RP(P), Log-Normal FALSE #> 8692 544 1.0773876 0.231123459 fv Gamma RP(P), Log-Normal FALSE #> 8708 545 0.9565211 0.212700204 fv Gamma RP(P), Log-Normal FALSE #> 8724 546 0.7647347 0.163566244 fv Gamma RP(P), Log-Normal FALSE #> 8740 547 0.8206825 0.176359832 fv Gamma RP(P), Log-Normal FALSE #> 8756 548 0.8505963 0.192550911 fv Gamma RP(P), Log-Normal FALSE #> 8772 549 1.0358106 0.229635225 fv Gamma RP(P), Log-Normal FALSE #> 8788 550 1.3523884 0.318258072 fv Gamma RP(P), Log-Normal FALSE #> 8804 551 0.9140688 0.197916220 fv Gamma RP(P), Log-Normal FALSE #> 8820 552 0.7505092 0.167863310 fv Gamma RP(P), Log-Normal FALSE #> 8836 553 0.7462582 0.163755065 fv Gamma RP(P), Log-Normal FALSE #> 8852 554 0.9503633 0.210343956 fv Gamma RP(P), Log-Normal FALSE #> 8868 555 0.6745831 0.145777323 fv Gamma RP(P), Log-Normal FALSE #> 8884 556 0.6796815 0.149173569 fv Gamma RP(P), Log-Normal FALSE #> 8900 557 1.7294668 0.385290497 fv Gamma RP(P), Log-Normal TRUE #> 8916 558 1.0353587 0.226097195 fv Gamma RP(P), Log-Normal FALSE #> 8932 559 0.8016693 0.181657786 fv Gamma RP(P), Log-Normal FALSE #> 8948 560 0.9729378 0.214345554 fv Gamma RP(P), Log-Normal FALSE #> 8964 561 1.0321929 0.223653751 fv Gamma RP(P), Log-Normal FALSE #> 8980 562 0.5768487 0.127198483 fv Gamma RP(P), Log-Normal FALSE #> 8996 563 1.0433632 0.228621090 fv Gamma RP(P), Log-Normal FALSE #> 9012 564 1.0641236 0.228678050 fv Gamma RP(P), Log-Normal FALSE #> 9028 565 1.1732304 0.270298444 fv Gamma RP(P), Log-Normal FALSE #> 9044 566 1.2237949 0.268476490 fv Gamma RP(P), Log-Normal FALSE #> 9060 567 0.9843680 0.216254289 fv Gamma RP(P), Log-Normal FALSE #> 9076 568 1.0225418 0.226931553 fv Gamma RP(P), Log-Normal FALSE #> 9092 569 0.9425398 0.212381043 fv Gamma RP(P), Log-Normal FALSE #> 9108 570 0.9305842 0.201175459 fv Gamma RP(P), Log-Normal FALSE #> 9124 571 0.9345155 0.201116344 fv Gamma RP(P), Log-Normal FALSE #> 9140 572 1.1021244 0.234409464 fv Gamma RP(P), Log-Normal FALSE #> 9156 573 0.6234484 0.137000395 fv Gamma RP(P), Log-Normal FALSE #> 9172 574 1.1480059 0.255124057 fv Gamma RP(P), Log-Normal FALSE #> 9188 575 0.9620612 0.211148150 fv Gamma RP(P), Log-Normal FALSE #> 9204 576 1.0678341 0.238868687 fv Gamma RP(P), Log-Normal FALSE #> 9220 577 0.9150045 0.204456329 fv Gamma RP(P), Log-Normal FALSE #> 9236 578 0.9233870 0.200603592 fv Gamma RP(P), Log-Normal FALSE #> 9252 579 0.7994219 0.174027563 fv Gamma RP(P), Log-Normal FALSE #> 9268 580 0.8585172 0.187898896 fv Gamma RP(P), Log-Normal FALSE #> 9284 581 1.1376346 0.243722038 fv Gamma RP(P), Log-Normal FALSE #> 9300 582 0.5331588 0.116180181 fv Gamma RP(P), Log-Normal FALSE #> 9316 583 1.2227234 0.266819438 fv Gamma RP(P), Log-Normal FALSE #> 9332 584 0.7424917 0.162892931 fv Gamma RP(P), Log-Normal FALSE #> 9348 585 1.4718067 0.317670941 fv Gamma RP(P), Log-Normal FALSE #> 9364 586 1.3376029 0.285083541 fv Gamma RP(P), Log-Normal FALSE #> 9380 587 1.0466999 0.227298927 fv Gamma RP(P), Log-Normal FALSE #> 9396 588 1.0628152 0.236226350 fv Gamma RP(P), Log-Normal FALSE #> 9412 589 0.7456047 0.162916840 fv Gamma RP(P), Log-Normal FALSE #> 9428 590 0.8908216 0.194809140 fv Gamma RP(P), Log-Normal FALSE #> 9444 591 0.9844521 0.217603161 fv Gamma RP(P), Log-Normal FALSE #> 9460 592 1.2872132 0.280054795 fv Gamma RP(P), Log-Normal FALSE #> 9476 593 0.9145775 0.207193045 fv Gamma RP(P), Log-Normal FALSE #> 9492 594 0.9446292 0.210280528 fv Gamma RP(P), Log-Normal FALSE #> 9508 595 0.8683941 0.185769779 fv Gamma RP(P), Log-Normal FALSE #> 9524 596 1.2043136 0.260901489 fv Gamma RP(P), Log-Normal FALSE #> 9540 597 1.2713689 0.283428607 fv Gamma RP(P), Log-Normal FALSE #> 9556 598 1.0191519 0.221381269 fv Gamma RP(P), Log-Normal FALSE #> 9572 599 1.5192954 0.325918384 fv Gamma RP(P), Log-Normal FALSE #> 9588 600 1.3131604 0.281586578 fv Gamma RP(P), Log-Normal FALSE #> 9604 601 0.9717941 0.212607335 fv Gamma RP(P), Log-Normal FALSE #> 9620 602 1.1056106 0.248359854 fv Gamma RP(P), Log-Normal FALSE #> 9636 603 0.9020656 0.196090741 fv Gamma RP(P), Log-Normal FALSE #> 9652 604 1.2529459 0.293640836 fv Gamma RP(P), Log-Normal FALSE #> 9668 605 1.2259883 0.274240763 fv Gamma RP(P), Log-Normal FALSE #> 9684 606 1.0511216 0.228404129 fv Gamma RP(P), Log-Normal FALSE #> 9700 607 0.8190508 0.180281936 fv Gamma RP(P), Log-Normal FALSE #> 9716 608 1.0311424 0.221802458 fv Gamma RP(P), Log-Normal FALSE #> 9732 609 1.3455592 0.295910286 fv Gamma RP(P), Log-Normal FALSE #> 9748 610 1.1642916 0.254371166 fv Gamma RP(P), Log-Normal FALSE #> 9764 611 0.8758176 0.192522572 fv Gamma RP(P), Log-Normal FALSE #> 9780 612 1.2516100 0.272167401 fv Gamma RP(P), Log-Normal FALSE #> 9796 613 0.9097464 0.194713999 fv Gamma RP(P), Log-Normal FALSE #> 9812 614 0.8241780 0.176682356 fv Gamma RP(P), Log-Normal FALSE #> 9828 615 0.7807667 0.169402047 fv Gamma RP(P), Log-Normal FALSE #> 9844 616 1.3256338 0.290042297 fv Gamma RP(P), Log-Normal FALSE #> 9860 617 1.3554468 0.302421137 fv Gamma RP(P), Log-Normal FALSE #> 9876 618 0.7059805 0.153032728 fv Gamma RP(P), Log-Normal FALSE #> 9892 619 0.7640548 0.164327342 fv Gamma RP(P), Log-Normal FALSE #> 9908 620 0.9324604 0.205897957 fv Gamma RP(P), Log-Normal FALSE #> 9924 621 1.0897527 0.237414370 fv Gamma RP(P), Log-Normal FALSE #> 9940 622 1.6936806 0.371698035 fv Gamma RP(P), Log-Normal TRUE #> 9956 623 0.6527658 0.139972359 fv Gamma RP(P), Log-Normal FALSE #> 9972 624 0.9466176 0.203085311 fv Gamma RP(P), Log-Normal FALSE #> 9988 625 0.9681196 0.214775219 fv Gamma RP(P), Log-Normal FALSE #> 10004 626 0.6523744 0.142834891 fv Gamma RP(P), Log-Normal FALSE #> 10020 627 0.8021879 0.184418783 fv Gamma RP(P), Log-Normal FALSE #> 10036 628 0.9225400 0.197465937 fv Gamma RP(P), Log-Normal FALSE #> 10052 629 0.7501559 0.167348318 fv Gamma RP(P), Log-Normal FALSE #> 10068 630 1.0706745 0.227798971 fv Gamma RP(P), Log-Normal FALSE #> 10084 631 1.2827158 0.297285469 fv Gamma RP(P), Log-Normal FALSE #> 10100 632 0.6876342 0.149439809 fv Gamma RP(P), Log-Normal FALSE #> 10116 633 0.7028224 0.154619674 fv Gamma RP(P), Log-Normal FALSE #> 10132 634 0.7042120 0.153299268 fv Gamma RP(P), Log-Normal FALSE #> 10148 635 0.5541380 0.122244773 fv Gamma RP(P), Log-Normal FALSE #> 10164 636 0.8544896 0.190728571 fv Gamma RP(P), Log-Normal FALSE #> 10180 637 0.9603207 0.207191756 fv Gamma RP(P), Log-Normal FALSE #> 10196 638 0.7983102 0.182031114 fv Gamma RP(P), Log-Normal FALSE #> 10212 639 0.8838410 0.190983119 fv Gamma RP(P), Log-Normal FALSE #> 10228 640 0.6961483 0.152110407 fv Gamma RP(P), Log-Normal FALSE #> 10244 641 0.8369696 0.179150999 fv Gamma RP(P), Log-Normal FALSE #> 10260 642 0.9306106 0.205637032 fv Gamma RP(P), Log-Normal FALSE #> 10276 643 0.8113072 0.177171734 fv Gamma RP(P), Log-Normal FALSE #> 10292 644 1.3693170 0.317286312 fv Gamma RP(P), Log-Normal FALSE #> 10308 645 0.6575557 0.143623229 fv Gamma RP(P), Log-Normal FALSE #> 10324 646 0.7264648 0.160017681 fv Gamma RP(P), Log-Normal FALSE #> 10340 647 1.8140427 0.405472844 fv Gamma RP(P), Log-Normal TRUE #> 10356 648 0.9039734 0.192803400 fv Gamma RP(P), Log-Normal FALSE #> 10372 649 1.1307165 0.245793699 fv Gamma RP(P), Log-Normal FALSE #> 10388 650 1.3697853 0.300532613 fv Gamma RP(P), Log-Normal FALSE #> 10404 651 1.3913723 0.303438110 fv Gamma RP(P), Log-Normal FALSE #> 10420 652 0.9976010 0.218156662 fv Gamma RP(P), Log-Normal FALSE #> 10436 653 1.3997037 0.316519464 fv Gamma RP(P), Log-Normal FALSE #> 10452 654 0.7512885 0.164131512 fv Gamma RP(P), Log-Normal FALSE #> 10468 655 0.8184646 0.175458083 fv Gamma RP(P), Log-Normal FALSE #> 10484 656 0.9856965 0.213573425 fv Gamma RP(P), Log-Normal FALSE #> 10500 657 0.9542220 0.209937231 fv Gamma RP(P), Log-Normal FALSE #> 10516 658 1.0526322 0.230309237 fv Gamma RP(P), Log-Normal FALSE #> 10532 659 1.1040578 0.242269392 fv Gamma RP(P), Log-Normal FALSE #> 10548 660 1.1274148 0.257234161 fv Gamma RP(P), Log-Normal FALSE #> 10564 661 0.8272565 0.181590492 fv Gamma RP(P), Log-Normal FALSE #> 10580 662 0.5442579 0.118095785 fv Gamma RP(P), Log-Normal FALSE #> 10596 663 0.7790189 0.168677889 fv Gamma RP(P), Log-Normal FALSE #> 10612 664 0.9338401 0.199297546 fv Gamma RP(P), Log-Normal FALSE #> 10628 665 0.9666500 0.213744208 fv Gamma RP(P), Log-Normal FALSE #> 10644 666 0.9744446 0.220001257 fv Gamma RP(P), Log-Normal FALSE #> 10660 667 1.1828443 0.261467314 fv Gamma RP(P), Log-Normal FALSE #> 10676 668 1.2192520 0.274526839 fv Gamma RP(P), Log-Normal FALSE #> 10692 669 0.7113574 0.156924713 fv Gamma RP(P), Log-Normal FALSE #> 10708 670 1.1756310 0.262566467 fv Gamma RP(P), Log-Normal FALSE #> 10724 671 1.2383003 0.270216646 fv Gamma RP(P), Log-Normal FALSE #> 10740 672 0.7815664 0.169986858 fv Gamma RP(P), Log-Normal FALSE #> 10756 673 0.8229793 0.176870677 fv Gamma RP(P), Log-Normal FALSE #> 10772 674 1.3774475 0.311832718 fv Gamma RP(P), Log-Normal FALSE #> 10788 675 0.9621601 0.207902235 fv Gamma RP(P), Log-Normal FALSE #> 10804 676 0.6528028 0.150614959 fv Gamma RP(P), Log-Normal FALSE #> 10820 677 0.8233554 0.177246238 fv Gamma RP(P), Log-Normal FALSE #> 10836 678 1.1489514 0.253442670 fv Gamma RP(P), Log-Normal FALSE #> 10852 679 1.4208344 0.311543201 fv Gamma RP(P), Log-Normal FALSE #> 10868 680 1.0054416 0.232372166 fv Gamma RP(P), Log-Normal FALSE #> 10884 681 0.7391488 0.162759723 fv Gamma RP(P), Log-Normal FALSE #> 10900 682 0.9652976 0.207135311 fv Gamma RP(P), Log-Normal FALSE #> 10916 683 1.1870484 0.264442808 fv Gamma RP(P), Log-Normal FALSE #> 10932 684 1.2401849 0.268198690 fv Gamma RP(P), Log-Normal FALSE #> 10948 685 0.8596652 0.187197015 fv Gamma RP(P), Log-Normal FALSE #> 10964 686 0.6571789 0.143054753 fv Gamma RP(P), Log-Normal FALSE #> 10980 687 1.3996390 0.301433070 fv Gamma RP(P), Log-Normal FALSE #> 10996 688 0.9489165 0.205546007 fv Gamma RP(P), Log-Normal FALSE #> 11012 689 0.8114256 0.172547414 fv Gamma RP(P), Log-Normal FALSE #> 11028 690 1.2437062 0.265491213 fv Gamma RP(P), Log-Normal FALSE #> 11044 691 1.0092470 0.219771733 fv Gamma RP(P), Log-Normal FALSE #> 11060 692 0.9598097 0.205613691 fv Gamma RP(P), Log-Normal FALSE #> 11076 693 1.3113167 0.296323950 fv Gamma RP(P), Log-Normal FALSE #> 11092 694 1.0933889 0.242376514 fv Gamma RP(P), Log-Normal FALSE #> 11108 695 1.0333338 0.234007271 fv Gamma RP(P), Log-Normal FALSE #> 11124 696 1.0102497 0.229737838 fv Gamma RP(P), Log-Normal FALSE #> 11140 697 1.0358479 0.225442770 fv Gamma RP(P), Log-Normal FALSE #> 11156 698 1.0073535 0.220756703 fv Gamma RP(P), Log-Normal FALSE #> 11172 699 0.9466231 0.201809941 fv Gamma RP(P), Log-Normal FALSE #> 11188 700 1.6203374 0.346406720 fv Gamma RP(P), Log-Normal TRUE #> 11204 701 0.8178477 0.176518370 fv Gamma RP(P), Log-Normal FALSE #> 11220 702 0.8281316 0.185009839 fv Gamma RP(P), Log-Normal FALSE #> 11236 703 0.7131766 0.156512821 fv Gamma RP(P), Log-Normal FALSE #> 11252 704 1.2908383 0.275089666 fv Gamma RP(P), Log-Normal FALSE #> 11268 705 1.4435519 0.314942107 fv Gamma RP(P), Log-Normal FALSE #> 11284 706 1.0319566 0.223149598 fv Gamma RP(P), Log-Normal FALSE #> 11300 707 0.7611768 0.169895358 fv Gamma RP(P), Log-Normal FALSE #> 11316 708 1.1576638 0.261635419 fv Gamma RP(P), Log-Normal FALSE #> 11332 709 0.9334649 0.200133791 fv Gamma RP(P), Log-Normal FALSE #> 11348 710 0.9774021 0.208540201 fv Gamma RP(P), Log-Normal FALSE #> 11364 711 0.4418561 0.097246388 fv Gamma RP(P), Log-Normal FALSE #> 11380 712 0.9598169 0.208774489 fv Gamma RP(P), Log-Normal FALSE #> 11396 713 1.0013023 0.213927288 fv Gamma RP(P), Log-Normal FALSE #> 11412 714 1.2931185 0.294648103 fv Gamma RP(P), Log-Normal FALSE #> 11428 715 1.3871912 0.304898248 fv Gamma RP(P), Log-Normal FALSE #> 11444 716 1.0762644 0.237239678 fv Gamma RP(P), Log-Normal FALSE #> 11460 717 0.8472068 0.196043062 fv Gamma RP(P), Log-Normal FALSE #> 11476 718 1.0140154 0.225564166 fv Gamma RP(P), Log-Normal FALSE #> 11492 719 0.7918815 0.168968345 fv Gamma RP(P), Log-Normal FALSE #> 11508 720 0.8275318 0.180171933 fv Gamma RP(P), Log-Normal FALSE #> 11524 721 1.0706093 0.233121948 fv Gamma RP(P), Log-Normal FALSE #> 11540 722 1.2852624 0.283010838 fv Gamma RP(P), Log-Normal FALSE #> 11556 723 1.0671711 0.239730437 fv Gamma RP(P), Log-Normal FALSE #> 11572 724 0.7945824 0.172668400 fv Gamma RP(P), Log-Normal FALSE #> 11588 725 0.8761793 0.190162437 fv Gamma RP(P), Log-Normal FALSE #> 11604 726 0.7683224 0.169454349 fv Gamma RP(P), Log-Normal FALSE #> 11620 727 1.1401463 0.252371583 fv Gamma RP(P), Log-Normal FALSE #> 11636 728 0.6869455 0.156140309 fv Gamma RP(P), Log-Normal FALSE #> 11652 729 1.0045609 0.214384308 fv Gamma RP(P), Log-Normal FALSE #> 11668 730 1.3739350 0.314933136 fv Gamma RP(P), Log-Normal FALSE #> 11684 731 1.4105734 0.312439279 fv Gamma RP(P), Log-Normal FALSE #> 11700 732 1.2408039 0.265123430 fv Gamma RP(P), Log-Normal FALSE #> 11716 733 0.7434313 0.162871630 fv Gamma RP(P), Log-Normal FALSE #> 11732 734 0.7670277 0.169974871 fv Gamma RP(P), Log-Normal FALSE #> 11748 735 1.1391446 0.249095776 fv Gamma RP(P), Log-Normal FALSE #> 11764 736 1.0869389 0.241739791 fv Gamma RP(P), Log-Normal FALSE #> 11780 737 0.9900843 0.215836490 fv Gamma RP(P), Log-Normal FALSE #> 11796 738 0.8400574 0.198380530 fv Gamma RP(P), Log-Normal FALSE #> 11812 739 0.9098679 0.198083628 fv Gamma RP(P), Log-Normal FALSE #> 11828 740 0.8715673 0.188184780 fv Gamma RP(P), Log-Normal FALSE #> 11844 741 1.0522008 0.231884466 fv Gamma RP(P), Log-Normal FALSE #> 11860 742 0.7308650 0.157131775 fv Gamma RP(P), Log-Normal FALSE #> 11876 743 1.0840980 0.236451512 fv Gamma RP(P), Log-Normal FALSE #> 11892 744 1.4346874 0.319759809 fv Gamma RP(P), Log-Normal FALSE #> 11908 745 0.8684263 0.196492889 fv Gamma RP(P), Log-Normal FALSE #> 11924 746 0.5042351 0.108711465 fv Gamma RP(P), Log-Normal FALSE #> 11940 747 0.8521053 0.186267508 fv Gamma RP(P), Log-Normal FALSE #> 11956 748 1.0776501 0.229694112 fv Gamma RP(P), Log-Normal FALSE #> 11972 749 0.8956342 0.198659923 fv Gamma RP(P), Log-Normal FALSE #> 11988 750 0.6991894 0.151825792 fv Gamma RP(P), Log-Normal FALSE #> 12004 751 1.1707087 0.250296870 fv Gamma RP(P), Log-Normal FALSE #> 12020 752 1.0602200 0.230669899 fv Gamma RP(P), Log-Normal FALSE #> 12036 753 0.7372900 0.163529975 fv Gamma RP(P), Log-Normal FALSE #> 12052 754 1.0951085 0.238851460 fv Gamma RP(P), Log-Normal FALSE #> 12068 755 0.9993447 0.215552225 fv Gamma RP(P), Log-Normal FALSE #> 12084 756 1.5740582 0.337943971 fv Gamma RP(P), Log-Normal FALSE #> 12100 757 0.7728525 0.169474840 fv Gamma RP(P), Log-Normal FALSE #> 12116 758 0.6452476 0.140301410 fv Gamma RP(P), Log-Normal FALSE #> 12132 759 0.7901227 0.171488061 fv Gamma RP(P), Log-Normal FALSE #> 12148 760 0.7639433 0.164920427 fv Gamma RP(P), Log-Normal FALSE #> 12164 761 1.0515490 0.232290105 fv Gamma RP(P), Log-Normal FALSE #> 12180 762 0.8354865 0.180633162 fv Gamma RP(P), Log-Normal FALSE #> 12196 763 0.7587626 0.164916919 fv Gamma RP(P), Log-Normal FALSE #> 12212 764 0.9886533 0.219427415 fv Gamma RP(P), Log-Normal FALSE #> 12228 765 0.7802736 0.170307432 fv Gamma RP(P), Log-Normal FALSE #> 12244 766 0.6561777 0.142009060 fv Gamma RP(P), Log-Normal FALSE #> 12260 767 0.9769743 0.213573667 fv Gamma RP(P), Log-Normal FALSE #> 12276 768 1.0293469 0.224440289 fv Gamma RP(P), Log-Normal FALSE #> 12292 769 1.0177818 0.217646319 fv Gamma RP(P), Log-Normal FALSE #> 12308 770 0.7562416 0.168946252 fv Gamma RP(P), Log-Normal FALSE #> 12324 771 0.6463465 0.139187794 fv Gamma RP(P), Log-Normal FALSE #> 12340 772 1.1961842 0.271932662 fv Gamma RP(P), Log-Normal FALSE #> 12356 773 0.8067420 0.176962096 fv Gamma RP(P), Log-Normal FALSE #> 12372 774 0.9520088 0.205128560 fv Gamma RP(P), Log-Normal FALSE #> 12388 775 1.4347408 0.319703347 fv Gamma RP(P), Log-Normal FALSE #> 12404 776 0.9481417 0.202311942 fv Gamma RP(P), Log-Normal FALSE #> 12420 777 0.8016802 0.175031737 fv Gamma RP(P), Log-Normal FALSE #> 12436 778 1.1275293 0.249908367 fv Gamma RP(P), Log-Normal FALSE #> 12452 779 1.1870282 0.261537316 fv Gamma RP(P), Log-Normal FALSE #> 12468 780 1.1268945 0.249877221 fv Gamma RP(P), Log-Normal FALSE #> 12484 781 0.8099723 0.181662555 fv Gamma RP(P), Log-Normal FALSE #> 12500 782 0.9387734 0.218754552 fv Gamma RP(P), Log-Normal FALSE #> 12516 783 0.9578883 0.204613312 fv Gamma RP(P), Log-Normal FALSE #> 12532 784 0.8156845 0.174404492 fv Gamma RP(P), Log-Normal FALSE #> 12548 785 0.8247289 0.177841946 fv Gamma RP(P), Log-Normal FALSE #> 12564 786 1.0226574 0.217558799 fv Gamma RP(P), Log-Normal FALSE #> 12580 787 1.2335064 0.284150031 fv Gamma RP(P), Log-Normal FALSE #> 12596 788 1.0013196 0.221958849 fv Gamma RP(P), Log-Normal FALSE #> 12612 789 1.0288684 0.227267275 fv Gamma RP(P), Log-Normal FALSE #> 12628 790 1.3948807 0.318147375 fv Gamma RP(P), Log-Normal FALSE #> 12644 791 1.2962548 0.289253927 fv Gamma RP(P), Log-Normal FALSE #> 12660 792 1.3337738 0.290805393 fv Gamma RP(P), Log-Normal FALSE #> 12676 793 0.8720682 0.188928270 fv Gamma RP(P), Log-Normal FALSE #> 12692 794 0.4682845 0.102407124 fv Gamma RP(P), Log-Normal FALSE #> 12708 795 0.9519556 0.210182873 fv Gamma RP(P), Log-Normal FALSE #> 12724 796 1.0864968 0.238092719 fv Gamma RP(P), Log-Normal FALSE #> 12740 797 0.7159644 0.155862128 fv Gamma RP(P), Log-Normal FALSE #> 12756 798 0.7497156 0.165610200 fv Gamma RP(P), Log-Normal FALSE #> 12772 799 1.4945789 0.345846891 fv Gamma RP(P), Log-Normal FALSE #> 12788 800 1.2630625 0.274880885 fv Gamma RP(P), Log-Normal FALSE #> 12804 801 0.7800030 0.172871017 fv Gamma RP(P), Log-Normal FALSE #> 12820 802 0.8108326 0.174897662 fv Gamma RP(P), Log-Normal FALSE #> 12836 803 0.9512588 0.202956493 fv Gamma RP(P), Log-Normal FALSE #> 12852 804 1.0362523 0.225794955 fv Gamma RP(P), Log-Normal FALSE #> 12868 805 0.9811922 0.212636632 fv Gamma RP(P), Log-Normal FALSE #> 12884 806 0.7326683 0.158761559 fv Gamma RP(P), Log-Normal FALSE #> 12900 807 1.2740750 0.276544259 fv Gamma RP(P), Log-Normal FALSE #> 12916 808 0.9781884 0.222359075 fv Gamma RP(P), Log-Normal FALSE #> 12932 809 1.3453651 0.309478390 fv Gamma RP(P), Log-Normal FALSE #> 12948 810 0.9232016 0.196664367 fv Gamma RP(P), Log-Normal FALSE #> 12964 811 1.3197955 0.283396132 fv Gamma RP(P), Log-Normal FALSE #> 12980 812 0.8368495 0.182262628 fv Gamma RP(P), Log-Normal FALSE #> 12996 813 1.1692435 0.253391788 fv Gamma RP(P), Log-Normal FALSE #> 13012 814 0.9869950 0.215275425 fv Gamma RP(P), Log-Normal FALSE #> 13028 815 1.4267797 0.314102008 fv Gamma RP(P), Log-Normal FALSE #> 13044 816 0.7096351 0.156897106 fv Gamma RP(P), Log-Normal FALSE #> 13060 817 1.2207826 0.279563602 fv Gamma RP(P), Log-Normal FALSE #> 13076 818 0.8781833 0.195168438 fv Gamma RP(P), Log-Normal FALSE #> 13092 819 1.3528171 0.307115701 fv Gamma RP(P), Log-Normal FALSE #> 13108 820 0.8750937 0.190140123 fv Gamma RP(P), Log-Normal FALSE #> 13124 821 1.0024784 0.225742050 fv Gamma RP(P), Log-Normal FALSE #> 13140 822 0.6059361 0.130452065 fv Gamma RP(P), Log-Normal FALSE #> 13156 823 1.0219096 0.227328071 fv Gamma RP(P), Log-Normal FALSE #> 13172 824 0.9918559 0.217538890 fv Gamma RP(P), Log-Normal FALSE #> 13188 825 0.6366212 0.136266805 fv Gamma RP(P), Log-Normal FALSE #> 13204 826 0.9444450 0.201370921 fv Gamma RP(P), Log-Normal FALSE #> 13220 827 0.9275230 0.201228122 fv Gamma RP(P), Log-Normal FALSE #> 13236 828 1.4648905 0.331911086 fv Gamma RP(P), Log-Normal FALSE #> 13252 829 0.7088462 0.152408167 fv Gamma RP(P), Log-Normal FALSE #> 13268 830 1.2836749 0.282634446 fv Gamma RP(P), Log-Normal FALSE #> 13284 831 0.7178710 0.163143070 fv Gamma RP(P), Log-Normal FALSE #> 13300 832 0.8691501 0.185987043 fv Gamma RP(P), Log-Normal FALSE #> 13316 833 0.9918025 0.216794384 fv Gamma RP(P), Log-Normal FALSE #> 13332 834 0.6561897 0.145029001 fv Gamma RP(P), Log-Normal FALSE #> 13348 835 0.9531690 0.206507185 fv Gamma RP(P), Log-Normal FALSE #> 13364 836 0.9457929 0.208627065 fv Gamma RP(P), Log-Normal FALSE #> 13380 837 0.9604259 0.214827897 fv Gamma RP(P), Log-Normal FALSE #> 13396 838 1.2231002 0.262948896 fv Gamma RP(P), Log-Normal FALSE #> 13412 839 0.7639873 0.164814888 fv Gamma RP(P), Log-Normal FALSE #> 13428 840 1.0584085 0.233394444 fv Gamma RP(P), Log-Normal FALSE #> 13444 841 0.9060566 0.191644127 fv Gamma RP(P), Log-Normal FALSE #> 13460 842 0.9981854 0.222833868 fv Gamma RP(P), Log-Normal FALSE #> 13476 843 1.3271882 0.294385787 fv Gamma RP(P), Log-Normal FALSE #> 13492 844 1.0083776 0.222785765 fv Gamma RP(P), Log-Normal FALSE #> 13508 845 1.4067028 0.311118514 fv Gamma RP(P), Log-Normal FALSE #> 13524 846 0.8457063 0.189664761 fv Gamma RP(P), Log-Normal FALSE #> 13540 847 0.8266072 0.185765621 fv Gamma RP(P), Log-Normal FALSE #> 13556 848 0.5911078 0.127933794 fv Gamma RP(P), Log-Normal FALSE #> 13572 849 0.9435684 0.200827455 fv Gamma RP(P), Log-Normal FALSE #> 13588 850 0.8421106 0.180835192 fv Gamma RP(P), Log-Normal FALSE #> 13604 851 0.9838631 0.215975837 fv Gamma RP(P), Log-Normal FALSE #> 13620 852 0.5626470 0.122791446 fv Gamma RP(P), Log-Normal FALSE #> 13636 853 0.9664855 0.207250226 fv Gamma RP(P), Log-Normal FALSE #> 13652 854 0.7210802 0.158669568 fv Gamma RP(P), Log-Normal FALSE #> 13668 855 1.2549558 0.273909144 fv Gamma RP(P), Log-Normal FALSE #> 13684 856 1.0890084 0.235216876 fv Gamma RP(P), Log-Normal FALSE #> 13700 857 0.7349918 0.162187111 fv Gamma RP(P), Log-Normal FALSE #> 13716 858 0.8738882 0.193200988 fv Gamma RP(P), Log-Normal FALSE #> 13732 859 0.8725583 0.195344571 fv Gamma RP(P), Log-Normal FALSE #> 13748 860 0.7565733 0.161739089 fv Gamma RP(P), Log-Normal FALSE #> 13764 861 1.1321227 0.246524283 fv Gamma RP(P), Log-Normal FALSE #> 13780 862 0.8393021 0.180926336 fv Gamma RP(P), Log-Normal FALSE #> 13796 863 1.0161557 0.222141368 fv Gamma RP(P), Log-Normal FALSE #> 13812 864 0.9572296 0.210418635 fv Gamma RP(P), Log-Normal FALSE #> 13828 865 1.0152870 0.222102537 fv Gamma RP(P), Log-Normal FALSE #> 13844 866 0.7984746 0.170205293 fv Gamma RP(P), Log-Normal FALSE #> 13860 867 0.9096029 0.196759398 fv Gamma RP(P), Log-Normal FALSE #> 13876 868 0.9705552 0.210115673 fv Gamma RP(P), Log-Normal FALSE #> 13892 869 1.0294965 0.226495818 fv Gamma RP(P), Log-Normal FALSE #> 13908 870 0.9585866 0.217548683 fv Gamma RP(P), Log-Normal FALSE #> 13924 871 1.2540751 0.273750013 fv Gamma RP(P), Log-Normal FALSE #> 13940 872 1.3178539 0.292907644 fv Gamma RP(P), Log-Normal FALSE #> 13956 873 1.1780594 0.254082562 fv Gamma RP(P), Log-Normal FALSE #> 13972 874 1.5369549 0.349989569 fv Gamma RP(P), Log-Normal FALSE #> 13988 875 0.7606339 0.164512020 fv Gamma RP(P), Log-Normal FALSE #> 14004 876 0.8818046 0.191259261 fv Gamma RP(P), Log-Normal FALSE #> 14020 877 1.0016215 0.217910809 fv Gamma RP(P), Log-Normal FALSE #> 14036 878 1.0960247 0.243448439 fv Gamma RP(P), Log-Normal FALSE #> 14052 879 0.9010159 0.208415640 fv Gamma RP(P), Log-Normal FALSE #> 14068 880 1.4167836 0.309960875 fv Gamma RP(P), Log-Normal FALSE #> 14084 881 1.1367712 0.251722155 fv Gamma RP(P), Log-Normal FALSE #> 14100 882 1.2721470 0.272715293 fv Gamma RP(P), Log-Normal FALSE #> 14116 883 0.7534025 0.164687938 fv Gamma RP(P), Log-Normal FALSE #> 14132 884 0.7895471 0.169947985 fv Gamma RP(P), Log-Normal FALSE #> 14148 885 0.7598150 0.165598184 fv Gamma RP(P), Log-Normal FALSE #> 14164 886 0.7546992 0.165577188 fv Gamma RP(P), Log-Normal FALSE #> 14180 887 0.9464325 0.207391951 fv Gamma RP(P), Log-Normal FALSE #> 14196 888 1.3249936 0.285528452 fv Gamma RP(P), Log-Normal FALSE #> 14212 889 1.0483529 0.223855961 fv Gamma RP(P), Log-Normal FALSE #> 14228 890 0.7960197 0.175686722 fv Gamma RP(P), Log-Normal FALSE #> 14244 891 0.6057941 0.129842155 fv Gamma RP(P), Log-Normal FALSE #> 14260 892 0.9117945 0.197815689 fv Gamma RP(P), Log-Normal FALSE #> 14276 893 1.1931191 0.269494148 fv Gamma RP(P), Log-Normal FALSE #> 14292 894 0.7163861 0.156284310 fv Gamma RP(P), Log-Normal FALSE #> 14308 895 0.8521234 0.181727642 fv Gamma RP(P), Log-Normal FALSE #> 14324 896 1.1969657 0.257466332 fv Gamma RP(P), Log-Normal FALSE #> 14340 897 0.8738869 0.187008230 fv Gamma RP(P), Log-Normal FALSE #> 14356 898 1.1901902 0.254087597 fv Gamma RP(P), Log-Normal FALSE #> 14372 899 1.0493014 0.231872092 fv Gamma RP(P), Log-Normal FALSE #> 14388 900 1.1641367 0.259296079 fv Gamma RP(P), Log-Normal FALSE #> 14404 901 0.7441833 0.162379902 fv Gamma RP(P), Log-Normal FALSE #> 14420 902 0.7006841 0.150598713 fv Gamma RP(P), Log-Normal FALSE #> 14436 903 0.7852252 0.167720028 fv Gamma RP(P), Log-Normal FALSE #> 14452 904 1.5979510 0.368445748 fv Gamma RP(P), Log-Normal TRUE #> 14468 905 0.7930490 0.170065240 fv Gamma RP(P), Log-Normal FALSE #> 14484 906 1.3977134 0.301200536 fv Gamma RP(P), Log-Normal FALSE #> 14500 907 1.0303398 0.225804461 fv Gamma RP(P), Log-Normal FALSE #> 14516 908 0.8813457 0.201251276 fv Gamma RP(P), Log-Normal FALSE #> 14532 909 0.7644669 0.167107442 fv Gamma RP(P), Log-Normal FALSE #> 14548 910 0.6744757 0.145971855 fv Gamma RP(P), Log-Normal FALSE #> 14564 911 0.9481477 0.214870715 fv Gamma RP(P), Log-Normal FALSE #> 14580 912 0.6898847 0.148216456 fv Gamma RP(P), Log-Normal FALSE #> 14596 913 0.9740810 0.210880647 fv Gamma RP(P), Log-Normal FALSE #> 14612 914 0.8619948 0.192708186 fv Gamma RP(P), Log-Normal FALSE #> 14628 915 1.1804584 0.260025660 fv Gamma RP(P), Log-Normal FALSE #> 14644 916 0.6691827 0.144375958 fv Gamma RP(P), Log-Normal FALSE #> 14660 917 1.0113326 0.222850102 fv Gamma RP(P), Log-Normal FALSE #> 14676 918 1.0209571 0.217855650 fv Gamma RP(P), Log-Normal FALSE #> 14692 919 0.6796905 0.145360386 fv Gamma RP(P), Log-Normal FALSE #> 14708 920 0.9871577 0.211586286 fv Gamma RP(P), Log-Normal FALSE #> 14724 921 1.1250715 0.248801866 fv Gamma RP(P), Log-Normal FALSE #> 14740 922 1.6097787 0.362204329 fv Gamma RP(P), Log-Normal TRUE #> 14756 923 0.9436780 0.203595015 fv Gamma RP(P), Log-Normal FALSE #> 14772 924 0.9564219 0.203337756 fv Gamma RP(P), Log-Normal FALSE #> 14788 925 1.2119817 0.273392844 fv Gamma RP(P), Log-Normal FALSE #> 14804 926 0.9400838 0.200647180 fv Gamma RP(P), Log-Normal FALSE #> 14820 927 0.5509122 0.120006203 fv Gamma RP(P), Log-Normal FALSE #> 14836 928 0.9335398 0.201024284 fv Gamma RP(P), Log-Normal FALSE #> 14852 929 1.0175155 0.223295340 fv Gamma RP(P), Log-Normal FALSE #> 14868 930 1.4778512 0.339083118 fv Gamma RP(P), Log-Normal FALSE #> 14884 931 0.9049402 0.195294270 fv Gamma RP(P), Log-Normal FALSE #> 14900 932 1.2187532 0.262280942 fv Gamma RP(P), Log-Normal FALSE #> 14916 933 0.7691144 0.167095118 fv Gamma RP(P), Log-Normal FALSE #> 14932 934 0.7255674 0.155278746 fv Gamma RP(P), Log-Normal FALSE #> 14948 935 0.5660748 0.122968010 fv Gamma RP(P), Log-Normal FALSE #> 14964 936 0.7769992 0.168390284 fv Gamma RP(P), Log-Normal FALSE #> 14980 937 1.4918244 0.328500321 fv Gamma RP(P), Log-Normal FALSE #> 14996 938 1.0659751 0.233315986 fv Gamma RP(P), Log-Normal FALSE #> 15012 939 1.0236145 0.218522667 fv Gamma RP(P), Log-Normal FALSE #> 15028 940 1.0295400 0.221691720 fv Gamma RP(P), Log-Normal FALSE #> 15044 941 0.8047617 0.173567485 fv Gamma RP(P), Log-Normal FALSE #> 15060 942 0.8464834 0.185539126 fv Gamma RP(P), Log-Normal FALSE #> 15076 943 0.5599465 0.122123725 fv Gamma RP(P), Log-Normal FALSE #> 15092 944 0.7749006 0.165689234 fv Gamma RP(P), Log-Normal FALSE #> 15108 945 0.7455152 0.160417654 fv Gamma RP(P), Log-Normal FALSE #> 15124 946 1.1738343 0.268801235 fv Gamma RP(P), Log-Normal FALSE #> 15140 947 0.8388128 0.185803625 fv Gamma RP(P), Log-Normal FALSE #> 15156 948 0.6952556 0.158342180 fv Gamma RP(P), Log-Normal FALSE #> 15172 949 0.8177120 0.182041579 fv Gamma RP(P), Log-Normal FALSE #> 15188 950 0.7743235 0.171749308 fv Gamma RP(P), Log-Normal FALSE #> 15204 951 1.0063523 0.219655118 fv Gamma RP(P), Log-Normal FALSE #> 15220 952 0.8235324 0.177580617 fv Gamma RP(P), Log-Normal FALSE #> 15236 953 1.6557073 0.364829706 fv Gamma RP(P), Log-Normal TRUE #> 15252 954 0.8653755 0.187285027 fv Gamma RP(P), Log-Normal FALSE #> 15268 955 1.0301056 0.220205471 fv Gamma RP(P), Log-Normal FALSE #> 15284 956 0.7894323 0.172205969 fv Gamma RP(P), Log-Normal FALSE #> 15300 957 0.7333930 0.159610119 fv Gamma RP(P), Log-Normal FALSE #> 15316 958 0.6756133 0.147379474 fv Gamma RP(P), Log-Normal FALSE #> 15332 959 0.8148421 0.177271917 fv Gamma RP(P), Log-Normal FALSE #> 15348 960 1.0392486 0.227370460 fv Gamma RP(P), Log-Normal FALSE #> 15364 961 0.6272968 0.137352074 fv Gamma RP(P), Log-Normal FALSE #> 15380 962 1.2355976 0.269890470 fv Gamma RP(P), Log-Normal FALSE #> 15396 963 1.3179458 0.295990708 fv Gamma RP(P), Log-Normal FALSE #> 15412 964 0.9410797 0.206058732 fv Gamma RP(P), Log-Normal FALSE #> 15428 965 0.7249062 0.156451201 fv Gamma RP(P), Log-Normal FALSE #> 15444 966 1.0797601 0.240333361 fv Gamma RP(P), Log-Normal FALSE #> 15460 967 0.8711198 0.188877816 fv Gamma RP(P), Log-Normal FALSE #> 15476 968 0.7484915 0.163756006 fv Gamma RP(P), Log-Normal FALSE #> 15492 969 1.0608001 0.239446947 fv Gamma RP(P), Log-Normal FALSE #> 15508 970 1.0392551 0.242127789 fv Gamma RP(P), Log-Normal FALSE #> 15524 971 0.8947299 0.198047800 fv Gamma RP(P), Log-Normal FALSE #> 15540 972 0.8458660 0.191087294 fv Gamma RP(P), Log-Normal FALSE #> 15556 973 1.4370855 0.329114189 fv Gamma RP(P), Log-Normal FALSE #> 15572 974 0.6426835 0.141462608 fv Gamma RP(P), Log-Normal FALSE #> 15588 975 0.5829796 0.126731490 fv Gamma RP(P), Log-Normal FALSE #> 15604 976 0.9819053 0.214952765 fv Gamma RP(P), Log-Normal FALSE #> 15620 977 1.2025767 0.259993700 fv Gamma RP(P), Log-Normal FALSE #> 15636 978 1.1207741 0.253448839 fv Gamma RP(P), Log-Normal FALSE #> 15652 979 1.2212617 0.277004405 fv Gamma RP(P), Log-Normal FALSE #> 15668 980 0.6660679 0.144904550 fv Gamma RP(P), Log-Normal FALSE #> 15684 981 0.9800822 0.220568363 fv Gamma RP(P), Log-Normal FALSE #> 15700 982 1.2715142 0.278377255 fv Gamma RP(P), Log-Normal FALSE #> 15716 983 0.6362243 0.139600397 fv Gamma RP(P), Log-Normal FALSE #> 15732 984 0.9930194 0.216807089 fv Gamma RP(P), Log-Normal FALSE #> 15748 985 1.1721930 0.263401263 fv Gamma RP(P), Log-Normal FALSE #> 15764 986 0.8120336 0.173385919 fv Gamma RP(P), Log-Normal FALSE #> 15780 987 0.6828491 0.148950787 fv Gamma RP(P), Log-Normal FALSE #> 15796 988 0.8144041 0.176435041 fv Gamma RP(P), Log-Normal FALSE #> 15812 989 1.1247055 0.243500492 fv Gamma RP(P), Log-Normal FALSE #> 15828 990 0.8947567 0.191212448 fv Gamma RP(P), Log-Normal FALSE #> 15844 991 1.0661028 0.236299935 fv Gamma RP(P), Log-Normal FALSE #> 15860 992 1.1284313 0.252598990 fv Gamma RP(P), Log-Normal FALSE #> 15876 993 1.4178796 0.311252553 fv Gamma RP(P), Log-Normal FALSE #> 15892 994 0.9354356 0.205470856 fv Gamma RP(P), Log-Normal FALSE #> 15908 995 0.9748574 0.210421807 fv Gamma RP(P), Log-Normal FALSE #> 15924 996 0.8126153 0.174760175 fv Gamma RP(P), Log-Normal FALSE #> 15940 997 0.7325642 0.165565100 fv Gamma RP(P), Log-Normal FALSE #> 15956 998 0.8758146 0.191746972 fv Gamma RP(P), Log-Normal FALSE #> 15972 999 0.6360544 0.137587237 fv Gamma RP(P), Log-Normal FALSE #> 15988 1000 0.6592714 0.146375303 fv Gamma RP(P), Log-Normal FALSE #> 5 1 0.6394722 0.122380809 fv Log-Normal Cox, Gamma FALSE #> 21 2 0.6045856 NA fv Log-Normal Cox, Gamma NA #> 37 3 0.8010657 0.151976580 fv Log-Normal Cox, Gamma FALSE #> 53 4 0.5251708 0.102995382 fv Log-Normal Cox, Gamma FALSE #> 69 5 0.7983593 0.148846197 fv Log-Normal Cox, Gamma FALSE #> 85 6 0.6885611 0.130409358 fv Log-Normal Cox, Gamma FALSE #> 101 7 0.5151179 0.100941935 fv Log-Normal Cox, Gamma FALSE #> 117 8 0.7621628 0.144318000 fv Log-Normal Cox, Gamma FALSE #> 133 9 0.6643665 0.127376922 fv Log-Normal Cox, Gamma FALSE #> 149 10 0.8283729 0.155318927 fv Log-Normal Cox, Gamma FALSE #> 165 11 0.7869555 0.147558877 fv Log-Normal Cox, Gamma FALSE #> 181 12 0.5133479 0.101148388 fv Log-Normal Cox, Gamma FALSE #> 197 13 0.7532925 0.143254004 fv Log-Normal Cox, Gamma FALSE #> 213 14 0.6319419 0.120525268 fv Log-Normal Cox, Gamma FALSE #> 229 15 0.6431606 NA fv Log-Normal Cox, Gamma NA #> 245 16 0.5317893 0.104988331 fv Log-Normal Cox, Gamma FALSE #> 261 17 0.6485239 NA fv Log-Normal Cox, Gamma NA #> 277 18 0.6937009 0.131641157 fv Log-Normal Cox, Gamma FALSE #> 293 19 0.7893061 0.147649710 fv Log-Normal Cox, Gamma FALSE #> 309 20 0.5473277 0.107505962 fv Log-Normal Cox, Gamma FALSE #> 325 21 0.6159281 0.119712689 fv Log-Normal Cox, Gamma FALSE #> 341 22 0.5034632 0.098706022 fv Log-Normal Cox, Gamma FALSE #> 357 23 0.8872145 0.167318484 fv Log-Normal Cox, Gamma FALSE #> 373 24 0.6747845 0.128587018 fv Log-Normal Cox, Gamma FALSE #> 389 25 0.5306071 0.103635336 fv Log-Normal Cox, Gamma FALSE #> 405 26 0.6424292 0.123098114 fv Log-Normal Cox, Gamma FALSE #> 421 27 0.4616309 0.092627917 fv Log-Normal Cox, Gamma FALSE #> 437 28 0.6455285 0.124584641 fv Log-Normal Cox, Gamma FALSE #> 453 29 0.9355245 0.171887190 fv Log-Normal Cox, Gamma FALSE #> 469 30 0.5683618 NA fv Log-Normal Cox, Gamma NA #> 485 31 0.5122115 0.101457499 fv Log-Normal Cox, Gamma FALSE #> 501 32 0.5137421 0.101410278 fv Log-Normal Cox, Gamma FALSE #> 517 33 0.6617973 0.126758113 fv Log-Normal Cox, Gamma FALSE #> 533 34 0.8792537 0.165007321 fv Log-Normal Cox, Gamma FALSE #> 549 35 0.5056708 0.102050813 fv Log-Normal Cox, Gamma FALSE #> 565 36 0.4631456 0.092364702 fv Log-Normal Cox, Gamma FALSE #> 581 37 0.6402471 0.123639086 fv Log-Normal Cox, Gamma FALSE #> 597 38 0.6072469 0.118505183 fv Log-Normal Cox, Gamma FALSE #> 613 39 0.7170843 0.136908818 fv Log-Normal Cox, Gamma FALSE #> 629 40 0.5771348 0.115752065 fv Log-Normal Cox, Gamma FALSE #> 645 41 0.6529139 0.124393480 fv Log-Normal Cox, Gamma FALSE #> 661 42 0.5148011 0.101711999 fv Log-Normal Cox, Gamma FALSE #> 677 43 0.4666952 0.004937570 fv Log-Normal Cox, Gamma TRUE #> 693 44 0.6189380 0.118445497 fv Log-Normal Cox, Gamma FALSE #> 709 45 0.5376220 0.104802034 fv Log-Normal Cox, Gamma FALSE #> 725 46 0.3144607 0.065053567 fv Log-Normal Cox, Gamma FALSE #> 741 47 0.7584395 0.142672550 fv Log-Normal Cox, Gamma FALSE #> 757 48 0.8275518 0.156556744 fv Log-Normal Cox, Gamma FALSE #> 773 49 0.8489886 0.158293529 fv Log-Normal Cox, Gamma FALSE #> 789 50 0.5482973 0.107386748 fv Log-Normal Cox, Gamma FALSE #> 805 51 0.6839991 0.129492956 fv Log-Normal Cox, Gamma FALSE #> 821 52 0.4843987 0.096408435 fv Log-Normal Cox, Gamma FALSE #> 837 53 0.8510057 0.158864620 fv Log-Normal Cox, Gamma FALSE #> 853 54 0.6256909 0.120555710 fv Log-Normal Cox, Gamma FALSE #> 869 55 0.8346268 0.156087294 fv Log-Normal Cox, Gamma FALSE #> 885 56 0.7882049 0.150416666 fv Log-Normal Cox, Gamma FALSE #> 901 57 0.8201443 0.154000281 fv Log-Normal Cox, Gamma FALSE #> 917 58 0.7040050 0.135316400 fv Log-Normal Cox, Gamma FALSE #> 933 59 0.6359651 0.121923449 fv Log-Normal Cox, Gamma FALSE #> 949 60 0.8198970 0.153870480 fv Log-Normal Cox, Gamma FALSE #> 965 61 0.7175756 0.137152304 fv Log-Normal Cox, Gamma FALSE #> 981 62 0.6076507 0.118508879 fv Log-Normal Cox, Gamma FALSE #> 997 63 0.7819970 0.147791047 fv Log-Normal Cox, Gamma FALSE #> 1013 64 0.6957054 0.132639426 fv Log-Normal Cox, Gamma FALSE #> 1029 65 0.9526125 0.009775405 fv Log-Normal Cox, Gamma TRUE #> 1045 66 0.5441474 0.106172085 fv Log-Normal Cox, Gamma FALSE #> 1061 67 0.5523208 0.108353716 fv Log-Normal Cox, Gamma FALSE #> 1077 68 0.4929681 0.098414398 fv Log-Normal Cox, Gamma FALSE #> 1093 69 0.7299153 0.138530230 fv Log-Normal Cox, Gamma FALSE #> 1109 70 0.6423527 0.122802482 fv Log-Normal Cox, Gamma FALSE #> 1125 71 0.8632862 0.161486059 fv Log-Normal Cox, Gamma FALSE #> 1141 72 0.5591545 0.109417396 fv Log-Normal Cox, Gamma FALSE #> 1157 73 0.6075278 0.117438980 fv Log-Normal Cox, Gamma FALSE #> 1173 74 0.4193468 0.085150618 fv Log-Normal Cox, Gamma FALSE #> 1189 75 0.6458334 0.123807889 fv Log-Normal Cox, Gamma FALSE #> 1205 76 0.5319590 0.103524013 fv Log-Normal Cox, Gamma FALSE #> 1221 77 0.8210381 0.156007454 fv Log-Normal Cox, Gamma FALSE #> 1237 78 0.7326486 0.139950963 fv Log-Normal Cox, Gamma FALSE #> 1253 79 0.9943199 0.182305762 fv Log-Normal Cox, Gamma TRUE #> 1269 80 0.5401692 0.105772312 fv Log-Normal Cox, Gamma FALSE #> 1285 81 0.8195515 0.152333242 fv Log-Normal Cox, Gamma FALSE #> 1301 82 0.5996208 0.115639258 fv Log-Normal Cox, Gamma FALSE #> 1317 83 0.6878985 0.131159675 fv Log-Normal Cox, Gamma FALSE #> 1333 84 0.5677818 0.110729113 fv Log-Normal Cox, Gamma FALSE #> 1349 85 0.6777671 0.132744504 fv Log-Normal Cox, Gamma FALSE #> 1365 86 0.5697309 0.113283344 fv Log-Normal Cox, Gamma FALSE #> 1381 87 0.6515879 0.125557308 fv Log-Normal Cox, Gamma FALSE #> 1397 88 0.6589741 0.126940719 fv Log-Normal Cox, Gamma FALSE #> 1413 89 0.9088941 0.169266584 fv Log-Normal Cox, Gamma FALSE #> 1429 90 0.7931475 0.150240420 fv Log-Normal Cox, Gamma FALSE #> 1445 91 0.7963163 0.149402965 fv Log-Normal Cox, Gamma FALSE #> 1461 92 0.7857943 0.149847987 fv Log-Normal Cox, Gamma FALSE #> 1477 93 0.5504720 0.107382694 fv Log-Normal Cox, Gamma FALSE #> 1493 94 0.6884429 0.131346884 fv Log-Normal Cox, Gamma FALSE #> 1509 95 0.6380857 0.123419439 fv Log-Normal Cox, Gamma FALSE #> 1525 96 0.5041330 0.099649898 fv Log-Normal Cox, Gamma FALSE #> 1541 97 0.7322696 0.139902706 fv Log-Normal Cox, Gamma FALSE #> 1557 98 0.4127046 0.082919455 fv Log-Normal Cox, Gamma FALSE #> 1573 99 0.6763370 0.128560573 fv Log-Normal Cox, Gamma FALSE #> 1589 100 0.5878556 0.114387018 fv Log-Normal Cox, Gamma FALSE #> 1605 101 0.5514084 0.106995494 fv Log-Normal Cox, Gamma FALSE #> 1621 102 0.4762293 0.094742579 fv Log-Normal Cox, Gamma FALSE #> 1637 103 0.7020256 0.133873178 fv Log-Normal Cox, Gamma FALSE #> 1653 104 0.7099326 0.137457024 fv Log-Normal Cox, Gamma FALSE #> 1669 105 0.5077478 0.103091644 fv Log-Normal Cox, Gamma FALSE #> 1685 106 0.5839560 NA fv Log-Normal Cox, Gamma NA #> 1701 107 0.6986634 0.132088893 fv Log-Normal Cox, Gamma FALSE #> 1717 108 0.6167183 0.119245954 fv Log-Normal Cox, Gamma FALSE #> 1733 109 0.8992052 0.168845162 fv Log-Normal Cox, Gamma FALSE #> 1749 110 0.7958962 0.150043027 fv Log-Normal Cox, Gamma FALSE #> 1765 111 0.6292353 0.123510171 fv Log-Normal Cox, Gamma FALSE #> 1781 112 0.6629978 0.127077109 fv Log-Normal Cox, Gamma FALSE #> 1797 113 0.7261570 0.136779956 fv Log-Normal Cox, Gamma FALSE #> 1813 114 0.6276345 0.122291276 fv Log-Normal Cox, Gamma FALSE #> 1829 115 0.6639073 0.126950626 fv Log-Normal Cox, Gamma FALSE #> 1845 116 0.6771155 0.129017151 fv Log-Normal Cox, Gamma FALSE #> 1861 117 0.7574856 0.142852173 fv Log-Normal Cox, Gamma FALSE #> 1877 118 0.5400931 0.105299387 fv Log-Normal Cox, Gamma FALSE #> 1893 119 0.5348068 0.104913423 fv Log-Normal Cox, Gamma FALSE #> 1909 120 0.7474894 0.142057002 fv Log-Normal Cox, Gamma FALSE #> 1925 121 0.6748811 0.129647969 fv Log-Normal Cox, Gamma FALSE #> 1941 122 0.5375076 0.108052856 fv Log-Normal Cox, Gamma FALSE #> 1957 123 0.4856003 0.096121275 fv Log-Normal Cox, Gamma FALSE #> 1973 124 0.5246200 0.103885319 fv Log-Normal Cox, Gamma FALSE #> 1989 125 0.4720605 NA fv Log-Normal Cox, Gamma NA #> 2005 126 0.9482783 0.174156199 fv Log-Normal Cox, Gamma FALSE #> 2021 127 0.4306473 0.085975068 fv Log-Normal Cox, Gamma FALSE #> 2037 128 0.4410806 0.087616373 fv Log-Normal Cox, Gamma FALSE #> 2053 129 0.5998340 0.116337857 fv Log-Normal Cox, Gamma FALSE #> 2069 130 0.5329207 0.106038502 fv Log-Normal Cox, Gamma FALSE #> 2085 131 0.5852483 0.113419735 fv Log-Normal Cox, Gamma FALSE #> 2101 132 0.6742929 0.128681326 fv Log-Normal Cox, Gamma FALSE #> 2117 133 0.8438814 0.157495241 fv Log-Normal Cox, Gamma FALSE #> 2133 134 0.8725599 0.161209909 fv Log-Normal Cox, Gamma FALSE #> 2149 135 0.6599414 0.127969864 fv Log-Normal Cox, Gamma FALSE #> 2165 136 0.5626806 0.112982953 fv Log-Normal Cox, Gamma FALSE #> 2181 137 0.4613542 0.092148877 fv Log-Normal Cox, Gamma FALSE #> 2197 138 0.4897440 0.096970193 fv Log-Normal Cox, Gamma FALSE #> 2213 139 0.6186832 0.118880800 fv Log-Normal Cox, Gamma FALSE #> 2229 140 0.6882313 0.130677278 fv Log-Normal Cox, Gamma FALSE #> 2245 141 0.4057784 0.082456100 fv Log-Normal Cox, Gamma FALSE #> 2261 142 0.4533127 0.090505938 fv Log-Normal Cox, Gamma FALSE #> 2277 143 0.5205757 0.101899405 fv Log-Normal Cox, Gamma FALSE #> 2293 144 0.6642470 0.129879650 fv Log-Normal Cox, Gamma FALSE #> 2309 145 0.4846138 0.095680840 fv Log-Normal Cox, Gamma FALSE #> 2325 146 0.6727758 0.128705520 fv Log-Normal Cox, Gamma FALSE #> 2341 147 0.6505837 0.128350311 fv Log-Normal Cox, Gamma FALSE #> 2357 148 0.5095640 0.100748115 fv Log-Normal Cox, Gamma FALSE #> 2373 149 0.3838389 0.078579334 fv Log-Normal Cox, Gamma FALSE #> 2389 150 0.5015661 0.098921642 fv Log-Normal Cox, Gamma FALSE #> 2405 151 0.8316167 0.156175999 fv Log-Normal Cox, Gamma FALSE #> 2421 152 0.6107663 0.117805851 fv Log-Normal Cox, Gamma FALSE #> 2437 153 0.7774550 0.147567258 fv Log-Normal Cox, Gamma FALSE #> 2453 154 0.6456305 0.123420490 fv Log-Normal Cox, Gamma FALSE #> 2469 155 0.9161229 0.170688228 fv Log-Normal Cox, Gamma FALSE #> 2485 156 0.5364627 0.104848903 fv Log-Normal Cox, Gamma FALSE #> 2501 157 0.5613152 0.109806565 fv Log-Normal Cox, Gamma FALSE #> 2517 158 0.6129741 NA fv Log-Normal Cox, Gamma NA #> 2533 159 0.6589814 0.126591843 fv Log-Normal Cox, Gamma FALSE #> 2549 160 0.6071451 0.116592113 fv Log-Normal Cox, Gamma FALSE #> 2565 161 0.8464096 0.158851699 fv Log-Normal Cox, Gamma FALSE #> 2581 162 0.8600343 0.160292687 fv Log-Normal Cox, Gamma FALSE #> 2597 163 0.5244066 0.102558542 fv Log-Normal Cox, Gamma FALSE #> 2613 164 0.6350957 0.122832752 fv Log-Normal Cox, Gamma FALSE #> 2629 165 0.4845964 0.095537265 fv Log-Normal Cox, Gamma FALSE #> 2645 166 0.4272914 0.086071366 fv Log-Normal Cox, Gamma FALSE #> 2661 167 0.6479949 0.124144693 fv Log-Normal Cox, Gamma FALSE #> 2677 168 0.7462762 0.140607751 fv Log-Normal Cox, Gamma FALSE #> 2693 169 0.6323112 0.122436745 fv Log-Normal Cox, Gamma FALSE #> 2709 170 0.6601451 0.125902988 fv Log-Normal Cox, Gamma FALSE #> 2725 171 0.7032168 0.133018961 fv Log-Normal Cox, Gamma FALSE #> 2741 172 0.6390154 0.122082524 fv Log-Normal Cox, Gamma FALSE #> 2757 173 0.7009973 0.134209465 fv Log-Normal Cox, Gamma FALSE #> 2773 174 0.5290113 0.103348766 fv Log-Normal Cox, Gamma FALSE #> 2789 175 0.7105678 0.135604428 fv Log-Normal Cox, Gamma FALSE #> 2805 176 0.8662738 0.161421953 fv Log-Normal Cox, Gamma FALSE #> 2821 177 0.6637685 0.126258249 fv Log-Normal Cox, Gamma FALSE #> 2837 178 0.4790982 0.094932397 fv Log-Normal Cox, Gamma FALSE #> 2853 179 0.7824449 0.146344350 fv Log-Normal Cox, Gamma FALSE #> 2869 180 0.4960902 0.097942874 fv Log-Normal Cox, Gamma FALSE #> 2885 181 0.6319581 NA fv Log-Normal Cox, Gamma NA #> 2901 182 1.0215608 0.186181702 fv Log-Normal Cox, Gamma TRUE #> 2917 183 0.6556942 0.127650618 fv Log-Normal Cox, Gamma FALSE #> 2933 184 0.8197292 0.152798041 fv Log-Normal Cox, Gamma FALSE #> 2949 185 0.7209598 0.136991783 fv Log-Normal Cox, Gamma FALSE #> 2965 186 0.6961555 0.132783636 fv Log-Normal Cox, Gamma FALSE #> 2981 187 0.6427010 0.124017514 fv Log-Normal Cox, Gamma FALSE #> 2997 188 0.8413523 0.159781367 fv Log-Normal Cox, Gamma FALSE #> 3013 189 0.6291343 0.120949937 fv Log-Normal Cox, Gamma FALSE #> 3029 190 0.6312602 0.120553681 fv Log-Normal Cox, Gamma FALSE #> 3045 191 0.6229767 0.120163049 fv Log-Normal Cox, Gamma FALSE #> 3061 192 0.6625294 0.128824188 fv Log-Normal Cox, Gamma FALSE #> 3077 193 0.6095303 0.117152349 fv Log-Normal Cox, Gamma FALSE #> 3093 194 0.8906886 0.165363633 fv Log-Normal Cox, Gamma FALSE #> 3109 195 0.5763599 0.113600171 fv Log-Normal Cox, Gamma FALSE #> 3125 196 0.5388661 0.105243328 fv Log-Normal Cox, Gamma FALSE #> 3141 197 0.6062427 0.117145578 fv Log-Normal Cox, Gamma FALSE #> 3157 198 0.6999424 0.133524072 fv Log-Normal Cox, Gamma FALSE #> 3173 199 0.4751412 0.094093909 fv Log-Normal Cox, Gamma FALSE #> 3189 200 0.5362176 0.105172510 fv Log-Normal Cox, Gamma FALSE #> 3205 201 0.7915355 0.148896926 fv Log-Normal Cox, Gamma FALSE #> 3221 202 0.6256725 0.120094411 fv Log-Normal Cox, Gamma FALSE #> 3237 203 0.5558678 0.108296694 fv Log-Normal Cox, Gamma FALSE #> 3253 204 0.5876585 0.113892273 fv Log-Normal Cox, Gamma FALSE #> 3269 205 0.5468949 0.106525018 fv Log-Normal Cox, Gamma FALSE #> 3285 206 0.6698007 0.128281193 fv Log-Normal Cox, Gamma FALSE #> 3301 207 0.8537181 0.163478068 fv Log-Normal Cox, Gamma FALSE #> 3317 208 0.8151591 0.151573969 fv Log-Normal Cox, Gamma FALSE #> 3333 209 0.5738887 0.112038746 fv Log-Normal Cox, Gamma FALSE #> 3349 210 0.5948765 0.115005913 fv Log-Normal Cox, Gamma FALSE #> 3365 211 0.7051577 0.134016025 fv Log-Normal Cox, Gamma FALSE #> 3381 212 0.6688139 0.127473682 fv Log-Normal Cox, Gamma FALSE #> 3397 213 0.5682107 0.111343598 fv Log-Normal Cox, Gamma FALSE #> 3413 214 0.5596977 0.108622186 fv Log-Normal Cox, Gamma FALSE #> 3429 215 0.6736498 0.131769952 fv Log-Normal Cox, Gamma FALSE #> 3445 216 0.8402526 0.156811031 fv Log-Normal Cox, Gamma FALSE #> 3461 217 0.6569014 0.126067931 fv Log-Normal Cox, Gamma FALSE #> 3477 218 0.6265203 NA fv Log-Normal Cox, Gamma NA #> 3493 219 0.8265282 0.156692936 fv Log-Normal Cox, Gamma FALSE #> 3509 220 0.7025852 0.132963964 fv Log-Normal Cox, Gamma FALSE #> 3525 221 0.5591480 0.109170032 fv Log-Normal Cox, Gamma FALSE #> 3541 222 0.3308424 0.068028520 fv Log-Normal Cox, Gamma FALSE #> 3557 223 0.4912096 0.096931558 fv Log-Normal Cox, Gamma FALSE #> 3573 224 0.4900371 0.096260044 fv Log-Normal Cox, Gamma FALSE #> 3589 225 0.7671184 0.144972525 fv Log-Normal Cox, Gamma FALSE #> 3605 226 0.8535113 0.158140918 fv Log-Normal Cox, Gamma FALSE #> 3621 227 0.6378454 0.121921746 fv Log-Normal Cox, Gamma FALSE #> 3637 228 0.7197385 0.135876027 fv Log-Normal Cox, Gamma FALSE #> 3653 229 0.3791053 0.077674263 fv Log-Normal Cox, Gamma FALSE #> 3669 230 0.5811553 0.113632012 fv Log-Normal Cox, Gamma FALSE #> 3685 231 0.5860880 0.113549906 fv Log-Normal Cox, Gamma FALSE #> 3701 232 0.8037955 0.151262566 fv Log-Normal Cox, Gamma FALSE #> 3717 233 0.8533986 0.160021433 fv Log-Normal Cox, Gamma FALSE #> 3733 234 0.8484815 0.159241562 fv Log-Normal Cox, Gamma FALSE #> 3749 235 0.4897224 0.096400413 fv Log-Normal Cox, Gamma FALSE #> 3765 236 0.5762535 0.112239275 fv Log-Normal Cox, Gamma FALSE #> 3781 237 0.5269204 0.103993561 fv Log-Normal Cox, Gamma FALSE #> 3797 238 0.7820117 0.148029154 fv Log-Normal Cox, Gamma FALSE #> 3813 239 0.8192601 0.155041621 fv Log-Normal Cox, Gamma FALSE #> 3829 240 0.5402785 0.105436912 fv Log-Normal Cox, Gamma FALSE #> 3845 241 0.6507911 0.125139921 fv Log-Normal Cox, Gamma FALSE #> 3861 242 0.4837204 0.095399989 fv Log-Normal Cox, Gamma FALSE #> 3877 243 0.6195218 0.119990163 fv Log-Normal Cox, Gamma FALSE #> 3893 244 0.5100376 0.100590658 fv Log-Normal Cox, Gamma FALSE #> 3909 245 0.4265852 0.085555768 fv Log-Normal Cox, Gamma FALSE #> 3925 246 0.7625282 0.147743867 fv Log-Normal Cox, Gamma FALSE #> 3941 247 0.6393146 0.124452824 fv Log-Normal Cox, Gamma FALSE #> 3957 248 0.8878569 0.164863233 fv Log-Normal Cox, Gamma FALSE #> 3973 249 0.5104467 0.100139240 fv Log-Normal Cox, Gamma FALSE #> 3989 250 0.7090348 0.135416883 fv Log-Normal Cox, Gamma FALSE #> 4005 251 0.5665994 0.110662478 fv Log-Normal Cox, Gamma FALSE #> 4021 252 0.4789176 0.096840906 fv Log-Normal Cox, Gamma FALSE #> 4037 253 0.7726023 0.145748257 fv Log-Normal Cox, Gamma FALSE #> 4053 254 0.6799045 0.131222201 fv Log-Normal Cox, Gamma FALSE #> 4069 255 0.8679381 0.163075058 fv Log-Normal Cox, Gamma FALSE #> 4085 256 0.7877915 0.149581667 fv Log-Normal Cox, Gamma FALSE #> 4101 257 0.7172398 0.135506691 fv Log-Normal Cox, Gamma FALSE #> 4117 258 0.4064345 0.082947195 fv Log-Normal Cox, Gamma FALSE #> 4133 259 0.5807491 0.112471382 fv Log-Normal Cox, Gamma FALSE #> 4149 260 0.5464734 0.106275466 fv Log-Normal Cox, Gamma FALSE #> 4165 261 0.7065837 0.133504731 fv Log-Normal Cox, Gamma FALSE #> 4181 262 0.5931230 0.114792244 fv Log-Normal Cox, Gamma FALSE #> 4197 263 0.7014259 0.133353663 fv Log-Normal Cox, Gamma FALSE #> 4213 264 0.7179491 0.137495764 fv Log-Normal Cox, Gamma FALSE #> 4229 265 0.5649677 0.109814735 fv Log-Normal Cox, Gamma FALSE #> 4245 266 0.5471308 0.106789710 fv Log-Normal Cox, Gamma FALSE #> 4261 267 0.5878749 0.115444716 fv Log-Normal Cox, Gamma FALSE #> 4277 268 0.8704538 0.161935150 fv Log-Normal Cox, Gamma FALSE #> 4293 269 0.5588668 0.109315818 fv Log-Normal Cox, Gamma FALSE #> 4309 270 0.5682294 0.110657678 fv Log-Normal Cox, Gamma FALSE #> 4325 271 0.7742804 0.148840997 fv Log-Normal Cox, Gamma FALSE #> 4341 272 0.5158531 0.101581050 fv Log-Normal Cox, Gamma FALSE #> 4357 273 0.6160109 NA fv Log-Normal Cox, Gamma NA #> 4373 274 0.7917479 0.153086307 fv Log-Normal Cox, Gamma FALSE #> 4389 275 0.6364515 0.126896193 fv Log-Normal Cox, Gamma FALSE #> 4405 276 0.6699600 0.127579619 fv Log-Normal Cox, Gamma FALSE #> 4421 277 0.6950828 0.007187089 fv Log-Normal Cox, Gamma TRUE #> 4437 278 0.5145957 0.101023595 fv Log-Normal Cox, Gamma FALSE #> 4453 279 0.8117977 0.153216708 fv Log-Normal Cox, Gamma FALSE #> 4469 280 0.6997337 0.133181330 fv Log-Normal Cox, Gamma FALSE #> 4485 281 0.6982049 0.133445042 fv Log-Normal Cox, Gamma FALSE #> 4501 282 0.5416213 0.105440717 fv Log-Normal Cox, Gamma FALSE #> 4517 283 0.6857669 0.130142790 fv Log-Normal Cox, Gamma FALSE #> 4533 284 0.5399607 0.105818606 fv Log-Normal Cox, Gamma FALSE #> 4549 285 0.5893622 0.113916611 fv Log-Normal Cox, Gamma FALSE #> 4565 286 0.6293867 0.121852607 fv Log-Normal Cox, Gamma FALSE #> 4581 287 0.5320429 0.104084556 fv Log-Normal Cox, Gamma FALSE #> 4597 288 0.5385214 NA fv Log-Normal Cox, Gamma NA #> 4613 289 0.6079604 0.117589769 fv Log-Normal Cox, Gamma FALSE #> 4629 290 0.6198681 0.119709759 fv Log-Normal Cox, Gamma FALSE #> 4645 291 0.6348176 0.121448764 fv Log-Normal Cox, Gamma FALSE #> 4661 292 0.5566394 0.109253711 fv Log-Normal Cox, Gamma FALSE #> 4677 293 0.5642341 0.108813689 fv Log-Normal Cox, Gamma FALSE #> 4693 294 0.6430886 0.123339440 fv Log-Normal Cox, Gamma FALSE #> 4709 295 0.5805056 0.113140088 fv Log-Normal Cox, Gamma FALSE #> 4725 296 0.7567236 0.143584763 fv Log-Normal Cox, Gamma FALSE #> 4741 297 0.3855174 0.078215125 fv Log-Normal Cox, Gamma FALSE #> 4757 298 0.5794998 0.112104842 fv Log-Normal Cox, Gamma FALSE #> 4773 299 0.7028882 0.133589533 fv Log-Normal Cox, Gamma FALSE #> 4789 300 0.5797419 0.112542288 fv Log-Normal Cox, Gamma FALSE #> 4805 301 0.9211398 0.170258250 fv Log-Normal Cox, Gamma FALSE #> 4821 302 0.7451349 0.144010919 fv Log-Normal Cox, Gamma FALSE #> 4837 303 0.5897070 0.114105453 fv Log-Normal Cox, Gamma FALSE #> 4853 304 0.5902198 0.114066882 fv Log-Normal Cox, Gamma FALSE #> 4869 305 0.6998113 0.132962809 fv Log-Normal Cox, Gamma FALSE #> 4885 306 0.5558410 0.108825873 fv Log-Normal Cox, Gamma FALSE #> 4901 307 0.5096845 0.099400324 fv Log-Normal Cox, Gamma FALSE #> 4917 308 0.6120856 0.118043549 fv Log-Normal Cox, Gamma FALSE #> 4933 309 0.5238446 0.102522839 fv Log-Normal Cox, Gamma FALSE #> 4949 310 0.5755179 0.112344745 fv Log-Normal Cox, Gamma FALSE #> 4965 311 0.7940267 0.148985319 fv Log-Normal Cox, Gamma FALSE #> 4981 312 0.5853714 0.006099306 fv Log-Normal Cox, Gamma TRUE #> 4997 313 0.4366253 0.087746151 fv Log-Normal Cox, Gamma FALSE #> 5013 314 0.6141543 0.119168693 fv Log-Normal Cox, Gamma FALSE #> 5029 315 0.5634745 0.109117311 fv Log-Normal Cox, Gamma FALSE #> 5045 316 0.5563368 0.109703245 fv Log-Normal Cox, Gamma FALSE #> 5061 317 0.7188303 0.135419985 fv Log-Normal Cox, Gamma FALSE #> 5077 318 0.5950034 0.119644402 fv Log-Normal Cox, Gamma FALSE #> 5093 319 0.6531083 0.125747127 fv Log-Normal Cox, Gamma FALSE #> 5109 320 0.7196713 0.136030114 fv Log-Normal Cox, Gamma FALSE #> 5125 321 0.8308015 0.156780085 fv Log-Normal Cox, Gamma FALSE #> 5141 322 0.4956023 0.097888214 fv Log-Normal Cox, Gamma FALSE #> 5157 323 0.6546792 0.124835750 fv Log-Normal Cox, Gamma FALSE #> 5173 324 0.4840185 0.095889192 fv Log-Normal Cox, Gamma FALSE #> 5189 325 0.5702055 0.111852128 fv Log-Normal Cox, Gamma FALSE #> 5205 326 0.7875548 0.148425894 fv Log-Normal Cox, Gamma FALSE #> 5221 327 0.4456639 0.088551255 fv Log-Normal Cox, Gamma FALSE #> 5237 328 0.6199910 0.118511296 fv Log-Normal Cox, Gamma FALSE #> 5253 329 0.6070999 0.118226137 fv Log-Normal Cox, Gamma FALSE #> 5269 330 0.4693525 0.092970101 fv Log-Normal Cox, Gamma FALSE #> 5285 331 0.7782761 0.145952440 fv Log-Normal Cox, Gamma FALSE #> 5301 332 0.6147740 0.118149084 fv Log-Normal Cox, Gamma FALSE #> 5317 333 0.4880236 0.097261035 fv Log-Normal Cox, Gamma FALSE #> 5333 334 0.4884141 0.096379233 fv Log-Normal Cox, Gamma FALSE #> 5349 335 0.5032586 0.099171283 fv Log-Normal Cox, Gamma FALSE #> 5365 336 0.7805535 0.148128686 fv Log-Normal Cox, Gamma FALSE #> 5381 337 0.6032561 0.116743833 fv Log-Normal Cox, Gamma FALSE #> 5397 338 0.6551628 0.125118867 fv Log-Normal Cox, Gamma FALSE #> 5413 339 0.5169801 0.101821996 fv Log-Normal Cox, Gamma FALSE #> 5429 340 0.8196064 0.154398664 fv Log-Normal Cox, Gamma FALSE #> 5445 341 0.5937845 0.117321745 fv Log-Normal Cox, Gamma FALSE #> 5461 342 0.5195210 0.101714573 fv Log-Normal Cox, Gamma FALSE #> 5477 343 0.5449285 0.106821634 fv Log-Normal Cox, Gamma FALSE #> 5493 344 0.6178628 0.119729312 fv Log-Normal Cox, Gamma FALSE #> 5509 345 0.5748172 0.111195189 fv Log-Normal Cox, Gamma FALSE #> 5525 346 0.4467481 0.089775532 fv Log-Normal Cox, Gamma FALSE #> 5541 347 0.5922002 0.115336519 fv Log-Normal Cox, Gamma FALSE #> 5557 348 0.5431553 0.107023045 fv Log-Normal Cox, Gamma FALSE #> 5573 349 0.5963678 0.115282859 fv Log-Normal Cox, Gamma FALSE #> 5589 350 0.7126978 0.135785768 fv Log-Normal Cox, Gamma FALSE #> 5605 351 0.5000000 0.098314792 fv Log-Normal Cox, Gamma FALSE #> 5621 352 0.7598097 0.144565206 fv Log-Normal Cox, Gamma FALSE #> 5637 353 0.6849065 0.131859665 fv Log-Normal Cox, Gamma FALSE #> 5653 354 0.5847636 0.113209083 fv Log-Normal Cox, Gamma FALSE #> 5669 355 0.6647230 0.126982092 fv Log-Normal Cox, Gamma FALSE #> 5685 356 0.6167743 NA fv Log-Normal Cox, Gamma NA #> 5701 357 0.9010051 0.172186528 fv Log-Normal Cox, Gamma FALSE #> 5717 358 0.6069449 0.117219188 fv Log-Normal Cox, Gamma FALSE #> 5733 359 0.4821542 0.096106206 fv Log-Normal Cox, Gamma FALSE #> 5749 360 0.5664989 0.109859357 fv Log-Normal Cox, Gamma FALSE #> 5765 361 0.5678027 0.110631454 fv Log-Normal Cox, Gamma FALSE #> 5781 362 0.6276318 NA fv Log-Normal Cox, Gamma NA #> 5797 363 0.5816629 0.114016656 fv Log-Normal Cox, Gamma FALSE #> 5813 364 0.6859902 0.129879220 fv Log-Normal Cox, Gamma FALSE #> 5829 365 0.6491866 0.124319049 fv Log-Normal Cox, Gamma FALSE #> 5845 366 0.5865690 0.113684228 fv Log-Normal Cox, Gamma FALSE #> 5861 367 0.7319157 0.139897352 fv Log-Normal Cox, Gamma FALSE #> 5877 368 0.8046332 0.150989946 fv Log-Normal Cox, Gamma FALSE #> 5893 369 0.5082926 0.099866024 fv Log-Normal Cox, Gamma FALSE #> 5909 370 0.6604881 0.126498901 fv Log-Normal Cox, Gamma FALSE #> 5925 371 0.6356362 0.124258194 fv Log-Normal Cox, Gamma FALSE #> 5941 372 0.4589990 0.091576188 fv Log-Normal Cox, Gamma FALSE #> 5957 373 0.8629317 0.160738289 fv Log-Normal Cox, Gamma FALSE #> 5973 374 0.5057169 0.100061515 fv Log-Normal Cox, Gamma FALSE #> 5989 375 0.6330062 0.123040876 fv Log-Normal Cox, Gamma FALSE #> 6005 376 0.6046560 0.116978108 fv Log-Normal Cox, Gamma FALSE #> 6021 377 0.4747655 0.005013608 fv Log-Normal Cox, Gamma TRUE #> 6037 378 0.5334781 0.005584094 fv Log-Normal Cox, Gamma TRUE #> 6053 379 0.4830196 0.095784689 fv Log-Normal Cox, Gamma FALSE #> 6069 380 0.5694002 0.110358969 fv Log-Normal Cox, Gamma FALSE #> 6085 381 0.6863816 0.130635692 fv Log-Normal Cox, Gamma FALSE #> 6101 382 0.6287443 0.121561327 fv Log-Normal Cox, Gamma FALSE #> 6117 383 0.6705983 0.128564833 fv Log-Normal Cox, Gamma FALSE #> 6133 384 0.5832236 NA fv Log-Normal Cox, Gamma NA #> 6149 385 0.5054799 0.100036351 fv Log-Normal Cox, Gamma FALSE #> 6165 386 0.7721235 0.146738604 fv Log-Normal Cox, Gamma FALSE #> 6181 387 0.5792390 0.113921561 fv Log-Normal Cox, Gamma FALSE #> 6197 388 0.6998366 0.131999951 fv Log-Normal Cox, Gamma FALSE #> 6213 389 0.6587321 0.125619377 fv Log-Normal Cox, Gamma FALSE #> 6229 390 0.5746738 0.111840939 fv Log-Normal Cox, Gamma FALSE #> 6245 391 0.7150477 0.135480569 fv Log-Normal Cox, Gamma FALSE #> 6261 392 0.5580029 0.109198136 fv Log-Normal Cox, Gamma FALSE #> 6277 393 0.5189269 0.101936787 fv Log-Normal Cox, Gamma FALSE #> 6293 394 0.8337900 0.157631224 fv Log-Normal Cox, Gamma FALSE #> 6309 395 0.6557804 0.125496415 fv Log-Normal Cox, Gamma FALSE #> 6325 396 0.8542463 0.159311110 fv Log-Normal Cox, Gamma FALSE #> 6341 397 0.5753214 0.111380720 fv Log-Normal Cox, Gamma FALSE #> 6357 398 0.5763301 NA fv Log-Normal Cox, Gamma NA #> 6373 399 0.7343354 0.139561737 fv Log-Normal Cox, Gamma FALSE #> 6389 400 0.4829329 0.095986778 fv Log-Normal Cox, Gamma FALSE #> 6405 401 0.5236326 0.102648828 fv Log-Normal Cox, Gamma FALSE #> 6421 402 0.4724927 0.094782726 fv Log-Normal Cox, Gamma FALSE #> 6437 403 0.4746930 0.093432378 fv Log-Normal Cox, Gamma FALSE #> 6453 404 0.5498989 0.108729092 fv Log-Normal Cox, Gamma FALSE #> 6469 405 0.4680169 0.093560491 fv Log-Normal Cox, Gamma FALSE #> 6485 406 0.5976504 0.115198092 fv Log-Normal Cox, Gamma FALSE #> 6501 407 0.7073151 0.135807607 fv Log-Normal Cox, Gamma FALSE #> 6517 408 0.4534840 0.092196184 fv Log-Normal Cox, Gamma FALSE #> 6533 409 0.5996849 0.115802131 fv Log-Normal Cox, Gamma FALSE #> 6549 410 0.7350483 0.141098444 fv Log-Normal Cox, Gamma FALSE #> 6565 411 0.5844294 0.114213027 fv Log-Normal Cox, Gamma FALSE #> 6581 412 0.6355002 0.123732471 fv Log-Normal Cox, Gamma FALSE #> 6597 413 0.4795980 0.095797688 fv Log-Normal Cox, Gamma FALSE #> 6613 414 0.8214290 0.154482941 fv Log-Normal Cox, Gamma FALSE #> 6629 415 1.0474272 0.190204210 fv Log-Normal Cox, Gamma TRUE #> 6645 416 0.5058717 0.100738059 fv Log-Normal Cox, Gamma FALSE #> 6661 417 0.5077597 0.099999290 fv Log-Normal Cox, Gamma FALSE #> 6677 418 0.7561877 0.141887306 fv Log-Normal Cox, Gamma FALSE #> 6693 419 0.4072063 0.081901396 fv Log-Normal Cox, Gamma FALSE #> 6709 420 0.6455902 0.124271550 fv Log-Normal Cox, Gamma FALSE #> 6725 421 0.7228223 0.137917495 fv Log-Normal Cox, Gamma FALSE #> 6741 422 0.5497526 0.108664623 fv Log-Normal Cox, Gamma FALSE #> 6757 423 0.5299681 0.103771903 fv Log-Normal Cox, Gamma FALSE #> 6773 424 0.5967779 0.115501171 fv Log-Normal Cox, Gamma FALSE #> 6789 425 0.7086593 0.136018726 fv Log-Normal Cox, Gamma FALSE #> 6805 426 0.7463880 0.141871924 fv Log-Normal Cox, Gamma FALSE #> 6821 427 0.9312417 0.173523729 fv Log-Normal Cox, Gamma FALSE #> 6837 428 0.7297720 0.139335836 fv Log-Normal Cox, Gamma FALSE #> 6853 429 0.6423904 0.123215428 fv Log-Normal Cox, Gamma FALSE #> 6869 430 0.7904786 0.149398357 fv Log-Normal Cox, Gamma FALSE #> 6885 431 0.5748521 0.111859450 fv Log-Normal Cox, Gamma FALSE #> 6901 432 0.7837588 0.147930476 fv Log-Normal Cox, Gamma FALSE #> 6917 433 0.5077611 0.099539593 fv Log-Normal Cox, Gamma FALSE #> 6933 434 0.5698565 0.111750053 fv Log-Normal Cox, Gamma FALSE #> 6949 435 0.4345445 0.087168355 fv Log-Normal Cox, Gamma FALSE #> 6965 436 0.6488462 0.124059132 fv Log-Normal Cox, Gamma FALSE #> 6981 437 0.4985519 0.098328201 fv Log-Normal Cox, Gamma FALSE #> 6997 438 0.7555537 0.142820397 fv Log-Normal Cox, Gamma FALSE #> 7013 439 0.5195431 0.102728067 fv Log-Normal Cox, Gamma FALSE #> 7029 440 0.4001901 0.081978639 fv Log-Normal Cox, Gamma FALSE #> 7045 441 0.5221735 0.103055594 fv Log-Normal Cox, Gamma FALSE #> 7061 442 0.6261760 0.120790762 fv Log-Normal Cox, Gamma FALSE #> 7077 443 0.7115103 0.135894182 fv Log-Normal Cox, Gamma FALSE #> 7093 444 0.8105371 0.154148350 fv Log-Normal Cox, Gamma FALSE #> 7109 445 0.7507591 0.141487559 fv Log-Normal Cox, Gamma FALSE #> 7125 446 0.5493869 0.107028499 fv Log-Normal Cox, Gamma FALSE #> 7141 447 0.7140244 0.135131039 fv Log-Normal Cox, Gamma FALSE #> 7157 448 0.7267933 0.007501018 fv Log-Normal Cox, Gamma TRUE #> 7173 449 0.8146904 0.153718357 fv Log-Normal Cox, Gamma FALSE #> 7189 450 0.5712926 0.005956948 fv Log-Normal Cox, Gamma TRUE #> 7205 451 0.6845371 0.007089436 fv Log-Normal Cox, Gamma TRUE #> 7221 452 0.6853901 0.130472792 fv Log-Normal Cox, Gamma FALSE #> 7237 453 0.6417479 0.123250237 fv Log-Normal Cox, Gamma FALSE #> 7253 454 0.5911276 0.114601422 fv Log-Normal Cox, Gamma FALSE #> 7269 455 0.5984098 0.116590552 fv Log-Normal Cox, Gamma FALSE #> 7285 456 0.4505173 0.090165786 fv Log-Normal Cox, Gamma FALSE #> 7301 457 0.7620831 0.143403670 fv Log-Normal Cox, Gamma FALSE #> 7317 458 0.6686242 0.128940301 fv Log-Normal Cox, Gamma FALSE #> 7333 459 0.7889405 0.148922011 fv Log-Normal Cox, Gamma FALSE #> 7349 460 0.5358846 0.103974358 fv Log-Normal Cox, Gamma FALSE #> 7365 461 0.6733711 0.128134140 fv Log-Normal Cox, Gamma FALSE #> 7381 462 0.5991040 0.115019026 fv Log-Normal Cox, Gamma FALSE #> 7397 463 0.8014668 0.152431379 fv Log-Normal Cox, Gamma FALSE #> 7413 464 0.6531009 0.124232793 fv Log-Normal Cox, Gamma FALSE #> 7429 465 0.7414829 0.140694298 fv Log-Normal Cox, Gamma FALSE #> 7445 466 0.7425237 0.140996639 fv Log-Normal Cox, Gamma FALSE #> 7461 467 0.6586817 0.127143401 fv Log-Normal Cox, Gamma FALSE #> 7477 468 0.7449020 0.139983687 fv Log-Normal Cox, Gamma FALSE #> 7493 469 0.7953894 0.151211847 fv Log-Normal Cox, Gamma FALSE #> 7509 470 0.6709136 0.129021836 fv Log-Normal Cox, Gamma FALSE #> 7525 471 0.5187494 0.101602830 fv Log-Normal Cox, Gamma FALSE #> 7541 472 0.7762352 0.146346463 fv Log-Normal Cox, Gamma FALSE #> 7557 473 0.6079842 0.117712573 fv Log-Normal Cox, Gamma FALSE #> 7573 474 0.8214972 0.153722361 fv Log-Normal Cox, Gamma FALSE #> 7589 475 0.5320746 0.103794209 fv Log-Normal Cox, Gamma FALSE #> 7605 476 0.4423624 0.088897145 fv Log-Normal Cox, Gamma FALSE #> 7621 477 0.4959494 0.099039376 fv Log-Normal Cox, Gamma FALSE #> 7637 478 0.6609360 0.125421024 fv Log-Normal Cox, Gamma FALSE #> 7653 479 0.6794332 0.129846506 fv Log-Normal Cox, Gamma FALSE #> 7669 480 0.9217237 0.171612582 fv Log-Normal Cox, Gamma FALSE #> 7685 481 0.8691868 0.161785535 fv Log-Normal Cox, Gamma FALSE #> 7701 482 0.6070555 0.116947739 fv Log-Normal Cox, Gamma FALSE #> 7717 483 0.7383561 0.139682652 fv Log-Normal Cox, Gamma FALSE #> 7733 484 0.7324532 0.138770244 fv Log-Normal Cox, Gamma FALSE #> 7749 485 0.5259924 0.102916295 fv Log-Normal Cox, Gamma FALSE #> 7765 486 0.3905568 0.078816713 fv Log-Normal Cox, Gamma FALSE #> 7781 487 0.7444582 0.140331842 fv Log-Normal Cox, Gamma FALSE #> 7797 488 0.3979924 0.080542514 fv Log-Normal Cox, Gamma FALSE #> 7813 489 0.6556261 0.126188084 fv Log-Normal Cox, Gamma FALSE #> 7829 490 0.6030237 NA fv Log-Normal Cox, Gamma NA #> 7845 491 0.6246608 0.120905487 fv Log-Normal Cox, Gamma FALSE #> 7861 492 0.4825731 0.094903496 fv Log-Normal Cox, Gamma FALSE #> 7877 493 0.9584215 0.177094162 fv Log-Normal Cox, Gamma FALSE #> 7893 494 0.6014177 NA fv Log-Normal Cox, Gamma NA #> 7909 495 0.7160493 0.135345935 fv Log-Normal Cox, Gamma FALSE #> 7925 496 0.8782739 0.009032245 fv Log-Normal Cox, Gamma TRUE #> 7941 497 0.5213246 0.102227484 fv Log-Normal Cox, Gamma FALSE #> 7957 498 0.6085879 NA fv Log-Normal Cox, Gamma NA #> 7973 499 0.7577549 0.144119208 fv Log-Normal Cox, Gamma FALSE #> 7989 500 0.6578232 NA fv Log-Normal Cox, Gamma NA #> 8005 501 1.1931654 0.214830369 fv Log-Normal Cox, Gamma TRUE #> 8021 502 0.7043797 0.134622077 fv Log-Normal Cox, Gamma FALSE #> 8037 503 0.6449373 0.123467432 fv Log-Normal Cox, Gamma FALSE #> 8053 504 0.7763836 0.146112050 fv Log-Normal Cox, Gamma FALSE #> 8069 505 0.6039837 0.115828958 fv Log-Normal Cox, Gamma FALSE #> 8085 506 0.8130845 0.152643800 fv Log-Normal Cox, Gamma FALSE #> 8101 507 0.5864967 0.112727930 fv Log-Normal Cox, Gamma FALSE #> 8117 508 0.5052933 0.100823068 fv Log-Normal Cox, Gamma FALSE #> 8133 509 0.5737083 0.111195098 fv Log-Normal Cox, Gamma FALSE #> 8149 510 0.5598720 0.108532643 fv Log-Normal Cox, Gamma FALSE #> 8165 511 0.4042964 0.081176179 fv Log-Normal Cox, Gamma FALSE #> 8181 512 0.5921053 0.114606976 fv Log-Normal Cox, Gamma FALSE #> 8197 513 0.6463252 0.123735617 fv Log-Normal Cox, Gamma FALSE #> 8213 514 0.6396754 0.123749665 fv Log-Normal Cox, Gamma FALSE #> 8229 515 0.5031870 0.099629425 fv Log-Normal Cox, Gamma FALSE #> 8245 516 0.6478424 0.124667693 fv Log-Normal Cox, Gamma FALSE #> 8261 517 0.3317136 0.068474900 fv Log-Normal Cox, Gamma FALSE #> 8277 518 0.6553708 0.125632038 fv Log-Normal Cox, Gamma FALSE #> 8293 519 0.6725635 0.128430012 fv Log-Normal Cox, Gamma FALSE #> 8309 520 0.6841932 0.129888821 fv Log-Normal Cox, Gamma FALSE #> 8325 521 0.6377897 NA fv Log-Normal Cox, Gamma NA #> 8341 522 0.4878991 0.096317522 fv Log-Normal Cox, Gamma FALSE #> 8357 523 0.6491452 0.123990211 fv Log-Normal Cox, Gamma FALSE #> 8373 524 0.5224167 0.104004647 fv Log-Normal Cox, Gamma FALSE #> 8389 525 0.6777538 0.130516488 fv Log-Normal Cox, Gamma FALSE #> 8405 526 0.5584814 0.109562292 fv Log-Normal Cox, Gamma FALSE #> 8421 527 0.6843104 0.132090449 fv Log-Normal Cox, Gamma FALSE #> 8437 528 0.7413526 0.140137362 fv Log-Normal Cox, Gamma FALSE #> 8453 529 0.7941552 0.148738686 fv Log-Normal Cox, Gamma FALSE #> 8469 530 0.3946714 0.079959532 fv Log-Normal Cox, Gamma FALSE #> 8485 531 0.7861082 0.147135826 fv Log-Normal Cox, Gamma FALSE #> 8501 532 0.6150512 NA fv Log-Normal Cox, Gamma NA #> 8517 533 0.6126927 0.118046878 fv Log-Normal Cox, Gamma FALSE #> 8533 534 0.6733886 0.129512171 fv Log-Normal Cox, Gamma FALSE #> 8549 535 0.7332816 0.138322504 fv Log-Normal Cox, Gamma FALSE #> 8565 536 0.5205081 0.102413941 fv Log-Normal Cox, Gamma FALSE #> 8581 537 1.0384914 0.188738973 fv Log-Normal Cox, Gamma TRUE #> 8597 538 0.4543334 0.090536911 fv Log-Normal Cox, Gamma FALSE #> 8613 539 0.6715901 NA fv Log-Normal Cox, Gamma NA #> 8629 540 0.5523389 0.107900473 fv Log-Normal Cox, Gamma FALSE #> 8645 541 0.8043327 0.150755997 fv Log-Normal Cox, Gamma FALSE #> 8661 542 0.6934063 0.132246580 fv Log-Normal Cox, Gamma FALSE #> 8677 543 0.7469130 0.142208358 fv Log-Normal Cox, Gamma FALSE #> 8693 544 0.6771137 0.129576795 fv Log-Normal Cox, Gamma FALSE #> 8709 545 0.5138754 0.100742098 fv Log-Normal Cox, Gamma FALSE #> 8725 546 0.8303685 0.156135534 fv Log-Normal Cox, Gamma FALSE #> 8741 547 0.6111091 0.118380971 fv Log-Normal Cox, Gamma FALSE #> 8757 548 0.5141719 0.102038969 fv Log-Normal Cox, Gamma FALSE #> 8773 549 0.7349328 0.138690104 fv Log-Normal Cox, Gamma FALSE #> 8789 550 0.5083307 0.101829261 fv Log-Normal Cox, Gamma FALSE #> 8805 551 0.6683084 0.127523621 fv Log-Normal Cox, Gamma FALSE #> 8821 552 0.6281157 NA fv Log-Normal Cox, Gamma NA #> 8837 553 0.7055114 0.132958925 fv Log-Normal Cox, Gamma FALSE #> 8853 554 0.8280844 0.156933583 fv Log-Normal Cox, Gamma FALSE #> 8869 555 0.6843468 0.130041654 fv Log-Normal Cox, Gamma FALSE #> 8885 556 0.7533713 0.142048697 fv Log-Normal Cox, Gamma FALSE #> 8901 557 0.6250902 0.120157525 fv Log-Normal Cox, Gamma FALSE #> 8917 558 0.6066749 0.117016286 fv Log-Normal Cox, Gamma FALSE #> 8933 559 0.5426162 0.106388816 fv Log-Normal Cox, Gamma FALSE #> 8949 560 0.7141690 0.135766994 fv Log-Normal Cox, Gamma FALSE #> 8965 561 1.0274772 0.187741551 fv Log-Normal Cox, Gamma TRUE #> 8981 562 0.7421217 0.140796140 fv Log-Normal Cox, Gamma FALSE #> 8997 563 0.6799533 0.129434410 fv Log-Normal Cox, Gamma FALSE #> 9013 564 0.5069500 0.099182157 fv Log-Normal Cox, Gamma FALSE #> 9029 565 0.5192371 0.102478262 fv Log-Normal Cox, Gamma FALSE #> 9045 566 0.6242465 0.120118523 fv Log-Normal Cox, Gamma FALSE #> 9061 567 0.5965461 0.115018660 fv Log-Normal Cox, Gamma FALSE #> 9077 568 0.4716597 0.093558081 fv Log-Normal Cox, Gamma FALSE #> 9093 569 0.7968988 0.150002405 fv Log-Normal Cox, Gamma FALSE #> 9109 570 0.4621690 0.091289543 fv Log-Normal Cox, Gamma FALSE #> 9125 571 0.5841130 0.112584938 fv Log-Normal Cox, Gamma FALSE #> 9141 572 0.5706712 0.111580535 fv Log-Normal Cox, Gamma FALSE #> 9157 573 0.5738192 0.111598149 fv Log-Normal Cox, Gamma FALSE #> 9173 574 0.6448252 0.123758649 fv Log-Normal Cox, Gamma FALSE #> 9189 575 0.5479147 0.107160503 fv Log-Normal Cox, Gamma FALSE #> 9205 576 0.5551117 0.108212537 fv Log-Normal Cox, Gamma FALSE #> 9221 577 0.9281460 0.174612909 fv Log-Normal Cox, Gamma FALSE #> 9237 578 0.5259939 0.103027487 fv Log-Normal Cox, Gamma FALSE #> 9253 579 0.5383092 0.106116519 fv Log-Normal Cox, Gamma FALSE #> 9269 580 0.4711285 0.094424105 fv Log-Normal Cox, Gamma FALSE #> 9285 581 0.6494811 0.124008306 fv Log-Normal Cox, Gamma FALSE #> 9301 582 0.6771744 0.129385168 fv Log-Normal Cox, Gamma FALSE #> 9317 583 0.8865092 0.163523339 fv Log-Normal Cox, Gamma FALSE #> 9333 584 0.5000000 0.098868076 fv Log-Normal Cox, Gamma FALSE #> 9349 585 0.6156845 0.118126235 fv Log-Normal Cox, Gamma FALSE #> 9365 586 0.6909358 0.132262861 fv Log-Normal Cox, Gamma FALSE #> 9381 587 0.8254731 0.156164504 fv Log-Normal Cox, Gamma FALSE #> 9397 588 0.4985840 0.098185971 fv Log-Normal Cox, Gamma FALSE #> 9413 589 0.5667331 0.110590810 fv Log-Normal Cox, Gamma FALSE #> 9429 590 0.6755327 0.128974744 fv Log-Normal Cox, Gamma FALSE #> 9445 591 0.7100735 0.134783444 fv Log-Normal Cox, Gamma FALSE #> 9461 592 0.6398759 0.122043702 fv Log-Normal Cox, Gamma FALSE #> 9477 593 0.8497606 0.159346921 fv Log-Normal Cox, Gamma FALSE #> 9493 594 0.5974971 0.114783658 fv Log-Normal Cox, Gamma FALSE #> 9509 595 0.4889633 0.096514942 fv Log-Normal Cox, Gamma FALSE #> 9525 596 0.7551888 0.146743300 fv Log-Normal Cox, Gamma FALSE #> 9541 597 0.5546966 0.108577585 fv Log-Normal Cox, Gamma FALSE #> 9557 598 0.8867973 0.164441792 fv Log-Normal Cox, Gamma FALSE #> 9573 599 0.7171896 0.139493732 fv Log-Normal Cox, Gamma FALSE #> 9589 600 0.4879105 0.096772910 fv Log-Normal Cox, Gamma FALSE #> 9605 601 1.0026921 NA fv Log-Normal Cox, Gamma TRUE #> 9621 602 0.9325088 0.173557163 fv Log-Normal Cox, Gamma FALSE #> 9637 603 0.3888751 0.079033438 fv Log-Normal Cox, Gamma FALSE #> 9653 604 0.6842209 0.130715889 fv Log-Normal Cox, Gamma FALSE #> 9669 605 1.2003127 0.217054265 fv Log-Normal Cox, Gamma TRUE #> 9685 606 0.6547442 NA fv Log-Normal Cox, Gamma NA #> 9701 607 0.5317105 0.105097289 fv Log-Normal Cox, Gamma FALSE #> 9717 608 0.3897320 0.078854986 fv Log-Normal Cox, Gamma FALSE #> 9733 609 0.7396654 0.139623911 fv Log-Normal Cox, Gamma FALSE #> 9749 610 0.5778586 0.112592700 fv Log-Normal Cox, Gamma FALSE #> 9765 611 0.7311360 0.139959143 fv Log-Normal Cox, Gamma FALSE #> 9781 612 0.4822317 0.094986841 fv Log-Normal Cox, Gamma FALSE #> 9797 613 0.6700561 0.127315233 fv Log-Normal Cox, Gamma FALSE #> 9813 614 0.6139652 0.117963537 fv Log-Normal Cox, Gamma FALSE #> 9829 615 0.7041258 0.133147573 fv Log-Normal Cox, Gamma FALSE #> 9845 616 0.6486597 0.123698992 fv Log-Normal Cox, Gamma FALSE #> 9861 617 0.6631049 0.126776116 fv Log-Normal Cox, Gamma FALSE #> 9877 618 0.6326642 0.122967228 fv Log-Normal Cox, Gamma FALSE #> 9893 619 0.7031687 0.133526200 fv Log-Normal Cox, Gamma FALSE #> 9909 620 0.7016931 0.134030260 fv Log-Normal Cox, Gamma FALSE #> 9925 621 0.4804179 0.094630231 fv Log-Normal Cox, Gamma FALSE #> 9941 622 0.5398830 0.105518836 fv Log-Normal Cox, Gamma FALSE #> 9957 623 0.7882768 NA fv Log-Normal Cox, Gamma NA #> 9973 624 0.5199565 0.102594438 fv Log-Normal Cox, Gamma FALSE #> 9989 625 0.6821884 0.131007762 fv Log-Normal Cox, Gamma FALSE #> 10005 626 0.5553299 0.108156062 fv Log-Normal Cox, Gamma FALSE #> 10021 627 0.5171324 0.100946474 fv Log-Normal Cox, Gamma FALSE #> 10037 628 0.6021959 0.117996583 fv Log-Normal Cox, Gamma FALSE #> 10053 629 0.5988361 0.116317156 fv Log-Normal Cox, Gamma FALSE #> 10069 630 0.7275214 0.137648611 fv Log-Normal Cox, Gamma FALSE #> 10085 631 0.6014324 0.116267022 fv Log-Normal Cox, Gamma FALSE #> 10101 632 0.6539662 0.125735227 fv Log-Normal Cox, Gamma FALSE #> 10117 633 0.4515294 0.090140744 fv Log-Normal Cox, Gamma FALSE #> 10133 634 0.5366501 0.104960671 fv Log-Normal Cox, Gamma FALSE #> 10149 635 0.7992162 0.151686284 fv Log-Normal Cox, Gamma FALSE #> 10165 636 0.3679142 0.074745635 fv Log-Normal Cox, Gamma FALSE #> 10181 637 0.8172567 0.153430015 fv Log-Normal Cox, Gamma FALSE #> 10197 638 0.6188470 0.119900789 fv Log-Normal Cox, Gamma FALSE #> 10213 639 0.4075475 0.082636108 fv Log-Normal Cox, Gamma FALSE #> 10229 640 0.6079813 0.117311944 fv Log-Normal Cox, Gamma FALSE #> 10245 641 0.5327991 0.105035147 fv Log-Normal Cox, Gamma FALSE #> 10261 642 0.5597292 0.109129262 fv Log-Normal Cox, Gamma FALSE #> 10277 643 0.6139384 0.118367241 fv Log-Normal Cox, Gamma FALSE #> 10293 644 0.5866635 NA fv Log-Normal Cox, Gamma NA #> 10309 645 0.7208784 0.137431969 fv Log-Normal Cox, Gamma FALSE #> 10325 646 0.6933400 0.131413088 fv Log-Normal Cox, Gamma FALSE #> 10341 647 0.5671578 0.109870687 fv Log-Normal Cox, Gamma FALSE #> 10357 648 0.9313582 0.172295847 fv Log-Normal Cox, Gamma FALSE #> 10373 649 0.5481963 0.107649002 fv Log-Normal Cox, Gamma FALSE #> 10389 650 0.7605507 0.143662754 fv Log-Normal Cox, Gamma FALSE #> 10405 651 0.6464110 0.123572571 fv Log-Normal Cox, Gamma FALSE #> 10421 652 1.0094659 NA fv Log-Normal Cox, Gamma TRUE #> 10437 653 0.4670246 0.092824199 fv Log-Normal Cox, Gamma FALSE #> 10453 654 0.5010104 0.099183261 fv Log-Normal Cox, Gamma FALSE #> 10469 655 0.6150549 NA fv Log-Normal Cox, Gamma NA #> 10485 656 0.5876953 0.113979268 fv Log-Normal Cox, Gamma FALSE #> 10501 657 0.4694330 0.093140718 fv Log-Normal Cox, Gamma FALSE #> 10517 658 0.9549667 0.176185188 fv Log-Normal Cox, Gamma FALSE #> 10533 659 0.9190884 0.171500306 fv Log-Normal Cox, Gamma FALSE #> 10549 660 0.6910145 0.131000152 fv Log-Normal Cox, Gamma FALSE #> 10565 661 0.4568377 0.090509242 fv Log-Normal Cox, Gamma FALSE #> 10581 662 0.5172112 0.101535270 fv Log-Normal Cox, Gamma FALSE #> 10597 663 0.5894338 0.114077847 fv Log-Normal Cox, Gamma FALSE #> 10613 664 0.6056533 0.116455334 fv Log-Normal Cox, Gamma FALSE #> 10629 665 0.7852957 0.148553995 fv Log-Normal Cox, Gamma FALSE #> 10645 666 0.9859896 0.180554439 fv Log-Normal Cox, Gamma TRUE #> 10661 667 0.5862766 0.113642712 fv Log-Normal Cox, Gamma FALSE #> 10677 668 0.5949446 0.115866220 fv Log-Normal Cox, Gamma FALSE #> 10693 669 0.7850263 0.147802853 fv Log-Normal Cox, Gamma FALSE #> 10709 670 0.5635746 NA fv Log-Normal Cox, Gamma NA #> 10725 671 0.7259235 0.138202958 fv Log-Normal Cox, Gamma FALSE #> 10741 672 0.8718181 0.163010978 fv Log-Normal Cox, Gamma FALSE #> 10757 673 0.6408388 0.123876096 fv Log-Normal Cox, Gamma FALSE #> 10773 674 0.7466389 0.142055048 fv Log-Normal Cox, Gamma FALSE #> 10789 675 0.5421365 0.106966298 fv Log-Normal Cox, Gamma FALSE #> 10805 676 0.8391278 0.157251504 fv Log-Normal Cox, Gamma FALSE #> 10821 677 0.6225082 0.120465864 fv Log-Normal Cox, Gamma FALSE #> 10837 678 0.5245500 0.103447698 fv Log-Normal Cox, Gamma FALSE #> 10853 679 0.5851618 NA fv Log-Normal Cox, Gamma NA #> 10869 680 0.6683333 0.127906739 fv Log-Normal Cox, Gamma FALSE #> 10885 681 0.8702246 0.162150474 fv Log-Normal Cox, Gamma FALSE #> 10901 682 0.5397913 0.104974509 fv Log-Normal Cox, Gamma FALSE #> 10917 683 0.7569255 0.145064290 fv Log-Normal Cox, Gamma FALSE #> 10933 684 0.9591995 0.177344786 fv Log-Normal Cox, Gamma FALSE #> 10949 685 0.5623235 0.109076488 fv Log-Normal Cox, Gamma FALSE #> 10965 686 0.8192108 0.153746623 fv Log-Normal Cox, Gamma FALSE #> 10981 687 0.5286876 0.103347965 fv Log-Normal Cox, Gamma FALSE #> 10997 688 0.5358129 0.105056766 fv Log-Normal Cox, Gamma FALSE #> 11013 689 0.5913183 0.115293694 fv Log-Normal Cox, Gamma FALSE #> 11029 690 0.7268248 0.137887225 fv Log-Normal Cox, Gamma FALSE #> 11045 691 0.7463031 0.145380092 fv Log-Normal Cox, Gamma FALSE #> 11061 692 0.5489217 0.106600253 fv Log-Normal Cox, Gamma FALSE #> 11077 693 0.4519482 0.090149874 fv Log-Normal Cox, Gamma FALSE #> 11093 694 0.6822745 0.130763160 fv Log-Normal Cox, Gamma FALSE #> 11109 695 0.5559127 0.108383281 fv Log-Normal Cox, Gamma FALSE #> 11125 696 0.6691356 0.127526992 fv Log-Normal Cox, Gamma FALSE #> 11141 697 0.8042098 0.152144346 fv Log-Normal Cox, Gamma FALSE #> 11157 698 0.4023952 0.081060891 fv Log-Normal Cox, Gamma FALSE #> 11173 699 0.6212888 0.120567498 fv Log-Normal Cox, Gamma FALSE #> 11189 700 0.4839348 0.095596275 fv Log-Normal Cox, Gamma FALSE #> 11205 701 0.7137080 0.135569766 fv Log-Normal Cox, Gamma FALSE #> 11221 702 0.7879064 0.150369164 fv Log-Normal Cox, Gamma FALSE #> 11237 703 0.6841934 0.131021982 fv Log-Normal Cox, Gamma FALSE #> 11253 704 0.5994003 0.116696139 fv Log-Normal Cox, Gamma FALSE #> 11269 705 0.5822209 0.112386316 fv Log-Normal Cox, Gamma FALSE #> 11285 706 0.6451694 0.123668202 fv Log-Normal Cox, Gamma FALSE #> 11301 707 0.7728336 0.144921118 fv Log-Normal Cox, Gamma FALSE #> 11317 708 0.7578368 0.142268276 fv Log-Normal Cox, Gamma FALSE #> 11333 709 0.7044466 0.137535324 fv Log-Normal Cox, Gamma FALSE #> 11349 710 0.4848854 0.096366538 fv Log-Normal Cox, Gamma FALSE #> 11365 711 0.6696038 0.131629200 fv Log-Normal Cox, Gamma FALSE #> 11381 712 0.6364269 NA fv Log-Normal Cox, Gamma NA #> 11397 713 0.8785677 0.164027544 fv Log-Normal Cox, Gamma FALSE #> 11413 714 0.7289698 0.139114880 fv Log-Normal Cox, Gamma FALSE #> 11429 715 0.6760923 0.128597343 fv Log-Normal Cox, Gamma FALSE #> 11445 716 0.6206559 0.118841559 fv Log-Normal Cox, Gamma FALSE #> 11461 717 0.6715545 0.128487711 fv Log-Normal Cox, Gamma FALSE #> 11477 718 0.7875216 0.148889321 fv Log-Normal Cox, Gamma FALSE #> 11493 719 0.9351608 0.174706425 fv Log-Normal Cox, Gamma FALSE #> 11509 720 0.6329848 0.120820543 fv Log-Normal Cox, Gamma FALSE #> 11525 721 0.5076976 0.099834680 fv Log-Normal Cox, Gamma FALSE #> 11541 722 0.7036759 0.133565138 fv Log-Normal Cox, Gamma FALSE #> 11557 723 0.5811768 0.113354759 fv Log-Normal Cox, Gamma FALSE #> 11573 724 0.6810073 0.131625143 fv Log-Normal Cox, Gamma FALSE #> 11589 725 0.6749253 0.128842134 fv Log-Normal Cox, Gamma FALSE #> 11605 726 0.5682980 0.110789939 fv Log-Normal Cox, Gamma FALSE #> 11621 727 0.6973867 0.132403499 fv Log-Normal Cox, Gamma FALSE #> 11637 728 0.9034403 0.167176467 fv Log-Normal Cox, Gamma FALSE #> 11653 729 0.6618256 0.126659612 fv Log-Normal Cox, Gamma FALSE #> 11669 730 0.7355975 0.139569325 fv Log-Normal Cox, Gamma FALSE #> 11685 731 0.4578597 0.091222814 fv Log-Normal Cox, Gamma FALSE #> 11701 732 0.3962879 0.079619289 fv Log-Normal Cox, Gamma FALSE #> 11717 733 0.7799217 0.146397355 fv Log-Normal Cox, Gamma FALSE #> 11733 734 0.7250782 0.136961355 fv Log-Normal Cox, Gamma FALSE #> 11749 735 0.8080674 0.150410061 fv Log-Normal Cox, Gamma FALSE #> 11765 736 0.7302051 0.138445599 fv Log-Normal Cox, Gamma FALSE #> 11781 737 0.6501185 0.124084760 fv Log-Normal Cox, Gamma FALSE #> 11797 738 0.5133997 0.101780781 fv Log-Normal Cox, Gamma FALSE #> 11813 739 0.5361525 0.104999322 fv Log-Normal Cox, Gamma FALSE #> 11829 740 0.7272712 0.138201013 fv Log-Normal Cox, Gamma FALSE #> 11845 741 0.7920042 0.148046562 fv Log-Normal Cox, Gamma FALSE #> 11861 742 0.5971878 0.115515589 fv Log-Normal Cox, Gamma FALSE #> 11877 743 0.6372487 0.122156878 fv Log-Normal Cox, Gamma FALSE #> 11893 744 0.6076604 0.117080863 fv Log-Normal Cox, Gamma FALSE #> 11909 745 0.6258474 0.120185601 fv Log-Normal Cox, Gamma FALSE #> 11925 746 0.6137741 0.122398199 fv Log-Normal Cox, Gamma FALSE #> 11941 747 0.5661390 0.109952145 fv Log-Normal Cox, Gamma FALSE #> 11957 748 0.8181814 0.154842528 fv Log-Normal Cox, Gamma FALSE #> 11973 749 0.8883396 0.166043136 fv Log-Normal Cox, Gamma FALSE #> 11989 750 0.6714251 0.128300301 fv Log-Normal Cox, Gamma FALSE #> 12005 751 0.7715463 0.145206839 fv Log-Normal Cox, Gamma FALSE #> 12021 752 0.6441060 0.126152659 fv Log-Normal Cox, Gamma FALSE #> 12037 753 0.4018435 0.081668489 fv Log-Normal Cox, Gamma FALSE #> 12053 754 0.6463386 0.123715910 fv Log-Normal Cox, Gamma FALSE #> 12069 755 0.5965575 0.115533717 fv Log-Normal Cox, Gamma FALSE #> 12085 756 0.3440358 0.070858933 fv Log-Normal Cox, Gamma FALSE #> 12101 757 0.6413942 0.123412706 fv Log-Normal Cox, Gamma FALSE #> 12117 758 0.6787276 0.129764259 fv Log-Normal Cox, Gamma FALSE #> 12133 759 0.5787070 0.112332541 fv Log-Normal Cox, Gamma FALSE #> 12149 760 0.8563906 0.161448535 fv Log-Normal Cox, Gamma FALSE #> 12165 761 0.5460240 0.107074937 fv Log-Normal Cox, Gamma FALSE #> 12181 762 0.7127921 0.136154341 fv Log-Normal Cox, Gamma FALSE #> 12197 763 0.5129074 0.101292545 fv Log-Normal Cox, Gamma FALSE #> 12213 764 0.5763837 0.111781244 fv Log-Normal Cox, Gamma FALSE #> 12229 765 0.7664589 0.143748738 fv Log-Normal Cox, Gamma FALSE #> 12245 766 0.5600605 0.108454352 fv Log-Normal Cox, Gamma FALSE #> 12261 767 0.7366908 0.139359440 fv Log-Normal Cox, Gamma FALSE #> 12277 768 0.4817040 0.094934157 fv Log-Normal Cox, Gamma FALSE #> 12293 769 0.8405919 0.157104432 fv Log-Normal Cox, Gamma FALSE #> 12309 770 0.5195843 0.102208060 fv Log-Normal Cox, Gamma FALSE #> 12325 771 0.5317918 0.106680566 fv Log-Normal Cox, Gamma FALSE #> 12341 772 0.5016173 0.098605760 fv Log-Normal Cox, Gamma FALSE #> 12357 773 0.5638723 0.111342842 fv Log-Normal Cox, Gamma FALSE #> 12373 774 0.6730202 0.129443064 fv Log-Normal Cox, Gamma FALSE #> 12389 775 0.6121184 NA fv Log-Normal Cox, Gamma NA #> 12405 776 0.5603536 0.108454516 fv Log-Normal Cox, Gamma FALSE #> 12421 777 0.5635692 0.109901110 fv Log-Normal Cox, Gamma FALSE #> 12437 778 0.5287791 0.103608108 fv Log-Normal Cox, Gamma FALSE #> 12453 779 0.5459400 0.106667094 fv Log-Normal Cox, Gamma FALSE #> 12469 780 0.5454313 0.106487875 fv Log-Normal Cox, Gamma FALSE #> 12485 781 0.6435394 0.123723033 fv Log-Normal Cox, Gamma FALSE #> 12501 782 0.5440785 0.106183644 fv Log-Normal Cox, Gamma FALSE #> 12517 783 0.5646684 0.110072451 fv Log-Normal Cox, Gamma FALSE #> 12533 784 0.7140410 0.135997697 fv Log-Normal Cox, Gamma FALSE #> 12549 785 0.4320567 0.086209585 fv Log-Normal Cox, Gamma FALSE #> 12565 786 0.5871582 0.114417704 fv Log-Normal Cox, Gamma FALSE #> 12581 787 0.8307302 0.154887306 fv Log-Normal Cox, Gamma FALSE #> 12597 788 0.6235801 NA fv Log-Normal Cox, Gamma NA #> 12613 789 0.7648412 0.144381392 fv Log-Normal Cox, Gamma FALSE #> 12629 790 0.6109958 0.117593356 fv Log-Normal Cox, Gamma FALSE #> 12645 791 0.3740806 0.075608302 fv Log-Normal Cox, Gamma FALSE #> 12661 792 0.5561341 0.110068462 fv Log-Normal Cox, Gamma FALSE #> 12677 793 0.7406961 0.139600573 fv Log-Normal Cox, Gamma FALSE #> 12693 794 0.6753768 0.133145979 fv Log-Normal Cox, Gamma FALSE #> 12709 795 0.5773739 0.112448186 fv Log-Normal Cox, Gamma FALSE #> 12725 796 0.5102600 0.100449198 fv Log-Normal Cox, Gamma FALSE #> 12741 797 0.5152045 0.100934224 fv Log-Normal Cox, Gamma FALSE #> 12757 798 0.4019849 0.081496314 fv Log-Normal Cox, Gamma FALSE #> 12773 799 0.6295888 0.120381526 fv Log-Normal Cox, Gamma FALSE #> 12789 800 0.6506860 0.125151707 fv Log-Normal Cox, Gamma FALSE #> 12805 801 0.9235044 0.172121125 fv Log-Normal Cox, Gamma FALSE #> 12821 802 0.6243786 0.119285799 fv Log-Normal Cox, Gamma FALSE #> 12837 803 0.6127131 0.118494093 fv Log-Normal Cox, Gamma FALSE #> 12853 804 0.6683181 0.127845508 fv Log-Normal Cox, Gamma FALSE #> 12869 805 0.8655709 0.164958554 fv Log-Normal Cox, Gamma FALSE #> 12885 806 0.8307338 0.158511657 fv Log-Normal Cox, Gamma FALSE #> 12901 807 0.6847624 0.007098338 fv Log-Normal Cox, Gamma TRUE #> 12917 808 0.4608903 0.091363357 fv Log-Normal Cox, Gamma FALSE #> 12933 809 0.5746463 0.111581806 fv Log-Normal Cox, Gamma FALSE #> 12949 810 0.6261066 0.120222463 fv Log-Normal Cox, Gamma FALSE #> 12965 811 0.4101906 0.082327643 fv Log-Normal Cox, Gamma FALSE #> 12981 812 0.6375601 0.122977631 fv Log-Normal Cox, Gamma FALSE #> 12997 813 0.7067174 0.133583771 fv Log-Normal Cox, Gamma FALSE #> 13013 814 0.6125992 0.118493837 fv Log-Normal Cox, Gamma FALSE #> 13029 815 0.5418829 0.107600002 fv Log-Normal Cox, Gamma FALSE #> 13045 816 0.5858533 NA fv Log-Normal Cox, Gamma NA #> 13061 817 0.4076984 0.081983169 fv Log-Normal Cox, Gamma FALSE #> 13077 818 0.6378915 0.124745913 fv Log-Normal Cox, Gamma FALSE #> 13093 819 0.7019073 0.132946154 fv Log-Normal Cox, Gamma FALSE #> 13109 820 0.8104918 0.153613082 fv Log-Normal Cox, Gamma FALSE #> 13125 821 0.4928717 0.096887270 fv Log-Normal Cox, Gamma FALSE #> 13141 822 0.8106514 0.152692972 fv Log-Normal Cox, Gamma FALSE #> 13157 823 0.9414082 0.176020573 fv Log-Normal Cox, Gamma FALSE #> 13173 824 0.7807771 0.147247985 fv Log-Normal Cox, Gamma FALSE #> 13189 825 0.7034024 0.134541272 fv Log-Normal Cox, Gamma FALSE #> 13205 826 0.7094238 0.135741788 fv Log-Normal Cox, Gamma FALSE #> 13221 827 0.8135921 0.154539346 fv Log-Normal Cox, Gamma FALSE #> 13237 828 0.5962366 0.116746571 fv Log-Normal Cox, Gamma FALSE #> 13253 829 0.6516192 0.125243568 fv Log-Normal Cox, Gamma FALSE #> 13269 830 0.7515323 0.142232279 fv Log-Normal Cox, Gamma FALSE #> 13285 831 0.6930557 0.131294024 fv Log-Normal Cox, Gamma FALSE #> 13301 832 0.4914554 0.097267429 fv Log-Normal Cox, Gamma FALSE #> 13317 833 0.7539417 0.142658069 fv Log-Normal Cox, Gamma FALSE #> 13333 834 0.5800657 0.113033660 fv Log-Normal Cox, Gamma FALSE #> 13349 835 0.6207208 0.120104030 fv Log-Normal Cox, Gamma FALSE #> 13365 836 0.6793893 0.129865727 fv Log-Normal Cox, Gamma FALSE #> 13381 837 0.7548904 0.143482390 fv Log-Normal Cox, Gamma FALSE #> 13397 838 0.6016750 0.116332111 fv Log-Normal Cox, Gamma FALSE #> 13413 839 0.5676191 0.111629149 fv Log-Normal Cox, Gamma FALSE #> 13429 840 0.5784233 0.006032357 fv Log-Normal Cox, Gamma TRUE #> 13445 841 0.9024294 0.169028872 fv Log-Normal Cox, Gamma FALSE #> 13461 842 0.4944220 0.097387303 fv Log-Normal Cox, Gamma FALSE #> 13477 843 0.6174343 NA fv Log-Normal Cox, Gamma NA #> 13493 844 0.7765827 0.145469783 fv Log-Normal Cox, Gamma FALSE #> 13509 845 0.8061865 0.151157541 fv Log-Normal Cox, Gamma FALSE #> 13525 846 0.4946398 0.097713008 fv Log-Normal Cox, Gamma FALSE #> 13541 847 0.8872828 0.164244428 fv Log-Normal Cox, Gamma FALSE #> 13557 848 0.6722396 0.128137186 fv Log-Normal Cox, Gamma FALSE #> 13573 849 0.5499169 0.107476581 fv Log-Normal Cox, Gamma FALSE #> 13589 850 0.7639498 0.144795253 fv Log-Normal Cox, Gamma FALSE #> 13605 851 0.5845154 0.112833034 fv Log-Normal Cox, Gamma FALSE #> 13621 852 0.6056401 0.116696724 fv Log-Normal Cox, Gamma FALSE #> 13637 853 0.8570990 0.158665026 fv Log-Normal Cox, Gamma FALSE #> 13653 854 0.6183688 NA fv Log-Normal Cox, Gamma NA #> 13669 855 0.5442098 0.106470731 fv Log-Normal Cox, Gamma FALSE #> 13685 856 0.7602114 0.143711564 fv Log-Normal Cox, Gamma FALSE #> 13701 857 0.7054449 0.134533671 fv Log-Normal Cox, Gamma FALSE #> 13717 858 0.8738845 0.162323725 fv Log-Normal Cox, Gamma FALSE #> 13733 859 0.8433205 0.158129658 fv Log-Normal Cox, Gamma FALSE #> 13749 860 0.6194807 0.120192334 fv Log-Normal Cox, Gamma FALSE #> 13765 861 0.4240218 0.085035129 fv Log-Normal Cox, Gamma FALSE #> 13781 862 0.5727095 0.111056530 fv Log-Normal Cox, Gamma FALSE #> 13797 863 0.5931713 0.114924197 fv Log-Normal Cox, Gamma FALSE #> 13813 864 0.7886915 0.148632446 fv Log-Normal Cox, Gamma FALSE #> 13829 865 0.8417216 0.157705339 fv Log-Normal Cox, Gamma FALSE #> 13845 866 0.7324513 0.140415114 fv Log-Normal Cox, Gamma FALSE #> 13861 867 0.5336145 0.105020826 fv Log-Normal Cox, Gamma FALSE #> 13877 868 0.8326129 0.157190658 fv Log-Normal Cox, Gamma FALSE #> 13893 869 0.4553176 0.090454476 fv Log-Normal Cox, Gamma FALSE #> 13909 870 0.7275115 0.139000119 fv Log-Normal Cox, Gamma FALSE #> 13925 871 0.4562028 0.090945564 fv Log-Normal Cox, Gamma FALSE #> 13941 872 0.4282411 0.086039728 fv Log-Normal Cox, Gamma FALSE #> 13957 873 0.7410010 0.139529175 fv Log-Normal Cox, Gamma FALSE #> 13973 874 0.6406572 0.123512358 fv Log-Normal Cox, Gamma FALSE #> 13989 875 0.5379126 0.104728825 fv Log-Normal Cox, Gamma FALSE #> 14005 876 0.5522451 0.108150503 fv Log-Normal Cox, Gamma FALSE #> 14021 877 0.5176314 0.102540214 fv Log-Normal Cox, Gamma FALSE #> 14037 878 0.6117499 0.118653415 fv Log-Normal Cox, Gamma FALSE #> 14053 879 0.6092139 0.117915292 fv Log-Normal Cox, Gamma FALSE #> 14069 880 0.7281917 0.137629429 fv Log-Normal Cox, Gamma FALSE #> 14085 881 0.4806627 0.094979574 fv Log-Normal Cox, Gamma FALSE #> 14101 882 0.6538869 0.126627474 fv Log-Normal Cox, Gamma FALSE #> 14117 883 0.5610964 0.109264809 fv Log-Normal Cox, Gamma FALSE #> 14133 884 0.4925104 0.097240268 fv Log-Normal Cox, Gamma FALSE #> 14149 885 0.6589978 0.126130195 fv Log-Normal Cox, Gamma FALSE #> 14165 886 0.5726060 0.111766627 fv Log-Normal Cox, Gamma FALSE #> 14181 887 0.3455108 0.071029692 fv Log-Normal Cox, Gamma FALSE #> 14197 888 0.5385587 0.104973741 fv Log-Normal Cox, Gamma FALSE #> 14213 889 0.6028528 0.116696393 fv Log-Normal Cox, Gamma FALSE #> 14229 890 0.6115686 0.117674263 fv Log-Normal Cox, Gamma FALSE #> 14245 891 0.6530045 0.124860018 fv Log-Normal Cox, Gamma FALSE #> 14261 892 0.9512529 0.177813247 fv Log-Normal Cox, Gamma FALSE #> 14277 893 0.4324512 0.086825693 fv Log-Normal Cox, Gamma FALSE #> 14293 894 0.5597415 0.110075287 fv Log-Normal Cox, Gamma FALSE #> 14309 895 0.7000887 0.134095874 fv Log-Normal Cox, Gamma FALSE #> 14325 896 0.4728721 0.093547165 fv Log-Normal Cox, Gamma FALSE #> 14341 897 0.5701801 0.110691422 fv Log-Normal Cox, Gamma FALSE #> 14357 898 0.6771217 0.129572295 fv Log-Normal Cox, Gamma FALSE #> 14373 899 0.7731560 0.148972225 fv Log-Normal Cox, Gamma FALSE #> 14389 900 0.6242420 0.120427482 fv Log-Normal Cox, Gamma FALSE #> 14405 901 0.6907226 0.131189457 fv Log-Normal Cox, Gamma FALSE #> 14421 902 0.7152259 0.135339899 fv Log-Normal Cox, Gamma FALSE #> 14437 903 0.5105152 0.100732976 fv Log-Normal Cox, Gamma FALSE #> 14453 904 0.5856935 0.113481600 fv Log-Normal Cox, Gamma FALSE #> 14469 905 0.5997602 NA fv Log-Normal Cox, Gamma NA #> 14485 906 0.6365419 0.122578578 fv Log-Normal Cox, Gamma FALSE #> 14501 907 0.5898802 0.115521684 fv Log-Normal Cox, Gamma FALSE #> 14517 908 0.4531988 0.090312108 fv Log-Normal Cox, Gamma FALSE #> 14533 909 0.7511674 0.141395630 fv Log-Normal Cox, Gamma FALSE #> 14549 910 0.5647211 0.109999123 fv Log-Normal Cox, Gamma FALSE #> 14565 911 0.6067530 0.117194452 fv Log-Normal Cox, Gamma FALSE #> 14581 912 0.3617871 0.073947377 fv Log-Normal Cox, Gamma FALSE #> 14597 913 0.5505871 0.107420031 fv Log-Normal Cox, Gamma FALSE #> 14613 914 0.7699292 0.145248215 fv Log-Normal Cox, Gamma FALSE #> 14629 915 0.5864275 0.113192932 fv Log-Normal Cox, Gamma FALSE #> 14645 916 0.6235821 NA fv Log-Normal Cox, Gamma NA #> 14661 917 0.4809311 0.095930729 fv Log-Normal Cox, Gamma FALSE #> 14677 918 0.5527238 0.108983870 fv Log-Normal Cox, Gamma FALSE #> 14693 919 0.6191935 0.119875457 fv Log-Normal Cox, Gamma FALSE #> 14709 920 0.5966615 NA fv Log-Normal Cox, Gamma NA #> 14725 921 0.9739077 0.178572509 fv Log-Normal Cox, Gamma FALSE #> 14741 922 0.5740252 0.111843075 fv Log-Normal Cox, Gamma FALSE #> 14757 923 0.8611072 0.160092580 fv Log-Normal Cox, Gamma FALSE #> 14773 924 0.6116145 0.118190811 fv Log-Normal Cox, Gamma FALSE #> 14789 925 0.6970632 0.133922744 fv Log-Normal Cox, Gamma FALSE #> 14805 926 0.7548431 0.141797187 fv Log-Normal Cox, Gamma FALSE #> 14821 927 0.7246747 0.137313580 fv Log-Normal Cox, Gamma FALSE #> 14837 928 0.6419417 NA fv Log-Normal Cox, Gamma NA #> 14853 929 0.6743449 0.128440051 fv Log-Normal Cox, Gamma FALSE #> 14869 930 0.5122725 0.101372331 fv Log-Normal Cox, Gamma FALSE #> 14885 931 0.7130454 0.135971450 fv Log-Normal Cox, Gamma FALSE #> 14901 932 0.5066433 0.100500273 fv Log-Normal Cox, Gamma FALSE #> 14917 933 0.4945458 0.097082695 fv Log-Normal Cox, Gamma FALSE #> 14933 934 0.6492706 NA fv Log-Normal Cox, Gamma NA #> 14949 935 0.7595802 0.142781942 fv Log-Normal Cox, Gamma FALSE #> 14965 936 0.6649180 0.127703570 fv Log-Normal Cox, Gamma FALSE #> 14981 937 0.6533127 0.124319736 fv Log-Normal Cox, Gamma FALSE #> 14997 938 0.6926645 0.131356315 fv Log-Normal Cox, Gamma FALSE #> 15013 939 0.5077710 0.099590277 fv Log-Normal Cox, Gamma FALSE #> 15029 940 0.6933669 0.133191128 fv Log-Normal Cox, Gamma FALSE #> 15045 941 0.4268047 0.085815756 fv Log-Normal Cox, Gamma FALSE #> 15061 942 0.7084437 0.133839212 fv Log-Normal Cox, Gamma FALSE #> 15077 943 0.4584328 0.090854771 fv Log-Normal Cox, Gamma FALSE #> 15093 944 0.5666850 0.110036299 fv Log-Normal Cox, Gamma FALSE #> 15109 945 0.9440737 0.175421907 fv Log-Normal Cox, Gamma FALSE #> 15125 946 0.7158152 0.136016918 fv Log-Normal Cox, Gamma FALSE #> 15141 947 0.7167894 0.135529442 fv Log-Normal Cox, Gamma FALSE #> 15157 948 0.4493495 0.091216146 fv Log-Normal Cox, Gamma FALSE #> 15173 949 0.5803668 0.112156181 fv Log-Normal Cox, Gamma FALSE #> 15189 950 0.6935612 0.132417693 fv Log-Normal Cox, Gamma FALSE #> 15205 951 0.4651010 0.092037357 fv Log-Normal Cox, Gamma FALSE #> 15221 952 0.5304067 0.103569265 fv Log-Normal Cox, Gamma FALSE #> 15237 953 0.5574506 NA fv Log-Normal Cox, Gamma NA #> 15253 954 0.7829632 0.149765497 fv Log-Normal Cox, Gamma FALSE #> 15269 955 0.6315200 0.121635710 fv Log-Normal Cox, Gamma FALSE #> 15285 956 0.7256935 0.136559638 fv Log-Normal Cox, Gamma FALSE #> 15301 957 0.5255019 0.102668152 fv Log-Normal Cox, Gamma FALSE #> 15317 958 0.5515319 0.108203497 fv Log-Normal Cox, Gamma FALSE #> 15333 959 0.6365335 0.006618674 fv Log-Normal Cox, Gamma TRUE #> 15349 960 0.4975672 0.097788653 fv Log-Normal Cox, Gamma FALSE #> 15365 961 0.7256961 0.136960775 fv Log-Normal Cox, Gamma FALSE #> 15381 962 0.6723918 0.128074823 fv Log-Normal Cox, Gamma FALSE #> 15397 963 0.8582505 0.161076038 fv Log-Normal Cox, Gamma FALSE #> 15413 964 0.6765533 0.131222054 fv Log-Normal Cox, Gamma FALSE #> 15429 965 0.4969462 0.098034066 fv Log-Normal Cox, Gamma FALSE #> 15445 966 0.8281505 0.153884185 fv Log-Normal Cox, Gamma FALSE #> 15461 967 0.8024846 0.151662537 fv Log-Normal Cox, Gamma FALSE #> 15477 968 0.7562529 0.144638541 fv Log-Normal Cox, Gamma FALSE #> 15493 969 0.9270354 0.171035756 fv Log-Normal Cox, Gamma FALSE #> 15509 970 0.7075527 0.135390065 fv Log-Normal Cox, Gamma FALSE #> 15525 971 0.7638483 0.143021387 fv Log-Normal Cox, Gamma FALSE #> 15541 972 0.5393256 0.105657239 fv Log-Normal Cox, Gamma FALSE #> 15557 973 0.7927163 0.148657584 fv Log-Normal Cox, Gamma FALSE #> 15573 974 0.8194812 0.153583984 fv Log-Normal Cox, Gamma FALSE #> 15589 975 0.8901438 0.164621225 fv Log-Normal Cox, Gamma FALSE #> 15605 976 0.7033173 0.135752844 fv Log-Normal Cox, Gamma FALSE #> 15621 977 0.9184243 0.169985183 fv Log-Normal Cox, Gamma FALSE #> 15637 978 0.7000262 0.133687476 fv Log-Normal Cox, Gamma FALSE #> 15653 979 0.5554882 0.108354847 fv Log-Normal Cox, Gamma FALSE #> 15669 980 0.6736097 0.129146495 fv Log-Normal Cox, Gamma FALSE #> 15685 981 0.5661670 0.109523726 fv Log-Normal Cox, Gamma FALSE #> 15701 982 0.5354088 0.104414629 fv Log-Normal Cox, Gamma FALSE #> 15717 983 0.6487939 0.124135434 fv Log-Normal Cox, Gamma FALSE #> 15733 984 0.6188661 0.120173122 fv Log-Normal Cox, Gamma FALSE #> 15749 985 0.7714019 0.145426296 fv Log-Normal Cox, Gamma FALSE #> 15765 986 0.6954945 0.133563065 fv Log-Normal Cox, Gamma FALSE #> 15781 987 0.6624646 0.129133922 fv Log-Normal Cox, Gamma FALSE #> 15797 988 0.7075265 0.133801077 fv Log-Normal Cox, Gamma FALSE #> 15813 989 0.7489396 0.140608370 fv Log-Normal Cox, Gamma FALSE #> 15829 990 0.6790675 0.130260397 fv Log-Normal Cox, Gamma FALSE #> 15845 991 0.7490903 0.141714729 fv Log-Normal Cox, Gamma FALSE #> 15861 992 0.6467935 0.124231773 fv Log-Normal Cox, Gamma FALSE #> 15877 993 0.6374168 0.121764982 fv Log-Normal Cox, Gamma FALSE #> 15893 994 0.6287016 0.122781015 fv Log-Normal Cox, Gamma FALSE #> 15909 995 0.5297770 0.103847152 fv Log-Normal Cox, Gamma FALSE #> 15925 996 0.6734033 0.130429589 fv Log-Normal Cox, Gamma FALSE #> 15941 997 0.5717180 0.110420307 fv Log-Normal Cox, Gamma FALSE #> 15957 998 0.5513744 0.107819150 fv Log-Normal Cox, Gamma FALSE #> 15973 999 0.6754048 0.129106649 fv Log-Normal Cox, Gamma FALSE #> 15989 1000 0.5817786 0.112687286 fv Log-Normal Cox, Gamma FALSE #> 6 1 0.7573628 0.123506225 fv Log-Normal Cox, Log-Normal FALSE #> 22 2 0.6405703 0.151148609 fv Log-Normal Cox, Log-Normal FALSE #> 38 3 0.8261367 0.185927234 fv Log-Normal Cox, Log-Normal FALSE #> 54 4 0.6143026 0.132920004 fv Log-Normal Cox, Log-Normal FALSE #> 70 5 1.0036278 0.198158194 fv Log-Normal Cox, Log-Normal FALSE #> 86 6 0.8832715 0.168543121 fv Log-Normal Cox, Log-Normal FALSE #> 102 7 0.5928196 0.100287978 fv Log-Normal Cox, Log-Normal FALSE #> 118 8 0.8252806 0.180131613 fv Log-Normal Cox, Log-Normal FALSE #> 134 9 0.7244461 0.143635393 fv Log-Normal Cox, Log-Normal FALSE #> 150 10 1.0102669 0.202207973 fv Log-Normal Cox, Log-Normal FALSE #> 166 11 0.9143155 0.184227624 fv Log-Normal Cox, Log-Normal FALSE #> 182 12 0.5534246 0.104169695 fv Log-Normal Cox, Log-Normal FALSE #> 198 13 0.8283860 0.166449749 fv Log-Normal Cox, Log-Normal FALSE #> 214 14 0.8115641 0.147107977 fv Log-Normal Cox, Log-Normal FALSE #> 230 15 0.7390334 0.149549271 fv Log-Normal Cox, Log-Normal FALSE #> 246 16 0.5808222 0.137956200 fv Log-Normal Cox, Log-Normal FALSE #> 262 17 0.6452196 0.146194236 fv Log-Normal Cox, Log-Normal FALSE #> 278 18 0.8714554 0.169853265 fv Log-Normal Cox, Log-Normal FALSE #> 294 19 0.9410003 0.159312483 fv Log-Normal Cox, Log-Normal FALSE #> 310 20 0.6101011 0.120280145 fv Log-Normal Cox, Log-Normal FALSE #> 326 21 0.7051458 0.143022121 fv Log-Normal Cox, Log-Normal FALSE #> 342 22 0.5999060 0.090970833 fv Log-Normal Cox, Log-Normal FALSE #> 358 23 0.8708236 0.203636912 fv Log-Normal Cox, Log-Normal FALSE #> 374 24 0.8089626 0.168542382 fv Log-Normal Cox, Log-Normal FALSE #> 390 25 0.6228305 0.119304963 fv Log-Normal Cox, Log-Normal FALSE #> 406 26 0.7537106 0.142965921 fv Log-Normal Cox, Log-Normal FALSE #> 422 27 0.5366948 0.165486396 fv Log-Normal Cox, Log-Normal FALSE #> 438 28 0.7237506 0.149495788 fv Log-Normal Cox, Log-Normal FALSE #> 454 29 1.0748691 0.171233165 fv Log-Normal Cox, Log-Normal FALSE #> 470 30 0.7213200 0.196299621 fv Log-Normal Cox, Log-Normal FALSE #> 486 31 0.5593267 0.126828054 fv Log-Normal Cox, Log-Normal FALSE #> 502 32 0.5324768 0.090967716 fv Log-Normal Cox, Log-Normal FALSE #> 518 33 0.7693620 0.147380984 fv Log-Normal Cox, Log-Normal FALSE #> 534 34 0.9152415 0.206375212 fv Log-Normal Cox, Log-Normal FALSE #> 550 35 0.5246976 0.132009450 fv Log-Normal Cox, Log-Normal FALSE #> 566 36 0.5188294 0.102537117 fv Log-Normal Cox, Log-Normal FALSE #> 582 37 0.7011186 0.157272513 fv Log-Normal Cox, Log-Normal FALSE #> 598 38 0.6353909 0.145388120 fv Log-Normal Cox, Log-Normal FALSE #> 614 39 0.8001182 0.162578217 fv Log-Normal Cox, Log-Normal FALSE #> 630 40 0.5711178 0.160784364 fv Log-Normal Cox, Log-Normal FALSE #> 646 41 0.8319567 0.168130783 fv Log-Normal Cox, Log-Normal FALSE #> 662 42 0.5614636 0.119677372 fv Log-Normal Cox, Log-Normal FALSE #> 678 43 0.5634340 0.106012887 fv Log-Normal Cox, Log-Normal FALSE #> 694 44 0.7924587 0.144458133 fv Log-Normal Cox, Log-Normal FALSE #> 710 45 0.6313241 0.120340182 fv Log-Normal Cox, Log-Normal FALSE #> 726 46 0.3400322 0.055945672 fv Log-Normal Cox, Log-Normal FALSE #> 742 47 0.9526428 0.199570335 fv Log-Normal Cox, Log-Normal FALSE #> 758 48 0.8841695 0.209442515 fv Log-Normal Cox, Log-Normal FALSE #> 774 49 0.9679034 0.166504814 fv Log-Normal Cox, Log-Normal FALSE #> 790 50 0.6036607 0.119569376 fv Log-Normal Cox, Log-Normal FALSE #> 806 51 0.8862827 0.155150877 fv Log-Normal Cox, Log-Normal FALSE #> 822 52 0.5297618 0.099447197 fv Log-Normal Cox, Log-Normal FALSE #> 838 53 0.9292767 0.157610779 fv Log-Normal Cox, Log-Normal FALSE #> 854 54 0.7239010 0.141347724 fv Log-Normal Cox, Log-Normal FALSE #> 870 55 0.9331984 0.171379276 fv Log-Normal Cox, Log-Normal FALSE #> 886 56 0.7706847 0.175186290 fv Log-Normal Cox, Log-Normal FALSE #> 902 57 0.9189265 0.207804687 fv Log-Normal Cox, Log-Normal FALSE #> 918 58 0.7658154 0.166165565 fv Log-Normal Cox, Log-Normal FALSE #> 934 59 0.7182062 0.124324102 fv Log-Normal Cox, Log-Normal FALSE #> 950 60 1.0041047 0.255917467 fv Log-Normal Cox, Log-Normal TRUE #> 966 61 0.7553592 0.164985154 fv Log-Normal Cox, Log-Normal FALSE #> 982 62 0.6225567 0.137396308 fv Log-Normal Cox, Log-Normal FALSE #> 998 63 0.8218612 0.151697592 fv Log-Normal Cox, Log-Normal FALSE #> 1014 64 0.7358860 0.131559640 fv Log-Normal Cox, Log-Normal FALSE #> 1030 65 0.9223297 0.240231970 fv Log-Normal Cox, Log-Normal TRUE #> 1046 66 0.6545818 0.131376390 fv Log-Normal Cox, Log-Normal FALSE #> 1062 67 0.6277202 0.131711521 fv Log-Normal Cox, Log-Normal FALSE #> 1078 68 0.5256708 0.115778396 fv Log-Normal Cox, Log-Normal FALSE #> 1094 69 0.8150341 0.153682813 fv Log-Normal Cox, Log-Normal FALSE #> 1110 70 0.7740717 0.131663013 fv Log-Normal Cox, Log-Normal FALSE #> 1126 71 1.0082462 0.227978478 fv Log-Normal Cox, Log-Normal FALSE #> 1142 72 0.6084139 0.122907751 fv Log-Normal Cox, Log-Normal FALSE #> 1158 73 0.7363271 0.136694735 fv Log-Normal Cox, Log-Normal FALSE #> 1174 74 0.4269599 0.099018016 fv Log-Normal Cox, Log-Normal FALSE #> 1190 75 0.7249021 0.145933489 fv Log-Normal Cox, Log-Normal FALSE #> 1206 76 0.6560751 0.124898132 fv Log-Normal Cox, Log-Normal FALSE #> 1222 77 0.8511698 0.197171406 fv Log-Normal Cox, Log-Normal FALSE #> 1238 78 0.7871053 0.166915910 fv Log-Normal Cox, Log-Normal FALSE #> 1254 79 1.0822921 0.209965236 fv Log-Normal Cox, Log-Normal FALSE #> 1270 80 0.5922208 0.101102935 fv Log-Normal Cox, Log-Normal FALSE #> 1286 81 1.0111710 0.155662408 fv Log-Normal Cox, Log-Normal FALSE #> 1302 82 0.6914727 0.112813615 fv Log-Normal Cox, Log-Normal FALSE #> 1318 83 0.8092839 0.153960210 fv Log-Normal Cox, Log-Normal FALSE #> 1334 84 0.6559520 0.132512452 fv Log-Normal Cox, Log-Normal FALSE #> 1350 85 0.6577962 0.171457580 fv Log-Normal Cox, Log-Normal FALSE #> 1366 86 0.5651294 0.146528647 fv Log-Normal Cox, Log-Normal FALSE #> 1382 87 0.7661226 0.160460673 fv Log-Normal Cox, Log-Normal FALSE #> 1398 88 0.7721346 0.178271337 fv Log-Normal Cox, Log-Normal FALSE #> 1414 89 1.0368109 0.213632342 fv Log-Normal Cox, Log-Normal FALSE #> 1430 90 0.8168601 0.156924329 fv Log-Normal Cox, Log-Normal FALSE #> 1446 91 0.9053362 0.158323513 fv Log-Normal Cox, Log-Normal FALSE #> 1462 92 0.8835783 0.208147013 fv Log-Normal Cox, Log-Normal FALSE #> 1478 93 0.6132071 0.113008294 fv Log-Normal Cox, Log-Normal FALSE #> 1494 94 0.8483006 0.176707967 fv Log-Normal Cox, Log-Normal FALSE #> 1510 95 0.6763772 0.139840226 fv Log-Normal Cox, Log-Normal FALSE #> 1526 96 0.5777829 0.104392446 fv Log-Normal Cox, Log-Normal FALSE #> 1542 97 0.8161674 0.168581778 fv Log-Normal Cox, Log-Normal FALSE #> 1558 98 0.4622867 0.077274220 fv Log-Normal Cox, Log-Normal FALSE #> 1574 99 0.9279581 0.217300732 fv Log-Normal Cox, Log-Normal FALSE #> 1590 100 0.6855048 0.169304914 fv Log-Normal Cox, Log-Normal FALSE #> 1606 101 0.6455828 0.111943749 fv Log-Normal Cox, Log-Normal FALSE #> 1622 102 0.4964866 0.090284117 fv Log-Normal Cox, Log-Normal FALSE #> 1638 103 0.7884297 0.140191610 fv Log-Normal Cox, Log-Normal FALSE #> 1654 104 0.7372374 0.160504976 fv Log-Normal Cox, Log-Normal FALSE #> 1670 105 0.4689447 0.130167559 fv Log-Normal Cox, Log-Normal FALSE #> 1686 106 0.6774750 0.142381935 fv Log-Normal Cox, Log-Normal FALSE #> 1702 107 0.8642295 0.176000808 fv Log-Normal Cox, Log-Normal FALSE #> 1718 108 0.7159932 0.164105206 fv Log-Normal Cox, Log-Normal FALSE #> 1734 109 0.9263322 0.205073657 fv Log-Normal Cox, Log-Normal FALSE #> 1750 110 0.9255388 0.203254399 fv Log-Normal Cox, Log-Normal FALSE #> 1766 111 0.6391791 0.151025676 fv Log-Normal Cox, Log-Normal FALSE #> 1782 112 0.7006322 0.121622711 fv Log-Normal Cox, Log-Normal FALSE #> 1798 113 0.8573833 0.120517037 fv Log-Normal Cox, Log-Normal FALSE #> 1814 114 0.6713922 0.143109099 fv Log-Normal Cox, Log-Normal FALSE #> 1830 115 0.7800116 0.158241038 fv Log-Normal Cox, Log-Normal FALSE #> 1846 116 0.7935211 0.143635068 fv Log-Normal Cox, Log-Normal FALSE #> 1862 117 0.8402853 0.144118761 fv Log-Normal Cox, Log-Normal FALSE #> 1878 118 0.6211441 0.115222597 fv Log-Normal Cox, Log-Normal FALSE #> 1894 119 0.5731702 0.104678548 fv Log-Normal Cox, Log-Normal FALSE #> 1910 120 0.8207332 0.162722934 fv Log-Normal Cox, Log-Normal FALSE #> 1926 121 0.7191754 0.144618775 fv Log-Normal Cox, Log-Normal FALSE #> 1942 122 0.5527592 0.153698623 fv Log-Normal Cox, Log-Normal FALSE #> 1958 123 0.5289509 0.095546347 fv Log-Normal Cox, Log-Normal FALSE #> 1974 124 0.5600358 0.120518423 fv Log-Normal Cox, Log-Normal FALSE #> 1990 125 0.5451336 0.088492549 fv Log-Normal Cox, Log-Normal FALSE #> 2006 126 1.2150397 0.221438937 fv Log-Normal Cox, Log-Normal TRUE #> 2022 127 0.5215282 0.106426631 fv Log-Normal Cox, Log-Normal FALSE #> 2038 128 0.5208087 0.101330616 fv Log-Normal Cox, Log-Normal FALSE #> 2054 129 0.7158500 0.146716475 fv Log-Normal Cox, Log-Normal FALSE #> 2070 130 0.5736312 0.140201893 fv Log-Normal Cox, Log-Normal FALSE #> 2086 131 0.6678274 0.113502192 fv Log-Normal Cox, Log-Normal FALSE #> 2102 132 0.7954489 0.169093243 fv Log-Normal Cox, Log-Normal FALSE #> 2118 133 0.9256333 0.173618373 fv Log-Normal Cox, Log-Normal FALSE #> 2134 134 1.0816300 0.168628629 fv Log-Normal Cox, Log-Normal FALSE #> 2150 135 0.6646850 0.165230055 fv Log-Normal Cox, Log-Normal FALSE #> 2166 136 0.5493449 0.148696582 fv Log-Normal Cox, Log-Normal FALSE #> 2182 137 0.5273812 0.117786553 fv Log-Normal Cox, Log-Normal FALSE #> 2198 138 0.5253386 0.088599027 fv Log-Normal Cox, Log-Normal FALSE #> 2214 139 0.7508027 0.135122381 fv Log-Normal Cox, Log-Normal FALSE #> 2230 140 0.8098031 0.141963269 fv Log-Normal Cox, Log-Normal FALSE #> 2246 141 0.4369386 0.083891814 fv Log-Normal Cox, Log-Normal FALSE #> 2262 142 0.4940935 0.087599059 fv Log-Normal Cox, Log-Normal FALSE #> 2278 143 0.5792783 0.101315528 fv Log-Normal Cox, Log-Normal FALSE #> 2294 144 0.6762864 0.155722587 fv Log-Normal Cox, Log-Normal FALSE #> 2310 145 0.5822286 0.120935529 fv Log-Normal Cox, Log-Normal FALSE #> 2326 146 0.7312281 0.136443900 fv Log-Normal Cox, Log-Normal FALSE #> 2342 147 0.6361521 0.169644112 fv Log-Normal Cox, Log-Normal FALSE #> 2358 148 0.5484598 0.111863218 fv Log-Normal Cox, Log-Normal FALSE #> 2374 149 0.4096536 0.100250733 fv Log-Normal Cox, Log-Normal FALSE #> 2390 150 0.5619967 0.105650453 fv Log-Normal Cox, Log-Normal FALSE #> 2406 151 0.9789970 0.195216476 fv Log-Normal Cox, Log-Normal FALSE #> 2422 152 0.7259292 0.151900672 fv Log-Normal Cox, Log-Normal FALSE #> 2438 153 0.7965834 0.152245452 fv Log-Normal Cox, Log-Normal FALSE #> 2454 154 0.7530393 0.132140632 fv Log-Normal Cox, Log-Normal FALSE #> 2470 155 1.0025250 0.232384531 fv Log-Normal Cox, Log-Normal FALSE #> 2486 156 0.6533424 0.120684343 fv Log-Normal Cox, Log-Normal FALSE #> 2502 157 0.6428468 0.167081803 fv Log-Normal Cox, Log-Normal FALSE #> 2518 158 0.6380194 0.127185912 fv Log-Normal Cox, Log-Normal FALSE #> 2534 159 0.8212363 0.203723673 fv Log-Normal Cox, Log-Normal FALSE #> 2550 160 0.8091504 0.165469968 fv Log-Normal Cox, Log-Normal FALSE #> 2566 161 0.9019637 0.169031267 fv Log-Normal Cox, Log-Normal FALSE #> 2582 162 1.0323230 0.200155147 fv Log-Normal Cox, Log-Normal FALSE #> 2598 163 0.6359122 0.120933159 fv Log-Normal Cox, Log-Normal FALSE #> 2614 164 0.6830636 0.149902066 fv Log-Normal Cox, Log-Normal FALSE #> 2630 165 0.5514472 0.106974805 fv Log-Normal Cox, Log-Normal FALSE #> 2646 166 0.4478951 0.089446434 fv Log-Normal Cox, Log-Normal FALSE #> 2662 167 0.7607050 0.130475089 fv Log-Normal Cox, Log-Normal FALSE #> 2678 168 0.8939775 0.171724578 fv Log-Normal Cox, Log-Normal FALSE #> 2694 169 0.6535068 0.134031000 fv Log-Normal Cox, Log-Normal FALSE #> 2710 170 0.7646505 0.136587486 fv Log-Normal Cox, Log-Normal FALSE #> 2726 171 0.8427968 0.138307896 fv Log-Normal Cox, Log-Normal FALSE #> 2742 172 0.7751922 0.140039170 fv Log-Normal Cox, Log-Normal FALSE #> 2758 173 0.7330887 0.134029421 fv Log-Normal Cox, Log-Normal FALSE #> 2774 174 0.6091521 0.106460561 fv Log-Normal Cox, Log-Normal FALSE #> 2790 175 0.8038532 0.153669430 fv Log-Normal Cox, Log-Normal FALSE #> 2806 176 1.0095644 0.198360609 fv Log-Normal Cox, Log-Normal FALSE #> 2822 177 0.8252955 0.152377027 fv Log-Normal Cox, Log-Normal FALSE #> 2838 178 0.5408288 0.097128672 fv Log-Normal Cox, Log-Normal FALSE #> 2854 179 0.9621040 0.157483433 fv Log-Normal Cox, Log-Normal FALSE #> 2870 180 0.5787665 0.115056496 fv Log-Normal Cox, Log-Normal FALSE #> 2886 181 0.7536706 0.134534082 fv Log-Normal Cox, Log-Normal FALSE #> 2902 182 1.2239585 0.231054881 fv Log-Normal Cox, Log-Normal TRUE #> 2918 183 0.7538198 0.198686043 fv Log-Normal Cox, Log-Normal FALSE #> 2934 184 0.9676200 0.162661310 fv Log-Normal Cox, Log-Normal FALSE #> 2950 185 0.8095095 0.154239320 fv Log-Normal Cox, Log-Normal FALSE #> 2966 186 0.7963401 0.151409478 fv Log-Normal Cox, Log-Normal FALSE #> 2982 187 0.6878139 0.128133229 fv Log-Normal Cox, Log-Normal FALSE #> 2998 188 0.8316980 0.199665691 fv Log-Normal Cox, Log-Normal FALSE #> 3014 189 0.6992176 0.115061086 fv Log-Normal Cox, Log-Normal FALSE #> 3030 190 0.8038076 0.144511600 fv Log-Normal Cox, Log-Normal FALSE #> 3046 191 0.7962095 0.180472090 fv Log-Normal Cox, Log-Normal FALSE #> 3062 192 0.6544469 0.152934636 fv Log-Normal Cox, Log-Normal FALSE #> 3078 193 0.7893740 0.183862164 fv Log-Normal Cox, Log-Normal FALSE #> 3094 194 0.9888659 0.175645880 fv Log-Normal Cox, Log-Normal FALSE #> 3110 195 0.5870695 0.128305897 fv Log-Normal Cox, Log-Normal FALSE #> 3126 196 0.6371292 0.130232476 fv Log-Normal Cox, Log-Normal FALSE #> 3142 197 0.6610005 0.111740926 fv Log-Normal Cox, Log-Normal FALSE #> 3158 198 0.7978277 0.140662110 fv Log-Normal Cox, Log-Normal FALSE #> 3174 199 0.5343989 0.094741806 fv Log-Normal Cox, Log-Normal FALSE #> 3190 200 0.6102206 0.130221390 fv Log-Normal Cox, Log-Normal FALSE #> 3206 201 0.8895148 0.164670932 fv Log-Normal Cox, Log-Normal FALSE #> 3222 202 0.7229980 0.120155652 fv Log-Normal Cox, Log-Normal FALSE #> 3238 203 0.6368252 0.115279152 fv Log-Normal Cox, Log-Normal FALSE #> 3254 204 0.6809315 0.138454115 fv Log-Normal Cox, Log-Normal FALSE #> 3270 205 0.6617769 0.130662589 fv Log-Normal Cox, Log-Normal FALSE #> 3286 206 0.7916678 0.146803021 fv Log-Normal Cox, Log-Normal FALSE #> 3302 207 0.8047997 0.205254562 fv Log-Normal Cox, Log-Normal FALSE #> 3318 208 1.0690480 0.176315972 fv Log-Normal Cox, Log-Normal FALSE #> 3334 209 0.6734025 0.157675845 fv Log-Normal Cox, Log-Normal FALSE #> 3350 210 0.7235119 0.168335407 fv Log-Normal Cox, Log-Normal FALSE #> 3366 211 0.8209679 0.150541551 fv Log-Normal Cox, Log-Normal FALSE #> 3382 212 0.8093963 0.164234906 fv Log-Normal Cox, Log-Normal FALSE #> 3398 213 0.6197138 0.117369296 fv Log-Normal Cox, Log-Normal FALSE #> 3414 214 0.6649361 0.120661018 fv Log-Normal Cox, Log-Normal FALSE #> 3430 215 0.6650857 0.179625366 fv Log-Normal Cox, Log-Normal FALSE #> 3446 216 0.9689108 0.174717968 fv Log-Normal Cox, Log-Normal FALSE #> 3462 217 0.7612506 0.147631973 fv Log-Normal Cox, Log-Normal FALSE #> 3478 218 0.5926323 0.153430759 fv Log-Normal Cox, Log-Normal FALSE #> 3494 219 0.8441365 0.191720259 fv Log-Normal Cox, Log-Normal FALSE #> 3510 220 0.9102425 0.169208023 fv Log-Normal Cox, Log-Normal FALSE #> 3526 221 0.6440419 0.169991151 fv Log-Normal Cox, Log-Normal FALSE #> 3542 222 0.3699244 0.073773612 fv Log-Normal Cox, Log-Normal FALSE #> 3558 223 0.5477821 0.112031749 fv Log-Normal Cox, Log-Normal FALSE #> 3574 224 0.5942285 0.107253851 fv Log-Normal Cox, Log-Normal FALSE #> 3590 225 0.8208106 0.157270676 fv Log-Normal Cox, Log-Normal FALSE #> 3606 226 1.0721837 0.179757807 fv Log-Normal Cox, Log-Normal FALSE #> 3622 227 0.7651791 0.135412199 fv Log-Normal Cox, Log-Normal FALSE #> 3638 228 0.8680490 0.143223630 fv Log-Normal Cox, Log-Normal FALSE #> 3654 229 0.4073158 0.083161888 fv Log-Normal Cox, Log-Normal FALSE #> 3670 230 0.6139439 0.120049198 fv Log-Normal Cox, Log-Normal FALSE #> 3686 231 0.6567719 0.124099366 fv Log-Normal Cox, Log-Normal FALSE #> 3702 232 0.9446119 0.189529640 fv Log-Normal Cox, Log-Normal FALSE #> 3718 233 0.9526530 0.209694354 fv Log-Normal Cox, Log-Normal FALSE #> 3734 234 0.9358169 0.188575345 fv Log-Normal Cox, Log-Normal FALSE #> 3750 235 0.5533697 0.097841887 fv Log-Normal Cox, Log-Normal FALSE #> 3766 236 0.6345935 0.120180217 fv Log-Normal Cox, Log-Normal FALSE #> 3782 237 0.5440302 0.109896985 fv Log-Normal Cox, Log-Normal FALSE #> 3798 238 0.8898235 0.229632108 fv Log-Normal Cox, Log-Normal FALSE #> 3814 239 0.9262859 0.200846435 fv Log-Normal Cox, Log-Normal FALSE #> 3830 240 0.6338872 0.129524301 fv Log-Normal Cox, Log-Normal FALSE #> 3846 241 0.7667705 0.153378360 fv Log-Normal Cox, Log-Normal FALSE #> 3862 242 0.5466475 0.100527491 fv Log-Normal Cox, Log-Normal FALSE #> 3878 243 0.6728653 0.123466796 fv Log-Normal Cox, Log-Normal FALSE #> 3894 244 0.6107308 0.139143285 fv Log-Normal Cox, Log-Normal FALSE #> 3910 245 0.4997340 0.111627420 fv Log-Normal Cox, Log-Normal FALSE #> 3926 246 0.7877534 0.194794439 fv Log-Normal Cox, Log-Normal FALSE #> 3942 247 0.6585011 0.152234917 fv Log-Normal Cox, Log-Normal FALSE #> 3958 248 1.1751511 0.286449350 fv Log-Normal Cox, Log-Normal TRUE #> 3974 249 0.5939856 0.117058074 fv Log-Normal Cox, Log-Normal FALSE #> 3990 250 0.7479317 0.166505164 fv Log-Normal Cox, Log-Normal FALSE #> 4006 251 0.6258817 0.112068474 fv Log-Normal Cox, Log-Normal FALSE #> 4022 252 0.4768019 0.119359450 fv Log-Normal Cox, Log-Normal FALSE #> 4038 253 0.8642953 0.190101155 fv Log-Normal Cox, Log-Normal FALSE #> 4054 254 0.7457473 0.159020740 fv Log-Normal Cox, Log-Normal FALSE #> 4070 255 0.9277065 0.230633805 fv Log-Normal Cox, Log-Normal FALSE #> 4086 256 0.8557776 0.195869085 fv Log-Normal Cox, Log-Normal FALSE #> 4102 257 0.8342419 0.124293996 fv Log-Normal Cox, Log-Normal FALSE #> 4118 258 0.4166917 0.091790350 fv Log-Normal Cox, Log-Normal FALSE #> 4134 259 0.6658868 0.122476181 fv Log-Normal Cox, Log-Normal FALSE #> 4150 260 0.6874868 0.138634719 fv Log-Normal Cox, Log-Normal FALSE #> 4166 261 0.8838488 0.152030166 fv Log-Normal Cox, Log-Normal FALSE #> 4182 262 0.6874792 0.132166589 fv Log-Normal Cox, Log-Normal FALSE #> 4198 263 0.8748474 0.168551544 fv Log-Normal Cox, Log-Normal FALSE #> 4214 264 0.7949965 0.167523004 fv Log-Normal Cox, Log-Normal FALSE #> 4230 265 0.6229840 0.104494211 fv Log-Normal Cox, Log-Normal FALSE #> 4246 266 0.6632234 0.135646780 fv Log-Normal Cox, Log-Normal FALSE #> 4262 267 0.6158842 0.130400568 fv Log-Normal Cox, Log-Normal FALSE #> 4278 268 0.9506333 0.175878947 fv Log-Normal Cox, Log-Normal FALSE #> 4294 269 0.6188439 0.130825645 fv Log-Normal Cox, Log-Normal FALSE #> 4310 270 0.6262115 0.114392203 fv Log-Normal Cox, Log-Normal FALSE #> 4326 271 0.7801412 0.198342003 fv Log-Normal Cox, Log-Normal FALSE #> 4342 272 0.5658894 0.105200138 fv Log-Normal Cox, Log-Normal FALSE #> 4358 273 0.7581958 0.155271956 fv Log-Normal Cox, Log-Normal FALSE #> 4374 274 0.7608956 0.184496710 fv Log-Normal Cox, Log-Normal FALSE #> 4390 275 0.6392780 0.170823574 fv Log-Normal Cox, Log-Normal FALSE #> 4406 276 0.7882949 0.154743052 fv Log-Normal Cox, Log-Normal FALSE #> 4422 277 0.7194733 0.150653839 fv Log-Normal Cox, Log-Normal FALSE #> 4438 278 0.6262877 0.146135300 fv Log-Normal Cox, Log-Normal FALSE #> 4454 279 0.8160827 0.161699463 fv Log-Normal Cox, Log-Normal FALSE #> 4470 280 0.8380508 0.165760210 fv Log-Normal Cox, Log-Normal FALSE #> 4486 281 0.7250819 0.136678134 fv Log-Normal Cox, Log-Normal FALSE #> 4502 282 0.6543630 0.124834778 fv Log-Normal Cox, Log-Normal FALSE #> 4518 283 0.8861316 0.181607406 fv Log-Normal Cox, Log-Normal FALSE #> 4534 284 0.6234693 0.121773534 fv Log-Normal Cox, Log-Normal FALSE #> 4550 285 0.7075084 0.140506363 fv Log-Normal Cox, Log-Normal FALSE #> 4566 286 0.6991377 0.141637828 fv Log-Normal Cox, Log-Normal FALSE #> 4582 287 0.5969511 0.095232884 fv Log-Normal Cox, Log-Normal FALSE #> 4598 288 0.6185630 0.128807253 fv Log-Normal Cox, Log-Normal FALSE #> 4614 289 0.6932102 0.126244042 fv Log-Normal Cox, Log-Normal FALSE #> 4630 290 0.6795473 0.133309208 fv Log-Normal Cox, Log-Normal FALSE #> 4646 291 0.7658600 0.125787549 fv Log-Normal Cox, Log-Normal FALSE #> 4662 292 0.6655638 0.182337657 fv Log-Normal Cox, Log-Normal FALSE #> 4678 293 0.6811121 0.097619440 fv Log-Normal Cox, Log-Normal FALSE #> 4694 294 0.7341433 0.126424230 fv Log-Normal Cox, Log-Normal FALSE #> 4710 295 0.6397064 0.131345588 fv Log-Normal Cox, Log-Normal FALSE #> 4726 296 0.8036840 0.153632947 fv Log-Normal Cox, Log-Normal FALSE #> 4742 297 0.4156726 0.078965945 fv Log-Normal Cox, Log-Normal FALSE #> 4758 298 0.6992210 0.122399735 fv Log-Normal Cox, Log-Normal FALSE #> 4774 299 0.7895367 0.126931179 fv Log-Normal Cox, Log-Normal FALSE #> 4790 300 0.6389342 0.119908849 fv Log-Normal Cox, Log-Normal FALSE #> 4806 301 1.0721887 0.198275473 fv Log-Normal Cox, Log-Normal FALSE #> 4822 302 0.7313978 0.168882249 fv Log-Normal Cox, Log-Normal FALSE #> 4838 303 0.6443221 0.103189570 fv Log-Normal Cox, Log-Normal FALSE #> 4854 304 0.6883138 0.109793240 fv Log-Normal Cox, Log-Normal FALSE #> 4870 305 0.8457392 0.150880524 fv Log-Normal Cox, Log-Normal FALSE #> 4886 306 0.5848402 0.114151600 fv Log-Normal Cox, Log-Normal FALSE #> 4902 307 0.6233021 0.109508346 fv Log-Normal Cox, Log-Normal FALSE #> 4918 308 0.7261324 0.145349003 fv Log-Normal Cox, Log-Normal FALSE #> 4934 309 0.6156243 0.121821259 fv Log-Normal Cox, Log-Normal FALSE #> 4950 310 0.6653635 0.156392201 fv Log-Normal Cox, Log-Normal FALSE #> 4966 311 0.8914660 0.154933778 fv Log-Normal Cox, Log-Normal FALSE #> 4982 312 0.7331430 0.136281844 fv Log-Normal Cox, Log-Normal FALSE #> 4998 313 0.5088109 0.113177945 fv Log-Normal Cox, Log-Normal FALSE #> 5014 314 0.6998085 0.147494090 fv Log-Normal Cox, Log-Normal FALSE #> 5030 315 0.6788598 0.118669605 fv Log-Normal Cox, Log-Normal FALSE #> 5046 316 0.5935425 0.134907825 fv Log-Normal Cox, Log-Normal FALSE #> 5062 317 0.8622104 0.132961863 fv Log-Normal Cox, Log-Normal FALSE #> 5078 318 0.5477029 0.159243237 fv Log-Normal Cox, Log-Normal FALSE #> 5094 319 0.7504793 0.175775213 fv Log-Normal Cox, Log-Normal FALSE #> 5110 320 0.8374628 0.142534760 fv Log-Normal Cox, Log-Normal FALSE #> 5126 321 0.9088461 0.199125271 fv Log-Normal Cox, Log-Normal FALSE #> 5142 322 0.5883454 0.138882190 fv Log-Normal Cox, Log-Normal FALSE #> 5158 323 0.8097169 0.145185115 fv Log-Normal Cox, Log-Normal FALSE #> 5174 324 0.5327484 0.097126455 fv Log-Normal Cox, Log-Normal FALSE #> 5190 325 0.6209278 0.123937040 fv Log-Normal Cox, Log-Normal FALSE #> 5206 326 1.0813592 0.260419864 fv Log-Normal Cox, Log-Normal TRUE #> 5222 327 0.5318052 0.101090195 fv Log-Normal Cox, Log-Normal FALSE #> 5238 328 0.7967825 0.152965020 fv Log-Normal Cox, Log-Normal FALSE #> 5254 329 0.6356635 0.133230934 fv Log-Normal Cox, Log-Normal FALSE #> 5270 330 0.5814746 0.143686266 fv Log-Normal Cox, Log-Normal FALSE #> 5286 331 0.9345516 0.181733555 fv Log-Normal Cox, Log-Normal FALSE #> 5302 332 0.6891797 0.105822208 fv Log-Normal Cox, Log-Normal FALSE #> 5318 333 0.5057585 0.107033611 fv Log-Normal Cox, Log-Normal FALSE #> 5334 334 0.5523392 0.103592158 fv Log-Normal Cox, Log-Normal FALSE #> 5350 335 0.5487718 0.096238261 fv Log-Normal Cox, Log-Normal FALSE #> 5366 336 0.7938662 0.153381827 fv Log-Normal Cox, Log-Normal FALSE #> 5382 337 0.6558362 0.122412197 fv Log-Normal Cox, Log-Normal FALSE #> 5398 338 0.7716627 0.133216328 fv Log-Normal Cox, Log-Normal FALSE #> 5414 339 0.5946563 0.112089158 fv Log-Normal Cox, Log-Normal FALSE #> 5430 340 0.9258154 0.173020079 fv Log-Normal Cox, Log-Normal FALSE #> 5446 341 0.6554285 0.188998496 fv Log-Normal Cox, Log-Normal FALSE #> 5462 342 0.5903363 0.103543007 fv Log-Normal Cox, Log-Normal FALSE #> 5478 343 0.5801205 0.105220570 fv Log-Normal Cox, Log-Normal FALSE #> 5494 344 0.6781217 0.139143373 fv Log-Normal Cox, Log-Normal FALSE #> 5510 345 0.6961196 0.128199872 fv Log-Normal Cox, Log-Normal FALSE #> 5526 346 0.5227107 0.129366265 fv Log-Normal Cox, Log-Normal FALSE #> 5542 347 0.6271774 0.116481432 fv Log-Normal Cox, Log-Normal FALSE #> 5558 348 0.6129095 0.127848791 fv Log-Normal Cox, Log-Normal FALSE #> 5574 349 0.7061869 0.130911383 fv Log-Normal Cox, Log-Normal FALSE #> 5590 350 0.7924372 0.140354741 fv Log-Normal Cox, Log-Normal FALSE #> 5606 351 0.6081129 0.110915071 fv Log-Normal Cox, Log-Normal FALSE #> 5622 352 0.8113829 0.207987891 fv Log-Normal Cox, Log-Normal FALSE #> 5638 353 0.7123554 0.148029613 fv Log-Normal Cox, Log-Normal FALSE #> 5654 354 0.6733492 0.120250828 fv Log-Normal Cox, Log-Normal FALSE #> 5670 355 0.7413575 0.117491541 fv Log-Normal Cox, Log-Normal FALSE #> 5686 356 0.6356097 0.136723847 fv Log-Normal Cox, Log-Normal FALSE #> 5702 357 0.9077288 0.201687015 fv Log-Normal Cox, Log-Normal FALSE #> 5718 358 0.6760533 0.114786462 fv Log-Normal Cox, Log-Normal FALSE #> 5734 359 0.5219090 0.108201573 fv Log-Normal Cox, Log-Normal FALSE #> 5750 360 0.6815372 0.124079334 fv Log-Normal Cox, Log-Normal FALSE #> 5766 361 0.6430326 0.131155722 fv Log-Normal Cox, Log-Normal FALSE #> 5782 362 0.6311695 0.139240974 fv Log-Normal Cox, Log-Normal FALSE #> 5798 363 0.6177379 0.136118552 fv Log-Normal Cox, Log-Normal FALSE #> 5814 364 0.8976105 0.177776665 fv Log-Normal Cox, Log-Normal FALSE #> 5830 365 0.8077777 0.181160990 fv Log-Normal Cox, Log-Normal FALSE #> 5846 366 0.6859270 0.163243165 fv Log-Normal Cox, Log-Normal FALSE #> 5862 367 0.8039909 0.173052304 fv Log-Normal Cox, Log-Normal FALSE #> 5878 368 0.9904820 0.206693114 fv Log-Normal Cox, Log-Normal FALSE #> 5894 369 0.6043360 0.105582542 fv Log-Normal Cox, Log-Normal FALSE #> 5910 370 0.7742858 0.160759545 fv Log-Normal Cox, Log-Normal FALSE #> 5926 371 0.6578030 0.151843773 fv Log-Normal Cox, Log-Normal FALSE #> 5942 372 0.5007659 0.102818471 fv Log-Normal Cox, Log-Normal FALSE #> 5958 373 1.1151799 0.262411215 fv Log-Normal Cox, Log-Normal TRUE #> 5974 374 0.5438101 0.110074187 fv Log-Normal Cox, Log-Normal FALSE #> 5990 375 0.6580755 0.148102054 fv Log-Normal Cox, Log-Normal FALSE #> 6006 376 0.7039508 0.155302979 fv Log-Normal Cox, Log-Normal FALSE #> 6022 377 0.5414599 0.090535372 fv Log-Normal Cox, Log-Normal FALSE #> 6038 378 0.6197608 0.130994750 fv Log-Normal Cox, Log-Normal FALSE #> 6054 379 0.5067599 0.084260679 fv Log-Normal Cox, Log-Normal FALSE #> 6070 380 0.6564966 0.109664243 fv Log-Normal Cox, Log-Normal FALSE #> 6086 381 0.8540702 0.184255358 fv Log-Normal Cox, Log-Normal FALSE #> 6102 382 0.7318377 0.153279580 fv Log-Normal Cox, Log-Normal FALSE #> 6118 383 0.7133871 0.142053344 fv Log-Normal Cox, Log-Normal FALSE #> 6134 384 0.7092118 0.136370965 fv Log-Normal Cox, Log-Normal FALSE #> 6150 385 0.5917005 0.147258323 fv Log-Normal Cox, Log-Normal FALSE #> 6166 386 0.9153763 0.229498321 fv Log-Normal Cox, Log-Normal FALSE #> 6182 387 0.5871767 0.123612345 fv Log-Normal Cox, Log-Normal FALSE #> 6198 388 0.9291695 0.122982818 fv Log-Normal Cox, Log-Normal FALSE #> 6214 389 0.8058096 0.150461962 fv Log-Normal Cox, Log-Normal FALSE #> 6230 390 0.6773542 0.151801071 fv Log-Normal Cox, Log-Normal FALSE #> 6246 391 0.8182120 0.134244623 fv Log-Normal Cox, Log-Normal FALSE #> 6262 392 0.6261693 0.144322919 fv Log-Normal Cox, Log-Normal FALSE #> 6278 393 0.5608767 0.087397909 fv Log-Normal Cox, Log-Normal FALSE #> 6294 394 0.8782935 0.189730141 fv Log-Normal Cox, Log-Normal FALSE #> 6310 395 0.7611073 0.155530156 fv Log-Normal Cox, Log-Normal FALSE #> 6326 396 1.0179662 0.186941257 fv Log-Normal Cox, Log-Normal FALSE #> 6342 397 0.7116466 0.138074147 fv Log-Normal Cox, Log-Normal FALSE #> 6358 398 0.6727192 0.112933246 fv Log-Normal Cox, Log-Normal FALSE #> 6374 399 0.8183800 0.153200171 fv Log-Normal Cox, Log-Normal FALSE #> 6390 400 0.5367667 0.115885505 fv Log-Normal Cox, Log-Normal FALSE #> 6406 401 0.6126184 0.116844582 fv Log-Normal Cox, Log-Normal FALSE #> 6422 402 0.5449950 0.165808259 fv Log-Normal Cox, Log-Normal FALSE #> 6438 403 0.6208233 0.124821022 fv Log-Normal Cox, Log-Normal FALSE #> 6454 404 0.5770424 0.151038157 fv Log-Normal Cox, Log-Normal FALSE #> 6470 405 0.4747106 0.100298660 fv Log-Normal Cox, Log-Normal FALSE #> 6486 406 0.7328698 0.142571527 fv Log-Normal Cox, Log-Normal FALSE #> 6502 407 0.7521805 0.168896665 fv Log-Normal Cox, Log-Normal FALSE #> 6518 408 0.4939505 0.126659415 fv Log-Normal Cox, Log-Normal FALSE #> 6534 409 0.7342496 0.137209818 fv Log-Normal Cox, Log-Normal FALSE #> 6550 410 0.7711058 0.166901809 fv Log-Normal Cox, Log-Normal FALSE #> 6566 411 0.6537021 0.158644072 fv Log-Normal Cox, Log-Normal FALSE #> 6582 412 0.6641258 0.185779173 fv Log-Normal Cox, Log-Normal FALSE #> 6598 413 0.5336693 0.120967307 fv Log-Normal Cox, Log-Normal FALSE #> 6614 414 0.8645269 0.156417045 fv Log-Normal Cox, Log-Normal FALSE #> 6630 415 1.2669904 0.221355780 fv Log-Normal Cox, Log-Normal TRUE #> 6646 416 0.5679880 0.136164326 fv Log-Normal Cox, Log-Normal FALSE #> 6662 417 0.5518002 0.097475326 fv Log-Normal Cox, Log-Normal FALSE #> 6678 418 0.8899199 0.126041947 fv Log-Normal Cox, Log-Normal FALSE #> 6694 419 0.4910310 0.096522319 fv Log-Normal Cox, Log-Normal FALSE #> 6710 420 0.7613114 0.168472044 fv Log-Normal Cox, Log-Normal FALSE #> 6726 421 0.7927672 0.149403972 fv Log-Normal Cox, Log-Normal FALSE #> 6742 422 0.5762327 0.132336946 fv Log-Normal Cox, Log-Normal FALSE #> 6758 423 0.5858586 0.109042212 fv Log-Normal Cox, Log-Normal FALSE #> 6774 424 0.6812210 0.135407029 fv Log-Normal Cox, Log-Normal FALSE #> 6790 425 0.7494056 0.158380464 fv Log-Normal Cox, Log-Normal FALSE #> 6806 426 0.8255828 0.167092229 fv Log-Normal Cox, Log-Normal FALSE #> 6822 427 0.9580083 0.193525749 fv Log-Normal Cox, Log-Normal FALSE #> 6838 428 0.8200189 0.174800466 fv Log-Normal Cox, Log-Normal FALSE #> 6854 429 0.7253120 0.138989939 fv Log-Normal Cox, Log-Normal FALSE #> 6870 430 0.8015608 0.159246665 fv Log-Normal Cox, Log-Normal FALSE #> 6886 431 0.6839649 0.163805863 fv Log-Normal Cox, Log-Normal FALSE #> 6902 432 0.8651093 0.182008216 fv Log-Normal Cox, Log-Normal FALSE #> 6918 433 0.5920234 0.102567571 fv Log-Normal Cox, Log-Normal FALSE #> 6934 434 0.5880071 0.117101961 fv Log-Normal Cox, Log-Normal FALSE #> 6950 435 0.4973641 0.107090021 fv Log-Normal Cox, Log-Normal FALSE #> 6966 436 0.7631187 0.131617867 fv Log-Normal Cox, Log-Normal FALSE #> 6982 437 0.5823778 0.125462900 fv Log-Normal Cox, Log-Normal FALSE #> 6998 438 0.8514556 0.152749346 fv Log-Normal Cox, Log-Normal FALSE #> 7014 439 0.5976061 0.142466128 fv Log-Normal Cox, Log-Normal FALSE #> 7030 440 0.4167886 0.097617508 fv Log-Normal Cox, Log-Normal FALSE #> 7046 441 0.5600775 0.113085806 fv Log-Normal Cox, Log-Normal FALSE #> 7062 442 0.7506161 0.147798952 fv Log-Normal Cox, Log-Normal FALSE #> 7078 443 0.8033583 0.166071013 fv Log-Normal Cox, Log-Normal FALSE #> 7094 444 0.8324845 0.192734911 fv Log-Normal Cox, Log-Normal FALSE #> 7110 445 0.9003486 0.176256265 fv Log-Normal Cox, Log-Normal FALSE #> 7126 446 0.6375473 0.120152949 fv Log-Normal Cox, Log-Normal FALSE #> 7142 447 0.8891201 0.168609893 fv Log-Normal Cox, Log-Normal FALSE #> 7158 448 0.9157472 0.197688993 fv Log-Normal Cox, Log-Normal FALSE #> 7174 449 0.9081860 0.189349612 fv Log-Normal Cox, Log-Normal FALSE #> 7190 450 0.7032306 0.140992126 fv Log-Normal Cox, Log-Normal FALSE #> 7206 451 0.7939868 0.149065953 fv Log-Normal Cox, Log-Normal FALSE #> 7222 452 0.7822568 0.149666090 fv Log-Normal Cox, Log-Normal FALSE #> 7238 453 0.6987296 0.135190518 fv Log-Normal Cox, Log-Normal FALSE #> 7254 454 0.6802980 0.149217852 fv Log-Normal Cox, Log-Normal FALSE #> 7270 455 0.6300706 0.117145542 fv Log-Normal Cox, Log-Normal FALSE #> 7286 456 0.4853340 0.098943448 fv Log-Normal Cox, Log-Normal FALSE #> 7302 457 0.9159317 0.166991448 fv Log-Normal Cox, Log-Normal FALSE #> 7318 458 0.7926127 0.218179833 fv Log-Normal Cox, Log-Normal FALSE #> 7334 459 0.9673546 0.239194160 fv Log-Normal Cox, Log-Normal TRUE #> 7350 460 0.6824635 0.114496923 fv Log-Normal Cox, Log-Normal FALSE #> 7366 461 0.7838993 0.123060287 fv Log-Normal Cox, Log-Normal FALSE #> 7382 462 0.7263722 0.136940630 fv Log-Normal Cox, Log-Normal FALSE #> 7398 463 0.8725465 0.208727400 fv Log-Normal Cox, Log-Normal FALSE #> 7414 464 0.8133746 0.125786465 fv Log-Normal Cox, Log-Normal FALSE #> 7430 465 0.8180210 0.162596932 fv Log-Normal Cox, Log-Normal FALSE #> 7446 466 0.8447400 0.174373325 fv Log-Normal Cox, Log-Normal FALSE #> 7462 467 0.7417616 0.156331232 fv Log-Normal Cox, Log-Normal FALSE #> 7478 468 0.9181124 0.152344493 fv Log-Normal Cox, Log-Normal FALSE #> 7494 469 0.8086114 0.162584399 fv Log-Normal Cox, Log-Normal FALSE #> 7510 470 0.7530716 0.158528182 fv Log-Normal Cox, Log-Normal FALSE #> 7526 471 0.6314900 0.146336756 fv Log-Normal Cox, Log-Normal FALSE #> 7542 472 0.8683746 0.156186168 fv Log-Normal Cox, Log-Normal FALSE #> 7558 473 0.6937239 0.141938343 fv Log-Normal Cox, Log-Normal FALSE #> 7574 474 1.0218309 0.201167398 fv Log-Normal Cox, Log-Normal FALSE #> 7590 475 0.6337743 0.116592408 fv Log-Normal Cox, Log-Normal FALSE #> 7606 476 0.4770815 0.107961700 fv Log-Normal Cox, Log-Normal FALSE #> 7622 477 0.5086332 0.109130539 fv Log-Normal Cox, Log-Normal FALSE #> 7638 478 0.8075402 0.117965092 fv Log-Normal Cox, Log-Normal FALSE #> 7654 479 0.7389806 0.136893016 fv Log-Normal Cox, Log-Normal FALSE #> 7670 480 1.0175151 0.199915585 fv Log-Normal Cox, Log-Normal FALSE #> 7686 481 1.0192289 0.206087507 fv Log-Normal Cox, Log-Normal FALSE #> 7702 482 0.7832508 0.159491148 fv Log-Normal Cox, Log-Normal FALSE #> 7718 483 0.9418885 0.220672055 fv Log-Normal Cox, Log-Normal FALSE #> 7734 484 0.8962617 0.202093121 fv Log-Normal Cox, Log-Normal FALSE #> 7750 485 0.5958992 0.105063175 fv Log-Normal Cox, Log-Normal FALSE #> 7766 486 0.4667542 0.102867880 fv Log-Normal Cox, Log-Normal FALSE #> 7782 487 0.8900147 0.175007983 fv Log-Normal Cox, Log-Normal FALSE #> 7798 488 0.4449524 0.087682549 fv Log-Normal Cox, Log-Normal FALSE #> 7814 489 0.8004214 0.186144327 fv Log-Normal Cox, Log-Normal FALSE #> 7830 490 0.7127792 0.119173213 fv Log-Normal Cox, Log-Normal FALSE #> 7846 491 0.6889070 0.133673254 fv Log-Normal Cox, Log-Normal FALSE #> 7862 492 0.5582058 0.086242399 fv Log-Normal Cox, Log-Normal FALSE #> 7878 493 1.0663941 0.245806620 fv Log-Normal Cox, Log-Normal TRUE #> 7894 494 0.6613066 0.106604021 fv Log-Normal Cox, Log-Normal FALSE #> 7910 495 0.8228011 0.118045197 fv Log-Normal Cox, Log-Normal FALSE #> 7926 496 1.0887179 0.237339281 fv Log-Normal Cox, Log-Normal TRUE #> 7942 497 0.5916038 0.114587057 fv Log-Normal Cox, Log-Normal FALSE #> 7958 498 0.6348066 0.135633761 fv Log-Normal Cox, Log-Normal FALSE #> 7974 499 0.8889109 0.216181001 fv Log-Normal Cox, Log-Normal FALSE #> 7990 500 0.6773264 0.138954096 fv Log-Normal Cox, Log-Normal FALSE #> 8006 501 1.3435254 0.291530812 fv Log-Normal Cox, Log-Normal TRUE #> 8022 502 0.7736005 0.146718156 fv Log-Normal Cox, Log-Normal FALSE #> 8038 503 0.7460948 0.134956945 fv Log-Normal Cox, Log-Normal FALSE #> 8054 504 0.8756279 0.159497799 fv Log-Normal Cox, Log-Normal FALSE #> 8070 505 0.7539893 0.111108625 fv Log-Normal Cox, Log-Normal FALSE #> 8086 506 1.0221922 0.240938697 fv Log-Normal Cox, Log-Normal TRUE #> 8102 507 0.7310864 0.114690626 fv Log-Normal Cox, Log-Normal FALSE #> 8118 508 0.5378310 0.123741319 fv Log-Normal Cox, Log-Normal FALSE #> 8134 509 0.6777937 0.130389895 fv Log-Normal Cox, Log-Normal FALSE #> 8150 510 0.6842877 0.138741429 fv Log-Normal Cox, Log-Normal FALSE #> 8166 511 0.4603930 0.088394301 fv Log-Normal Cox, Log-Normal FALSE #> 8182 512 0.7229525 0.147506273 fv Log-Normal Cox, Log-Normal FALSE #> 8198 513 0.8035298 0.149275045 fv Log-Normal Cox, Log-Normal FALSE #> 8214 514 0.7179322 0.136809080 fv Log-Normal Cox, Log-Normal FALSE #> 8230 515 0.5586526 0.122315382 fv Log-Normal Cox, Log-Normal FALSE #> 8246 516 0.7377219 0.143754572 fv Log-Normal Cox, Log-Normal FALSE #> 8262 517 0.3667741 0.085169579 fv Log-Normal Cox, Log-Normal FALSE #> 8278 518 0.7435838 0.138029022 fv Log-Normal Cox, Log-Normal FALSE #> 8294 519 0.7674745 0.150261965 fv Log-Normal Cox, Log-Normal FALSE #> 8310 520 0.8003345 0.122407092 fv Log-Normal Cox, Log-Normal FALSE #> 8326 521 0.7988626 0.169064785 fv Log-Normal Cox, Log-Normal FALSE #> 8342 522 0.5375144 0.095228819 fv Log-Normal Cox, Log-Normal FALSE #> 8358 523 0.7667009 0.131558815 fv Log-Normal Cox, Log-Normal FALSE #> 8374 524 0.5269024 0.120077784 fv Log-Normal Cox, Log-Normal FALSE #> 8390 525 0.7031804 0.154586399 fv Log-Normal Cox, Log-Normal FALSE #> 8406 526 0.6061274 0.117091908 fv Log-Normal Cox, Log-Normal FALSE #> 8422 527 0.7137822 0.163596077 fv Log-Normal Cox, Log-Normal FALSE #> 8438 528 0.9252247 0.189829300 fv Log-Normal Cox, Log-Normal FALSE #> 8454 529 0.9342341 0.181406052 fv Log-Normal Cox, Log-Normal FALSE #> 8470 530 0.4498170 0.111087235 fv Log-Normal Cox, Log-Normal FALSE #> 8486 531 0.9979562 0.213629379 fv Log-Normal Cox, Log-Normal FALSE #> 8502 532 0.7223377 0.116231722 fv Log-Normal Cox, Log-Normal FALSE #> 8518 533 0.6906718 0.122960600 fv Log-Normal Cox, Log-Normal FALSE #> 8534 534 0.7416424 0.148941672 fv Log-Normal Cox, Log-Normal FALSE #> 8550 535 0.8626834 0.157323432 fv Log-Normal Cox, Log-Normal FALSE #> 8566 536 0.5963041 0.116089213 fv Log-Normal Cox, Log-Normal FALSE #> 8582 537 1.2345153 0.237582349 fv Log-Normal Cox, Log-Normal TRUE #> 8598 538 0.5063558 0.092401072 fv Log-Normal Cox, Log-Normal FALSE #> 8614 539 0.6862567 0.149536685 fv Log-Normal Cox, Log-Normal FALSE #> 8630 540 0.6141186 0.114391863 fv Log-Normal Cox, Log-Normal FALSE #> 8646 541 0.8968782 0.167673684 fv Log-Normal Cox, Log-Normal FALSE #> 8662 542 0.8198767 0.169342183 fv Log-Normal Cox, Log-Normal FALSE #> 8678 543 0.7575504 0.148707340 fv Log-Normal Cox, Log-Normal FALSE #> 8694 544 0.7617908 0.155859277 fv Log-Normal Cox, Log-Normal FALSE #> 8710 545 0.5717824 0.084305835 fv Log-Normal Cox, Log-Normal FALSE #> 8726 546 0.9040874 0.167410002 fv Log-Normal Cox, Log-Normal FALSE #> 8742 547 0.6870910 0.129415648 fv Log-Normal Cox, Log-Normal FALSE #> 8758 548 0.5381865 0.117060922 fv Log-Normal Cox, Log-Normal FALSE #> 8774 549 0.8835431 0.179113769 fv Log-Normal Cox, Log-Normal FALSE #> 8790 550 0.5208702 0.124333872 fv Log-Normal Cox, Log-Normal FALSE #> 8806 551 0.7964585 0.156422129 fv Log-Normal Cox, Log-Normal FALSE #> 8822 552 0.7041652 0.128276679 fv Log-Normal Cox, Log-Normal FALSE #> 8838 553 0.8459051 0.122339846 fv Log-Normal Cox, Log-Normal FALSE #> 8854 554 0.8977503 0.179088453 fv Log-Normal Cox, Log-Normal FALSE #> 8870 555 0.8326376 0.128746242 fv Log-Normal Cox, Log-Normal FALSE #> 8886 556 0.8753515 0.143451520 fv Log-Normal Cox, Log-Normal FALSE #> 8902 557 0.6984218 0.127912102 fv Log-Normal Cox, Log-Normal FALSE #> 8918 558 0.6669430 0.112161043 fv Log-Normal Cox, Log-Normal FALSE #> 8934 559 0.6132347 0.122896494 fv Log-Normal Cox, Log-Normal FALSE #> 8950 560 0.7760753 0.145292156 fv Log-Normal Cox, Log-Normal FALSE #> 8966 561 1.2406263 0.221751865 fv Log-Normal Cox, Log-Normal TRUE #> 8982 562 0.8951923 0.192853014 fv Log-Normal Cox, Log-Normal FALSE #> 8998 563 0.7936453 0.148256364 fv Log-Normal Cox, Log-Normal FALSE #> 9014 564 0.6496611 0.154999773 fv Log-Normal Cox, Log-Normal FALSE #> 9030 565 0.5558608 0.112968507 fv Log-Normal Cox, Log-Normal FALSE #> 9046 566 0.7784225 0.197678997 fv Log-Normal Cox, Log-Normal FALSE #> 9062 567 0.7390722 0.134151819 fv Log-Normal Cox, Log-Normal FALSE #> 9078 568 0.5370427 0.106409861 fv Log-Normal Cox, Log-Normal FALSE #> 9094 569 0.8446977 0.151362680 fv Log-Normal Cox, Log-Normal FALSE #> 9110 570 0.5783874 0.154235730 fv Log-Normal Cox, Log-Normal FALSE #> 9126 571 0.6980819 0.132611887 fv Log-Normal Cox, Log-Normal FALSE #> 9142 572 0.6078955 0.113509666 fv Log-Normal Cox, Log-Normal FALSE #> 9158 573 0.6531702 0.123193776 fv Log-Normal Cox, Log-Normal FALSE #> 9174 574 0.7369219 0.133697888 fv Log-Normal Cox, Log-Normal FALSE #> 9190 575 0.6652456 0.174809549 fv Log-Normal Cox, Log-Normal FALSE #> 9206 576 0.7042127 0.184240750 fv Log-Normal Cox, Log-Normal FALSE #> 9222 577 0.9058959 0.206369728 fv Log-Normal Cox, Log-Normal FALSE #> 9238 578 0.5871046 0.099243005 fv Log-Normal Cox, Log-Normal FALSE #> 9254 579 0.6010841 0.132716062 fv Log-Normal Cox, Log-Normal FALSE #> 9270 580 0.4971421 0.107766896 fv Log-Normal Cox, Log-Normal FALSE #> 9286 581 0.7923715 0.151082100 fv Log-Normal Cox, Log-Normal FALSE #> 9302 582 0.7728312 0.153502508 fv Log-Normal Cox, Log-Normal FALSE #> 9318 583 1.0323624 0.163822527 fv Log-Normal Cox, Log-Normal FALSE #> 9334 584 0.5414420 0.108025677 fv Log-Normal Cox, Log-Normal FALSE #> 9350 585 0.7190622 0.114529054 fv Log-Normal Cox, Log-Normal FALSE #> 9366 586 0.7455106 0.124365353 fv Log-Normal Cox, Log-Normal FALSE #> 9382 587 0.9302355 0.214573938 fv Log-Normal Cox, Log-Normal FALSE #> 9398 588 0.5806374 0.109803503 fv Log-Normal Cox, Log-Normal FALSE #> 9414 589 0.6039216 0.119344261 fv Log-Normal Cox, Log-Normal FALSE #> 9430 590 0.8219766 0.176507665 fv Log-Normal Cox, Log-Normal FALSE #> 9446 591 0.8456887 0.166784984 fv Log-Normal Cox, Log-Normal FALSE #> 9462 592 0.8298067 0.163691115 fv Log-Normal Cox, Log-Normal FALSE #> 9478 593 0.9301881 0.184785185 fv Log-Normal Cox, Log-Normal FALSE #> 9494 594 0.7212752 0.124340342 fv Log-Normal Cox, Log-Normal FALSE #> 9510 595 0.5431571 0.090258789 fv Log-Normal Cox, Log-Normal FALSE #> 9526 596 0.7293813 0.174344234 fv Log-Normal Cox, Log-Normal FALSE #> 9542 597 0.6050940 0.111506243 fv Log-Normal Cox, Log-Normal FALSE #> 9558 598 1.0673488 0.205896016 fv Log-Normal Cox, Log-Normal FALSE #> 9574 599 0.7497517 0.183646091 fv Log-Normal Cox, Log-Normal FALSE #> 9590 600 0.5310092 0.109738635 fv Log-Normal Cox, Log-Normal FALSE #> 9606 601 1.1622807 0.252214764 fv Log-Normal Cox, Log-Normal TRUE #> 9622 602 0.9860745 0.203449964 fv Log-Normal Cox, Log-Normal FALSE #> 9638 603 0.4156386 0.069227727 fv Log-Normal Cox, Log-Normal FALSE #> 9654 604 0.7547442 0.131357593 fv Log-Normal Cox, Log-Normal FALSE #> 9670 605 1.2270888 0.254788035 fv Log-Normal Cox, Log-Normal TRUE #> 9686 606 0.6744288 0.140766466 fv Log-Normal Cox, Log-Normal FALSE #> 9702 607 0.6089607 0.135399445 fv Log-Normal Cox, Log-Normal FALSE #> 9718 608 0.4385750 0.078430090 fv Log-Normal Cox, Log-Normal FALSE #> 9734 609 0.8290773 0.146094145 fv Log-Normal Cox, Log-Normal FALSE #> 9750 610 0.6340374 0.128702321 fv Log-Normal Cox, Log-Normal FALSE #> 9766 611 0.8007515 0.201200477 fv Log-Normal Cox, Log-Normal FALSE #> 9782 612 0.5875066 0.117282979 fv Log-Normal Cox, Log-Normal FALSE #> 9798 613 0.8175702 0.130135551 fv Log-Normal Cox, Log-Normal FALSE #> 9814 614 0.7773840 0.134334791 fv Log-Normal Cox, Log-Normal FALSE #> 9830 615 0.8689451 0.145406422 fv Log-Normal Cox, Log-Normal FALSE #> 9846 616 0.7820989 0.151533700 fv Log-Normal Cox, Log-Normal FALSE #> 9862 617 0.7837638 0.136211673 fv Log-Normal Cox, Log-Normal FALSE #> 9878 618 0.6788178 0.142475685 fv Log-Normal Cox, Log-Normal FALSE #> 9894 619 0.8183659 0.154788400 fv Log-Normal Cox, Log-Normal FALSE #> 9910 620 0.8171046 0.180268515 fv Log-Normal Cox, Log-Normal FALSE #> 9926 621 0.5639292 0.107073034 fv Log-Normal Cox, Log-Normal FALSE #> 9942 622 0.6314516 0.125356048 fv Log-Normal Cox, Log-Normal FALSE #> 9958 623 0.8785102 0.184572000 fv Log-Normal Cox, Log-Normal FALSE #> 9974 624 0.5825642 0.140201227 fv Log-Normal Cox, Log-Normal FALSE #> 9990 625 0.7614824 0.157638018 fv Log-Normal Cox, Log-Normal FALSE #> 10006 626 0.6383478 0.128329406 fv Log-Normal Cox, Log-Normal FALSE #> 10022 627 0.6242897 0.114015728 fv Log-Normal Cox, Log-Normal FALSE #> 10038 628 0.6642862 0.172314284 fv Log-Normal Cox, Log-Normal FALSE #> 10054 629 0.6375845 0.122839399 fv Log-Normal Cox, Log-Normal FALSE #> 10070 630 0.8324783 0.130755118 fv Log-Normal Cox, Log-Normal FALSE #> 10086 631 0.6702640 0.108227424 fv Log-Normal Cox, Log-Normal FALSE #> 10102 632 0.7767630 0.177729336 fv Log-Normal Cox, Log-Normal FALSE #> 10118 633 0.4914987 0.093416187 fv Log-Normal Cox, Log-Normal FALSE #> 10134 634 0.6746632 0.175170229 fv Log-Normal Cox, Log-Normal FALSE #> 10150 635 0.9036130 0.202423279 fv Log-Normal Cox, Log-Normal FALSE #> 10166 636 0.4183601 0.083783931 fv Log-Normal Cox, Log-Normal FALSE #> 10182 637 0.8719040 0.157295311 fv Log-Normal Cox, Log-Normal FALSE #> 10198 638 0.6832427 0.161228334 fv Log-Normal Cox, Log-Normal FALSE #> 10214 639 0.4325527 0.097111445 fv Log-Normal Cox, Log-Normal FALSE #> 10230 640 0.7229937 0.154618672 fv Log-Normal Cox, Log-Normal FALSE #> 10246 641 0.5857330 0.122395333 fv Log-Normal Cox, Log-Normal FALSE #> 10262 642 0.6360379 0.117279907 fv Log-Normal Cox, Log-Normal FALSE #> 10278 643 0.6645645 0.116264569 fv Log-Normal Cox, Log-Normal FALSE #> 10294 644 0.6190932 0.107311160 fv Log-Normal Cox, Log-Normal FALSE #> 10310 645 0.7533956 0.134819768 fv Log-Normal Cox, Log-Normal FALSE #> 10326 646 0.8375410 0.134833528 fv Log-Normal Cox, Log-Normal FALSE #> 10342 647 0.6563751 0.098262571 fv Log-Normal Cox, Log-Normal FALSE #> 10358 648 1.0706016 0.216998183 fv Log-Normal Cox, Log-Normal FALSE #> 10374 649 0.6314217 0.139306982 fv Log-Normal Cox, Log-Normal FALSE #> 10390 650 0.8102765 0.157581814 fv Log-Normal Cox, Log-Normal FALSE #> 10406 651 0.7925761 0.156304582 fv Log-Normal Cox, Log-Normal FALSE #> 10422 652 1.2665462 0.209947407 fv Log-Normal Cox, Log-Normal TRUE #> 10438 653 0.5434712 0.103592893 fv Log-Normal Cox, Log-Normal FALSE #> 10454 654 0.5856523 0.164414521 fv Log-Normal Cox, Log-Normal FALSE #> 10470 655 0.7001387 0.134566498 fv Log-Normal Cox, Log-Normal FALSE #> 10486 656 0.7099659 0.150674082 fv Log-Normal Cox, Log-Normal FALSE #> 10502 657 0.5343694 0.110794639 fv Log-Normal Cox, Log-Normal FALSE #> 10518 658 1.1477870 0.241951186 fv Log-Normal Cox, Log-Normal TRUE #> 10534 659 1.0433141 0.268908122 fv Log-Normal Cox, Log-Normal TRUE #> 10550 660 0.8574517 0.160474979 fv Log-Normal Cox, Log-Normal FALSE #> 10566 661 0.5656016 0.115462157 fv Log-Normal Cox, Log-Normal FALSE #> 10582 662 0.5913374 0.112065321 fv Log-Normal Cox, Log-Normal FALSE #> 10598 663 0.7014024 0.115616243 fv Log-Normal Cox, Log-Normal FALSE #> 10614 664 0.7024798 0.117240169 fv Log-Normal Cox, Log-Normal FALSE #> 10630 665 0.8771094 0.169469126 fv Log-Normal Cox, Log-Normal FALSE #> 10646 666 1.1630685 0.201255082 fv Log-Normal Cox, Log-Normal TRUE #> 10662 667 0.6484067 0.117314626 fv Log-Normal Cox, Log-Normal FALSE #> 10678 668 0.6308263 0.131132730 fv Log-Normal Cox, Log-Normal FALSE #> 10694 669 0.9142532 0.187111491 fv Log-Normal Cox, Log-Normal FALSE #> 10710 670 0.6192754 0.147049588 fv Log-Normal Cox, Log-Normal FALSE #> 10726 671 0.7969559 0.146088966 fv Log-Normal Cox, Log-Normal FALSE #> 10742 672 0.9573071 0.193663466 fv Log-Normal Cox, Log-Normal FALSE #> 10758 673 0.6501472 0.117106072 fv Log-Normal Cox, Log-Normal FALSE #> 10774 674 0.8224194 0.160584426 fv Log-Normal Cox, Log-Normal FALSE #> 10790 675 0.6495018 0.188477878 fv Log-Normal Cox, Log-Normal FALSE #> 10806 676 0.8711933 0.164562370 fv Log-Normal Cox, Log-Normal FALSE #> 10822 677 0.6800675 0.117054835 fv Log-Normal Cox, Log-Normal FALSE #> 10838 678 0.5713441 0.107816673 fv Log-Normal Cox, Log-Normal FALSE #> 10854 679 0.6112346 0.133477913 fv Log-Normal Cox, Log-Normal FALSE #> 10870 680 0.7496116 0.136062520 fv Log-Normal Cox, Log-Normal FALSE #> 10886 681 1.0147299 0.200149345 fv Log-Normal Cox, Log-Normal FALSE #> 10902 682 0.6897060 0.140083930 fv Log-Normal Cox, Log-Normal FALSE #> 10918 683 0.8143957 0.185740341 fv Log-Normal Cox, Log-Normal FALSE #> 10934 684 1.0560264 0.219153739 fv Log-Normal Cox, Log-Normal FALSE #> 10950 685 0.6654488 0.115993957 fv Log-Normal Cox, Log-Normal FALSE #> 10966 686 0.8930725 0.173037645 fv Log-Normal Cox, Log-Normal FALSE #> 10982 687 0.5843867 0.083530258 fv Log-Normal Cox, Log-Normal FALSE #> 10998 688 0.6143148 0.131684418 fv Log-Normal Cox, Log-Normal FALSE #> 11014 689 0.6573937 0.127658438 fv Log-Normal Cox, Log-Normal FALSE #> 11030 690 0.8718297 0.179672033 fv Log-Normal Cox, Log-Normal FALSE #> 11046 691 0.7069982 0.288250138 fv Log-Normal Cox, Log-Normal TRUE #> 11062 692 0.6778167 0.148233924 fv Log-Normal Cox, Log-Normal FALSE #> 11078 693 0.5430129 0.135999915 fv Log-Normal Cox, Log-Normal FALSE #> 11094 694 0.7297001 0.140998825 fv Log-Normal Cox, Log-Normal FALSE #> 11110 695 0.6424014 0.105666649 fv Log-Normal Cox, Log-Normal FALSE #> 11126 696 0.7792619 0.119330409 fv Log-Normal Cox, Log-Normal FALSE #> 11142 697 0.8896887 0.198744409 fv Log-Normal Cox, Log-Normal FALSE #> 11158 698 0.4671205 0.106620840 fv Log-Normal Cox, Log-Normal FALSE #> 11174 699 0.7181789 0.160616129 fv Log-Normal Cox, Log-Normal FALSE #> 11190 700 0.5477280 0.108273968 fv Log-Normal Cox, Log-Normal FALSE #> 11206 701 0.8589172 0.180922288 fv Log-Normal Cox, Log-Normal FALSE #> 11222 702 0.8686646 0.196511490 fv Log-Normal Cox, Log-Normal FALSE #> 11238 703 0.7410847 0.159178375 fv Log-Normal Cox, Log-Normal FALSE #> 11254 704 0.6408199 0.125427367 fv Log-Normal Cox, Log-Normal FALSE #> 11270 705 0.7057959 0.146779535 fv Log-Normal Cox, Log-Normal FALSE #> 11286 706 0.7643511 0.148323471 fv Log-Normal Cox, Log-Normal FALSE #> 11302 707 0.9700524 0.160443888 fv Log-Normal Cox, Log-Normal FALSE #> 11318 708 0.9265933 0.149354147 fv Log-Normal Cox, Log-Normal FALSE #> 11334 709 0.6749683 0.172123684 fv Log-Normal Cox, Log-Normal FALSE #> 11350 710 0.5117771 0.091200765 fv Log-Normal Cox, Log-Normal FALSE #> 11366 711 0.6439905 0.167360644 fv Log-Normal Cox, Log-Normal FALSE #> 11382 712 0.6767084 0.108127089 fv Log-Normal Cox, Log-Normal FALSE #> 11398 713 1.0129778 0.274729370 fv Log-Normal Cox, Log-Normal TRUE #> 11414 714 0.8089406 0.174250652 fv Log-Normal Cox, Log-Normal FALSE #> 11430 715 0.8597580 0.165342420 fv Log-Normal Cox, Log-Normal FALSE #> 11446 716 0.7624100 0.134839371 fv Log-Normal Cox, Log-Normal FALSE #> 11462 717 0.8249533 0.167079927 fv Log-Normal Cox, Log-Normal FALSE #> 11478 718 0.8576847 0.162024555 fv Log-Normal Cox, Log-Normal FALSE #> 11494 719 0.9824621 0.237930201 fv Log-Normal Cox, Log-Normal TRUE #> 11510 720 0.7869505 0.125298604 fv Log-Normal Cox, Log-Normal FALSE #> 11526 721 0.6114592 0.138309040 fv Log-Normal Cox, Log-Normal FALSE #> 11542 722 0.8040976 0.146430602 fv Log-Normal Cox, Log-Normal FALSE #> 11558 723 0.6317170 0.117974648 fv Log-Normal Cox, Log-Normal FALSE #> 11574 724 0.7495479 0.173784769 fv Log-Normal Cox, Log-Normal FALSE #> 11590 725 0.7586515 0.141571771 fv Log-Normal Cox, Log-Normal FALSE #> 11606 726 0.6758165 0.142506550 fv Log-Normal Cox, Log-Normal FALSE #> 11622 727 0.7878067 0.116750587 fv Log-Normal Cox, Log-Normal FALSE #> 11638 728 1.0293747 0.182526831 fv Log-Normal Cox, Log-Normal FALSE #> 11654 729 0.7858074 0.152231699 fv Log-Normal Cox, Log-Normal FALSE #> 11670 730 0.8523065 0.177705684 fv Log-Normal Cox, Log-Normal FALSE #> 11686 731 0.5676312 0.154710463 fv Log-Normal Cox, Log-Normal FALSE #> 11702 732 0.4997332 0.136812917 fv Log-Normal Cox, Log-Normal FALSE #> 11718 733 0.9890456 0.207143362 fv Log-Normal Cox, Log-Normal FALSE #> 11734 734 0.8982896 0.180036540 fv Log-Normal Cox, Log-Normal FALSE #> 11750 735 1.0022962 0.154539597 fv Log-Normal Cox, Log-Normal FALSE #> 11766 736 0.8541157 0.183590550 fv Log-Normal Cox, Log-Normal FALSE #> 11782 737 0.7416449 0.113810433 fv Log-Normal Cox, Log-Normal FALSE #> 11798 738 0.5320803 0.105301645 fv Log-Normal Cox, Log-Normal FALSE #> 11814 739 0.6012800 0.128194651 fv Log-Normal Cox, Log-Normal FALSE #> 11830 740 0.8138247 0.152345638 fv Log-Normal Cox, Log-Normal FALSE #> 11846 741 1.0145235 0.181258293 fv Log-Normal Cox, Log-Normal FALSE #> 11862 742 0.6611129 0.120578274 fv Log-Normal Cox, Log-Normal FALSE #> 11878 743 0.7645426 0.114386181 fv Log-Normal Cox, Log-Normal FALSE #> 11894 744 0.7905449 0.201901154 fv Log-Normal Cox, Log-Normal FALSE #> 11910 745 0.7800280 0.154382410 fv Log-Normal Cox, Log-Normal FALSE #> 11926 746 0.5983568 0.171488391 fv Log-Normal Cox, Log-Normal FALSE #> 11942 747 0.6553279 0.126681997 fv Log-Normal Cox, Log-Normal FALSE #> 11958 748 0.8596291 0.190755108 fv Log-Normal Cox, Log-Normal FALSE #> 11974 749 0.9163101 0.186289412 fv Log-Normal Cox, Log-Normal FALSE #> 11990 750 0.7524690 0.142892311 fv Log-Normal Cox, Log-Normal FALSE #> 12006 751 0.8953943 0.163271302 fv Log-Normal Cox, Log-Normal FALSE #> 12022 752 0.6902168 0.167689577 fv Log-Normal Cox, Log-Normal FALSE #> 12038 753 0.4443201 0.114075408 fv Log-Normal Cox, Log-Normal FALSE #> 12054 754 0.7877421 0.145197625 fv Log-Normal Cox, Log-Normal FALSE #> 12070 755 0.6689381 0.126865509 fv Log-Normal Cox, Log-Normal FALSE #> 12086 756 0.3785131 0.082873155 fv Log-Normal Cox, Log-Normal FALSE #> 12102 757 0.6779404 0.130786163 fv Log-Normal Cox, Log-Normal FALSE #> 12118 758 0.7746253 0.163500811 fv Log-Normal Cox, Log-Normal FALSE #> 12134 759 0.6781740 0.122448396 fv Log-Normal Cox, Log-Normal FALSE #> 12150 760 0.8695697 0.184253732 fv Log-Normal Cox, Log-Normal FALSE #> 12166 761 0.6318074 0.126609451 fv Log-Normal Cox, Log-Normal FALSE #> 12182 762 0.7612468 0.155081467 fv Log-Normal Cox, Log-Normal FALSE #> 12198 763 0.5637018 0.111824322 fv Log-Normal Cox, Log-Normal FALSE #> 12214 764 0.6553212 0.114285817 fv Log-Normal Cox, Log-Normal FALSE #> 12230 765 0.9462467 0.163155624 fv Log-Normal Cox, Log-Normal FALSE #> 12246 766 0.6537097 0.106200814 fv Log-Normal Cox, Log-Normal FALSE #> 12262 767 0.8747035 0.162635548 fv Log-Normal Cox, Log-Normal FALSE #> 12278 768 0.5877160 0.115237900 fv Log-Normal Cox, Log-Normal FALSE #> 12294 769 1.0167998 0.184375254 fv Log-Normal Cox, Log-Normal FALSE #> 12310 770 0.6130030 0.145352310 fv Log-Normal Cox, Log-Normal FALSE #> 12326 771 0.5745927 0.203706310 fv Log-Normal Cox, Log-Normal FALSE #> 12342 772 0.5853131 0.110646970 fv Log-Normal Cox, Log-Normal FALSE #> 12358 773 0.5687756 0.134007492 fv Log-Normal Cox, Log-Normal FALSE #> 12374 774 0.7226932 0.149336319 fv Log-Normal Cox, Log-Normal FALSE #> 12390 775 0.6797903 0.122447722 fv Log-Normal Cox, Log-Normal FALSE #> 12406 776 0.6853206 0.109785022 fv Log-Normal Cox, Log-Normal FALSE #> 12422 777 0.6212015 0.129042772 fv Log-Normal Cox, Log-Normal FALSE #> 12438 778 0.7164382 0.234844057 fv Log-Normal Cox, Log-Normal FALSE #> 12454 779 0.6742564 0.143043418 fv Log-Normal Cox, Log-Normal FALSE #> 12470 780 0.6170242 0.105097932 fv Log-Normal Cox, Log-Normal FALSE #> 12486 781 0.7318112 0.142735071 fv Log-Normal Cox, Log-Normal FALSE #> 12502 782 0.6610061 0.135449920 fv Log-Normal Cox, Log-Normal FALSE #> 12518 783 0.6278950 0.104305213 fv Log-Normal Cox, Log-Normal FALSE #> 12534 784 0.8094113 0.169945752 fv Log-Normal Cox, Log-Normal FALSE #> 12550 785 0.4946073 0.092835822 fv Log-Normal Cox, Log-Normal FALSE #> 12566 786 0.6267274 0.128041392 fv Log-Normal Cox, Log-Normal FALSE #> 12582 787 1.0178487 0.161660428 fv Log-Normal Cox, Log-Normal FALSE #> 12598 788 0.7008192 0.129005706 fv Log-Normal Cox, Log-Normal FALSE #> 12614 789 0.9344409 0.209106923 fv Log-Normal Cox, Log-Normal FALSE #> 12630 790 0.7454167 0.158623779 fv Log-Normal Cox, Log-Normal FALSE #> 12646 791 0.4161568 0.067941163 fv Log-Normal Cox, Log-Normal FALSE #> 12662 792 0.5456873 0.127448237 fv Log-Normal Cox, Log-Normal FALSE #> 12678 793 0.8498802 0.152802063 fv Log-Normal Cox, Log-Normal FALSE #> 12694 794 0.6776564 0.170730758 fv Log-Normal Cox, Log-Normal FALSE #> 12710 795 0.6364088 0.114399391 fv Log-Normal Cox, Log-Normal FALSE #> 12726 796 0.6120280 0.123040994 fv Log-Normal Cox, Log-Normal FALSE #> 12742 797 0.6868664 0.174130114 fv Log-Normal Cox, Log-Normal FALSE #> 12758 798 0.4111110 0.073952807 fv Log-Normal Cox, Log-Normal FALSE #> 12774 799 0.7667146 0.131502219 fv Log-Normal Cox, Log-Normal FALSE #> 12790 800 0.7651482 0.172314768 fv Log-Normal Cox, Log-Normal FALSE #> 12806 801 0.9872713 0.175396964 fv Log-Normal Cox, Log-Normal FALSE #> 12822 802 0.7981148 0.154386226 fv Log-Normal Cox, Log-Normal FALSE #> 12838 803 0.6583993 0.114725176 fv Log-Normal Cox, Log-Normal FALSE #> 12854 804 0.7555532 0.134524463 fv Log-Normal Cox, Log-Normal FALSE #> 12870 805 0.8249342 0.224337487 fv Log-Normal Cox, Log-Normal FALSE #> 12886 806 0.7903732 0.194773703 fv Log-Normal Cox, Log-Normal FALSE #> 12902 807 0.6441408 0.165412856 fv Log-Normal Cox, Log-Normal FALSE #> 12918 808 0.5046575 0.080358900 fv Log-Normal Cox, Log-Normal FALSE #> 12934 809 0.6864933 0.146661840 fv Log-Normal Cox, Log-Normal FALSE #> 12950 810 0.8124512 0.154133092 fv Log-Normal Cox, Log-Normal FALSE #> 12966 811 0.4692017 0.082645886 fv Log-Normal Cox, Log-Normal FALSE #> 12982 812 0.7250259 0.147300631 fv Log-Normal Cox, Log-Normal FALSE #> 12998 813 0.8814457 0.152466669 fv Log-Normal Cox, Log-Normal FALSE #> 13014 814 0.6852626 0.133497265 fv Log-Normal Cox, Log-Normal FALSE #> 13030 815 0.5973459 0.152294373 fv Log-Normal Cox, Log-Normal FALSE #> 13046 816 0.6997353 0.136317443 fv Log-Normal Cox, Log-Normal FALSE #> 13062 817 0.4710155 0.088285645 fv Log-Normal Cox, Log-Normal FALSE #> 13078 818 0.6451949 0.153857802 fv Log-Normal Cox, Log-Normal FALSE #> 13094 819 0.8337783 0.122400350 fv Log-Normal Cox, Log-Normal FALSE #> 13110 820 0.8563875 0.184562604 fv Log-Normal Cox, Log-Normal FALSE #> 13126 821 0.5642452 0.099701124 fv Log-Normal Cox, Log-Normal FALSE #> 13142 822 0.8848165 0.173698620 fv Log-Normal Cox, Log-Normal FALSE #> 13158 823 0.9679673 0.224333994 fv Log-Normal Cox, Log-Normal FALSE #> 13174 824 0.9169811 0.190827566 fv Log-Normal Cox, Log-Normal FALSE #> 13190 825 0.7620785 0.143634398 fv Log-Normal Cox, Log-Normal FALSE #> 13206 826 0.8129126 0.187223856 fv Log-Normal Cox, Log-Normal FALSE #> 13222 827 0.8913960 0.200847045 fv Log-Normal Cox, Log-Normal FALSE #> 13238 828 0.7526682 0.217873031 fv Log-Normal Cox, Log-Normal FALSE #> 13254 829 0.7129035 0.141271513 fv Log-Normal Cox, Log-Normal FALSE #> 13270 830 0.8093686 0.161447055 fv Log-Normal Cox, Log-Normal FALSE #> 13286 831 0.8728235 0.152899961 fv Log-Normal Cox, Log-Normal FALSE #> 13302 832 0.5911143 0.140956737 fv Log-Normal Cox, Log-Normal FALSE #> 13318 833 0.8823798 0.182578061 fv Log-Normal Cox, Log-Normal FALSE #> 13334 834 0.6489802 0.138432704 fv Log-Normal Cox, Log-Normal FALSE #> 13350 835 0.6823934 0.138367545 fv Log-Normal Cox, Log-Normal FALSE #> 13366 836 0.7826148 0.163460070 fv Log-Normal Cox, Log-Normal FALSE #> 13382 837 0.7736597 0.176327722 fv Log-Normal Cox, Log-Normal FALSE #> 13398 838 0.7054494 0.122169599 fv Log-Normal Cox, Log-Normal FALSE #> 13414 839 0.5919390 0.130336343 fv Log-Normal Cox, Log-Normal FALSE #> 13430 840 0.6180481 0.108543993 fv Log-Normal Cox, Log-Normal FALSE #> 13446 841 0.9302992 0.196914198 fv Log-Normal Cox, Log-Normal FALSE #> 13462 842 0.5602323 0.109237597 fv Log-Normal Cox, Log-Normal FALSE #> 13478 843 0.6748513 0.144994565 fv Log-Normal Cox, Log-Normal FALSE #> 13494 844 0.9129811 0.159326671 fv Log-Normal Cox, Log-Normal FALSE #> 13510 845 0.9877512 0.201813260 fv Log-Normal Cox, Log-Normal FALSE #> 13526 846 0.5533760 0.112530844 fv Log-Normal Cox, Log-Normal FALSE #> 13542 847 1.0264997 0.158287594 fv Log-Normal Cox, Log-Normal FALSE #> 13558 848 0.8399707 0.148734031 fv Log-Normal Cox, Log-Normal FALSE #> 13574 849 0.6201535 0.111310526 fv Log-Normal Cox, Log-Normal FALSE #> 13590 850 0.8142559 0.145644218 fv Log-Normal Cox, Log-Normal FALSE #> 13606 851 0.7006251 0.122041091 fv Log-Normal Cox, Log-Normal FALSE #> 13622 852 0.7511030 0.133087367 fv Log-Normal Cox, Log-Normal FALSE #> 13638 853 1.0390655 0.145203301 fv Log-Normal Cox, Log-Normal FALSE #> 13654 854 0.7097626 0.174226283 fv Log-Normal Cox, Log-Normal FALSE #> 13670 855 0.6546727 0.164479144 fv Log-Normal Cox, Log-Normal FALSE #> 13686 856 0.8742938 0.176632638 fv Log-Normal Cox, Log-Normal FALSE #> 13702 857 0.8235076 0.201058874 fv Log-Normal Cox, Log-Normal FALSE #> 13718 858 1.0655379 0.200597120 fv Log-Normal Cox, Log-Normal FALSE #> 13734 859 0.9019343 0.175412623 fv Log-Normal Cox, Log-Normal FALSE #> 13750 860 0.6622603 0.126053239 fv Log-Normal Cox, Log-Normal FALSE #> 13766 861 0.4665198 0.077897819 fv Log-Normal Cox, Log-Normal FALSE #> 13782 862 0.6543993 0.124272472 fv Log-Normal Cox, Log-Normal FALSE #> 13798 863 0.6978115 0.134982065 fv Log-Normal Cox, Log-Normal FALSE #> 13814 864 0.9283803 0.173095332 fv Log-Normal Cox, Log-Normal FALSE #> 13830 865 0.9136195 0.174912207 fv Log-Normal Cox, Log-Normal FALSE #> 13846 866 0.7371495 0.158525534 fv Log-Normal Cox, Log-Normal FALSE #> 13862 867 0.6008699 0.124295016 fv Log-Normal Cox, Log-Normal FALSE #> 13878 868 0.8928902 0.189023552 fv Log-Normal Cox, Log-Normal FALSE #> 13894 869 0.5323448 0.094885987 fv Log-Normal Cox, Log-Normal FALSE #> 13910 870 0.7740212 0.153614509 fv Log-Normal Cox, Log-Normal FALSE #> 13926 871 0.5040690 0.094185702 fv Log-Normal Cox, Log-Normal FALSE #> 13942 872 0.4682306 0.082330866 fv Log-Normal Cox, Log-Normal FALSE #> 13958 873 0.8744887 0.139709149 fv Log-Normal Cox, Log-Normal FALSE #> 13974 874 0.7783567 0.192580753 fv Log-Normal Cox, Log-Normal FALSE #> 13990 875 0.6773657 0.139640942 fv Log-Normal Cox, Log-Normal FALSE #> 14006 876 0.6165045 0.121485821 fv Log-Normal Cox, Log-Normal FALSE #> 14022 877 0.5859028 0.131899842 fv Log-Normal Cox, Log-Normal FALSE #> 14038 878 0.6917847 0.157165569 fv Log-Normal Cox, Log-Normal FALSE #> 14054 879 0.6977268 0.137740612 fv Log-Normal Cox, Log-Normal FALSE #> 14070 880 0.8483322 0.141854241 fv Log-Normal Cox, Log-Normal FALSE #> 14086 881 0.5661982 0.102733370 fv Log-Normal Cox, Log-Normal FALSE #> 14102 882 0.7169868 0.152447981 fv Log-Normal Cox, Log-Normal FALSE #> 14118 883 0.6447592 0.153543953 fv Log-Normal Cox, Log-Normal FALSE #> 14134 884 0.5975498 0.128517356 fv Log-Normal Cox, Log-Normal FALSE #> 14150 885 0.7782512 0.162836252 fv Log-Normal Cox, Log-Normal FALSE #> 14166 886 0.6628296 0.148932066 fv Log-Normal Cox, Log-Normal FALSE #> 14182 887 0.3830570 0.087415331 fv Log-Normal Cox, Log-Normal FALSE #> 14198 888 0.6791310 0.150167427 fv Log-Normal Cox, Log-Normal FALSE #> 14214 889 0.7780627 0.203727025 fv Log-Normal Cox, Log-Normal FALSE #> 14230 890 0.7108866 0.125667784 fv Log-Normal Cox, Log-Normal FALSE #> 14246 891 0.7540428 0.144451491 fv Log-Normal Cox, Log-Normal FALSE #> 14262 892 1.0121293 0.224929443 fv Log-Normal Cox, Log-Normal FALSE #> 14278 893 0.4956099 0.115792086 fv Log-Normal Cox, Log-Normal FALSE #> 14294 894 0.5889320 0.111970124 fv Log-Normal Cox, Log-Normal FALSE #> 14310 895 0.8335347 0.185574046 fv Log-Normal Cox, Log-Normal FALSE #> 14326 896 0.6037923 0.156766168 fv Log-Normal Cox, Log-Normal FALSE #> 14342 897 0.6843269 0.122402774 fv Log-Normal Cox, Log-Normal FALSE #> 14358 898 0.9409321 0.285299319 fv Log-Normal Cox, Log-Normal TRUE #> 14374 899 0.9418146 0.342156384 fv Log-Normal Cox, Log-Normal TRUE #> 14390 900 0.7374075 0.157498955 fv Log-Normal Cox, Log-Normal FALSE #> 14406 901 0.7858528 0.120999175 fv Log-Normal Cox, Log-Normal FALSE #> 14422 902 0.8540252 0.162479893 fv Log-Normal Cox, Log-Normal FALSE #> 14438 903 0.5849627 0.125627421 fv Log-Normal Cox, Log-Normal FALSE #> 14454 904 0.7057806 0.149798576 fv Log-Normal Cox, Log-Normal FALSE #> 14470 905 0.7357375 0.126263556 fv Log-Normal Cox, Log-Normal FALSE #> 14486 906 0.7226696 0.143793789 fv Log-Normal Cox, Log-Normal FALSE #> 14502 907 0.6382255 0.144489887 fv Log-Normal Cox, Log-Normal FALSE #> 14518 908 0.5633960 0.116541748 fv Log-Normal Cox, Log-Normal FALSE #> 14534 909 0.9533251 0.171236085 fv Log-Normal Cox, Log-Normal FALSE #> 14550 910 0.6853516 0.148763485 fv Log-Normal Cox, Log-Normal FALSE #> 14566 911 0.6876648 0.117291524 fv Log-Normal Cox, Log-Normal FALSE #> 14582 912 0.3920258 0.067947080 fv Log-Normal Cox, Log-Normal FALSE #> 14598 913 0.6137430 0.109088353 fv Log-Normal Cox, Log-Normal FALSE #> 14614 914 0.8636100 0.164033956 fv Log-Normal Cox, Log-Normal FALSE #> 14630 915 0.6906558 0.126734273 fv Log-Normal Cox, Log-Normal FALSE #> 14646 916 0.7289457 0.129897014 fv Log-Normal Cox, Log-Normal FALSE #> 14662 917 0.5314274 0.129139130 fv Log-Normal Cox, Log-Normal FALSE #> 14678 918 0.5742138 0.121553839 fv Log-Normal Cox, Log-Normal FALSE #> 14694 919 0.6544943 0.119380355 fv Log-Normal Cox, Log-Normal FALSE #> 14710 920 0.6868399 0.113637131 fv Log-Normal Cox, Log-Normal FALSE #> 14726 921 1.1773278 0.226105941 fv Log-Normal Cox, Log-Normal TRUE #> 14742 922 0.6144325 0.114228710 fv Log-Normal Cox, Log-Normal FALSE #> 14758 923 1.0843000 0.228582600 fv Log-Normal Cox, Log-Normal FALSE #> 14774 924 0.6749561 0.128183794 fv Log-Normal Cox, Log-Normal FALSE #> 14790 925 0.7478889 0.156179177 fv Log-Normal Cox, Log-Normal FALSE #> 14806 926 0.9518760 0.174183082 fv Log-Normal Cox, Log-Normal FALSE #> 14822 927 0.8086761 0.157608442 fv Log-Normal Cox, Log-Normal FALSE #> 14838 928 0.6843932 0.138396866 fv Log-Normal Cox, Log-Normal FALSE #> 14854 929 0.7647168 0.139036563 fv Log-Normal Cox, Log-Normal FALSE #> 14870 930 0.5777332 0.125461849 fv Log-Normal Cox, Log-Normal FALSE #> 14886 931 0.8122488 0.151665716 fv Log-Normal Cox, Log-Normal FALSE #> 14902 932 0.5420925 0.116762834 fv Log-Normal Cox, Log-Normal FALSE #> 14918 933 0.5739756 0.094085379 fv Log-Normal Cox, Log-Normal FALSE #> 14934 934 0.6826506 0.151986119 fv Log-Normal Cox, Log-Normal FALSE #> 14950 935 0.8998188 0.151748807 fv Log-Normal Cox, Log-Normal FALSE #> 14966 936 0.6997538 0.130621651 fv Log-Normal Cox, Log-Normal FALSE #> 14982 937 0.8472782 0.151815981 fv Log-Normal Cox, Log-Normal FALSE #> 14998 938 0.9004974 0.178529342 fv Log-Normal Cox, Log-Normal FALSE #> 15014 939 0.5682556 0.086970214 fv Log-Normal Cox, Log-Normal FALSE #> 15030 940 0.8662010 0.228227941 fv Log-Normal Cox, Log-Normal FALSE #> 15046 941 0.4726126 0.093706557 fv Log-Normal Cox, Log-Normal FALSE #> 15062 942 0.8714100 0.165388066 fv Log-Normal Cox, Log-Normal FALSE #> 15078 943 0.5203635 0.076183783 fv Log-Normal Cox, Log-Normal FALSE #> 15094 944 0.6583700 0.114715236 fv Log-Normal Cox, Log-Normal FALSE #> 15110 945 1.0014192 0.198006785 fv Log-Normal Cox, Log-Normal FALSE #> 15126 946 0.8283976 0.138699106 fv Log-Normal Cox, Log-Normal FALSE #> 15142 947 0.8336294 0.130080513 fv Log-Normal Cox, Log-Normal FALSE #> 15158 948 0.4624278 0.106368903 fv Log-Normal Cox, Log-Normal FALSE #> 15174 949 0.7755816 0.201619990 fv Log-Normal Cox, Log-Normal FALSE #> 15190 950 0.7749094 0.131061734 fv Log-Normal Cox, Log-Normal FALSE #> 15206 951 0.5867880 0.126974333 fv Log-Normal Cox, Log-Normal FALSE #> 15222 952 0.6279933 0.113401628 fv Log-Normal Cox, Log-Normal FALSE #> 15238 953 0.6028978 0.127851761 fv Log-Normal Cox, Log-Normal FALSE #> 15254 954 0.8198247 0.196525947 fv Log-Normal Cox, Log-Normal FALSE #> 15270 955 0.7011257 0.118020695 fv Log-Normal Cox, Log-Normal FALSE #> 15286 956 0.8909384 0.147092482 fv Log-Normal Cox, Log-Normal FALSE #> 15302 957 0.6256487 0.123780844 fv Log-Normal Cox, Log-Normal FALSE #> 15318 958 0.6012760 0.127411782 fv Log-Normal Cox, Log-Normal FALSE #> 15334 959 0.6842127 0.110349251 fv Log-Normal Cox, Log-Normal FALSE #> 15350 960 0.5962401 0.132639556 fv Log-Normal Cox, Log-Normal FALSE #> 15366 961 0.8256761 0.134731038 fv Log-Normal Cox, Log-Normal FALSE #> 15382 962 0.8480599 0.146238080 fv Log-Normal Cox, Log-Normal FALSE #> 15398 963 0.8964273 0.190800209 fv Log-Normal Cox, Log-Normal FALSE #> 15414 964 0.6844403 0.155462521 fv Log-Normal Cox, Log-Normal FALSE #> 15430 965 0.5646155 0.099615793 fv Log-Normal Cox, Log-Normal FALSE #> 15446 966 1.0564302 0.173266059 fv Log-Normal Cox, Log-Normal FALSE #> 15462 967 0.8965299 0.184549026 fv Log-Normal Cox, Log-Normal FALSE #> 15478 968 0.8387679 0.191014624 fv Log-Normal Cox, Log-Normal FALSE #> 15494 969 1.0086294 0.181030289 fv Log-Normal Cox, Log-Normal FALSE #> 15510 970 0.7743469 0.160146415 fv Log-Normal Cox, Log-Normal FALSE #> 15526 971 0.9588093 0.163447254 fv Log-Normal Cox, Log-Normal FALSE #> 15542 972 0.6142044 0.129972343 fv Log-Normal Cox, Log-Normal FALSE #> 15558 973 0.9177821 0.145918328 fv Log-Normal Cox, Log-Normal FALSE #> 15574 974 0.9095060 0.166708944 fv Log-Normal Cox, Log-Normal FALSE #> 15590 975 1.0452709 0.179306204 fv Log-Normal Cox, Log-Normal FALSE #> 15606 976 0.8166536 0.248030345 fv Log-Normal Cox, Log-Normal TRUE #> 15622 977 1.1346207 0.218925064 fv Log-Normal Cox, Log-Normal TRUE #> 15638 978 0.8376048 0.216970640 fv Log-Normal Cox, Log-Normal FALSE #> 15654 979 0.6250216 0.119316195 fv Log-Normal Cox, Log-Normal FALSE #> 15670 980 0.8403925 0.203135178 fv Log-Normal Cox, Log-Normal FALSE #> 15686 981 0.6682226 0.111181799 fv Log-Normal Cox, Log-Normal FALSE #> 15702 982 0.7057857 0.165757380 fv Log-Normal Cox, Log-Normal FALSE #> 15718 983 0.7389994 0.128759268 fv Log-Normal Cox, Log-Normal FALSE #> 15734 984 0.6410471 0.118385691 fv Log-Normal Cox, Log-Normal FALSE #> 15750 985 0.8274032 0.154219628 fv Log-Normal Cox, Log-Normal FALSE #> 15766 986 0.7677255 0.160069092 fv Log-Normal Cox, Log-Normal FALSE #> 15782 987 0.6687190 0.167108475 fv Log-Normal Cox, Log-Normal FALSE #> 15798 988 0.8994325 0.141177294 fv Log-Normal Cox, Log-Normal FALSE #> 15814 989 0.9739533 0.164384471 fv Log-Normal Cox, Log-Normal FALSE #> 15830 990 0.7007834 0.125967616 fv Log-Normal Cox, Log-Normal FALSE #> 15846 991 0.7971769 0.144583688 fv Log-Normal Cox, Log-Normal FALSE #> 15862 992 0.7144825 0.127981863 fv Log-Normal Cox, Log-Normal FALSE #> 15878 993 0.7552077 0.121304392 fv Log-Normal Cox, Log-Normal FALSE #> 15894 994 0.6920912 0.164611440 fv Log-Normal Cox, Log-Normal FALSE #> 15910 995 0.6370552 0.159854672 fv Log-Normal Cox, Log-Normal FALSE #> 15926 996 0.7158013 0.157550693 fv Log-Normal Cox, Log-Normal FALSE #> 15942 997 0.7112983 0.119441114 fv Log-Normal Cox, Log-Normal FALSE #> 15958 998 0.6493443 0.159161298 fv Log-Normal Cox, Log-Normal FALSE #> 15974 999 0.8004319 0.155806429 fv Log-Normal Cox, Log-Normal FALSE #> 15990 1000 0.7192738 0.144032838 fv Log-Normal Cox, Log-Normal FALSE #> 7 1 0.6405455 0.122690524 fv Log-Normal RP(P), Gamma FALSE #> 23 2 0.6040462 0.117656180 fv Log-Normal RP(P), Gamma FALSE #> 39 3 0.8022026 0.152352601 fv Log-Normal RP(P), Gamma FALSE #> 55 4 0.5259592 0.103211324 fv Log-Normal RP(P), Gamma FALSE #> 71 5 0.7983299 0.149019874 fv Log-Normal RP(P), Gamma FALSE #> 87 6 0.6887647 0.130581125 fv Log-Normal RP(P), Gamma FALSE #> 103 7 0.5143373 0.100826891 fv Log-Normal RP(P), Gamma FALSE #> 119 8 0.7636843 0.144723641 fv Log-Normal RP(P), Gamma FALSE #> 135 9 0.6642983 0.127490449 fv Log-Normal RP(P), Gamma FALSE #> 151 10 0.8292666 0.155612348 fv Log-Normal RP(P), Gamma FALSE #> 167 11 0.7870963 0.147766260 fv Log-Normal RP(P), Gamma FALSE #> 183 12 0.5128538 0.101130755 fv Log-Normal RP(P), Gamma FALSE #> 199 13 0.7531485 0.143377407 fv Log-Normal RP(P), Gamma FALSE #> 215 14 0.6331756 0.120852213 fv Log-Normal RP(P), Gamma FALSE #> 231 15 0.6426603 0.123809994 fv Log-Normal RP(P), Gamma FALSE #> 247 16 0.5322474 0.105162595 fv Log-Normal RP(P), Gamma FALSE #> 263 17 0.6467134 0.126503719 fv Log-Normal RP(P), Gamma FALSE #> 279 18 0.6943998 0.131886091 fv Log-Normal RP(P), Gamma FALSE #> 295 19 0.7899824 0.147933146 fv Log-Normal RP(P), Gamma FALSE #> 311 20 0.5484487 0.107786986 fv Log-Normal RP(P), Gamma FALSE #> 327 21 0.6161933 0.119855712 fv Log-Normal RP(P), Gamma FALSE #> 343 22 0.5040710 0.098879998 fv Log-Normal RP(P), Gamma FALSE #> 359 23 0.8877674 0.167618206 fv Log-Normal RP(P), Gamma FALSE #> 375 24 0.6757630 0.128886073 fv Log-Normal RP(P), Gamma FALSE #> 391 25 0.5307117 0.103738093 fv Log-Normal RP(P), Gamma FALSE #> 407 26 0.6429191 0.123298527 fv Log-Normal RP(P), Gamma FALSE #> 423 27 0.4611677 0.092589138 fv Log-Normal RP(P), Gamma FALSE #> 439 28 0.6456617 0.124703184 fv Log-Normal RP(P), Gamma FALSE #> 455 29 0.9326416 0.171576792 fv Log-Normal RP(P), Gamma FALSE #> 471 30 0.5693105 0.110689741 fv Log-Normal RP(P), Gamma FALSE #> 487 31 0.5125629 0.101588852 fv Log-Normal RP(P), Gamma FALSE #> 503 32 0.5118841 0.101147723 fv Log-Normal RP(P), Gamma FALSE #> 519 33 0.6618378 0.126871990 fv Log-Normal RP(P), Gamma FALSE #> 535 34 0.8797795 0.165259342 fv Log-Normal RP(P), Gamma FALSE #> 551 35 0.5063559 0.102207355 fv Log-Normal RP(P), Gamma FALSE #> 567 36 0.4635876 0.092513305 fv Log-Normal RP(P), Gamma FALSE #> 583 37 0.6395122 0.123631418 fv Log-Normal RP(P), Gamma FALSE #> 599 38 0.6075237 0.118657265 fv Log-Normal RP(P), Gamma FALSE #> 615 39 0.7176400 0.137133349 fv Log-Normal RP(P), Gamma FALSE #> 631 40 0.5781112 0.116042341 fv Log-Normal RP(P), Gamma FALSE #> 647 41 0.6542709 0.124754965 fv Log-Normal RP(P), Gamma FALSE #> 663 42 0.5154684 0.101882146 fv Log-Normal RP(P), Gamma FALSE #> 679 43 0.4670205 0.092725837 fv Log-Normal RP(P), Gamma FALSE #> 695 44 0.6203867 0.118800155 fv Log-Normal RP(P), Gamma FALSE #> 711 45 0.5393777 0.105195798 fv Log-Normal RP(P), Gamma FALSE #> 727 46 0.3151313 0.065214531 fv Log-Normal RP(P), Gamma FALSE #> 743 47 0.7594989 0.142998177 fv Log-Normal RP(P), Gamma FALSE #> 759 48 0.8276292 0.156727119 fv Log-Normal RP(P), Gamma FALSE #> 775 49 0.8478641 0.158244438 fv Log-Normal RP(P), Gamma FALSE #> 791 50 0.5475928 0.107331065 fv Log-Normal RP(P), Gamma FALSE #> 807 51 0.6844050 0.129691061 fv Log-Normal RP(P), Gamma FALSE #> 823 52 0.4849833 0.096565419 fv Log-Normal RP(P), Gamma FALSE #> 839 53 0.8506738 0.158927483 fv Log-Normal RP(P), Gamma FALSE #> 855 54 0.6258808 0.120694285 fv Log-Normal RP(P), Gamma FALSE #> 871 55 0.8334571 0.156035069 fv Log-Normal RP(P), Gamma FALSE #> 887 56 0.7883870 0.150629653 fv Log-Normal RP(P), Gamma FALSE #> 903 57 0.8198680 0.154099203 fv Log-Normal RP(P), Gamma FALSE #> 919 58 0.7046033 0.135489320 fv Log-Normal RP(P), Gamma FALSE #> 935 59 0.6362143 0.122087484 fv Log-Normal RP(P), Gamma FALSE #> 951 60 0.8194371 0.153940246 fv Log-Normal RP(P), Gamma FALSE #> 967 61 0.7165910 0.137115513 fv Log-Normal RP(P), Gamma FALSE #> 983 62 0.6072289 0.118534620 fv Log-Normal RP(P), Gamma FALSE #> 999 63 0.7813425 0.147824198 fv Log-Normal RP(P), Gamma FALSE #> 1015 64 0.6962526 0.132885352 fv Log-Normal RP(P), Gamma FALSE #> 1031 65 0.9532066 0.179257953 fv Log-Normal RP(P), Gamma FALSE #> 1047 66 0.5446300 0.106323243 fv Log-Normal RP(P), Gamma FALSE #> 1063 67 0.5523958 0.108439867 fv Log-Normal RP(P), Gamma FALSE #> 1079 68 0.4935455 0.098591049 fv Log-Normal RP(P), Gamma FALSE #> 1095 69 0.7293272 0.138575438 fv Log-Normal RP(P), Gamma FALSE #> 1111 70 0.6433089 0.123090851 fv Log-Normal RP(P), Gamma FALSE #> 1127 71 0.8654650 0.161985674 fv Log-Normal RP(P), Gamma FALSE #> 1143 72 0.5596582 0.109600090 fv Log-Normal RP(P), Gamma FALSE #> 1159 73 0.6080334 0.117616590 fv Log-Normal RP(P), Gamma FALSE #> 1175 74 0.4192212 0.085190539 fv Log-Normal RP(P), Gamma FALSE #> 1191 75 0.6459502 0.123937508 fv Log-Normal RP(P), Gamma FALSE #> 1207 76 0.5317111 0.103568281 fv Log-Normal RP(P), Gamma FALSE #> 1223 77 0.8201123 0.155989547 fv Log-Normal RP(P), Gamma FALSE #> 1239 78 0.7324703 0.140075929 fv Log-Normal RP(P), Gamma FALSE #> 1255 79 0.9938648 0.182439175 fv Log-Normal RP(P), Gamma TRUE #> 1271 80 0.5406339 0.105944290 fv Log-Normal RP(P), Gamma FALSE #> 1287 81 0.8194269 0.152455464 fv Log-Normal RP(P), Gamma FALSE #> 1303 82 0.6005756 0.115909588 fv Log-Normal RP(P), Gamma FALSE #> 1319 83 0.6898550 0.131609094 fv Log-Normal RP(P), Gamma FALSE #> 1335 84 0.5667630 0.110642783 fv Log-Normal RP(P), Gamma FALSE #> 1351 85 0.6773712 0.132784297 fv Log-Normal RP(P), Gamma FALSE #> 1367 86 0.5699243 0.113421403 fv Log-Normal RP(P), Gamma FALSE #> 1383 87 0.6537014 0.126044444 fv Log-Normal RP(P), Gamma FALSE #> 1399 88 0.6600437 0.127234347 fv Log-Normal RP(P), Gamma FALSE #> 1415 89 0.9099395 0.169648022 fv Log-Normal RP(P), Gamma FALSE #> 1431 90 0.7941829 0.150612563 fv Log-Normal RP(P), Gamma FALSE #> 1447 91 0.7956442 0.149468843 fv Log-Normal RP(P), Gamma FALSE #> 1463 92 0.7891605 0.150545862 fv Log-Normal RP(P), Gamma FALSE #> 1479 93 0.5507555 0.107524863 fv Log-Normal RP(P), Gamma FALSE #> 1495 94 0.6893063 0.131615461 fv Log-Normal RP(P), Gamma FALSE #> 1511 95 0.6382982 0.123572285 fv Log-Normal RP(P), Gamma FALSE #> 1527 96 0.5046216 0.099786695 fv Log-Normal RP(P), Gamma FALSE #> 1543 97 0.7335341 0.140274698 fv Log-Normal RP(P), Gamma FALSE #> 1559 98 0.4142127 0.083239347 fv Log-Normal RP(P), Gamma FALSE #> 1575 99 0.6777154 0.128918607 fv Log-Normal RP(P), Gamma FALSE #> 1591 100 0.5891772 0.114720160 fv Log-Normal RP(P), Gamma FALSE #> 1607 101 0.5518648 0.107174335 fv Log-Normal RP(P), Gamma FALSE #> 1623 102 0.4756834 0.094711857 fv Log-Normal RP(P), Gamma FALSE #> 1639 103 0.7016967 0.133963829 fv Log-Normal RP(P), Gamma FALSE #> 1655 104 0.7084303 0.137263107 fv Log-Normal RP(P), Gamma FALSE #> 1671 105 0.5064685 0.102906578 fv Log-Normal RP(P), Gamma FALSE #> 1687 106 0.5857525 0.114320345 fv Log-Normal RP(P), Gamma FALSE #> 1703 107 0.6995063 0.132392724 fv Log-Normal RP(P), Gamma FALSE #> 1719 108 0.6165509 0.119326267 fv Log-Normal RP(P), Gamma FALSE #> 1735 109 0.8984590 0.168924157 fv Log-Normal RP(P), Gamma FALSE #> 1751 110 0.7971634 0.150429620 fv Log-Normal RP(P), Gamma FALSE #> 1767 111 0.6308884 0.123949462 fv Log-Normal RP(P), Gamma FALSE #> 1783 112 0.6636078 0.127316904 fv Log-Normal RP(P), Gamma FALSE #> 1799 113 0.7259975 0.136892504 fv Log-Normal RP(P), Gamma FALSE #> 1815 114 0.6262837 0.122125778 fv Log-Normal RP(P), Gamma FALSE #> 1831 115 0.6652682 0.127308897 fv Log-Normal RP(P), Gamma FALSE #> 1847 116 0.6770393 0.129129051 fv Log-Normal RP(P), Gamma FALSE #> 1863 117 0.7575098 0.143016176 fv Log-Normal RP(P), Gamma FALSE #> 1879 118 0.5399997 0.105372939 fv Log-Normal RP(P), Gamma FALSE #> 1895 119 0.5340591 0.104867540 fv Log-Normal RP(P), Gamma FALSE #> 1911 120 0.7487613 0.142422272 fv Log-Normal RP(P), Gamma FALSE #> 1927 121 0.6742231 0.129655167 fv Log-Normal RP(P), Gamma FALSE #> 1943 122 0.5368862 0.108010594 fv Log-Normal RP(P), Gamma FALSE #> 1959 123 0.4854876 0.096157026 fv Log-Normal RP(P), Gamma FALSE #> 1975 124 0.5249067 0.104010179 fv Log-Normal RP(P), Gamma FALSE #> 1991 125 0.4728895 0.093518687 fv Log-Normal RP(P), Gamma FALSE #> 2007 126 0.9488240 0.174441002 fv Log-Normal RP(P), Gamma FALSE #> 2023 127 0.4311185 0.086119704 fv Log-Normal RP(P), Gamma FALSE #> 2039 128 0.4413847 0.087730859 fv Log-Normal RP(P), Gamma FALSE #> 2055 129 NA NA fv Log-Normal RP(P), Gamma NA #> 2071 130 0.5336320 0.106231024 fv Log-Normal RP(P), Gamma FALSE #> 2087 131 0.5858983 0.113618046 fv Log-Normal RP(P), Gamma FALSE #> 2103 132 0.6742043 0.128792567 fv Log-Normal RP(P), Gamma FALSE #> 2119 133 0.8441107 0.157692189 fv Log-Normal RP(P), Gamma FALSE #> 2135 134 0.8722116 0.161293518 fv Log-Normal RP(P), Gamma FALSE #> 2151 135 0.6602743 0.128176844 fv Log-Normal RP(P), Gamma FALSE #> 2167 136 0.5612475 0.112751238 fv Log-Normal RP(P), Gamma FALSE #> 2183 137 0.4623204 0.092357534 fv Log-Normal RP(P), Gamma FALSE #> 2199 138 0.4908476 0.097235287 fv Log-Normal RP(P), Gamma FALSE #> 2215 139 0.6199716 0.119201745 fv Log-Normal RP(P), Gamma FALSE #> 2231 140 0.6891782 0.130965978 fv Log-Normal RP(P), Gamma FALSE #> 2247 141 0.4059617 0.082546224 fv Log-Normal RP(P), Gamma FALSE #> 2263 142 0.4534912 0.090599077 fv Log-Normal RP(P), Gamma FALSE #> 2279 143 0.5205738 0.101978989 fv Log-Normal RP(P), Gamma FALSE #> 2295 144 0.6658738 0.130280150 fv Log-Normal RP(P), Gamma FALSE #> 2311 145 0.4853461 0.095873172 fv Log-Normal RP(P), Gamma FALSE #> 2327 146 0.6720809 0.128706896 fv Log-Normal RP(P), Gamma FALSE #> 2343 147 0.6507118 0.128489909 fv Log-Normal RP(P), Gamma FALSE #> 2359 148 0.5095945 0.100822955 fv Log-Normal RP(P), Gamma FALSE #> 2375 149 0.3835714 0.078576851 fv Log-Normal RP(P), Gamma FALSE #> 2391 150 0.5016718 0.099016609 fv Log-Normal RP(P), Gamma FALSE #> 2407 151 0.8315877 0.156138668 fv Log-Normal RP(P), Gamma FALSE #> 2423 152 0.6110434 0.117965209 fv Log-Normal RP(P), Gamma FALSE #> 2439 153 0.7767963 0.147635467 fv Log-Normal RP(P), Gamma FALSE #> 2455 154 0.6464367 0.123675217 fv Log-Normal RP(P), Gamma FALSE #> 2471 155 0.9166992 0.171012178 fv Log-Normal RP(P), Gamma FALSE #> 2487 156 0.5371060 0.105038383 fv Log-Normal RP(P), Gamma FALSE #> 2503 157 0.5603420 0.109709264 fv Log-Normal RP(P), Gamma FALSE #> 2519 158 0.6131854 0.119373111 fv Log-Normal RP(P), Gamma FALSE #> 2535 159 0.6606685 0.127011784 fv Log-Normal RP(P), Gamma FALSE #> 2551 160 0.6082429 0.116880821 fv Log-Normal RP(P), Gamma FALSE #> 2567 161 0.8477261 0.159265826 fv Log-Normal RP(P), Gamma FALSE #> 2583 162 0.8610655 0.160638530 fv Log-Normal RP(P), Gamma FALSE #> 2599 163 0.5255327 0.102820821 fv Log-Normal RP(P), Gamma FALSE #> 2615 164 0.6363234 0.123177257 fv Log-Normal RP(P), Gamma FALSE #> 2631 165 0.4847113 0.095621852 fv Log-Normal RP(P), Gamma FALSE #> 2647 166 0.4273386 0.086136647 fv Log-Normal RP(P), Gamma FALSE #> 2663 167 0.6483222 0.124315665 fv Log-Normal RP(P), Gamma FALSE #> 2679 168 0.7464834 0.140802165 fv Log-Normal RP(P), Gamma FALSE #> 2695 169 0.6310328 0.122313242 fv Log-Normal RP(P), Gamma FALSE #> 2711 170 0.6614880 0.126258548 fv Log-Normal RP(P), Gamma FALSE #> 2727 171 0.7041851 0.133318185 fv Log-Normal RP(P), Gamma FALSE #> 2743 172 0.6398290 0.122342065 fv Log-Normal RP(P), Gamma FALSE #> 2759 173 0.7006805 0.134276835 fv Log-Normal RP(P), Gamma FALSE #> 2775 174 0.5291788 0.103456703 fv Log-Normal RP(P), Gamma FALSE #> 2791 175 0.7108273 0.135795471 fv Log-Normal RP(P), Gamma FALSE #> 2807 176 0.8661291 0.161557935 fv Log-Normal RP(P), Gamma FALSE #> 2823 177 0.6642310 0.126471594 fv Log-Normal RP(P), Gamma FALSE #> 2839 178 0.4796659 0.095097392 fv Log-Normal RP(P), Gamma FALSE #> 2855 179 0.7824077 0.146493201 fv Log-Normal RP(P), Gamma FALSE #> 2871 180 0.4968833 0.098150177 fv Log-Normal RP(P), Gamma FALSE #> 2887 181 0.6323696 0.121435745 fv Log-Normal RP(P), Gamma FALSE #> 2903 182 1.0216845 0.186453940 fv Log-Normal RP(P), Gamma TRUE #> 2919 183 0.6566254 0.127917698 fv Log-Normal RP(P), Gamma FALSE #> 2935 184 0.8214407 0.153256632 fv Log-Normal RP(P), Gamma FALSE #> 2951 185 0.7216302 0.137253976 fv Log-Normal RP(P), Gamma FALSE #> 2967 186 0.6969526 0.133055560 fv Log-Normal RP(P), Gamma FALSE #> 2983 187 0.6428409 0.124161801 fv Log-Normal RP(P), Gamma FALSE #> 2999 188 0.8407790 0.159841769 fv Log-Normal RP(P), Gamma FALSE #> 3015 189 0.6289527 0.121021866 fv Log-Normal RP(P), Gamma FALSE #> 3031 190 0.6326976 0.120915735 fv Log-Normal RP(P), Gamma FALSE #> 3047 191 0.6249393 0.120592489 fv Log-Normal RP(P), Gamma FALSE #> 3063 192 0.6598537 0.128466551 fv Log-Normal RP(P), Gamma FALSE #> 3079 193 0.6102061 0.117379674 fv Log-Normal RP(P), Gamma FALSE #> 3095 194 0.8914916 0.165672989 fv Log-Normal RP(P), Gamma FALSE #> 3111 195 0.5772301 0.113864924 fv Log-Normal RP(P), Gamma FALSE #> 3127 196 0.5383756 0.105235105 fv Log-Normal RP(P), Gamma FALSE #> 3143 197 0.6041119 0.116883514 fv Log-Normal RP(P), Gamma FALSE #> 3159 198 0.7005811 0.133773352 fv Log-Normal RP(P), Gamma FALSE #> 3175 199 0.4750485 0.094149962 fv Log-Normal RP(P), Gamma FALSE #> 3191 200 0.5370248 0.105409839 fv Log-Normal RP(P), Gamma FALSE #> 3207 201 0.7905997 0.148883784 fv Log-Normal RP(P), Gamma FALSE #> 3223 202 0.6263271 0.120314826 fv Log-Normal RP(P), Gamma FALSE #> 3239 203 0.5566798 0.108533443 fv Log-Normal RP(P), Gamma FALSE #> 3255 204 0.5878622 0.114038141 fv Log-Normal RP(P), Gamma FALSE #> 3271 205 0.5479470 0.106767841 fv Log-Normal RP(P), Gamma FALSE #> 3287 206 0.6715801 0.128670374 fv Log-Normal RP(P), Gamma FALSE #> 3303 207 0.8542152 0.163744329 fv Log-Normal RP(P), Gamma FALSE #> 3319 208 0.8157609 0.151809241 fv Log-Normal RP(P), Gamma FALSE #> 3335 209 0.5728611 0.111944591 fv Log-Normal RP(P), Gamma FALSE #> 3351 210 0.5943906 0.115022190 fv Log-Normal RP(P), Gamma FALSE #> 3367 211 0.7064552 0.134382106 fv Log-Normal RP(P), Gamma FALSE #> 3383 212 0.6689386 0.127628218 fv Log-Normal RP(P), Gamma FALSE #> 3399 213 0.5688727 0.111551542 fv Log-Normal RP(P), Gamma FALSE #> 3415 214 0.5600375 0.108774437 fv Log-Normal RP(P), Gamma FALSE #> 3431 215 0.6737893 0.131910998 fv Log-Normal RP(P), Gamma FALSE #> 3447 216 0.8405789 0.157041468 fv Log-Normal RP(P), Gamma FALSE #> 3463 217 0.6564690 0.126109444 fv Log-Normal RP(P), Gamma FALSE #> 3479 218 0.6246779 0.123646184 fv Log-Normal RP(P), Gamma FALSE #> 3495 219 0.8259887 0.156771669 fv Log-Normal RP(P), Gamma FALSE #> 3511 220 0.7024489 0.133066264 fv Log-Normal RP(P), Gamma FALSE #> 3527 221 0.5596475 0.109357114 fv Log-Normal RP(P), Gamma FALSE #> 3543 222 0.3319187 0.068263082 fv Log-Normal RP(P), Gamma FALSE #> 3559 223 0.4898847 0.096767377 fv Log-Normal RP(P), Gamma FALSE #> 3575 224 0.4907177 0.096440093 fv Log-Normal RP(P), Gamma FALSE #> 3591 225 0.7652595 0.144819052 fv Log-Normal RP(P), Gamma FALSE #> 3607 226 0.8552764 0.158589758 fv Log-Normal RP(P), Gamma FALSE #> 3623 227 0.6388617 0.122214127 fv Log-Normal RP(P), Gamma FALSE #> 3639 228 0.7198722 0.136042538 fv Log-Normal RP(P), Gamma FALSE #> 3655 229 0.3795975 0.077804857 fv Log-Normal RP(P), Gamma FALSE #> 3671 230 0.5809617 0.113716968 fv Log-Normal RP(P), Gamma FALSE #> 3687 231 0.5863665 0.113707295 fv Log-Normal RP(P), Gamma FALSE #> 3703 232 0.8032751 0.151280169 fv Log-Normal RP(P), Gamma FALSE #> 3719 233 0.8531541 0.160153943 fv Log-Normal RP(P), Gamma FALSE #> 3735 234 0.8495275 0.159594009 fv Log-Normal RP(P), Gamma FALSE #> 3751 235 0.4897131 0.096464651 fv Log-Normal RP(P), Gamma FALSE #> 3767 236 0.5762813 0.112345236 fv Log-Normal RP(P), Gamma FALSE #> 3783 237 0.5286123 0.104396860 fv Log-Normal RP(P), Gamma FALSE #> 3799 238 0.7811056 0.148031077 fv Log-Normal RP(P), Gamma FALSE #> 3815 239 0.8198879 0.155297026 fv Log-Normal RP(P), Gamma FALSE #> 3831 240 0.5414650 0.105722595 fv Log-Normal RP(P), Gamma FALSE #> 3847 241 0.6511463 0.125298011 fv Log-Normal RP(P), Gamma FALSE #> 3863 242 0.4836988 0.095465475 fv Log-Normal RP(P), Gamma FALSE #> 3879 243 0.6196244 0.120104981 fv Log-Normal RP(P), Gamma FALSE #> 3895 244 0.5113606 0.100849696 fv Log-Normal RP(P), Gamma FALSE #> 3911 245 0.4278909 0.085833193 fv Log-Normal RP(P), Gamma FALSE #> 3927 246 0.7643256 0.148247377 fv Log-Normal RP(P), Gamma FALSE #> 3943 247 0.6396835 0.124646729 fv Log-Normal RP(P), Gamma FALSE #> 3959 248 0.8887262 0.165189703 fv Log-Normal RP(P), Gamma FALSE #> 3975 249 0.5107049 0.100257685 fv Log-Normal RP(P), Gamma FALSE #> 3991 250 0.7077054 0.135338727 fv Log-Normal RP(P), Gamma FALSE #> 4007 251 0.5668351 0.110779312 fv Log-Normal RP(P), Gamma FALSE #> 4023 252 0.4787966 0.096884322 fv Log-Normal RP(P), Gamma FALSE #> 4039 253 0.7726230 0.145916040 fv Log-Normal RP(P), Gamma FALSE #> 4055 254 0.6804182 0.131478555 fv Log-Normal RP(P), Gamma FALSE #> 4071 255 0.8644481 0.162650447 fv Log-Normal RP(P), Gamma FALSE #> 4087 256 0.7870450 0.149599723 fv Log-Normal RP(P), Gamma FALSE #> 4103 257 0.7192110 0.135991127 fv Log-Normal RP(P), Gamma FALSE #> 4119 258 0.4068613 0.083073788 fv Log-Normal RP(P), Gamma FALSE #> 4135 259 0.5817998 0.112751709 fv Log-Normal RP(P), Gamma FALSE #> 4151 260 0.5469431 0.106420507 fv Log-Normal RP(P), Gamma FALSE #> 4167 261 0.7080536 0.133881161 fv Log-Normal RP(P), Gamma FALSE #> 4183 262 0.5942497 0.115095777 fv Log-Normal RP(P), Gamma FALSE #> 4199 263 0.7020528 0.133587665 fv Log-Normal RP(P), Gamma FALSE #> 4215 264 0.7159177 0.137273577 fv Log-Normal RP(P), Gamma FALSE #> 4231 265 0.5643244 0.109794624 fv Log-Normal RP(P), Gamma FALSE #> 4247 266 0.5478052 0.106965318 fv Log-Normal RP(P), Gamma FALSE #> 4263 267 0.5885489 0.115653369 fv Log-Normal RP(P), Gamma FALSE #> 4279 268 0.8693749 0.161917429 fv Log-Normal RP(P), Gamma FALSE #> 4295 269 0.5582825 0.109290397 fv Log-Normal RP(P), Gamma FALSE #> 4311 270 0.5684455 0.110779055 fv Log-Normal RP(P), Gamma FALSE #> 4327 271 0.7749650 0.149141098 fv Log-Normal RP(P), Gamma FALSE #> 4343 272 0.5156209 0.101591602 fv Log-Normal RP(P), Gamma FALSE #> 4359 273 0.6159012 0.118371233 fv Log-Normal RP(P), Gamma FALSE #> 4375 274 0.7947242 0.153820357 fv Log-Normal RP(P), Gamma FALSE #> 4391 275 0.6368109 0.127096784 fv Log-Normal RP(P), Gamma FALSE #> 4407 276 0.6711689 0.127922100 fv Log-Normal RP(P), Gamma FALSE #> 4423 277 0.6940475 0.133116364 fv Log-Normal RP(P), Gamma FALSE #> 4439 278 0.5152790 0.101199568 fv Log-Normal RP(P), Gamma FALSE #> 4455 279 0.8113280 0.153290256 fv Log-Normal RP(P), Gamma FALSE #> 4471 280 0.7000853 0.133350179 fv Log-Normal RP(P), Gamma FALSE #> 4487 281 0.6962477 0.133227021 fv Log-Normal RP(P), Gamma FALSE #> 4503 282 0.5426193 0.105700649 fv Log-Normal RP(P), Gamma FALSE #> 4519 283 0.6864975 0.130397237 fv Log-Normal RP(P), Gamma FALSE #> 4535 284 0.5396176 0.105832850 fv Log-Normal RP(P), Gamma FALSE #> 4551 285 0.5913837 0.114382562 fv Log-Normal RP(P), Gamma FALSE #> 4567 286 0.6302251 0.122112449 fv Log-Normal RP(P), Gamma FALSE #> 4583 287 0.5331961 0.104369454 fv Log-Normal RP(P), Gamma FALSE #> 4599 288 0.5392503 0.105693369 fv Log-Normal RP(P), Gamma FALSE #> 4615 289 0.6092166 0.117897281 fv Log-Normal RP(P), Gamma FALSE #> 4631 290 0.6196235 0.119781773 fv Log-Normal RP(P), Gamma FALSE #> 4647 291 0.6359919 0.121775820 fv Log-Normal RP(P), Gamma FALSE #> 4663 292 0.5575946 0.109509524 fv Log-Normal RP(P), Gamma FALSE #> 4679 293 0.5651291 0.109070835 fv Log-Normal RP(P), Gamma FALSE #> 4695 294 0.6422035 0.123311702 fv Log-Normal RP(P), Gamma FALSE #> 4711 295 0.5802791 0.113172050 fv Log-Normal RP(P), Gamma FALSE #> 4727 296 0.7555790 0.143540463 fv Log-Normal RP(P), Gamma FALSE #> 4743 297 0.3852702 0.078217517 fv Log-Normal RP(P), Gamma FALSE #> 4759 298 0.5804362 0.112370909 fv Log-Normal RP(P), Gamma FALSE #> 4775 299 0.7034566 0.133837283 fv Log-Normal RP(P), Gamma FALSE #> 4791 300 0.5792017 0.112548997 fv Log-Normal RP(P), Gamma FALSE #> 4807 301 0.9200582 0.170247237 fv Log-Normal RP(P), Gamma FALSE #> 4823 302 0.7453558 0.144203963 fv Log-Normal RP(P), Gamma FALSE #> 4839 303 0.5897325 0.114210118 fv Log-Normal RP(P), Gamma FALSE #> 4855 304 0.5895917 0.114060297 fv Log-Normal RP(P), Gamma FALSE #> 4871 305 0.7011073 0.133304181 fv Log-Normal RP(P), Gamma FALSE #> 4887 306 0.5567072 0.109075590 fv Log-Normal RP(P), Gamma FALSE #> 4903 307 0.5115247 0.099800267 fv Log-Normal RP(P), Gamma FALSE #> 4919 308 0.6127341 0.118267081 fv Log-Normal RP(P), Gamma FALSE #> 4935 309 0.5241423 0.102639868 fv Log-Normal RP(P), Gamma FALSE #> 4951 310 0.5755538 0.112432453 fv Log-Normal RP(P), Gamma FALSE #> 4967 311 0.7951455 0.149340322 fv Log-Normal RP(P), Gamma FALSE #> 4983 312 0.5859886 0.113064816 fv Log-Normal RP(P), Gamma FALSE #> 4999 313 0.4372528 0.087909712 fv Log-Normal RP(P), Gamma FALSE #> 5015 314 0.6147684 0.119382806 fv Log-Normal RP(P), Gamma FALSE #> 5031 315 0.5645028 0.109393669 fv Log-Normal RP(P), Gamma FALSE #> 5047 316 0.5565989 0.109845464 fv Log-Normal RP(P), Gamma FALSE #> 5063 317 0.7191520 0.135613702 fv Log-Normal RP(P), Gamma FALSE #> 5079 318 0.5965863 0.120080385 fv Log-Normal RP(P), Gamma FALSE #> 5095 319 0.6537813 0.125979738 fv Log-Normal RP(P), Gamma FALSE #> 5111 320 0.7201799 0.136255734 fv Log-Normal RP(P), Gamma FALSE #> 5127 321 0.8328070 0.157289651 fv Log-Normal RP(P), Gamma FALSE #> 5143 322 0.4960487 0.098036056 fv Log-Normal RP(P), Gamma FALSE #> 5159 323 0.6557055 0.125129845 fv Log-Normal RP(P), Gamma FALSE #> 5175 324 0.4850376 0.096139606 fv Log-Normal RP(P), Gamma FALSE #> 5191 325 0.5705067 0.111972275 fv Log-Normal RP(P), Gamma FALSE #> 5207 326 0.7884406 0.148717603 fv Log-Normal RP(P), Gamma FALSE #> 5223 327 0.4470598 0.088883562 fv Log-Normal RP(P), Gamma FALSE #> 5239 328 0.6211920 0.118836862 fv Log-Normal RP(P), Gamma FALSE #> 5255 329 0.6073953 0.118395269 fv Log-Normal RP(P), Gamma FALSE #> 5271 330 0.4730565 0.093665743 fv Log-Normal RP(P), Gamma FALSE #> 5287 331 0.7787809 0.146186396 fv Log-Normal RP(P), Gamma FALSE #> 5303 332 0.6139570 0.118138831 fv Log-Normal RP(P), Gamma FALSE #> 5319 333 0.4885412 0.097414696 fv Log-Normal RP(P), Gamma FALSE #> 5335 334 0.4894316 0.096621925 fv Log-Normal RP(P), Gamma FALSE #> 5351 335 0.5028639 0.099176225 fv Log-Normal RP(P), Gamma FALSE #> 5367 336 0.7814231 0.148463487 fv Log-Normal RP(P), Gamma FALSE #> 5383 337 0.6035500 0.116907362 fv Log-Normal RP(P), Gamma FALSE #> 5399 338 0.6560915 0.125409466 fv Log-Normal RP(P), Gamma FALSE #> 5415 339 0.5183767 0.102142302 fv Log-Normal RP(P), Gamma FALSE #> 5431 340 0.8199144 0.154586635 fv Log-Normal RP(P), Gamma FALSE #> 5447 341 0.5944860 0.117533729 fv Log-Normal RP(P), Gamma FALSE #> 5463 342 0.5193587 0.101756311 fv Log-Normal RP(P), Gamma FALSE #> 5479 343 0.5446257 0.106850374 fv Log-Normal RP(P), Gamma FALSE #> 5495 344 0.6177256 0.119809792 fv Log-Normal RP(P), Gamma FALSE #> 5511 345 0.5759749 0.111483975 fv Log-Normal RP(P), Gamma FALSE #> 5527 346 0.4476355 0.090001470 fv Log-Normal RP(P), Gamma FALSE #> 5543 347 0.5928304 0.115552336 fv Log-Normal RP(P), Gamma FALSE #> 5559 348 0.5431772 0.107072485 fv Log-Normal RP(P), Gamma FALSE #> 5575 349 0.5982843 0.115709329 fv Log-Normal RP(P), Gamma FALSE #> 5591 350 0.7122423 0.135849723 fv Log-Normal RP(P), Gamma FALSE #> 5607 351 0.5011156 0.098603090 fv Log-Normal RP(P), Gamma FALSE #> 5623 352 0.7612241 0.144981811 fv Log-Normal RP(P), Gamma FALSE #> 5639 353 0.6852220 0.132046410 fv Log-Normal RP(P), Gamma FALSE #> 5655 354 0.5857311 0.113477028 fv Log-Normal RP(P), Gamma FALSE #> 5671 355 0.6652417 0.127193917 fv Log-Normal RP(P), Gamma FALSE #> 5687 356 0.6173133 0.120742547 fv Log-Normal RP(P), Gamma FALSE #> 5703 357 0.9043420 0.173016497 fv Log-Normal RP(P), Gamma FALSE #> 5719 358 0.6080989 0.117536852 fv Log-Normal RP(P), Gamma FALSE #> 5735 359 0.4819349 0.096115857 fv Log-Normal RP(P), Gamma FALSE #> 5751 360 0.5666892 0.109982691 fv Log-Normal RP(P), Gamma FALSE #> 5767 361 0.5681239 0.110789224 fv Log-Normal RP(P), Gamma FALSE #> 5783 362 0.6273366 0.122363810 fv Log-Normal RP(P), Gamma FALSE #> 5799 363 0.5816115 0.114102264 fv Log-Normal RP(P), Gamma FALSE #> 5815 364 0.6876475 0.130288820 fv Log-Normal RP(P), Gamma FALSE #> 5831 365 0.6489056 0.124382293 fv Log-Normal RP(P), Gamma FALSE #> 5847 366 0.5872749 0.113916746 fv Log-Normal RP(P), Gamma FALSE #> 5863 367 0.7316313 0.139986854 fv Log-Normal RP(P), Gamma FALSE #> 5879 368 0.8058332 0.151315932 fv Log-Normal RP(P), Gamma FALSE #> 5895 369 0.5094609 0.100121566 fv Log-Normal RP(P), Gamma FALSE #> 5911 370 0.6612134 0.126708507 fv Log-Normal RP(P), Gamma FALSE #> 5927 371 0.6350437 0.124249605 fv Log-Normal RP(P), Gamma FALSE #> 5943 372 0.4578136 0.091413362 fv Log-Normal RP(P), Gamma FALSE #> 5959 373 0.8627763 0.160868809 fv Log-Normal RP(P), Gamma FALSE #> 5975 374 0.5059833 0.100171027 fv Log-Normal RP(P), Gamma FALSE #> 5991 375 0.6308717 0.122756047 fv Log-Normal RP(P), Gamma FALSE #> 6007 376 0.6040654 0.116977417 fv Log-Normal RP(P), Gamma FALSE #> 6023 377 0.4763770 0.094353796 fv Log-Normal RP(P), Gamma FALSE #> 6039 378 0.5335836 0.104644051 fv Log-Normal RP(P), Gamma FALSE #> 6055 379 0.4834626 0.095929962 fv Log-Normal RP(P), Gamma FALSE #> 6071 380 0.5706786 0.110657205 fv Log-Normal RP(P), Gamma FALSE #> 6087 381 0.6870494 0.130888764 fv Log-Normal RP(P), Gamma FALSE #> 6103 382 0.6297807 0.121858418 fv Log-Normal RP(P), Gamma FALSE #> 6119 383 0.6695102 0.128506247 fv Log-Normal RP(P), Gamma FALSE #> 6135 384 0.5836747 0.112718407 fv Log-Normal RP(P), Gamma FALSE #> 6151 385 0.5061154 0.100209905 fv Log-Normal RP(P), Gamma FALSE #> 6167 386 0.7746371 0.147352863 fv Log-Normal RP(P), Gamma FALSE #> 6183 387 0.5793071 0.114012787 fv Log-Normal RP(P), Gamma FALSE #> 6199 388 0.7006456 0.132262925 fv Log-Normal RP(P), Gamma FALSE #> 6215 389 0.6591775 0.125828401 fv Log-Normal RP(P), Gamma FALSE #> 6231 390 0.5756189 0.112118694 fv Log-Normal RP(P), Gamma FALSE #> 6247 391 0.7166769 0.135906531 fv Log-Normal RP(P), Gamma FALSE #> 6263 392 0.5582759 0.109346080 fv Log-Normal RP(P), Gamma FALSE #> 6279 393 0.5188225 0.102003293 fv Log-Normal RP(P), Gamma FALSE #> 6295 394 0.8340129 0.157802893 fv Log-Normal RP(P), Gamma FALSE #> 6311 395 0.6561839 0.125677696 fv Log-Normal RP(P), Gamma FALSE #> 6327 396 0.8530720 0.159253424 fv Log-Normal RP(P), Gamma FALSE #> 6343 397 0.5767037 0.111714735 fv Log-Normal RP(P), Gamma FALSE #> 6359 398 0.5759109 0.111597778 fv Log-Normal RP(P), Gamma FALSE #> 6375 399 0.7355098 0.139897611 fv Log-Normal RP(P), Gamma FALSE #> 6391 400 0.4833498 0.096136542 fv Log-Normal RP(P), Gamma FALSE #> 6407 401 0.5287786 0.103547267 fv Log-Normal RP(P), Gamma FALSE #> 6423 402 0.4729205 0.094927871 fv Log-Normal RP(P), Gamma FALSE #> 6439 403 0.4768322 0.093865073 fv Log-Normal RP(P), Gamma FALSE #> 6455 404 0.5503689 0.108894551 fv Log-Normal RP(P), Gamma FALSE #> 6471 405 0.4675984 0.093559702 fv Log-Normal RP(P), Gamma FALSE #> 6487 406 0.5998105 0.115658274 fv Log-Normal RP(P), Gamma FALSE #> 6503 407 0.7071862 0.135917794 fv Log-Normal RP(P), Gamma FALSE #> 6519 408 0.4551711 0.092545500 fv Log-Normal RP(P), Gamma FALSE #> 6535 409 0.6003096 0.116002539 fv Log-Normal RP(P), Gamma FALSE #> 6551 410 0.7354522 0.141341112 fv Log-Normal RP(P), Gamma FALSE #> 6567 411 0.5842355 0.114276721 fv Log-Normal RP(P), Gamma FALSE #> 6583 412 0.6358926 0.123916656 fv Log-Normal RP(P), Gamma FALSE #> 6599 413 0.4809322 0.096109620 fv Log-Normal RP(P), Gamma FALSE #> 6615 414 0.8207219 0.154498864 fv Log-Normal RP(P), Gamma FALSE #> 6631 415 1.0478283 0.190504759 fv Log-Normal RP(P), Gamma TRUE #> 6647 416 0.5063546 0.100886285 fv Log-Normal RP(P), Gamma FALSE #> 6663 417 0.5075324 0.100029009 fv Log-Normal RP(P), Gamma FALSE #> 6679 418 0.7581325 0.142360888 fv Log-Normal RP(P), Gamma FALSE #> 6695 419 0.4093657 0.082325590 fv Log-Normal RP(P), Gamma FALSE #> 6711 420 0.6457404 0.124412096 fv Log-Normal RP(P), Gamma FALSE #> 6727 421 0.7234085 0.138143903 fv Log-Normal RP(P), Gamma FALSE #> 6743 422 0.5477184 0.108345673 fv Log-Normal RP(P), Gamma FALSE #> 6759 423 0.5300261 0.103870701 fv Log-Normal RP(P), Gamma FALSE #> 6775 424 0.5958915 0.115434340 fv Log-Normal RP(P), Gamma FALSE #> 6791 425 0.7100163 0.136393457 fv Log-Normal RP(P), Gamma FALSE #> 6807 426 0.7479045 0.142305623 fv Log-Normal RP(P), Gamma FALSE #> 6823 427 0.9319722 0.173864781 fv Log-Normal RP(P), Gamma FALSE #> 6839 428 0.7297775 0.139498288 fv Log-Normal RP(P), Gamma FALSE #> 6855 429 0.6427432 0.123394639 fv Log-Normal RP(P), Gamma FALSE #> 6871 430 0.7897896 0.149428903 fv Log-Normal RP(P), Gamma FALSE #> 6887 431 0.5758042 0.112117071 fv Log-Normal RP(P), Gamma FALSE #> 6903 432 0.7845424 0.148213986 fv Log-Normal RP(P), Gamma FALSE #> 6919 433 0.5083695 0.099715747 fv Log-Normal RP(P), Gamma FALSE #> 6935 434 0.5697794 0.111842649 fv Log-Normal RP(P), Gamma FALSE #> 6951 435 0.4351491 0.087346250 fv Log-Normal RP(P), Gamma FALSE #> 6967 436 0.6492604 0.124247657 fv Log-Normal RP(P), Gamma FALSE #> 6983 437 0.4988429 0.098454001 fv Log-Normal RP(P), Gamma FALSE #> 6999 438 0.7564725 0.143124263 fv Log-Normal RP(P), Gamma FALSE #> 7015 439 0.5207554 0.103025427 fv Log-Normal RP(P), Gamma FALSE #> 7031 440 0.4006907 0.082110901 fv Log-Normal RP(P), Gamma FALSE #> 7047 441 0.5223614 0.103142164 fv Log-Normal RP(P), Gamma FALSE #> 7063 442 0.6273843 0.121115548 fv Log-Normal RP(P), Gamma FALSE #> 7079 443 0.7123241 0.136178257 fv Log-Normal RP(P), Gamma FALSE #> 7095 444 0.8116075 0.154510279 fv Log-Normal RP(P), Gamma FALSE #> 7111 445 0.7520363 0.141861132 fv Log-Normal RP(P), Gamma FALSE #> 7127 446 0.5504050 0.107298726 fv Log-Normal RP(P), Gamma FALSE #> 7143 447 0.7152656 0.135495651 fv Log-Normal RP(P), Gamma FALSE #> 7159 448 0.7269417 0.137299228 fv Log-Normal RP(P), Gamma FALSE #> 7175 449 0.8130967 0.153586780 fv Log-Normal RP(P), Gamma FALSE #> 7191 450 0.5713784 0.110828743 fv Log-Normal RP(P), Gamma FALSE #> 7207 451 0.6855537 0.130631019 fv Log-Normal RP(P), Gamma FALSE #> 7223 452 0.6852773 0.130601824 fv Log-Normal RP(P), Gamma FALSE #> 7239 453 0.6419976 0.123417285 fv Log-Normal RP(P), Gamma FALSE #> 7255 454 0.5915648 0.114794688 fv Log-Normal RP(P), Gamma FALSE #> 7271 455 0.5989062 0.116767828 fv Log-Normal RP(P), Gamma FALSE #> 7287 456 0.4514905 0.090400569 fv Log-Normal RP(P), Gamma FALSE #> 7303 457 0.7626711 0.143657175 fv Log-Normal RP(P), Gamma FALSE #> 7319 458 0.6695412 0.129232733 fv Log-Normal RP(P), Gamma FALSE #> 7335 459 0.7901092 0.149271994 fv Log-Normal RP(P), Gamma FALSE #> 7351 460 0.5384375 0.104506896 fv Log-Normal RP(P), Gamma FALSE #> 7367 461 0.6738614 0.128328530 fv Log-Normal RP(P), Gamma FALSE #> 7383 462 0.5995043 0.115203166 fv Log-Normal RP(P), Gamma FALSE #> 7399 463 0.8008576 0.152482024 fv Log-Normal RP(P), Gamma FALSE #> 7415 464 0.6534097 0.124409356 fv Log-Normal RP(P), Gamma FALSE #> 7431 465 0.7405431 0.140658325 fv Log-Normal RP(P), Gamma FALSE #> 7447 466 0.7429010 0.141190155 fv Log-Normal RP(P), Gamma FALSE #> 7463 467 0.6592663 0.127357206 fv Log-Normal RP(P), Gamma FALSE #> 7479 468 0.7478064 0.140591623 fv Log-Normal RP(P), Gamma FALSE #> 7495 469 0.7980469 0.151851588 fv Log-Normal RP(P), Gamma FALSE #> 7511 470 0.6707510 0.129109794 fv Log-Normal RP(P), Gamma FALSE #> 7527 471 0.5195360 0.101809578 fv Log-Normal RP(P), Gamma FALSE #> 7543 472 0.7761691 0.146491082 fv Log-Normal RP(P), Gamma FALSE #> 7559 473 0.6077641 0.117774706 fv Log-Normal RP(P), Gamma FALSE #> 7575 474 0.8208932 0.153749136 fv Log-Normal RP(P), Gamma FALSE #> 7591 475 0.5398973 0.105059599 fv Log-Normal RP(P), Gamma FALSE #> 7607 476 0.4413755 0.088778916 fv Log-Normal RP(P), Gamma FALSE #> 7623 477 0.4970617 0.099301281 fv Log-Normal RP(P), Gamma FALSE #> 7639 478 0.6622706 0.125773445 fv Log-Normal RP(P), Gamma FALSE #> 7655 479 0.6789292 0.129891752 fv Log-Normal RP(P), Gamma FALSE #> 7671 480 0.9229350 0.172022096 fv Log-Normal RP(P), Gamma FALSE #> 7687 481 0.8684971 0.161812769 fv Log-Normal RP(P), Gamma FALSE #> 7703 482 0.6084379 0.117279552 fv Log-Normal RP(P), Gamma FALSE #> 7719 483 0.7379684 0.139763885 fv Log-Normal RP(P), Gamma FALSE #> 7735 484 0.7328743 0.138984469 fv Log-Normal RP(P), Gamma FALSE #> 7751 485 0.5262836 0.103060594 fv Log-Normal RP(P), Gamma FALSE #> 7767 486 0.3908574 0.078920916 fv Log-Normal RP(P), Gamma FALSE #> 7783 487 0.7438818 0.140375079 fv Log-Normal RP(P), Gamma FALSE #> 7799 488 0.3983944 0.080663557 fv Log-Normal RP(P), Gamma FALSE #> 7815 489 0.6557783 0.126320270 fv Log-Normal RP(P), Gamma FALSE #> 7831 490 0.6026455 0.116547326 fv Log-Normal RP(P), Gamma FALSE #> 7847 491 0.6247174 0.121016263 fv Log-Normal RP(P), Gamma FALSE #> 7863 492 0.4832708 0.095096379 fv Log-Normal RP(P), Gamma FALSE #> 7879 493 0.9574865 0.177139532 fv Log-Normal RP(P), Gamma FALSE #> 7895 494 0.6006230 0.115956493 fv Log-Normal RP(P), Gamma FALSE #> 7911 495 0.7155432 0.135390082 fv Log-Normal RP(P), Gamma FALSE #> 7927 496 0.8779148 0.162996545 fv Log-Normal RP(P), Gamma FALSE #> 7943 497 0.5217565 0.102371859 fv Log-Normal RP(P), Gamma FALSE #> 7959 498 0.6078818 0.118535765 fv Log-Normal RP(P), Gamma FALSE #> 7975 499 0.7589340 0.144470802 fv Log-Normal RP(P), Gamma FALSE #> 7991 500 0.6576165 0.127056728 fv Log-Normal RP(P), Gamma FALSE #> 8007 501 1.1934506 0.215189767 fv Log-Normal RP(P), Gamma TRUE #> 8023 502 0.7026905 0.134449675 fv Log-Normal RP(P), Gamma FALSE #> 8039 503 0.6461175 0.123792245 fv Log-Normal RP(P), Gamma FALSE #> 8055 504 0.7780519 0.146498296 fv Log-Normal RP(P), Gamma FALSE #> 8071 505 0.6050506 0.116115429 fv Log-Normal RP(P), Gamma FALSE #> 8087 506 0.8133249 0.152842454 fv Log-Normal RP(P), Gamma FALSE #> 8103 507 0.5879703 0.113085205 fv Log-Normal RP(P), Gamma FALSE #> 8119 508 0.5068504 0.101178044 fv Log-Normal RP(P), Gamma FALSE #> 8135 509 0.5746260 0.111451015 fv Log-Normal RP(P), Gamma FALSE #> 8151 510 0.5602904 0.108703773 fv Log-Normal RP(P), Gamma FALSE #> 8167 511 0.4046575 0.081300884 fv Log-Normal RP(P), Gamma FALSE #> 8183 512 0.5938522 0.114988561 fv Log-Normal RP(P), Gamma FALSE #> 8199 513 0.6468916 0.123938467 fv Log-Normal RP(P), Gamma FALSE #> 8215 514 0.6397314 0.123893154 fv Log-Normal RP(P), Gamma FALSE #> 8231 515 0.5028497 0.099639884 fv Log-Normal RP(P), Gamma FALSE #> 8247 516 0.6476726 0.124767612 fv Log-Normal RP(P), Gamma FALSE #> 8263 517 0.3325667 0.068670557 fv Log-Normal RP(P), Gamma FALSE #> 8279 518 0.6558678 0.125826549 fv Log-Normal RP(P), Gamma FALSE #> 8295 519 0.6732987 0.128685268 fv Log-Normal RP(P), Gamma FALSE #> 8311 520 0.6850792 0.130179158 fv Log-Normal RP(P), Gamma FALSE #> 8327 521 0.6370219 0.122012074 fv Log-Normal RP(P), Gamma FALSE #> 8343 522 0.4885136 0.096484117 fv Log-Normal RP(P), Gamma FALSE #> 8359 523 0.6496220 0.124197298 fv Log-Normal RP(P), Gamma FALSE #> 8375 524 0.5234049 0.104270802 fv Log-Normal RP(P), Gamma FALSE #> 8391 525 0.6765518 0.130414457 fv Log-Normal RP(P), Gamma FALSE #> 8407 526 0.5584063 0.109625927 fv Log-Normal RP(P), Gamma FALSE #> 8423 527 0.6834322 0.132081427 fv Log-Normal RP(P), Gamma FALSE #> 8439 528 0.7426000 0.140512963 fv Log-Normal RP(P), Gamma FALSE #> 8455 529 0.7934196 0.148789101 fv Log-Normal RP(P), Gamma FALSE #> 8471 530 0.3948235 0.080023161 fv Log-Normal RP(P), Gamma FALSE #> 8487 531 0.7875890 0.147558495 fv Log-Normal RP(P), Gamma FALSE #> 8503 532 0.6135217 0.117702935 fv Log-Normal RP(P), Gamma FALSE #> 8519 533 0.6120718 0.118048211 fv Log-Normal RP(P), Gamma FALSE #> 8535 534 0.6716551 0.129306507 fv Log-Normal RP(P), Gamma FALSE #> 8551 535 0.7335196 0.138512829 fv Log-Normal RP(P), Gamma FALSE #> 8567 536 0.5204424 0.102465629 fv Log-Normal RP(P), Gamma FALSE #> 8583 537 1.0379600 0.188908964 fv Log-Normal RP(P), Gamma TRUE #> 8599 538 0.4548943 0.090692268 fv Log-Normal RP(P), Gamma FALSE #> 8615 539 0.6713151 0.130815161 fv Log-Normal RP(P), Gamma FALSE #> 8631 540 0.5523580 0.107988775 fv Log-Normal RP(P), Gamma FALSE #> 8647 541 0.8042797 0.150903144 fv Log-Normal RP(P), Gamma FALSE #> 8663 542 0.6949027 0.132583092 fv Log-Normal RP(P), Gamma FALSE #> 8679 543 0.7476093 0.142469608 fv Log-Normal RP(P), Gamma FALSE #> 8695 544 0.6774908 0.129791800 fv Log-Normal RP(P), Gamma FALSE #> 8711 545 0.5143813 0.100902954 fv Log-Normal RP(P), Gamma FALSE #> 8727 546 0.8312447 0.156455946 fv Log-Normal RP(P), Gamma FALSE #> 8743 547 0.6121114 0.118650971 fv Log-Normal RP(P), Gamma FALSE #> 8759 548 0.5140565 0.102068375 fv Log-Normal RP(P), Gamma FALSE #> 8775 549 0.7348816 0.138826062 fv Log-Normal RP(P), Gamma FALSE #> 8791 550 0.5090552 0.102033236 fv Log-Normal RP(P), Gamma FALSE #> 8807 551 0.6688984 0.127755112 fv Log-Normal RP(P), Gamma FALSE #> 8823 552 0.6265386 0.120777429 fv Log-Normal RP(P), Gamma FALSE #> 8839 553 0.7047650 0.132991368 fv Log-Normal RP(P), Gamma FALSE #> 8855 554 0.8291163 0.157127475 fv Log-Normal RP(P), Gamma FALSE #> 8871 555 0.6850161 0.130269138 fv Log-Normal RP(P), Gamma FALSE #> 8887 556 0.7538022 0.142279468 fv Log-Normal RP(P), Gamma FALSE #> 8903 557 0.6250217 0.120230852 fv Log-Normal RP(P), Gamma FALSE #> 8919 558 0.6063746 0.117061554 fv Log-Normal RP(P), Gamma FALSE #> 8935 559 0.5429581 0.106505362 fv Log-Normal RP(P), Gamma FALSE #> 8951 560 0.7137899 0.135857490 fv Log-Normal RP(P), Gamma FALSE #> 8967 561 1.0273063 0.187917372 fv Log-Normal RP(P), Gamma TRUE #> 8983 562 0.7434955 0.141140034 fv Log-Normal RP(P), Gamma FALSE #> 8999 563 0.6801410 0.129591934 fv Log-Normal RP(P), Gamma FALSE #> 9015 564 0.5086320 0.099547959 fv Log-Normal RP(P), Gamma FALSE #> 9031 565 0.5188484 0.102466411 fv Log-Normal RP(P), Gamma FALSE #> 9047 566 0.6244033 0.120264371 fv Log-Normal RP(P), Gamma FALSE #> 9063 567 0.5979873 0.115359367 fv Log-Normal RP(P), Gamma FALSE #> 9079 568 0.4721114 0.093701853 fv Log-Normal RP(P), Gamma FALSE #> 9095 569 0.7965129 0.150098223 fv Log-Normal RP(P), Gamma FALSE #> 9111 570 0.4628960 0.091470885 fv Log-Normal RP(P), Gamma FALSE #> 9127 571 0.5842951 0.112728421 fv Log-Normal RP(P), Gamma FALSE #> 9143 572 0.5708745 0.111699420 fv Log-Normal RP(P), Gamma FALSE #> 9159 573 0.5750242 0.111902694 fv Log-Normal RP(P), Gamma FALSE #> 9175 574 0.6440778 0.123736426 fv Log-Normal RP(P), Gamma FALSE #> 9191 575 0.5468114 0.107030650 fv Log-Normal RP(P), Gamma FALSE #> 9207 576 0.5554273 0.108360345 fv Log-Normal RP(P), Gamma FALSE #> 9223 577 0.9266912 0.174564789 fv Log-Normal RP(P), Gamma FALSE #> 9239 578 0.5261017 0.103127649 fv Log-Normal RP(P), Gamma FALSE #> 9255 579 0.5387574 0.106274310 fv Log-Normal RP(P), Gamma FALSE #> 9271 580 0.4707019 0.094408535 fv Log-Normal RP(P), Gamma FALSE #> 9287 581 0.6504271 0.124298433 fv Log-Normal RP(P), Gamma FALSE #> 9303 582 0.6775845 0.129556677 fv Log-Normal RP(P), Gamma FALSE #> 9319 583 0.8861042 0.163642549 fv Log-Normal RP(P), Gamma FALSE #> 9335 584 0.5002307 0.099003587 fv Log-Normal RP(P), Gamma FALSE #> 9351 585 0.6170829 0.118479185 fv Log-Normal RP(P), Gamma FALSE #> 9367 586 0.6901922 0.132247790 fv Log-Normal RP(P), Gamma FALSE #> 9383 587 0.8271364 0.156625337 fv Log-Normal RP(P), Gamma FALSE #> 9399 588 0.4991248 0.098354530 fv Log-Normal RP(P), Gamma FALSE #> 9415 589 0.5658254 0.110527743 fv Log-Normal RP(P), Gamma FALSE #> 9431 590 0.6760460 0.129168104 fv Log-Normal RP(P), Gamma FALSE #> 9447 591 0.7096084 0.134844438 fv Log-Normal RP(P), Gamma FALSE #> 9463 592 0.6397263 0.122142964 fv Log-Normal RP(P), Gamma FALSE #> 9479 593 0.8485950 0.159290802 fv Log-Normal RP(P), Gamma FALSE #> 9495 594 0.5980829 0.115005110 fv Log-Normal RP(P), Gamma FALSE #> 9511 595 0.4900971 0.096783028 fv Log-Normal RP(P), Gamma FALSE #> 9527 596 0.7574788 0.147358757 fv Log-Normal RP(P), Gamma FALSE #> 9543 597 0.5555007 0.108764648 fv Log-Normal RP(P), Gamma FALSE #> 9559 598 0.8869603 0.164652912 fv Log-Normal RP(P), Gamma FALSE #> 9575 599 0.7172531 0.139602364 fv Log-Normal RP(P), Gamma FALSE #> 9591 600 0.4875005 0.096751810 fv Log-Normal RP(P), Gamma FALSE #> 9607 601 1.0034908 0.185067542 fv Log-Normal RP(P), Gamma TRUE #> 9623 602 0.9315667 0.173569567 fv Log-Normal RP(P), Gamma FALSE #> 9639 603 0.3891561 0.079134558 fv Log-Normal RP(P), Gamma FALSE #> 9655 604 0.6831090 0.130655727 fv Log-Normal RP(P), Gamma FALSE #> 9671 605 1.2021178 0.217657229 fv Log-Normal RP(P), Gamma TRUE #> 9687 606 0.6513685 0.125714802 fv Log-Normal RP(P), Gamma FALSE #> 9703 607 0.5322629 0.105264233 fv Log-Normal RP(P), Gamma FALSE #> 9719 608 0.3897829 0.078912911 fv Log-Normal RP(P), Gamma FALSE #> 9735 609 0.7388302 0.139633573 fv Log-Normal RP(P), Gamma FALSE #> 9751 610 0.5779827 0.112718737 fv Log-Normal RP(P), Gamma FALSE #> 9767 611 0.7309416 0.140033806 fv Log-Normal RP(P), Gamma FALSE #> 9783 612 0.4843671 0.095423699 fv Log-Normal RP(P), Gamma FALSE #> 9799 613 0.6706920 0.127546045 fv Log-Normal RP(P), Gamma FALSE #> 9815 614 0.6183168 0.118772783 fv Log-Normal RP(P), Gamma FALSE #> 9831 615 0.7045260 0.133355951 fv Log-Normal RP(P), Gamma FALSE #> 9847 616 0.6489493 0.123879789 fv Log-Normal RP(P), Gamma FALSE #> 9863 617 0.6632689 0.126921727 fv Log-Normal RP(P), Gamma FALSE #> 9879 618 0.6334784 0.123145460 fv Log-Normal RP(P), Gamma FALSE #> 9895 619 0.7035638 0.133736565 fv Log-Normal RP(P), Gamma FALSE #> 9911 620 0.7020430 0.134210585 fv Log-Normal RP(P), Gamma FALSE #> 9927 621 0.4819005 0.094952770 fv Log-Normal RP(P), Gamma FALSE #> 9943 622 0.5397034 0.105579639 fv Log-Normal RP(P), Gamma FALSE #> 9959 623 0.7881921 0.149884077 fv Log-Normal RP(P), Gamma FALSE #> 9975 624 0.5203504 0.102733074 fv Log-Normal RP(P), Gamma FALSE #> 9991 625 0.6837447 0.131406762 fv Log-Normal RP(P), Gamma FALSE #> 10007 626 0.5549372 0.108180877 fv Log-Normal RP(P), Gamma FALSE #> 10023 627 0.5179683 0.101178304 fv Log-Normal RP(P), Gamma FALSE #> 10039 628 0.6020692 0.118086101 fv Log-Normal RP(P), Gamma FALSE #> 10055 629 0.6000282 0.116646938 fv Log-Normal RP(P), Gamma FALSE #> 10071 630 0.7279731 0.137843137 fv Log-Normal RP(P), Gamma FALSE #> 10087 631 0.6027202 0.116593410 fv Log-Normal RP(P), Gamma FALSE #> 10103 632 0.6537910 0.125818670 fv Log-Normal RP(P), Gamma FALSE #> 10119 633 0.4513900 0.090185550 fv Log-Normal RP(P), Gamma FALSE #> 10135 634 0.5375152 0.105208433 fv Log-Normal RP(P), Gamma FALSE #> 10151 635 0.7997065 0.151945464 fv Log-Normal RP(P), Gamma FALSE #> 10167 636 0.3688985 0.074968576 fv Log-Normal RP(P), Gamma FALSE #> 10183 637 0.8181358 0.153742550 fv Log-Normal RP(P), Gamma FALSE #> 10199 638 0.6190300 0.120041647 fv Log-Normal RP(P), Gamma FALSE #> 10215 639 0.4075020 0.082684708 fv Log-Normal RP(P), Gamma FALSE #> 10231 640 0.6079183 0.117406864 fv Log-Normal RP(P), Gamma FALSE #> 10247 641 0.5327102 0.105110772 fv Log-Normal RP(P), Gamma FALSE #> 10263 642 0.5627774 0.109736079 fv Log-Normal RP(P), Gamma FALSE #> 10279 643 0.6140868 0.118512864 fv Log-Normal RP(P), Gamma FALSE #> 10295 644 0.5859136 0.113867905 fv Log-Normal RP(P), Gamma FALSE #> 10311 645 0.7201751 0.137426049 fv Log-Normal RP(P), Gamma FALSE #> 10327 646 NA NA fv Log-Normal RP(P), Gamma NA #> 10343 647 0.5681908 0.110136754 fv Log-Normal RP(P), Gamma FALSE #> 10359 648 0.9305917 0.172374754 fv Log-Normal RP(P), Gamma FALSE #> 10375 649 0.5485075 0.107764779 fv Log-Normal RP(P), Gamma FALSE #> 10391 650 0.7601556 0.143756671 fv Log-Normal RP(P), Gamma FALSE #> 10407 651 0.6466322 0.123731016 fv Log-Normal RP(P), Gamma FALSE #> 10423 652 1.0102019 0.184233698 fv Log-Normal RP(P), Gamma TRUE #> 10439 653 0.4677185 0.093001021 fv Log-Normal RP(P), Gamma FALSE #> 10455 654 0.5012781 0.099290261 fv Log-Normal RP(P), Gamma FALSE #> 10471 655 0.6184514 0.119322143 fv Log-Normal RP(P), Gamma FALSE #> 10487 656 0.5893034 0.114337156 fv Log-Normal RP(P), Gamma FALSE #> 10503 657 0.4700947 0.093330712 fv Log-Normal RP(P), Gamma FALSE #> 10519 658 0.9548714 0.176352345 fv Log-Normal RP(P), Gamma FALSE #> 10535 659 0.9221158 0.172214444 fv Log-Normal RP(P), Gamma FALSE #> 10551 660 0.6906597 0.131068552 fv Log-Normal RP(P), Gamma FALSE #> 10567 661 0.4580311 0.090771001 fv Log-Normal RP(P), Gamma FALSE #> 10583 662 0.5164133 0.101474521 fv Log-Normal RP(P), Gamma FALSE #> 10599 663 0.5910451 0.114456254 fv Log-Normal RP(P), Gamma FALSE #> 10615 664 0.6069571 0.116792001 fv Log-Normal RP(P), Gamma FALSE #> 10631 665 0.7872832 0.148967481 fv Log-Normal RP(P), Gamma FALSE #> 10647 666 0.9872431 0.180995966 fv Log-Normal RP(P), Gamma TRUE #> 10663 667 0.5861609 0.113728094 fv Log-Normal RP(P), Gamma FALSE #> 10679 668 0.5965077 0.116224148 fv Log-Normal RP(P), Gamma FALSE #> 10695 669 0.7858658 0.148111774 fv Log-Normal RP(P), Gamma FALSE #> 10711 670 0.5644456 0.111070175 fv Log-Normal RP(P), Gamma FALSE #> 10727 671 0.7257817 0.138317915 fv Log-Normal RP(P), Gamma FALSE #> 10743 672 0.8699537 0.162873189 fv Log-Normal RP(P), Gamma FALSE #> 10759 673 NA NA fv Log-Normal RP(P), Gamma NA #> 10775 674 0.7477157 0.142416167 fv Log-Normal RP(P), Gamma FALSE #> 10791 675 0.5433898 0.107245880 fv Log-Normal RP(P), Gamma FALSE #> 10807 676 0.8399640 0.157547560 fv Log-Normal RP(P), Gamma FALSE #> 10823 677 0.6227503 0.120604554 fv Log-Normal RP(P), Gamma FALSE #> 10839 678 0.5245707 0.103511296 fv Log-Normal RP(P), Gamma FALSE #> 10855 679 0.5837353 0.114105618 fv Log-Normal RP(P), Gamma FALSE #> 10871 680 0.6687400 0.128093769 fv Log-Normal RP(P), Gamma FALSE #> 10887 681 0.8689437 0.162084794 fv Log-Normal RP(P), Gamma FALSE #> 10903 682 0.5411130 0.105287312 fv Log-Normal RP(P), Gamma FALSE #> 10919 683 0.7576341 0.145307823 fv Log-Normal RP(P), Gamma FALSE #> 10935 684 0.9589529 0.177509901 fv Log-Normal RP(P), Gamma FALSE #> 10951 685 0.5633214 0.109342344 fv Log-Normal RP(P), Gamma FALSE #> 10967 686 0.8200752 0.154050410 fv Log-Normal RP(P), Gamma FALSE #> 10983 687 0.5295936 0.103602159 fv Log-Normal RP(P), Gamma FALSE #> 10999 688 0.5361570 0.105208722 fv Log-Normal RP(P), Gamma FALSE #> 11015 689 0.5920704 0.115501697 fv Log-Normal RP(P), Gamma FALSE #> 11031 690 0.7275334 0.138140884 fv Log-Normal RP(P), Gamma FALSE #> 11047 691 0.7479373 0.145837123 fv Log-Normal RP(P), Gamma FALSE #> 11063 692 0.5492636 0.106737488 fv Log-Normal RP(P), Gamma FALSE #> 11079 693 0.4530186 0.090401153 fv Log-Normal RP(P), Gamma FALSE #> 11095 694 0.6821877 0.130885389 fv Log-Normal RP(P), Gamma FALSE #> 11111 695 0.5561848 0.108503923 fv Log-Normal RP(P), Gamma FALSE #> 11127 696 0.6698984 0.127785352 fv Log-Normal RP(P), Gamma FALSE #> 11143 697 0.8044238 0.152341904 fv Log-Normal RP(P), Gamma FALSE #> 11159 698 0.4029591 0.081215489 fv Log-Normal RP(P), Gamma FALSE #> 11175 699 0.6220318 0.120794862 fv Log-Normal RP(P), Gamma FALSE #> 11191 700 0.4838667 0.095650738 fv Log-Normal RP(P), Gamma FALSE #> 11207 701 0.7141305 0.135782693 fv Log-Normal RP(P), Gamma FALSE #> 11223 702 0.7876228 0.150480099 fv Log-Normal RP(P), Gamma FALSE #> 11239 703 0.6834653 0.131044510 fv Log-Normal RP(P), Gamma FALSE #> 11255 704 0.6006202 0.117032734 fv Log-Normal RP(P), Gamma FALSE #> 11271 705 0.5825614 0.112553700 fv Log-Normal RP(P), Gamma FALSE #> 11287 706 0.6462783 0.123967447 fv Log-Normal RP(P), Gamma FALSE #> 11303 707 0.7719009 0.144912433 fv Log-Normal RP(P), Gamma FALSE #> 11319 708 0.7589118 0.142597681 fv Log-Normal RP(P), Gamma FALSE #> 11335 709 0.7050173 0.137776068 fv Log-Normal RP(P), Gamma FALSE #> 11351 710 0.4858904 0.096616911 fv Log-Normal RP(P), Gamma FALSE #> 11367 711 0.6714817 0.132119633 fv Log-Normal RP(P), Gamma FALSE #> 11383 712 0.6359158 0.122551215 fv Log-Normal RP(P), Gamma FALSE #> 11399 713 0.8791749 0.164312628 fv Log-Normal RP(P), Gamma FALSE #> 11415 714 0.7282695 0.139130739 fv Log-Normal RP(P), Gamma FALSE #> 11431 715 0.6771839 0.128896557 fv Log-Normal RP(P), Gamma FALSE #> 11447 716 0.6207014 0.118958633 fv Log-Normal RP(P), Gamma FALSE #> 11463 717 0.6726106 0.128777566 fv Log-Normal RP(P), Gamma FALSE #> 11479 718 0.7884210 0.149205688 fv Log-Normal RP(P), Gamma FALSE #> 11495 719 0.9354300 0.174953745 fv Log-Normal RP(P), Gamma FALSE #> 11511 720 0.6328266 0.120907672 fv Log-Normal RP(P), Gamma FALSE #> 11527 721 0.5089454 0.100114135 fv Log-Normal RP(P), Gamma FALSE #> 11543 722 0.7041724 0.133806495 fv Log-Normal RP(P), Gamma FALSE #> 11559 723 0.5814509 0.113499196 fv Log-Normal RP(P), Gamma FALSE #> 11575 724 0.6792830 0.131396754 fv Log-Normal RP(P), Gamma FALSE #> 11591 725 0.6745890 0.128900101 fv Log-Normal RP(P), Gamma FALSE #> 11607 726 0.5696167 0.111100388 fv Log-Normal RP(P), Gamma FALSE #> 11623 727 0.6978610 0.132614516 fv Log-Normal RP(P), Gamma FALSE #> 11639 728 0.9034155 0.167348520 fv Log-Normal RP(P), Gamma FALSE #> 11655 729 0.6633172 0.127045130 fv Log-Normal RP(P), Gamma FALSE #> 11671 730 0.7354073 0.139683994 fv Log-Normal RP(P), Gamma FALSE #> 11687 731 0.4588272 0.091441953 fv Log-Normal RP(P), Gamma FALSE #> 11703 732 0.3973257 0.079866721 fv Log-Normal RP(P), Gamma FALSE #> 11719 733 0.7814645 0.146827178 fv Log-Normal RP(P), Gamma FALSE #> 11735 734 0.7249903 0.137092513 fv Log-Normal RP(P), Gamma FALSE #> 11751 735 0.8071961 0.150405379 fv Log-Normal RP(P), Gamma FALSE #> 11767 736 0.7304049 0.138624944 fv Log-Normal RP(P), Gamma FALSE #> 11783 737 0.6499469 0.124179968 fv Log-Normal RP(P), Gamma FALSE #> 11799 738 0.5145282 0.102065122 fv Log-Normal RP(P), Gamma FALSE #> 11815 739 0.5378257 0.105378663 fv Log-Normal RP(P), Gamma FALSE #> 11831 740 0.7258771 0.138116188 fv Log-Normal RP(P), Gamma FALSE #> 11847 741 0.7920583 0.148213635 fv Log-Normal RP(P), Gamma FALSE #> 11863 742 0.5970828 0.115587617 fv Log-Normal RP(P), Gamma FALSE #> 11879 743 0.6394701 0.122627568 fv Log-Normal RP(P), Gamma FALSE #> 11895 744 0.6091485 0.117450392 fv Log-Normal RP(P), Gamma FALSE #> 11911 745 0.6261920 0.120351132 fv Log-Normal RP(P), Gamma FALSE #> 11927 746 0.6135938 0.122447852 fv Log-Normal RP(P), Gamma FALSE #> 11943 747 0.5673960 0.110262652 fv Log-Normal RP(P), Gamma FALSE #> 11959 748 0.8174448 0.154866402 fv Log-Normal RP(P), Gamma FALSE #> 11975 749 0.8885850 0.166289328 fv Log-Normal RP(P), Gamma FALSE #> 11991 750 0.6699179 0.128164911 fv Log-Normal RP(P), Gamma FALSE #> 12007 751 0.7705349 0.145197488 fv Log-Normal RP(P), Gamma FALSE #> 12023 752 0.6450425 0.126445127 fv Log-Normal RP(P), Gamma FALSE #> 12039 753 0.4026709 0.081871038 fv Log-Normal RP(P), Gamma FALSE #> 12055 754 0.6467650 0.123887308 fv Log-Normal RP(P), Gamma FALSE #> 12071 755 0.5962017 0.115578760 fv Log-Normal RP(P), Gamma FALSE #> 12087 756 0.3445761 0.070995077 fv Log-Normal RP(P), Gamma FALSE #> 12103 757 0.6404506 0.123358322 fv Log-Normal RP(P), Gamma FALSE #> 12119 758 0.6790225 0.129965624 fv Log-Normal RP(P), Gamma FALSE #> 12135 759 0.5793013 0.112522796 fv Log-Normal RP(P), Gamma FALSE #> 12151 760 0.8538180 0.161150772 fv Log-Normal RP(P), Gamma FALSE #> 12167 761 0.5461966 0.107166035 fv Log-Normal RP(P), Gamma FALSE #> 12183 762 0.7113599 0.136036958 fv Log-Normal RP(P), Gamma FALSE #> 12199 763 0.5127570 0.101335906 fv Log-Normal RP(P), Gamma FALSE #> 12215 764 0.5758858 0.111788456 fv Log-Normal RP(P), Gamma FALSE #> 12231 765 0.7675959 0.144097832 fv Log-Normal RP(P), Gamma FALSE #> 12247 766 0.5609105 0.108690460 fv Log-Normal RP(P), Gamma FALSE #> 12263 767 0.7365808 0.139483235 fv Log-Normal RP(P), Gamma FALSE #> 12279 768 0.4824173 0.095129579 fv Log-Normal RP(P), Gamma FALSE #> 12295 769 0.8394776 0.157050045 fv Log-Normal RP(P), Gamma FALSE #> 12311 770 0.5206753 0.102467205 fv Log-Normal RP(P), Gamma FALSE #> 12327 771 0.5324155 0.106859081 fv Log-Normal RP(P), Gamma FALSE #> 12343 772 0.5028216 0.098894975 fv Log-Normal RP(P), Gamma FALSE #> 12359 773 0.5634591 0.111361709 fv Log-Normal RP(P), Gamma FALSE #> 12375 774 0.6726680 0.129487861 fv Log-Normal RP(P), Gamma FALSE #> 12391 775 0.6117312 0.118219973 fv Log-Normal RP(P), Gamma FALSE #> 12407 776 0.5611248 0.108670367 fv Log-Normal RP(P), Gamma FALSE #> 12423 777 0.5629907 0.109897969 fv Log-Normal RP(P), Gamma FALSE #> 12439 778 0.5298195 0.103885618 fv Log-Normal RP(P), Gamma FALSE #> 12455 779 0.5462480 0.106788201 fv Log-Normal RP(P), Gamma FALSE #> 12471 780 0.5444594 0.106379957 fv Log-Normal RP(P), Gamma FALSE #> 12487 781 0.6444463 0.124004297 fv Log-Normal RP(P), Gamma FALSE #> 12503 782 0.5443616 0.106294312 fv Log-Normal RP(P), Gamma FALSE #> 12519 783 0.5651637 0.110239835 fv Log-Normal RP(P), Gamma FALSE #> 12535 784 0.7141628 0.136152496 fv Log-Normal RP(P), Gamma FALSE #> 12551 785 0.4331883 0.086467176 fv Log-Normal RP(P), Gamma FALSE #> 12567 786 0.5881396 0.114710602 fv Log-Normal RP(P), Gamma FALSE #> 12583 787 0.8314603 0.155149305 fv Log-Normal RP(P), Gamma FALSE #> 12599 788 0.6241300 0.120299910 fv Log-Normal RP(P), Gamma FALSE #> 12615 789 0.7653722 0.144630922 fv Log-Normal RP(P), Gamma FALSE #> 12631 790 0.6111340 0.117710305 fv Log-Normal RP(P), Gamma FALSE #> 12647 791 0.3753609 0.075903655 fv Log-Normal RP(P), Gamma FALSE #> 12663 792 0.5553672 0.110018225 fv Log-Normal RP(P), Gamma FALSE #> 12679 793 0.7380648 0.139320411 fv Log-Normal RP(P), Gamma FALSE #> 12695 794 0.6753683 0.133256274 fv Log-Normal RP(P), Gamma FALSE #> 12711 795 0.5768839 0.112455428 fv Log-Normal RP(P), Gamma FALSE #> 12727 796 0.5128957 0.100971449 fv Log-Normal RP(P), Gamma FALSE #> 12743 797 0.5171431 0.101337411 fv Log-Normal RP(P), Gamma FALSE #> 12759 798 0.4026960 0.081677375 fv Log-Normal RP(P), Gamma FALSE #> 12775 799 0.6303514 0.120628692 fv Log-Normal RP(P), Gamma FALSE #> 12791 800 0.6501893 0.125184344 fv Log-Normal RP(P), Gamma FALSE #> 12807 801 0.9250278 0.172573485 fv Log-Normal RP(P), Gamma FALSE #> 12823 802 0.6252328 0.119546062 fv Log-Normal RP(P), Gamma FALSE #> 12839 803 0.6134816 0.118753122 fv Log-Normal RP(P), Gamma FALSE #> 12855 804 0.6678647 0.127903390 fv Log-Normal RP(P), Gamma FALSE #> 12871 805 0.8631726 0.164708763 fv Log-Normal RP(P), Gamma FALSE #> 12887 806 0.8331630 0.159110944 fv Log-Normal RP(P), Gamma FALSE #> 12903 807 0.6846960 0.136036587 fv Log-Normal RP(P), Gamma FALSE #> 12919 808 0.4612360 0.091479967 fv Log-Normal RP(P), Gamma FALSE #> 12935 809 0.5738387 0.111513989 fv Log-Normal RP(P), Gamma FALSE #> 12951 810 0.6283526 0.120695686 fv Log-Normal RP(P), Gamma FALSE #> 12967 811 0.4109691 0.082520063 fv Log-Normal RP(P), Gamma FALSE #> 12983 812 0.6375459 0.123083940 fv Log-Normal RP(P), Gamma FALSE #> 12999 813 0.7069596 0.133763426 fv Log-Normal RP(P), Gamma FALSE #> 13015 814 0.6129295 0.118654574 fv Log-Normal RP(P), Gamma FALSE #> 13031 815 0.5429190 0.107859435 fv Log-Normal RP(P), Gamma FALSE #> 13047 816 0.5861718 0.113598258 fv Log-Normal RP(P), Gamma FALSE #> 13063 817 0.4079590 0.082085894 fv Log-Normal RP(P), Gamma FALSE #> 13079 818 0.6366459 0.124630856 fv Log-Normal RP(P), Gamma FALSE #> 13095 819 0.7049751 0.133589547 fv Log-Normal RP(P), Gamma FALSE #> 13111 820 0.8116920 0.153995715 fv Log-Normal RP(P), Gamma FALSE #> 13127 821 0.4937436 0.097102999 fv Log-Normal RP(P), Gamma FALSE #> 13143 822 0.8114681 0.152991774 fv Log-Normal RP(P), Gamma FALSE #> 13159 823 0.9386106 0.175718415 fv Log-Normal RP(P), Gamma FALSE #> 13175 824 0.7808530 0.147394509 fv Log-Normal RP(P), Gamma FALSE #> 13191 825 0.7047845 0.134917093 fv Log-Normal RP(P), Gamma FALSE #> 13207 826 0.7088981 0.135782107 fv Log-Normal RP(P), Gamma FALSE #> 13223 827 0.8137925 0.154712370 fv Log-Normal RP(P), Gamma FALSE #> 13239 828 0.5961539 0.116832078 fv Log-Normal RP(P), Gamma FALSE #> 13255 829 0.6508909 0.125234317 fv Log-Normal RP(P), Gamma FALSE #> 13271 830 0.7521623 0.142500178 fv Log-Normal RP(P), Gamma FALSE #> 13287 831 0.6926346 0.131352292 fv Log-Normal RP(P), Gamma FALSE #> 13303 832 0.4914520 0.097328337 fv Log-Normal RP(P), Gamma FALSE #> 13319 833 0.7543088 0.142866110 fv Log-Normal RP(P), Gamma FALSE #> 13335 834 0.5803865 0.113194461 fv Log-Normal RP(P), Gamma FALSE #> 13351 835 0.6213117 0.120310790 fv Log-Normal RP(P), Gamma FALSE #> 13367 836 0.6794638 0.130019762 fv Log-Normal RP(P), Gamma FALSE #> 13383 837 0.7571700 0.144029552 fv Log-Normal RP(P), Gamma FALSE #> 13399 838 0.6022522 0.116527948 fv Log-Normal RP(P), Gamma FALSE #> 13415 839 0.5678387 0.111762360 fv Log-Normal RP(P), Gamma FALSE #> 13431 840 0.5794574 0.112732652 fv Log-Normal RP(P), Gamma FALSE #> 13447 841 0.9027367 0.169264440 fv Log-Normal RP(P), Gamma FALSE #> 13463 842 0.4945054 0.097465716 fv Log-Normal RP(P), Gamma FALSE #> 13479 843 0.6164251 0.120453087 fv Log-Normal RP(P), Gamma FALSE #> 13495 844 0.7770622 0.145721886 fv Log-Normal RP(P), Gamma FALSE #> 13511 845 0.8054185 0.151160755 fv Log-Normal RP(P), Gamma FALSE #> 13527 846 0.4947152 0.097800871 fv Log-Normal RP(P), Gamma FALSE #> 13543 847 0.8873520 0.164465959 fv Log-Normal RP(P), Gamma FALSE #> 13559 848 0.6732286 0.128419353 fv Log-Normal RP(P), Gamma FALSE #> 13575 849 0.5501974 0.107615525 fv Log-Normal RP(P), Gamma FALSE #> 13591 850 0.7657343 0.145271938 fv Log-Normal RP(P), Gamma FALSE #> 13607 851 0.5838296 0.112816077 fv Log-Normal RP(P), Gamma FALSE #> 13623 852 0.6089890 0.117360510 fv Log-Normal RP(P), Gamma FALSE #> 13639 853 0.8570792 0.158811310 fv Log-Normal RP(P), Gamma FALSE #> 13655 854 0.6181706 0.120058291 fv Log-Normal RP(P), Gamma FALSE #> 13671 855 0.5443013 0.106559331 fv Log-Normal RP(P), Gamma FALSE #> 13687 856 0.7619340 0.144167343 fv Log-Normal RP(P), Gamma FALSE #> 13703 857 0.7054784 0.134681813 fv Log-Normal RP(P), Gamma FALSE #> 13719 858 0.8737770 0.162469522 fv Log-Normal RP(P), Gamma FALSE #> 13735 859 0.8436609 0.158355957 fv Log-Normal RP(P), Gamma FALSE #> 13751 860 0.6203294 0.120462203 fv Log-Normal RP(P), Gamma FALSE #> 13767 861 0.4246650 0.085201724 fv Log-Normal RP(P), Gamma FALSE #> 13783 862 0.5717094 0.110974928 fv Log-Normal RP(P), Gamma FALSE #> 13799 863 0.5930878 0.114981994 fv Log-Normal RP(P), Gamma FALSE #> 13815 864 0.7889726 0.148845738 fv Log-Normal RP(P), Gamma FALSE #> 13831 865 0.8396676 0.157504805 fv Log-Normal RP(P), Gamma FALSE #> 13847 866 0.7315134 0.140372989 fv Log-Normal RP(P), Gamma FALSE #> 13863 867 0.5339683 0.105161674 fv Log-Normal RP(P), Gamma FALSE #> 13879 868 0.8342745 0.157649889 fv Log-Normal RP(P), Gamma FALSE #> 13895 869 0.4553345 0.090508558 fv Log-Normal RP(P), Gamma FALSE #> 13911 870 0.7264093 0.138973381 fv Log-Normal RP(P), Gamma FALSE #> 13927 871 0.4569173 0.091103928 fv Log-Normal RP(P), Gamma FALSE #> 13943 872 0.4280552 0.086058153 fv Log-Normal RP(P), Gamma FALSE #> 13959 873 0.7410597 0.139690887 fv Log-Normal RP(P), Gamma FALSE #> 13975 874 0.6408185 0.123644052 fv Log-Normal RP(P), Gamma FALSE #> 13991 875 0.5388062 0.104971339 fv Log-Normal RP(P), Gamma FALSE #> 14007 876 0.5538235 0.108515653 fv Log-Normal RP(P), Gamma FALSE #> 14023 877 0.5173804 0.102558125 fv Log-Normal RP(P), Gamma FALSE #> 14039 878 0.6131328 0.119010688 fv Log-Normal RP(P), Gamma FALSE #> 14055 879 0.6097417 0.118099906 fv Log-Normal RP(P), Gamma FALSE #> 14071 880 0.7281233 0.137755819 fv Log-Normal RP(P), Gamma FALSE #> 14087 881 0.4819108 0.095257938 fv Log-Normal RP(P), Gamma FALSE #> 14103 882 0.6543178 0.126842054 fv Log-Normal RP(P), Gamma FALSE #> 14119 883 0.5607813 0.109303367 fv Log-Normal RP(P), Gamma FALSE #> 14135 884 0.4932391 0.097437433 fv Log-Normal RP(P), Gamma FALSE #> 14151 885 0.6588153 0.126232716 fv Log-Normal RP(P), Gamma FALSE #> 14167 886 0.5743023 0.112137457 fv Log-Normal RP(P), Gamma FALSE #> 14183 887 0.3462275 0.071202207 fv Log-Normal RP(P), Gamma FALSE #> 14199 888 0.5389566 0.105124924 fv Log-Normal RP(P), Gamma FALSE #> 14215 889 0.6030921 0.116845053 fv Log-Normal RP(P), Gamma FALSE #> 14231 890 0.6118626 0.117833825 fv Log-Normal RP(P), Gamma FALSE #> 14247 891 0.6524154 0.124896117 fv Log-Normal RP(P), Gamma FALSE #> 14263 892 0.9531941 0.178350481 fv Log-Normal RP(P), Gamma FALSE #> 14279 893 0.4343296 0.087215814 fv Log-Normal RP(P), Gamma FALSE #> 14295 894 0.5594749 0.110073852 fv Log-Normal RP(P), Gamma FALSE #> 14311 895 0.7014979 0.134457311 fv Log-Normal RP(P), Gamma FALSE #> 14327 896 0.4731205 0.093660204 fv Log-Normal RP(P), Gamma FALSE #> 14343 897 0.5714472 0.110989910 fv Log-Normal RP(P), Gamma FALSE #> 14359 898 0.6785190 0.129913470 fv Log-Normal RP(P), Gamma FALSE #> 14375 899 0.7737308 0.149258753 fv Log-Normal RP(P), Gamma FALSE #> 14391 900 0.6258468 0.120819485 fv Log-Normal RP(P), Gamma FALSE #> 14407 901 0.6898911 0.131170243 fv Log-Normal RP(P), Gamma FALSE #> 14423 902 0.7154328 0.135521156 fv Log-Normal RP(P), Gamma FALSE #> 14439 903 0.5104288 0.100779991 fv Log-Normal RP(P), Gamma FALSE #> 14455 904 0.5856834 0.113572720 fv Log-Normal RP(P), Gamma FALSE #> 14471 905 0.6004749 0.115324014 fv Log-Normal RP(P), Gamma FALSE #> 14487 906 0.6359688 0.122586572 fv Log-Normal RP(P), Gamma FALSE #> 14503 907 0.5900934 0.115657031 fv Log-Normal RP(P), Gamma FALSE #> 14519 908 0.4540465 0.090511303 fv Log-Normal RP(P), Gamma FALSE #> 14535 909 0.7511004 0.141521670 fv Log-Normal RP(P), Gamma FALSE #> 14551 910 0.5658137 0.110268564 fv Log-Normal RP(P), Gamma FALSE #> 14567 911 0.6072191 0.117365255 fv Log-Normal RP(P), Gamma FALSE #> 14583 912 0.3616722 0.073972649 fv Log-Normal RP(P), Gamma FALSE #> 14599 913 0.5503152 0.107431667 fv Log-Normal RP(P), Gamma FALSE #> 14615 914 0.7685300 0.145147343 fv Log-Normal RP(P), Gamma FALSE #> 14631 915 0.5856077 0.113156906 fv Log-Normal RP(P), Gamma FALSE #> 14647 916 0.6230510 0.119988154 fv Log-Normal RP(P), Gamma FALSE #> 14663 917 0.4810465 0.096021894 fv Log-Normal RP(P), Gamma FALSE #> 14679 918 0.5535167 0.109209013 fv Log-Normal RP(P), Gamma FALSE #> 14695 919 0.6199536 0.120122996 fv Log-Normal RP(P), Gamma FALSE #> 14711 920 0.5967302 0.115422824 fv Log-Normal RP(P), Gamma FALSE #> 14727 921 0.9743057 0.178872657 fv Log-Normal RP(P), Gamma FALSE #> 14743 922 0.5749685 0.112106133 fv Log-Normal RP(P), Gamma FALSE #> 14759 923 0.8627857 0.160537625 fv Log-Normal RP(P), Gamma FALSE #> 14775 924 0.6123826 0.118440207 fv Log-Normal RP(P), Gamma FALSE #> 14791 925 0.6977269 0.134168790 fv Log-Normal RP(P), Gamma FALSE #> 14807 926 0.7560266 0.142158465 fv Log-Normal RP(P), Gamma FALSE #> 14823 927 0.7244242 0.137428355 fv Log-Normal RP(P), Gamma FALSE #> 14839 928 0.6414165 0.123785383 fv Log-Normal RP(P), Gamma FALSE #> 14855 929 0.6732490 0.128390941 fv Log-Normal RP(P), Gamma FALSE #> 14871 930 0.5125839 0.101497596 fv Log-Normal RP(P), Gamma FALSE #> 14887 931 0.7127123 0.136040162 fv Log-Normal RP(P), Gamma FALSE #> 14903 932 0.5071163 0.100658331 fv Log-Normal RP(P), Gamma FALSE #> 14919 933 0.4956539 0.097351924 fv Log-Normal RP(P), Gamma FALSE #> 14935 934 0.6492066 0.125778769 fv Log-Normal RP(P), Gamma FALSE #> 14951 935 0.7579194 0.142654366 fv Log-Normal RP(P), Gamma FALSE #> 14967 936 0.6662641 0.128059082 fv Log-Normal RP(P), Gamma FALSE #> 14983 937 0.6552375 0.124704511 fv Log-Normal RP(P), Gamma FALSE #> 14999 938 0.6935610 0.131635443 fv Log-Normal RP(P), Gamma FALSE #> 15015 939 0.5076373 0.099638563 fv Log-Normal RP(P), Gamma FALSE #> 15031 940 0.6941711 0.133443392 fv Log-Normal RP(P), Gamma FALSE #> 15047 941 0.4272667 0.085962338 fv Log-Normal RP(P), Gamma FALSE #> 15063 942 0.7084198 0.133980596 fv Log-Normal RP(P), Gamma FALSE #> 15079 943 0.4592534 0.091044580 fv Log-Normal RP(P), Gamma FALSE #> 15095 944 0.5670107 0.110185647 fv Log-Normal RP(P), Gamma FALSE #> 15111 945 0.9419069 0.175234747 fv Log-Normal RP(P), Gamma FALSE #> 15127 946 0.7159091 0.136177032 fv Log-Normal RP(P), Gamma FALSE #> 15143 947 0.7179454 0.135868745 fv Log-Normal RP(P), Gamma FALSE #> 15159 948 0.4495258 0.091309189 fv Log-Normal RP(P), Gamma FALSE #> 15175 949 0.5815352 0.112460379 fv Log-Normal RP(P), Gamma FALSE #> 15191 950 0.6932335 0.132488165 fv Log-Normal RP(P), Gamma FALSE #> 15207 951 0.4666819 0.092380052 fv Log-Normal RP(P), Gamma FALSE #> 15223 952 0.5314269 0.103829685 fv Log-Normal RP(P), Gamma FALSE #> 15239 953 0.5565247 0.109149397 fv Log-Normal RP(P), Gamma FALSE #> 15255 954 0.7841108 0.150127737 fv Log-Normal RP(P), Gamma FALSE #> 15271 955 0.6303305 0.121517200 fv Log-Normal RP(P), Gamma FALSE #> 15287 956 0.7256964 0.136703077 fv Log-Normal RP(P), Gamma FALSE #> 15303 957 0.5263540 0.102902469 fv Log-Normal RP(P), Gamma FALSE #> 15319 958 0.5512942 0.108239740 fv Log-Normal RP(P), Gamma FALSE #> 15335 959 0.6362485 0.122428233 fv Log-Normal RP(P), Gamma FALSE #> 15351 960 0.4981004 0.097951714 fv Log-Normal RP(P), Gamma FALSE #> 15367 961 0.7240723 0.136822170 fv Log-Normal RP(P), Gamma FALSE #> 15383 962 0.6738336 0.128430099 fv Log-Normal RP(P), Gamma FALSE #> 15399 963 0.8590658 0.161400634 fv Log-Normal RP(P), Gamma FALSE #> 15415 964 0.6778286 0.131550538 fv Log-Normal RP(P), Gamma FALSE #> 15431 965 0.4974168 0.098176690 fv Log-Normal RP(P), Gamma FALSE #> 15447 966 0.8272373 0.153861102 fv Log-Normal RP(P), Gamma FALSE #> 15463 967 0.8021231 0.151700494 fv Log-Normal RP(P), Gamma FALSE #> 15479 968 0.7554846 0.144617670 fv Log-Normal RP(P), Gamma FALSE #> 15495 969 0.9243088 0.170805922 fv Log-Normal RP(P), Gamma FALSE #> 15511 970 0.7071617 0.135442111 fv Log-Normal RP(P), Gamma FALSE #> 15527 971 0.7640821 0.143246252 fv Log-Normal RP(P), Gamma FALSE #> 15543 972 0.5395954 0.105794951 fv Log-Normal RP(P), Gamma FALSE #> 15559 973 0.7931946 0.148915324 fv Log-Normal RP(P), Gamma FALSE #> 15575 974 0.8197008 0.153760685 fv Log-Normal RP(P), Gamma FALSE #> 15591 975 0.8907927 0.164905062 fv Log-Normal RP(P), Gamma FALSE #> 15607 976 0.7038651 0.135980149 fv Log-Normal RP(P), Gamma FALSE #> 15623 977 0.9187497 0.170234899 fv Log-Normal RP(P), Gamma FALSE #> 15639 978 0.7007673 0.133951052 fv Log-Normal RP(P), Gamma FALSE #> 15655 979 0.5554255 0.108409573 fv Log-Normal RP(P), Gamma FALSE #> 15671 980 0.6745765 0.129438354 fv Log-Normal RP(P), Gamma FALSE #> 15687 981 0.5670618 0.109771497 fv Log-Normal RP(P), Gamma FALSE #> 15703 982 0.5361854 0.104634937 fv Log-Normal RP(P), Gamma FALSE #> 15719 983 0.6498347 0.124437335 fv Log-Normal RP(P), Gamma FALSE #> 15735 984 0.6185397 0.120212982 fv Log-Normal RP(P), Gamma FALSE #> 15751 985 0.7716535 0.145635881 fv Log-Normal RP(P), Gamma FALSE #> 15767 986 0.6954360 0.133693819 fv Log-Normal RP(P), Gamma FALSE #> 15783 987 0.6610757 0.128995735 fv Log-Normal RP(P), Gamma FALSE #> 15799 988 0.7090702 0.134191221 fv Log-Normal RP(P), Gamma FALSE #> 15815 989 0.7499270 0.140913712 fv Log-Normal RP(P), Gamma FALSE #> 15831 990 0.6791009 0.130402853 fv Log-Normal RP(P), Gamma FALSE #> 15847 991 0.7486170 0.141785330 fv Log-Normal RP(P), Gamma FALSE #> 15863 992 0.6478979 0.124552181 fv Log-Normal RP(P), Gamma FALSE #> 15879 993 0.6378838 0.121975666 fv Log-Normal RP(P), Gamma FALSE #> 15895 994 0.6296675 0.123056122 fv Log-Normal RP(P), Gamma FALSE #> 15911 995 0.5297010 0.103909524 fv Log-Normal RP(P), Gamma FALSE #> 15927 996 0.6733473 0.130527337 fv Log-Normal RP(P), Gamma FALSE #> 15943 997 0.5759983 0.111233442 fv Log-Normal RP(P), Gamma FALSE #> 15959 998 0.5520605 0.108023635 fv Log-Normal RP(P), Gamma FALSE #> 15975 999 0.6755070 0.129234930 fv Log-Normal RP(P), Gamma FALSE #> 15991 1000 0.5820900 0.112838328 fv Log-Normal RP(P), Gamma FALSE #> 8 1 0.7587269 0.160310074 fv Log-Normal RP(P), Log-Normal FALSE #> 24 2 0.6427095 0.136481613 fv Log-Normal RP(P), Log-Normal FALSE #> 40 3 0.8272743 0.174133172 fv Log-Normal RP(P), Log-Normal FALSE #> 56 4 0.6154492 0.132224678 fv Log-Normal RP(P), Log-Normal FALSE #> 72 5 1.0040595 0.212010663 fv Log-Normal RP(P), Log-Normal FALSE #> 88 6 0.8839655 0.187498893 fv Log-Normal RP(P), Log-Normal FALSE #> 104 7 0.5927076 0.126010284 fv Log-Normal RP(P), Log-Normal FALSE #> 120 8 0.8303076 0.176094173 fv Log-Normal RP(P), Log-Normal FALSE #> 136 9 0.7248036 0.153480938 fv Log-Normal RP(P), Log-Normal FALSE #> 152 10 1.0116901 0.215026028 fv Log-Normal RP(P), Log-Normal FALSE #> 168 11 0.9163779 0.192812176 fv Log-Normal RP(P), Log-Normal FALSE #> 184 12 0.5531775 0.117536667 fv Log-Normal RP(P), Log-Normal FALSE #> 200 13 0.8309998 0.174965974 fv Log-Normal RP(P), Log-Normal FALSE #> 216 14 0.8142702 0.172262423 fv Log-Normal RP(P), Log-Normal FALSE #> 232 15 0.7403548 0.157621039 fv Log-Normal RP(P), Log-Normal FALSE #> 248 16 0.5815212 0.124702775 fv Log-Normal RP(P), Log-Normal FALSE #> 264 17 0.6448992 0.136415060 fv Log-Normal RP(P), Log-Normal FALSE #> 280 18 0.8723504 0.185445247 fv Log-Normal RP(P), Log-Normal FALSE #> 296 19 0.9424444 0.197979689 fv Log-Normal RP(P), Log-Normal FALSE #> 312 20 0.6112837 0.130269558 fv Log-Normal RP(P), Log-Normal FALSE #> 328 21 0.7055255 0.150812066 fv Log-Normal RP(P), Log-Normal FALSE #> 344 22 0.6008341 0.128261543 fv Log-Normal RP(P), Log-Normal FALSE #> 360 23 0.8761728 0.183388185 fv Log-Normal RP(P), Log-Normal FALSE #> 376 24 0.8105771 0.171983797 fv Log-Normal RP(P), Log-Normal FALSE #> 392 25 0.6233797 0.132823464 fv Log-Normal RP(P), Log-Normal FALSE #> 408 26 0.7552494 0.159767947 fv Log-Normal RP(P), Log-Normal FALSE #> 424 27 0.5365736 0.118347519 fv Log-Normal RP(P), Log-Normal FALSE #> 440 28 0.7291543 0.155121274 fv Log-Normal RP(P), Log-Normal FALSE #> 456 29 1.0757698 0.224219202 fv Log-Normal RP(P), Log-Normal FALSE #> 472 30 0.7238761 0.156782077 fv Log-Normal RP(P), Log-Normal FALSE #> 488 31 0.5599923 0.120185524 fv Log-Normal RP(P), Log-Normal FALSE #> 504 32 0.5305952 0.112891465 fv Log-Normal RP(P), Log-Normal FALSE #> 520 33 0.7705200 0.164509859 fv Log-Normal RP(P), Log-Normal FALSE #> 536 34 0.9181142 0.193544815 fv Log-Normal RP(P), Log-Normal FALSE #> 552 35 0.5262293 0.112984685 fv Log-Normal RP(P), Log-Normal FALSE #> 568 36 0.5191213 0.111910048 fv Log-Normal RP(P), Log-Normal FALSE #> 584 37 0.7019126 0.149573895 fv Log-Normal RP(P), Log-Normal FALSE #> 600 38 0.6378678 0.135525656 fv Log-Normal RP(P), Log-Normal FALSE #> 616 39 0.8017794 0.170404386 fv Log-Normal RP(P), Log-Normal FALSE #> 632 40 0.5714472 0.121859157 fv Log-Normal RP(P), Log-Normal FALSE #> 648 41 0.8335074 0.177134554 fv Log-Normal RP(P), Log-Normal FALSE #> 664 42 0.5632683 0.120257577 fv Log-Normal RP(P), Log-Normal FALSE #> 680 43 0.5641544 0.122123217 fv Log-Normal RP(P), Log-Normal FALSE #> 696 44 0.7949684 0.169464289 fv Log-Normal RP(P), Log-Normal FALSE #> 712 45 0.6326050 0.134725078 fv Log-Normal RP(P), Log-Normal FALSE #> 728 46 0.3403314 0.074346940 fv Log-Normal RP(P), Log-Normal FALSE #> 744 47 0.9563960 0.202431253 fv Log-Normal RP(P), Log-Normal FALSE #> 760 48 0.8868588 0.187192828 fv Log-Normal RP(P), Log-Normal FALSE #> 776 49 0.9689607 0.202879027 fv Log-Normal RP(P), Log-Normal FALSE #> 792 50 0.6034856 0.129155376 fv Log-Normal RP(P), Log-Normal FALSE #> 808 51 0.8875662 0.188455833 fv Log-Normal RP(P), Log-Normal FALSE #> 824 52 0.5304852 0.114409866 fv Log-Normal RP(P), Log-Normal FALSE #> 840 53 0.9347285 0.195611763 fv Log-Normal RP(P), Log-Normal FALSE #> 856 54 0.7253010 0.153848983 fv Log-Normal RP(P), Log-Normal FALSE #> 872 55 0.9365095 0.197246816 fv Log-Normal RP(P), Log-Normal FALSE #> 888 56 0.7698460 0.161108352 fv Log-Normal RP(P), Log-Normal FALSE #> 904 57 0.9240850 0.195363045 fv Log-Normal RP(P), Log-Normal FALSE #> 920 58 0.7679395 0.161928888 fv Log-Normal RP(P), Log-Normal FALSE #> 936 59 0.7182305 0.151499862 fv Log-Normal RP(P), Log-Normal FALSE #> 952 60 1.0058746 0.216721875 fv Log-Normal RP(P), Log-Normal FALSE #> 968 61 0.7566231 0.160366843 fv Log-Normal RP(P), Log-Normal FALSE #> 984 62 0.6235933 0.132341918 fv Log-Normal RP(P), Log-Normal FALSE #> 1000 63 0.8330331 0.174751715 fv Log-Normal RP(P), Log-Normal FALSE #> 1016 64 0.7372343 0.154560392 fv Log-Normal RP(P), Log-Normal FALSE #> 1032 65 0.9324597 0.196214421 fv Log-Normal RP(P), Log-Normal FALSE #> 1048 66 0.6556111 0.140836763 fv Log-Normal RP(P), Log-Normal FALSE #> 1064 67 0.6283832 0.133766573 fv Log-Normal RP(P), Log-Normal FALSE #> 1080 68 0.5259450 0.113787629 fv Log-Normal RP(P), Log-Normal FALSE #> 1096 69 0.8150040 0.171983367 fv Log-Normal RP(P), Log-Normal FALSE #> 1112 70 0.7752526 0.163616805 fv Log-Normal RP(P), Log-Normal FALSE #> 1128 71 1.0256382 0.217584719 fv Log-Normal RP(P), Log-Normal FALSE #> 1144 72 0.6090315 0.129986511 fv Log-Normal RP(P), Log-Normal FALSE #> 1160 73 0.7378555 0.157540359 fv Log-Normal RP(P), Log-Normal FALSE #> 1176 74 0.4266073 0.091598299 fv Log-Normal RP(P), Log-Normal FALSE #> 1192 75 0.7264828 0.153774539 fv Log-Normal RP(P), Log-Normal FALSE #> 1208 76 0.6558995 0.140177692 fv Log-Normal RP(P), Log-Normal FALSE #> 1224 77 0.8527293 0.179762381 fv Log-Normal RP(P), Log-Normal FALSE #> 1240 78 0.7870716 0.165681047 fv Log-Normal RP(P), Log-Normal FALSE #> 1256 79 1.0961721 0.229344262 fv Log-Normal RP(P), Log-Normal FALSE #> 1272 80 0.5928102 0.126126879 fv Log-Normal RP(P), Log-Normal FALSE #> 1288 81 1.0116718 0.212214328 fv Log-Normal RP(P), Log-Normal FALSE #> 1304 82 0.6932804 0.146529625 fv Log-Normal RP(P), Log-Normal FALSE #> 1320 83 0.8128450 0.173169547 fv Log-Normal RP(P), Log-Normal FALSE #> 1336 84 0.6546543 0.140338914 fv Log-Normal RP(P), Log-Normal FALSE #> 1352 85 0.6580420 0.139756530 fv Log-Normal RP(P), Log-Normal FALSE #> 1368 86 0.5651574 0.120395675 fv Log-Normal RP(P), Log-Normal FALSE #> 1384 87 0.7739794 0.164331266 fv Log-Normal RP(P), Log-Normal FALSE #> 1400 88 0.7745832 0.167238556 fv Log-Normal RP(P), Log-Normal FALSE #> 1416 89 1.0368143 0.217170812 fv Log-Normal RP(P), Log-Normal FALSE #> 1432 90 0.8166873 0.170720378 fv Log-Normal RP(P), Log-Normal FALSE #> 1448 91 0.9071331 0.190130518 fv Log-Normal RP(P), Log-Normal FALSE #> 1464 92 0.8923346 0.189677791 fv Log-Normal RP(P), Log-Normal FALSE #> 1480 93 0.6132879 0.130286551 fv Log-Normal RP(P), Log-Normal FALSE #> 1496 94 0.8505242 0.181240095 fv Log-Normal RP(P), Log-Normal FALSE #> 1512 95 0.6782855 0.143566528 fv Log-Normal RP(P), Log-Normal FALSE #> 1528 96 0.5793421 0.124444915 fv Log-Normal RP(P), Log-Normal FALSE #> 1544 97 0.8184744 0.172217358 fv Log-Normal RP(P), Log-Normal FALSE #> 1560 98 0.4638964 0.100253533 fv Log-Normal RP(P), Log-Normal FALSE #> 1576 99 0.9303806 0.199727243 fv Log-Normal RP(P), Log-Normal FALSE #> 1592 100 0.6869339 0.148166559 fv Log-Normal RP(P), Log-Normal FALSE #> 1608 101 0.6467181 0.136969509 fv Log-Normal RP(P), Log-Normal FALSE #> 1624 102 0.4957626 0.105808839 fv Log-Normal RP(P), Log-Normal FALSE #> 1640 103 0.7884881 0.166125050 fv Log-Normal RP(P), Log-Normal FALSE #> 1656 104 0.7369302 0.156103668 fv Log-Normal RP(P), Log-Normal FALSE #> 1672 105 0.4680770 0.100530696 fv Log-Normal RP(P), Log-Normal FALSE #> 1688 106 0.6814912 0.146176406 fv Log-Normal RP(P), Log-Normal FALSE #> 1704 107 0.8653450 0.182292080 fv Log-Normal RP(P), Log-Normal FALSE #> 1720 108 0.7160621 0.153662080 fv Log-Normal RP(P), Log-Normal FALSE #> 1736 109 0.9318352 0.195104641 fv Log-Normal RP(P), Log-Normal FALSE #> 1752 110 0.9333831 0.197785385 fv Log-Normal RP(P), Log-Normal FALSE #> 1768 111 0.6395728 0.135269065 fv Log-Normal RP(P), Log-Normal FALSE #> 1784 112 0.7016627 0.147545888 fv Log-Normal RP(P), Log-Normal FALSE #> 1800 113 0.8576238 0.179983637 fv Log-Normal RP(P), Log-Normal FALSE #> 1816 114 0.6710954 0.142328711 fv Log-Normal RP(P), Log-Normal FALSE #> 1832 115 0.7820406 0.166205449 fv Log-Normal RP(P), Log-Normal FALSE #> 1848 116 0.7939534 0.167711038 fv Log-Normal RP(P), Log-Normal FALSE #> 1864 117 0.8430940 0.176684051 fv Log-Normal RP(P), Log-Normal FALSE #> 1880 118 0.6212618 0.132330606 fv Log-Normal RP(P), Log-Normal FALSE #> 1896 119 0.5727404 0.121504334 fv Log-Normal RP(P), Log-Normal FALSE #> 1912 120 0.8243130 0.174444030 fv Log-Normal RP(P), Log-Normal FALSE #> 1928 121 0.7202072 0.152475354 fv Log-Normal RP(P), Log-Normal FALSE #> 1944 122 0.5561335 0.119749873 fv Log-Normal RP(P), Log-Normal FALSE #> 1960 123 0.5294622 0.113195261 fv Log-Normal RP(P), Log-Normal FALSE #> 1976 124 0.5606144 0.119830783 fv Log-Normal RP(P), Log-Normal FALSE #> 1992 125 0.5467464 0.117088993 fv Log-Normal RP(P), Log-Normal FALSE #> 2008 126 1.2215715 0.256569950 fv Log-Normal RP(P), Log-Normal TRUE #> 2024 127 0.5218994 0.113209374 fv Log-Normal RP(P), Log-Normal FALSE #> 2040 128 0.5216607 0.111937164 fv Log-Normal RP(P), Log-Normal FALSE #> 2056 129 0.7174736 0.154534528 fv Log-Normal RP(P), Log-Normal FALSE #> 2072 130 0.5770054 0.123890286 fv Log-Normal RP(P), Log-Normal FALSE #> 2088 131 0.6689280 0.142266715 fv Log-Normal RP(P), Log-Normal FALSE #> 2104 132 0.7957550 0.170120599 fv Log-Normal RP(P), Log-Normal FALSE #> 2120 133 0.9412438 0.196855270 fv Log-Normal RP(P), Log-Normal FALSE #> 2136 134 1.0838532 0.226912038 fv Log-Normal RP(P), Log-Normal FALSE #> 2152 135 0.6648603 0.140092983 fv Log-Normal RP(P), Log-Normal FALSE #> 2168 136 0.5492014 0.117363787 fv Log-Normal RP(P), Log-Normal FALSE #> 2184 137 0.5291266 0.115402392 fv Log-Normal RP(P), Log-Normal FALSE #> 2200 138 0.5264330 0.112494837 fv Log-Normal RP(P), Log-Normal FALSE #> 2216 139 0.7533269 0.160159857 fv Log-Normal RP(P), Log-Normal FALSE #> 2232 140 0.8110847 0.171158128 fv Log-Normal RP(P), Log-Normal FALSE #> 2248 141 0.4367489 0.094597121 fv Log-Normal RP(P), Log-Normal FALSE #> 2264 142 0.4940670 0.106169645 fv Log-Normal RP(P), Log-Normal FALSE #> 2280 143 0.5794493 0.122951278 fv Log-Normal RP(P), Log-Normal FALSE #> 2296 144 0.6778027 0.143521271 fv Log-Normal RP(P), Log-Normal FALSE #> 2312 145 0.5837892 0.125941371 fv Log-Normal RP(P), Log-Normal FALSE #> 2328 146 0.7325227 0.154220307 fv Log-Normal RP(P), Log-Normal FALSE #> 2344 147 0.6357226 0.135958395 fv Log-Normal RP(P), Log-Normal FALSE #> 2360 148 0.5487951 0.117138970 fv Log-Normal RP(P), Log-Normal FALSE #> 2376 149 0.4091531 0.089138976 fv Log-Normal RP(P), Log-Normal FALSE #> 2392 150 0.5623525 0.119787569 fv Log-Normal RP(P), Log-Normal FALSE #> 2408 151 0.9870081 0.207968406 fv Log-Normal RP(P), Log-Normal FALSE #> 2424 152 0.7257533 0.155576929 fv Log-Normal RP(P), Log-Normal FALSE #> 2440 153 0.7938888 0.166001332 fv Log-Normal RP(P), Log-Normal FALSE #> 2456 154 0.7543676 0.159096926 fv Log-Normal RP(P), Log-Normal FALSE #> 2472 155 1.0111457 0.212971620 fv Log-Normal RP(P), Log-Normal FALSE #> 2488 156 0.6544524 0.141043356 fv Log-Normal RP(P), Log-Normal FALSE #> 2504 157 0.6432003 0.138898907 fv Log-Normal RP(P), Log-Normal FALSE #> 2520 158 0.6411141 0.135716820 fv Log-Normal RP(P), Log-Normal FALSE #> 2536 159 0.8229442 0.176716197 fv Log-Normal RP(P), Log-Normal FALSE #> 2552 160 0.8120361 0.174187032 fv Log-Normal RP(P), Log-Normal FALSE #> 2568 161 0.9019813 0.188117850 fv Log-Normal RP(P), Log-Normal FALSE #> 2584 162 1.0499623 0.220400899 fv Log-Normal RP(P), Log-Normal FALSE #> 2600 163 0.6371458 0.137262190 fv Log-Normal RP(P), Log-Normal FALSE #> 2616 164 0.6859633 0.145451105 fv Log-Normal RP(P), Log-Normal FALSE #> 2632 165 0.5519135 0.117940756 fv Log-Normal RP(P), Log-Normal FALSE #> 2648 166 0.4479469 0.095793295 fv Log-Normal RP(P), Log-Normal FALSE #> 2664 167 0.7613875 0.161975639 fv Log-Normal RP(P), Log-Normal FALSE #> 2680 168 0.8959044 0.188861131 fv Log-Normal RP(P), Log-Normal FALSE #> 2696 169 0.6531845 0.138023079 fv Log-Normal RP(P), Log-Normal FALSE #> 2712 170 0.7664620 0.162066953 fv Log-Normal RP(P), Log-Normal FALSE #> 2728 171 0.8455567 0.178186955 fv Log-Normal RP(P), Log-Normal FALSE #> 2744 172 0.7766548 0.164499182 fv Log-Normal RP(P), Log-Normal FALSE #> 2760 173 0.7349752 0.154532530 fv Log-Normal RP(P), Log-Normal FALSE #> 2776 174 0.6099624 0.129739699 fv Log-Normal RP(P), Log-Normal FALSE #> 2792 175 0.8046287 0.169421952 fv Log-Normal RP(P), Log-Normal FALSE #> 2808 176 1.0156282 0.214174421 fv Log-Normal RP(P), Log-Normal FALSE #> 2824 177 0.8256876 0.175175875 fv Log-Normal RP(P), Log-Normal FALSE #> 2840 178 0.5414903 0.116046912 fv Log-Normal RP(P), Log-Normal FALSE #> 2856 179 0.9627749 0.202015293 fv Log-Normal RP(P), Log-Normal FALSE #> 2872 180 0.5801914 0.124401399 fv Log-Normal RP(P), Log-Normal FALSE #> 2888 181 0.7554494 0.159701514 fv Log-Normal RP(P), Log-Normal FALSE #> 2904 182 1.2537245 0.262312759 fv Log-Normal RP(P), Log-Normal TRUE #> 2920 183 0.7659203 0.165867012 fv Log-Normal RP(P), Log-Normal FALSE #> 2936 184 0.9738310 0.203471702 fv Log-Normal RP(P), Log-Normal FALSE #> 2952 185 0.8121692 0.171028940 fv Log-Normal RP(P), Log-Normal FALSE #> 2968 186 0.7982599 0.168832783 fv Log-Normal RP(P), Log-Normal FALSE #> 2984 187 0.6883828 0.145342853 fv Log-Normal RP(P), Log-Normal FALSE #> 3000 188 0.8374741 0.176193562 fv Log-Normal RP(P), Log-Normal FALSE #> 3016 189 0.6993496 0.147808847 fv Log-Normal RP(P), Log-Normal FALSE #> 3032 190 0.8064399 0.170804825 fv Log-Normal RP(P), Log-Normal FALSE #> 3048 191 0.8008227 0.173861583 fv Log-Normal RP(P), Log-Normal FALSE #> 3064 192 0.6525505 0.137788950 fv Log-Normal RP(P), Log-Normal FALSE #> 3080 193 0.7916083 0.170491952 fv Log-Normal RP(P), Log-Normal FALSE #> 3096 194 0.9988075 0.209353233 fv Log-Normal RP(P), Log-Normal FALSE #> 3112 195 0.5880564 0.124916660 fv Log-Normal RP(P), Log-Normal FALSE #> 3128 196 0.6367192 0.135928623 fv Log-Normal RP(P), Log-Normal FALSE #> 3144 197 0.6587380 0.139314113 fv Log-Normal RP(P), Log-Normal FALSE #> 3160 198 0.7988690 0.168411544 fv Log-Normal RP(P), Log-Normal FALSE #> 3176 199 0.5340730 0.114133322 fv Log-Normal RP(P), Log-Normal FALSE #> 3192 200 0.6108400 0.131066750 fv Log-Normal RP(P), Log-Normal FALSE #> 3208 201 0.8908497 0.188126967 fv Log-Normal RP(P), Log-Normal FALSE #> 3224 202 0.7243823 0.152769551 fv Log-Normal RP(P), Log-Normal FALSE #> 3240 203 0.6371139 0.135630072 fv Log-Normal RP(P), Log-Normal FALSE #> 3256 204 0.6812425 0.144876357 fv Log-Normal RP(P), Log-Normal FALSE #> 3272 205 0.6640707 0.142647914 fv Log-Normal RP(P), Log-Normal FALSE #> 3288 206 0.7955822 0.169584226 fv Log-Normal RP(P), Log-Normal FALSE #> 3304 207 0.8122343 0.171305716 fv Log-Normal RP(P), Log-Normal FALSE #> 3320 208 1.0716857 0.225174141 fv Log-Normal RP(P), Log-Normal FALSE #> 3336 209 0.6729434 0.145634249 fv Log-Normal RP(P), Log-Normal FALSE #> 3352 210 0.7233139 0.155217656 fv Log-Normal RP(P), Log-Normal FALSE #> 3368 211 0.8224261 0.173753257 fv Log-Normal RP(P), Log-Normal FALSE #> 3384 212 0.8106002 0.171929743 fv Log-Normal RP(P), Log-Normal FALSE #> 3400 213 0.6209349 0.132488452 fv Log-Normal RP(P), Log-Normal FALSE #> 3416 214 0.6651939 0.141701897 fv Log-Normal RP(P), Log-Normal FALSE #> 3432 215 0.6681925 0.142692548 fv Log-Normal RP(P), Log-Normal FALSE #> 3448 216 0.9718383 0.203611298 fv Log-Normal RP(P), Log-Normal FALSE #> 3464 217 0.7615306 0.161592701 fv Log-Normal RP(P), Log-Normal FALSE #> 3480 218 0.5932685 0.126182039 fv Log-Normal RP(P), Log-Normal FALSE #> 3496 219 0.8440250 0.177280275 fv Log-Normal RP(P), Log-Normal FALSE #> 3512 220 0.9111737 0.193577494 fv Log-Normal RP(P), Log-Normal FALSE #> 3528 221 0.6454833 0.139083353 fv Log-Normal RP(P), Log-Normal FALSE #> 3544 222 0.3710342 0.081236086 fv Log-Normal RP(P), Log-Normal FALSE #> 3560 223 0.5463579 0.116226442 fv Log-Normal RP(P), Log-Normal FALSE #> 3576 224 0.5958494 0.127390309 fv Log-Normal RP(P), Log-Normal FALSE #> 3592 225 0.8256615 0.173178721 fv Log-Normal RP(P), Log-Normal FALSE #> 3608 226 1.0751549 0.225902510 fv Log-Normal RP(P), Log-Normal FALSE #> 3624 227 0.7671138 0.162589102 fv Log-Normal RP(P), Log-Normal FALSE #> 3640 228 0.8685262 0.182915069 fv Log-Normal RP(P), Log-Normal FALSE #> 3656 229 0.4077865 0.089309434 fv Log-Normal RP(P), Log-Normal FALSE #> 3672 230 0.6142203 0.130122245 fv Log-Normal RP(P), Log-Normal FALSE #> 3688 231 0.6568914 0.139096135 fv Log-Normal RP(P), Log-Normal FALSE #> 3704 232 0.9518400 0.200405291 fv Log-Normal RP(P), Log-Normal FALSE #> 3720 233 0.9620535 0.203495174 fv Log-Normal RP(P), Log-Normal FALSE #> 3736 234 0.9386042 0.197203991 fv Log-Normal RP(P), Log-Normal FALSE #> 3752 235 0.5533993 0.117867348 fv Log-Normal RP(P), Log-Normal FALSE #> 3768 236 0.6340348 0.134447642 fv Log-Normal RP(P), Log-Normal FALSE #> 3784 237 0.5453294 0.115930957 fv Log-Normal RP(P), Log-Normal FALSE #> 3800 238 0.8944895 0.191484666 fv Log-Normal RP(P), Log-Normal FALSE #> 3816 239 0.9288279 0.195513931 fv Log-Normal RP(P), Log-Normal FALSE #> 3832 240 0.6350098 0.135823593 fv Log-Normal RP(P), Log-Normal FALSE #> 3848 241 0.7685612 0.163948020 fv Log-Normal RP(P), Log-Normal FALSE #> 3864 242 0.5467803 0.117102138 fv Log-Normal RP(P), Log-Normal FALSE #> 3880 243 0.6730960 0.142931552 fv Log-Normal RP(P), Log-Normal FALSE #> 3896 244 0.6142116 0.131941975 fv Log-Normal RP(P), Log-Normal FALSE #> 3912 245 0.5020462 0.109122006 fv Log-Normal RP(P), Log-Normal FALSE #> 3928 246 0.7921927 0.168021380 fv Log-Normal RP(P), Log-Normal FALSE #> 3944 247 0.6592181 0.139530433 fv Log-Normal RP(P), Log-Normal FALSE #> 3960 248 1.1777612 0.254244197 fv Log-Normal RP(P), Log-Normal TRUE #> 3976 249 0.5943575 0.127544821 fv Log-Normal RP(P), Log-Normal FALSE #> 3992 250 0.7502168 0.158141093 fv Log-Normal RP(P), Log-Normal FALSE #> 4008 251 0.6268527 0.133734241 fv Log-Normal RP(P), Log-Normal FALSE #> 4024 252 0.4776854 0.102284469 fv Log-Normal RP(P), Log-Normal FALSE #> 4040 253 0.8681536 0.183500004 fv Log-Normal RP(P), Log-Normal FALSE #> 4056 254 0.7439174 0.156041861 fv Log-Normal RP(P), Log-Normal FALSE #> 4072 255 0.9441697 0.201330530 fv Log-Normal RP(P), Log-Normal FALSE #> 4088 256 0.8607312 0.182317109 fv Log-Normal RP(P), Log-Normal FALSE #> 4104 257 0.8369787 0.175261357 fv Log-Normal RP(P), Log-Normal FALSE #> 4120 258 0.4171869 0.089856660 fv Log-Normal RP(P), Log-Normal FALSE #> 4136 259 0.6676815 0.141483812 fv Log-Normal RP(P), Log-Normal FALSE #> 4152 260 0.6884486 0.147931703 fv Log-Normal RP(P), Log-Normal FALSE #> 4168 261 0.8876474 0.187002433 fv Log-Normal RP(P), Log-Normal FALSE #> 4184 262 0.6886344 0.145893409 fv Log-Normal RP(P), Log-Normal FALSE #> 4200 263 0.8769823 0.186762641 fv Log-Normal RP(P), Log-Normal FALSE #> 4216 264 0.7973775 0.168952281 fv Log-Normal RP(P), Log-Normal FALSE #> 4232 265 0.6224204 0.131746513 fv Log-Normal RP(P), Log-Normal FALSE #> 4248 266 0.6649661 0.143208152 fv Log-Normal RP(P), Log-Normal FALSE #> 4264 267 0.6170590 0.130985777 fv Log-Normal RP(P), Log-Normal FALSE #> 4280 268 0.9638015 0.201609273 fv Log-Normal RP(P), Log-Normal FALSE #> 4296 269 0.6192713 0.132297670 fv Log-Normal RP(P), Log-Normal FALSE #> 4312 270 0.6272993 0.133300944 fv Log-Normal RP(P), Log-Normal FALSE #> 4328 271 0.7800909 0.164123810 fv Log-Normal RP(P), Log-Normal FALSE #> 4344 272 0.5661606 0.121060836 fv Log-Normal RP(P), Log-Normal FALSE #> 4360 273 0.7588228 0.161878411 fv Log-Normal RP(P), Log-Normal FALSE #> 4376 274 0.7671855 0.161327099 fv Log-Normal RP(P), Log-Normal FALSE #> 4392 275 0.6394525 0.136719057 fv Log-Normal RP(P), Log-Normal FALSE #> 4408 276 0.7903120 0.166291219 fv Log-Normal RP(P), Log-Normal FALSE #> 4424 277 0.7234781 0.152518392 fv Log-Normal RP(P), Log-Normal FALSE #> 4440 278 0.6278358 0.135101300 fv Log-Normal RP(P), Log-Normal FALSE #> 4456 279 0.8158385 0.171062766 fv Log-Normal RP(P), Log-Normal FALSE #> 4472 280 0.8400655 0.178662425 fv Log-Normal RP(P), Log-Normal FALSE #> 4488 281 0.7252124 0.152822320 fv Log-Normal RP(P), Log-Normal FALSE #> 4504 282 0.6556109 0.140682373 fv Log-Normal RP(P), Log-Normal FALSE #> 4520 283 0.8872840 0.188990041 fv Log-Normal RP(P), Log-Normal FALSE #> 4536 284 0.6237917 0.133109411 fv Log-Normal RP(P), Log-Normal FALSE #> 4552 285 0.7104471 0.150620789 fv Log-Normal RP(P), Log-Normal FALSE #> 4568 286 0.7010266 0.148553607 fv Log-Normal RP(P), Log-Normal FALSE #> 4584 287 0.5983036 0.127533893 fv Log-Normal RP(P), Log-Normal FALSE #> 4600 288 0.6194319 0.132300120 fv Log-Normal RP(P), Log-Normal FALSE #> 4616 289 0.6953902 0.147668888 fv Log-Normal RP(P), Log-Normal FALSE #> 4632 290 0.6789570 0.143987778 fv Log-Normal RP(P), Log-Normal FALSE #> 4648 291 0.7671789 0.162019778 fv Log-Normal RP(P), Log-Normal FALSE #> 4664 292 0.6671205 0.145690555 fv Log-Normal RP(P), Log-Normal FALSE #> 4680 293 0.6823554 0.144154584 fv Log-Normal RP(P), Log-Normal FALSE #> 4696 294 0.7332624 0.154464681 fv Log-Normal RP(P), Log-Normal FALSE #> 4712 295 0.6404999 0.135858256 fv Log-Normal RP(P), Log-Normal FALSE #> 4728 296 0.8064440 0.169134786 fv Log-Normal RP(P), Log-Normal FALSE #> 4744 297 0.4154099 0.089707885 fv Log-Normal RP(P), Log-Normal FALSE #> 4760 298 0.7001526 0.148958370 fv Log-Normal RP(P), Log-Normal FALSE #> 4776 299 0.7901542 0.166005499 fv Log-Normal RP(P), Log-Normal FALSE #> 4792 300 0.6383931 0.135316588 fv Log-Normal RP(P), Log-Normal FALSE #> 4808 301 1.0797894 0.226631922 fv Log-Normal RP(P), Log-Normal FALSE #> 4824 302 0.7333982 0.154129270 fv Log-Normal RP(P), Log-Normal FALSE #> 4840 303 0.6448902 0.136135374 fv Log-Normal RP(P), Log-Normal FALSE #> 4856 304 0.6874369 0.145600025 fv Log-Normal RP(P), Log-Normal FALSE #> 4872 305 0.8473673 0.180072933 fv Log-Normal RP(P), Log-Normal FALSE #> 4888 306 0.5855319 0.124660389 fv Log-Normal RP(P), Log-Normal FALSE #> 4904 307 0.6260604 0.133351831 fv Log-Normal RP(P), Log-Normal FALSE #> 4920 308 0.7265619 0.155227234 fv Log-Normal RP(P), Log-Normal FALSE #> 4936 309 0.6165858 0.131736323 fv Log-Normal RP(P), Log-Normal FALSE #> 4952 310 0.6669932 0.143636364 fv Log-Normal RP(P), Log-Normal FALSE #> 4968 311 0.8948024 0.187518922 fv Log-Normal RP(P), Log-Normal FALSE #> 4984 312 0.7340584 0.156045396 fv Log-Normal RP(P), Log-Normal FALSE #> 5000 313 0.5098630 0.110514496 fv Log-Normal RP(P), Log-Normal FALSE #> 5016 314 0.7006581 0.149757043 fv Log-Normal RP(P), Log-Normal FALSE #> 5032 315 0.6800828 0.144554310 fv Log-Normal RP(P), Log-Normal FALSE #> 5048 316 0.5944615 0.126393843 fv Log-Normal RP(P), Log-Normal FALSE #> 5064 317 0.8636833 0.180934577 fv Log-Normal RP(P), Log-Normal FALSE #> 5080 318 0.5483091 0.116304349 fv Log-Normal RP(P), Log-Normal FALSE #> 5096 319 0.7523237 0.160342794 fv Log-Normal RP(P), Log-Normal FALSE #> 5112 320 0.8391743 0.176178376 fv Log-Normal RP(P), Log-Normal FALSE #> 5128 321 0.9163775 0.194154288 fv Log-Normal RP(P), Log-Normal FALSE #> 5144 322 0.5894324 0.127298736 fv Log-Normal RP(P), Log-Normal FALSE #> 5160 323 0.8114798 0.171935681 fv Log-Normal RP(P), Log-Normal FALSE #> 5176 324 0.5338577 0.114284662 fv Log-Normal RP(P), Log-Normal FALSE #> 5192 325 0.6217815 0.132298631 fv Log-Normal RP(P), Log-Normal FALSE #> 5208 326 1.0836512 0.235917887 fv Log-Normal RP(P), Log-Normal FALSE #> 5224 327 0.5334750 0.115076500 fv Log-Normal RP(P), Log-Normal FALSE #> 5240 328 0.7989732 0.169468715 fv Log-Normal RP(P), Log-Normal FALSE #> 5256 329 0.6360385 0.134479974 fv Log-Normal RP(P), Log-Normal FALSE #> 5272 330 0.5875593 0.128101031 fv Log-Normal RP(P), Log-Normal FALSE #> 5288 331 0.9377907 0.197762013 fv Log-Normal RP(P), Log-Normal FALSE #> 5304 332 0.6885284 0.145055687 fv Log-Normal RP(P), Log-Normal FALSE #> 5320 333 0.5064415 0.108148237 fv Log-Normal RP(P), Log-Normal FALSE #> 5336 334 0.5541498 0.118443759 fv Log-Normal RP(P), Log-Normal FALSE #> 5352 335 0.5482213 0.116736851 fv Log-Normal RP(P), Log-Normal FALSE #> 5368 336 0.7934025 0.166004228 fv Log-Normal RP(P), Log-Normal FALSE #> 5384 337 0.6571731 0.138502229 fv Log-Normal RP(P), Log-Normal FALSE #> 5400 338 0.7728687 0.163033764 fv Log-Normal RP(P), Log-Normal FALSE #> 5416 339 0.5965669 0.128341597 fv Log-Normal RP(P), Log-Normal FALSE #> 5432 340 0.9275768 0.195141879 fv Log-Normal RP(P), Log-Normal FALSE #> 5448 341 0.6692119 0.145172381 fv Log-Normal RP(P), Log-Normal FALSE #> 5464 342 0.5902572 0.125475073 fv Log-Normal RP(P), Log-Normal FALSE #> 5480 343 0.5801466 0.123098768 fv Log-Normal RP(P), Log-Normal FALSE #> 5496 344 0.6785553 0.144580820 fv Log-Normal RP(P), Log-Normal FALSE #> 5512 345 0.6981478 0.149010321 fv Log-Normal RP(P), Log-Normal FALSE #> 5528 346 0.5238796 0.114762954 fv Log-Normal RP(P), Log-Normal FALSE #> 5544 347 0.6274841 0.133216940 fv Log-Normal RP(P), Log-Normal FALSE #> 5560 348 0.6138076 0.132661263 fv Log-Normal RP(P), Log-Normal FALSE #> 5576 349 0.7089060 0.151241295 fv Log-Normal RP(P), Log-Normal FALSE #> 5592 350 0.7922423 0.166710243 fv Log-Normal RP(P), Log-Normal FALSE #> 5608 351 0.6095110 0.131638592 fv Log-Normal RP(P), Log-Normal FALSE #> 5624 352 0.8227668 0.174673506 fv Log-Normal RP(P), Log-Normal FALSE #> 5640 353 0.7124254 0.149873339 fv Log-Normal RP(P), Log-Normal FALSE #> 5656 354 0.6746969 0.142588109 fv Log-Normal RP(P), Log-Normal FALSE #> 5672 355 0.7436915 0.155836291 fv Log-Normal RP(P), Log-Normal FALSE #> 5688 356 0.6364339 0.135095851 fv Log-Normal RP(P), Log-Normal FALSE #> 5704 357 0.9283883 0.195684960 fv Log-Normal RP(P), Log-Normal FALSE #> 5720 358 0.6779987 0.143013219 fv Log-Normal RP(P), Log-Normal FALSE #> 5736 359 0.5223231 0.112182424 fv Log-Normal RP(P), Log-Normal FALSE #> 5752 360 0.6818928 0.145867770 fv Log-Normal RP(P), Log-Normal FALSE #> 5768 361 0.6438289 0.136908189 fv Log-Normal RP(P), Log-Normal FALSE #> 5784 362 0.6308484 0.133550798 fv Log-Normal RP(P), Log-Normal FALSE #> 5800 363 0.6184552 0.131494207 fv Log-Normal RP(P), Log-Normal FALSE #> 5816 364 0.9020074 0.191480398 fv Log-Normal RP(P), Log-Normal FALSE #> 5832 365 0.8085743 0.174120700 fv Log-Normal RP(P), Log-Normal FALSE #> 5848 366 0.6868125 0.146863645 fv Log-Normal RP(P), Log-Normal FALSE #> 5864 367 0.8043925 0.169415489 fv Log-Normal RP(P), Log-Normal FALSE #> 5880 368 0.9940984 0.211797215 fv Log-Normal RP(P), Log-Normal FALSE #> 5896 369 0.6067818 0.130133487 fv Log-Normal RP(P), Log-Normal FALSE #> 5912 370 0.7791594 0.164610115 fv Log-Normal RP(P), Log-Normal FALSE #> 5928 371 0.6579660 0.139290440 fv Log-Normal RP(P), Log-Normal FALSE #> 5944 372 0.4998593 0.107079991 fv Log-Normal RP(P), Log-Normal FALSE #> 5960 373 1.1187507 0.239669973 fv Log-Normal RP(P), Log-Normal TRUE #> 5976 374 0.5445436 0.116192907 fv Log-Normal RP(P), Log-Normal FALSE #> 5992 375 0.6589562 0.140315215 fv Log-Normal RP(P), Log-Normal FALSE #> 6008 376 0.7039143 0.151300247 fv Log-Normal RP(P), Log-Normal FALSE #> 6024 377 0.5442462 0.116958497 fv Log-Normal RP(P), Log-Normal FALSE #> 6040 378 0.6207517 0.133000762 fv Log-Normal RP(P), Log-Normal FALSE #> 6056 379 0.5070180 0.108149121 fv Log-Normal RP(P), Log-Normal FALSE #> 6072 380 0.6588885 0.139471825 fv Log-Normal RP(P), Log-Normal FALSE #> 6088 381 0.8548545 0.181832063 fv Log-Normal RP(P), Log-Normal FALSE #> 6104 382 0.7335509 0.156313750 fv Log-Normal RP(P), Log-Normal FALSE #> 6120 383 0.7137172 0.150203860 fv Log-Normal RP(P), Log-Normal FALSE #> 6136 384 0.7104134 0.150412373 fv Log-Normal RP(P), Log-Normal FALSE #> 6152 385 0.5935099 0.129534784 fv Log-Normal RP(P), Log-Normal FALSE #> 6168 386 0.9411797 0.201815466 fv Log-Normal RP(P), Log-Normal FALSE #> 6184 387 0.5892174 0.125279876 fv Log-Normal RP(P), Log-Normal FALSE #> 6200 388 0.9310919 0.196820097 fv Log-Normal RP(P), Log-Normal FALSE #> 6216 389 0.8066429 0.170511534 fv Log-Normal RP(P), Log-Normal FALSE #> 6232 390 0.6786750 0.144396146 fv Log-Normal RP(P), Log-Normal FALSE #> 6248 391 0.8198229 0.172515332 fv Log-Normal RP(P), Log-Normal FALSE #> 6264 392 0.6270577 0.133542272 fv Log-Normal RP(P), Log-Normal FALSE #> 6280 393 0.5605416 0.119072930 fv Log-Normal RP(P), Log-Normal FALSE #> 6296 394 0.8810824 0.186080625 fv Log-Normal RP(P), Log-Normal FALSE #> 6312 395 0.7626802 0.161748237 fv Log-Normal RP(P), Log-Normal FALSE #> 6328 396 1.0186980 0.215519936 fv Log-Normal RP(P), Log-Normal FALSE #> 6344 397 0.7136712 0.152808078 fv Log-Normal RP(P), Log-Normal FALSE #> 6360 398 0.6724088 0.142879285 fv Log-Normal RP(P), Log-Normal FALSE #> 6376 399 0.8200587 0.173443890 fv Log-Normal RP(P), Log-Normal FALSE #> 6392 400 0.5373662 0.114719406 fv Log-Normal RP(P), Log-Normal FALSE #> 6408 401 0.6198081 0.133051510 fv Log-Normal RP(P), Log-Normal FALSE #> 6424 402 0.5456393 0.120676593 fv Log-Normal RP(P), Log-Normal FALSE #> 6440 403 0.6242481 0.134826074 fv Log-Normal RP(P), Log-Normal FALSE #> 6456 404 0.5789455 0.124683392 fv Log-Normal RP(P), Log-Normal FALSE #> 6472 405 0.4740742 0.101148159 fv Log-Normal RP(P), Log-Normal FALSE #> 6488 406 0.7363722 0.157413363 fv Log-Normal RP(P), Log-Normal FALSE #> 6504 407 0.7570074 0.160550534 fv Log-Normal RP(P), Log-Normal FALSE #> 6520 408 0.4959259 0.108490225 fv Log-Normal RP(P), Log-Normal FALSE #> 6536 409 0.7356424 0.157765466 fv Log-Normal RP(P), Log-Normal FALSE #> 6552 410 0.7712851 0.162320795 fv Log-Normal RP(P), Log-Normal FALSE #> 6568 411 0.6541786 0.140317219 fv Log-Normal RP(P), Log-Normal FALSE #> 6584 412 0.6661183 0.143455097 fv Log-Normal RP(P), Log-Normal FALSE #> 6600 413 0.5350439 0.115753646 fv Log-Normal RP(P), Log-Normal FALSE #> 6616 414 0.8643640 0.180317810 fv Log-Normal RP(P), Log-Normal FALSE #> 6632 415 1.2739619 0.266898773 fv Log-Normal RP(P), Log-Normal TRUE #> 6648 416 0.5686275 0.124459667 fv Log-Normal RP(P), Log-Normal FALSE #> 6664 417 0.5516460 0.117282911 fv Log-Normal RP(P), Log-Normal FALSE #> 6680 418 0.8937930 0.187628969 fv Log-Normal RP(P), Log-Normal FALSE #> 6696 419 0.4939313 0.107958764 fv Log-Normal RP(P), Log-Normal FALSE #> 6712 420 0.7618818 0.162553523 fv Log-Normal RP(P), Log-Normal FALSE #> 6728 421 0.7941336 0.166611656 fv Log-Normal RP(P), Log-Normal FALSE #> 6744 422 0.5760020 0.123123483 fv Log-Normal RP(P), Log-Normal FALSE #> 6760 423 0.5860742 0.124560347 fv Log-Normal RP(P), Log-Normal FALSE #> 6776 424 0.6808656 0.144707278 fv Log-Normal RP(P), Log-Normal FALSE #> 6792 425 0.7515341 0.158171202 fv Log-Normal RP(P), Log-Normal FALSE #> 6808 426 0.8278194 0.174409626 fv Log-Normal RP(P), Log-Normal FALSE #> 6824 427 0.9565671 0.199453527 fv Log-Normal RP(P), Log-Normal FALSE #> 6840 428 0.8208074 0.173449828 fv Log-Normal RP(P), Log-Normal FALSE #> 6856 429 0.7261118 0.153860717 fv Log-Normal RP(P), Log-Normal FALSE #> 6872 430 0.8154937 0.170888139 fv Log-Normal RP(P), Log-Normal FALSE #> 6888 431 0.6854336 0.147503360 fv Log-Normal RP(P), Log-Normal FALSE #> 6904 432 0.8698979 0.183151737 fv Log-Normal RP(P), Log-Normal FALSE #> 6920 433 0.5932630 0.126716505 fv Log-Normal RP(P), Log-Normal FALSE #> 6936 434 0.5884706 0.124621858 fv Log-Normal RP(P), Log-Normal FALSE #> 6952 435 0.4976009 0.107213878 fv Log-Normal RP(P), Log-Normal FALSE #> 6968 436 0.7641928 0.161595804 fv Log-Normal RP(P), Log-Normal FALSE #> 6984 437 0.5831031 0.126014583 fv Log-Normal RP(P), Log-Normal FALSE #> 7000 438 0.8816506 0.185159712 fv Log-Normal RP(P), Log-Normal FALSE #> 7016 439 0.5992139 0.129551688 fv Log-Normal RP(P), Log-Normal FALSE #> 7032 440 0.4173110 0.090549796 fv Log-Normal RP(P), Log-Normal FALSE #> 7048 441 0.5608792 0.120279561 fv Log-Normal RP(P), Log-Normal FALSE #> 7064 442 0.7522919 0.160420421 fv Log-Normal RP(P), Log-Normal FALSE #> 7080 443 0.8041542 0.170485517 fv Log-Normal RP(P), Log-Normal FALSE #> 7096 444 0.8333665 0.174907941 fv Log-Normal RP(P), Log-Normal FALSE #> 7112 445 0.9032992 0.190709150 fv Log-Normal RP(P), Log-Normal FALSE #> 7128 446 0.6382998 0.136039454 fv Log-Normal RP(P), Log-Normal FALSE #> 7144 447 0.8913664 0.188101809 fv Log-Normal RP(P), Log-Normal FALSE #> 7160 448 0.9185656 0.194708815 fv Log-Normal RP(P), Log-Normal FALSE #> 7176 449 0.9114504 0.192914583 fv Log-Normal RP(P), Log-Normal FALSE #> 7192 450 0.7040628 0.150193038 fv Log-Normal RP(P), Log-Normal FALSE #> 7208 451 0.7951696 0.168085049 fv Log-Normal RP(P), Log-Normal FALSE #> 7224 452 0.7822380 0.164962493 fv Log-Normal RP(P), Log-Normal FALSE #> 7240 453 0.6990982 0.147390463 fv Log-Normal RP(P), Log-Normal FALSE #> 7256 454 0.6810218 0.145335768 fv Log-Normal RP(P), Log-Normal FALSE #> 7272 455 0.6300676 0.133453170 fv Log-Normal RP(P), Log-Normal FALSE #> 7288 456 0.4863927 0.104457276 fv Log-Normal RP(P), Log-Normal FALSE #> 7304 457 0.9178214 0.193997798 fv Log-Normal RP(P), Log-Normal FALSE #> 7320 458 0.7946535 0.172717509 fv Log-Normal RP(P), Log-Normal FALSE #> 7336 459 0.9718512 0.208815317 fv Log-Normal RP(P), Log-Normal FALSE #> 7352 460 0.6861966 0.146417539 fv Log-Normal RP(P), Log-Normal FALSE #> 7368 461 0.7851648 0.165669430 fv Log-Normal RP(P), Log-Normal FALSE #> 7384 462 0.7271394 0.153568596 fv Log-Normal RP(P), Log-Normal FALSE #> 7400 463 0.8837419 0.187918773 fv Log-Normal RP(P), Log-Normal FALSE #> 7416 464 0.8135415 0.171708945 fv Log-Normal RP(P), Log-Normal FALSE #> 7432 465 0.8182940 0.172522261 fv Log-Normal RP(P), Log-Normal FALSE #> 7448 466 0.8493356 0.179784542 fv Log-Normal RP(P), Log-Normal FALSE #> 7464 467 0.7431155 0.158019881 fv Log-Normal RP(P), Log-Normal FALSE #> 7480 468 0.9245746 0.194819936 fv Log-Normal RP(P), Log-Normal FALSE #> 7496 469 0.8093364 0.169629324 fv Log-Normal RP(P), Log-Normal FALSE #> 7512 470 0.7536124 0.160736238 fv Log-Normal RP(P), Log-Normal FALSE #> 7528 471 0.6319489 0.135425252 fv Log-Normal RP(P), Log-Normal FALSE #> 7544 472 0.8705816 0.183151533 fv Log-Normal RP(P), Log-Normal FALSE #> 7560 473 0.6939116 0.147277985 fv Log-Normal RP(P), Log-Normal FALSE #> 7576 474 1.0226695 0.218679643 fv Log-Normal RP(P), Log-Normal FALSE #> 7592 475 0.6441230 0.137039433 fv Log-Normal RP(P), Log-Normal FALSE #> 7608 476 0.4760739 0.102644848 fv Log-Normal RP(P), Log-Normal FALSE #> 7624 477 0.5102537 0.108874669 fv Log-Normal RP(P), Log-Normal FALSE #> 7640 478 0.8094600 0.170268803 fv Log-Normal RP(P), Log-Normal FALSE #> 7656 479 0.7402423 0.155742727 fv Log-Normal RP(P), Log-Normal FALSE #> 7672 480 1.0188028 0.213534164 fv Log-Normal RP(P), Log-Normal FALSE #> 7688 481 1.0312072 0.216978595 fv Log-Normal RP(P), Log-Normal FALSE #> 7704 482 0.7865807 0.168666058 fv Log-Normal RP(P), Log-Normal FALSE #> 7720 483 0.9423222 0.201963450 fv Log-Normal RP(P), Log-Normal FALSE #> 7736 484 0.8973102 0.192445828 fv Log-Normal RP(P), Log-Normal FALSE #> 7752 485 0.5963984 0.127055639 fv Log-Normal RP(P), Log-Normal FALSE #> 7768 486 0.4671000 0.102302527 fv Log-Normal RP(P), Log-Normal FALSE #> 7784 487 0.8902634 0.188247313 fv Log-Normal RP(P), Log-Normal FALSE #> 7800 488 0.4450478 0.096615368 fv Log-Normal RP(P), Log-Normal FALSE #> 7816 489 0.8021624 0.173231327 fv Log-Normal RP(P), Log-Normal FALSE #> 7832 490 0.7137305 0.152534661 fv Log-Normal RP(P), Log-Normal FALSE #> 7848 491 0.6903608 0.146100755 fv Log-Normal RP(P), Log-Normal FALSE #> 7864 492 0.5592670 0.118971312 fv Log-Normal RP(P), Log-Normal FALSE #> 7880 493 1.0805007 0.228198880 fv Log-Normal RP(P), Log-Normal FALSE #> 7896 494 0.6613173 0.139508951 fv Log-Normal RP(P), Log-Normal FALSE #> 7912 495 0.8229525 0.172706856 fv Log-Normal RP(P), Log-Normal FALSE #> 7928 496 1.0935848 0.231781117 fv Log-Normal RP(P), Log-Normal FALSE #> 7944 497 0.5926421 0.126095802 fv Log-Normal RP(P), Log-Normal FALSE #> 7960 498 0.6349464 0.134880116 fv Log-Normal RP(P), Log-Normal FALSE #> 7976 499 0.9057009 0.193169237 fv Log-Normal RP(P), Log-Normal FALSE #> 7992 500 0.6787804 0.143590515 fv Log-Normal RP(P), Log-Normal FALSE #> 8008 501 1.3525305 0.283084001 fv Log-Normal RP(P), Log-Normal TRUE #> 8024 502 0.7740755 0.163786111 fv Log-Normal RP(P), Log-Normal FALSE #> 8040 503 0.7478861 0.158084965 fv Log-Normal RP(P), Log-Normal FALSE #> 8056 504 0.8826810 0.185135409 fv Log-Normal RP(P), Log-Normal FALSE #> 8072 505 0.7557309 0.160151723 fv Log-Normal RP(P), Log-Normal FALSE #> 8088 506 1.0247701 0.219285990 fv Log-Normal RP(P), Log-Normal FALSE #> 8104 507 0.7332673 0.155458606 fv Log-Normal RP(P), Log-Normal FALSE #> 8120 508 0.5395012 0.115690840 fv Log-Normal RP(P), Log-Normal FALSE #> 8136 509 0.6787263 0.144817990 fv Log-Normal RP(P), Log-Normal FALSE #> 8152 510 0.6847482 0.146363988 fv Log-Normal RP(P), Log-Normal FALSE #> 8168 511 0.4605915 0.099150023 fv Log-Normal RP(P), Log-Normal FALSE #> 8184 512 0.7265371 0.156046468 fv Log-Normal RP(P), Log-Normal FALSE #> 8200 513 0.8072477 0.171715037 fv Log-Normal RP(P), Log-Normal FALSE #> 8216 514 0.7180859 0.151783993 fv Log-Normal RP(P), Log-Normal FALSE #> 8232 515 0.5582958 0.119831433 fv Log-Normal RP(P), Log-Normal FALSE #> 8248 516 0.7381316 0.155789374 fv Log-Normal RP(P), Log-Normal FALSE #> 8264 517 0.3674411 0.080541276 fv Log-Normal RP(P), Log-Normal FALSE #> 8280 518 0.7450873 0.157554369 fv Log-Normal RP(P), Log-Normal FALSE #> 8296 519 0.7681291 0.162465401 fv Log-Normal RP(P), Log-Normal FALSE #> 8312 520 0.8008281 0.168852756 fv Log-Normal RP(P), Log-Normal FALSE #> 8328 521 0.7998675 0.170293482 fv Log-Normal RP(P), Log-Normal FALSE #> 8344 522 0.5387534 0.114980391 fv Log-Normal RP(P), Log-Normal FALSE #> 8360 523 0.7672604 0.162198321 fv Log-Normal RP(P), Log-Normal FALSE #> 8376 524 0.5280884 0.112519890 fv Log-Normal RP(P), Log-Normal FALSE #> 8392 525 0.7053708 0.149423744 fv Log-Normal RP(P), Log-Normal FALSE #> 8408 526 0.6066376 0.129241961 fv Log-Normal RP(P), Log-Normal FALSE #> 8424 527 0.7129661 0.150656058 fv Log-Normal RP(P), Log-Normal FALSE #> 8440 528 0.9281260 0.195995962 fv Log-Normal RP(P), Log-Normal FALSE #> 8456 529 0.9355893 0.196208641 fv Log-Normal RP(P), Log-Normal FALSE #> 8472 530 0.4504997 0.097884739 fv Log-Normal RP(P), Log-Normal FALSE #> 8488 531 1.0001840 0.211155769 fv Log-Normal RP(P), Log-Normal FALSE #> 8504 532 0.7216514 0.152077098 fv Log-Normal RP(P), Log-Normal FALSE #> 8520 533 0.6905167 0.145804123 fv Log-Normal RP(P), Log-Normal FALSE #> 8536 534 0.7425754 0.157498257 fv Log-Normal RP(P), Log-Normal FALSE #> 8552 535 0.8638945 0.181911550 fv Log-Normal RP(P), Log-Normal FALSE #> 8568 536 0.5969459 0.128825659 fv Log-Normal RP(P), Log-Normal FALSE #> 8584 537 1.2497526 0.261387193 fv Log-Normal RP(P), Log-Normal TRUE #> 8600 538 0.5072017 0.109014290 fv Log-Normal RP(P), Log-Normal FALSE #> 8616 539 0.6856868 0.144442198 fv Log-Normal RP(P), Log-Normal FALSE #> 8632 540 0.6145395 0.130947333 fv Log-Normal RP(P), Log-Normal FALSE #> 8648 541 0.9003393 0.188467630 fv Log-Normal RP(P), Log-Normal FALSE #> 8664 542 0.8263942 0.175286712 fv Log-Normal RP(P), Log-Normal FALSE #> 8680 543 0.7581448 0.159106779 fv Log-Normal RP(P), Log-Normal FALSE #> 8696 544 0.7628214 0.161333872 fv Log-Normal RP(P), Log-Normal FALSE #> 8712 545 0.5729157 0.121622886 fv Log-Normal RP(P), Log-Normal FALSE #> 8728 546 0.9048540 0.189585012 fv Log-Normal RP(P), Log-Normal FALSE #> 8744 547 0.6888985 0.146237060 fv Log-Normal RP(P), Log-Normal FALSE #> 8760 548 0.5388485 0.114867872 fv Log-Normal RP(P), Log-Normal FALSE #> 8776 549 0.8844165 0.187783761 fv Log-Normal RP(P), Log-Normal FALSE #> 8792 550 0.5216935 0.112325747 fv Log-Normal RP(P), Log-Normal FALSE #> 8808 551 0.7981204 0.168826559 fv Log-Normal RP(P), Log-Normal FALSE #> 8824 552 0.7043843 0.148695174 fv Log-Normal RP(P), Log-Normal FALSE #> 8840 553 0.8456647 0.176887854 fv Log-Normal RP(P), Log-Normal FALSE #> 8856 554 0.9029274 0.189275208 fv Log-Normal RP(P), Log-Normal FALSE #> 8872 555 0.8338211 0.176687000 fv Log-Normal RP(P), Log-Normal FALSE #> 8888 556 0.8771735 0.184240708 fv Log-Normal RP(P), Log-Normal FALSE #> 8904 557 0.6994326 0.147519245 fv Log-Normal RP(P), Log-Normal FALSE #> 8920 558 0.6675003 0.140850673 fv Log-Normal RP(P), Log-Normal FALSE #> 8936 559 0.6142336 0.132089175 fv Log-Normal RP(P), Log-Normal FALSE #> 8952 560 0.7787745 0.163344772 fv Log-Normal RP(P), Log-Normal FALSE #> 8968 561 1.2512491 0.263068744 fv Log-Normal RP(P), Log-Normal TRUE #> 8984 562 0.8979502 0.193680428 fv Log-Normal RP(P), Log-Normal FALSE #> 9000 563 0.7952133 0.167695091 fv Log-Normal RP(P), Log-Normal FALSE #> 9016 564 0.6546188 0.141378883 fv Log-Normal RP(P), Log-Normal FALSE #> 9032 565 0.5562875 0.118568595 fv Log-Normal RP(P), Log-Normal FALSE #> 9048 566 0.7792219 0.167873773 fv Log-Normal RP(P), Log-Normal FALSE #> 9064 567 0.7419551 0.158352827 fv Log-Normal RP(P), Log-Normal FALSE #> 9080 568 0.5379826 0.115223660 fv Log-Normal RP(P), Log-Normal FALSE #> 9096 569 0.8461880 0.177143809 fv Log-Normal RP(P), Log-Normal FALSE #> 9112 570 0.5799163 0.126002183 fv Log-Normal RP(P), Log-Normal FALSE #> 9128 571 0.6983018 0.147992860 fv Log-Normal RP(P), Log-Normal FALSE #> 9144 572 0.6094856 0.128898875 fv Log-Normal RP(P), Log-Normal FALSE #> 9160 573 0.6552102 0.139040826 fv Log-Normal RP(P), Log-Normal FALSE #> 9176 574 0.7370159 0.156124757 fv Log-Normal RP(P), Log-Normal FALSE #> 9192 575 0.6652785 0.143329039 fv Log-Normal RP(P), Log-Normal FALSE #> 9208 576 0.7048646 0.153254428 fv Log-Normal RP(P), Log-Normal FALSE #> 9224 577 0.9167098 0.191907050 fv Log-Normal RP(P), Log-Normal FALSE #> 9240 578 0.5877871 0.124960960 fv Log-Normal RP(P), Log-Normal FALSE #> 9256 579 0.6016587 0.129835840 fv Log-Normal RP(P), Log-Normal FALSE #> 9272 580 0.4967792 0.106638664 fv Log-Normal RP(P), Log-Normal FALSE #> 9288 581 0.7942713 0.168013813 fv Log-Normal RP(P), Log-Normal FALSE #> 9304 582 0.7758947 0.163986474 fv Log-Normal RP(P), Log-Normal FALSE #> 9320 583 1.0340860 0.215440480 fv Log-Normal RP(P), Log-Normal FALSE #> 9336 584 0.5415647 0.114993075 fv Log-Normal RP(P), Log-Normal FALSE #> 9352 585 0.7207829 0.152475876 fv Log-Normal RP(P), Log-Normal FALSE #> 9368 586 0.7453476 0.156907193 fv Log-Normal RP(P), Log-Normal FALSE #> 9384 587 0.9381973 0.198355658 fv Log-Normal RP(P), Log-Normal FALSE #> 9400 588 0.5818223 0.125118084 fv Log-Normal RP(P), Log-Normal FALSE #> 9416 589 0.6031015 0.127799852 fv Log-Normal RP(P), Log-Normal FALSE #> 9432 590 0.8243606 0.175362711 fv Log-Normal RP(P), Log-Normal FALSE #> 9448 591 0.8454856 0.179386646 fv Log-Normal RP(P), Log-Normal FALSE #> 9464 592 0.8293279 0.176428804 fv Log-Normal RP(P), Log-Normal FALSE #> 9480 593 0.9311402 0.195578453 fv Log-Normal RP(P), Log-Normal FALSE #> 9496 594 0.7218285 0.152965863 fv Log-Normal RP(P), Log-Normal FALSE #> 9512 595 0.5446728 0.116520386 fv Log-Normal RP(P), Log-Normal FALSE #> 9528 596 0.7359036 0.154479518 fv Log-Normal RP(P), Log-Normal FALSE #> 9544 597 0.6073041 0.128691128 fv Log-Normal RP(P), Log-Normal FALSE #> 9560 598 1.0738637 0.225311791 fv Log-Normal RP(P), Log-Normal FALSE #> 9576 599 0.7532017 0.160702035 fv Log-Normal RP(P), Log-Normal FALSE #> 9592 600 0.5313748 0.113456443 fv Log-Normal RP(P), Log-Normal FALSE #> 9608 601 1.1762696 0.247690829 fv Log-Normal RP(P), Log-Normal TRUE #> 9624 602 0.9869736 0.208165567 fv Log-Normal RP(P), Log-Normal FALSE #> 9640 603 0.4156015 0.089856898 fv Log-Normal RP(P), Log-Normal FALSE #> 9656 604 0.7562236 0.159112332 fv Log-Normal RP(P), Log-Normal FALSE #> 9672 605 1.2356747 0.256716135 fv Log-Normal RP(P), Log-Normal TRUE #> 9688 606 0.6753278 0.142231678 fv Log-Normal RP(P), Log-Normal FALSE #> 9704 607 0.6100967 0.131469811 fv Log-Normal RP(P), Log-Normal FALSE #> 9720 608 0.4384887 0.095081321 fv Log-Normal RP(P), Log-Normal FALSE #> 9736 609 0.8299211 0.173601960 fv Log-Normal RP(P), Log-Normal FALSE #> 9752 610 0.6332973 0.134588006 fv Log-Normal RP(P), Log-Normal FALSE #> 9768 611 0.8122094 0.173499710 fv Log-Normal RP(P), Log-Normal FALSE #> 9784 612 0.5912979 0.127198194 fv Log-Normal RP(P), Log-Normal FALSE #> 9800 613 0.8186354 0.172772228 fv Log-Normal RP(P), Log-Normal FALSE #> 9816 614 0.7847640 0.167841517 fv Log-Normal RP(P), Log-Normal FALSE #> 9832 615 0.8697196 0.183433952 fv Log-Normal RP(P), Log-Normal FALSE #> 9848 616 0.7828021 0.165439563 fv Log-Normal RP(P), Log-Normal FALSE #> 9864 617 0.7846758 0.165990375 fv Log-Normal RP(P), Log-Normal FALSE #> 9880 618 0.6823886 0.144285111 fv Log-Normal RP(P), Log-Normal FALSE #> 9896 619 0.8198467 0.172557735 fv Log-Normal RP(P), Log-Normal FALSE #> 9912 620 0.8185053 0.173878169 fv Log-Normal RP(P), Log-Normal FALSE #> 9928 621 0.5663070 0.121246532 fv Log-Normal RP(P), Log-Normal FALSE #> 9944 622 0.6302051 0.135303879 fv Log-Normal RP(P), Log-Normal FALSE #> 9960 623 0.8783656 0.185679970 fv Log-Normal RP(P), Log-Normal FALSE #> 9976 624 0.5837145 0.125580529 fv Log-Normal RP(P), Log-Normal FALSE #> 9992 625 0.7638096 0.162639813 fv Log-Normal RP(P), Log-Normal FALSE #> 10008 626 0.6378765 0.135851705 fv Log-Normal RP(P), Log-Normal FALSE #> 10024 627 0.6253581 0.133238137 fv Log-Normal RP(P), Log-Normal FALSE #> 10040 628 0.6694660 0.143767320 fv Log-Normal RP(P), Log-Normal FALSE #> 10056 629 0.6392508 0.134956518 fv Log-Normal RP(P), Log-Normal FALSE #> 10072 630 0.8351055 0.175262379 fv Log-Normal RP(P), Log-Normal FALSE #> 10088 631 0.6715506 0.142213889 fv Log-Normal RP(P), Log-Normal FALSE #> 10104 632 0.7776511 0.166721548 fv Log-Normal RP(P), Log-Normal FALSE #> 10120 633 0.4910653 0.105740740 fv Log-Normal RP(P), Log-Normal FALSE #> 10136 634 0.6757272 0.146378271 fv Log-Normal RP(P), Log-Normal FALSE #> 10152 635 0.9063761 0.191682174 fv Log-Normal RP(P), Log-Normal FALSE #> 10168 636 0.4196552 0.091166924 fv Log-Normal RP(P), Log-Normal FALSE #> 10184 637 0.8757533 0.183031296 fv Log-Normal RP(P), Log-Normal FALSE #> 10200 638 0.6839210 0.145657493 fv Log-Normal RP(P), Log-Normal FALSE #> 10216 639 0.4323877 0.093765125 fv Log-Normal RP(P), Log-Normal FALSE #> 10232 640 0.7235325 0.154259737 fv Log-Normal RP(P), Log-Normal FALSE #> 10248 641 0.5858835 0.125271208 fv Log-Normal RP(P), Log-Normal FALSE #> 10264 642 0.6400015 0.136631265 fv Log-Normal RP(P), Log-Normal FALSE #> 10280 643 0.6645860 0.140296010 fv Log-Normal RP(P), Log-Normal FALSE #> 10296 644 0.6198370 0.131300536 fv Log-Normal RP(P), Log-Normal FALSE #> 10312 645 0.7546684 0.158768904 fv Log-Normal RP(P), Log-Normal FALSE #> 10328 646 0.8385785 0.177475226 fv Log-Normal RP(P), Log-Normal FALSE #> 10344 647 0.6580940 0.139159678 fv Log-Normal RP(P), Log-Normal FALSE #> 10360 648 1.0746985 0.225177802 fv Log-Normal RP(P), Log-Normal FALSE #> 10376 649 0.6308988 0.136195814 fv Log-Normal RP(P), Log-Normal FALSE #> 10392 650 0.8130078 0.170621264 fv Log-Normal RP(P), Log-Normal FALSE #> 10408 651 0.7933222 0.168885503 fv Log-Normal RP(P), Log-Normal FALSE #> 10424 652 1.2738896 0.266494041 fv Log-Normal RP(P), Log-Normal TRUE #> 10440 653 0.5448666 0.117388941 fv Log-Normal RP(P), Log-Normal FALSE #> 10456 654 0.5869671 0.127309334 fv Log-Normal RP(P), Log-Normal FALSE #> 10472 655 0.7057334 0.149997780 fv Log-Normal RP(P), Log-Normal FALSE #> 10488 656 0.7129275 0.153121486 fv Log-Normal RP(P), Log-Normal FALSE #> 10504 657 0.5353386 0.115029010 fv Log-Normal RP(P), Log-Normal FALSE #> 10520 658 1.1549453 0.246231092 fv Log-Normal RP(P), Log-Normal TRUE #> 10536 659 1.0576571 0.224338275 fv Log-Normal RP(P), Log-Normal FALSE #> 10552 660 0.8581929 0.181070027 fv Log-Normal RP(P), Log-Normal FALSE #> 10568 661 0.5674477 0.122688388 fv Log-Normal RP(P), Log-Normal FALSE #> 10584 662 0.5904257 0.125804978 fv Log-Normal RP(P), Log-Normal FALSE #> 10600 663 0.7041159 0.150024604 fv Log-Normal RP(P), Log-Normal FALSE #> 10616 664 0.7043639 0.148712478 fv Log-Normal RP(P), Log-Normal FALSE #> 10632 665 0.8841932 0.186280285 fv Log-Normal RP(P), Log-Normal FALSE #> 10648 666 1.1689748 0.244131156 fv Log-Normal RP(P), Log-Normal TRUE #> 10664 667 0.6492794 0.137535848 fv Log-Normal RP(P), Log-Normal FALSE #> 10680 668 0.6326668 0.134054761 fv Log-Normal RP(P), Log-Normal FALSE #> 10696 669 0.9185632 0.194052341 fv Log-Normal RP(P), Log-Normal FALSE #> 10712 670 0.6207600 0.134223983 fv Log-Normal RP(P), Log-Normal FALSE #> 10728 671 0.7991586 0.168309558 fv Log-Normal RP(P), Log-Normal FALSE #> 10744 672 0.9575733 0.201175273 fv Log-Normal RP(P), Log-Normal FALSE #> 10760 673 0.6513651 0.137218194 fv Log-Normal RP(P), Log-Normal FALSE #> 10776 674 0.8220483 0.172548799 fv Log-Normal RP(P), Log-Normal FALSE #> 10792 675 0.6542018 0.144640287 fv Log-Normal RP(P), Log-Normal FALSE #> 10808 676 0.8790873 0.184291598 fv Log-Normal RP(P), Log-Normal FALSE #> 10824 677 0.6809257 0.143968265 fv Log-Normal RP(P), Log-Normal FALSE #> 10840 678 0.5718382 0.122834126 fv Log-Normal RP(P), Log-Normal FALSE #> 10856 679 0.6114109 0.129944256 fv Log-Normal RP(P), Log-Normal FALSE #> 10872 680 0.7505338 0.159061609 fv Log-Normal RP(P), Log-Normal FALSE #> 10888 681 1.0280511 0.216051309 fv Log-Normal RP(P), Log-Normal FALSE #> 10904 682 0.6922360 0.148686633 fv Log-Normal RP(P), Log-Normal FALSE #> 10920 683 0.8160459 0.173021939 fv Log-Normal RP(P), Log-Normal FALSE #> 10936 684 1.0630183 0.223385225 fv Log-Normal RP(P), Log-Normal FALSE #> 10952 685 0.6666902 0.142274967 fv Log-Normal RP(P), Log-Normal FALSE #> 10968 686 0.8987511 0.188963362 fv Log-Normal RP(P), Log-Normal FALSE #> 10984 687 0.5852340 0.124061916 fv Log-Normal RP(P), Log-Normal FALSE #> 11000 688 0.6144874 0.131917388 fv Log-Normal RP(P), Log-Normal FALSE #> 11016 689 0.6590173 0.140975370 fv Log-Normal RP(P), Log-Normal FALSE #> 11032 690 0.8739728 0.185496227 fv Log-Normal RP(P), Log-Normal FALSE #> 11048 691 0.8872853 0.197067546 fv Log-Normal RP(P), Log-Normal FALSE #> 11064 692 0.6787807 0.144806881 fv Log-Normal RP(P), Log-Normal FALSE #> 11080 693 0.5443873 0.119028846 fv Log-Normal RP(P), Log-Normal FALSE #> 11096 694 0.7311672 0.154007226 fv Log-Normal RP(P), Log-Normal FALSE #> 11112 695 0.6437481 0.137433283 fv Log-Normal RP(P), Log-Normal FALSE #> 11128 696 0.7796264 0.164444138 fv Log-Normal RP(P), Log-Normal FALSE #> 11144 697 0.8935000 0.188433606 fv Log-Normal RP(P), Log-Normal FALSE #> 11160 698 0.4678461 0.101556136 fv Log-Normal RP(P), Log-Normal FALSE #> 11176 699 0.7196923 0.155980475 fv Log-Normal RP(P), Log-Normal FALSE #> 11192 700 0.5476779 0.117221047 fv Log-Normal RP(P), Log-Normal FALSE #> 11208 701 0.8599958 0.182880781 fv Log-Normal RP(P), Log-Normal FALSE #> 11224 702 0.8684833 0.183468073 fv Log-Normal RP(P), Log-Normal FALSE #> 11240 703 0.7419362 0.157049016 fv Log-Normal RP(P), Log-Normal FALSE #> 11256 704 0.6422867 0.136115231 fv Log-Normal RP(P), Log-Normal FALSE #> 11272 705 0.7063944 0.150466188 fv Log-Normal RP(P), Log-Normal FALSE #> 11288 706 0.7662985 0.163581974 fv Log-Normal RP(P), Log-Normal FALSE #> 11304 707 0.9691335 0.204225294 fv Log-Normal RP(P), Log-Normal FALSE #> 11320 708 0.9287081 0.195346367 fv Log-Normal RP(P), Log-Normal FALSE #> 11336 709 0.6754008 0.142370655 fv Log-Normal RP(P), Log-Normal FALSE #> 11352 710 0.5128397 0.109458719 fv Log-Normal RP(P), Log-Normal FALSE #> 11368 711 0.6479967 0.136748161 fv Log-Normal RP(P), Log-Normal FALSE #> 11384 712 0.6760885 0.143146392 fv Log-Normal RP(P), Log-Normal FALSE #> 11400 713 1.0587777 0.226926537 fv Log-Normal RP(P), Log-Normal FALSE #> 11416 714 0.8103874 0.172391443 fv Log-Normal RP(P), Log-Normal FALSE #> 11432 715 0.8616532 0.183384192 fv Log-Normal RP(P), Log-Normal FALSE #> 11448 716 0.7627301 0.161883444 fv Log-Normal RP(P), Log-Normal FALSE #> 11464 717 0.8267358 0.177301411 fv Log-Normal RP(P), Log-Normal FALSE #> 11480 718 0.8593514 0.180603036 fv Log-Normal RP(P), Log-Normal FALSE #> 11496 719 0.9936252 0.208990822 fv Log-Normal RP(P), Log-Normal FALSE #> 11512 720 0.7871392 0.166350119 fv Log-Normal RP(P), Log-Normal FALSE #> 11528 721 0.6135418 0.132430075 fv Log-Normal RP(P), Log-Normal FALSE #> 11544 722 0.8048205 0.169138187 fv Log-Normal RP(P), Log-Normal FALSE #> 11560 723 0.6336888 0.133709011 fv Log-Normal RP(P), Log-Normal FALSE #> 11576 724 0.7570649 0.162435404 fv Log-Normal RP(P), Log-Normal FALSE #> 11592 725 0.7604770 0.159995583 fv Log-Normal RP(P), Log-Normal FALSE #> 11608 726 0.6782080 0.145809322 fv Log-Normal RP(P), Log-Normal FALSE #> 11624 727 0.7886025 0.166038605 fv Log-Normal RP(P), Log-Normal FALSE #> 11640 728 1.0345666 0.216064658 fv Log-Normal RP(P), Log-Normal FALSE #> 11656 729 0.7882665 0.167027116 fv Log-Normal RP(P), Log-Normal FALSE #> 11672 730 0.8534764 0.181349873 fv Log-Normal RP(P), Log-Normal FALSE #> 11688 731 0.5696950 0.125642912 fv Log-Normal RP(P), Log-Normal FALSE #> 11704 732 0.5007401 0.109484333 fv Log-Normal RP(P), Log-Normal FALSE #> 11720 733 0.9913558 0.210293324 fv Log-Normal RP(P), Log-Normal FALSE #> 11736 734 0.8984254 0.190596960 fv Log-Normal RP(P), Log-Normal FALSE #> 11752 735 1.0045821 0.209748742 fv Log-Normal RP(P), Log-Normal FALSE #> 11768 736 0.8546730 0.181624950 fv Log-Normal RP(P), Log-Normal FALSE #> 11784 737 0.7414317 0.156044397 fv Log-Normal RP(P), Log-Normal FALSE #> 11800 738 0.5333088 0.113415989 fv Log-Normal RP(P), Log-Normal FALSE #> 11816 739 0.6038187 0.128465242 fv Log-Normal RP(P), Log-Normal FALSE #> 11832 740 0.8191753 0.172172004 fv Log-Normal RP(P), Log-Normal FALSE #> 11848 741 1.0159289 0.214617959 fv Log-Normal RP(P), Log-Normal FALSE #> 11864 742 0.6619821 0.140186802 fv Log-Normal RP(P), Log-Normal FALSE #> 11880 743 0.7680557 0.163357348 fv Log-Normal RP(P), Log-Normal FALSE #> 11896 744 0.7937786 0.169514194 fv Log-Normal RP(P), Log-Normal FALSE #> 11912 745 0.7812691 0.167323224 fv Log-Normal RP(P), Log-Normal FALSE #> 11928 746 0.5998087 0.127989709 fv Log-Normal RP(P), Log-Normal FALSE #> 11944 747 0.6568120 0.139744765 fv Log-Normal RP(P), Log-Normal FALSE #> 11960 748 0.8625290 0.182461742 fv Log-Normal RP(P), Log-Normal FALSE #> 11976 749 0.9144162 0.190862281 fv Log-Normal RP(P), Log-Normal FALSE #> 11992 750 0.7515278 0.158912889 fv Log-Normal RP(P), Log-Normal FALSE #> 12008 751 0.8962423 0.188510336 fv Log-Normal RP(P), Log-Normal FALSE #> 12024 752 0.6919608 0.146949221 fv Log-Normal RP(P), Log-Normal FALSE #> 12040 753 0.4449890 0.097148812 fv Log-Normal RP(P), Log-Normal FALSE #> 12056 754 0.7894919 0.168720623 fv Log-Normal RP(P), Log-Normal FALSE #> 12072 755 0.6692060 0.141962729 fv Log-Normal RP(P), Log-Normal FALSE #> 12088 756 0.3791451 0.083307800 fv Log-Normal RP(P), Log-Normal FALSE #> 12104 757 0.6778335 0.142766228 fv Log-Normal RP(P), Log-Normal FALSE #> 12120 758 0.7767465 0.163788353 fv Log-Normal RP(P), Log-Normal FALSE #> 12136 759 0.6789998 0.145162056 fv Log-Normal RP(P), Log-Normal FALSE #> 12152 760 0.8683342 0.182144862 fv Log-Normal RP(P), Log-Normal FALSE #> 12168 761 0.6313595 0.135984337 fv Log-Normal RP(P), Log-Normal FALSE #> 12184 762 0.7627906 0.160815382 fv Log-Normal RP(P), Log-Normal FALSE #> 12200 763 0.5636338 0.120435542 fv Log-Normal RP(P), Log-Normal FALSE #> 12216 764 0.6550750 0.139154314 fv Log-Normal RP(P), Log-Normal FALSE #> 12232 765 0.9488338 0.199510616 fv Log-Normal RP(P), Log-Normal FALSE #> 12248 766 0.6551717 0.138803758 fv Log-Normal RP(P), Log-Normal FALSE #> 12264 767 0.8757343 0.184959715 fv Log-Normal RP(P), Log-Normal FALSE #> 12280 768 0.5887793 0.126819926 fv Log-Normal RP(P), Log-Normal FALSE #> 12296 769 1.0171618 0.215500452 fv Log-Normal RP(P), Log-Normal FALSE #> 12312 770 0.6148654 0.132775036 fv Log-Normal RP(P), Log-Normal FALSE #> 12328 771 0.5976970 0.132295735 fv Log-Normal RP(P), Log-Normal FALSE #> 12344 772 0.5871158 0.125960628 fv Log-Normal RP(P), Log-Normal FALSE #> 12360 773 0.5685788 0.121516270 fv Log-Normal RP(P), Log-Normal FALSE #> 12376 774 0.7244019 0.153578398 fv Log-Normal RP(P), Log-Normal FALSE #> 12392 775 0.6802586 0.143831811 fv Log-Normal RP(P), Log-Normal FALSE #> 12408 776 0.6866827 0.146032205 fv Log-Normal RP(P), Log-Normal FALSE #> 12424 777 0.6203969 0.132172613 fv Log-Normal RP(P), Log-Normal FALSE #> 12440 778 0.7183854 0.158574836 fv Log-Normal RP(P), Log-Normal FALSE #> 12456 779 0.6753122 0.144883399 fv Log-Normal RP(P), Log-Normal FALSE #> 12472 780 0.6160541 0.131106508 fv Log-Normal RP(P), Log-Normal FALSE #> 12488 781 0.7326720 0.155116377 fv Log-Normal RP(P), Log-Normal FALSE #> 12504 782 0.6621541 0.142738346 fv Log-Normal RP(P), Log-Normal FALSE #> 12520 783 0.6287083 0.133979151 fv Log-Normal RP(P), Log-Normal FALSE #> 12536 784 0.8098296 0.172015664 fv Log-Normal RP(P), Log-Normal FALSE #> 12552 785 0.4960243 0.106711922 fv Log-Normal RP(P), Log-Normal FALSE #> 12568 786 0.6282832 0.132700908 fv Log-Normal RP(P), Log-Normal FALSE #> 12584 787 1.0193503 0.214991602 fv Log-Normal RP(P), Log-Normal FALSE #> 12600 788 0.7023544 0.148436749 fv Log-Normal RP(P), Log-Normal FALSE #> 12616 789 0.9366437 0.198809199 fv Log-Normal RP(P), Log-Normal FALSE #> 12632 790 0.7471967 0.159328647 fv Log-Normal RP(P), Log-Normal FALSE #> 12648 791 0.4173760 0.089707369 fv Log-Normal RP(P), Log-Normal FALSE #> 12664 792 0.5457081 0.116097924 fv Log-Normal RP(P), Log-Normal FALSE #> 12680 793 0.8483324 0.177748663 fv Log-Normal RP(P), Log-Normal FALSE #> 12696 794 0.6784384 0.143937841 fv Log-Normal RP(P), Log-Normal FALSE #> 12712 795 0.6359556 0.134828170 fv Log-Normal RP(P), Log-Normal FALSE #> 12728 796 0.6165200 0.132435256 fv Log-Normal RP(P), Log-Normal FALSE #> 12744 797 0.6907832 0.150317886 fv Log-Normal RP(P), Log-Normal FALSE #> 12760 798 0.4117881 0.088709883 fv Log-Normal RP(P), Log-Normal FALSE #> 12776 799 0.7682074 0.162286568 fv Log-Normal RP(P), Log-Normal FALSE #> 12792 800 0.7651115 0.163718433 fv Log-Normal RP(P), Log-Normal FALSE #> 12808 801 0.9873650 0.205793074 fv Log-Normal RP(P), Log-Normal FALSE #> 12824 802 0.8000314 0.169900579 fv Log-Normal RP(P), Log-Normal FALSE #> 12840 803 0.6589400 0.139023748 fv Log-Normal RP(P), Log-Normal FALSE #> 12856 804 0.7561575 0.159117690 fv Log-Normal RP(P), Log-Normal FALSE #> 12872 805 0.8335457 0.177422828 fv Log-Normal RP(P), Log-Normal FALSE #> 12888 806 0.7948196 0.167169091 fv Log-Normal RP(P), Log-Normal FALSE #> 12904 807 0.6478946 0.137327899 fv Log-Normal RP(P), Log-Normal FALSE #> 12920 808 0.5049294 0.107753449 fv Log-Normal RP(P), Log-Normal FALSE #> 12936 809 0.6866783 0.146444220 fv Log-Normal RP(P), Log-Normal FALSE #> 12952 810 0.8176093 0.175570535 fv Log-Normal RP(P), Log-Normal FALSE #> 12968 811 0.4701681 0.101472086 fv Log-Normal RP(P), Log-Normal FALSE #> 12984 812 0.7254187 0.154409760 fv Log-Normal RP(P), Log-Normal FALSE #> 13000 813 0.8822935 0.186603747 fv Log-Normal RP(P), Log-Normal FALSE #> 13016 814 0.6854783 0.145765097 fv Log-Normal RP(P), Log-Normal FALSE #> 13032 815 0.6016377 0.128446956 fv Log-Normal RP(P), Log-Normal FALSE #> 13048 816 0.7010985 0.149468580 fv Log-Normal RP(P), Log-Normal FALSE #> 13064 817 0.4708990 0.102155376 fv Log-Normal RP(P), Log-Normal FALSE #> 13080 818 0.6450147 0.137380618 fv Log-Normal RP(P), Log-Normal FALSE #> 13096 819 0.8378345 0.176970921 fv Log-Normal RP(P), Log-Normal FALSE #> 13112 820 0.8576343 0.180150135 fv Log-Normal RP(P), Log-Normal FALSE #> 13128 821 0.5662469 0.120721140 fv Log-Normal RP(P), Log-Normal FALSE #> 13144 822 0.8889136 0.187187876 fv Log-Normal RP(P), Log-Normal FALSE #> 13160 823 0.9775185 0.205187695 fv Log-Normal RP(P), Log-Normal FALSE #> 13176 824 0.9211403 0.195513547 fv Log-Normal RP(P), Log-Normal FALSE #> 13192 825 0.7635747 0.160829429 fv Log-Normal RP(P), Log-Normal FALSE #> 13208 826 0.8164489 0.174414205 fv Log-Normal RP(P), Log-Normal FALSE #> 13224 827 0.8926966 0.188893449 fv Log-Normal RP(P), Log-Normal FALSE #> 13240 828 0.7527147 0.166002735 fv Log-Normal RP(P), Log-Normal FALSE #> 13256 829 0.7122050 0.151290715 fv Log-Normal RP(P), Log-Normal FALSE #> 13272 830 0.8138187 0.170842420 fv Log-Normal RP(P), Log-Normal FALSE #> 13288 831 0.8730454 0.184519785 fv Log-Normal RP(P), Log-Normal FALSE #> 13304 832 0.5916892 0.128420243 fv Log-Normal RP(P), Log-Normal FALSE #> 13320 833 0.8830502 0.188067591 fv Log-Normal RP(P), Log-Normal FALSE #> 13336 834 0.6506210 0.138700701 fv Log-Normal RP(P), Log-Normal FALSE #> 13352 835 0.6835081 0.144988682 fv Log-Normal RP(P), Log-Normal FALSE #> 13368 836 0.7839667 0.166049829 fv Log-Normal RP(P), Log-Normal FALSE #> 13384 837 0.7779566 0.164337100 fv Log-Normal RP(P), Log-Normal FALSE #> 13400 838 0.7060874 0.150748480 fv Log-Normal RP(P), Log-Normal FALSE #> 13416 839 0.5924718 0.126535761 fv Log-Normal RP(P), Log-Normal FALSE #> 13432 840 0.6193618 0.130899012 fv Log-Normal RP(P), Log-Normal FALSE #> 13448 841 0.9297818 0.194868377 fv Log-Normal RP(P), Log-Normal FALSE #> 13464 842 0.5606622 0.119736556 fv Log-Normal RP(P), Log-Normal FALSE #> 13480 843 0.6762162 0.144251070 fv Log-Normal RP(P), Log-Normal FALSE #> 13496 844 0.9144180 0.191981506 fv Log-Normal RP(P), Log-Normal FALSE #> 13512 845 0.9881628 0.211034090 fv Log-Normal RP(P), Log-Normal FALSE #> 13528 846 0.5534972 0.118336281 fv Log-Normal RP(P), Log-Normal FALSE #> 13544 847 1.0290028 0.214054040 fv Log-Normal RP(P), Log-Normal FALSE #> 13560 848 0.8411118 0.179136575 fv Log-Normal RP(P), Log-Normal FALSE #> 13576 849 0.6203488 0.132377496 fv Log-Normal RP(P), Log-Normal FALSE #> 13592 850 0.8147564 0.170744905 fv Log-Normal RP(P), Log-Normal FALSE #> 13608 851 0.6998219 0.148832242 fv Log-Normal RP(P), Log-Normal FALSE #> 13624 852 0.7564399 0.162157304 fv Log-Normal RP(P), Log-Normal FALSE #> 13640 853 1.0395607 0.217703991 fv Log-Normal RP(P), Log-Normal FALSE #> 13656 854 0.7111847 0.153481986 fv Log-Normal RP(P), Log-Normal FALSE #> 13672 855 0.6556235 0.141046741 fv Log-Normal RP(P), Log-Normal FALSE #> 13688 856 0.8817583 0.185649134 fv Log-Normal RP(P), Log-Normal FALSE #> 13704 857 0.8236771 0.176693971 fv Log-Normal RP(P), Log-Normal FALSE #> 13720 858 1.0746228 0.225811089 fv Log-Normal RP(P), Log-Normal FALSE #> 13736 859 0.9032464 0.189257870 fv Log-Normal RP(P), Log-Normal FALSE #> 13752 860 0.6669187 0.140695981 fv Log-Normal RP(P), Log-Normal FALSE #> 13768 861 0.4674381 0.100584211 fv Log-Normal RP(P), Log-Normal FALSE #> 13784 862 0.6539350 0.139109487 fv Log-Normal RP(P), Log-Normal FALSE #> 13800 863 0.6985242 0.149374254 fv Log-Normal RP(P), Log-Normal FALSE #> 13816 864 0.9300939 0.195732499 fv Log-Normal RP(P), Log-Normal FALSE #> 13832 865 0.9147309 0.192068804 fv Log-Normal RP(P), Log-Normal FALSE #> 13848 866 0.7371777 0.155715515 fv Log-Normal RP(P), Log-Normal FALSE #> 13864 867 0.6011364 0.129343485 fv Log-Normal RP(P), Log-Normal FALSE #> 13880 868 0.9004135 0.190191869 fv Log-Normal RP(P), Log-Normal FALSE #> 13896 869 0.5327774 0.115070470 fv Log-Normal RP(P), Log-Normal FALSE #> 13912 870 0.7729887 0.162396364 fv Log-Normal RP(P), Log-Normal FALSE #> 13928 871 0.5056960 0.108030427 fv Log-Normal RP(P), Log-Normal FALSE #> 13944 872 0.4679061 0.100976748 fv Log-Normal RP(P), Log-Normal FALSE #> 13960 873 0.8761508 0.183471906 fv Log-Normal RP(P), Log-Normal FALSE #> 13976 874 0.7799599 0.169034662 fv Log-Normal RP(P), Log-Normal FALSE #> 13992 875 0.6787270 0.145232289 fv Log-Normal RP(P), Log-Normal FALSE #> 14008 876 0.6180641 0.132265443 fv Log-Normal RP(P), Log-Normal FALSE #> 14024 877 0.5860993 0.126704444 fv Log-Normal RP(P), Log-Normal FALSE #> 14040 878 0.6935008 0.147945921 fv Log-Normal RP(P), Log-Normal FALSE #> 14056 879 0.6991619 0.148966789 fv Log-Normal RP(P), Log-Normal FALSE #> 14072 880 0.8484464 0.178825011 fv Log-Normal RP(P), Log-Normal FALSE #> 14088 881 0.5680401 0.122215485 fv Log-Normal RP(P), Log-Normal FALSE #> 14104 882 0.7194115 0.152466317 fv Log-Normal RP(P), Log-Normal FALSE #> 14120 883 0.6455610 0.138335850 fv Log-Normal RP(P), Log-Normal FALSE #> 14136 884 0.5987946 0.129856482 fv Log-Normal RP(P), Log-Normal FALSE #> 14152 885 0.7790563 0.165257741 fv Log-Normal RP(P), Log-Normal FALSE #> 14168 886 0.6659939 0.143104558 fv Log-Normal RP(P), Log-Normal FALSE #> 14184 887 0.3835719 0.083984835 fv Log-Normal RP(P), Log-Normal FALSE #> 14200 888 0.6800915 0.145916762 fv Log-Normal RP(P), Log-Normal FALSE #> 14216 889 0.7790675 0.168710053 fv Log-Normal RP(P), Log-Normal FALSE #> 14232 890 0.7112296 0.150790256 fv Log-Normal RP(P), Log-Normal FALSE #> 14248 891 0.7533556 0.158934342 fv Log-Normal RP(P), Log-Normal FALSE #> 14264 892 1.0280236 0.216825888 fv Log-Normal RP(P), Log-Normal FALSE #> 14280 893 0.4979805 0.108875811 fv Log-Normal RP(P), Log-Normal FALSE #> 14296 894 0.5899637 0.125759510 fv Log-Normal RP(P), Log-Normal FALSE #> 14312 895 0.8458281 0.181512736 fv Log-Normal RP(P), Log-Normal FALSE #> 14328 896 0.6045651 0.132440253 fv Log-Normal RP(P), Log-Normal FALSE #> 14344 897 0.6866283 0.146988855 fv Log-Normal RP(P), Log-Normal FALSE #> 14360 898 0.9461391 0.207475067 fv Log-Normal RP(P), Log-Normal FALSE #> 14376 899 0.9445390 0.209309102 fv Log-Normal RP(P), Log-Normal FALSE #> 14392 900 0.7393498 0.158497566 fv Log-Normal RP(P), Log-Normal FALSE #> 14408 901 0.7860897 0.165549053 fv Log-Normal RP(P), Log-Normal FALSE #> 14424 902 0.8546871 0.180690608 fv Log-Normal RP(P), Log-Normal FALSE #> 14440 903 0.5857383 0.126360181 fv Log-Normal RP(P), Log-Normal FALSE #> 14456 904 0.7061914 0.151616081 fv Log-Normal RP(P), Log-Normal FALSE #> 14472 905 0.7376254 0.156073478 fv Log-Normal RP(P), Log-Normal FALSE #> 14488 906 0.7232913 0.153209296 fv Log-Normal RP(P), Log-Normal FALSE #> 14504 907 0.6382404 0.136709915 fv Log-Normal RP(P), Log-Normal FALSE #> 14520 908 0.5651374 0.123783693 fv Log-Normal RP(P), Log-Normal FALSE #> 14536 909 0.9548552 0.202591456 fv Log-Normal RP(P), Log-Normal FALSE #> 14552 910 0.6873823 0.148859446 fv Log-Normal RP(P), Log-Normal FALSE #> 14568 911 0.6891131 0.146179957 fv Log-Normal RP(P), Log-Normal FALSE #> 14584 912 0.3917437 0.085173152 fv Log-Normal RP(P), Log-Normal FALSE #> 14600 913 0.6144485 0.130166853 fv Log-Normal RP(P), Log-Normal FALSE #> 14616 914 0.8656710 0.182025187 fv Log-Normal RP(P), Log-Normal FALSE #> 14632 915 0.6897622 0.146139260 fv Log-Normal RP(P), Log-Normal FALSE #> 14648 916 0.7306908 0.154546332 fv Log-Normal RP(P), Log-Normal FALSE #> 14664 917 0.5319260 0.114753494 fv Log-Normal RP(P), Log-Normal FALSE #> 14680 918 0.5755386 0.122888377 fv Log-Normal RP(P), Log-Normal FALSE #> 14696 919 0.6552902 0.138537843 fv Log-Normal RP(P), Log-Normal FALSE #> 14712 920 0.6870121 0.145734240 fv Log-Normal RP(P), Log-Normal FALSE #> 14728 921 1.1915721 0.250004473 fv Log-Normal RP(P), Log-Normal TRUE #> 14744 922 0.6152027 0.130501228 fv Log-Normal RP(P), Log-Normal FALSE #> 14760 923 1.0916553 0.230692777 fv Log-Normal RP(P), Log-Normal FALSE #> 14776 924 0.6760298 0.142944236 fv Log-Normal RP(P), Log-Normal FALSE #> 14792 925 0.7494020 0.158189841 fv Log-Normal RP(P), Log-Normal FALSE #> 14808 926 0.9539570 0.201126456 fv Log-Normal RP(P), Log-Normal FALSE #> 14824 927 0.8094500 0.170148180 fv Log-Normal RP(P), Log-Normal FALSE #> 14840 928 0.6872926 0.144714385 fv Log-Normal RP(P), Log-Normal FALSE #> 14856 929 0.7639833 0.160366801 fv Log-Normal RP(P), Log-Normal FALSE #> 14872 930 0.5785785 0.123893681 fv Log-Normal RP(P), Log-Normal FALSE #> 14888 931 0.8122490 0.171642861 fv Log-Normal RP(P), Log-Normal FALSE #> 14904 932 0.5424141 0.116670467 fv Log-Normal RP(P), Log-Normal FALSE #> 14920 933 0.5758885 0.122632998 fv Log-Normal RP(P), Log-Normal FALSE #> 14936 934 0.6847454 0.144785290 fv Log-Normal RP(P), Log-Normal FALSE #> 14952 935 0.8990435 0.189337431 fv Log-Normal RP(P), Log-Normal FALSE #> 14968 936 0.7029922 0.148015811 fv Log-Normal RP(P), Log-Normal FALSE #> 14984 937 0.8511214 0.180869991 fv Log-Normal RP(P), Log-Normal FALSE #> 15000 938 0.9018481 0.192865935 fv Log-Normal RP(P), Log-Normal FALSE #> 15016 939 0.5681631 0.120827024 fv Log-Normal RP(P), Log-Normal FALSE #> 15032 940 0.8683425 0.190570808 fv Log-Normal RP(P), Log-Normal FALSE #> 15048 941 0.4731799 0.101370652 fv Log-Normal RP(P), Log-Normal FALSE #> 15064 942 0.8718579 0.184619662 fv Log-Normal RP(P), Log-Normal FALSE #> 15080 943 0.5215956 0.111687693 fv Log-Normal RP(P), Log-Normal FALSE #> 15096 944 0.6585742 0.139791246 fv Log-Normal RP(P), Log-Normal FALSE #> 15112 945 0.9998814 0.208886842 fv Log-Normal RP(P), Log-Normal FALSE #> 15128 946 0.8286117 0.174615350 fv Log-Normal RP(P), Log-Normal FALSE #> 15144 947 0.8353904 0.175679093 fv Log-Normal RP(P), Log-Normal FALSE #> 15160 948 0.4626225 0.099317399 fv Log-Normal RP(P), Log-Normal FALSE #> 15176 949 0.7781009 0.168477774 fv Log-Normal RP(P), Log-Normal FALSE #> 15192 950 0.7759783 0.163272466 fv Log-Normal RP(P), Log-Normal FALSE #> 15208 951 0.5897491 0.127953505 fv Log-Normal RP(P), Log-Normal FALSE #> 15224 952 0.6290545 0.134915562 fv Log-Normal RP(P), Log-Normal FALSE #> 15240 953 0.6030549 0.128014906 fv Log-Normal RP(P), Log-Normal FALSE #> 15256 954 0.8211460 0.173732484 fv Log-Normal RP(P), Log-Normal FALSE #> 15272 955 0.7009093 0.148157664 fv Log-Normal RP(P), Log-Normal FALSE #> 15288 956 0.8915759 0.187676590 fv Log-Normal RP(P), Log-Normal FALSE #> 15304 957 0.6267329 0.133922808 fv Log-Normal RP(P), Log-Normal FALSE #> 15320 958 0.6016424 0.128035145 fv Log-Normal RP(P), Log-Normal FALSE #> 15336 959 0.6840954 0.143990005 fv Log-Normal RP(P), Log-Normal FALSE #> 15352 960 0.5972503 0.128658505 fv Log-Normal RP(P), Log-Normal FALSE #> 15368 961 0.8240171 0.173195111 fv Log-Normal RP(P), Log-Normal FALSE #> 15384 962 0.8506117 0.181056393 fv Log-Normal RP(P), Log-Normal FALSE #> 15400 963 0.8979819 0.188022071 fv Log-Normal RP(P), Log-Normal FALSE #> 15416 964 0.6863717 0.145397560 fv Log-Normal RP(P), Log-Normal FALSE #> 15432 965 0.5656577 0.120857677 fv Log-Normal RP(P), Log-Normal FALSE #> 15448 966 1.0575889 0.222503361 fv Log-Normal RP(P), Log-Normal FALSE #> 15464 967 0.9055166 0.192117872 fv Log-Normal RP(P), Log-Normal FALSE #> 15480 968 0.8399767 0.178050315 fv Log-Normal RP(P), Log-Normal FALSE #> 15496 969 1.0258198 0.213819100 fv Log-Normal RP(P), Log-Normal FALSE #> 15512 970 0.7745776 0.163833552 fv Log-Normal RP(P), Log-Normal FALSE #> 15528 971 0.9605636 0.200926578 fv Log-Normal RP(P), Log-Normal FALSE #> 15544 972 0.6146916 0.130993578 fv Log-Normal RP(P), Log-Normal FALSE #> 15560 973 0.9199785 0.192746059 fv Log-Normal RP(P), Log-Normal FALSE #> 15576 974 0.9125999 0.192011883 fv Log-Normal RP(P), Log-Normal FALSE #> 15592 975 1.0480335 0.219730800 fv Log-Normal RP(P), Log-Normal FALSE #> 15608 976 0.8193862 0.179589718 fv Log-Normal RP(P), Log-Normal FALSE #> 15624 977 1.1556586 0.244268056 fv Log-Normal RP(P), Log-Normal TRUE #> 15640 978 0.8382332 0.180255798 fv Log-Normal RP(P), Log-Normal FALSE #> 15656 979 0.6259659 0.132736866 fv Log-Normal RP(P), Log-Normal FALSE #> 15672 980 0.8406804 0.182112889 fv Log-Normal RP(P), Log-Normal FALSE #> 15688 981 0.6702017 0.142022616 fv Log-Normal RP(P), Log-Normal FALSE #> 15704 982 0.7070367 0.153212663 fv Log-Normal RP(P), Log-Normal FALSE #> 15720 983 0.7404223 0.156213950 fv Log-Normal RP(P), Log-Normal FALSE #> 15736 984 0.6419067 0.135852588 fv Log-Normal RP(P), Log-Normal FALSE #> 15752 985 0.8310183 0.173870127 fv Log-Normal RP(P), Log-Normal FALSE #> 15768 986 0.7701285 0.162750927 fv Log-Normal RP(P), Log-Normal FALSE #> 15784 987 0.6682787 0.141252244 fv Log-Normal RP(P), Log-Normal FALSE #> 15800 988 0.9022389 0.190619051 fv Log-Normal RP(P), Log-Normal FALSE #> 15816 989 0.9754269 0.206348524 fv Log-Normal RP(P), Log-Normal FALSE #> 15832 990 0.7016794 0.147600528 fv Log-Normal RP(P), Log-Normal FALSE #> 15848 991 0.7990861 0.167185785 fv Log-Normal RP(P), Log-Normal FALSE #> 15864 992 0.7155265 0.151583447 fv Log-Normal RP(P), Log-Normal FALSE #> 15880 993 0.7555724 0.158552064 fv Log-Normal RP(P), Log-Normal FALSE #> 15896 994 0.7013507 0.151341125 fv Log-Normal RP(P), Log-Normal FALSE #> 15912 995 0.6369622 0.137876294 fv Log-Normal RP(P), Log-Normal FALSE #> 15928 996 0.7173666 0.152233112 fv Log-Normal RP(P), Log-Normal FALSE #> 15944 997 0.7181560 0.152642728 fv Log-Normal RP(P), Log-Normal FALSE #> 15960 998 0.6523091 0.140451142 fv Log-Normal RP(P), Log-Normal FALSE #> 15976 999 0.8016289 0.171180170 fv Log-Normal RP(P), Log-Normal FALSE #> 15992 1000 0.7201794 0.155276856 fv Log-Normal RP(P), Log-Normal FALSE # Using regular standardisation: dropbig( data = frailty2, estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\", max = 2, semax = 2, robust = FALSE ) #> i b se par fv_dist model .dropbig #> 1 1 0.6569546 0.125696425 fv Gamma Cox, Gamma FALSE #> 17 2 0.6613376 0.129510423 fv Gamma Cox, Gamma FALSE #> 33 3 1.0953274 0.206427350 fv Gamma Cox, Gamma TRUE #> 49 4 0.8406551 0.156744704 fv Gamma Cox, Gamma FALSE #> 65 5 0.7027899 0.135173710 fv Gamma Cox, Gamma FALSE #> 81 6 0.7745830 0.145766148 fv Gamma Cox, Gamma FALSE #> 97 7 0.6471639 0.124092810 fv Gamma Cox, Gamma FALSE #> 113 8 0.9999895 0.185104048 fv Gamma Cox, Gamma FALSE #> 129 9 0.8249801 0.156193824 fv Gamma Cox, Gamma FALSE #> 145 10 0.8173031 0.154691420 fv Gamma Cox, Gamma FALSE #> 161 11 0.8131207 0.155467829 fv Gamma Cox, Gamma FALSE #> 177 12 0.9917031 0.183639448 fv Gamma Cox, Gamma FALSE #> 193 13 0.9497115 0.177544292 fv Gamma Cox, Gamma FALSE #> 209 14 0.5818812 0.115038898 fv Gamma Cox, Gamma FALSE #> 225 15 0.8821317 NA fv Gamma Cox, Gamma NA #> 241 16 1.0080549 0.185306797 fv Gamma Cox, Gamma FALSE #> 257 17 0.5966007 NA fv Gamma Cox, Gamma NA #> 273 18 0.4670966 0.096268874 fv Gamma Cox, Gamma FALSE #> 289 19 0.7333278 0.139560619 fv Gamma Cox, Gamma FALSE #> 305 20 0.9569888 0.178946282 fv Gamma Cox, Gamma FALSE #> 321 21 0.5534068 0.111432621 fv Gamma Cox, Gamma FALSE #> 337 22 0.8922715 0.168260755 fv Gamma Cox, Gamma FALSE #> 353 23 0.6148386 0.118749326 fv Gamma Cox, Gamma FALSE #> 369 24 0.7503412 0.141751724 fv Gamma Cox, Gamma FALSE #> 385 25 0.7795077 0.147239297 fv Gamma Cox, Gamma FALSE #> 401 26 0.7226755 0.138933052 fv Gamma Cox, Gamma FALSE #> 417 27 1.1454385 0.211444516 fv Gamma Cox, Gamma TRUE #> 433 28 1.0146311 0.187317613 fv Gamma Cox, Gamma FALSE #> 449 29 0.9243730 0.171650779 fv Gamma Cox, Gamma FALSE #> 465 30 0.9627598 0.180455732 fv Gamma Cox, Gamma FALSE #> 481 31 0.6097090 0.120254015 fv Gamma Cox, Gamma FALSE #> 497 32 0.7776626 0.148059501 fv Gamma Cox, Gamma FALSE #> 513 33 0.5967068 0.115380144 fv Gamma Cox, Gamma FALSE #> 529 34 0.5604221 0.109501220 fv Gamma Cox, Gamma FALSE #> 545 35 0.7513179 0.145994135 fv Gamma Cox, Gamma FALSE #> 561 36 0.6005370 0.119633066 fv Gamma Cox, Gamma FALSE #> 577 37 0.5965864 0.115755917 fv Gamma Cox, Gamma FALSE #> 593 38 0.5250277 0.103624408 fv Gamma Cox, Gamma FALSE #> 609 39 0.7131612 0.135237995 fv Gamma Cox, Gamma FALSE #> 625 40 0.4799652 0.095913495 fv Gamma Cox, Gamma FALSE #> 641 41 1.1936478 0.213913615 fv Gamma Cox, Gamma TRUE #> 657 42 0.7119055 0.138537976 fv Gamma Cox, Gamma FALSE #> 673 43 0.8157571 0.153496265 fv Gamma Cox, Gamma FALSE #> 689 44 0.8510680 0.159321249 fv Gamma Cox, Gamma FALSE #> 705 45 0.7759695 0.146268948 fv Gamma Cox, Gamma FALSE #> 721 46 0.7346442 0.139055138 fv Gamma Cox, Gamma FALSE #> 737 47 0.9080543 0.172117120 fv Gamma Cox, Gamma FALSE #> 753 48 0.7536020 0.144378149 fv Gamma Cox, Gamma FALSE #> 769 49 0.7841137 0.149576489 fv Gamma Cox, Gamma FALSE #> 785 50 0.7177537 0.136129350 fv Gamma Cox, Gamma FALSE #> 801 51 0.8978122 0.167355928 fv Gamma Cox, Gamma FALSE #> 817 52 0.6175795 0.122643583 fv Gamma Cox, Gamma FALSE #> 833 53 0.6747666 0.130004394 fv Gamma Cox, Gamma FALSE #> 849 54 0.5300899 0.104816453 fv Gamma Cox, Gamma FALSE #> 865 55 0.7787970 0.147506719 fv Gamma Cox, Gamma FALSE #> 881 56 0.7118185 0.137916725 fv Gamma Cox, Gamma FALSE #> 897 57 0.7858698 0.147909226 fv Gamma Cox, Gamma FALSE #> 913 58 0.6599301 0.129157781 fv Gamma Cox, Gamma FALSE #> 929 59 0.7204171 0.137316794 fv Gamma Cox, Gamma FALSE #> 945 60 0.7932676 0.149975681 fv Gamma Cox, Gamma FALSE #> 961 61 0.6694679 0.127685261 fv Gamma Cox, Gamma FALSE #> 977 62 0.6581751 0.128702271 fv Gamma Cox, Gamma FALSE #> 993 63 0.8591200 0.161433261 fv Gamma Cox, Gamma FALSE #> 1009 64 0.6534059 0.125264584 fv Gamma Cox, Gamma FALSE #> 1025 65 0.6942950 0.131759071 fv Gamma Cox, Gamma FALSE #> 1041 66 0.5443571 0.107289026 fv Gamma Cox, Gamma FALSE #> 1057 67 0.8156791 0.152361675 fv Gamma Cox, Gamma FALSE #> 1073 68 0.7439907 0.141612286 fv Gamma Cox, Gamma FALSE #> 1089 69 0.5563484 0.109062941 fv Gamma Cox, Gamma FALSE #> 1105 70 0.7094223 0.138731564 fv Gamma Cox, Gamma FALSE #> 1121 71 0.9385094 0.173908062 fv Gamma Cox, Gamma FALSE #> 1137 72 0.6524139 0.125365577 fv Gamma Cox, Gamma FALSE #> 1153 73 0.4720556 0.093786069 fv Gamma Cox, Gamma FALSE #> 1169 74 0.6739725 0.128962357 fv Gamma Cox, Gamma FALSE #> 1185 75 0.6948754 0.133454468 fv Gamma Cox, Gamma FALSE #> 1201 76 0.6981009 0.137070297 fv Gamma Cox, Gamma FALSE #> 1217 77 0.7876992 0.150774294 fv Gamma Cox, Gamma FALSE #> 1233 78 1.0321320 0.191564904 fv Gamma Cox, Gamma TRUE #> 1249 79 1.3305115 0.241107247 fv Gamma Cox, Gamma TRUE #> 1265 80 0.6233959 NA fv Gamma Cox, Gamma NA #> 1281 81 0.9222954 0.175122280 fv Gamma Cox, Gamma FALSE #> 1297 82 0.7312982 0.138898303 fv Gamma Cox, Gamma FALSE #> 1313 83 0.4805826 0.099069389 fv Gamma Cox, Gamma FALSE #> 1329 84 0.7162687 0.135900182 fv Gamma Cox, Gamma FALSE #> 1345 85 0.7361328 0.139875756 fv Gamma Cox, Gamma FALSE #> 1361 86 0.7164863 0.136540922 fv Gamma Cox, Gamma FALSE #> 1377 87 0.5816154 0.112900191 fv Gamma Cox, Gamma FALSE #> 1393 88 0.7229512 0.137090004 fv Gamma Cox, Gamma FALSE #> 1409 89 0.7304707 0.138664712 fv Gamma Cox, Gamma FALSE #> 1425 90 0.8836079 0.164198901 fv Gamma Cox, Gamma FALSE #> 1441 91 0.7189481 NA fv Gamma Cox, Gamma NA #> 1457 92 0.6588464 0.126022294 fv Gamma Cox, Gamma FALSE #> 1473 93 0.9816849 0.189387187 fv Gamma Cox, Gamma FALSE #> 1489 94 0.8230985 0.157285147 fv Gamma Cox, Gamma FALSE #> 1505 95 0.7466798 0.141511812 fv Gamma Cox, Gamma FALSE #> 1521 96 0.4641167 0.092989583 fv Gamma Cox, Gamma FALSE #> 1537 97 0.5859572 0.113349778 fv Gamma Cox, Gamma FALSE #> 1553 98 0.8012617 0.151058934 fv Gamma Cox, Gamma FALSE #> 1569 99 0.5711848 0.112322499 fv Gamma Cox, Gamma FALSE #> 1585 100 0.8500351 0.158095260 fv Gamma Cox, Gamma FALSE #> 1601 101 0.8357950 0.155451666 fv Gamma Cox, Gamma FALSE #> 1617 102 0.7019364 0.133488910 fv Gamma Cox, Gamma FALSE #> 1633 103 0.8787124 0.167784796 fv Gamma Cox, Gamma FALSE #> 1649 104 0.7382161 0.139205129 fv Gamma Cox, Gamma FALSE #> 1665 105 0.8438084 0.159385939 fv Gamma Cox, Gamma FALSE #> 1681 106 0.7100979 0.135186030 fv Gamma Cox, Gamma FALSE #> 1697 107 0.8909452 0.169147434 fv Gamma Cox, Gamma FALSE #> 1713 108 0.7774559 0.150824798 fv Gamma Cox, Gamma FALSE #> 1729 109 0.6953965 0.134268584 fv Gamma Cox, Gamma FALSE #> 1745 110 0.7992946 0.150758285 fv Gamma Cox, Gamma FALSE #> 1761 111 0.8471403 0.159125513 fv Gamma Cox, Gamma FALSE #> 1777 112 0.4643017 0.092950661 fv Gamma Cox, Gamma FALSE #> 1793 113 0.5483133 0.107644803 fv Gamma Cox, Gamma FALSE #> 1809 114 1.1737434 0.213064251 fv Gamma Cox, Gamma TRUE #> 1825 115 0.6447690 0.123844155 fv Gamma Cox, Gamma FALSE #> 1841 116 0.5122411 0.101175678 fv Gamma Cox, Gamma FALSE #> 1857 117 0.7563907 0.142289904 fv Gamma Cox, Gamma FALSE #> 1873 118 0.5579905 0.109454501 fv Gamma Cox, Gamma FALSE #> 1889 119 0.6022598 0.116858325 fv Gamma Cox, Gamma FALSE #> 1905 120 0.7124728 0.135859121 fv Gamma Cox, Gamma FALSE #> 1921 121 0.6402494 0.124028005 fv Gamma Cox, Gamma FALSE #> 1937 122 0.6346064 0.122733103 fv Gamma Cox, Gamma FALSE #> 1953 123 0.7902516 0.149333148 fv Gamma Cox, Gamma FALSE #> 1969 124 0.7329650 0.138554104 fv Gamma Cox, Gamma FALSE #> 1985 125 0.8161002 0.155025922 fv Gamma Cox, Gamma FALSE #> 2001 126 0.9990640 0.191074644 fv Gamma Cox, Gamma FALSE #> 2017 127 0.8700787 0.162375752 fv Gamma Cox, Gamma FALSE #> 2033 128 0.8619723 0.161242325 fv Gamma Cox, Gamma FALSE #> 2049 129 0.5981983 0.118892839 fv Gamma Cox, Gamma FALSE #> 2065 130 0.6716077 0.128978878 fv Gamma Cox, Gamma FALSE #> 2081 131 0.6123596 0.117347356 fv Gamma Cox, Gamma FALSE #> 2097 132 0.7632396 0.147960034 fv Gamma Cox, Gamma FALSE #> 2113 133 0.7684878 0.147084782 fv Gamma Cox, Gamma FALSE #> 2129 134 0.7563895 0.143358097 fv Gamma Cox, Gamma FALSE #> 2145 135 0.5840973 0.113775282 fv Gamma Cox, Gamma FALSE #> 2161 136 0.8139715 0.154214677 fv Gamma Cox, Gamma FALSE #> 2177 137 0.8279570 0.155323396 fv Gamma Cox, Gamma FALSE #> 2193 138 0.9684096 0.181892869 fv Gamma Cox, Gamma FALSE #> 2209 139 0.6380475 0.122896692 fv Gamma Cox, Gamma FALSE #> 2225 140 0.7126356 NA fv Gamma Cox, Gamma NA #> 2241 141 0.5544497 0.005829212 fv Gamma Cox, Gamma TRUE #> 2257 142 0.6984548 0.133299410 fv Gamma Cox, Gamma FALSE #> 2273 143 1.1447313 0.218348635 fv Gamma Cox, Gamma TRUE #> 2289 144 0.8534851 0.158864910 fv Gamma Cox, Gamma FALSE #> 2305 145 0.6954310 0.132985154 fv Gamma Cox, Gamma FALSE #> 2321 146 0.6862429 0.131920086 fv Gamma Cox, Gamma FALSE #> 2337 147 0.8487307 0.158487657 fv Gamma Cox, Gamma FALSE #> 2353 148 0.5181133 0.101967871 fv Gamma Cox, Gamma FALSE #> 2369 149 0.6841244 0.131624816 fv Gamma Cox, Gamma FALSE #> 2385 150 0.8869154 0.165727435 fv Gamma Cox, Gamma FALSE #> 2401 151 0.8331944 0.156397071 fv Gamma Cox, Gamma FALSE #> 2417 152 0.7961492 0.152467958 fv Gamma Cox, Gamma FALSE #> 2433 153 0.4915269 0.097749704 fv Gamma Cox, Gamma FALSE #> 2449 154 0.8353449 0.156425229 fv Gamma Cox, Gamma FALSE #> 2465 155 0.6917804 0.135298989 fv Gamma Cox, Gamma FALSE #> 2481 156 0.7141483 0.135622707 fv Gamma Cox, Gamma FALSE #> 2497 157 0.9579114 0.180865947 fv Gamma Cox, Gamma FALSE #> 2513 158 0.9919173 0.186831104 fv Gamma Cox, Gamma FALSE #> 2529 159 0.5056687 0.100572196 fv Gamma Cox, Gamma FALSE #> 2545 160 0.5668849 0.110729771 fv Gamma Cox, Gamma FALSE #> 2561 161 1.1593267 0.211623189 fv Gamma Cox, Gamma TRUE #> 2577 162 0.6686198 0.129654468 fv Gamma Cox, Gamma FALSE #> 2593 163 0.5947095 0.115432055 fv Gamma Cox, Gamma FALSE #> 2609 164 0.9409729 0.174195456 fv Gamma Cox, Gamma FALSE #> 2625 165 0.7712525 0.145156218 fv Gamma Cox, Gamma FALSE #> 2641 166 0.7944783 0.152945382 fv Gamma Cox, Gamma FALSE #> 2657 167 0.8759279 0.163421782 fv Gamma Cox, Gamma FALSE #> 2673 168 0.9305016 0.172681632 fv Gamma Cox, Gamma FALSE #> 2689 169 0.6998018 0.134466938 fv Gamma Cox, Gamma FALSE #> 2705 170 0.6956819 0.133436242 fv Gamma Cox, Gamma FALSE #> 2721 171 0.6792319 0.131731221 fv Gamma Cox, Gamma FALSE #> 2737 172 0.8680243 0.162039061 fv Gamma Cox, Gamma FALSE #> 2753 173 0.5991408 0.117150299 fv Gamma Cox, Gamma FALSE #> 2769 174 0.8197266 0.154957877 fv Gamma Cox, Gamma FALSE #> 2785 175 0.6402142 0.124225276 fv Gamma Cox, Gamma FALSE #> 2801 176 0.6677623 0.127397054 fv Gamma Cox, Gamma FALSE #> 2817 177 0.5600635 0.111041351 fv Gamma Cox, Gamma FALSE #> 2833 178 0.8664575 0.161085253 fv Gamma Cox, Gamma FALSE #> 2849 179 0.5696270 0.110580250 fv Gamma Cox, Gamma FALSE #> 2865 180 0.7490451 0.145597001 fv Gamma Cox, Gamma FALSE #> 2881 181 0.8332298 0.156165685 fv Gamma Cox, Gamma FALSE #> 2897 182 0.7299111 0.138267866 fv Gamma Cox, Gamma FALSE #> 2913 183 0.5643054 0.109921943 fv Gamma Cox, Gamma FALSE #> 2929 184 0.6713498 0.129903821 fv Gamma Cox, Gamma FALSE #> 2945 185 0.8565735 0.161036493 fv Gamma Cox, Gamma FALSE #> 2961 186 0.9053793 0.172727818 fv Gamma Cox, Gamma FALSE #> 2977 187 0.7412392 0.141072766 fv Gamma Cox, Gamma FALSE #> 2993 188 0.5539059 0.108329615 fv Gamma Cox, Gamma FALSE #> 3009 189 0.7630802 0.144798954 fv Gamma Cox, Gamma FALSE #> 3025 190 0.7739996 0.145679338 fv Gamma Cox, Gamma FALSE #> 3041 191 0.7531330 0.142505520 fv Gamma Cox, Gamma FALSE #> 3057 192 0.7746974 0.149498584 fv Gamma Cox, Gamma FALSE #> 3073 193 0.6405375 0.123698525 fv Gamma Cox, Gamma FALSE #> 3089 194 0.5955132 0.115145832 fv Gamma Cox, Gamma FALSE #> 3105 195 0.8745908 0.162591705 fv Gamma Cox, Gamma FALSE #> 3121 196 0.8178457 0.154589268 fv Gamma Cox, Gamma FALSE #> 3137 197 0.7511736 0.141661815 fv Gamma Cox, Gamma FALSE #> 3153 198 0.7769079 0.146017528 fv Gamma Cox, Gamma FALSE #> 3169 199 0.5582030 0.109200412 fv Gamma Cox, Gamma FALSE #> 3185 200 0.8259496 0.154374691 fv Gamma Cox, Gamma FALSE #> 3201 201 0.7413535 0.141501117 fv Gamma Cox, Gamma FALSE #> 3217 202 0.7883145 0.147891265 fv Gamma Cox, Gamma FALSE #> 3233 203 0.7376850 0.139098696 fv Gamma Cox, Gamma FALSE #> 3249 204 0.7431473 0.145125912 fv Gamma Cox, Gamma FALSE #> 3265 205 0.5968534 0.116380154 fv Gamma Cox, Gamma FALSE #> 3281 206 0.7364319 0.139955581 fv Gamma Cox, Gamma FALSE #> 3297 207 0.5674448 0.110932711 fv Gamma Cox, Gamma FALSE #> 3313 208 0.7440635 0.141631276 fv Gamma Cox, Gamma FALSE #> 3329 209 0.6788077 0.130198366 fv Gamma Cox, Gamma FALSE #> 3345 210 0.6888451 0.132771993 fv Gamma Cox, Gamma FALSE #> 3361 211 0.9803778 0.184836601 fv Gamma Cox, Gamma FALSE #> 3377 212 0.7256449 0.141318320 fv Gamma Cox, Gamma FALSE #> 3393 213 0.8183619 0.154776877 fv Gamma Cox, Gamma FALSE #> 3409 214 0.6497936 0.125621597 fv Gamma Cox, Gamma FALSE #> 3425 215 0.8793079 0.164432320 fv Gamma Cox, Gamma FALSE #> 3441 216 0.9162205 0.170569691 fv Gamma Cox, Gamma FALSE #> 3457 217 0.6777625 0.131187108 fv Gamma Cox, Gamma FALSE #> 3473 218 0.6131194 0.119393013 fv Gamma Cox, Gamma FALSE #> 3489 219 0.8569040 0.162515848 fv Gamma Cox, Gamma FALSE #> 3505 220 0.5628894 0.109933688 fv Gamma Cox, Gamma FALSE #> 3521 221 0.7097276 0.136447984 fv Gamma Cox, Gamma FALSE #> 3537 222 0.7727905 0.147170732 fv Gamma Cox, Gamma FALSE #> 3553 223 0.7964844 0.154284092 fv Gamma Cox, Gamma FALSE #> 3569 224 0.7614475 0.144615174 fv Gamma Cox, Gamma FALSE #> 3585 225 0.6722549 0.129075014 fv Gamma Cox, Gamma FALSE #> 3601 226 0.8333519 0.160111938 fv Gamma Cox, Gamma FALSE #> 3617 227 0.6560251 0.126793123 fv Gamma Cox, Gamma FALSE #> 3633 228 0.8900574 0.165684363 fv Gamma Cox, Gamma FALSE #> 3649 229 0.7783440 0.147316655 fv Gamma Cox, Gamma FALSE #> 3665 230 0.7010892 0.133597427 fv Gamma Cox, Gamma FALSE #> 3681 231 0.7965352 0.151151697 fv Gamma Cox, Gamma FALSE #> 3697 232 0.7331452 0.142033787 fv Gamma Cox, Gamma FALSE #> 3713 233 0.8746416 0.164268652 fv Gamma Cox, Gamma FALSE #> 3729 234 0.6285312 0.121126267 fv Gamma Cox, Gamma FALSE #> 3745 235 0.7432271 0.143094417 fv Gamma Cox, Gamma FALSE #> 3761 236 0.4979838 0.099104026 fv Gamma Cox, Gamma FALSE #> 3777 237 0.6728080 0.130707771 fv Gamma Cox, Gamma FALSE #> 3793 238 0.5840668 0.114928913 fv Gamma Cox, Gamma FALSE #> 3809 239 0.7097176 0.134414945 fv Gamma Cox, Gamma FALSE #> 3825 240 0.8599517 0.164169343 fv Gamma Cox, Gamma FALSE #> 3841 241 0.6564593 0.126134874 fv Gamma Cox, Gamma FALSE #> 3857 242 0.5141763 0.101693306 fv Gamma Cox, Gamma FALSE #> 3873 243 0.8631191 0.166522993 fv Gamma Cox, Gamma FALSE #> 3889 244 0.5648038 0.110152544 fv Gamma Cox, Gamma FALSE #> 3905 245 0.9067207 0.169979694 fv Gamma Cox, Gamma FALSE #> 3921 246 0.6699933 0.127877304 fv Gamma Cox, Gamma FALSE #> 3937 247 0.7658413 0.145211179 fv Gamma Cox, Gamma FALSE #> 3953 248 0.9431198 0.174221858 fv Gamma Cox, Gamma FALSE #> 3969 249 0.9559739 0.179913652 fv Gamma Cox, Gamma FALSE #> 3985 250 0.7309363 0.139895733 fv Gamma Cox, Gamma FALSE #> 4001 251 0.7953055 0.152686790 fv Gamma Cox, Gamma FALSE #> 4017 252 0.8009815 0.153887446 fv Gamma Cox, Gamma FALSE #> 4033 253 0.9063613 0.176153220 fv Gamma Cox, Gamma FALSE #> 4049 254 0.5192107 0.101929593 fv Gamma Cox, Gamma FALSE #> 4065 255 0.7741374 0.145083036 fv Gamma Cox, Gamma FALSE #> 4081 256 0.7237488 0.138470282 fv Gamma Cox, Gamma FALSE #> 4097 257 0.5354834 0.104354126 fv Gamma Cox, Gamma FALSE #> 4113 258 0.7012728 0.138891396 fv Gamma Cox, Gamma FALSE #> 4129 259 0.7423993 0.141143911 fv Gamma Cox, Gamma FALSE #> 4145 260 0.8676835 0.162799994 fv Gamma Cox, Gamma FALSE #> 4161 261 0.4985565 0.098347563 fv Gamma Cox, Gamma FALSE #> 4177 262 0.7309571 0.140660952 fv Gamma Cox, Gamma FALSE #> 4193 263 0.6045868 0.117674653 fv Gamma Cox, Gamma FALSE #> 4209 264 0.5101925 0.100166533 fv Gamma Cox, Gamma FALSE #> 4225 265 0.5926958 0.114423413 fv Gamma Cox, Gamma FALSE #> 4241 266 0.6141473 0.118472417 fv Gamma Cox, Gamma FALSE #> 4257 267 0.7089350 0.135707003 fv Gamma Cox, Gamma FALSE #> 4273 268 0.7461537 0.141208361 fv Gamma Cox, Gamma FALSE #> 4289 269 1.0603612 0.198754812 fv Gamma Cox, Gamma TRUE #> 4305 270 0.9058827 0.173864681 fv Gamma Cox, Gamma FALSE #> 4321 271 0.8913131 0.167006421 fv Gamma Cox, Gamma FALSE #> 4337 272 0.5385219 0.106340887 fv Gamma Cox, Gamma FALSE #> 4353 273 0.6611358 0.127691135 fv Gamma Cox, Gamma FALSE #> 4369 274 0.7211689 0.136721186 fv Gamma Cox, Gamma FALSE #> 4385 275 0.8557535 0.159471673 fv Gamma Cox, Gamma FALSE #> 4401 276 0.8100907 0.155893661 fv Gamma Cox, Gamma FALSE #> 4417 277 0.6766183 0.128987177 fv Gamma Cox, Gamma FALSE #> 4433 278 0.7339860 0.138921953 fv Gamma Cox, Gamma FALSE #> 4449 279 0.7292968 0.138338078 fv Gamma Cox, Gamma FALSE #> 4465 280 0.7607655 0.143846232 fv Gamma Cox, Gamma FALSE #> 4481 281 1.0222759 0.191682241 fv Gamma Cox, Gamma TRUE #> 4497 282 0.6012837 0.116686105 fv Gamma Cox, Gamma FALSE #> 4513 283 0.8065287 0.008370025 fv Gamma Cox, Gamma TRUE #> 4529 284 0.6538202 0.125329340 fv Gamma Cox, Gamma FALSE #> 4545 285 0.5004678 0.098826427 fv Gamma Cox, Gamma FALSE #> 4561 286 0.7617749 0.144340603 fv Gamma Cox, Gamma FALSE #> 4577 287 0.6411900 0.124111128 fv Gamma Cox, Gamma FALSE #> 4593 288 1.2156838 0.222204393 fv Gamma Cox, Gamma TRUE #> 4609 289 0.6293359 0.121873921 fv Gamma Cox, Gamma FALSE #> 4625 290 0.5973796 0.115942379 fv Gamma Cox, Gamma FALSE #> 4641 291 0.6142454 NA fv Gamma Cox, Gamma NA #> 4657 292 0.6275111 0.121149223 fv Gamma Cox, Gamma FALSE #> 4673 293 0.8857171 0.166063448 fv Gamma Cox, Gamma FALSE #> 4689 294 0.6322969 0.122255267 fv Gamma Cox, Gamma FALSE #> 4705 295 1.0640640 0.195201183 fv Gamma Cox, Gamma TRUE #> 4721 296 0.7341485 0.140160744 fv Gamma Cox, Gamma FALSE #> 4737 297 1.1991235 0.216487970 fv Gamma Cox, Gamma TRUE #> 4753 298 0.5712964 0.111273754 fv Gamma Cox, Gamma FALSE #> 4769 299 0.5672383 0.111172863 fv Gamma Cox, Gamma FALSE #> 4785 300 0.8495776 0.158426390 fv Gamma Cox, Gamma FALSE #> 4801 301 0.5310383 0.104267983 fv Gamma Cox, Gamma FALSE #> 4817 302 0.7523369 0.141562397 fv Gamma Cox, Gamma FALSE #> 4833 303 0.6689623 0.129247470 fv Gamma Cox, Gamma FALSE #> 4849 304 0.7352516 0.140697289 fv Gamma Cox, Gamma FALSE #> 4865 305 0.8685145 0.162232921 fv Gamma Cox, Gamma FALSE #> 4881 306 0.7403740 0.140931785 fv Gamma Cox, Gamma FALSE #> 4897 307 0.7625273 0.146362956 fv Gamma Cox, Gamma FALSE #> 4913 308 0.6529047 0.125331572 fv Gamma Cox, Gamma FALSE #> 4929 309 0.7335789 0.138755400 fv Gamma Cox, Gamma FALSE #> 4945 310 1.0352441 0.191706968 fv Gamma Cox, Gamma TRUE #> 4961 311 0.8210888 0.154167236 fv Gamma Cox, Gamma FALSE #> 4977 312 1.1316319 0.214506331 fv Gamma Cox, Gamma TRUE #> 4993 313 0.7858570 0.148363040 fv Gamma Cox, Gamma FALSE #> 5009 314 0.6270082 0.121419429 fv Gamma Cox, Gamma FALSE #> 5025 315 0.7580926 0.143019862 fv Gamma Cox, Gamma FALSE #> 5041 316 1.0442184 0.191879128 fv Gamma Cox, Gamma TRUE #> 5057 317 0.6437053 0.124174313 fv Gamma Cox, Gamma FALSE #> 5073 318 0.8451586 0.162886989 fv Gamma Cox, Gamma FALSE #> 5089 319 0.6154748 0.119202669 fv Gamma Cox, Gamma FALSE #> 5105 320 0.6052390 0.117161496 fv Gamma Cox, Gamma FALSE #> 5121 321 0.8562321 0.161151124 fv Gamma Cox, Gamma FALSE #> 5137 322 0.5475235 0.107601448 fv Gamma Cox, Gamma FALSE #> 5153 323 0.8516726 0.159610025 fv Gamma Cox, Gamma FALSE #> 5169 324 0.6284455 0.122771029 fv Gamma Cox, Gamma FALSE #> 5185 325 0.7340504 0.139368912 fv Gamma Cox, Gamma FALSE #> 5201 326 0.7039394 0.134465568 fv Gamma Cox, Gamma FALSE #> 5217 327 0.7570131 0.143284492 fv Gamma Cox, Gamma FALSE #> 5233 328 1.0241436 0.191230022 fv Gamma Cox, Gamma TRUE #> 5249 329 0.8762071 0.165668652 fv Gamma Cox, Gamma FALSE #> 5265 330 0.6943285 0.133117878 fv Gamma Cox, Gamma FALSE #> 5281 331 0.8439616 0.157763791 fv Gamma Cox, Gamma FALSE #> 5297 332 0.5597510 0.110415552 fv Gamma Cox, Gamma FALSE #> 5313 333 0.5408626 0.105579808 fv Gamma Cox, Gamma FALSE #> 5329 334 0.9467958 0.173919137 fv Gamma Cox, Gamma FALSE #> 5345 335 0.7653749 0.145590511 fv Gamma Cox, Gamma FALSE #> 5361 336 0.4797265 0.096031622 fv Gamma Cox, Gamma FALSE #> 5377 337 0.6413684 0.124650010 fv Gamma Cox, Gamma FALSE #> 5393 338 0.6035586 NA fv Gamma Cox, Gamma NA #> 5409 339 0.8262291 0.156546194 fv Gamma Cox, Gamma FALSE #> 5425 340 0.7801398 0.152957082 fv Gamma Cox, Gamma FALSE #> 5441 341 0.5609456 0.109188392 fv Gamma Cox, Gamma FALSE #> 5457 342 0.4505560 0.089857208 fv Gamma Cox, Gamma TRUE #> 5473 343 0.6379761 0.123470515 fv Gamma Cox, Gamma FALSE #> 5489 344 0.9821211 0.184488378 fv Gamma Cox, Gamma FALSE #> 5505 345 0.8685154 0.163017679 fv Gamma Cox, Gamma FALSE #> 5521 346 0.7913166 0.148203721 fv Gamma Cox, Gamma FALSE #> 5537 347 0.7336193 0.139101579 fv Gamma Cox, Gamma FALSE #> 5553 348 0.9254888 0.171694360 fv Gamma Cox, Gamma FALSE #> 5569 349 0.8488816 0.159294203 fv Gamma Cox, Gamma FALSE #> 5585 350 0.8160615 0.152965564 fv Gamma Cox, Gamma FALSE #> 5601 351 0.8759466 0.167886380 fv Gamma Cox, Gamma FALSE #> 5617 352 0.7981894 0.153964217 fv Gamma Cox, Gamma FALSE #> 5633 353 0.5791672 0.113057885 fv Gamma Cox, Gamma FALSE #> 5649 354 0.7416095 0.141018326 fv Gamma Cox, Gamma FALSE #> 5665 355 0.8010796 0.149943272 fv Gamma Cox, Gamma FALSE #> 5681 356 0.8282803 0.158193917 fv Gamma Cox, Gamma FALSE #> 5697 357 0.6938562 0.132663709 fv Gamma Cox, Gamma FALSE #> 5713 358 0.6402635 0.122101470 fv Gamma Cox, Gamma FALSE #> 5729 359 0.6742980 0.132978427 fv Gamma Cox, Gamma FALSE #> 5745 360 0.6040056 0.117051665 fv Gamma Cox, Gamma FALSE #> 5761 361 0.9421937 0.178772166 fv Gamma Cox, Gamma FALSE #> 5777 362 0.4601477 0.091085384 fv Gamma Cox, Gamma FALSE #> 5793 363 0.7026636 0.135100787 fv Gamma Cox, Gamma FALSE #> 5809 364 0.5302217 0.104442908 fv Gamma Cox, Gamma FALSE #> 5825 365 0.7690703 0.150669849 fv Gamma Cox, Gamma FALSE #> 5841 366 0.8267876 0.157050939 fv Gamma Cox, Gamma FALSE #> 5857 367 0.8874453 0.165351401 fv Gamma Cox, Gamma FALSE #> 5873 368 0.8804541 0.171672792 fv Gamma Cox, Gamma FALSE #> 5889 369 0.5558909 0.108356937 fv Gamma Cox, Gamma FALSE #> 5905 370 0.5224601 0.102908943 fv Gamma Cox, Gamma FALSE #> 5921 371 0.8876388 0.168386174 fv Gamma Cox, Gamma FALSE #> 5937 372 0.6286268 0.125304837 fv Gamma Cox, Gamma FALSE #> 5953 373 0.6690070 0.127890066 fv Gamma Cox, Gamma FALSE #> 5969 374 0.6330213 0.122146795 fv Gamma Cox, Gamma FALSE #> 5985 375 0.6227287 0.120453980 fv Gamma Cox, Gamma FALSE #> 6001 376 0.6703751 0.129140001 fv Gamma Cox, Gamma FALSE #> 6017 377 0.8079140 0.155596402 fv Gamma Cox, Gamma FALSE #> 6033 378 0.7798553 0.146544187 fv Gamma Cox, Gamma FALSE #> 6049 379 0.6475737 0.124463927 fv Gamma Cox, Gamma FALSE #> 6065 380 0.7688097 0.145489816 fv Gamma Cox, Gamma FALSE #> 6081 381 0.6649357 0.128253722 fv Gamma Cox, Gamma FALSE #> 6097 382 0.6807352 0.130459416 fv Gamma Cox, Gamma FALSE #> 6113 383 1.0192008 0.186327756 fv Gamma Cox, Gamma TRUE #> 6129 384 0.8434297 0.158539964 fv Gamma Cox, Gamma FALSE #> 6145 385 0.5428752 0.106117665 fv Gamma Cox, Gamma FALSE #> 6161 386 0.3967401 0.081332469 fv Gamma Cox, Gamma TRUE #> 6177 387 0.5406499 0.105272643 fv Gamma Cox, Gamma FALSE #> 6193 388 0.6602657 0.126552615 fv Gamma Cox, Gamma FALSE #> 6209 389 0.5332555 0.104791180 fv Gamma Cox, Gamma FALSE #> 6225 390 0.6045228 0.117241227 fv Gamma Cox, Gamma FALSE #> 6241 391 0.4999031 NA fv Gamma Cox, Gamma NA #> 6257 392 0.9248187 0.171305899 fv Gamma Cox, Gamma FALSE #> 6273 393 0.5798027 0.113219618 fv Gamma Cox, Gamma FALSE #> 6289 394 0.8907170 0.167374282 fv Gamma Cox, Gamma FALSE #> 6305 395 0.7016240 0.135025361 fv Gamma Cox, Gamma FALSE #> 6321 396 0.7121455 0.139294610 fv Gamma Cox, Gamma FALSE #> 6337 397 0.8229104 0.153784172 fv Gamma Cox, Gamma FALSE #> 6353 398 0.7712521 0.146309386 fv Gamma Cox, Gamma FALSE #> 6369 399 0.6190504 0.119937746 fv Gamma Cox, Gamma FALSE #> 6385 400 0.6672967 0.128315064 fv Gamma Cox, Gamma FALSE #> 6401 401 0.8584411 0.163304952 fv Gamma Cox, Gamma FALSE #> 6417 402 0.7225680 0.141193789 fv Gamma Cox, Gamma FALSE #> 6433 403 0.6821864 0.130069717 fv Gamma Cox, Gamma FALSE #> 6449 404 0.8921011 0.169978122 fv Gamma Cox, Gamma FALSE #> 6465 405 0.6364897 0.121986924 fv Gamma Cox, Gamma FALSE #> 6481 406 0.6312721 0.122132709 fv Gamma Cox, Gamma FALSE #> 6497 407 0.7537675 0.143468500 fv Gamma Cox, Gamma FALSE #> 6513 408 0.4830750 0.100264446 fv Gamma Cox, Gamma FALSE #> 6529 409 0.9120263 0.168875217 fv Gamma Cox, Gamma FALSE #> 6545 410 0.9317740 0.176472419 fv Gamma Cox, Gamma FALSE #> 6561 411 0.7853073 0.155061040 fv Gamma Cox, Gamma FALSE #> 6577 412 0.6760708 0.129238258 fv Gamma Cox, Gamma FALSE #> 6593 413 0.7106746 NA fv Gamma Cox, Gamma NA #> 6609 414 0.7126918 0.136010675 fv Gamma Cox, Gamma FALSE #> 6625 415 0.8278815 0.154436751 fv Gamma Cox, Gamma FALSE #> 6641 416 0.6144755 0.118999790 fv Gamma Cox, Gamma FALSE #> 6657 417 0.7064656 0.134614387 fv Gamma Cox, Gamma FALSE #> 6673 418 0.7280710 0.138588048 fv Gamma Cox, Gamma FALSE #> 6689 419 0.5977421 0.117049099 fv Gamma Cox, Gamma FALSE #> 6705 420 0.7984141 0.153630576 fv Gamma Cox, Gamma FALSE #> 6721 421 0.7789264 0.146973632 fv Gamma Cox, Gamma FALSE #> 6737 422 0.7189249 0.136830403 fv Gamma Cox, Gamma FALSE #> 6753 423 0.7767172 0.146505554 fv Gamma Cox, Gamma FALSE #> 6769 424 0.6711159 0.129971477 fv Gamma Cox, Gamma FALSE #> 6785 425 0.5421033 0.106506310 fv Gamma Cox, Gamma FALSE #> 6801 426 0.9738877 0.180388841 fv Gamma Cox, Gamma FALSE #> 6817 427 0.4334204 0.087612339 fv Gamma Cox, Gamma TRUE #> 6833 428 0.9192375 0.174367363 fv Gamma Cox, Gamma FALSE #> 6849 429 0.6307533 0.121860719 fv Gamma Cox, Gamma FALSE #> 6865 430 0.5862901 0.113931845 fv Gamma Cox, Gamma FALSE #> 6881 431 0.8326353 0.156104642 fv Gamma Cox, Gamma FALSE #> 6897 432 0.5651382 0.111271681 fv Gamma Cox, Gamma FALSE #> 6913 433 0.7605602 0.146061740 fv Gamma Cox, Gamma FALSE #> 6929 434 0.9151370 0.168917938 fv Gamma Cox, Gamma FALSE #> 6945 435 0.6420012 0.123004617 fv Gamma Cox, Gamma FALSE #> 6961 436 0.8857909 0.167510125 fv Gamma Cox, Gamma FALSE #> 6977 437 0.6462434 0.124127766 fv Gamma Cox, Gamma FALSE #> 6993 438 0.4972460 0.098754303 fv Gamma Cox, Gamma FALSE #> 7009 439 0.6779588 0.130863527 fv Gamma Cox, Gamma FALSE #> 7025 440 0.6825645 0.130306052 fv Gamma Cox, Gamma FALSE #> 7041 441 0.4502677 0.089999523 fv Gamma Cox, Gamma TRUE #> 7057 442 0.8187358 0.153159795 fv Gamma Cox, Gamma FALSE #> 7073 443 0.4864113 0.097415951 fv Gamma Cox, Gamma FALSE #> 7089 444 0.6307093 NA fv Gamma Cox, Gamma NA #> 7105 445 0.8960691 0.172700705 fv Gamma Cox, Gamma FALSE #> 7121 446 0.7375956 0.139800669 fv Gamma Cox, Gamma FALSE #> 7137 447 0.7060355 0.134536437 fv Gamma Cox, Gamma FALSE #> 7153 448 0.7606137 0.144593023 fv Gamma Cox, Gamma FALSE #> 7169 449 0.8188267 0.152908387 fv Gamma Cox, Gamma FALSE #> 7185 450 0.6649946 0.127035238 fv Gamma Cox, Gamma FALSE #> 7201 451 0.7889763 0.148648185 fv Gamma Cox, Gamma FALSE #> 7217 452 0.5385995 0.106107012 fv Gamma Cox, Gamma FALSE #> 7233 453 0.7976309 0.149294907 fv Gamma Cox, Gamma FALSE #> 7249 454 0.6812803 0.133807496 fv Gamma Cox, Gamma FALSE #> 7265 455 0.7853285 0.148442373 fv Gamma Cox, Gamma FALSE #> 7281 456 0.8013663 0.150752027 fv Gamma Cox, Gamma FALSE #> 7297 457 0.7567226 0.143306581 fv Gamma Cox, Gamma FALSE #> 7313 458 0.8390265 0.158325038 fv Gamma Cox, Gamma FALSE #> 7329 459 0.6846816 0.131871936 fv Gamma Cox, Gamma FALSE #> 7345 460 0.5993262 NA fv Gamma Cox, Gamma NA #> 7361 461 0.7089733 0.135818026 fv Gamma Cox, Gamma FALSE #> 7377 462 0.9322032 0.176108434 fv Gamma Cox, Gamma FALSE #> 7393 463 0.5899818 0.113578435 fv Gamma Cox, Gamma FALSE #> 7409 464 0.5457337 0.107935854 fv Gamma Cox, Gamma FALSE #> 7425 465 0.6924278 0.131950434 fv Gamma Cox, Gamma FALSE #> 7441 466 0.8586186 0.164067739 fv Gamma Cox, Gamma FALSE #> 7457 467 0.8607295 0.162516222 fv Gamma Cox, Gamma FALSE #> 7473 468 0.5840632 0.113431719 fv Gamma Cox, Gamma FALSE #> 7489 469 0.7721755 0.148974573 fv Gamma Cox, Gamma FALSE #> 7505 470 0.7864966 0.147551158 fv Gamma Cox, Gamma FALSE #> 7521 471 0.6014325 0.116605603 fv Gamma Cox, Gamma FALSE #> 7537 472 0.7782183 0.146490838 fv Gamma Cox, Gamma FALSE #> 7553 473 0.6782043 0.129840010 fv Gamma Cox, Gamma FALSE #> 7569 474 0.6246471 0.122746003 fv Gamma Cox, Gamma FALSE #> 7585 475 1.1066875 0.208302683 fv Gamma Cox, Gamma TRUE #> 7601 476 0.5556522 0.108984002 fv Gamma Cox, Gamma FALSE #> 7617 477 0.8566296 0.159877492 fv Gamma Cox, Gamma FALSE #> 7633 478 0.6815679 0.131090134 fv Gamma Cox, Gamma FALSE #> 7649 479 0.8652759 0.161735280 fv Gamma Cox, Gamma FALSE #> 7665 480 0.7542582 0.144197098 fv Gamma Cox, Gamma FALSE #> 7681 481 0.6792317 0.131026222 fv Gamma Cox, Gamma FALSE #> 7697 482 0.6255814 0.124083667 fv Gamma Cox, Gamma FALSE #> 7713 483 0.6524135 0.127114059 fv Gamma Cox, Gamma FALSE #> 7729 484 0.7084909 0.134146311 fv Gamma Cox, Gamma FALSE #> 7745 485 0.7116749 0.135010465 fv Gamma Cox, Gamma FALSE #> 7761 486 0.5675852 0.111128327 fv Gamma Cox, Gamma FALSE #> 7777 487 0.8227084 0.154214426 fv Gamma Cox, Gamma FALSE #> 7793 488 0.6805839 0.132475141 fv Gamma Cox, Gamma FALSE #> 7809 489 0.8828861 0.168922643 fv Gamma Cox, Gamma FALSE #> 7825 490 1.0616372 0.193890898 fv Gamma Cox, Gamma TRUE #> 7841 491 0.6822397 0.130612568 fv Gamma Cox, Gamma FALSE #> 7857 492 0.8222004 0.155512481 fv Gamma Cox, Gamma FALSE #> 7873 493 0.7750104 0.151083906 fv Gamma Cox, Gamma FALSE #> 7889 494 0.7222312 0.137802429 fv Gamma Cox, Gamma FALSE #> 7905 495 0.7690374 0.146304536 fv Gamma Cox, Gamma FALSE #> 7921 496 0.5161178 0.102242565 fv Gamma Cox, Gamma FALSE #> 7937 497 0.6616442 0.126467428 fv Gamma Cox, Gamma FALSE #> 7953 498 0.6310750 0.122098317 fv Gamma Cox, Gamma FALSE #> 7969 499 0.9368503 0.175074305 fv Gamma Cox, Gamma FALSE #> 7985 500 0.8980660 0.169636790 fv Gamma Cox, Gamma FALSE #> 8001 501 0.6945294 0.132580566 fv Gamma Cox, Gamma FALSE #> 8017 502 0.7586970 0.143861263 fv Gamma Cox, Gamma FALSE #> 8033 503 0.6796761 0.130505602 fv Gamma Cox, Gamma FALSE #> 8049 504 0.8750771 0.162492220 fv Gamma Cox, Gamma FALSE #> 8065 505 0.9242294 0.173034278 fv Gamma Cox, Gamma FALSE #> 8081 506 0.6642908 0.127078492 fv Gamma Cox, Gamma FALSE #> 8097 507 0.6220734 0.120661088 fv Gamma Cox, Gamma FALSE #> 8113 508 0.6638922 0.127459533 fv Gamma Cox, Gamma FALSE #> 8129 509 0.7011241 0.133602323 fv Gamma Cox, Gamma FALSE #> 8145 510 0.9146957 0.169745733 fv Gamma Cox, Gamma FALSE #> 8161 511 0.7417783 0.141579855 fv Gamma Cox, Gamma FALSE #> 8177 512 0.8087679 0.152328374 fv Gamma Cox, Gamma FALSE #> 8193 513 0.5954906 0.116001360 fv Gamma Cox, Gamma FALSE #> 8209 514 0.6569979 0.126927260 fv Gamma Cox, Gamma FALSE #> 8225 515 0.6212970 0.120107176 fv Gamma Cox, Gamma FALSE #> 8241 516 0.7542450 0.144369845 fv Gamma Cox, Gamma FALSE #> 8257 517 0.7857159 0.148313320 fv Gamma Cox, Gamma FALSE #> 8273 518 0.8537068 0.158622013 fv Gamma Cox, Gamma FALSE #> 8289 519 0.7034337 0.134310592 fv Gamma Cox, Gamma FALSE #> 8305 520 0.6197376 0.119943182 fv Gamma Cox, Gamma FALSE #> 8321 521 0.5610014 0.109140591 fv Gamma Cox, Gamma FALSE #> 8337 522 0.5438508 0.106296184 fv Gamma Cox, Gamma FALSE #> 8353 523 0.6698531 0.129490382 fv Gamma Cox, Gamma FALSE #> 8369 524 0.6020242 0.117226384 fv Gamma Cox, Gamma FALSE #> 8385 525 1.0516324 0.192496879 fv Gamma Cox, Gamma TRUE #> 8401 526 0.7609652 0.144096404 fv Gamma Cox, Gamma FALSE #> 8417 527 0.6881981 0.133087351 fv Gamma Cox, Gamma FALSE #> 8433 528 0.6054273 0.117775780 fv Gamma Cox, Gamma FALSE #> 8449 529 0.8516933 0.159701160 fv Gamma Cox, Gamma FALSE #> 8465 530 0.8926019 0.166575907 fv Gamma Cox, Gamma FALSE #> 8481 531 0.7916298 0.148159862 fv Gamma Cox, Gamma FALSE #> 8497 532 0.7897519 0.149192705 fv Gamma Cox, Gamma FALSE #> 8513 533 0.7284274 0.138699326 fv Gamma Cox, Gamma FALSE #> 8529 534 0.7790291 0.146354155 fv Gamma Cox, Gamma FALSE #> 8545 535 0.9538809 0.176303899 fv Gamma Cox, Gamma FALSE #> 8561 536 0.8270741 0.154370683 fv Gamma Cox, Gamma FALSE #> 8577 537 0.7138513 0.139534596 fv Gamma Cox, Gamma FALSE #> 8593 538 0.6246478 NA fv Gamma Cox, Gamma NA #> 8609 539 0.8627532 0.161183355 fv Gamma Cox, Gamma FALSE #> 8625 540 0.7660902 0.149389899 fv Gamma Cox, Gamma FALSE #> 8641 541 0.6295377 0.122597777 fv Gamma Cox, Gamma FALSE #> 8657 542 0.8369873 0.157179557 fv Gamma Cox, Gamma FALSE #> 8673 543 0.9027111 0.167848994 fv Gamma Cox, Gamma FALSE #> 8689 544 0.8231412 0.154281762 fv Gamma Cox, Gamma FALSE #> 8705 545 0.6971651 0.133999902 fv Gamma Cox, Gamma FALSE #> 8721 546 0.6917187 0.132692058 fv Gamma Cox, Gamma FALSE #> 8737 547 0.6612332 0.126891190 fv Gamma Cox, Gamma FALSE #> 8753 548 0.6319194 0.006583581 fv Gamma Cox, Gamma TRUE #> 8769 549 0.8020343 0.153784386 fv Gamma Cox, Gamma FALSE #> 8785 550 0.8857710 0.173416696 fv Gamma Cox, Gamma FALSE #> 8801 551 0.7206925 0.137282217 fv Gamma Cox, Gamma FALSE #> 8817 552 0.5655243 0.111609299 fv Gamma Cox, Gamma FALSE #> 8833 553 0.5894449 0.115099271 fv Gamma Cox, Gamma FALSE #> 8849 554 0.6799194 0.131022822 fv Gamma Cox, Gamma FALSE #> 8865 555 0.5942723 0.116121667 fv Gamma Cox, Gamma FALSE #> 8881 556 0.5409466 0.106333958 fv Gamma Cox, Gamma FALSE #> 8897 557 1.1276785 0.208600321 fv Gamma Cox, Gamma TRUE #> 8913 558 0.8056241 0.152243016 fv Gamma Cox, Gamma FALSE #> 8929 559 0.6165829 0.122550777 fv Gamma Cox, Gamma FALSE #> 8945 560 0.7506013 0.143366986 fv Gamma Cox, Gamma FALSE #> 8961 561 0.7560469 0.142619604 fv Gamma Cox, Gamma FALSE #> 8977 562 0.4475603 0.089294336 fv Gamma Cox, Gamma TRUE #> 8993 563 0.7697251 0.146259739 fv Gamma Cox, Gamma FALSE #> 9009 564 0.7596255 0.143001550 fv Gamma Cox, Gamma FALSE #> 9025 565 0.8209886 0.158901699 fv Gamma Cox, Gamma FALSE #> 9041 566 0.8540708 0.160172577 fv Gamma Cox, Gamma FALSE #> 9057 567 0.7239583 0.138160326 fv Gamma Cox, Gamma FALSE #> 9073 568 0.7918967 0.152246336 fv Gamma Cox, Gamma FALSE #> 9089 569 0.6846417 0.132938759 fv Gamma Cox, Gamma FALSE #> 9105 570 0.7180058 0.136793903 fv Gamma Cox, Gamma FALSE #> 9121 571 0.7534625 0.142541419 fv Gamma Cox, Gamma FALSE #> 9137 572 0.8277711 0.154274630 fv Gamma Cox, Gamma FALSE #> 9153 573 0.5338253 0.105713447 fv Gamma Cox, Gamma FALSE #> 9169 574 0.8516856 0.162398703 fv Gamma Cox, Gamma FALSE #> 9185 575 0.7042959 0.134581473 fv Gamma Cox, Gamma FALSE #> 9201 576 0.7417747 0.142360056 fv Gamma Cox, Gamma FALSE #> 9217 577 0.6314368 0.122446267 fv Gamma Cox, Gamma FALSE #> 9233 578 0.6519440 0.125000623 fv Gamma Cox, Gamma FALSE #> 9249 579 0.6465344 NA fv Gamma Cox, Gamma NA #> 9265 580 0.6101363 0.117780410 fv Gamma Cox, Gamma FALSE #> 9281 581 0.8567743 0.159745166 fv Gamma Cox, Gamma FALSE #> 9297 582 0.4249017 0.084684463 fv Gamma Cox, Gamma TRUE #> 9313 583 0.7812605 0.147186401 fv Gamma Cox, Gamma FALSE #> 9329 584 0.6289872 NA fv Gamma Cox, Gamma NA #> 9345 585 1.1129083 0.202616476 fv Gamma Cox, Gamma TRUE #> 9361 586 1.0020180 0.183131340 fv Gamma Cox, Gamma FALSE #> 9377 587 0.7823646 0.147627151 fv Gamma Cox, Gamma FALSE #> 9393 588 0.7965984 0.151873142 fv Gamma Cox, Gamma FALSE #> 9409 589 0.5848703 0.113875946 fv Gamma Cox, Gamma FALSE #> 9425 590 0.6723444 0.129201859 fv Gamma Cox, Gamma FALSE #> 9441 591 0.7146685 0.136960728 fv Gamma Cox, Gamma FALSE #> 9457 592 0.8875873 0.165449957 fv Gamma Cox, Gamma FALSE #> 9473 593 0.6956131 0.136694985 fv Gamma Cox, Gamma FALSE #> 9489 594 0.7214667 0.138957335 fv Gamma Cox, Gamma FALSE #> 9505 595 0.7101161 0.135025353 fv Gamma Cox, Gamma FALSE #> 9521 596 0.8418777 0.157263827 fv Gamma Cox, Gamma FALSE #> 9537 597 0.9729782 0.183742916 fv Gamma Cox, Gamma FALSE #> 9553 598 0.7302043 0.138489839 fv Gamma Cox, Gamma FALSE #> 9569 599 1.0924857 0.198613543 fv Gamma Cox, Gamma TRUE #> 9585 600 0.9354165 0.172435311 fv Gamma Cox, Gamma FALSE #> 9601 601 0.6883910 0.131587270 fv Gamma Cox, Gamma FALSE #> 9617 602 0.8070003 0.154414727 fv Gamma Cox, Gamma FALSE #> 9633 603 0.6856989 0.130901389 fv Gamma Cox, Gamma FALSE #> 9649 604 0.8376770 0.164630472 fv Gamma Cox, Gamma FALSE #> 9665 605 0.8981670 0.170534144 fv Gamma Cox, Gamma FALSE #> 9681 606 0.7882221 0.148789284 fv Gamma Cox, Gamma FALSE #> 9697 607 0.6476463 0.125475048 fv Gamma Cox, Gamma FALSE #> 9713 608 0.8155224 0.153555972 fv Gamma Cox, Gamma FALSE #> 9729 609 0.8892325 0.166132966 fv Gamma Cox, Gamma FALSE #> 9745 610 0.7927409 0.149226966 fv Gamma Cox, Gamma FALSE #> 9761 611 0.6492237 0.125252832 fv Gamma Cox, Gamma FALSE #> 9777 612 0.8847558 0.164946654 fv Gamma Cox, Gamma FALSE #> 9793 613 0.7555553 0.143065459 fv Gamma Cox, Gamma FALSE #> 9809 614 0.6999420 0.133898539 fv Gamma Cox, Gamma FALSE #> 9825 615 0.6323970 0.121998668 fv Gamma Cox, Gamma FALSE #> 9841 616 0.9258004 0.171970867 fv Gamma Cox, Gamma FALSE #> 9857 617 0.9810413 0.184675944 fv Gamma Cox, Gamma FALSE #> 9873 618 0.5773346 0.112316606 fv Gamma Cox, Gamma FALSE #> 9889 619 0.6347891 0.122523189 fv Gamma Cox, Gamma FALSE #> 9905 620 0.6827832 0.131100442 fv Gamma Cox, Gamma FALSE #> 9921 621 0.7975355 0.150353049 fv Gamma Cox, Gamma FALSE #> 9937 622 1.1223277 0.204313520 fv Gamma Cox, Gamma TRUE #> 9953 623 0.5579222 0.108700678 fv Gamma Cox, Gamma FALSE #> 9969 624 0.7128043 0.135198610 fv Gamma Cox, Gamma FALSE #> 9985 625 0.6645098 0.127866473 fv Gamma Cox, Gamma FALSE #> 10001 626 0.5434477 0.107111683 fv Gamma Cox, Gamma FALSE #> 10017 627 0.6384977 0.127531672 fv Gamma Cox, Gamma FALSE #> 10033 628 0.7155575 0.135607273 fv Gamma Cox, Gamma FALSE #> 10049 629 0.5743986 0.113030438 fv Gamma Cox, Gamma FALSE #> 10065 630 0.9263040 0.171879492 fv Gamma Cox, Gamma FALSE #> 10081 631 0.8454909 0.163553297 fv Gamma Cox, Gamma FALSE #> 10097 632 0.5915189 0.115112532 fv Gamma Cox, Gamma FALSE #> 10113 633 0.5378909 0.105342707 fv Gamma Cox, Gamma FALSE #> 10129 634 0.5606903 0.109482541 fv Gamma Cox, Gamma FALSE #> 10145 635 0.4726450 0.094667526 fv Gamma Cox, Gamma FALSE #> 10161 636 0.6834728 0.132595448 fv Gamma Cox, Gamma FALSE #> 10177 637 0.7517155 0.142228970 fv Gamma Cox, Gamma FALSE #> 10193 638 0.6135361 0.122501483 fv Gamma Cox, Gamma FALSE #> 10209 639 0.7014499 0.133681174 fv Gamma Cox, Gamma FALSE #> 10225 640 0.6128640 NA fv Gamma Cox, Gamma NA #> 10241 641 0.6673911 0.127458375 fv Gamma Cox, Gamma FALSE #> 10257 642 0.6815744 0.131201354 fv Gamma Cox, Gamma FALSE #> 10273 643 0.6395380 0.123473684 fv Gamma Cox, Gamma FALSE #> 10289 644 0.9281496 0.178044104 fv Gamma Cox, Gamma FALSE #> 10305 645 0.5058058 0.099576567 fv Gamma Cox, Gamma FALSE #> 10321 646 0.5752018 0.112537616 fv Gamma Cox, Gamma FALSE #> 10337 647 1.0966623 0.201529503 fv Gamma Cox, Gamma TRUE #> 10353 648 0.7244534 0.137071261 fv Gamma Cox, Gamma FALSE #> 10369 649 0.8332207 0.156331374 fv Gamma Cox, Gamma FALSE #> 10385 650 0.9649527 0.179069982 fv Gamma Cox, Gamma FALSE #> 10401 651 0.9464873 0.175101726 fv Gamma Cox, Gamma FALSE #> 10417 652 0.7609635 0.144258476 fv Gamma Cox, Gamma FALSE #> 10433 653 0.9382049 0.177882581 fv Gamma Cox, Gamma FALSE #> 10449 654 0.6062464 0.117645954 fv Gamma Cox, Gamma FALSE #> 10465 655 0.6767305 0.129314528 fv Gamma Cox, Gamma FALSE #> 10481 656 0.7862486 0.148608077 fv Gamma Cox, Gamma FALSE #> 10497 657 0.7137173 0.136369085 fv Gamma Cox, Gamma FALSE #> 10513 658 0.8178731 0.154550758 fv Gamma Cox, Gamma FALSE #> 10529 659 0.8561291 0.161265853 fv Gamma Cox, Gamma FALSE #> 10545 660 0.7951042 0.153064842 fv Gamma Cox, Gamma FALSE #> 10561 661 0.5838602 0.113215726 fv Gamma Cox, Gamma FALSE #> 10577 662 0.4485783 0.089198580 fv Gamma Cox, Gamma TRUE #> 10593 663 0.6581613 NA fv Gamma Cox, Gamma NA #> 10609 664 0.7241489 0.137001157 fv Gamma Cox, Gamma FALSE #> 10625 665 0.6926612 0.133197792 fv Gamma Cox, Gamma FALSE #> 10641 666 0.6778013 0.132901048 fv Gamma Cox, Gamma FALSE #> 10657 667 0.8867749 0.168166698 fv Gamma Cox, Gamma FALSE #> 10673 668 0.8301043 0.158911230 fv Gamma Cox, Gamma FALSE #> 10689 669 0.5407391 0.106146295 fv Gamma Cox, Gamma FALSE #> 10705 670 0.8485756 0.162192318 fv Gamma Cox, Gamma FALSE #> 10721 671 0.8766589 0.163763076 fv Gamma Cox, Gamma FALSE #> 10737 672 0.6153715 NA fv Gamma Cox, Gamma NA #> 10753 673 0.6107089 0.117370604 fv Gamma Cox, Gamma FALSE #> 10769 674 0.9545713 0.180865051 fv Gamma Cox, Gamma FALSE #> 10785 675 0.6959295 0.132291736 fv Gamma Cox, Gamma FALSE #> 10801 676 0.5082065 0.102830300 fv Gamma Cox, Gamma FALSE #> 10817 677 0.6335714 0.121472662 fv Gamma Cox, Gamma FALSE #> 10833 678 0.8358190 0.157360400 fv Gamma Cox, Gamma FALSE #> 10849 679 0.9489850 0.175902516 fv Gamma Cox, Gamma FALSE #> 10865 680 0.6831995 0.135084593 fv Gamma Cox, Gamma FALSE #> 10881 681 0.5643254 0.110253548 fv Gamma Cox, Gamma FALSE #> 10897 682 0.7617965 0.143922368 fv Gamma Cox, Gamma FALSE #> 10913 683 0.8612983 0.164005648 fv Gamma Cox, Gamma FALSE #> 10929 684 0.9306887 0.172309343 fv Gamma Cox, Gamma FALSE #> 10945 685 0.6426137 0.123487366 fv Gamma Cox, Gamma FALSE #> 10961 686 0.5504300 0.108056938 fv Gamma Cox, Gamma FALSE #> 10977 687 1.0715471 0.195861853 fv Gamma Cox, Gamma TRUE #> 10993 688 0.7247087 0.137711351 fv Gamma Cox, Gamma FALSE #> 11009 689 0.7044312 0.134177121 fv Gamma Cox, Gamma FALSE #> 11025 690 0.9424856 0.173674021 fv Gamma Cox, Gamma FALSE #> 11041 691 0.7890166 0.149550201 fv Gamma Cox, Gamma FALSE #> 11057 692 0.7272266 0.137587457 fv Gamma Cox, Gamma FALSE #> 11073 693 0.8573916 0.162747887 fv Gamma Cox, Gamma FALSE #> 11089 694 0.8534868 0.161603640 fv Gamma Cox, Gamma FALSE #> 11105 695 0.7322424 0.142478400 fv Gamma Cox, Gamma FALSE #> 11121 696 0.7257254 0.140591529 fv Gamma Cox, Gamma FALSE #> 11137 697 0.7333151 0.139148123 fv Gamma Cox, Gamma FALSE #> 11153 698 0.7079694 0.135061149 fv Gamma Cox, Gamma FALSE #> 11169 699 0.7213398 0.136395589 fv Gamma Cox, Gamma FALSE #> 11185 700 1.1804472 0.212933204 fv Gamma Cox, Gamma TRUE #> 11201 701 0.6387989 0.122746463 fv Gamma Cox, Gamma FALSE #> 11217 702 0.7190115 0.141352091 fv Gamma Cox, Gamma FALSE #> 11233 703 0.5731256 0.112207992 fv Gamma Cox, Gamma FALSE #> 11249 704 0.9037123 0.167031332 fv Gamma Cox, Gamma FALSE #> 11265 705 0.9728518 0.179527679 fv Gamma Cox, Gamma FALSE #> 11281 706 0.7500375 0.141850521 fv Gamma Cox, Gamma FALSE #> 11297 707 0.5756002 0.113226216 fv Gamma Cox, Gamma FALSE #> 11313 708 0.8181883 0.157337000 fv Gamma Cox, Gamma FALSE #> 11329 709 0.7474298 0.141423613 fv Gamma Cox, Gamma FALSE #> 11345 710 0.7454622 0.140549261 fv Gamma Cox, Gamma FALSE #> 11361 711 0.3894059 0.079382350 fv Gamma Cox, Gamma TRUE #> 11377 712 0.7212272 0.137524828 fv Gamma Cox, Gamma FALSE #> 11393 713 0.7565196 0.142332022 fv Gamma Cox, Gamma FALSE #> 11409 714 0.8595678 0.164830902 fv Gamma Cox, Gamma FALSE #> 11425 715 0.9462299 0.175784475 fv Gamma Cox, Gamma FALSE #> 11441 716 0.8149458 0.154563840 fv Gamma Cox, Gamma FALSE #> 11457 717 0.6258843 0.125296314 fv Gamma Cox, Gamma FALSE #> 11473 718 0.7241018 0.138809353 fv Gamma Cox, Gamma FALSE #> 11489 719 0.6472919 0.124029879 fv Gamma Cox, Gamma FALSE #> 11505 720 0.6462965 0.124507001 fv Gamma Cox, Gamma FALSE #> 11521 721 0.8668431 0.163374189 fv Gamma Cox, Gamma FALSE #> 11537 722 0.8751804 0.163803285 fv Gamma Cox, Gamma FALSE #> 11553 723 0.7688477 0.148856537 fv Gamma Cox, Gamma FALSE #> 11569 724 0.6330552 0.122262688 fv Gamma Cox, Gamma FALSE #> 11585 725 0.6439821 0.123472393 fv Gamma Cox, Gamma FALSE #> 11601 726 0.6382621 0.124017757 fv Gamma Cox, Gamma FALSE #> 11617 727 0.8274516 0.157670945 fv Gamma Cox, Gamma FALSE #> 11633 728 0.5470298 0.110455707 fv Gamma Cox, Gamma FALSE #> 11649 729 0.7934510 0.149151202 fv Gamma Cox, Gamma FALSE #> 11665 730 0.9028028 0.172657452 fv Gamma Cox, Gamma FALSE #> 11681 731 0.9106973 0.169985677 fv Gamma Cox, Gamma FALSE #> 11697 732 0.8609186 0.159667483 fv Gamma Cox, Gamma FALSE #> 11713 733 0.5696342 0.111161534 fv Gamma Cox, Gamma FALSE #> 11729 734 0.5714461 0.111644351 fv Gamma Cox, Gamma FALSE #> 11745 735 0.7858057 0.147794812 fv Gamma Cox, Gamma FALSE #> 11761 736 0.8311006 0.159563715 fv Gamma Cox, Gamma FALSE #> 11777 737 0.7011583 0.133559009 fv Gamma Cox, Gamma FALSE #> 11793 738 0.6425217 0.129359897 fv Gamma Cox, Gamma FALSE #> 11809 739 0.6952162 0.132859258 fv Gamma Cox, Gamma FALSE #> 11825 740 0.6816161 0.130493619 fv Gamma Cox, Gamma FALSE #> 11841 741 0.7984124 0.151405815 fv Gamma Cox, Gamma FALSE #> 11857 742 0.6113573 0.118351933 fv Gamma Cox, Gamma FALSE #> 11873 743 0.7768640 0.146725181 fv Gamma Cox, Gamma FALSE #> 11889 744 1.0010037 0.187976904 fv Gamma Cox, Gamma FALSE #> 11905 745 0.6369326 0.124638617 fv Gamma Cox, Gamma FALSE #> 11921 746 0.4547392 0.090878742 fv Gamma Cox, Gamma FALSE #> 11937 747 0.6243564 NA fv Gamma Cox, Gamma NA #> 11953 748 0.8321617 0.155213104 fv Gamma Cox, Gamma FALSE #> 11969 749 0.6214388 0.120268760 fv Gamma Cox, Gamma FALSE #> 11985 750 0.5547780 0.108170284 fv Gamma Cox, Gamma FALSE #> 12001 751 0.9029269 0.167251872 fv Gamma Cox, Gamma FALSE #> 12017 752 0.8158367 0.153701903 fv Gamma Cox, Gamma FALSE #> 12033 753 0.6268532 0.122830159 fv Gamma Cox, Gamma FALSE #> 12049 754 0.7604952 0.143957643 fv Gamma Cox, Gamma FALSE #> 12065 755 0.7755205 0.146754514 fv Gamma Cox, Gamma FALSE #> 12081 756 1.1338308 0.205371520 fv Gamma Cox, Gamma TRUE #> 12097 757 0.6141619 0.119190168 fv Gamma Cox, Gamma FALSE #> 12113 758 0.5421448 0.106441629 fv Gamma Cox, Gamma FALSE #> 12129 759 0.6135692 0.118641503 fv Gamma Cox, Gamma FALSE #> 12145 760 0.6039901 NA fv Gamma Cox, Gamma NA #> 12161 761 0.7675576 0.146194900 fv Gamma Cox, Gamma FALSE #> 12177 762 0.6497935 0.124892235 fv Gamma Cox, Gamma FALSE #> 12193 763 0.6141013 0.119005700 fv Gamma Cox, Gamma FALSE #> 12209 764 0.7138323 0.136853512 fv Gamma Cox, Gamma FALSE #> 12225 765 0.6968334 0.134411196 fv Gamma Cox, Gamma FALSE #> 12241 766 0.5653622 0.110834209 fv Gamma Cox, Gamma FALSE #> 12257 767 0.7773964 0.147674261 fv Gamma Cox, Gamma FALSE #> 12273 768 0.7275932 0.138104443 fv Gamma Cox, Gamma FALSE #> 12289 769 0.8012518 0.150258739 fv Gamma Cox, Gamma FALSE #> 12305 770 0.5881467 0.115918836 fv Gamma Cox, Gamma FALSE #> 12321 771 0.5582652 0.109204974 fv Gamma Cox, Gamma FALSE #> 12337 772 0.8615970 0.165608183 fv Gamma Cox, Gamma FALSE #> 12353 773 0.6832303 0.131879273 fv Gamma Cox, Gamma FALSE #> 12369 774 0.7392229 0.139984302 fv Gamma Cox, Gamma FALSE #> 12385 775 0.9718989 0.182805349 fv Gamma Cox, Gamma FALSE #> 12401 776 0.7453084 0.140746137 fv Gamma Cox, Gamma FALSE #> 12417 777 0.6330554 0.122393589 fv Gamma Cox, Gamma FALSE #> 12433 778 0.7985011 0.151646980 fv Gamma Cox, Gamma FALSE #> 12449 779 0.8074756 0.152531003 fv Gamma Cox, Gamma FALSE #> 12465 780 0.8180757 0.154987196 fv Gamma Cox, Gamma FALSE #> 12481 781 0.6082118 0.119222818 fv Gamma Cox, Gamma FALSE #> 12497 782 0.6587172 0.131465834 fv Gamma Cox, Gamma FALSE #> 12513 783 0.7736700 0.145777095 fv Gamma Cox, Gamma FALSE #> 12529 784 0.6471594 0.123949451 fv Gamma Cox, Gamma FALSE #> 12545 785 0.6391755 0.122834514 fv Gamma Cox, Gamma FALSE #> 12561 786 0.9004978 0.168639083 fv Gamma Cox, Gamma FALSE #> 12577 787 0.8098357 0.157221614 fv Gamma Cox, Gamma FALSE #> 12593 788 0.7364478 0.140602985 fv Gamma Cox, Gamma FALSE #> 12609 789 0.8480764 0.161362989 fv Gamma Cox, Gamma FALSE #> 12625 790 0.9009634 0.172274725 fv Gamma Cox, Gamma FALSE #> 12641 791 0.9429739 0.177975160 fv Gamma Cox, Gamma FALSE #> 12657 792 0.9334192 0.173662065 fv Gamma Cox, Gamma FALSE #> 12673 793 0.6720125 0.128866983 fv Gamma Cox, Gamma FALSE #> 12689 794 0.3839860 0.077645568 fv Gamma Cox, Gamma TRUE #> 12705 795 0.6986569 0.134254162 fv Gamma Cox, Gamma FALSE #> 12721 796 0.7909092 0.149755855 fv Gamma Cox, Gamma FALSE #> 12737 797 0.6261971 0.121737443 fv Gamma Cox, Gamma FALSE #> 12753 798 0.5844054 0.114012882 fv Gamma Cox, Gamma FALSE #> 12769 799 0.9180832 0.177794269 fv Gamma Cox, Gamma FALSE #> 12785 800 0.8898310 0.009215322 fv Gamma Cox, Gamma TRUE #> 12801 801 0.6029141 0.118004690 fv Gamma Cox, Gamma FALSE #> 12817 802 0.6136151 0.118209030 fv Gamma Cox, Gamma FALSE #> 12833 803 0.7643843 0.144107978 fv Gamma Cox, Gamma FALSE #> 12849 804 0.7880555 0.148940888 fv Gamma Cox, Gamma FALSE #> 12865 805 0.7998431 0.151085310 fv Gamma Cox, Gamma FALSE #> 12881 806 0.5799163 0.112694012 fv Gamma Cox, Gamma FALSE #> 12897 807 0.9651011 0.178731784 fv Gamma Cox, Gamma FALSE #> 12913 808 0.7025718 0.137651644 fv Gamma Cox, Gamma FALSE #> 12929 809 0.8694688 0.167063978 fv Gamma Cox, Gamma FALSE #> 12945 810 0.7524828 0.142292627 fv Gamma Cox, Gamma FALSE #> 12961 811 0.9760360 0.179659577 fv Gamma Cox, Gamma FALSE #> 12977 812 0.6752901 0.129939984 fv Gamma Cox, Gamma FALSE #> 12993 813 0.8548886 0.159815547 fv Gamma Cox, Gamma FALSE #> 13009 814 0.8475993 0.160224215 fv Gamma Cox, Gamma FALSE #> 13025 815 1.0378135 0.193339139 fv Gamma Cox, Gamma TRUE #> 13041 816 0.6058893 0.118810341 fv Gamma Cox, Gamma FALSE #> 13057 817 0.8294245 0.160278552 fv Gamma Cox, Gamma FALSE #> 13073 818 0.6699606 0.129819938 fv Gamma Cox, Gamma FALSE #> 13089 819 0.9026802 0.171814094 fv Gamma Cox, Gamma FALSE #> 13105 820 0.6607045 0.126534866 fv Gamma Cox, Gamma FALSE #> 13121 821 0.7740695 0.148978813 fv Gamma Cox, Gamma FALSE #> 13137 822 0.5192049 0.101919886 fv Gamma Cox, Gamma FALSE #> 13153 823 0.7124120 0.136595828 fv Gamma Cox, Gamma FALSE #> 13169 824 0.7414032 0.141357073 fv Gamma Cox, Gamma FALSE #> 13185 825 0.5626547 0.109971816 fv Gamma Cox, Gamma FALSE #> 13201 826 0.7043875 0.133119162 fv Gamma Cox, Gamma FALSE #> 13217 827 0.6514503 0.124574860 fv Gamma Cox, Gamma FALSE #> 13233 828 0.9596989 0.181593656 fv Gamma Cox, Gamma FALSE #> 13249 829 0.6007949 0.116361517 fv Gamma Cox, Gamma FALSE #> 13265 830 0.8469501 0.159224212 fv Gamma Cox, Gamma FALSE #> 13281 831 0.5408164 0.107608019 fv Gamma Cox, Gamma FALSE #> 13297 832 0.7255851 0.137920926 fv Gamma Cox, Gamma FALSE #> 13313 833 0.7233601 0.137867717 fv Gamma Cox, Gamma FALSE #> 13329 834 0.5366763 0.106094653 fv Gamma Cox, Gamma FALSE #> 13345 835 0.6807868 0.129887049 fv Gamma Cox, Gamma FALSE #> 13361 836 0.7233304 0.138523590 fv Gamma Cox, Gamma FALSE #> 13377 837 0.6975474 0.134553921 fv Gamma Cox, Gamma FALSE #> 13393 838 0.9069225 0.168108493 fv Gamma Cox, Gamma FALSE #> 13409 839 0.6369026 NA fv Gamma Cox, Gamma NA #> 13425 840 0.7404369 0.141071662 fv Gamma Cox, Gamma FALSE #> 13441 841 0.7236781 0.136543217 fv Gamma Cox, Gamma FALSE #> 13457 842 0.7269617 0.139559720 fv Gamma Cox, Gamma FALSE #> 13473 843 0.9404634 0.175372253 fv Gamma Cox, Gamma FALSE #> 13489 844 0.7591388 0.146210176 fv Gamma Cox, Gamma FALSE #> 13505 845 0.8950945 0.167596204 fv Gamma Cox, Gamma FALSE #> 13521 846 0.6293815 0.123382026 fv Gamma Cox, Gamma FALSE #> 13537 847 0.6395938 0.126059073 fv Gamma Cox, Gamma FALSE #> 13553 848 0.5252646 0.103677785 fv Gamma Cox, Gamma FALSE #> 13569 849 0.7224527 0.136457894 fv Gamma Cox, Gamma FALSE #> 13585 850 0.6655871 0.127329444 fv Gamma Cox, Gamma FALSE #> 13601 851 0.7693731 0.146390092 fv Gamma Cox, Gamma FALSE #> 13617 852 0.4630289 0.092204110 fv Gamma Cox, Gamma FALSE #> 13633 853 0.7458003 0.141114834 fv Gamma Cox, Gamma FALSE #> 13649 854 0.5495523 0.107672747 fv Gamma Cox, Gamma FALSE #> 13665 855 0.9345197 0.173532238 fv Gamma Cox, Gamma FALSE #> 13681 856 0.8111527 0.152332420 fv Gamma Cox, Gamma FALSE #> 13697 857 0.5890767 0.115410240 fv Gamma Cox, Gamma FALSE #> 13713 858 0.6332795 0.122745694 fv Gamma Cox, Gamma FALSE #> 13729 859 0.6800949 0.133382028 fv Gamma Cox, Gamma FALSE #> 13745 860 0.6622329 0.127201962 fv Gamma Cox, Gamma FALSE #> 13761 861 0.8276490 0.155843336 fv Gamma Cox, Gamma FALSE #> 13777 862 0.6250495 0.119957952 fv Gamma Cox, Gamma FALSE #> 13793 863 0.7531449 0.143142148 fv Gamma Cox, Gamma FALSE #> 13809 864 0.7254803 0.138882972 fv Gamma Cox, Gamma FALSE #> 13825 865 0.7898965 0.149750258 fv Gamma Cox, Gamma FALSE #> 13841 866 0.6936516 0.132582282 fv Gamma Cox, Gamma FALSE #> 13857 867 0.7247385 0.138061579 fv Gamma Cox, Gamma FALSE #> 13873 868 0.7636970 0.144736951 fv Gamma Cox, Gamma FALSE #> 13889 869 0.7396685 0.140631206 fv Gamma Cox, Gamma FALSE #> 13905 870 0.6878653 0.134946113 fv Gamma Cox, Gamma FALSE #> 13921 871 0.9322391 0.174943111 fv Gamma Cox, Gamma FALSE #> 13937 872 0.8718313 0.164024706 fv Gamma Cox, Gamma FALSE #> 13953 873 0.8129908 0.152112199 fv Gamma Cox, Gamma FALSE #> 13969 874 1.0572431 0.200675949 fv Gamma Cox, Gamma TRUE #> 13985 875 0.6157512 0.118829283 fv Gamma Cox, Gamma FALSE #> 14001 876 0.6630098 0.126690567 fv Gamma Cox, Gamma FALSE #> 14017 877 0.7466926 0.141466654 fv Gamma Cox, Gamma FALSE #> 14033 878 0.7914158 0.152095093 fv Gamma Cox, Gamma FALSE #> 14049 879 0.7052097 0.139283078 fv Gamma Cox, Gamma FALSE #> 14065 880 0.9210401 0.170865848 fv Gamma Cox, Gamma FALSE #> 14081 881 0.8075285 0.152978998 fv Gamma Cox, Gamma FALSE #> 14097 882 0.9622325 0.177253168 fv Gamma Cox, Gamma FALSE #> 14113 883 0.6113031 0.118690674 fv Gamma Cox, Gamma FALSE #> 14129 884 0.5963768 0.115010525 fv Gamma Cox, Gamma FALSE #> 14145 885 0.5900931 0.114649215 fv Gamma Cox, Gamma FALSE #> 14161 886 0.5895583 0.114812076 fv Gamma Cox, Gamma FALSE #> 14177 887 0.7148329 0.136753996 fv Gamma Cox, Gamma FALSE #> 14193 888 0.9594745 0.176947839 fv Gamma Cox, Gamma FALSE #> 14209 889 0.8042972 0.150368824 fv Gamma Cox, Gamma FALSE #> 14225 890 0.6175176 0.120106236 fv Gamma Cox, Gamma FALSE #> 14241 891 0.5137172 0.100840519 fv Gamma Cox, Gamma FALSE #> 14257 892 0.6850107 0.131015607 fv Gamma Cox, Gamma FALSE #> 14273 893 0.8293255 0.157982630 fv Gamma Cox, Gamma FALSE #> 14289 894 0.5677705 0.110836627 fv Gamma Cox, Gamma FALSE #> 14305 895 0.7644482 0.145093246 fv Gamma Cox, Gamma FALSE #> 14321 896 0.8710288 0.162208151 fv Gamma Cox, Gamma FALSE #> 14337 897 0.7168600 0.136395174 fv Gamma Cox, Gamma FALSE #> 14353 898 0.9065450 0.167962428 fv Gamma Cox, Gamma FALSE #> 14369 899 0.7682189 0.146120927 fv Gamma Cox, Gamma FALSE #> 14385 900 0.7950990 0.152564307 fv Gamma Cox, Gamma FALSE #> 14401 901 0.6035077 NA fv Gamma Cox, Gamma NA #> 14417 902 0.5803465 0.112617990 fv Gamma Cox, Gamma FALSE #> 14433 903 0.6449096 0.123722630 fv Gamma Cox, Gamma FALSE #> 14449 904 1.0645195 0.202580828 fv Gamma Cox, Gamma TRUE #> 14465 905 0.6154062 0.118202301 fv Gamma Cox, Gamma FALSE #> 14481 906 0.9287891 0.171263363 fv Gamma Cox, Gamma FALSE #> 14497 907 0.7180920 0.136679548 fv Gamma Cox, Gamma FALSE #> 14513 908 0.6552036 0.129720385 fv Gamma Cox, Gamma FALSE #> 14529 909 0.6176879 0.120066685 fv Gamma Cox, Gamma FALSE #> 14545 910 0.5521694 0.107962585 fv Gamma Cox, Gamma FALSE #> 14561 911 0.7069066 0.138490781 fv Gamma Cox, Gamma FALSE #> 14577 912 0.5462190 0.106165748 fv Gamma Cox, Gamma FALSE #> 14593 913 0.7016262 0.133463712 fv Gamma Cox, Gamma FALSE #> 14609 914 0.6332994 0.123546571 fv Gamma Cox, Gamma FALSE #> 14625 915 0.8871169 0.168167223 fv Gamma Cox, Gamma FALSE #> 14641 916 0.5314523 0.103737093 fv Gamma Cox, Gamma FALSE #> 14657 917 0.8251601 0.158076990 fv Gamma Cox, Gamma FALSE #> 14673 918 0.7812981 0.146882310 fv Gamma Cox, Gamma FALSE #> 14689 919 0.5633497 0.109510022 fv Gamma Cox, Gamma FALSE #> 14705 920 0.7551588 0.142268945 fv Gamma Cox, Gamma FALSE #> 14721 921 0.8233179 0.155619571 fv Gamma Cox, Gamma FALSE #> 14737 922 1.0592208 0.198177894 fv Gamma Cox, Gamma TRUE #> 14753 923 0.7166090 0.136329906 fv Gamma Cox, Gamma FALSE #> 14769 924 0.7695951 0.144746860 fv Gamma Cox, Gamma FALSE #> 14785 925 0.8674089 0.165902857 fv Gamma Cox, Gamma FALSE #> 14801 926 0.7045694 0.133491756 fv Gamma Cox, Gamma FALSE #> 14817 927 0.4593230 0.091649779 fv Gamma Cox, Gamma FALSE #> 14833 928 0.6908884 0.131414692 fv Gamma Cox, Gamma FALSE #> 14849 929 0.7466114 0.142611050 fv Gamma Cox, Gamma FALSE #> 14865 930 0.8842713 0.169298190 fv Gamma Cox, Gamma FALSE #> 14881 931 0.6753965 0.128818557 fv Gamma Cox, Gamma FALSE #> 14897 932 0.8354712 0.155898458 fv Gamma Cox, Gamma FALSE #> 14913 933 0.6292981 0.121754957 fv Gamma Cox, Gamma FALSE #> 14929 934 0.6014700 0.116226490 fv Gamma Cox, Gamma FALSE #> 14945 935 0.5048390 0.100465756 fv Gamma Cox, Gamma FALSE #> 14961 936 0.5914851 0.114415232 fv Gamma Cox, Gamma FALSE #> 14977 937 1.1046727 0.204362478 fv Gamma Cox, Gamma TRUE #> 14993 938 0.7889907 0.149274856 fv Gamma Cox, Gamma FALSE #> 15009 939 0.8269311 0.155176151 fv Gamma Cox, Gamma FALSE #> 15025 940 0.7645462 0.144080751 fv Gamma Cox, Gamma FALSE #> 15041 941 0.6339856 0.122117198 fv Gamma Cox, Gamma FALSE #> 15057 942 0.6443675 0.124341205 fv Gamma Cox, Gamma FALSE #> 15073 943 0.4804556 0.095616415 fv Gamma Cox, Gamma FALSE #> 15089 944 0.6182545 0.118864711 fv Gamma Cox, Gamma FALSE #> 15105 945 0.6165893 0.119585898 fv Gamma Cox, Gamma FALSE #> 15121 946 0.7660069 0.148721347 fv Gamma Cox, Gamma FALSE #> 15137 947 0.6810811 0.132003647 fv Gamma Cox, Gamma FALSE #> 15153 948 0.5142477 0.102747891 fv Gamma Cox, Gamma FALSE #> 15169 949 0.6180526 0.120672028 fv Gamma Cox, Gamma FALSE #> 15185 950 0.6232314 0.121836187 fv Gamma Cox, Gamma FALSE #> 15201 951 0.7127207 0.135731437 fv Gamma Cox, Gamma FALSE #> 15217 952 0.6730731 0.129521227 fv Gamma Cox, Gamma FALSE #> 15233 953 1.0916190 0.201684689 fv Gamma Cox, Gamma TRUE #> 15249 954 0.6736457 0.128998241 fv Gamma Cox, Gamma FALSE #> 15265 955 0.8188607 0.153567795 fv Gamma Cox, Gamma FALSE #> 15281 956 0.6635977 0.128355306 fv Gamma Cox, Gamma FALSE #> 15297 957 0.6342700 0.123055464 fv Gamma Cox, Gamma FALSE #> 15313 958 0.5356595 0.105054232 fv Gamma Cox, Gamma FALSE #> 15329 959 0.5970231 0.115463296 fv Gamma Cox, Gamma FALSE #> 15345 960 0.7817517 0.148307504 fv Gamma Cox, Gamma FALSE #> 15361 961 0.5115240 0.101112635 fv Gamma Cox, Gamma FALSE #> 15377 962 0.9019772 0.168201411 fv Gamma Cox, Gamma FALSE #> 15393 963 0.8333257 0.157848012 fv Gamma Cox, Gamma FALSE #> 15409 964 0.6911721 0.132489255 fv Gamma Cox, Gamma FALSE #> 15425 965 0.6365177 NA fv Gamma Cox, Gamma NA #> 15441 966 0.7677420 0.146639440 fv Gamma Cox, Gamma FALSE #> 15457 967 0.6649532 0.127278523 fv Gamma Cox, Gamma FALSE #> 15473 968 0.5605857 NA fv Gamma Cox, Gamma NA #> 15489 969 0.7488110 0.144103923 fv Gamma Cox, Gamma FALSE #> 15505 970 0.7009266 0.138336093 fv Gamma Cox, Gamma FALSE #> 15521 971 0.6355460 0.123055558 fv Gamma Cox, Gamma FALSE #> 15537 972 0.6550597 0.129518392 fv Gamma Cox, Gamma FALSE #> 15553 973 0.9634266 0.184669702 fv Gamma Cox, Gamma FALSE #> 15569 974 0.5254167 0.103755606 fv Gamma Cox, Gamma FALSE #> 15585 975 0.5023696 0.099748952 fv Gamma Cox, Gamma FALSE #> 15601 976 0.7553050 0.143657040 fv Gamma Cox, Gamma FALSE #> 15617 977 0.8486740 0.158219365 fv Gamma Cox, Gamma FALSE #> 15633 978 0.8302479 0.159751197 fv Gamma Cox, Gamma FALSE #> 15649 979 0.8144014 0.157040892 fv Gamma Cox, Gamma FALSE #> 15665 980 0.5347503 0.104809583 fv Gamma Cox, Gamma FALSE #> 15681 981 0.7146458 0.137812497 fv Gamma Cox, Gamma FALSE #> 15697 982 0.9672795 0.181190607 fv Gamma Cox, Gamma FALSE #> 15713 983 0.5328782 0.105163422 fv Gamma Cox, Gamma FALSE #> 15729 984 0.7516136 0.142836565 fv Gamma Cox, Gamma FALSE #> 15745 985 0.8197373 0.157629048 fv Gamma Cox, Gamma FALSE #> 15761 986 0.6112163 0.117185425 fv Gamma Cox, Gamma FALSE #> 15777 987 0.5479787 0.107370042 fv Gamma Cox, Gamma FALSE #> 15793 988 0.6274646 0.121024201 fv Gamma Cox, Gamma FALSE #> 15809 989 0.7944407 0.149409280 fv Gamma Cox, Gamma FALSE #> 15825 990 0.7107532 0.134620748 fv Gamma Cox, Gamma FALSE #> 15841 991 0.7552528 0.144020517 fv Gamma Cox, Gamma FALSE #> 15857 992 0.7777255 0.148341692 fv Gamma Cox, Gamma FALSE #> 15873 993 0.9434033 0.174832389 fv Gamma Cox, Gamma FALSE #> 15889 994 0.6601987 0.127035638 fv Gamma Cox, Gamma FALSE #> 15905 995 0.8169684 0.154338190 fv Gamma Cox, Gamma FALSE #> 15921 996 0.6693038 0.128326952 fv Gamma Cox, Gamma FALSE #> 15937 997 0.6015899 0.120247558 fv Gamma Cox, Gamma FALSE #> 15953 998 0.6444796 NA fv Gamma Cox, Gamma NA #> 15969 999 0.5082930 0.099750960 fv Gamma Cox, Gamma FALSE #> 15985 1000 0.4986563 0.099227493 fv Gamma Cox, Gamma FALSE #> 2 1 0.8396248 0.166336769 fv Gamma Cox, Log-Normal FALSE #> 18 2 0.8654809 0.287973324 fv Gamma Cox, Log-Normal FALSE #> 34 3 1.5533362 0.443124033 fv Gamma Cox, Log-Normal TRUE #> 50 4 1.2021700 0.231528152 fv Gamma Cox, Log-Normal FALSE #> 66 5 0.9069256 0.231546211 fv Gamma Cox, Log-Normal FALSE #> 82 6 0.9705696 0.123099170 fv Gamma Cox, Log-Normal FALSE #> 98 7 0.9037494 0.210255478 fv Gamma Cox, Log-Normal FALSE #> 114 8 1.3330730 0.290669413 fv Gamma Cox, Log-Normal FALSE #> 130 9 1.2289061 0.328816511 fv Gamma Cox, Log-Normal FALSE #> 146 10 0.9917595 0.216966969 fv Gamma Cox, Log-Normal FALSE #> 162 11 1.0384351 0.279205813 fv Gamma Cox, Log-Normal FALSE #> 178 12 1.4401730 0.363584050 fv Gamma Cox, Log-Normal FALSE #> 194 13 1.1820887 0.272273545 fv Gamma Cox, Log-Normal FALSE #> 210 14 0.7876591 0.215587735 fv Gamma Cox, Log-Normal FALSE #> 226 15 1.1958391 0.297749174 fv Gamma Cox, Log-Normal FALSE #> 242 16 1.2056374 0.239853982 fv Gamma Cox, Log-Normal FALSE #> 258 17 0.7638555 0.152259647 fv Gamma Cox, Log-Normal FALSE #> 274 18 0.5600481 0.242034309 fv Gamma Cox, Log-Normal FALSE #> 290 19 0.8972620 0.206362814 fv Gamma Cox, Log-Normal FALSE #> 306 20 1.2974784 0.351726424 fv Gamma Cox, Log-Normal FALSE #> 322 21 0.6876797 0.226521087 fv Gamma Cox, Log-Normal FALSE #> 338 22 1.2148856 0.314376529 fv Gamma Cox, Log-Normal FALSE #> 354 23 0.8145580 0.191955407 fv Gamma Cox, Log-Normal FALSE #> 370 24 1.0265042 0.210536939 fv Gamma Cox, Log-Normal FALSE #> 386 25 1.1179286 0.310945298 fv Gamma Cox, Log-Normal FALSE #> 402 26 0.9579917 0.258514556 fv Gamma Cox, Log-Normal FALSE #> 418 27 1.7975474 0.493417117 fv Gamma Cox, Log-Normal TRUE #> 434 28 1.4423476 0.315633062 fv Gamma Cox, Log-Normal FALSE #> 450 29 1.2699356 0.241097065 fv Gamma Cox, Log-Normal FALSE #> 466 30 1.4047494 0.406179915 fv Gamma Cox, Log-Normal TRUE #> 482 31 0.8005746 0.266232147 fv Gamma Cox, Log-Normal FALSE #> 498 32 0.9957436 0.261294995 fv Gamma Cox, Log-Normal FALSE #> 514 33 0.8044589 0.172836665 fv Gamma Cox, Log-Normal FALSE #> 530 34 0.7033578 0.165484797 fv Gamma Cox, Log-Normal FALSE #> 546 35 1.0301148 0.275033997 fv Gamma Cox, Log-Normal FALSE #> 562 36 0.7542718 0.277262843 fv Gamma Cox, Log-Normal FALSE #> 578 37 0.7112477 0.143086191 fv Gamma Cox, Log-Normal FALSE #> 594 38 0.6321543 0.120638937 fv Gamma Cox, Log-Normal FALSE #> 610 39 0.9190196 0.162403199 fv Gamma Cox, Log-Normal FALSE #> 626 40 0.5901511 0.153295406 fv Gamma Cox, Log-Normal FALSE #> 642 41 1.6955260 0.274068495 fv Gamma Cox, Log-Normal TRUE #> 658 42 0.9786594 0.338436250 fv Gamma Cox, Log-Normal FALSE #> 674 43 1.0846014 0.238001169 fv Gamma Cox, Log-Normal FALSE #> 690 44 1.0670686 0.209168137 fv Gamma Cox, Log-Normal FALSE #> 706 45 0.9094972 0.153713130 fv Gamma Cox, Log-Normal FALSE #> 722 46 0.8628380 0.143624017 fv Gamma Cox, Log-Normal FALSE #> 738 47 1.3744833 0.379085783 fv Gamma Cox, Log-Normal FALSE #> 754 48 0.9447438 0.241373759 fv Gamma Cox, Log-Normal FALSE #> 770 49 1.2051056 0.332843614 fv Gamma Cox, Log-Normal FALSE #> 786 50 1.0122736 0.235362960 fv Gamma Cox, Log-Normal FALSE #> 802 51 1.2202208 0.297438475 fv Gamma Cox, Log-Normal FALSE #> 818 52 0.6319282 0.158343089 fv Gamma Cox, Log-Normal FALSE #> 834 53 0.7892154 0.148666919 fv Gamma Cox, Log-Normal FALSE #> 850 54 0.6218626 0.147453939 fv Gamma Cox, Log-Normal FALSE #> 866 55 1.0992895 0.242091300 fv Gamma Cox, Log-Normal FALSE #> 882 56 0.7880115 0.207821575 fv Gamma Cox, Log-Normal FALSE #> 898 57 1.0838536 0.252999308 fv Gamma Cox, Log-Normal FALSE #> 914 58 0.9053863 0.269296974 fv Gamma Cox, Log-Normal FALSE #> 930 59 0.8521828 0.183532101 fv Gamma Cox, Log-Normal FALSE #> 946 60 1.1226700 0.315581488 fv Gamma Cox, Log-Normal FALSE #> 962 61 0.8470775 0.165184536 fv Gamma Cox, Log-Normal FALSE #> 978 62 0.6807293 0.158237205 fv Gamma Cox, Log-Normal FALSE #> 994 63 1.1740857 0.253571694 fv Gamma Cox, Log-Normal FALSE #> 1010 64 0.8143805 0.154909462 fv Gamma Cox, Log-Normal FALSE #> 1026 65 0.8776911 0.151461233 fv Gamma Cox, Log-Normal FALSE #> 1042 66 0.6450936 0.146446549 fv Gamma Cox, Log-Normal FALSE #> 1058 67 1.1252565 0.202649366 fv Gamma Cox, Log-Normal FALSE #> 1074 68 0.9440104 0.190197229 fv Gamma Cox, Log-Normal FALSE #> 1090 69 0.6562820 0.142885574 fv Gamma Cox, Log-Normal FALSE #> 1106 70 0.8936893 0.304947589 fv Gamma Cox, Log-Normal FALSE #> 1122 71 1.2357687 0.253047569 fv Gamma Cox, Log-Normal FALSE #> 1138 72 0.7974302 0.195318813 fv Gamma Cox, Log-Normal FALSE #> 1154 73 0.5968091 0.117975560 fv Gamma Cox, Log-Normal FALSE #> 1170 74 0.8786436 0.164497228 fv Gamma Cox, Log-Normal FALSE #> 1186 75 0.9750754 0.226532064 fv Gamma Cox, Log-Normal FALSE #> 1202 76 0.9645318 0.277393275 fv Gamma Cox, Log-Normal FALSE #> 1218 77 1.0142834 0.249169464 fv Gamma Cox, Log-Normal FALSE #> 1234 78 1.4324625 0.392466363 fv Gamma Cox, Log-Normal TRUE #> 1250 79 2.0973063 0.420079538 fv Gamma Cox, Log-Normal TRUE #> 1266 80 0.7760451 0.266768649 fv Gamma Cox, Log-Normal FALSE #> 1282 81 1.2518287 0.326399591 fv Gamma Cox, Log-Normal FALSE #> 1298 82 0.9445711 0.170469026 fv Gamma Cox, Log-Normal FALSE #> 1314 83 0.6203977 0.269831486 fv Gamma Cox, Log-Normal FALSE #> 1330 84 0.9623414 0.181377810 fv Gamma Cox, Log-Normal FALSE #> 1346 85 0.8411381 0.151718027 fv Gamma Cox, Log-Normal FALSE #> 1362 86 0.8777074 0.173496863 fv Gamma Cox, Log-Normal FALSE #> 1378 87 0.7852935 0.148358262 fv Gamma Cox, Log-Normal FALSE #> 1394 88 0.8880239 0.169358612 fv Gamma Cox, Log-Normal FALSE #> 1410 89 1.0105583 0.218935211 fv Gamma Cox, Log-Normal FALSE #> 1426 90 1.1248867 0.226352162 fv Gamma Cox, Log-Normal FALSE #> 1442 91 0.9313413 0.176657570 fv Gamma Cox, Log-Normal FALSE #> 1458 92 0.8291607 0.161043102 fv Gamma Cox, Log-Normal FALSE #> 1474 93 1.4062271 0.492947581 fv Gamma Cox, Log-Normal TRUE #> 1490 94 1.1792259 0.371694722 fv Gamma Cox, Log-Normal FALSE #> 1506 95 0.9422527 0.186808785 fv Gamma Cox, Log-Normal FALSE #> 1522 96 0.5352317 0.122349552 fv Gamma Cox, Log-Normal FALSE #> 1538 97 0.7041875 0.129219142 fv Gamma Cox, Log-Normal FALSE #> 1554 98 1.0580233 0.191281068 fv Gamma Cox, Log-Normal FALSE #> 1570 99 0.7207367 0.195627282 fv Gamma Cox, Log-Normal FALSE #> 1586 100 1.2143961 0.232039398 fv Gamma Cox, Log-Normal FALSE #> 1602 101 1.1645575 0.202974678 fv Gamma Cox, Log-Normal FALSE #> 1618 102 0.9260904 0.205704353 fv Gamma Cox, Log-Normal FALSE #> 1634 103 1.3313203 0.415434246 fv Gamma Cox, Log-Normal TRUE #> 1650 104 1.0674271 0.230488475 fv Gamma Cox, Log-Normal FALSE #> 1666 105 1.2580642 0.312120608 fv Gamma Cox, Log-Normal FALSE #> 1682 106 0.8964461 0.176933658 fv Gamma Cox, Log-Normal FALSE #> 1698 107 1.3021989 0.320620447 fv Gamma Cox, Log-Normal FALSE #> 1714 108 1.1976726 0.374873974 fv Gamma Cox, Log-Normal FALSE #> 1730 109 0.9569265 0.273685851 fv Gamma Cox, Log-Normal FALSE #> 1746 110 1.0515898 0.268561562 fv Gamma Cox, Log-Normal FALSE #> 1762 111 1.1520637 0.261829502 fv Gamma Cox, Log-Normal FALSE #> 1778 112 0.5659670 0.130417896 fv Gamma Cox, Log-Normal FALSE #> 1794 113 0.6317424 0.122015603 fv Gamma Cox, Log-Normal FALSE #> 1810 114 1.6902270 0.334508909 fv Gamma Cox, Log-Normal TRUE #> 1826 115 0.8076343 0.168987445 fv Gamma Cox, Log-Normal FALSE #> 1842 116 0.5972826 0.130764421 fv Gamma Cox, Log-Normal FALSE #> 1858 117 1.0718606 0.210925331 fv Gamma Cox, Log-Normal FALSE #> 1874 118 0.6408203 0.135263593 fv Gamma Cox, Log-Normal FALSE #> 1890 119 0.7973938 0.174571464 fv Gamma Cox, Log-Normal FALSE #> 1906 120 0.9153147 0.177857493 fv Gamma Cox, Log-Normal FALSE #> 1922 121 0.7644599 0.150392418 fv Gamma Cox, Log-Normal FALSE #> 1938 122 0.8651735 0.261036284 fv Gamma Cox, Log-Normal FALSE #> 1954 123 0.9257951 0.187252850 fv Gamma Cox, Log-Normal FALSE #> 1970 124 0.9726617 0.154366389 fv Gamma Cox, Log-Normal FALSE #> 1986 125 1.2347948 0.317895986 fv Gamma Cox, Log-Normal FALSE #> 2002 126 1.5107344 0.412559767 fv Gamma Cox, Log-Normal TRUE #> 2018 127 1.0864985 0.244291312 fv Gamma Cox, Log-Normal FALSE #> 2034 128 1.0878460 0.217467789 fv Gamma Cox, Log-Normal FALSE #> 2050 129 0.7731209 0.303435174 fv Gamma Cox, Log-Normal FALSE #> 2066 130 0.8530204 0.197021469 fv Gamma Cox, Log-Normal FALSE #> 2082 131 0.8648655 0.165310174 fv Gamma Cox, Log-Normal FALSE #> 2098 132 1.0140972 0.302995158 fv Gamma Cox, Log-Normal FALSE #> 2114 133 0.9104868 0.221438344 fv Gamma Cox, Log-Normal FALSE #> 2130 134 1.0784862 0.271217304 fv Gamma Cox, Log-Normal FALSE #> 2146 135 0.7869113 0.180651674 fv Gamma Cox, Log-Normal FALSE #> 2162 136 0.9755650 0.258643410 fv Gamma Cox, Log-Normal FALSE #> 2178 137 1.2555462 0.298280359 fv Gamma Cox, Log-Normal FALSE #> 2194 138 1.2653651 0.320038448 fv Gamma Cox, Log-Normal FALSE #> 2210 139 0.7961798 0.144604970 fv Gamma Cox, Log-Normal FALSE #> 2226 140 1.0511116 0.243823137 fv Gamma Cox, Log-Normal FALSE #> 2242 141 0.7462247 0.208792390 fv Gamma Cox, Log-Normal FALSE #> 2258 142 0.9738903 0.212138716 fv Gamma Cox, Log-Normal FALSE #> 2274 143 1.5330380 0.537623136 fv Gamma Cox, Log-Normal TRUE #> 2290 144 1.1149075 0.230445555 fv Gamma Cox, Log-Normal FALSE #> 2306 145 0.8547372 0.185823683 fv Gamma Cox, Log-Normal FALSE #> 2322 146 0.8861187 0.183574772 fv Gamma Cox, Log-Normal FALSE #> 2338 147 1.0399587 0.194159810 fv Gamma Cox, Log-Normal FALSE #> 2354 148 0.6173024 0.109281577 fv Gamma Cox, Log-Normal FALSE #> 2370 149 0.8373295 0.191571256 fv Gamma Cox, Log-Normal FALSE #> 2386 150 1.1780887 0.217442230 fv Gamma Cox, Log-Normal FALSE #> 2402 151 1.1285433 0.226278803 fv Gamma Cox, Log-Normal FALSE #> 2418 152 1.1992517 0.394939611 fv Gamma Cox, Log-Normal TRUE #> 2434 153 0.6319684 0.172725513 fv Gamma Cox, Log-Normal FALSE #> 2450 154 1.1200567 0.236910662 fv Gamma Cox, Log-Normal FALSE #> 2466 155 0.9404373 0.309352450 fv Gamma Cox, Log-Normal FALSE #> 2482 156 0.9335558 0.170459226 fv Gamma Cox, Log-Normal FALSE #> 2498 157 1.4355503 0.361703696 fv Gamma Cox, Log-Normal FALSE #> 2514 158 1.4701395 0.366841193 fv Gamma Cox, Log-Normal TRUE #> 2530 159 0.6612553 0.189431483 fv Gamma Cox, Log-Normal FALSE #> 2546 160 0.6884649 0.160081027 fv Gamma Cox, Log-Normal FALSE #> 2562 161 1.7235061 0.366167519 fv Gamma Cox, Log-Normal TRUE #> 2578 162 0.9637307 0.277366991 fv Gamma Cox, Log-Normal FALSE #> 2594 163 0.6826128 0.123999357 fv Gamma Cox, Log-Normal FALSE #> 2610 164 1.2137278 0.254986878 fv Gamma Cox, Log-Normal FALSE #> 2626 165 1.0759865 0.243107518 fv Gamma Cox, Log-Normal FALSE #> 2642 166 1.1514913 0.353009050 fv Gamma Cox, Log-Normal FALSE #> 2658 167 1.3171715 0.267054689 fv Gamma Cox, Log-Normal FALSE #> 2674 168 1.0866206 0.235629785 fv Gamma Cox, Log-Normal FALSE #> 2690 169 0.9467015 0.224115190 fv Gamma Cox, Log-Normal FALSE #> 2706 170 0.9395929 0.217597367 fv Gamma Cox, Log-Normal FALSE #> 2722 171 0.9618300 0.263408111 fv Gamma Cox, Log-Normal FALSE #> 2738 172 1.1425683 0.242325710 fv Gamma Cox, Log-Normal FALSE #> 2754 173 0.7877272 0.217794070 fv Gamma Cox, Log-Normal FALSE #> 2770 174 1.1282426 0.267735233 fv Gamma Cox, Log-Normal FALSE #> 2786 175 0.8178924 0.230738271 fv Gamma Cox, Log-Normal FALSE #> 2802 176 0.8741514 0.162586064 fv Gamma Cox, Log-Normal FALSE #> 2818 177 0.7687814 0.283467846 fv Gamma Cox, Log-Normal FALSE #> 2834 178 1.1744687 0.211056326 fv Gamma Cox, Log-Normal FALSE #> 2850 179 0.7526095 0.150027385 fv Gamma Cox, Log-Normal FALSE #> 2866 180 1.0216310 0.316148826 fv Gamma Cox, Log-Normal FALSE #> 2882 181 1.1712040 0.260266639 fv Gamma Cox, Log-Normal FALSE #> 2898 182 0.9333976 0.175417306 fv Gamma Cox, Log-Normal FALSE #> 2914 183 0.7609429 0.152764885 fv Gamma Cox, Log-Normal FALSE #> 2930 184 0.9364676 0.263118357 fv Gamma Cox, Log-Normal FALSE #> 2946 185 1.1970108 0.256427056 fv Gamma Cox, Log-Normal FALSE #> 2962 186 1.3811930 0.386834280 fv Gamma Cox, Log-Normal FALSE #> 2978 187 0.9677626 0.218961822 fv Gamma Cox, Log-Normal FALSE #> 2994 188 0.6677381 0.129193425 fv Gamma Cox, Log-Normal FALSE #> 3010 189 1.0300136 0.181675457 fv Gamma Cox, Log-Normal FALSE #> 3026 190 0.9781161 0.186623640 fv Gamma Cox, Log-Normal FALSE #> 3042 191 1.0047812 0.234422284 fv Gamma Cox, Log-Normal FALSE #> 3058 192 1.0481335 0.313856424 fv Gamma Cox, Log-Normal FALSE #> 3074 193 0.8578876 0.206851646 fv Gamma Cox, Log-Normal FALSE #> 3090 194 0.8025329 0.177765199 fv Gamma Cox, Log-Normal FALSE #> 3106 195 1.0948348 0.189268663 fv Gamma Cox, Log-Normal FALSE #> 3122 196 1.1531601 0.315355691 fv Gamma Cox, Log-Normal FALSE #> 3138 197 0.9174118 0.146017107 fv Gamma Cox, Log-Normal FALSE #> 3154 198 0.9822719 0.160214536 fv Gamma Cox, Log-Normal FALSE #> 3170 199 0.7665154 0.178048907 fv Gamma Cox, Log-Normal FALSE #> 3186 200 1.0827449 0.216626911 fv Gamma Cox, Log-Normal FALSE #> 3202 201 1.0550061 0.243012425 fv Gamma Cox, Log-Normal FALSE #> 3218 202 1.0972858 0.215662323 fv Gamma Cox, Log-Normal FALSE #> 3234 203 0.9855765 0.182481322 fv Gamma Cox, Log-Normal FALSE #> 3250 204 1.0561904 0.348906497 fv Gamma Cox, Log-Normal FALSE #> 3266 205 0.7564109 0.205512464 fv Gamma Cox, Log-Normal FALSE #> 3282 206 1.0125371 0.222694936 fv Gamma Cox, Log-Normal FALSE #> 3298 207 0.6826566 0.147213825 fv Gamma Cox, Log-Normal FALSE #> 3314 208 0.9760813 0.224712745 fv Gamma Cox, Log-Normal FALSE #> 3330 209 0.9269613 0.220844066 fv Gamma Cox, Log-Normal FALSE #> 3346 210 0.9133674 0.231763968 fv Gamma Cox, Log-Normal FALSE #> 3362 211 1.4904914 0.390725669 fv Gamma Cox, Log-Normal TRUE #> 3378 212 0.9920371 0.255836508 fv Gamma Cox, Log-Normal FALSE #> 3394 213 1.1118333 0.294714345 fv Gamma Cox, Log-Normal FALSE #> 3410 214 1.0039471 0.304092232 fv Gamma Cox, Log-Normal FALSE #> 3426 215 1.1241297 0.264189786 fv Gamma Cox, Log-Normal FALSE #> 3442 216 1.2582014 0.301083523 fv Gamma Cox, Log-Normal FALSE #> 3458 217 0.8366225 0.210156062 fv Gamma Cox, Log-Normal FALSE #> 3474 218 0.8448105 0.236493852 fv Gamma Cox, Log-Normal FALSE #> 3490 219 1.2107113 0.347155926 fv Gamma Cox, Log-Normal FALSE #> 3506 220 0.7158888 0.136382455 fv Gamma Cox, Log-Normal FALSE #> 3522 221 0.9339555 0.266680492 fv Gamma Cox, Log-Normal FALSE #> 3538 222 1.1192118 0.312072336 fv Gamma Cox, Log-Normal FALSE #> 3554 223 1.0452753 0.280574246 fv Gamma Cox, Log-Normal FALSE #> 3570 224 1.0115289 0.233439970 fv Gamma Cox, Log-Normal FALSE #> 3586 225 0.8032168 0.161726631 fv Gamma Cox, Log-Normal FALSE #> 3602 226 1.3087768 0.413967329 fv Gamma Cox, Log-Normal TRUE #> 3618 227 0.8661987 0.237439745 fv Gamma Cox, Log-Normal FALSE #> 3634 228 1.1166755 0.216930095 fv Gamma Cox, Log-Normal FALSE #> 3650 229 1.1105627 0.275511999 fv Gamma Cox, Log-Normal FALSE #> 3666 230 0.8823663 0.147648628 fv Gamma Cox, Log-Normal FALSE #> 3682 231 1.1464490 0.264342378 fv Gamma Cox, Log-Normal FALSE #> 3698 232 1.0282286 0.294509349 fv Gamma Cox, Log-Normal FALSE #> 3714 233 1.1858851 0.308748988 fv Gamma Cox, Log-Normal FALSE #> 3730 234 0.9141730 0.234737862 fv Gamma Cox, Log-Normal FALSE #> 3746 235 1.1254600 0.356891640 fv Gamma Cox, Log-Normal FALSE #> 3762 236 0.6441731 0.174629945 fv Gamma Cox, Log-Normal FALSE #> 3778 237 0.8396326 0.205428196 fv Gamma Cox, Log-Normal FALSE #> 3794 238 0.8108753 0.210967352 fv Gamma Cox, Log-Normal FALSE #> 3810 239 0.9353923 0.175452236 fv Gamma Cox, Log-Normal FALSE #> 3826 240 1.1534031 0.316909074 fv Gamma Cox, Log-Normal FALSE #> 3842 241 0.8525632 0.153161651 fv Gamma Cox, Log-Normal FALSE #> 3858 242 0.6325823 0.110859718 fv Gamma Cox, Log-Normal FALSE #> 3874 243 1.3438274 0.504696267 fv Gamma Cox, Log-Normal TRUE #> 3890 244 0.6847331 0.117664089 fv Gamma Cox, Log-Normal FALSE #> 3906 245 1.5084013 0.416220066 fv Gamma Cox, Log-Normal TRUE #> 3922 246 0.8600815 0.160092148 fv Gamma Cox, Log-Normal FALSE #> 3938 247 1.0459691 0.247888885 fv Gamma Cox, Log-Normal FALSE #> 3954 248 1.3774923 0.295724239 fv Gamma Cox, Log-Normal FALSE #> 3970 249 1.4544026 0.401018407 fv Gamma Cox, Log-Normal TRUE #> 3986 250 0.9930866 0.252367133 fv Gamma Cox, Log-Normal FALSE #> 4002 251 1.0750961 0.286717462 fv Gamma Cox, Log-Normal FALSE #> 4018 252 1.1463194 0.342407069 fv Gamma Cox, Log-Normal FALSE #> 4034 253 1.2383183 0.401788395 fv Gamma Cox, Log-Normal TRUE #> 4050 254 0.6184252 0.098351797 fv Gamma Cox, Log-Normal FALSE #> 4066 255 0.9288740 0.135923481 fv Gamma Cox, Log-Normal FALSE #> 4082 256 0.9116082 0.198199738 fv Gamma Cox, Log-Normal FALSE #> 4098 257 0.6749869 0.129906431 fv Gamma Cox, Log-Normal FALSE #> 4114 258 1.0142908 0.337359222 fv Gamma Cox, Log-Normal FALSE #> 4130 259 0.9440221 0.210134843 fv Gamma Cox, Log-Normal FALSE #> 4146 260 1.1202138 0.249898993 fv Gamma Cox, Log-Normal FALSE #> 4162 261 0.5960250 0.118672454 fv Gamma Cox, Log-Normal FALSE #> 4178 262 0.8366969 0.176398436 fv Gamma Cox, Log-Normal FALSE #> 4194 263 0.7871702 0.205713317 fv Gamma Cox, Log-Normal FALSE #> 4210 264 0.6057126 0.113149327 fv Gamma Cox, Log-Normal FALSE #> 4226 265 0.7758375 0.147043597 fv Gamma Cox, Log-Normal FALSE #> 4242 266 0.8500845 0.224891518 fv Gamma Cox, Log-Normal FALSE #> 4258 267 0.9199981 0.195893000 fv Gamma Cox, Log-Normal FALSE #> 4274 268 0.9880338 0.209263821 fv Gamma Cox, Log-Normal FALSE #> 4290 269 1.6572488 0.438643117 fv Gamma Cox, Log-Normal TRUE #> 4306 270 1.2169293 0.315454041 fv Gamma Cox, Log-Normal FALSE #> 4322 271 1.2092937 0.306710304 fv Gamma Cox, Log-Normal FALSE #> 4338 272 0.7054006 0.192228252 fv Gamma Cox, Log-Normal FALSE #> 4354 273 0.8125655 0.154642396 fv Gamma Cox, Log-Normal FALSE #> 4370 274 0.9034828 0.186117871 fv Gamma Cox, Log-Normal FALSE #> 4386 275 1.1334718 0.225436721 fv Gamma Cox, Log-Normal FALSE #> 4402 276 1.0808167 0.354131546 fv Gamma Cox, Log-Normal FALSE #> 4418 277 0.8663479 0.141176671 fv Gamma Cox, Log-Normal FALSE #> 4434 278 1.0154270 0.195194389 fv Gamma Cox, Log-Normal FALSE #> 4450 279 0.9972416 0.246791708 fv Gamma Cox, Log-Normal FALSE #> 4466 280 0.9485671 0.192665901 fv Gamma Cox, Log-Normal FALSE #> 4482 281 1.5419471 0.432963938 fv Gamma Cox, Log-Normal TRUE #> 4498 282 0.7366272 0.154485998 fv Gamma Cox, Log-Normal FALSE #> 4514 283 1.1387523 0.351311035 fv Gamma Cox, Log-Normal FALSE #> 4530 284 0.7606273 0.130651621 fv Gamma Cox, Log-Normal FALSE #> 4546 285 0.5940809 0.114410663 fv Gamma Cox, Log-Normal FALSE #> 4562 286 0.9980889 0.165993278 fv Gamma Cox, Log-Normal FALSE #> 4578 287 0.7786292 0.173527925 fv Gamma Cox, Log-Normal FALSE #> 4594 288 1.8012469 0.384382846 fv Gamma Cox, Log-Normal TRUE #> 4610 289 0.8352625 0.230080256 fv Gamma Cox, Log-Normal FALSE #> 4626 290 0.7462650 0.161150218 fv Gamma Cox, Log-Normal FALSE #> 4642 291 0.7581738 0.185194416 fv Gamma Cox, Log-Normal FALSE #> 4658 292 0.7315072 0.136632050 fv Gamma Cox, Log-Normal FALSE #> 4674 293 1.1794738 0.263230250 fv Gamma Cox, Log-Normal FALSE #> 4690 294 0.8364797 0.177888851 fv Gamma Cox, Log-Normal FALSE #> 4706 295 1.5702252 0.363660287 fv Gamma Cox, Log-Normal TRUE #> 4722 296 1.0030032 0.212419723 fv Gamma Cox, Log-Normal FALSE #> 4738 297 1.7048282 0.324692247 fv Gamma Cox, Log-Normal TRUE #> 4754 298 0.6792576 0.124013511 fv Gamma Cox, Log-Normal FALSE #> 4770 299 0.7179893 0.156934076 fv Gamma Cox, Log-Normal FALSE #> 4786 300 1.1245685 0.198322193 fv Gamma Cox, Log-Normal FALSE #> 4802 301 0.6708749 0.171248942 fv Gamma Cox, Log-Normal FALSE #> 4818 302 1.0425587 0.181386611 fv Gamma Cox, Log-Normal FALSE #> 4834 303 0.7687011 0.144588971 fv Gamma Cox, Log-Normal FALSE #> 4850 304 0.8183131 0.180688666 fv Gamma Cox, Log-Normal FALSE #> 4866 305 1.1994373 0.254185287 fv Gamma Cox, Log-Normal FALSE #> 4882 306 0.9480399 0.206670969 fv Gamma Cox, Log-Normal FALSE #> 4898 307 1.0547876 0.317754660 fv Gamma Cox, Log-Normal FALSE #> 4914 308 0.8707234 0.206289074 fv Gamma Cox, Log-Normal FALSE #> 4930 309 1.0009221 0.187321610 fv Gamma Cox, Log-Normal FALSE #> 4946 310 1.5183534 0.350397464 fv Gamma Cox, Log-Normal TRUE #> 4962 311 1.2122527 0.296579713 fv Gamma Cox, Log-Normal FALSE #> 4978 312 1.8443405 0.479858067 fv Gamma Cox, Log-Normal TRUE #> 4994 313 1.1266272 0.250518734 fv Gamma Cox, Log-Normal FALSE #> 5010 314 0.9134451 0.223254762 fv Gamma Cox, Log-Normal FALSE #> 5026 315 1.0694137 0.206784794 fv Gamma Cox, Log-Normal FALSE #> 5042 316 1.5557750 0.331763485 fv Gamma Cox, Log-Normal TRUE #> 5058 317 0.7900325 0.184343319 fv Gamma Cox, Log-Normal FALSE #> 5074 318 0.9676750 0.285161091 fv Gamma Cox, Log-Normal FALSE #> 5090 319 0.7534842 0.186475417 fv Gamma Cox, Log-Normal FALSE #> 5106 320 0.7587523 0.158245032 fv Gamma Cox, Log-Normal FALSE #> 5122 321 1.3296280 0.289607929 fv Gamma Cox, Log-Normal FALSE #> 5138 322 0.6540554 0.153362582 fv Gamma Cox, Log-Normal FALSE #> 5154 323 1.1866786 0.246796331 fv Gamma Cox, Log-Normal FALSE #> 5170 324 0.7879666 0.235532790 fv Gamma Cox, Log-Normal FALSE #> 5186 325 0.9063958 0.177813514 fv Gamma Cox, Log-Normal FALSE #> 5202 326 0.8994038 0.180708837 fv Gamma Cox, Log-Normal FALSE #> 5218 327 0.9343756 0.199207745 fv Gamma Cox, Log-Normal FALSE #> 5234 328 1.4427292 0.367840271 fv Gamma Cox, Log-Normal FALSE #> 5250 329 1.2314166 0.320033252 fv Gamma Cox, Log-Normal FALSE #> 5266 330 0.9467010 0.225445798 fv Gamma Cox, Log-Normal FALSE #> 5282 331 1.1330281 0.231943006 fv Gamma Cox, Log-Normal FALSE #> 5298 332 0.7331899 0.197574585 fv Gamma Cox, Log-Normal FALSE #> 5314 333 0.6844227 0.140883756 fv Gamma Cox, Log-Normal FALSE #> 5330 334 1.3781416 0.249637577 fv Gamma Cox, Log-Normal FALSE #> 5346 335 1.0702186 0.271371029 fv Gamma Cox, Log-Normal FALSE #> 5362 336 0.6209932 0.164255992 fv Gamma Cox, Log-Normal FALSE #> 5378 337 0.8421416 0.206148684 fv Gamma Cox, Log-Normal FALSE #> 5394 338 0.7236815 0.112024580 fv Gamma Cox, Log-Normal FALSE #> 5410 339 1.0388795 0.295391600 fv Gamma Cox, Log-Normal FALSE #> 5426 340 1.1095304 0.403572705 fv Gamma Cox, Log-Normal TRUE #> 5442 341 0.6719273 0.137761634 fv Gamma Cox, Log-Normal FALSE #> 5458 342 0.5332889 0.101209542 fv Gamma Cox, Log-Normal FALSE #> 5474 343 0.7748324 0.181756300 fv Gamma Cox, Log-Normal FALSE #> 5490 344 1.3667207 0.352452784 fv Gamma Cox, Log-Normal FALSE #> 5506 345 1.1973392 0.238025218 fv Gamma Cox, Log-Normal FALSE #> 5522 346 1.0638629 0.203973708 fv Gamma Cox, Log-Normal FALSE #> 5538 347 0.9372712 0.157409347 fv Gamma Cox, Log-Normal FALSE #> 5554 348 1.4096446 0.303746493 fv Gamma Cox, Log-Normal FALSE #> 5570 349 1.1515909 0.267338558 fv Gamma Cox, Log-Normal FALSE #> 5586 350 1.0566777 0.204651400 fv Gamma Cox, Log-Normal FALSE #> 5602 351 1.2270499 0.365187960 fv Gamma Cox, Log-Normal FALSE #> 5618 352 1.1384745 0.320730548 fv Gamma Cox, Log-Normal FALSE #> 5634 353 0.6761084 0.151468116 fv Gamma Cox, Log-Normal FALSE #> 5650 354 0.9381758 0.195546224 fv Gamma Cox, Log-Normal FALSE #> 5666 355 1.1119338 0.223665047 fv Gamma Cox, Log-Normal FALSE #> 5682 356 1.0905507 0.292129252 fv Gamma Cox, Log-Normal FALSE #> 5698 357 0.8452529 0.184177665 fv Gamma Cox, Log-Normal FALSE #> 5714 358 0.8066733 0.115900961 fv Gamma Cox, Log-Normal FALSE #> 5730 359 0.8677696 0.265080079 fv Gamma Cox, Log-Normal FALSE #> 5746 360 0.7287289 0.131955369 fv Gamma Cox, Log-Normal FALSE #> 5762 361 1.3008883 0.360862820 fv Gamma Cox, Log-Normal FALSE #> 5778 362 0.5904270 0.130278388 fv Gamma Cox, Log-Normal FALSE #> 5794 363 0.9529346 0.266922925 fv Gamma Cox, Log-Normal FALSE #> 5810 364 0.6480905 0.167160297 fv Gamma Cox, Log-Normal FALSE #> 5826 365 0.9971018 0.330971308 fv Gamma Cox, Log-Normal FALSE #> 5842 366 1.1939180 0.294834729 fv Gamma Cox, Log-Normal FALSE #> 5858 367 1.1703409 0.220120120 fv Gamma Cox, Log-Normal FALSE #> 5874 368 1.1791884 0.429781697 fv Gamma Cox, Log-Normal TRUE #> 5890 369 0.6704603 0.124258362 fv Gamma Cox, Log-Normal FALSE #> 5906 370 0.6437177 0.144677882 fv Gamma Cox, Log-Normal FALSE #> 5922 371 1.0793130 0.276618474 fv Gamma Cox, Log-Normal FALSE #> 5938 372 0.7821637 0.249248520 fv Gamma Cox, Log-Normal FALSE #> 5954 373 0.9198681 0.214796254 fv Gamma Cox, Log-Normal FALSE #> 5970 374 0.7206397 0.140563196 fv Gamma Cox, Log-Normal FALSE #> 5986 375 0.7455317 0.156345249 fv Gamma Cox, Log-Normal FALSE #> 6002 376 0.7820201 0.164687256 fv Gamma Cox, Log-Normal FALSE #> 6018 377 1.2011353 0.333770351 fv Gamma Cox, Log-Normal FALSE #> 6034 378 1.0732917 0.230685922 fv Gamma Cox, Log-Normal FALSE #> 6050 379 0.7956228 0.135068436 fv Gamma Cox, Log-Normal FALSE #> 6066 380 0.9821977 0.202408585 fv Gamma Cox, Log-Normal FALSE #> 6082 381 0.7109656 0.149643496 fv Gamma Cox, Log-Normal FALSE #> 6098 382 0.9332571 0.225055001 fv Gamma Cox, Log-Normal FALSE #> 6114 383 1.4525060 0.252050709 fv Gamma Cox, Log-Normal FALSE #> 6130 384 1.1156376 0.225314386 fv Gamma Cox, Log-Normal FALSE #> 6146 385 0.6937414 0.130805747 fv Gamma Cox, Log-Normal FALSE #> 6162 386 0.4539095 0.143952602 fv Gamma Cox, Log-Normal TRUE #> 6178 387 0.6909378 0.131527306 fv Gamma Cox, Log-Normal FALSE #> 6194 388 0.8732335 0.176442179 fv Gamma Cox, Log-Normal FALSE #> 6210 389 0.6361769 0.145037919 fv Gamma Cox, Log-Normal FALSE #> 6226 390 0.7550553 0.176928641 fv Gamma Cox, Log-Normal FALSE #> 6242 391 0.6148799 0.135829174 fv Gamma Cox, Log-Normal FALSE #> 6258 392 1.1216041 0.230266849 fv Gamma Cox, Log-Normal FALSE #> 6274 393 0.6766989 0.155586331 fv Gamma Cox, Log-Normal FALSE #> 6290 394 1.2809946 0.303295151 fv Gamma Cox, Log-Normal FALSE #> 6306 395 0.9574912 0.257132721 fv Gamma Cox, Log-Normal FALSE #> 6322 396 0.9517729 0.286349874 fv Gamma Cox, Log-Normal FALSE #> 6338 397 1.1124126 0.212177754 fv Gamma Cox, Log-Normal FALSE #> 6354 398 0.9331498 0.195380303 fv Gamma Cox, Log-Normal FALSE #> 6370 399 0.7590104 0.183901117 fv Gamma Cox, Log-Normal FALSE #> 6386 400 0.8141348 0.209282394 fv Gamma Cox, Log-Normal FALSE #> 6402 401 1.1725501 0.302794794 fv Gamma Cox, Log-Normal FALSE #> 6418 402 0.8902602 0.257412268 fv Gamma Cox, Log-Normal FALSE #> 6434 403 0.8519330 0.172126937 fv Gamma Cox, Log-Normal FALSE #> 6450 404 1.0476725 0.336457821 fv Gamma Cox, Log-Normal FALSE #> 6466 405 0.7691769 0.130780437 fv Gamma Cox, Log-Normal FALSE #> 6482 406 0.7361662 0.138962491 fv Gamma Cox, Log-Normal FALSE #> 6498 407 1.0450332 0.255588768 fv Gamma Cox, Log-Normal FALSE #> 6514 408 0.6282204 0.263436321 fv Gamma Cox, Log-Normal FALSE #> 6530 409 1.2675705 0.255827563 fv Gamma Cox, Log-Normal FALSE #> 6546 410 1.4027855 0.405498694 fv Gamma Cox, Log-Normal TRUE #> 6562 411 1.0909367 0.364351515 fv Gamma Cox, Log-Normal FALSE #> 6578 412 0.8247547 0.147850429 fv Gamma Cox, Log-Normal FALSE #> 6594 413 0.9001954 0.207926748 fv Gamma Cox, Log-Normal FALSE #> 6610 414 0.8922666 0.205074388 fv Gamma Cox, Log-Normal FALSE #> 6626 415 1.1201345 0.235581947 fv Gamma Cox, Log-Normal FALSE #> 6642 416 0.7256155 0.151266912 fv Gamma Cox, Log-Normal FALSE #> 6658 417 0.9635329 0.165467319 fv Gamma Cox, Log-Normal FALSE #> 6674 418 0.9579341 0.221398430 fv Gamma Cox, Log-Normal FALSE #> 6690 419 0.8134821 0.226987586 fv Gamma Cox, Log-Normal FALSE #> 6706 420 1.1122495 0.304778954 fv Gamma Cox, Log-Normal FALSE #> 6722 421 1.0634088 0.195189997 fv Gamma Cox, Log-Normal FALSE #> 6738 422 0.9576175 0.239546727 fv Gamma Cox, Log-Normal FALSE #> 6754 423 1.0594321 0.228721736 fv Gamma Cox, Log-Normal FALSE #> 6770 424 0.9597868 0.276897329 fv Gamma Cox, Log-Normal FALSE #> 6786 425 0.7315512 0.180004030 fv Gamma Cox, Log-Normal FALSE #> 6802 426 1.2737580 0.295162754 fv Gamma Cox, Log-Normal FALSE #> 6818 427 0.5082034 0.138832393 fv Gamma Cox, Log-Normal FALSE #> 6834 428 1.4427275 0.408389941 fv Gamma Cox, Log-Normal TRUE #> 6850 429 0.7931159 0.177763555 fv Gamma Cox, Log-Normal FALSE #> 6866 430 0.6869118 0.109383857 fv Gamma Cox, Log-Normal FALSE #> 6882 431 1.0984440 0.245113401 fv Gamma Cox, Log-Normal FALSE #> 6898 432 0.6733838 0.147400668 fv Gamma Cox, Log-Normal FALSE #> 6914 433 1.1186541 0.329798430 fv Gamma Cox, Log-Normal FALSE #> 6930 434 1.2398972 0.222930487 fv Gamma Cox, Log-Normal FALSE #> 6946 435 0.8050301 0.140179777 fv Gamma Cox, Log-Normal FALSE #> 6962 436 1.2438138 0.307965337 fv Gamma Cox, Log-Normal FALSE #> 6978 437 0.8224460 0.126221473 fv Gamma Cox, Log-Normal FALSE #> 6994 438 0.6359268 0.189779025 fv Gamma Cox, Log-Normal FALSE #> 7010 439 0.9316025 0.286812594 fv Gamma Cox, Log-Normal FALSE #> 7026 440 0.8116677 0.150546885 fv Gamma Cox, Log-Normal FALSE #> 7042 441 0.4957894 0.090606260 fv Gamma Cox, Log-Normal TRUE #> 7058 442 0.9920610 0.183115913 fv Gamma Cox, Log-Normal FALSE #> 7074 443 0.6649345 0.222904431 fv Gamma Cox, Log-Normal FALSE #> 7090 444 0.8035197 0.183494932 fv Gamma Cox, Log-Normal FALSE #> 7106 445 1.2090738 0.358004906 fv Gamma Cox, Log-Normal FALSE #> 7122 446 1.0087995 0.220975718 fv Gamma Cox, Log-Normal FALSE #> 7138 447 0.9565913 0.200822801 fv Gamma Cox, Log-Normal FALSE #> 7154 448 1.0441738 0.260365565 fv Gamma Cox, Log-Normal FALSE #> 7170 449 1.1615839 0.216975618 fv Gamma Cox, Log-Normal FALSE #> 7186 450 0.7740953 0.140879888 fv Gamma Cox, Log-Normal FALSE #> 7202 451 1.0692578 0.222198213 fv Gamma Cox, Log-Normal FALSE #> 7218 452 0.6524954 0.123359523 fv Gamma Cox, Log-Normal FALSE #> 7234 453 1.0336945 0.199674407 fv Gamma Cox, Log-Normal FALSE #> 7250 454 0.8403049 0.274222788 fv Gamma Cox, Log-Normal FALSE #> 7266 455 1.0557566 0.225824987 fv Gamma Cox, Log-Normal FALSE #> 7282 456 1.0962428 0.243979297 fv Gamma Cox, Log-Normal FALSE #> 7298 457 1.1029915 0.213750191 fv Gamma Cox, Log-Normal FALSE #> 7314 458 1.2720893 0.351284624 fv Gamma Cox, Log-Normal FALSE #> 7330 459 0.8717904 0.217191101 fv Gamma Cox, Log-Normal FALSE #> 7346 460 0.8326436 0.222186414 fv Gamma Cox, Log-Normal FALSE #> 7362 461 1.0365468 0.264064386 fv Gamma Cox, Log-Normal FALSE #> 7378 462 1.3924264 0.387524188 fv Gamma Cox, Log-Normal FALSE #> 7394 463 0.7356121 0.119417840 fv Gamma Cox, Log-Normal FALSE #> 7410 464 0.6727029 0.179079073 fv Gamma Cox, Log-Normal FALSE #> 7426 465 0.9358999 0.191441499 fv Gamma Cox, Log-Normal FALSE #> 7442 466 1.0797508 0.320286330 fv Gamma Cox, Log-Normal FALSE #> 7458 467 1.2546135 0.331880843 fv Gamma Cox, Log-Normal FALSE #> 7474 468 0.6594459 0.127506910 fv Gamma Cox, Log-Normal FALSE #> 7490 469 1.0773071 0.306539717 fv Gamma Cox, Log-Normal FALSE #> 7506 470 0.9831728 0.182063344 fv Gamma Cox, Log-Normal FALSE #> 7522 471 0.7441140 0.128457720 fv Gamma Cox, Log-Normal FALSE #> 7538 472 1.1705633 0.275046221 fv Gamma Cox, Log-Normal FALSE #> 7554 473 0.7944060 0.160426950 fv Gamma Cox, Log-Normal FALSE #> 7570 474 0.7893312 0.236801144 fv Gamma Cox, Log-Normal FALSE #> 7586 475 1.6420040 0.472204521 fv Gamma Cox, Log-Normal TRUE #> 7602 476 0.6907611 0.179152271 fv Gamma Cox, Log-Normal FALSE #> 7618 477 1.2306596 0.240740348 fv Gamma Cox, Log-Normal FALSE #> 7634 478 0.9703432 0.280043037 fv Gamma Cox, Log-Normal FALSE #> 7650 479 1.2556369 0.278832138 fv Gamma Cox, Log-Normal FALSE #> 7666 480 1.0316289 0.262194195 fv Gamma Cox, Log-Normal FALSE #> 7682 481 0.9069980 0.240001733 fv Gamma Cox, Log-Normal FALSE #> 7698 482 0.8651847 0.324883873 fv Gamma Cox, Log-Normal FALSE #> 7714 483 0.9195134 0.324966495 fv Gamma Cox, Log-Normal FALSE #> 7730 484 0.9354766 0.158821908 fv Gamma Cox, Log-Normal FALSE #> 7746 485 1.0036369 0.235477830 fv Gamma Cox, Log-Normal FALSE #> 7762 486 0.7230942 0.191080579 fv Gamma Cox, Log-Normal FALSE #> 7778 487 1.0953227 0.216107707 fv Gamma Cox, Log-Normal FALSE #> 7794 488 0.9509228 0.341422686 fv Gamma Cox, Log-Normal FALSE #> 7810 489 1.2438654 0.335909184 fv Gamma Cox, Log-Normal FALSE #> 7826 490 1.6108304 0.304536731 fv Gamma Cox, Log-Normal TRUE #> 7842 491 0.8306550 0.168517444 fv Gamma Cox, Log-Normal FALSE #> 7858 492 1.2528581 0.347548040 fv Gamma Cox, Log-Normal FALSE #> 7874 493 1.1141412 0.417141114 fv Gamma Cox, Log-Normal TRUE #> 7890 494 0.8588516 0.179209258 fv Gamma Cox, Log-Normal FALSE #> 7906 495 0.9641937 0.220531498 fv Gamma Cox, Log-Normal FALSE #> 7922 496 0.6759623 0.166289250 fv Gamma Cox, Log-Normal FALSE #> 7938 497 0.9033618 0.200323244 fv Gamma Cox, Log-Normal FALSE #> 7954 498 0.8062435 0.190505432 fv Gamma Cox, Log-Normal FALSE #> 7970 499 1.0779911 0.255751410 fv Gamma Cox, Log-Normal FALSE #> 7986 500 1.2670375 0.297555986 fv Gamma Cox, Log-Normal FALSE #> 8002 501 0.8648506 0.180810911 fv Gamma Cox, Log-Normal FALSE #> 8018 502 1.0364983 0.208051259 fv Gamma Cox, Log-Normal FALSE #> 8034 503 0.7537958 0.149464952 fv Gamma Cox, Log-Normal FALSE #> 8050 504 1.2053252 0.210116068 fv Gamma Cox, Log-Normal FALSE #> 8066 505 1.4316809 0.361150122 fv Gamma Cox, Log-Normal FALSE #> 8082 506 0.8599211 0.164904216 fv Gamma Cox, Log-Normal FALSE #> 8098 507 0.6803896 0.132319900 fv Gamma Cox, Log-Normal FALSE #> 8114 508 0.8321579 0.174584707 fv Gamma Cox, Log-Normal FALSE #> 8130 509 0.8577265 0.171261565 fv Gamma Cox, Log-Normal FALSE #> 8146 510 1.0840758 0.191525801 fv Gamma Cox, Log-Normal FALSE #> 8162 511 0.9751571 0.228962046 fv Gamma Cox, Log-Normal FALSE #> 8178 512 0.9171955 0.141575466 fv Gamma Cox, Log-Normal FALSE #> 8194 513 0.7704456 0.179734941 fv Gamma Cox, Log-Normal FALSE #> 8210 514 0.9767960 0.270516974 fv Gamma Cox, Log-Normal FALSE #> 8226 515 0.8482220 0.193164393 fv Gamma Cox, Log-Normal FALSE #> 8242 516 1.0376892 0.256220330 fv Gamma Cox, Log-Normal FALSE #> 8258 517 1.1357326 0.273350115 fv Gamma Cox, Log-Normal FALSE #> 8274 518 1.2253076 0.238917068 fv Gamma Cox, Log-Normal FALSE #> 8290 519 0.8713882 0.184042855 fv Gamma Cox, Log-Normal FALSE #> 8306 520 0.7926449 0.167454593 fv Gamma Cox, Log-Normal FALSE #> 8322 521 0.7127690 0.140016713 fv Gamma Cox, Log-Normal FALSE #> 8338 522 0.6570335 0.147981785 fv Gamma Cox, Log-Normal FALSE #> 8354 523 0.9035491 0.240796228 fv Gamma Cox, Log-Normal FALSE #> 8370 524 0.7910639 0.197298251 fv Gamma Cox, Log-Normal FALSE #> 8386 525 1.3295251 0.263165691 fv Gamma Cox, Log-Normal FALSE #> 8402 526 1.1085831 0.260362630 fv Gamma Cox, Log-Normal FALSE #> 8418 527 0.9930652 0.328052452 fv Gamma Cox, Log-Normal FALSE #> 8434 528 0.7418328 0.169881227 fv Gamma Cox, Log-Normal FALSE #> 8450 529 1.2037156 0.256995886 fv Gamma Cox, Log-Normal FALSE #> 8466 530 1.3353275 0.308725331 fv Gamma Cox, Log-Normal FALSE #> 8482 531 1.0724559 0.185489763 fv Gamma Cox, Log-Normal FALSE #> 8498 532 1.1767181 0.288783024 fv Gamma Cox, Log-Normal FALSE #> 8514 533 0.9461511 0.224624441 fv Gamma Cox, Log-Normal FALSE #> 8530 534 1.0525213 0.206749296 fv Gamma Cox, Log-Normal FALSE #> 8546 535 1.4301389 0.327696069 fv Gamma Cox, Log-Normal FALSE #> 8562 536 1.0021084 0.171694724 fv Gamma Cox, Log-Normal FALSE #> 8578 537 0.9908633 0.334784893 fv Gamma Cox, Log-Normal FALSE #> 8594 538 0.7459350 0.166232904 fv Gamma Cox, Log-Normal FALSE #> 8610 539 1.1963909 0.302554905 fv Gamma Cox, Log-Normal FALSE #> 8626 540 1.0600937 0.334538983 fv Gamma Cox, Log-Normal FALSE #> 8642 541 0.7824209 0.191635059 fv Gamma Cox, Log-Normal FALSE #> 8658 542 1.0469726 0.186010712 fv Gamma Cox, Log-Normal FALSE #> 8674 543 1.1353147 0.200048549 fv Gamma Cox, Log-Normal FALSE #> 8690 544 1.0727346 0.223928441 fv Gamma Cox, Log-Normal FALSE #> 8706 545 0.9542188 0.258825073 fv Gamma Cox, Log-Normal FALSE #> 8722 546 0.7626356 0.145367051 fv Gamma Cox, Log-Normal FALSE #> 8738 547 0.7998809 0.146606750 fv Gamma Cox, Log-Normal FALSE #> 8754 548 0.8468470 0.311423205 fv Gamma Cox, Log-Normal FALSE #> 8770 549 1.0343320 0.291774386 fv Gamma Cox, Log-Normal FALSE #> 8786 550 1.3436451 0.531137533 fv Gamma Cox, Log-Normal TRUE #> 8802 551 0.9109458 0.190163812 fv Gamma Cox, Log-Normal FALSE #> 8818 552 0.7473400 0.168944580 fv Gamma Cox, Log-Normal FALSE #> 8834 553 0.7435618 0.152999604 fv Gamma Cox, Log-Normal FALSE #> 8850 554 0.9450358 0.248564971 fv Gamma Cox, Log-Normal FALSE #> 8866 555 0.6737041 0.126162135 fv Gamma Cox, Log-Normal FALSE #> 8882 556 0.6772282 0.151785951 fv Gamma Cox, Log-Normal FALSE #> 8898 557 1.6904828 0.395312396 fv Gamma Cox, Log-Normal TRUE #> 8914 558 1.0339234 0.212529669 fv Gamma Cox, Log-Normal FALSE #> 8930 559 0.7993772 0.259858142 fv Gamma Cox, Log-Normal FALSE #> 8946 560 0.9719681 0.242674636 fv Gamma Cox, Log-Normal FALSE #> 8962 561 1.0261247 0.212406152 fv Gamma Cox, Log-Normal FALSE #> 8978 562 0.5757420 0.150997039 fv Gamma Cox, Log-Normal FALSE #> 8994 563 1.0409490 0.228433773 fv Gamma Cox, Log-Normal FALSE #> 9010 564 1.0615467 0.193348628 fv Gamma Cox, Log-Normal FALSE #> 9026 565 1.1679880 0.390837268 fv Gamma Cox, Log-Normal TRUE #> 9042 566 1.2199602 0.278996060 fv Gamma Cox, Log-Normal FALSE #> 9058 567 0.9822957 0.244996294 fv Gamma Cox, Log-Normal FALSE #> 9074 568 1.0201589 0.280017514 fv Gamma Cox, Log-Normal FALSE #> 9090 569 0.9406773 0.270807399 fv Gamma Cox, Log-Normal FALSE #> 9106 570 0.9279776 0.161765327 fv Gamma Cox, Log-Normal FALSE #> 9122 571 0.9326456 0.179721507 fv Gamma Cox, Log-Normal FALSE #> 9138 572 1.1013126 0.198471955 fv Gamma Cox, Log-Normal FALSE #> 9154 573 0.6222332 0.126446396 fv Gamma Cox, Log-Normal FALSE #> 9170 574 1.1432237 0.294379732 fv Gamma Cox, Log-Normal FALSE #> 9186 575 0.9600009 0.226550540 fv Gamma Cox, Log-Normal FALSE #> 9202 576 1.0609559 0.287309234 fv Gamma Cox, Log-Normal FALSE #> 9218 577 0.9115962 0.250289364 fv Gamma Cox, Log-Normal FALSE #> 9234 578 0.9202321 0.181635402 fv Gamma Cox, Log-Normal FALSE #> 9250 579 0.7970005 0.198574996 fv Gamma Cox, Log-Normal FALSE #> 9266 580 0.8541770 0.199446336 fv Gamma Cox, Log-Normal FALSE #> 9282 581 1.1327424 0.203938321 fv Gamma Cox, Log-Normal FALSE #> 9298 582 0.5324844 0.110727241 fv Gamma Cox, Log-Normal FALSE #> 9314 583 1.2170472 0.265887560 fv Gamma Cox, Log-Normal FALSE #> 9330 584 0.7405038 0.190327265 fv Gamma Cox, Log-Normal FALSE #> 9346 585 1.4674663 0.296880097 fv Gamma Cox, Log-Normal TRUE #> 9362 586 1.3357663 0.233595693 fv Gamma Cox, Log-Normal FALSE #> 9378 587 1.0434712 0.197298685 fv Gamma Cox, Log-Normal FALSE #> 9394 588 1.0601227 0.260760641 fv Gamma Cox, Log-Normal FALSE #> 9410 589 0.7426001 0.163007177 fv Gamma Cox, Log-Normal FALSE #> 9426 590 0.8895731 0.197968824 fv Gamma Cox, Log-Normal FALSE #> 9442 591 0.9799824 0.254028822 fv Gamma Cox, Log-Normal FALSE #> 9458 592 1.2819594 0.227298189 fv Gamma Cox, Log-Normal FALSE #> 9474 593 0.9126781 0.272510318 fv Gamma Cox, Log-Normal FALSE #> 9490 594 0.9415930 0.242944719 fv Gamma Cox, Log-Normal FALSE #> 9506 595 0.8669225 0.154822055 fv Gamma Cox, Log-Normal FALSE #> 9522 596 1.2023114 0.234135962 fv Gamma Cox, Log-Normal FALSE #> 9538 597 1.1852910 0.306402855 fv Gamma Cox, Log-Normal FALSE #> 9554 598 1.0144108 0.236994186 fv Gamma Cox, Log-Normal FALSE #> 9570 599 1.5141491 0.267682298 fv Gamma Cox, Log-Normal TRUE #> 9586 600 1.3093034 0.231071705 fv Gamma Cox, Log-Normal FALSE #> 9602 601 0.9685267 0.220530237 fv Gamma Cox, Log-Normal FALSE #> 9618 602 0.9567572 0.270622698 fv Gamma Cox, Log-Normal FALSE #> 9634 603 0.9007697 0.220945058 fv Gamma Cox, Log-Normal FALSE #> 9650 604 1.2452340 0.442246635 fv Gamma Cox, Log-Normal TRUE #> 9666 605 1.2222252 0.357745466 fv Gamma Cox, Log-Normal FALSE #> 9682 606 1.0475542 0.230114466 fv Gamma Cox, Log-Normal FALSE #> 9698 607 0.8173250 0.184012955 fv Gamma Cox, Log-Normal FALSE #> 9714 608 1.0264445 0.211869827 fv Gamma Cox, Log-Normal FALSE #> 9730 609 1.3393035 0.328197864 fv Gamma Cox, Log-Normal FALSE #> 9746 610 1.1612145 0.269944445 fv Gamma Cox, Log-Normal FALSE #> 9762 611 0.8716488 0.218240481 fv Gamma Cox, Log-Normal FALSE #> 9778 612 1.2478780 0.254679202 fv Gamma Cox, Log-Normal FALSE #> 9794 613 0.9089129 0.180981311 fv Gamma Cox, Log-Normal FALSE #> 9810 614 0.8236289 0.176298875 fv Gamma Cox, Log-Normal FALSE #> 9826 615 0.7781034 0.172342440 fv Gamma Cox, Log-Normal FALSE #> 9842 616 1.3207941 0.299666982 fv Gamma Cox, Log-Normal FALSE #> 9858 617 1.3523404 0.308465331 fv Gamma Cox, Log-Normal FALSE #> 9874 618 0.7054131 0.154359305 fv Gamma Cox, Log-Normal FALSE #> 9890 619 0.7621622 0.144288017 fv Gamma Cox, Log-Normal FALSE #> 9906 620 0.9294349 0.245020462 fv Gamma Cox, Log-Normal FALSE #> 9922 621 1.0852212 0.238577452 fv Gamma Cox, Log-Normal FALSE #> 9938 622 1.6889800 0.375733753 fv Gamma Cox, Log-Normal TRUE #> 9954 623 0.6497480 0.112506675 fv Gamma Cox, Log-Normal FALSE #> 9970 624 0.9417119 0.185039732 fv Gamma Cox, Log-Normal FALSE #> 9986 625 0.9615533 0.250108888 fv Gamma Cox, Log-Normal FALSE #> 10002 626 0.6491316 0.143634254 fv Gamma Cox, Log-Normal FALSE #> 10018 627 0.7991016 0.265477031 fv Gamma Cox, Log-Normal FALSE #> 10034 628 0.9209861 0.166585647 fv Gamma Cox, Log-Normal FALSE #> 10050 629 0.7470039 0.203007785 fv Gamma Cox, Log-Normal FALSE #> 10066 630 1.0690011 0.196367163 fv Gamma Cox, Log-Normal FALSE #> 10082 631 1.2764893 0.441219524 fv Gamma Cox, Log-Normal TRUE #> 10098 632 0.6869833 0.163540177 fv Gamma Cox, Log-Normal FALSE #> 10114 633 0.7001066 0.175297359 fv Gamma Cox, Log-Normal FALSE #> 10130 634 0.7032764 0.156311954 fv Gamma Cox, Log-Normal FALSE #> 10146 635 0.5491568 0.134395251 fv Gamma Cox, Log-Normal FALSE #> 10162 636 0.8513401 0.270874157 fv Gamma Cox, Log-Normal FALSE #> 10178 637 0.9566533 0.176784838 fv Gamma Cox, Log-Normal FALSE #> 10194 638 0.7933296 0.280428246 fv Gamma Cox, Log-Normal FALSE #> 10210 639 0.8824408 0.186779642 fv Gamma Cox, Log-Normal FALSE #> 10226 640 0.6936361 0.161515249 fv Gamma Cox, Log-Normal FALSE #> 10242 641 0.8355947 0.150330827 fv Gamma Cox, Log-Normal FALSE #> 10258 642 0.9279600 0.209555469 fv Gamma Cox, Log-Normal FALSE #> 10274 643 0.8074046 0.197113858 fv Gamma Cox, Log-Normal FALSE #> 10290 644 1.3611674 0.423889750 fv Gamma Cox, Log-Normal TRUE #> 10306 645 0.6554522 0.148982743 fv Gamma Cox, Log-Normal FALSE #> 10322 646 0.7228923 0.181773449 fv Gamma Cox, Log-Normal FALSE #> 10338 647 1.8011240 0.416701461 fv Gamma Cox, Log-Normal TRUE #> 10354 648 0.9024813 0.147263424 fv Gamma Cox, Log-Normal FALSE #> 10370 649 1.1228993 0.247566629 fv Gamma Cox, Log-Normal FALSE #> 10386 650 1.3658269 0.347823938 fv Gamma Cox, Log-Normal FALSE #> 10402 651 1.3826703 0.312517206 fv Gamma Cox, Log-Normal FALSE #> 10418 652 0.9966013 0.263252969 fv Gamma Cox, Log-Normal FALSE #> 10434 653 1.3938498 0.378569327 fv Gamma Cox, Log-Normal FALSE #> 10450 654 0.7498765 0.198991232 fv Gamma Cox, Log-Normal FALSE #> 10466 655 0.8188198 0.148632081 fv Gamma Cox, Log-Normal FALSE #> 10482 656 0.9838947 0.237718941 fv Gamma Cox, Log-Normal FALSE #> 10498 657 0.9509122 0.222243095 fv Gamma Cox, Log-Normal FALSE #> 10514 658 1.0495215 0.221859992 fv Gamma Cox, Log-Normal FALSE #> 10530 659 1.1024600 0.246582294 fv Gamma Cox, Log-Normal FALSE #> 10546 660 1.1214802 0.345331077 fv Gamma Cox, Log-Normal FALSE #> 10562 661 0.8252543 0.208741101 fv Gamma Cox, Log-Normal FALSE #> 10578 662 0.5439256 0.113712777 fv Gamma Cox, Log-Normal FALSE #> 10594 663 0.7762586 0.185818017 fv Gamma Cox, Log-Normal FALSE #> 10610 664 0.9321685 0.141486786 fv Gamma Cox, Log-Normal FALSE #> 10626 665 0.9641151 0.245897886 fv Gamma Cox, Log-Normal FALSE #> 10642 666 0.9707480 0.281544181 fv Gamma Cox, Log-Normal FALSE #> 10658 667 1.1775076 0.327488577 fv Gamma Cox, Log-Normal FALSE #> 10674 668 1.2100674 0.383647041 fv Gamma Cox, Log-Normal FALSE #> 10690 669 0.7079595 0.202483076 fv Gamma Cox, Log-Normal FALSE #> 10706 670 1.1701748 0.308158336 fv Gamma Cox, Log-Normal FALSE #> 10722 671 1.2338212 0.274821951 fv Gamma Cox, Log-Normal FALSE #> 10738 672 0.7795158 0.186065151 fv Gamma Cox, Log-Normal FALSE #> 10754 673 0.8208763 0.152826786 fv Gamma Cox, Log-Normal FALSE #> 10770 674 1.3740360 0.392376078 fv Gamma Cox, Log-Normal TRUE #> 10786 675 0.9580433 0.177217021 fv Gamma Cox, Log-Normal FALSE #> 10802 676 0.6479120 0.215451916 fv Gamma Cox, Log-Normal FALSE #> 10818 677 0.8237457 0.173619019 fv Gamma Cox, Log-Normal FALSE #> 10834 678 1.1448183 0.294799498 fv Gamma Cox, Log-Normal FALSE #> 10850 679 1.4160710 0.319465728 fv Gamma Cox, Log-Normal FALSE #> 10866 680 1.0010333 0.366282201 fv Gamma Cox, Log-Normal FALSE #> 10882 681 0.7361065 0.213144710 fv Gamma Cox, Log-Normal FALSE #> 10898 682 0.9640440 0.204357977 fv Gamma Cox, Log-Normal FALSE #> 10914 683 1.1832964 0.328296114 fv Gamma Cox, Log-Normal FALSE #> 10930 684 1.2352413 0.256935059 fv Gamma Cox, Log-Normal FALSE #> 10946 685 0.8576592 0.208323295 fv Gamma Cox, Log-Normal FALSE #> 10962 686 0.6559387 0.148327340 fv Gamma Cox, Log-Normal FALSE #> 10978 687 1.3955422 0.274232845 fv Gamma Cox, Log-Normal FALSE #> 10994 688 0.9477181 0.185695063 fv Gamma Cox, Log-Normal FALSE #> 11010 689 0.8098337 0.146404742 fv Gamma Cox, Log-Normal FALSE #> 11026 690 1.2282291 0.224138226 fv Gamma Cox, Log-Normal FALSE #> 11042 691 1.0052381 0.169059700 fv Gamma Cox, Log-Normal FALSE #> 11058 692 0.9559934 0.175651808 fv Gamma Cox, Log-Normal FALSE #> 11074 693 1.3037994 0.320750495 fv Gamma Cox, Log-Normal FALSE #> 11090 694 1.0887350 0.262845102 fv Gamma Cox, Log-Normal FALSE #> 11106 695 1.0245538 0.316179341 fv Gamma Cox, Log-Normal FALSE #> 11122 696 1.0057025 0.279965660 fv Gamma Cox, Log-Normal FALSE #> 11138 697 1.0332112 0.228229709 fv Gamma Cox, Log-Normal FALSE #> 11154 698 1.0008029 0.230392985 fv Gamma Cox, Log-Normal FALSE #> 11170 699 0.9448768 0.148606204 fv Gamma Cox, Log-Normal FALSE #> 11186 700 1.6100507 0.301322970 fv Gamma Cox, Log-Normal TRUE #> 11202 701 0.8168552 0.166749623 fv Gamma Cox, Log-Normal FALSE #> 11218 702 0.7951008 0.229465092 fv Gamma Cox, Log-Normal FALSE #> 11234 703 0.7124699 0.176676006 fv Gamma Cox, Log-Normal FALSE #> 11250 704 1.2850043 0.227968238 fv Gamma Cox, Log-Normal FALSE #> 11266 705 1.4407282 0.311041525 fv Gamma Cox, Log-Normal FALSE #> 11282 706 1.0292844 0.184432785 fv Gamma Cox, Log-Normal FALSE #> 11298 707 0.7592113 0.220094759 fv Gamma Cox, Log-Normal FALSE #> 11314 708 1.1536924 0.378570168 fv Gamma Cox, Log-Normal FALSE #> 11330 709 0.9301348 0.152019700 fv Gamma Cox, Log-Normal FALSE #> 11346 710 0.9747393 0.152258390 fv Gamma Cox, Log-Normal FALSE #> 11362 711 0.4419933 0.091587040 fv Gamma Cox, Log-Normal TRUE #> 11378 712 0.9574598 0.232824090 fv Gamma Cox, Log-Normal FALSE #> 11394 713 0.9989393 0.196517724 fv Gamma Cox, Log-Normal FALSE #> 11410 714 1.2846766 0.430198645 fv Gamma Cox, Log-Normal TRUE #> 11426 715 1.3765564 0.287137467 fv Gamma Cox, Log-Normal FALSE #> 11442 716 1.0736204 0.271160711 fv Gamma Cox, Log-Normal FALSE #> 11458 717 0.8447250 0.275879055 fv Gamma Cox, Log-Normal FALSE #> 11474 718 1.0081585 0.250844357 fv Gamma Cox, Log-Normal FALSE #> 11490 719 0.7888853 0.143021641 fv Gamma Cox, Log-Normal FALSE #> 11506 720 0.8275914 0.169821218 fv Gamma Cox, Log-Normal FALSE #> 11522 721 1.0362940 0.250343175 fv Gamma Cox, Log-Normal FALSE #> 11538 722 1.2802454 0.333262567 fv Gamma Cox, Log-Normal FALSE #> 11554 723 1.0636312 0.323034788 fv Gamma Cox, Log-Normal FALSE #> 11570 724 0.7908268 0.162506524 fv Gamma Cox, Log-Normal FALSE #> 11586 725 0.8741268 0.195905074 fv Gamma Cox, Log-Normal FALSE #> 11602 726 0.7664078 0.217471393 fv Gamma Cox, Log-Normal FALSE #> 11618 727 1.1345593 0.312048852 fv Gamma Cox, Log-Normal FALSE #> 11634 728 0.6815268 0.256231339 fv Gamma Cox, Log-Normal FALSE #> 11650 729 1.0012762 0.190967467 fv Gamma Cox, Log-Normal FALSE #> 11666 730 1.3645868 0.417363902 fv Gamma Cox, Log-Normal TRUE #> 11682 731 1.4012566 0.325484691 fv Gamma Cox, Log-Normal FALSE #> 11698 732 1.2333383 0.213696113 fv Gamma Cox, Log-Normal FALSE #> 11714 733 0.7422468 0.180001456 fv Gamma Cox, Log-Normal FALSE #> 11730 734 0.7656523 0.212408503 fv Gamma Cox, Log-Normal FALSE #> 11746 735 1.1366086 0.281915857 fv Gamma Cox, Log-Normal FALSE #> 11762 736 1.0835050 0.304493693 fv Gamma Cox, Log-Normal FALSE #> 11778 737 0.9811711 0.246886659 fv Gamma Cox, Log-Normal FALSE #> 11794 738 0.8368011 0.340475523 fv Gamma Cox, Log-Normal FALSE #> 11810 739 0.9087165 0.200542432 fv Gamma Cox, Log-Normal FALSE #> 11826 740 0.8700050 0.193399163 fv Gamma Cox, Log-Normal FALSE #> 11842 741 1.0493966 0.242318925 fv Gamma Cox, Log-Normal FALSE #> 11858 742 0.7285165 0.152167499 fv Gamma Cox, Log-Normal FALSE #> 11874 743 1.0809077 0.253157125 fv Gamma Cox, Log-Normal FALSE #> 11890 744 1.3116924 0.349032088 fv Gamma Cox, Log-Normal FALSE #> 11906 745 0.8668810 0.255673856 fv Gamma Cox, Log-Normal FALSE #> 11922 746 0.5031063 0.086395670 fv Gamma Cox, Log-Normal FALSE #> 11938 747 0.8514091 0.212312538 fv Gamma Cox, Log-Normal FALSE #> 11954 748 1.0763630 0.181266049 fv Gamma Cox, Log-Normal FALSE #> 11970 749 0.8902869 0.251796213 fv Gamma Cox, Log-Normal FALSE #> 11986 750 0.6972912 0.147370632 fv Gamma Cox, Log-Normal FALSE #> 12002 751 1.1695505 0.209407579 fv Gamma Cox, Log-Normal FALSE #> 12018 752 1.0586978 0.231401972 fv Gamma Cox, Log-Normal FALSE #> 12034 753 0.7359262 0.219724376 fv Gamma Cox, Log-Normal FALSE #> 12050 754 1.0893551 0.230029873 fv Gamma Cox, Log-Normal FALSE #> 12066 755 0.9971904 0.175161437 fv Gamma Cox, Log-Normal FALSE #> 12082 756 1.5691599 0.295112101 fv Gamma Cox, Log-Normal TRUE #> 12098 757 0.7713164 0.186796598 fv Gamma Cox, Log-Normal FALSE #> 12114 758 0.6428408 0.152198490 fv Gamma Cox, Log-Normal FALSE #> 12130 759 0.7885099 0.154161821 fv Gamma Cox, Log-Normal FALSE #> 12146 760 0.7606324 0.162254956 fv Gamma Cox, Log-Normal FALSE #> 12162 761 1.0477843 0.279182770 fv Gamma Cox, Log-Normal FALSE #> 12178 762 0.8354850 0.168909484 fv Gamma Cox, Log-Normal FALSE #> 12194 763 0.7569949 0.166489594 fv Gamma Cox, Log-Normal FALSE #> 12210 764 0.9842876 0.267116745 fv Gamma Cox, Log-Normal FALSE #> 12226 765 0.7749107 0.196827870 fv Gamma Cox, Log-Normal FALSE #> 12242 766 0.6556944 0.126006011 fv Gamma Cox, Log-Normal FALSE #> 12258 767 0.9765773 0.221128587 fv Gamma Cox, Log-Normal FALSE #> 12274 768 1.0265077 0.226275490 fv Gamma Cox, Log-Normal FALSE #> 12290 769 1.0165964 0.206041439 fv Gamma Cox, Log-Normal FALSE #> 12306 770 0.7551010 0.216493504 fv Gamma Cox, Log-Normal FALSE #> 12322 771 0.6450434 0.111705699 fv Gamma Cox, Log-Normal FALSE #> 12338 772 1.1912443 0.351233857 fv Gamma Cox, Log-Normal FALSE #> 12354 773 0.8052817 0.219677124 fv Gamma Cox, Log-Normal FALSE #> 12370 774 0.9495006 0.183682679 fv Gamma Cox, Log-Normal FALSE #> 12386 775 1.4295249 0.357730455 fv Gamma Cox, Log-Normal FALSE #> 12402 776 0.9464133 0.161655065 fv Gamma Cox, Log-Normal FALSE #> 12418 777 0.7990472 0.188022633 fv Gamma Cox, Log-Normal FALSE #> 12434 778 1.1233230 0.279950067 fv Gamma Cox, Log-Normal FALSE #> 12450 779 1.1826743 0.287929833 fv Gamma Cox, Log-Normal FALSE #> 12466 780 1.1225019 0.260847577 fv Gamma Cox, Log-Normal FALSE #> 12482 781 0.8087508 0.219948457 fv Gamma Cox, Log-Normal FALSE #> 12498 782 0.9323221 0.354579850 fv Gamma Cox, Log-Normal FALSE #> 12514 783 0.9546923 0.172823948 fv Gamma Cox, Log-Normal FALSE #> 12530 784 0.8109267 0.135871785 fv Gamma Cox, Log-Normal FALSE #> 12546 785 0.8227292 0.153966550 fv Gamma Cox, Log-Normal FALSE #> 12562 786 1.0155313 0.221229923 fv Gamma Cox, Log-Normal FALSE #> 12578 787 1.2265997 0.381780641 fv Gamma Cox, Log-Normal FALSE #> 12594 788 0.9968011 0.271020910 fv Gamma Cox, Log-Normal FALSE #> 12610 789 0.9961110 0.264108258 fv Gamma Cox, Log-Normal FALSE #> 12626 790 1.3866559 0.403052216 fv Gamma Cox, Log-Normal TRUE #> 12642 791 1.2942187 0.345936087 fv Gamma Cox, Log-Normal FALSE #> 12658 792 1.3274802 0.294559219 fv Gamma Cox, Log-Normal FALSE #> 12674 793 0.8710422 0.188337532 fv Gamma Cox, Log-Normal FALSE #> 12690 794 0.4656342 0.086212385 fv Gamma Cox, Log-Normal TRUE #> 12706 795 0.9488004 0.249943737 fv Gamma Cox, Log-Normal FALSE #> 12722 796 1.0833683 0.238579911 fv Gamma Cox, Log-Normal FALSE #> 12738 797 0.7134433 0.174971445 fv Gamma Cox, Log-Normal FALSE #> 12754 798 0.7488683 0.203887403 fv Gamma Cox, Log-Normal FALSE #> 12770 799 1.4826244 0.460159427 fv Gamma Cox, Log-Normal TRUE #> 12786 800 1.2555919 0.228477636 fv Gamma Cox, Log-Normal FALSE #> 12802 801 0.7767814 0.216792490 fv Gamma Cox, Log-Normal FALSE #> 12818 802 0.8039006 0.143589898 fv Gamma Cox, Log-Normal FALSE #> 12834 803 0.9486562 0.154256665 fv Gamma Cox, Log-Normal FALSE #> 12850 804 1.0328948 0.231771198 fv Gamma Cox, Log-Normal FALSE #> 12866 805 0.9798605 0.228212803 fv Gamma Cox, Log-Normal FALSE #> 12882 806 0.7306827 0.144691202 fv Gamma Cox, Log-Normal FALSE #> 12898 807 1.2700539 0.278143788 fv Gamma Cox, Log-Normal FALSE #> 12914 808 0.9736841 0.293168234 fv Gamma Cox, Log-Normal FALSE #> 12930 809 1.3303860 0.442691890 fv Gamma Cox, Log-Normal TRUE #> 12946 810 0.9218010 0.172303136 fv Gamma Cox, Log-Normal FALSE #> 12962 811 1.3147421 0.258687544 fv Gamma Cox, Log-Normal FALSE #> 12978 812 0.8372171 0.211667829 fv Gamma Cox, Log-Normal FALSE #> 12994 813 1.1669162 0.244223344 fv Gamma Cox, Log-Normal FALSE #> 13010 814 0.9559600 0.260826010 fv Gamma Cox, Log-Normal FALSE #> 13026 815 1.4235527 0.327459602 fv Gamma Cox, Log-Normal FALSE #> 13042 816 0.7081849 0.196971428 fv Gamma Cox, Log-Normal FALSE #> 13058 817 1.2131452 0.372971263 fv Gamma Cox, Log-Normal FALSE #> 13074 818 0.8741341 0.256450653 fv Gamma Cox, Log-Normal FALSE #> 13090 819 1.3459854 0.408062364 fv Gamma Cox, Log-Normal TRUE #> 13106 820 0.8721563 0.225198849 fv Gamma Cox, Log-Normal FALSE #> 13122 821 0.9494623 0.270727048 fv Gamma Cox, Log-Normal FALSE #> 13138 822 0.6048632 0.109814168 fv Gamma Cox, Log-Normal FALSE #> 13154 823 1.0187693 0.277289565 fv Gamma Cox, Log-Normal FALSE #> 13170 824 0.9878398 0.232512666 fv Gamma Cox, Log-Normal FALSE #> 13186 825 0.6361843 0.116639807 fv Gamma Cox, Log-Normal FALSE #> 13202 826 0.9407440 0.186621880 fv Gamma Cox, Log-Normal FALSE #> 13218 827 0.9250230 0.206624297 fv Gamma Cox, Log-Normal FALSE #> 13234 828 1.4586544 0.400674246 fv Gamma Cox, Log-Normal TRUE #> 13250 829 0.7062700 0.123119510 fv Gamma Cox, Log-Normal FALSE #> 13266 830 1.2702881 0.292952627 fv Gamma Cox, Log-Normal FALSE #> 13282 831 0.7167738 0.210742781 fv Gamma Cox, Log-Normal FALSE #> 13298 832 0.8667566 0.156346725 fv Gamma Cox, Log-Normal FALSE #> 13314 833 0.9890096 0.226437277 fv Gamma Cox, Log-Normal FALSE #> 13330 834 0.6529406 0.148180979 fv Gamma Cox, Log-Normal FALSE #> 13346 835 0.9492850 0.219981130 fv Gamma Cox, Log-Normal FALSE #> 13362 836 0.9453736 0.258429879 fv Gamma Cox, Log-Normal FALSE #> 13378 837 0.9578582 0.272680782 fv Gamma Cox, Log-Normal FALSE #> 13394 838 1.2202325 0.219416306 fv Gamma Cox, Log-Normal FALSE #> 13410 839 0.7622538 0.136150062 fv Gamma Cox, Log-Normal FALSE #> 13426 840 1.0482271 0.241604455 fv Gamma Cox, Log-Normal FALSE #> 13442 841 0.9043676 0.148058562 fv Gamma Cox, Log-Normal FALSE #> 13458 842 0.9913150 0.280168128 fv Gamma Cox, Log-Normal FALSE #> 13474 843 1.3223045 0.330990887 fv Gamma Cox, Log-Normal FALSE #> 13490 844 1.0021235 0.292823919 fv Gamma Cox, Log-Normal FALSE #> 13506 845 1.4004414 0.318104284 fv Gamma Cox, Log-Normal FALSE #> 13522 846 0.8416453 0.250660878 fv Gamma Cox, Log-Normal FALSE #> 13538 847 0.8243172 0.288155697 fv Gamma Cox, Log-Normal FALSE #> 13554 848 0.5899439 0.122537752 fv Gamma Cox, Log-Normal FALSE #> 13570 849 0.9414000 0.178355553 fv Gamma Cox, Log-Normal FALSE #> 13586 850 0.8407891 0.160878072 fv Gamma Cox, Log-Normal FALSE #> 13602 851 0.9823066 0.238544662 fv Gamma Cox, Log-Normal FALSE #> 13618 852 0.5618333 0.110283440 fv Gamma Cox, Log-Normal FALSE #> 13634 853 0.9624791 0.197866836 fv Gamma Cox, Log-Normal FALSE #> 13650 854 0.7179179 0.157504403 fv Gamma Cox, Log-Normal FALSE #> 13666 855 1.2551276 0.310599897 fv Gamma Cox, Log-Normal FALSE #> 13682 856 1.0833605 0.207529494 fv Gamma Cox, Log-Normal FALSE #> 13698 857 0.7307127 0.179278420 fv Gamma Cox, Log-Normal FALSE #> 13714 858 0.8702718 0.224544233 fv Gamma Cox, Log-Normal FALSE #> 13730 859 0.8669632 0.270433850 fv Gamma Cox, Log-Normal FALSE #> 13746 860 0.7547683 0.132468609 fv Gamma Cox, Log-Normal FALSE #> 13762 861 1.1262160 0.257465167 fv Gamma Cox, Log-Normal FALSE #> 13778 862 0.8389212 0.161464653 fv Gamma Cox, Log-Normal FALSE #> 13794 863 1.0119069 0.212102924 fv Gamma Cox, Log-Normal FALSE #> 13810 864 0.9537157 0.216189336 fv Gamma Cox, Log-Normal FALSE #> 13826 865 1.0120405 0.205255774 fv Gamma Cox, Log-Normal FALSE #> 13842 866 0.7974231 0.133804459 fv Gamma Cox, Log-Normal FALSE #> 13858 867 0.9060825 0.156806604 fv Gamma Cox, Log-Normal FALSE #> 13874 868 0.9688863 0.217092971 fv Gamma Cox, Log-Normal FALSE #> 13890 869 1.0266109 0.254779900 fv Gamma Cox, Log-Normal FALSE #> 13906 870 0.9479034 0.327682086 fv Gamma Cox, Log-Normal FALSE #> 13922 871 1.2468126 0.291359832 fv Gamma Cox, Log-Normal FALSE #> 13938 872 1.3083943 0.333635934 fv Gamma Cox, Log-Normal FALSE #> 13954 873 1.1743319 0.209116592 fv Gamma Cox, Log-Normal FALSE #> 13970 874 1.5305586 0.443951756 fv Gamma Cox, Log-Normal TRUE #> 13986 875 0.7607191 0.145312089 fv Gamma Cox, Log-Normal FALSE #> 14002 876 0.8779484 0.192866111 fv Gamma Cox, Log-Normal FALSE #> 14018 877 0.9984085 0.211132798 fv Gamma Cox, Log-Normal FALSE #> 14034 878 1.0891524 0.319090619 fv Gamma Cox, Log-Normal FALSE #> 14050 879 0.8993115 0.342239070 fv Gamma Cox, Log-Normal FALSE #> 14066 880 1.4072146 0.315934948 fv Gamma Cox, Log-Normal FALSE #> 14082 881 1.1304945 0.294741363 fv Gamma Cox, Log-Normal FALSE #> 14098 882 1.2693027 0.233265611 fv Gamma Cox, Log-Normal FALSE #> 14114 883 0.7511724 0.169083381 fv Gamma Cox, Log-Normal FALSE #> 14130 884 0.7769513 0.153621573 fv Gamma Cox, Log-Normal FALSE #> 14146 885 0.7564225 0.181152611 fv Gamma Cox, Log-Normal FALSE #> 14162 886 0.7533057 0.187639873 fv Gamma Cox, Log-Normal FALSE #> 14178 887 0.9411945 0.197051463 fv Gamma Cox, Log-Normal FALSE #> 14194 888 1.3209266 0.241801270 fv Gamma Cox, Log-Normal FALSE #> 14210 889 1.0464163 0.206246274 fv Gamma Cox, Log-Normal FALSE #> 14226 890 0.7922736 0.208611946 fv Gamma Cox, Log-Normal FALSE #> 14242 891 0.6048097 0.093277354 fv Gamma Cox, Log-Normal FALSE #> 14258 892 0.9090234 0.181751021 fv Gamma Cox, Log-Normal FALSE #> 14274 893 1.1860418 0.343862998 fv Gamma Cox, Log-Normal FALSE #> 14290 894 0.7139899 0.164547200 fv Gamma Cox, Log-Normal FALSE #> 14306 895 0.8511802 0.176060960 fv Gamma Cox, Log-Normal FALSE #> 14322 896 1.1897072 0.217763226 fv Gamma Cox, Log-Normal FALSE #> 14338 897 0.8726068 0.157842972 fv Gamma Cox, Log-Normal FALSE #> 14354 898 1.1845061 0.237803283 fv Gamma Cox, Log-Normal FALSE #> 14370 899 1.0443795 0.246772790 fv Gamma Cox, Log-Normal FALSE #> 14386 900 1.1583504 0.323680854 fv Gamma Cox, Log-Normal FALSE #> 14402 901 0.7415650 0.170452452 fv Gamma Cox, Log-Normal FALSE #> 14418 902 0.7003490 0.139088567 fv Gamma Cox, Log-Normal FALSE #> 14434 903 0.7841447 0.149742194 fv Gamma Cox, Log-Normal FALSE #> 14450 904 1.5901697 0.482677057 fv Gamma Cox, Log-Normal TRUE #> 14466 905 0.7896432 0.138737460 fv Gamma Cox, Log-Normal FALSE #> 14482 906 1.3915225 0.266295262 fv Gamma Cox, Log-Normal FALSE #> 14498 907 1.0235347 0.258435199 fv Gamma Cox, Log-Normal FALSE #> 14514 908 0.8794528 0.274871726 fv Gamma Cox, Log-Normal FALSE #> 14530 909 0.7616585 0.153069885 fv Gamma Cox, Log-Normal FALSE #> 14546 910 0.6709826 0.127266750 fv Gamma Cox, Log-Normal FALSE #> 14562 911 0.9426690 0.305758226 fv Gamma Cox, Log-Normal FALSE #> 14578 912 0.6876512 0.115011789 fv Gamma Cox, Log-Normal FALSE #> 14594 913 0.9720124 0.200778297 fv Gamma Cox, Log-Normal FALSE #> 14610 914 0.8574690 0.251944490 fv Gamma Cox, Log-Normal FALSE #> 14626 915 1.1770862 0.283699685 fv Gamma Cox, Log-Normal FALSE #> 14642 916 0.6674906 0.129719682 fv Gamma Cox, Log-Normal FALSE #> 14658 917 1.0089240 0.301683903 fv Gamma Cox, Log-Normal FALSE #> 14674 918 1.0180468 0.176241349 fv Gamma Cox, Log-Normal FALSE #> 14690 919 0.6774361 0.111074751 fv Gamma Cox, Log-Normal FALSE #> 14706 920 0.9816049 0.176035972 fv Gamma Cox, Log-Normal FALSE #> 14722 921 1.1225462 0.265504818 fv Gamma Cox, Log-Normal FALSE #> 14738 922 1.6005520 0.403568432 fv Gamma Cox, Log-Normal TRUE #> 14754 923 0.9384639 0.171544257 fv Gamma Cox, Log-Normal FALSE #> 14770 924 0.9551133 0.151122096 fv Gamma Cox, Log-Normal FALSE #> 14786 925 1.2062083 0.344311268 fv Gamma Cox, Log-Normal FALSE #> 14802 926 0.9341805 0.185300287 fv Gamma Cox, Log-Normal FALSE #> 14818 927 0.5496008 0.113479221 fv Gamma Cox, Log-Normal FALSE #> 14834 928 0.9298163 0.196767579 fv Gamma Cox, Log-Normal FALSE #> 14850 929 1.0148063 0.250301564 fv Gamma Cox, Log-Normal FALSE #> 14866 930 1.4671972 0.477190164 fv Gamma Cox, Log-Normal TRUE #> 14882 931 0.9037657 0.193220022 fv Gamma Cox, Log-Normal FALSE #> 14898 932 1.2131691 0.230914741 fv Gamma Cox, Log-Normal FALSE #> 14914 933 0.7664552 0.172978498 fv Gamma Cox, Log-Normal FALSE #> 14930 934 0.7235467 0.099478559 fv Gamma Cox, Log-Normal FALSE #> 14946 935 0.5651276 0.109392225 fv Gamma Cox, Log-Normal FALSE #> 14962 936 0.7738704 0.156934151 fv Gamma Cox, Log-Normal FALSE #> 14978 937 1.4874432 0.363632319 fv Gamma Cox, Log-Normal TRUE #> 14994 938 1.0628662 0.267143882 fv Gamma Cox, Log-Normal FALSE #> 15010 939 1.0222365 0.192388758 fv Gamma Cox, Log-Normal FALSE #> 15026 940 1.0277460 0.196087165 fv Gamma Cox, Log-Normal FALSE #> 15042 941 0.8016317 0.159316442 fv Gamma Cox, Log-Normal FALSE #> 15058 942 0.8411527 0.182284638 fv Gamma Cox, Log-Normal FALSE #> 15074 943 0.5594256 0.113623496 fv Gamma Cox, Log-Normal FALSE #> 15090 944 0.7729183 0.124686294 fv Gamma Cox, Log-Normal FALSE #> 15106 945 0.7428305 0.151083868 fv Gamma Cox, Log-Normal FALSE #> 15122 946 1.1677163 0.377504451 fv Gamma Cox, Log-Normal FALSE #> 15138 947 0.8375811 0.210228463 fv Gamma Cox, Log-Normal FALSE #> 15154 948 0.6906720 0.230450716 fv Gamma Cox, Log-Normal FALSE #> 15170 949 0.8148721 0.226169057 fv Gamma Cox, Log-Normal FALSE #> 15186 950 0.7721582 0.203677104 fv Gamma Cox, Log-Normal FALSE #> 15202 951 0.9992324 0.220599272 fv Gamma Cox, Log-Normal FALSE #> 15218 952 0.8222391 0.179491347 fv Gamma Cox, Log-Normal FALSE #> 15234 953 1.6443296 0.391757692 fv Gamma Cox, Log-Normal TRUE #> 15250 954 0.8622421 0.193926799 fv Gamma Cox, Log-Normal FALSE #> 15266 955 1.0271637 0.198165599 fv Gamma Cox, Log-Normal FALSE #> 15282 956 0.7877326 0.190345590 fv Gamma Cox, Log-Normal FALSE #> 15298 957 0.7332077 0.170648591 fv Gamma Cox, Log-Normal FALSE #> 15314 958 0.6742120 0.141736639 fv Gamma Cox, Log-Normal FALSE #> 15330 959 0.8116423 0.176636628 fv Gamma Cox, Log-Normal FALSE #> 15346 960 1.0381126 0.247132858 fv Gamma Cox, Log-Normal FALSE #> 15362 961 0.6263490 0.119573651 fv Gamma Cox, Log-Normal FALSE #> 15378 962 1.2298672 0.279659616 fv Gamma Cox, Log-Normal FALSE #> 15394 963 1.3100317 0.351291999 fv Gamma Cox, Log-Normal FALSE #> 15410 964 0.9385725 0.212853684 fv Gamma Cox, Log-Normal FALSE #> 15426 965 0.7237833 0.136184000 fv Gamma Cox, Log-Normal FALSE #> 15442 966 1.0774498 0.255201646 fv Gamma Cox, Log-Normal FALSE #> 15458 967 0.8661890 0.186999729 fv Gamma Cox, Log-Normal FALSE #> 15474 968 0.7440313 0.163577636 fv Gamma Cox, Log-Normal FALSE #> 15490 969 1.0548245 0.323917765 fv Gamma Cox, Log-Normal FALSE #> 15506 970 1.0335275 0.417785729 fv Gamma Cox, Log-Normal TRUE #> 15522 971 0.8920170 0.217781465 fv Gamma Cox, Log-Normal FALSE #> 15538 972 0.8443654 0.262375588 fv Gamma Cox, Log-Normal FALSE #> 15554 973 1.4316470 0.431582164 fv Gamma Cox, Log-Normal TRUE #> 15570 974 0.6408896 0.154553156 fv Gamma Cox, Log-Normal FALSE #> 15586 975 0.5818109 0.121328131 fv Gamma Cox, Log-Normal FALSE #> 15602 976 0.9803179 0.204723535 fv Gamma Cox, Log-Normal FALSE #> 15618 977 1.1977389 0.247126848 fv Gamma Cox, Log-Normal FALSE #> 15634 978 1.1178645 0.327386366 fv Gamma Cox, Log-Normal FALSE #> 15650 979 1.2145658 0.344268311 fv Gamma Cox, Log-Normal FALSE #> 15666 980 0.6638111 0.139988436 fv Gamma Cox, Log-Normal FALSE #> 15682 981 0.9741935 0.298000366 fv Gamma Cox, Log-Normal FALSE #> 15698 982 1.2667102 0.291885120 fv Gamma Cox, Log-Normal FALSE #> 15714 983 0.6366284 0.142543764 fv Gamma Cox, Log-Normal FALSE #> 15730 984 0.9916257 0.230161087 fv Gamma Cox, Log-Normal FALSE #> 15746 985 1.1673924 0.329455282 fv Gamma Cox, Log-Normal FALSE #> 15762 986 0.8093946 0.131512474 fv Gamma Cox, Log-Normal FALSE #> 15778 987 0.6809663 0.166413324 fv Gamma Cox, Log-Normal FALSE #> 15794 988 0.8090418 0.168468434 fv Gamma Cox, Log-Normal FALSE #> 15810 989 1.1203963 0.254390270 fv Gamma Cox, Log-Normal FALSE #> 15826 990 0.8937730 0.181708706 fv Gamma Cox, Log-Normal FALSE #> 15842 991 1.0581390 0.254618273 fv Gamma Cox, Log-Normal FALSE #> 15858 992 1.1236897 0.339523124 fv Gamma Cox, Log-Normal FALSE #> 15874 993 1.4089872 0.331849490 fv Gamma Cox, Log-Normal FALSE #> 15890 994 0.9304340 0.200697045 fv Gamma Cox, Log-Normal FALSE #> 15906 995 0.9726530 0.218311522 fv Gamma Cox, Log-Normal FALSE #> 15922 996 0.8111108 0.164699823 fv Gamma Cox, Log-Normal FALSE #> 15938 997 0.7307507 0.230449780 fv Gamma Cox, Log-Normal FALSE #> 15954 998 0.8727082 0.192062571 fv Gamma Cox, Log-Normal FALSE #> 15970 999 0.6342790 0.116767975 fv Gamma Cox, Log-Normal FALSE #> 15986 1000 0.6557219 0.167090143 fv Gamma Cox, Log-Normal FALSE #> 3 1 0.6583130 0.126035398 fv Gamma RP(P), Gamma FALSE #> 19 2 0.6622712 0.129798360 fv Gamma RP(P), Gamma FALSE #> 35 3 1.0983598 0.207128706 fv Gamma RP(P), Gamma TRUE #> 51 4 0.8432273 0.157280985 fv Gamma RP(P), Gamma FALSE #> 67 5 0.7044549 0.135560564 fv Gamma RP(P), Gamma FALSE #> 83 6 NA NA fv Gamma RP(P), Gamma NA #> 99 7 0.6501343 0.124699716 fv Gamma RP(P), Gamma FALSE #> 115 8 1.0008371 0.185404780 fv Gamma RP(P), Gamma FALSE #> 131 9 0.8262565 0.156514195 fv Gamma RP(P), Gamma FALSE #> 147 10 0.8201887 0.155263227 fv Gamma RP(P), Gamma FALSE #> 163 11 0.8137370 0.155704386 fv Gamma RP(P), Gamma FALSE #> 179 12 0.9939974 0.184176616 fv Gamma RP(P), Gamma FALSE #> 195 13 0.9504802 0.177824029 fv Gamma RP(P), Gamma FALSE #> 211 14 0.5829730 0.115298145 fv Gamma RP(P), Gamma FALSE #> 227 15 0.8822492 0.165491846 fv Gamma RP(P), Gamma FALSE #> 243 16 1.0082479 0.185522929 fv Gamma RP(P), Gamma FALSE #> 259 17 0.5973382 0.115826569 fv Gamma RP(P), Gamma FALSE #> 275 18 0.4678429 0.096466091 fv Gamma RP(P), Gamma FALSE #> 291 19 0.7328936 0.139614821 fv Gamma RP(P), Gamma FALSE #> 307 20 0.9565953 0.179037879 fv Gamma RP(P), Gamma FALSE #> 323 21 0.5538343 0.111582907 fv Gamma RP(P), Gamma FALSE #> 339 22 0.8928450 0.168502035 fv Gamma RP(P), Gamma FALSE #> 355 23 0.6152640 0.118919219 fv Gamma RP(P), Gamma FALSE #> 371 24 0.7529937 0.142318629 fv Gamma RP(P), Gamma FALSE #> 387 25 0.7807405 0.147597737 fv Gamma RP(P), Gamma FALSE #> 403 26 0.7246273 0.139343002 fv Gamma RP(P), Gamma FALSE #> 419 27 1.1459225 0.211761785 fv Gamma RP(P), Gamma TRUE #> 435 28 1.0210508 0.188347485 fv Gamma RP(P), Gamma TRUE #> 451 29 NA NA fv Gamma RP(P), Gamma NA #> 467 30 0.9633830 0.180741692 fv Gamma RP(P), Gamma FALSE #> 483 31 0.6172289 0.121507402 fv Gamma RP(P), Gamma FALSE #> 499 32 0.7787334 0.148374349 fv Gamma RP(P), Gamma FALSE #> 515 33 0.5966043 0.115428078 fv Gamma RP(P), Gamma FALSE #> 531 34 0.5606909 0.109628967 fv Gamma RP(P), Gamma FALSE #> 547 35 0.7528722 0.146377360 fv Gamma RP(P), Gamma FALSE #> 563 36 0.6003364 0.119702219 fv Gamma RP(P), Gamma FALSE #> 579 37 0.5981520 0.116125997 fv Gamma RP(P), Gamma FALSE #> 595 38 0.5258415 0.103812772 fv Gamma RP(P), Gamma FALSE #> 611 39 0.7151039 0.135677110 fv Gamma RP(P), Gamma FALSE #> 627 40 0.4805411 0.096069472 fv Gamma RP(P), Gamma FALSE #> 643 41 1.1955770 0.214465980 fv Gamma RP(P), Gamma TRUE #> 659 42 0.7131938 0.138882554 fv Gamma RP(P), Gamma FALSE #> 675 43 0.8178025 0.153932387 fv Gamma RP(P), Gamma FALSE #> 691 44 0.8517164 0.159552144 fv Gamma RP(P), Gamma FALSE #> 707 45 0.7770909 0.146570656 fv Gamma RP(P), Gamma FALSE #> 723 46 0.7352140 0.139274517 fv Gamma RP(P), Gamma FALSE #> 739 47 0.9088789 0.172401938 fv Gamma RP(P), Gamma FALSE #> 755 48 0.7543666 0.144637452 fv Gamma RP(P), Gamma FALSE #> 771 49 0.7861070 0.150029967 fv Gamma RP(P), Gamma FALSE #> 787 50 0.7194816 0.136551253 fv Gamma RP(P), Gamma FALSE #> 803 51 0.8995177 0.167805917 fv Gamma RP(P), Gamma FALSE #> 819 52 0.6174492 0.122678304 fv Gamma RP(P), Gamma FALSE #> 835 53 0.6750597 0.130159913 fv Gamma RP(P), Gamma FALSE #> 851 54 0.5309038 0.105027975 fv Gamma RP(P), Gamma FALSE #> 867 55 0.7826463 0.148256356 fv Gamma RP(P), Gamma FALSE #> 883 56 0.7107366 0.137819603 fv Gamma RP(P), Gamma FALSE #> 899 57 0.7873837 0.148295624 fv Gamma RP(P), Gamma FALSE #> 915 58 0.6604236 0.129333742 fv Gamma RP(P), Gamma FALSE #> 931 59 0.7204677 0.137455234 fv Gamma RP(P), Gamma FALSE #> 947 60 0.7937934 0.150215116 fv Gamma RP(P), Gamma FALSE #> 963 61 0.6713512 0.128115321 fv Gamma RP(P), Gamma FALSE #> 979 62 0.6573296 0.128650691 fv Gamma RP(P), Gamma FALSE #> 995 63 0.8607833 0.161828019 fv Gamma RP(P), Gamma FALSE #> 1011 64 0.6543734 0.125543532 fv Gamma RP(P), Gamma FALSE #> 1027 65 0.6954612 0.132073413 fv Gamma RP(P), Gamma FALSE #> 1043 66 0.5448760 0.107425993 fv Gamma RP(P), Gamma FALSE #> 1059 67 0.8194453 0.153073618 fv Gamma RP(P), Gamma FALSE #> 1075 68 0.7446814 0.141854001 fv Gamma RP(P), Gamma FALSE #> 1091 69 0.5579674 0.109410924 fv Gamma RP(P), Gamma FALSE #> 1107 70 0.7098810 0.138933383 fv Gamma RP(P), Gamma FALSE #> 1123 71 0.9406454 0.174400598 fv Gamma RP(P), Gamma FALSE #> 1139 72 0.6530136 0.125588844 fv Gamma RP(P), Gamma FALSE #> 1155 73 0.4734941 0.094092884 fv Gamma RP(P), Gamma FALSE #> 1171 74 0.6754394 0.129318464 fv Gamma RP(P), Gamma FALSE #> 1187 75 0.6957309 0.133701552 fv Gamma RP(P), Gamma FALSE #> 1203 76 0.6999121 0.137477919 fv Gamma RP(P), Gamma FALSE #> 1219 77 0.7887771 0.151086397 fv Gamma RP(P), Gamma FALSE #> 1235 78 1.0335900 0.192017708 fv Gamma RP(P), Gamma TRUE #> 1251 79 NA NA fv Gamma RP(P), Gamma NA #> 1267 80 0.6232660 0.123397871 fv Gamma RP(P), Gamma FALSE #> 1283 81 0.9226520 0.175330403 fv Gamma RP(P), Gamma FALSE #> 1299 82 0.7323600 0.139191757 fv Gamma RP(P), Gamma FALSE #> 1315 83 0.4818189 0.099344646 fv Gamma RP(P), Gamma FALSE #> 1331 84 0.7176281 0.136243403 fv Gamma RP(P), Gamma FALSE #> 1347 85 0.7361589 0.140006217 fv Gamma RP(P), Gamma FALSE #> 1363 86 0.7168970 0.136729680 fv Gamma RP(P), Gamma FALSE #> 1379 87 0.5834150 0.113285946 fv Gamma RP(P), Gamma FALSE #> 1395 88 0.7231209 0.137245493 fv Gamma RP(P), Gamma FALSE #> 1411 89 0.7319681 0.139036681 fv Gamma RP(P), Gamma FALSE #> 1427 90 0.8849887 0.164574278 fv Gamma RP(P), Gamma FALSE #> 1443 91 0.7182218 0.136983847 fv Gamma RP(P), Gamma FALSE #> 1459 92 0.6588262 0.126126153 fv Gamma RP(P), Gamma FALSE #> 1475 93 0.9819063 0.189623911 fv Gamma RP(P), Gamma TRUE #> 1491 94 0.8240654 0.157587552 fv Gamma RP(P), Gamma FALSE #> 1507 95 0.7488191 0.141983395 fv Gamma RP(P), Gamma FALSE #> 1523 96 0.4645649 0.093124853 fv Gamma RP(P), Gamma FALSE #> 1539 97 0.5863916 0.113518710 fv Gamma RP(P), Gamma FALSE #> 1555 98 0.8032145 0.151506486 fv Gamma RP(P), Gamma FALSE #> 1571 99 0.5726988 0.112665995 fv Gamma RP(P), Gamma FALSE #> 1587 100 0.8511137 0.158396953 fv Gamma RP(P), Gamma FALSE #> 1603 101 0.8372638 0.155812635 fv Gamma RP(P), Gamma FALSE #> 1619 102 0.7029086 0.133768529 fv Gamma RP(P), Gamma FALSE #> 1635 103 0.8836859 0.168715151 fv Gamma RP(P), Gamma FALSE #> 1651 104 0.7399044 0.139619137 fv Gamma RP(P), Gamma FALSE #> 1667 105 0.8444006 0.159608342 fv Gamma RP(P), Gamma FALSE #> 1683 106 0.7104030 0.135352973 fv Gamma RP(P), Gamma FALSE #> 1699 107 0.8920210 0.169462833 fv Gamma RP(P), Gamma FALSE #> 1715 108 0.7782067 0.151086705 fv Gamma RP(P), Gamma FALSE #> 1731 109 0.6967850 0.134601272 fv Gamma RP(P), Gamma FALSE #> 1747 110 0.8004486 0.151100596 fv Gamma RP(P), Gamma FALSE #> 1763 111 0.8477821 0.159358489 fv Gamma RP(P), Gamma FALSE #> 1779 112 0.4652326 0.093174135 fv Gamma RP(P), Gamma FALSE #> 1795 113 0.5514675 0.108252595 fv Gamma RP(P), Gamma FALSE #> 1811 114 1.1754267 0.213550148 fv Gamma RP(P), Gamma TRUE #> 1827 115 0.6453176 0.124038453 fv Gamma RP(P), Gamma FALSE #> 1843 116 0.5128212 0.101337623 fv Gamma RP(P), Gamma FALSE #> 1859 117 0.7576375 0.142629401 fv Gamma RP(P), Gamma FALSE #> 1875 118 0.5586394 0.109635442 fv Gamma RP(P), Gamma FALSE #> 1891 119 0.6029588 0.117070228 fv Gamma RP(P), Gamma FALSE #> 1907 120 0.7150186 0.136386100 fv Gamma RP(P), Gamma FALSE #> 1923 121 0.6403640 0.124114963 fv Gamma RP(P), Gamma FALSE #> 1939 122 0.6358076 0.123045049 fv Gamma RP(P), Gamma FALSE #> 1955 123 0.7902879 0.149476111 fv Gamma RP(P), Gamma FALSE #> 1971 124 0.7337196 0.138801406 fv Gamma RP(P), Gamma FALSE #> 1987 125 0.8200071 0.155766631 fv Gamma RP(P), Gamma FALSE #> 2003 126 1.0013545 0.191643283 fv Gamma RP(P), Gamma TRUE #> 2019 127 0.8700811 0.162504747 fv Gamma RP(P), Gamma FALSE #> 2035 128 0.8632368 0.161576650 fv Gamma RP(P), Gamma FALSE #> 2051 129 0.5996664 0.119267007 fv Gamma RP(P), Gamma FALSE #> 2067 130 0.6725998 0.129252647 fv Gamma RP(P), Gamma FALSE #> 2083 131 0.6140982 0.117746976 fv Gamma RP(P), Gamma FALSE #> 2099 132 0.7648175 0.148356745 fv Gamma RP(P), Gamma FALSE #> 2115 133 0.7689487 0.147279141 fv Gamma RP(P), Gamma FALSE #> 2131 134 0.7587084 0.143867770 fv Gamma RP(P), Gamma FALSE #> 2147 135 0.5861381 0.114200376 fv Gamma RP(P), Gamma FALSE #> 2163 136 0.8141926 0.154375749 fv Gamma RP(P), Gamma FALSE #> 2179 137 0.8289906 0.155615181 fv Gamma RP(P), Gamma FALSE #> 2195 138 0.9755553 0.183087173 fv Gamma RP(P), Gamma FALSE #> 2211 139 0.6394931 0.123231427 fv Gamma RP(P), Gamma FALSE #> 2227 140 0.7139152 0.135322499 fv Gamma RP(P), Gamma FALSE #> 2243 141 0.5553028 0.110080872 fv Gamma RP(P), Gamma FALSE #> 2259 142 0.6996978 0.133621865 fv Gamma RP(P), Gamma FALSE #> 2275 143 1.1445345 0.218513226 fv Gamma RP(P), Gamma TRUE #> 2291 144 0.8547572 0.159213535 fv Gamma RP(P), Gamma FALSE #> 2307 145 0.6957523 0.133145347 fv Gamma RP(P), Gamma FALSE #> 2323 146 0.6861047 0.131992921 fv Gamma RP(P), Gamma FALSE #> 2339 147 NA NA fv Gamma RP(P), Gamma NA #> 2355 148 0.5179757 0.102001564 fv Gamma RP(P), Gamma FALSE #> 2371 149 0.6846178 0.131810489 fv Gamma RP(P), Gamma FALSE #> 2387 150 NA NA fv Gamma RP(P), Gamma NA #> 2403 151 0.8349086 0.156790347 fv Gamma RP(P), Gamma FALSE #> 2419 152 0.7973294 0.152804025 fv Gamma RP(P), Gamma FALSE #> 2435 153 0.4923993 0.097955760 fv Gamma RP(P), Gamma FALSE #> 2451 154 0.8363995 0.156721844 fv Gamma RP(P), Gamma FALSE #> 2467 155 0.6940619 0.135793329 fv Gamma RP(P), Gamma FALSE #> 2483 156 0.7151754 0.135913072 fv Gamma RP(P), Gamma FALSE #> 2499 157 0.9592753 0.181238490 fv Gamma RP(P), Gamma FALSE #> 2515 158 0.9946384 0.187427777 fv Gamma RP(P), Gamma FALSE #> 2531 159 0.5061336 0.100702406 fv Gamma RP(P), Gamma FALSE #> 2547 160 0.5671472 0.110846444 fv Gamma RP(P), Gamma FALSE #> 2563 161 1.1633775 0.212438568 fv Gamma RP(P), Gamma TRUE #> 2579 162 0.6706864 0.130117295 fv Gamma RP(P), Gamma FALSE #> 2595 163 0.5941737 0.115420188 fv Gamma RP(P), Gamma FALSE #> 2611 164 NA NA fv Gamma RP(P), Gamma NA #> 2627 165 0.7721841 0.145456395 fv Gamma RP(P), Gamma FALSE #> 2643 166 0.7965391 0.153433961 fv Gamma RP(P), Gamma FALSE #> 2659 167 0.8767056 0.163672379 fv Gamma RP(P), Gamma FALSE #> 2675 168 0.9296400 0.172682823 fv Gamma RP(P), Gamma FALSE #> 2691 169 0.7003157 0.134657034 fv Gamma RP(P), Gamma FALSE #> 2707 170 0.6969487 0.133752385 fv Gamma RP(P), Gamma FALSE #> 2723 171 0.6804580 0.132041501 fv Gamma RP(P), Gamma FALSE #> 2739 172 0.8676534 0.162110574 fv Gamma RP(P), Gamma FALSE #> 2755 173 0.6007524 0.117520007 fv Gamma RP(P), Gamma FALSE #> 2771 174 0.8205264 0.155211088 fv Gamma RP(P), Gamma FALSE #> 2787 175 0.6411124 0.124482470 fv Gamma RP(P), Gamma FALSE #> 2803 176 0.6685131 0.127629256 fv Gamma RP(P), Gamma FALSE #> 2819 177 0.5612191 0.111324967 fv Gamma RP(P), Gamma FALSE #> 2835 178 0.8696153 0.161721652 fv Gamma RP(P), Gamma FALSE #> 2851 179 0.5719307 0.111038706 fv Gamma RP(P), Gamma FALSE #> 2867 180 0.7498661 0.145859719 fv Gamma RP(P), Gamma FALSE #> 2883 181 0.8342400 0.156449843 fv Gamma RP(P), Gamma FALSE #> 2899 182 0.7307317 0.138530913 fv Gamma RP(P), Gamma FALSE #> 2915 183 0.5660622 0.110296482 fv Gamma RP(P), Gamma FALSE #> 2931 184 0.6722313 0.130153600 fv Gamma RP(P), Gamma FALSE #> 2947 185 0.8576717 0.161343877 fv Gamma RP(P), Gamma FALSE #> 2963 186 0.9062698 0.173016643 fv Gamma RP(P), Gamma FALSE #> 2979 187 0.7414907 0.141220753 fv Gamma RP(P), Gamma FALSE #> 2995 188 0.5549364 0.108588007 fv Gamma RP(P), Gamma FALSE #> 3011 189 NA NA fv Gamma RP(P), Gamma NA #> 3027 190 0.7746357 0.145922206 fv Gamma RP(P), Gamma FALSE #> 3043 191 0.7551856 0.142985236 fv Gamma RP(P), Gamma FALSE #> 3059 192 0.7775915 0.150107716 fv Gamma RP(P), Gamma FALSE #> 3075 193 0.6430137 0.124203106 fv Gamma RP(P), Gamma FALSE #> 3091 194 0.5962792 0.115366357 fv Gamma RP(P), Gamma FALSE #> 3107 195 0.8757453 0.162926509 fv Gamma RP(P), Gamma FALSE #> 3123 196 0.8185691 0.154828956 fv Gamma RP(P), Gamma FALSE #> 3139 197 0.7523839 0.141992354 fv Gamma RP(P), Gamma FALSE #> 3155 198 0.7791112 0.146503900 fv Gamma RP(P), Gamma FALSE #> 3171 199 0.5594019 0.109474490 fv Gamma RP(P), Gamma FALSE #> 3187 200 0.8269718 0.154676067 fv Gamma RP(P), Gamma FALSE #> 3203 201 0.7421167 0.141738015 fv Gamma RP(P), Gamma FALSE #> 3219 202 0.7899331 0.148298132 fv Gamma RP(P), Gamma FALSE #> 3235 203 0.7402666 0.139639494 fv Gamma RP(P), Gamma FALSE #> 3251 204 0.7440994 0.145413762 fv Gamma RP(P), Gamma FALSE #> 3267 205 0.5970540 0.116504438 fv Gamma RP(P), Gamma FALSE #> 3283 206 0.7403789 0.140695149 fv Gamma RP(P), Gamma FALSE #> 3299 207 0.5683539 0.111182081 fv Gamma RP(P), Gamma FALSE #> 3315 208 0.7459009 0.142060451 fv Gamma RP(P), Gamma FALSE #> 3331 209 0.6797062 0.130454189 fv Gamma RP(P), Gamma FALSE #> 3347 210 0.6908023 0.133192700 fv Gamma RP(P), Gamma FALSE #> 3363 211 0.9814670 0.185180252 fv Gamma RP(P), Gamma FALSE #> 3379 212 0.7275717 0.141752091 fv Gamma RP(P), Gamma FALSE #> 3395 213 0.8195451 0.155112422 fv Gamma RP(P), Gamma FALSE #> 3411 214 0.6510424 0.125935368 fv Gamma RP(P), Gamma FALSE #> 3427 215 0.8809648 0.164847839 fv Gamma RP(P), Gamma FALSE #> 3443 216 0.9160453 0.170696980 fv Gamma RP(P), Gamma FALSE #> 3459 217 0.6786443 0.131436644 fv Gamma RP(P), Gamma FALSE #> 3475 218 0.6130170 0.119462464 fv Gamma RP(P), Gamma FALSE #> 3491 219 0.8587860 0.162940219 fv Gamma RP(P), Gamma FALSE #> 3507 220 0.5645745 0.110301667 fv Gamma RP(P), Gamma FALSE #> 3523 221 0.7121007 0.136949273 fv Gamma RP(P), Gamma FALSE #> 3539 222 0.7729783 0.147339017 fv Gamma RP(P), Gamma FALSE #> 3555 223 0.7974666 0.154576435 fv Gamma RP(P), Gamma FALSE #> 3571 224 0.7615940 0.144773736 fv Gamma RP(P), Gamma FALSE #> 3587 225 0.6728903 0.129293781 fv Gamma RP(P), Gamma FALSE #> 3603 226 0.8358787 0.160645352 fv Gamma RP(P), Gamma FALSE #> 3619 227 0.6563351 0.126951384 fv Gamma RP(P), Gamma FALSE #> 3635 228 0.8883501 0.165539138 fv Gamma RP(P), Gamma FALSE #> 3651 229 0.7794882 0.147653006 fv Gamma RP(P), Gamma FALSE #> 3667 230 0.7046264 0.134302636 fv Gamma RP(P), Gamma FALSE #> 3683 231 0.7995473 0.151758843 fv Gamma RP(P), Gamma FALSE #> 3699 232 0.7343045 0.142360273 fv Gamma RP(P), Gamma FALSE #> 3715 233 0.8751457 0.164490904 fv Gamma RP(P), Gamma FALSE #> 3731 234 0.6297026 0.121422242 fv Gamma RP(P), Gamma FALSE #> 3747 235 0.7447860 0.143473450 fv Gamma RP(P), Gamma FALSE #> 3763 236 0.4983589 0.099237135 fv Gamma RP(P), Gamma FALSE #> 3779 237 0.6746635 0.131114127 fv Gamma RP(P), Gamma FALSE #> 3795 238 0.5865575 0.115419368 fv Gamma RP(P), Gamma FALSE #> 3811 239 0.7115553 0.134845742 fv Gamma RP(P), Gamma FALSE #> 3827 240 0.8624671 0.164706486 fv Gamma RP(P), Gamma FALSE #> 3843 241 0.6575508 0.126415736 fv Gamma RP(P), Gamma FALSE #> 3859 242 0.5155896 0.101988080 fv Gamma RP(P), Gamma FALSE #> 3875 243 0.8672063 0.167331273 fv Gamma RP(P), Gamma FALSE #> 3891 244 0.5652190 0.110299698 fv Gamma RP(P), Gamma FALSE #> 3907 245 0.9099031 0.170615102 fv Gamma RP(P), Gamma FALSE #> 3923 246 0.6715121 0.128245541 fv Gamma RP(P), Gamma FALSE #> 3939 247 0.7666596 0.145481254 fv Gamma RP(P), Gamma FALSE #> 3955 248 0.9441329 0.174552266 fv Gamma RP(P), Gamma FALSE #> 3971 249 0.9565287 0.180161217 fv Gamma RP(P), Gamma FALSE #> 3987 250 0.7319608 0.140182669 fv Gamma RP(P), Gamma FALSE #> 4003 251 0.7972592 0.153143991 fv Gamma RP(P), Gamma FALSE #> 4019 252 0.8050622 0.154700370 fv Gamma RP(P), Gamma FALSE #> 4035 253 0.9078567 0.176560322 fv Gamma RP(P), Gamma FALSE #> 4051 254 0.5209792 0.102295614 fv Gamma RP(P), Gamma FALSE #> 4067 255 0.7747142 0.145325614 fv Gamma RP(P), Gamma FALSE #> 4083 256 0.7249451 0.138771215 fv Gamma RP(P), Gamma FALSE #> 4099 257 0.5361170 0.104550822 fv Gamma RP(P), Gamma FALSE #> 4115 258 0.7026252 0.139222844 fv Gamma RP(P), Gamma FALSE #> 4131 259 0.7429085 0.141357296 fv Gamma RP(P), Gamma FALSE #> 4147 260 NA NA fv Gamma RP(P), Gamma NA #> 4163 261 0.4996380 0.098593653 fv Gamma RP(P), Gamma FALSE #> 4179 262 0.7307282 0.140705499 fv Gamma RP(P), Gamma FALSE #> 4195 263 0.6060010 0.118004035 fv Gamma RP(P), Gamma FALSE #> 4211 264 0.5116451 0.100491965 fv Gamma RP(P), Gamma FALSE #> 4227 265 0.5946271 0.114842799 fv Gamma RP(P), Gamma FALSE #> 4243 266 0.6163830 0.118942533 fv Gamma RP(P), Gamma FALSE #> 4259 267 0.7102904 0.136036062 fv Gamma RP(P), Gamma FALSE #> 4275 268 0.7470312 0.141482234 fv Gamma RP(P), Gamma FALSE #> 4291 269 1.0631565 0.199380875 fv Gamma RP(P), Gamma TRUE #> 4307 270 0.9061584 0.174043080 fv Gamma RP(P), Gamma FALSE #> 4323 271 0.8927398 0.167378590 fv Gamma RP(P), Gamma FALSE #> 4339 272 0.5411831 0.106864266 fv Gamma RP(P), Gamma FALSE #> 4355 273 0.6638746 0.128232822 fv Gamma RP(P), Gamma FALSE #> 4371 274 0.7225398 0.137091182 fv Gamma RP(P), Gamma FALSE #> 4387 275 0.8562018 0.159672512 fv Gamma RP(P), Gamma FALSE #> 4403 276 0.8120395 0.156356817 fv Gamma RP(P), Gamma FALSE #> 4419 277 0.6780585 0.129342060 fv Gamma RP(P), Gamma FALSE #> 4435 278 0.7362699 0.139418618 fv Gamma RP(P), Gamma FALSE #> 4451 279 0.7312040 0.138791432 fv Gamma RP(P), Gamma FALSE #> 4467 280 0.7617472 0.144139706 fv Gamma RP(P), Gamma FALSE #> 4483 281 1.0239004 0.192140750 fv Gamma RP(P), Gamma TRUE #> 4499 282 0.6014472 0.116810971 fv Gamma RP(P), Gamma FALSE #> 4515 283 0.8070494 0.156406698 fv Gamma RP(P), Gamma FALSE #> 4531 284 0.6547454 0.125591638 fv Gamma RP(P), Gamma FALSE #> 4547 285 0.5017963 0.099125117 fv Gamma RP(P), Gamma FALSE #> 4563 286 0.7664404 0.145194703 fv Gamma RP(P), Gamma FALSE #> 4579 287 0.6417145 0.124295516 fv Gamma RP(P), Gamma FALSE #> 4595 288 1.2160035 0.222504503 fv Gamma RP(P), Gamma TRUE #> 4611 289 0.6310461 0.122257396 fv Gamma RP(P), Gamma FALSE #> 4627 290 0.5976140 0.116077104 fv Gamma RP(P), Gamma FALSE #> 4643 291 0.6144723 0.119062165 fv Gamma RP(P), Gamma FALSE #> 4659 292 0.6279208 0.121314205 fv Gamma RP(P), Gamma FALSE #> 4675 293 0.8865261 0.166337950 fv Gamma RP(P), Gamma FALSE #> 4691 294 0.6338803 0.122601043 fv Gamma RP(P), Gamma FALSE #> 4707 295 1.0653819 0.195613485 fv Gamma RP(P), Gamma TRUE #> 4723 296 0.7351061 0.140428978 fv Gamma RP(P), Gamma FALSE #> 4739 297 NA NA fv Gamma RP(P), Gamma NA #> 4755 298 0.5714635 0.111383939 fv Gamma RP(P), Gamma FALSE #> 4771 299 0.5687379 0.111502873 fv Gamma RP(P), Gamma FALSE #> 4787 300 0.8507623 0.158735467 fv Gamma RP(P), Gamma FALSE #> 4803 301 0.5324432 0.104591380 fv Gamma RP(P), Gamma FALSE #> 4819 302 0.7542968 0.142000299 fv Gamma RP(P), Gamma FALSE #> 4835 303 0.6702254 0.129544084 fv Gamma RP(P), Gamma FALSE #> 4851 304 0.7359526 0.140947337 fv Gamma RP(P), Gamma FALSE #> 4867 305 0.8686497 0.162388264 fv Gamma RP(P), Gamma FALSE #> 4883 306 0.7459705 0.141847704 fv Gamma RP(P), Gamma FALSE #> 4899 307 0.7645224 0.146818849 fv Gamma RP(P), Gamma FALSE #> 4915 308 0.6534080 0.125521136 fv Gamma RP(P), Gamma FALSE #> 4931 309 0.7355909 0.139210502 fv Gamma RP(P), Gamma FALSE #> 4947 310 NA NA fv Gamma RP(P), Gamma NA #> 4963 311 0.8223787 0.154504491 fv Gamma RP(P), Gamma FALSE #> 4979 312 1.1338355 0.215053067 fv Gamma RP(P), Gamma TRUE #> 4995 313 0.7878946 0.148828816 fv Gamma RP(P), Gamma FALSE #> 5011 314 0.6331384 0.122483624 fv Gamma RP(P), Gamma FALSE #> 5027 315 0.7590237 0.143303796 fv Gamma RP(P), Gamma FALSE #> 5043 316 1.0456069 0.192281909 fv Gamma RP(P), Gamma TRUE #> 5059 317 0.6438263 0.124298460 fv Gamma RP(P), Gamma FALSE #> 5075 318 0.8458746 0.163143415 fv Gamma RP(P), Gamma FALSE #> 5091 319 0.6167836 0.119519907 fv Gamma RP(P), Gamma FALSE #> 5107 320 0.6054894 0.117299351 fv Gamma RP(P), Gamma FALSE #> 5123 321 0.8581595 0.161575543 fv Gamma RP(P), Gamma FALSE #> 5139 322 0.5470126 0.107569123 fv Gamma RP(P), Gamma FALSE #> 5155 323 0.8521730 0.159824438 fv Gamma RP(P), Gamma FALSE #> 5171 324 0.6293737 0.123041276 fv Gamma RP(P), Gamma FALSE #> 5187 325 0.7351303 0.139660930 fv Gamma RP(P), Gamma FALSE #> 5203 326 0.7037406 0.134539252 fv Gamma RP(P), Gamma FALSE #> 5219 327 0.7573005 0.143468222 fv Gamma RP(P), Gamma FALSE #> 5235 328 1.0260740 0.191722687 fv Gamma RP(P), Gamma TRUE #> 5251 329 0.8785208 0.166167340 fv Gamma RP(P), Gamma FALSE #> 5267 330 0.6958925 0.133498433 fv Gamma RP(P), Gamma FALSE #> 5283 331 0.8444511 0.157981839 fv Gamma RP(P), Gamma FALSE #> 5299 332 0.5635456 0.111106954 fv Gamma RP(P), Gamma FALSE #> 5315 333 0.5430382 0.106020576 fv Gamma RP(P), Gamma FALSE #> 5331 334 0.9485748 0.174368602 fv Gamma RP(P), Gamma FALSE #> 5347 335 0.7668800 0.145970993 fv Gamma RP(P), Gamma FALSE #> 5363 336 0.4803202 0.096188584 fv Gamma RP(P), Gamma FALSE #> 5379 337 0.6414976 0.124756829 fv Gamma RP(P), Gamma FALSE #> 5395 338 0.6042093 0.116438825 fv Gamma RP(P), Gamma FALSE #> 5411 339 0.8270540 0.156836453 fv Gamma RP(P), Gamma FALSE #> 5427 340 0.7812948 0.153293387 fv Gamma RP(P), Gamma FALSE #> 5443 341 0.5615693 0.109395593 fv Gamma RP(P), Gamma FALSE #> 5459 342 0.4507156 0.089944670 fv Gamma RP(P), Gamma TRUE #> 5475 343 0.6379126 0.123551359 fv Gamma RP(P), Gamma FALSE #> 5491 344 0.9832700 0.184814008 fv Gamma RP(P), Gamma FALSE #> 5507 345 0.8700732 0.163382934 fv Gamma RP(P), Gamma FALSE #> 5523 346 0.7930586 0.148638590 fv Gamma RP(P), Gamma FALSE #> 5539 347 0.7362875 0.139653656 fv Gamma RP(P), Gamma FALSE #> 5555 348 0.9288355 0.172358490 fv Gamma RP(P), Gamma FALSE #> 5571 349 0.8545774 0.160193152 fv Gamma RP(P), Gamma FALSE #> 5587 350 0.8162435 0.153114319 fv Gamma RP(P), Gamma FALSE #> 5603 351 0.8768429 0.168170983 fv Gamma RP(P), Gamma FALSE #> 5619 352 0.7998651 0.154372925 fv Gamma RP(P), Gamma FALSE #> 5635 353 0.5789433 0.113105924 fv Gamma RP(P), Gamma FALSE #> 5651 354 0.7427434 0.141322244 fv Gamma RP(P), Gamma FALSE #> 5667 355 0.8022031 0.150273181 fv Gamma RP(P), Gamma FALSE #> 5683 356 0.8292656 0.158481791 fv Gamma RP(P), Gamma FALSE #> 5699 357 0.6949861 0.132957253 fv Gamma RP(P), Gamma FALSE #> 5715 358 0.6410077 0.122340318 fv Gamma RP(P), Gamma FALSE #> 5731 359 0.6758443 0.133342092 fv Gamma RP(P), Gamma FALSE #> 5747 360 0.6048735 0.117286870 fv Gamma RP(P), Gamma FALSE #> 5763 361 0.9452275 0.179410146 fv Gamma RP(P), Gamma FALSE #> 5779 362 0.4613285 0.091336265 fv Gamma RP(P), Gamma TRUE #> 5795 363 NA NA fv Gamma RP(P), Gamma NA #> 5811 364 0.5305074 0.104571551 fv Gamma RP(P), Gamma FALSE #> 5827 365 0.7692393 0.150826618 fv Gamma RP(P), Gamma FALSE #> 5843 366 0.8281260 0.157369897 fv Gamma RP(P), Gamma FALSE #> 5859 367 0.8879069 0.165562059 fv Gamma RP(P), Gamma FALSE #> 5875 368 0.8819495 0.172077745 fv Gamma RP(P), Gamma FALSE #> 5891 369 0.5571989 0.108663257 fv Gamma RP(P), Gamma FALSE #> 5907 370 0.5240141 0.103230461 fv Gamma RP(P), Gamma FALSE #> 5923 371 0.8850740 0.167914113 fv Gamma RP(P), Gamma FALSE #> 5939 372 0.6292203 0.125493047 fv Gamma RP(P), Gamma FALSE #> 5955 373 0.6711393 0.128355923 fv Gamma RP(P), Gamma FALSE #> 5971 374 0.6330126 0.122222933 fv Gamma RP(P), Gamma FALSE #> 5987 375 0.6232037 0.120619676 fv Gamma RP(P), Gamma FALSE #> 6003 376 0.6709763 0.129346165 fv Gamma RP(P), Gamma FALSE #> 6019 377 0.8081042 0.155740601 fv Gamma RP(P), Gamma FALSE #> 6035 378 0.7807703 0.146835814 fv Gamma RP(P), Gamma FALSE #> 6051 379 0.6489020 0.124780001 fv Gamma RP(P), Gamma FALSE #> 6067 380 0.7690472 0.145653760 fv Gamma RP(P), Gamma FALSE #> 6083 381 0.6655172 0.128470538 fv Gamma RP(P), Gamma FALSE #> 6099 382 0.6834100 0.131022145 fv Gamma RP(P), Gamma FALSE #> 6115 383 1.0199434 0.186627092 fv Gamma RP(P), Gamma TRUE #> 6131 384 0.8425240 0.158501752 fv Gamma RP(P), Gamma FALSE #> 6147 385 0.5435103 0.106298014 fv Gamma RP(P), Gamma FALSE #> 6163 386 0.3974050 0.081499042 fv Gamma RP(P), Gamma TRUE #> 6179 387 0.5426046 0.105687478 fv Gamma RP(P), Gamma FALSE #> 6195 388 0.6611317 0.126806617 fv Gamma RP(P), Gamma FALSE #> 6211 389 0.5349625 0.105162575 fv Gamma RP(P), Gamma FALSE #> 6227 390 0.6059506 0.117577612 fv Gamma RP(P), Gamma FALSE #> 6243 391 0.5031306 0.099223928 fv Gamma RP(P), Gamma FALSE #> 6259 392 0.9247264 0.171447639 fv Gamma RP(P), Gamma FALSE #> 6275 393 0.5799003 0.113309467 fv Gamma RP(P), Gamma FALSE #> 6291 394 0.8923633 0.167756406 fv Gamma RP(P), Gamma FALSE #> 6307 395 0.7025183 0.135296087 fv Gamma RP(P), Gamma FALSE #> 6323 396 0.7120067 0.139386238 fv Gamma RP(P), Gamma FALSE #> 6339 397 0.8245329 0.154169882 fv Gamma RP(P), Gamma FALSE #> 6355 398 0.7714605 0.146465081 fv Gamma RP(P), Gamma FALSE #> 6371 399 0.6201603 0.120225120 fv Gamma RP(P), Gamma FALSE #> 6387 400 0.6674704 0.128448157 fv Gamma RP(P), Gamma FALSE #> 6403 401 0.8591833 0.163558247 fv Gamma RP(P), Gamma FALSE #> 6419 402 0.7237335 0.141496085 fv Gamma RP(P), Gamma FALSE #> 6435 403 0.6842458 0.130528240 fv Gamma RP(P), Gamma FALSE #> 6451 404 0.8914124 0.170001726 fv Gamma RP(P), Gamma FALSE #> 6467 405 0.6372709 0.122209769 fv Gamma RP(P), Gamma FALSE #> 6483 406 0.6333429 0.122577106 fv Gamma RP(P), Gamma FALSE #> 6499 407 0.7540527 0.143640882 fv Gamma RP(P), Gamma FALSE #> 6515 408 0.4838950 0.100461103 fv Gamma RP(P), Gamma FALSE #> 6531 409 0.9146888 0.169439375 fv Gamma RP(P), Gamma FALSE #> 6547 410 0.9330222 0.176834198 fv Gamma RP(P), Gamma FALSE #> 6563 411 0.7883049 0.155697900 fv Gamma RP(P), Gamma FALSE #> 6579 412 0.6774845 0.129576379 fv Gamma RP(P), Gamma FALSE #> 6595 413 0.7116535 0.136948608 fv Gamma RP(P), Gamma FALSE #> 6611 414 0.7132797 0.136232402 fv Gamma RP(P), Gamma FALSE #> 6627 415 0.8286193 0.154693246 fv Gamma RP(P), Gamma FALSE #> 6643 416 0.6156083 0.119284639 fv Gamma RP(P), Gamma FALSE #> 6659 417 0.7087812 0.135096167 fv Gamma RP(P), Gamma FALSE #> 6675 418 0.7293437 0.138932311 fv Gamma RP(P), Gamma FALSE #> 6691 419 0.5997472 0.117475840 fv Gamma RP(P), Gamma FALSE #> 6707 420 0.7993144 0.153914851 fv Gamma RP(P), Gamma FALSE #> 6723 421 0.7797894 0.147239639 fv Gamma RP(P), Gamma FALSE #> 6739 422 0.7196492 0.137084047 fv Gamma RP(P), Gamma FALSE #> 6755 423 0.7782277 0.146884783 fv Gamma RP(P), Gamma FALSE #> 6771 424 0.6735367 0.130483600 fv Gamma RP(P), Gamma FALSE #> 6787 425 0.5438044 0.106872272 fv Gamma RP(P), Gamma FALSE #> 6803 426 0.9765959 0.180951859 fv Gamma RP(P), Gamma FALSE #> 6819 427 0.4342931 0.087816670 fv Gamma RP(P), Gamma TRUE #> 6835 428 NA NA fv Gamma RP(P), Gamma NA #> 6851 429 0.6326812 0.122272867 fv Gamma RP(P), Gamma FALSE #> 6867 430 0.5864832 0.114045582 fv Gamma RP(P), Gamma FALSE #> 6883 431 0.8330418 0.156297552 fv Gamma RP(P), Gamma FALSE #> 6899 432 0.5660420 0.111497263 fv Gamma RP(P), Gamma FALSE #> 6915 433 0.7633897 0.146680676 fv Gamma RP(P), Gamma FALSE #> 6931 434 0.9157854 0.169179334 fv Gamma RP(P), Gamma FALSE #> 6947 435 0.6436417 0.123386611 fv Gamma RP(P), Gamma FALSE #> 6963 436 0.8894330 0.168215631 fv Gamma RP(P), Gamma FALSE #> 6979 437 0.6466005 0.124257627 fv Gamma RP(P), Gamma FALSE #> 6995 438 0.4983309 0.099003740 fv Gamma RP(P), Gamma FALSE #> 7011 439 0.6788690 0.131122725 fv Gamma RP(P), Gamma FALSE #> 7027 440 0.6840970 0.130674970 fv Gamma RP(P), Gamma FALSE #> 7043 441 0.4509432 0.090190377 fv Gamma RP(P), Gamma TRUE #> 7059 442 0.8197896 0.153466848 fv Gamma RP(P), Gamma FALSE #> 7075 443 0.4883504 0.097806334 fv Gamma RP(P), Gamma FALSE #> 7091 444 0.6309643 0.121865041 fv Gamma RP(P), Gamma FALSE #> 7107 445 0.8964975 0.172918156 fv Gamma RP(P), Gamma FALSE #> 7123 446 0.7383350 0.140046750 fv Gamma RP(P), Gamma FALSE #> 7139 447 0.7068869 0.134798962 fv Gamma RP(P), Gamma FALSE #> 7155 448 0.7623019 0.144996154 fv Gamma RP(P), Gamma FALSE #> 7171 449 0.8202607 0.153262713 fv Gamma RP(P), Gamma FALSE #> 7187 450 0.6652518 0.127192030 fv Gamma RP(P), Gamma FALSE #> 7203 451 0.7929428 0.149414357 fv Gamma RP(P), Gamma FALSE #> 7219 452 0.5390468 0.106252035 fv Gamma RP(P), Gamma FALSE #> 7235 453 0.7983611 0.149574089 fv Gamma RP(P), Gamma FALSE #> 7251 454 0.6809155 0.133855974 fv Gamma RP(P), Gamma FALSE #> 7267 455 0.7867915 0.148808687 fv Gamma RP(P), Gamma FALSE #> 7283 456 0.8027674 0.151115965 fv Gamma RP(P), Gamma FALSE #> 7299 457 0.7599211 0.143934714 fv Gamma RP(P), Gamma FALSE #> 7315 458 0.8392784 0.158497506 fv Gamma RP(P), Gamma FALSE #> 7331 459 0.6859136 0.132185682 fv Gamma RP(P), Gamma FALSE #> 7347 460 0.5989569 0.116734400 fv Gamma RP(P), Gamma FALSE #> 7363 461 0.7104775 0.136171002 fv Gamma RP(P), Gamma FALSE #> 7379 462 0.9353550 0.176644991 fv Gamma RP(P), Gamma FALSE #> 7395 463 0.5917203 0.113971563 fv Gamma RP(P), Gamma FALSE #> 7411 464 0.5466129 0.108141319 fv Gamma RP(P), Gamma FALSE #> 7427 465 0.6924133 0.132057038 fv Gamma RP(P), Gamma FALSE #> 7443 466 0.8595890 0.164380309 fv Gamma RP(P), Gamma FALSE #> 7459 467 0.8621341 0.162880467 fv Gamma RP(P), Gamma FALSE #> 7475 468 0.5844938 0.113603790 fv Gamma RP(P), Gamma FALSE #> 7491 469 0.7748601 0.149549630 fv Gamma RP(P), Gamma FALSE #> 7507 470 0.7885976 0.148029828 fv Gamma RP(P), Gamma FALSE #> 7523 471 0.6020256 0.116789527 fv Gamma RP(P), Gamma FALSE #> 7539 472 0.7796100 0.146855855 fv Gamma RP(P), Gamma FALSE #> 7555 473 0.6785752 0.130008471 fv Gamma RP(P), Gamma FALSE #> 7571 474 0.6250698 0.122879162 fv Gamma RP(P), Gamma FALSE #> 7587 475 1.1078072 0.208724589 fv Gamma RP(P), Gamma TRUE #> 7603 476 0.5563729 0.109196239 fv Gamma RP(P), Gamma FALSE #> 7619 477 0.8587266 0.160352193 fv Gamma RP(P), Gamma FALSE #> 7635 478 0.6830960 0.131457533 fv Gamma RP(P), Gamma FALSE #> 7651 479 0.8681593 0.162333605 fv Gamma RP(P), Gamma FALSE #> 7667 480 0.7574428 0.144816517 fv Gamma RP(P), Gamma FALSE #> 7683 481 NA NA fv Gamma RP(P), Gamma NA #> 7699 482 0.6266013 0.124370257 fv Gamma RP(P), Gamma FALSE #> 7715 483 0.6528467 0.127306631 fv Gamma RP(P), Gamma FALSE #> 7731 484 0.7127943 0.134930802 fv Gamma RP(P), Gamma FALSE #> 7747 485 0.7125054 0.135276927 fv Gamma RP(P), Gamma FALSE #> 7763 486 0.5687850 0.111413020 fv Gamma RP(P), Gamma FALSE #> 7779 487 0.8243935 0.154600910 fv Gamma RP(P), Gamma FALSE #> 7795 488 0.6812360 0.132703870 fv Gamma RP(P), Gamma FALSE #> 7811 489 0.8845371 0.169323636 fv Gamma RP(P), Gamma FALSE #> 7827 490 1.0653722 0.194660353 fv Gamma RP(P), Gamma TRUE #> 7843 491 0.6826541 0.130776905 fv Gamma RP(P), Gamma FALSE #> 7859 492 0.8235202 0.155848858 fv Gamma RP(P), Gamma FALSE #> 7875 493 0.7768356 0.151524876 fv Gamma RP(P), Gamma FALSE #> 7891 494 0.7218053 0.137841570 fv Gamma RP(P), Gamma FALSE #> 7907 495 0.7695705 0.146521336 fv Gamma RP(P), Gamma FALSE #> 7923 496 0.5166882 0.102399021 fv Gamma RP(P), Gamma FALSE #> 7939 497 0.6627873 0.126766292 fv Gamma RP(P), Gamma FALSE #> 7955 498 0.6342445 0.122728374 fv Gamma RP(P), Gamma FALSE #> 7971 499 0.9374378 0.175338174 fv Gamma RP(P), Gamma FALSE #> 7987 500 0.9019653 0.170409658 fv Gamma RP(P), Gamma FALSE #> 8003 501 0.6962305 0.132980257 fv Gamma RP(P), Gamma FALSE #> 8019 502 0.7603688 0.144250280 fv Gamma RP(P), Gamma FALSE #> 8035 503 0.6803697 0.130734079 fv Gamma RP(P), Gamma FALSE #> 8051 504 0.8753725 0.162673418 fv Gamma RP(P), Gamma FALSE #> 8067 505 0.9260534 0.173473955 fv Gamma RP(P), Gamma FALSE #> 8083 506 0.6660089 0.127478067 fv Gamma RP(P), Gamma FALSE #> 8099 507 0.6217409 0.120696018 fv Gamma RP(P), Gamma FALSE #> 8115 508 0.6657625 0.127882730 fv Gamma RP(P), Gamma FALSE #> 8131 509 0.7035885 0.134122091 fv Gamma RP(P), Gamma FALSE #> 8147 510 0.9153649 0.169975579 fv Gamma RP(P), Gamma FALSE #> 8163 511 0.7435226 0.141999828 fv Gamma RP(P), Gamma FALSE #> 8179 512 0.8092206 0.152504675 fv Gamma RP(P), Gamma FALSE #> 8195 513 0.5970830 0.116342118 fv Gamma RP(P), Gamma FALSE #> 8211 514 0.6584162 0.127259558 fv Gamma RP(P), Gamma FALSE #> 8227 515 0.6218205 0.120288402 fv Gamma RP(P), Gamma FALSE #> 8243 516 0.7564849 0.144835314 fv Gamma RP(P), Gamma FALSE #> 8259 517 0.7866480 0.148609375 fv Gamma RP(P), Gamma FALSE #> 8275 518 0.8554770 0.159037294 fv Gamma RP(P), Gamma FALSE #> 8291 519 0.7052320 0.134728823 fv Gamma RP(P), Gamma FALSE #> 8307 520 0.6204574 0.120158025 fv Gamma RP(P), Gamma FALSE #> 8323 521 0.5621929 0.109422753 fv Gamma RP(P), Gamma FALSE #> 8339 522 0.5443101 0.106427943 fv Gamma RP(P), Gamma FALSE #> 8355 523 0.6711061 0.129798304 fv Gamma RP(P), Gamma FALSE #> 8371 524 0.6038576 0.117617477 fv Gamma RP(P), Gamma FALSE #> 8387 525 1.0537419 0.193004302 fv Gamma RP(P), Gamma TRUE #> 8403 526 0.7616132 0.144330441 fv Gamma RP(P), Gamma FALSE #> 8419 527 0.6897576 0.133491604 fv Gamma RP(P), Gamma FALSE #> 8435 528 0.6067378 0.118097165 fv Gamma RP(P), Gamma FALSE #> 8451 529 0.8534833 0.160118465 fv Gamma RP(P), Gamma FALSE #> 8467 530 0.8925411 0.166714870 fv Gamma RP(P), Gamma FALSE #> 8483 531 0.7934168 0.148589902 fv Gamma RP(P), Gamma FALSE #> 8499 532 0.7905062 0.149455790 fv Gamma RP(P), Gamma FALSE #> 8515 533 0.7295545 0.139010779 fv Gamma RP(P), Gamma FALSE #> 8531 534 0.7802222 0.146683135 fv Gamma RP(P), Gamma FALSE #> 8547 535 0.9550213 0.176657581 fv Gamma RP(P), Gamma FALSE #> 8563 536 0.8285902 0.154754825 fv Gamma RP(P), Gamma FALSE #> 8579 537 0.7142590 0.139710304 fv Gamma RP(P), Gamma FALSE #> 8595 538 0.6242860 0.121665242 fv Gamma RP(P), Gamma FALSE #> 8611 539 0.8641128 0.161545364 fv Gamma RP(P), Gamma FALSE #> 8627 540 0.7678492 0.149811233 fv Gamma RP(P), Gamma FALSE #> 8643 541 0.6289813 0.122609687 fv Gamma RP(P), Gamma FALSE #> 8659 542 0.8359050 0.157109048 fv Gamma RP(P), Gamma FALSE #> 8675 543 0.9027601 0.167995185 fv Gamma RP(P), Gamma FALSE #> 8691 544 0.8244925 0.154618216 fv Gamma RP(P), Gamma FALSE #> 8707 545 0.6980857 0.134268057 fv Gamma RP(P), Gamma FALSE #> 8723 546 0.6933300 0.133073387 fv Gamma RP(P), Gamma FALSE #> 8739 547 NA NA fv Gamma RP(P), Gamma NA #> 8755 548 0.6333770 0.125231052 fv Gamma RP(P), Gamma FALSE #> 8771 549 0.8023245 0.153987219 fv Gamma RP(P), Gamma FALSE #> 8787 550 0.8868958 0.173752332 fv Gamma RP(P), Gamma FALSE #> 8803 551 0.7222047 0.137638041 fv Gamma RP(P), Gamma FALSE #> 8819 552 0.5671938 0.111950384 fv Gamma RP(P), Gamma FALSE #> 8835 553 0.5909826 0.115431956 fv Gamma RP(P), Gamma FALSE #> 8851 554 0.6819668 0.131463459 fv Gamma RP(P), Gamma FALSE #> 8867 555 0.5949893 0.116327674 fv Gamma RP(P), Gamma FALSE #> 8883 556 0.5424623 0.106665952 fv Gamma RP(P), Gamma FALSE #> 8899 557 1.1345537 0.209862447 fv Gamma RP(P), Gamma TRUE #> 8915 558 0.8058485 0.152388030 fv Gamma RP(P), Gamma FALSE #> 8931 559 0.6173724 0.122782335 fv Gamma RP(P), Gamma FALSE #> 8947 560 0.7512495 0.143599104 fv Gamma RP(P), Gamma FALSE #> 8963 561 0.7585141 0.143155705 fv Gamma RP(P), Gamma FALSE #> 8979 562 0.4484573 0.089532416 fv Gamma RP(P), Gamma TRUE #> 8995 563 0.7698720 0.146396748 fv Gamma RP(P), Gamma FALSE #> 9011 564 0.7607873 0.143322348 fv Gamma RP(P), Gamma FALSE #> 9027 565 0.8222472 0.159236501 fv Gamma RP(P), Gamma FALSE #> 9043 566 0.8548495 0.160429756 fv Gamma RP(P), Gamma FALSE #> 9059 567 0.7245818 0.138376691 fv Gamma RP(P), Gamma FALSE #> 9075 568 0.7931173 0.152597975 fv Gamma RP(P), Gamma FALSE #> 9091 569 0.6850610 0.133116653 fv Gamma RP(P), Gamma FALSE #> 9107 570 NA NA fv Gamma RP(P), Gamma NA #> 9123 571 0.7549228 0.142914728 fv Gamma RP(P), Gamma FALSE #> 9139 572 0.8278657 0.154426950 fv Gamma RP(P), Gamma FALSE #> 9155 573 0.5344300 0.105884223 fv Gamma RP(P), Gamma FALSE #> 9171 574 0.8527038 0.162694626 fv Gamma RP(P), Gamma FALSE #> 9187 575 0.7057682 0.134947723 fv Gamma RP(P), Gamma FALSE #> 9203 576 0.7448504 0.142986350 fv Gamma RP(P), Gamma FALSE #> 9219 577 0.6324739 0.122708071 fv Gamma RP(P), Gamma FALSE #> 9235 578 0.6535771 0.125371078 fv Gamma RP(P), Gamma FALSE #> 9251 579 0.6463148 0.124602683 fv Gamma RP(P), Gamma FALSE #> 9267 580 0.6122098 0.118229398 fv Gamma RP(P), Gamma FALSE #> 9283 581 0.8581943 0.160096945 fv Gamma RP(P), Gamma FALSE #> 9299 582 0.4255333 0.084857238 fv Gamma RP(P), Gamma TRUE #> 9315 583 0.7830994 0.147615332 fv Gamma RP(P), Gamma FALSE #> 9331 584 0.6297757 0.122421778 fv Gamma RP(P), Gamma FALSE #> 9347 585 1.1118116 0.202600547 fv Gamma RP(P), Gamma TRUE #> 9363 586 NA NA fv Gamma RP(P), Gamma NA #> 9379 587 0.7835051 0.147939858 fv Gamma RP(P), Gamma FALSE #> 9395 588 0.7974640 0.152143429 fv Gamma RP(P), Gamma FALSE #> 9411 589 0.5862546 0.114190230 fv Gamma RP(P), Gamma FALSE #> 9427 590 0.6735269 0.129506738 fv Gamma RP(P), Gamma FALSE #> 9443 591 0.7163856 0.137360805 fv Gamma RP(P), Gamma FALSE #> 9459 592 0.8887836 0.165763416 fv Gamma RP(P), Gamma FALSE #> 9475 593 0.6961761 0.136894275 fv Gamma RP(P), Gamma FALSE #> 9491 594 0.7225011 0.139237787 fv Gamma RP(P), Gamma FALSE #> 9507 595 0.7110869 0.135311991 fv Gamma RP(P), Gamma FALSE #> 9523 596 0.8419027 0.157392494 fv Gamma RP(P), Gamma FALSE #> 9539 597 0.9726863 0.183877561 fv Gamma RP(P), Gamma FALSE #> 9555 598 0.7321676 0.138931246 fv Gamma RP(P), Gamma FALSE #> 9571 599 1.0933409 0.198947458 fv Gamma RP(P), Gamma TRUE #> 9587 600 0.9365142 0.172756965 fv Gamma RP(P), Gamma FALSE #> 9603 601 0.6900339 0.131971647 fv Gamma RP(P), Gamma FALSE #> 9619 602 0.8071034 0.154541397 fv Gamma RP(P), Gamma FALSE #> 9635 603 0.6864634 0.131149003 fv Gamma RP(P), Gamma FALSE #> 9651 604 0.8388411 0.164957900 fv Gamma RP(P), Gamma FALSE #> 9667 605 0.8991808 0.170856264 fv Gamma RP(P), Gamma FALSE #> 9683 606 0.7896722 0.149157106 fv Gamma RP(P), Gamma FALSE #> 9699 607 0.6483373 0.125688013 fv Gamma RP(P), Gamma FALSE #> 9715 608 0.8165667 0.153820340 fv Gamma RP(P), Gamma FALSE #> 9731 609 0.8902387 0.166429149 fv Gamma RP(P), Gamma FALSE #> 9747 610 0.7933518 0.149471334 fv Gamma RP(P), Gamma FALSE #> 9763 611 0.6512893 0.125696501 fv Gamma RP(P), Gamma FALSE #> 9779 612 0.8855873 0.165210328 fv Gamma RP(P), Gamma FALSE #> 9795 613 0.7551929 0.143131416 fv Gamma RP(P), Gamma FALSE #> 9811 614 0.7010086 0.134204870 fv Gamma RP(P), Gamma FALSE #> 9827 615 0.6334929 0.122282301 fv Gamma RP(P), Gamma FALSE #> 9843 616 NA NA fv Gamma RP(P), Gamma NA #> 9859 617 0.9807549 0.184785018 fv Gamma RP(P), Gamma FALSE #> 9875 618 0.5779344 0.112517396 fv Gamma RP(P), Gamma FALSE #> 9891 619 0.6355496 0.122741929 fv Gamma RP(P), Gamma FALSE #> 9907 620 0.6841379 0.131439881 fv Gamma RP(P), Gamma FALSE #> 9923 621 0.7994067 0.150798986 fv Gamma RP(P), Gamma FALSE #> 9939 622 1.1226630 0.204596360 fv Gamma RP(P), Gamma TRUE #> 9955 623 0.5592545 0.109014752 fv Gamma RP(P), Gamma FALSE #> 9971 624 0.7146248 0.135617788 fv Gamma RP(P), Gamma FALSE #> 9987 625 0.6678007 0.128544119 fv Gamma RP(P), Gamma FALSE #> 10003 626 0.5438265 0.107223540 fv Gamma RP(P), Gamma FALSE #> 10019 627 0.6402631 0.127929319 fv Gamma RP(P), Gamma FALSE #> 10035 628 0.7161136 0.135821754 fv Gamma RP(P), Gamma FALSE #> 10051 629 0.5761695 0.113413852 fv Gamma RP(P), Gamma FALSE #> 10067 630 0.9265988 0.172078476 fv Gamma RP(P), Gamma FALSE #> 10083 631 0.8463990 0.163840387 fv Gamma RP(P), Gamma FALSE #> 10099 632 0.5918212 0.115253393 fv Gamma RP(P), Gamma FALSE #> 10115 633 0.5392676 0.105659170 fv Gamma RP(P), Gamma FALSE #> 10131 634 0.5612710 0.109666236 fv Gamma RP(P), Gamma FALSE #> 10147 635 0.4758954 0.095277949 fv Gamma RP(P), Gamma FALSE #> 10163 636 0.6850059 0.132963753 fv Gamma RP(P), Gamma FALSE #> 10179 637 0.7534974 0.142630643 fv Gamma RP(P), Gamma FALSE #> 10195 638 0.6156667 0.122944131 fv Gamma RP(P), Gamma FALSE #> 10211 639 0.7024871 0.133973160 fv Gamma RP(P), Gamma FALSE #> 10227 640 0.6138612 0.120005152 fv Gamma RP(P), Gamma FALSE #> 10243 641 0.6687009 0.127792012 fv Gamma RP(P), Gamma FALSE #> 10259 642 0.6827599 0.131499855 fv Gamma RP(P), Gamma FALSE #> 10275 643 0.6416117 0.123916292 fv Gamma RP(P), Gamma FALSE #> 10291 644 0.9303135 0.178541883 fv Gamma RP(P), Gamma FALSE #> 10307 645 0.5072111 0.099892269 fv Gamma RP(P), Gamma FALSE #> 10323 646 0.5770236 0.112923822 fv Gamma RP(P), Gamma FALSE #> 10339 647 1.0987860 0.202063919 fv Gamma RP(P), Gamma TRUE #> 10355 648 0.7249466 0.137273492 fv Gamma RP(P), Gamma FALSE #> 10371 649 0.8361975 0.156905913 fv Gamma RP(P), Gamma FALSE #> 10387 650 0.9657631 0.179386120 fv Gamma RP(P), Gamma FALSE #> 10403 651 0.9480153 0.175508178 fv Gamma RP(P), Gamma FALSE #> 10419 652 0.7609753 0.144403263 fv Gamma RP(P), Gamma FALSE #> 10435 653 0.9390345 0.178175424 fv Gamma RP(P), Gamma FALSE #> 10451 654 0.6071795 0.117910755 fv Gamma RP(P), Gamma FALSE #> 10467 655 0.6768799 0.129452910 fv Gamma RP(P), Gamma FALSE #> 10483 656 0.7872342 0.148934201 fv Gamma RP(P), Gamma FALSE #> 10499 657 0.7155506 0.136779245 fv Gamma RP(P), Gamma FALSE #> 10515 658 0.8186467 0.154783223 fv Gamma RP(P), Gamma FALSE #> 10531 659 0.8561195 0.161384412 fv Gamma RP(P), Gamma FALSE #> 10547 660 0.7969361 0.153486464 fv Gamma RP(P), Gamma FALSE #> 10563 661 0.5847750 0.113459778 fv Gamma RP(P), Gamma FALSE #> 10579 662 0.4491533 0.089376759 fv Gamma RP(P), Gamma TRUE #> 10595 663 0.6583715 0.127150411 fv Gamma RP(P), Gamma FALSE #> 10611 664 0.7245792 0.137191115 fv Gamma RP(P), Gamma FALSE #> 10627 665 0.6935069 0.133446603 fv Gamma RP(P), Gamma FALSE #> 10643 666 0.6789625 0.133210260 fv Gamma RP(P), Gamma FALSE #> 10659 667 NA NA fv Gamma RP(P), Gamma NA #> 10675 668 0.8326042 0.159460222 fv Gamma RP(P), Gamma FALSE #> 10691 669 0.5423378 0.106498804 fv Gamma RP(P), Gamma FALSE #> 10707 670 0.8502685 0.162585636 fv Gamma RP(P), Gamma FALSE #> 10723 671 0.8776545 0.164067176 fv Gamma RP(P), Gamma FALSE #> 10739 672 0.6152927 0.119051797 fv Gamma RP(P), Gamma FALSE #> 10755 673 0.6122459 0.117726094 fv Gamma RP(P), Gamma FALSE #> 10771 674 0.9559380 0.181254051 fv Gamma RP(P), Gamma FALSE #> 10787 675 0.6980390 0.132753824 fv Gamma RP(P), Gamma FALSE #> 10803 676 0.5088804 0.102994006 fv Gamma RP(P), Gamma FALSE #> 10819 677 0.6339165 0.121646475 fv Gamma RP(P), Gamma FALSE #> 10835 678 0.8369559 0.157675553 fv Gamma RP(P), Gamma FALSE #> 10851 679 0.9492848 0.176109260 fv Gamma RP(P), Gamma FALSE #> 10867 680 0.6841460 0.135356905 fv Gamma RP(P), Gamma FALSE #> 10883 681 0.5654321 0.110524762 fv Gamma RP(P), Gamma FALSE #> 10899 682 0.7617394 0.144044913 fv Gamma RP(P), Gamma FALSE #> 10915 683 0.8624482 0.164333849 fv Gamma RP(P), Gamma FALSE #> 10931 684 0.9321014 0.172684748 fv Gamma RP(P), Gamma FALSE #> 10947 685 0.6441355 0.123847642 fv Gamma RP(P), Gamma FALSE #> 10963 686 0.5512106 0.108266248 fv Gamma RP(P), Gamma FALSE #> 10979 687 NA NA fv Gamma RP(P), Gamma NA #> 10995 688 0.7248728 0.137856421 fv Gamma RP(P), Gamma FALSE #> 11011 689 0.7052454 0.134429054 fv Gamma RP(P), Gamma FALSE #> 11027 690 NA NA fv Gamma RP(P), Gamma NA #> 11043 691 NA NA fv Gamma RP(P), Gamma NA #> 11059 692 0.7287757 0.137960478 fv Gamma RP(P), Gamma FALSE #> 11075 693 0.8591672 0.163147539 fv Gamma RP(P), Gamma FALSE #> 11091 694 0.8546217 0.161886212 fv Gamma RP(P), Gamma FALSE #> 11107 695 0.7359517 0.143204482 fv Gamma RP(P), Gamma FALSE #> 11123 696 0.7274184 0.140975651 fv Gamma RP(P), Gamma FALSE #> 11139 697 0.7343352 0.139432429 fv Gamma RP(P), Gamma FALSE #> 11155 698 0.7107206 0.135622115 fv Gamma RP(P), Gamma FALSE #> 11171 699 0.7219693 0.136624664 fv Gamma RP(P), Gamma FALSE #> 11187 700 NA NA fv Gamma RP(P), Gamma NA #> 11203 701 0.6390749 0.122901167 fv Gamma RP(P), Gamma FALSE #> 11219 702 0.7207084 0.141765393 fv Gamma RP(P), Gamma FALSE #> 11235 703 0.5731972 0.112301241 fv Gamma RP(P), Gamma FALSE #> 11251 704 0.9050465 0.167387536 fv Gamma RP(P), Gamma FALSE #> 11267 705 0.9729034 0.179704350 fv Gamma RP(P), Gamma FALSE #> 11283 706 0.7510740 0.142142712 fv Gamma RP(P), Gamma FALSE #> 11299 707 0.5762848 0.113425276 fv Gamma RP(P), Gamma FALSE #> 11315 708 0.8182433 0.157478515 fv Gamma RP(P), Gamma FALSE #> 11331 709 0.7488299 0.141777904 fv Gamma RP(P), Gamma FALSE #> 11347 710 0.7464753 0.140839219 fv Gamma RP(P), Gamma FALSE #> 11363 711 0.3895724 0.079456850 fv Gamma RP(P), Gamma TRUE #> 11379 712 0.7226782 0.137898089 fv Gamma RP(P), Gamma FALSE #> 11395 713 0.7579136 0.142711103 fv Gamma RP(P), Gamma FALSE #> 11411 714 0.8613708 0.165279895 fv Gamma RP(P), Gamma FALSE #> 11427 715 0.9499191 0.176494223 fv Gamma RP(P), Gamma FALSE #> 11443 716 0.8153731 0.154756057 fv Gamma RP(P), Gamma FALSE #> 11459 717 0.6266283 0.125506065 fv Gamma RP(P), Gamma FALSE #> 11475 718 NA NA fv Gamma RP(P), Gamma NA #> 11491 719 0.6487120 0.124374007 fv Gamma RP(P), Gamma FALSE #> 11507 720 0.6467946 0.124681595 fv Gamma RP(P), Gamma FALSE #> 11523 721 0.8677451 0.163658213 fv Gamma RP(P), Gamma FALSE #> 11539 722 0.8762603 0.164114507 fv Gamma RP(P), Gamma FALSE #> 11555 723 0.7702204 0.149232323 fv Gamma RP(P), Gamma FALSE #> 11571 724 NA NA fv Gamma RP(P), Gamma NA #> 11587 725 0.6452807 0.123798465 fv Gamma RP(P), Gamma FALSE #> 11603 726 0.6388286 0.124187802 fv Gamma RP(P), Gamma FALSE #> 11619 727 0.8294437 0.158131813 fv Gamma RP(P), Gamma FALSE #> 11635 728 0.5498798 0.110995415 fv Gamma RP(P), Gamma FALSE #> 11651 729 0.7956737 0.149669575 fv Gamma RP(P), Gamma FALSE #> 11667 730 0.9039416 0.172983881 fv Gamma RP(P), Gamma FALSE #> 11683 731 0.9129412 0.170480535 fv Gamma RP(P), Gamma FALSE #> 11699 732 0.8631376 0.160142721 fv Gamma RP(P), Gamma FALSE #> 11715 733 0.5700636 0.111318610 fv Gamma RP(P), Gamma FALSE #> 11731 734 0.5720887 0.111838652 fv Gamma RP(P), Gamma FALSE #> 11747 735 0.7865514 0.148067100 fv Gamma RP(P), Gamma FALSE #> 11763 736 0.8314412 0.159749066 fv Gamma RP(P), Gamma FALSE #> 11779 737 0.7051831 0.134332472 fv Gamma RP(P), Gamma FALSE #> 11795 738 0.6441563 0.129738565 fv Gamma RP(P), Gamma FALSE #> 11811 739 0.6962830 0.133154711 fv Gamma RP(P), Gamma FALSE #> 11827 740 0.6820458 0.130662984 fv Gamma RP(P), Gamma FALSE #> 11843 741 NA NA fv Gamma RP(P), Gamma NA #> 11859 742 0.6129049 0.118716275 fv Gamma RP(P), Gamma FALSE #> 11875 743 0.7773048 0.146924665 fv Gamma RP(P), Gamma FALSE #> 11891 744 1.0015653 0.188279252 fv Gamma RP(P), Gamma FALSE #> 11907 745 0.6374989 0.124833327 fv Gamma RP(P), Gamma FALSE #> 11923 746 0.4555035 0.091061162 fv Gamma RP(P), Gamma TRUE #> 11939 747 0.6241370 0.120584114 fv Gamma RP(P), Gamma FALSE #> 11955 748 0.8319601 0.155303605 fv Gamma RP(P), Gamma FALSE #> 11971 749 0.6239035 0.120784818 fv Gamma RP(P), Gamma FALSE #> 11987 750 0.5559165 0.108448974 fv Gamma RP(P), Gamma FALSE #> 12003 751 0.9025966 0.167345296 fv Gamma RP(P), Gamma FALSE #> 12019 752 0.8153572 0.153739062 fv Gamma RP(P), Gamma FALSE #> 12035 753 0.6272796 0.122999496 fv Gamma RP(P), Gamma FALSE #> 12051 754 0.7630634 0.144501360 fv Gamma RP(P), Gamma FALSE #> 12067 755 0.7765286 0.147048699 fv Gamma RP(P), Gamma FALSE #> 12083 756 1.1339230 0.205593685 fv Gamma RP(P), Gamma TRUE #> 12099 757 0.6148180 0.119394869 fv Gamma RP(P), Gamma FALSE #> 12115 758 0.5432530 0.106690499 fv Gamma RP(P), Gamma FALSE #> 12131 759 0.6139540 0.118795452 fv Gamma RP(P), Gamma FALSE #> 12147 760 0.6053061 0.117009343 fv Gamma RP(P), Gamma FALSE #> 12163 761 0.7687177 0.146506742 fv Gamma RP(P), Gamma FALSE #> 12179 762 0.6503456 0.125085698 fv Gamma RP(P), Gamma FALSE #> 12195 763 0.6147158 0.119201346 fv Gamma RP(P), Gamma FALSE #> 12211 764 0.7158499 0.137306674 fv Gamma RP(P), Gamma FALSE #> 12227 765 0.7002176 0.134930951 fv Gamma RP(P), Gamma FALSE #> 12243 766 0.5657031 0.110972938 fv Gamma RP(P), Gamma FALSE #> 12259 767 0.7776944 0.147857952 fv Gamma RP(P), Gamma FALSE #> 12275 768 0.7286661 0.138405976 fv Gamma RP(P), Gamma FALSE #> 12291 769 0.8013336 0.150430910 fv Gamma RP(P), Gamma FALSE #> 12307 770 0.5887824 0.116113997 fv Gamma RP(P), Gamma FALSE #> 12323 771 0.5586792 0.109343864 fv Gamma RP(P), Gamma FALSE #> 12339 772 0.8625072 0.165893739 fv Gamma RP(P), Gamma FALSE #> 12355 773 0.6841501 0.132154034 fv Gamma RP(P), Gamma FALSE #> 12371 774 0.7403145 0.140287332 fv Gamma RP(P), Gamma FALSE #> 12387 775 0.9725393 0.183070759 fv Gamma RP(P), Gamma FALSE #> 12403 776 0.7450303 0.140817496 fv Gamma RP(P), Gamma FALSE #> 12419 777 0.6343648 0.122711321 fv Gamma RP(P), Gamma FALSE #> 12435 778 0.7993270 0.151902110 fv Gamma RP(P), Gamma FALSE #> 12451 779 0.8088646 0.152875106 fv Gamma RP(P), Gamma FALSE #> 12467 780 NA NA fv Gamma RP(P), Gamma NA #> 12483 781 0.6087847 0.119407501 fv Gamma RP(P), Gamma FALSE #> 12499 782 0.6605803 0.131867548 fv Gamma RP(P), Gamma FALSE #> 12515 783 0.7750586 0.146132801 fv Gamma RP(P), Gamma FALSE #> 12531 784 0.6495380 0.124443981 fv Gamma RP(P), Gamma FALSE #> 12547 785 0.6407272 0.123198032 fv Gamma RP(P), Gamma FALSE #> 12563 786 0.9000376 0.168714826 fv Gamma RP(P), Gamma FALSE #> 12579 787 0.8111483 0.157542078 fv Gamma RP(P), Gamma FALSE #> 12595 788 0.7380264 0.140992473 fv Gamma RP(P), Gamma FALSE #> 12611 789 0.8476976 0.161406608 fv Gamma RP(P), Gamma FALSE #> 12627 790 0.9024427 0.172655911 fv Gamma RP(P), Gamma FALSE #> 12643 791 0.9430376 0.178166763 fv Gamma RP(P), Gamma FALSE #> 12659 792 0.9351843 0.174085705 fv Gamma RP(P), Gamma FALSE #> 12675 793 0.6732365 0.129192553 fv Gamma RP(P), Gamma FALSE #> 12691 794 0.3859247 0.078027842 fv Gamma RP(P), Gamma TRUE #> 12707 795 0.6998057 0.134561671 fv Gamma RP(P), Gamma FALSE #> 12723 796 0.7919689 0.150058245 fv Gamma RP(P), Gamma FALSE #> 12739 797 0.6275349 0.122051366 fv Gamma RP(P), Gamma FALSE #> 12755 798 0.5850261 0.114219338 fv Gamma RP(P), Gamma FALSE #> 12771 799 0.9191908 0.178128093 fv Gamma RP(P), Gamma FALSE #> 12787 800 0.8922223 0.166340459 fv Gamma RP(P), Gamma FALSE #> 12803 801 0.6043574 0.118347117 fv Gamma RP(P), Gamma FALSE #> 12819 802 0.6171306 0.118894255 fv Gamma RP(P), Gamma FALSE #> 12835 803 0.7658729 0.144480842 fv Gamma RP(P), Gamma FALSE #> 12851 804 0.7889772 0.149222466 fv Gamma RP(P), Gamma FALSE #> 12867 805 0.8005181 0.151346516 fv Gamma RP(P), Gamma FALSE #> 12883 806 0.5808515 0.112939967 fv Gamma RP(P), Gamma FALSE #> 12899 807 0.9661626 0.179076575 fv Gamma RP(P), Gamma FALSE #> 12915 808 0.7042314 0.138042522 fv Gamma RP(P), Gamma FALSE #> 12931 809 0.8734012 0.167819080 fv Gamma RP(P), Gamma FALSE #> 12947 810 0.7531191 0.142535233 fv Gamma RP(P), Gamma FALSE #> 12963 811 0.9776521 0.180079230 fv Gamma RP(P), Gamma FALSE #> 12979 812 0.6756066 0.130110250 fv Gamma RP(P), Gamma FALSE #> 12995 813 0.8547872 0.159923942 fv Gamma RP(P), Gamma FALSE #> 13011 814 0.8478379 0.160402232 fv Gamma RP(P), Gamma FALSE #> 13027 815 1.0381546 0.193586062 fv Gamma RP(P), Gamma TRUE #> 13043 816 0.6065386 0.119016822 fv Gamma RP(P), Gamma FALSE #> 13059 817 0.8312686 0.160699876 fv Gamma RP(P), Gamma FALSE #> 13075 818 0.6723233 0.130326892 fv Gamma RP(P), Gamma FALSE #> 13091 819 0.9040734 0.172206834 fv Gamma RP(P), Gamma FALSE #> 13107 820 0.6626870 0.126985479 fv Gamma RP(P), Gamma FALSE #> 13123 821 0.7749392 0.149228961 fv Gamma RP(P), Gamma FALSE #> 13139 822 0.5198505 0.102096349 fv Gamma RP(P), Gamma FALSE #> 13155 823 0.7135305 0.136903270 fv Gamma RP(P), Gamma FALSE #> 13171 824 0.7431181 0.141763121 fv Gamma RP(P), Gamma FALSE #> 13187 825 0.5631657 0.110129879 fv Gamma RP(P), Gamma FALSE #> 13203 826 0.7061344 0.133539029 fv Gamma RP(P), Gamma FALSE #> 13219 827 0.6528873 0.124927870 fv Gamma RP(P), Gamma FALSE #> 13235 828 0.9604082 0.181879005 fv Gamma RP(P), Gamma FALSE #> 13251 829 0.6024186 0.116726974 fv Gamma RP(P), Gamma FALSE #> 13267 830 0.8517937 0.160118257 fv Gamma RP(P), Gamma FALSE #> 13283 831 0.5413722 0.107776935 fv Gamma RP(P), Gamma FALSE #> 13299 832 0.7271789 0.138304720 fv Gamma RP(P), Gamma FALSE #> 13315 833 0.7249351 0.138256244 fv Gamma RP(P), Gamma FALSE #> 13331 834 0.5385471 0.106479275 fv Gamma RP(P), Gamma FALSE #> 13347 835 0.6823086 0.130247610 fv Gamma RP(P), Gamma FALSE #> 13363 836 0.7231375 0.138611031 fv Gamma RP(P), Gamma FALSE #> 13379 837 0.6984835 0.134825376 fv Gamma RP(P), Gamma FALSE #> 13395 838 0.9073089 0.168321113 fv Gamma RP(P), Gamma FALSE #> 13411 839 0.6372419 0.123018519 fv Gamma RP(P), Gamma FALSE #> 13427 840 0.7448403 0.141879837 fv Gamma RP(P), Gamma FALSE #> 13443 841 0.7244250 0.136804241 fv Gamma RP(P), Gamma FALSE #> 13459 842 0.7297928 0.140145685 fv Gamma RP(P), Gamma FALSE #> 13475 843 0.9415358 0.175690499 fv Gamma RP(P), Gamma FALSE #> 13491 844 0.7608448 0.146469678 fv Gamma RP(P), Gamma FALSE #> 13507 845 0.8961165 0.167892095 fv Gamma RP(P), Gamma FALSE #> 13523 846 0.6313314 0.123796847 fv Gamma RP(P), Gamma FALSE #> 13539 847 0.6408113 0.126385690 fv Gamma RP(P), Gamma FALSE #> 13555 848 0.5258133 0.103834384 fv Gamma RP(P), Gamma FALSE #> 13571 849 0.7230815 0.136689050 fv Gamma RP(P), Gamma FALSE #> 13587 850 0.6668834 0.127661821 fv Gamma RP(P), Gamma FALSE #> 13603 851 0.7700720 0.146643873 fv Gamma RP(P), Gamma FALSE #> 13619 852 0.4635693 0.092359411 fv Gamma RP(P), Gamma FALSE #> 13635 853 0.7474297 0.141513530 fv Gamma RP(P), Gamma FALSE #> 13651 854 0.5512805 0.108040252 fv Gamma RP(P), Gamma FALSE #> 13667 855 0.9322641 0.173321281 fv Gamma RP(P), Gamma FALSE #> 13683 856 0.8130425 0.152735715 fv Gamma RP(P), Gamma FALSE #> 13699 857 0.5913117 0.115856491 fv Gamma RP(P), Gamma FALSE #> 13715 858 0.6348206 0.123095885 fv Gamma RP(P), Gamma FALSE #> 13731 859 0.6829374 0.133973853 fv Gamma RP(P), Gamma FALSE #> 13747 860 0.6630881 0.127449186 fv Gamma RP(P), Gamma FALSE #> 13763 861 0.8296646 0.156284689 fv Gamma RP(P), Gamma FALSE #> 13779 862 0.6256559 0.120163322 fv Gamma RP(P), Gamma FALSE #> 13795 863 0.7547157 0.143508193 fv Gamma RP(P), Gamma FALSE #> 13811 864 0.7274700 0.139329512 fv Gamma RP(P), Gamma FALSE #> 13827 865 0.7915269 0.150148411 fv Gamma RP(P), Gamma FALSE #> 13843 866 0.6938166 0.132710273 fv Gamma RP(P), Gamma FALSE #> 13859 867 0.7270595 0.138558270 fv Gamma RP(P), Gamma FALSE #> 13875 868 0.7646349 0.145030386 fv Gamma RP(P), Gamma FALSE #> 13891 869 0.7412567 0.141031242 fv Gamma RP(P), Gamma FALSE #> 13907 870 0.6928811 0.135884346 fv Gamma RP(P), Gamma FALSE #> 13923 871 NA NA fv Gamma RP(P), Gamma NA #> 13939 872 0.8741667 0.164519963 fv Gamma RP(P), Gamma FALSE #> 13955 873 0.8141794 0.152418868 fv Gamma RP(P), Gamma FALSE #> 13971 874 1.0582781 0.201045860 fv Gamma RP(P), Gamma TRUE #> 13987 875 0.6152695 0.118843687 fv Gamma RP(P), Gamma FALSE #> 14003 876 0.6653659 0.127197470 fv Gamma RP(P), Gamma FALSE #> 14019 877 0.7482744 0.141869490 fv Gamma RP(P), Gamma FALSE #> 14035 878 0.7940041 0.152669508 fv Gamma RP(P), Gamma FALSE #> 14051 879 0.7056140 0.139457238 fv Gamma RP(P), Gamma FALSE #> 14067 880 0.9237356 0.171450639 fv Gamma RP(P), Gamma FALSE #> 14083 881 NA NA fv Gamma RP(P), Gamma NA #> 14099 882 0.9622642 0.177419442 fv Gamma RP(P), Gamma FALSE #> 14115 883 0.6122745 0.118943858 fv Gamma RP(P), Gamma FALSE #> 14131 884 0.6036147 0.116254204 fv Gamma RP(P), Gamma FALSE #> 14147 885 0.5917685 0.115023471 fv Gamma RP(P), Gamma FALSE #> 14163 886 0.5903262 0.115035223 fv Gamma RP(P), Gamma FALSE #> 14179 887 0.7178929 0.137358795 fv Gamma RP(P), Gamma FALSE #> 14195 888 0.9596692 0.177126009 fv Gamma RP(P), Gamma FALSE #> 14211 889 0.8047857 0.150574821 fv Gamma RP(P), Gamma FALSE #> 14227 890 0.6195377 0.120542563 fv Gamma RP(P), Gamma FALSE #> 14243 891 0.5142069 0.100991313 fv Gamma RP(P), Gamma FALSE #> 14259 892 0.6862121 0.131311434 fv Gamma RP(P), Gamma FALSE #> 14275 893 0.8301538 0.158225903 fv Gamma RP(P), Gamma FALSE #> 14291 894 0.5690579 0.111132288 fv Gamma RP(P), Gamma FALSE #> 14307 895 0.7646876 0.145255201 fv Gamma RP(P), Gamma FALSE #> 14323 896 0.8736150 0.162750200 fv Gamma RP(P), Gamma FALSE #> 14339 897 0.7174357 0.136603078 fv Gamma RP(P), Gamma FALSE #> 14355 898 0.9077453 0.168301401 fv Gamma RP(P), Gamma FALSE #> 14371 899 0.7703075 0.146578385 fv Gamma RP(P), Gamma FALSE #> 14387 900 0.7968261 0.152992830 fv Gamma RP(P), Gamma FALSE #> 14403 901 0.6041539 0.117492458 fv Gamma RP(P), Gamma FALSE #> 14419 902 0.5806196 0.112757680 fv Gamma RP(P), Gamma FALSE #> 14435 903 0.6449749 0.123830439 fv Gamma RP(P), Gamma FALSE #> 14451 904 1.0648896 0.202836264 fv Gamma RP(P), Gamma TRUE #> 14467 905 0.6172244 0.118612589 fv Gamma RP(P), Gamma FALSE #> 14483 906 0.9307485 0.171739678 fv Gamma RP(P), Gamma FALSE #> 14499 907 0.7212674 0.137324092 fv Gamma RP(P), Gamma FALSE #> 14515 908 0.6557254 0.129913240 fv Gamma RP(P), Gamma FALSE #> 14531 909 0.6191823 0.120399527 fv Gamma RP(P), Gamma FALSE #> 14547 910 0.5543950 0.108411251 fv Gamma RP(P), Gamma FALSE #> 14563 911 0.7093924 0.139027722 fv Gamma RP(P), Gamma FALSE #> 14579 912 0.5474285 0.106437830 fv Gamma RP(P), Gamma FALSE #> 14595 913 0.7027527 0.133771400 fv Gamma RP(P), Gamma FALSE #> 14611 914 0.6350090 0.123912603 fv Gamma RP(P), Gamma FALSE #> 14627 915 0.8877144 0.168402032 fv Gamma RP(P), Gamma FALSE #> 14643 916 0.5324769 0.103993777 fv Gamma RP(P), Gamma FALSE #> 14659 917 0.8257094 0.158306447 fv Gamma RP(P), Gamma FALSE #> 14675 918 0.7822604 0.147161994 fv Gamma RP(P), Gamma FALSE #> 14691 919 0.5649634 0.109871170 fv Gamma RP(P), Gamma FALSE #> 14707 920 0.7581416 0.142890003 fv Gamma RP(P), Gamma FALSE #> 14723 921 0.8239834 0.155853841 fv Gamma RP(P), Gamma FALSE #> 14739 922 1.0610788 0.198654926 fv Gamma RP(P), Gamma TRUE #> 14755 923 0.7195818 0.136933304 fv Gamma RP(P), Gamma FALSE #> 14771 924 0.7698761 0.144921933 fv Gamma RP(P), Gamma FALSE #> 14787 925 0.8687568 0.166258634 fv Gamma RP(P), Gamma FALSE #> 14803 926 0.7069269 0.133988760 fv Gamma RP(P), Gamma FALSE #> 14819 927 0.4598690 0.091786557 fv Gamma RP(P), Gamma FALSE #> 14835 928 0.6924455 0.131790224 fv Gamma RP(P), Gamma FALSE #> 14851 929 NA NA fv Gamma RP(P), Gamma NA #> 14867 930 0.8848479 0.169540478 fv Gamma RP(P), Gamma FALSE #> 14883 931 0.6753327 0.128916825 fv Gamma RP(P), Gamma FALSE #> 14899 932 0.8372623 0.156313520 fv Gamma RP(P), Gamma FALSE #> 14915 933 0.6307088 0.122091618 fv Gamma RP(P), Gamma FALSE #> 14931 934 0.6027997 0.116538645 fv Gamma RP(P), Gamma FALSE #> 14947 935 0.5052707 0.100596407 fv Gamma RP(P), Gamma FALSE #> 14963 936 0.5930017 0.114762813 fv Gamma RP(P), Gamma FALSE #> 14979 937 1.1060700 0.204812720 fv Gamma RP(P), Gamma TRUE #> 14995 938 0.7900036 0.149577687 fv Gamma RP(P), Gamma FALSE #> 15011 939 0.8269911 0.155312585 fv Gamma RP(P), Gamma FALSE #> 15027 940 0.7651135 0.144304466 fv Gamma RP(P), Gamma FALSE #> 15043 941 0.6356078 0.122487768 fv Gamma RP(P), Gamma FALSE #> 15059 942 0.6473050 0.124922562 fv Gamma RP(P), Gamma FALSE #> 15075 943 0.4807370 0.095724602 fv Gamma RP(P), Gamma FALSE #> 15091 944 0.6194064 0.119154705 fv Gamma RP(P), Gamma FALSE #> 15107 945 0.6175935 0.119838731 fv Gamma RP(P), Gamma FALSE #> 15123 946 0.7670644 0.149036648 fv Gamma RP(P), Gamma FALSE #> 15139 947 0.6811637 0.132119739 fv Gamma RP(P), Gamma FALSE #> 15155 948 0.5151351 0.102962455 fv Gamma RP(P), Gamma FALSE #> 15171 949 0.6194144 0.120993729 fv Gamma RP(P), Gamma FALSE #> 15187 950 0.6245088 0.122145644 fv Gamma RP(P), Gamma FALSE #> 15203 951 0.7155764 0.136307065 fv Gamma RP(P), Gamma FALSE #> 15219 952 0.6737609 0.129729678 fv Gamma RP(P), Gamma FALSE #> 15235 953 1.0941966 0.202309534 fv Gamma RP(P), Gamma TRUE #> 15251 954 0.6752267 0.129373036 fv Gamma RP(P), Gamma FALSE #> 15267 955 0.8191963 0.153734262 fv Gamma RP(P), Gamma FALSE #> 15283 956 0.6642468 0.128557962 fv Gamma RP(P), Gamma FALSE #> 15299 957 0.6334643 0.123008889 fv Gamma RP(P), Gamma FALSE #> 15315 958 0.5365145 0.105276009 fv Gamma RP(P), Gamma FALSE #> 15331 959 0.5981546 0.115741211 fv Gamma RP(P), Gamma FALSE #> 15347 960 0.7820444 0.148491202 fv Gamma RP(P), Gamma FALSE #> 15363 961 0.5120426 0.101261877 fv Gamma RP(P), Gamma FALSE #> 15379 962 0.9039760 0.168664395 fv Gamma RP(P), Gamma FALSE #> 15395 963 0.8351072 0.158257000 fv Gamma RP(P), Gamma FALSE #> 15411 964 0.6922496 0.132776055 fv Gamma RP(P), Gamma FALSE #> 15427 965 0.6365475 0.123530828 fv Gamma RP(P), Gamma FALSE #> 15443 966 0.7682227 0.146838969 fv Gamma RP(P), Gamma FALSE #> 15459 967 0.6676674 0.127821817 fv Gamma RP(P), Gamma FALSE #> 15475 968 0.5625265 0.109741850 fv Gamma RP(P), Gamma FALSE #> 15491 969 0.7509732 0.144589636 fv Gamma RP(P), Gamma FALSE #> 15507 970 0.7023211 0.138688899 fv Gamma RP(P), Gamma FALSE #> 15523 971 0.6365563 0.123319119 fv Gamma RP(P), Gamma FALSE #> 15539 972 0.6556819 0.129732139 fv Gamma RP(P), Gamma FALSE #> 15555 973 0.9647090 0.185057265 fv Gamma RP(P), Gamma FALSE #> 15571 974 0.5263112 0.103972669 fv Gamma RP(P), Gamma FALSE #> 15587 975 0.5028392 0.099877710 fv Gamma RP(P), Gamma FALSE #> 15603 976 0.7556945 0.143837742 fv Gamma RP(P), Gamma FALSE #> 15619 977 0.8499235 0.158553778 fv Gamma RP(P), Gamma FALSE #> 15635 978 0.8299769 0.159832741 fv Gamma RP(P), Gamma FALSE #> 15651 979 0.8153734 0.157312216 fv Gamma RP(P), Gamma FALSE #> 15667 980 0.5361506 0.105128657 fv Gamma RP(P), Gamma FALSE #> 15683 981 0.7147316 0.137951031 fv Gamma RP(P), Gamma FALSE #> 15699 982 0.9684844 0.181555375 fv Gamma RP(P), Gamma FALSE #> 15715 983 0.5330180 0.105260888 fv Gamma RP(P), Gamma FALSE #> 15731 984 0.7522072 0.143060278 fv Gamma RP(P), Gamma FALSE #> 15747 985 0.8205779 0.157882770 fv Gamma RP(P), Gamma FALSE #> 15763 986 0.6120942 0.117431990 fv Gamma RP(P), Gamma FALSE #> 15779 987 0.5490514 0.107616085 fv Gamma RP(P), Gamma FALSE #> 15795 988 0.6296822 0.121481511 fv Gamma RP(P), Gamma FALSE #> 15811 989 0.7954111 0.149703493 fv Gamma RP(P), Gamma FALSE #> 15827 990 0.7113507 0.134852556 fv Gamma RP(P), Gamma FALSE #> 15843 991 0.7586014 0.144688767 fv Gamma RP(P), Gamma FALSE #> 15859 992 0.7789712 0.148678906 fv Gamma RP(P), Gamma FALSE #> 15875 993 0.9452686 0.175283351 fv Gamma RP(P), Gamma FALSE #> 15891 994 0.6625835 0.127525541 fv Gamma RP(P), Gamma FALSE #> 15907 995 0.8179336 0.154628613 fv Gamma RP(P), Gamma FALSE #> 15923 996 0.6698410 0.128532500 fv Gamma RP(P), Gamma FALSE #> 15939 997 0.6029261 0.120579994 fv Gamma RP(P), Gamma FALSE #> 15955 998 0.6444980 0.124308172 fv Gamma RP(P), Gamma FALSE #> 15971 999 0.5097824 0.100070485 fv Gamma RP(P), Gamma FALSE #> 15987 1000 0.5002252 0.099547221 fv Gamma RP(P), Gamma FALSE #> 4 1 0.8410503 0.180489790 fv Gamma RP(P), Log-Normal FALSE #> 20 2 0.8678277 0.194181070 fv Gamma RP(P), Log-Normal FALSE #> 36 3 1.5656905 0.354448508 fv Gamma RP(P), Log-Normal TRUE #> 52 4 1.2089109 0.260522826 fv Gamma RP(P), Log-Normal FALSE #> 68 5 0.9105106 0.200479265 fv Gamma RP(P), Log-Normal FALSE #> 84 6 0.9727359 0.207142387 fv Gamma RP(P), Log-Normal FALSE #> 100 7 0.9091356 0.198318108 fv Gamma RP(P), Log-Normal FALSE #> 116 8 1.3377013 0.293288046 fv Gamma RP(P), Log-Normal FALSE #> 132 9 1.2350450 0.276016839 fv Gamma RP(P), Log-Normal FALSE #> 148 10 0.9974789 0.217294847 fv Gamma RP(P), Log-Normal FALSE #> 164 11 1.0414795 0.229502409 fv Gamma RP(P), Log-Normal FALSE #> 180 12 1.4499625 0.321000485 fv Gamma RP(P), Log-Normal FALSE #> 196 13 1.2289253 0.270499075 fv Gamma RP(P), Log-Normal FALSE #> 212 14 0.7903710 0.178471107 fv Gamma RP(P), Log-Normal FALSE #> 228 15 1.1996110 0.263087699 fv Gamma RP(P), Log-Normal FALSE #> 244 16 1.2290670 0.262683325 fv Gamma RP(P), Log-Normal FALSE #> 260 17 0.7668133 0.166707205 fv Gamma RP(P), Log-Normal FALSE #> 276 18 0.5614283 0.129201981 fv Gamma RP(P), Log-Normal FALSE #> 292 19 0.8973139 0.194570679 fv Gamma RP(P), Log-Normal FALSE #> 308 20 1.2979832 0.290290296 fv Gamma RP(P), Log-Normal FALSE #> 324 21 0.6887073 0.156427688 fv Gamma RP(P), Log-Normal FALSE #> 340 22 1.2170119 0.272426758 fv Gamma RP(P), Log-Normal FALSE #> 356 23 0.8168514 0.177990111 fv Gamma RP(P), Log-Normal FALSE #> 372 24 1.0319698 0.223783982 fv Gamma RP(P), Log-Normal FALSE #> 388 25 1.1205947 0.246445015 fv Gamma RP(P), Log-Normal FALSE #> 404 26 0.9638065 0.214741205 fv Gamma RP(P), Log-Normal FALSE #> 420 27 1.8077166 0.405187974 fv Gamma RP(P), Log-Normal TRUE #> 436 28 1.4582922 0.319696485 fv Gamma RP(P), Log-Normal FALSE #> 452 29 1.2743998 0.277048737 fv Gamma RP(P), Log-Normal FALSE #> 468 30 1.4103568 0.311798652 fv Gamma RP(P), Log-Normal FALSE #> 484 31 0.8138218 0.185276938 fv Gamma RP(P), Log-Normal FALSE #> 500 32 0.9982089 0.220955990 fv Gamma RP(P), Log-Normal FALSE #> 516 33 0.8061031 0.175345832 fv Gamma RP(P), Log-Normal FALSE #> 532 34 0.7039887 0.153529988 fv Gamma RP(P), Log-Normal FALSE #> 548 35 1.0346859 0.233365573 fv Gamma RP(P), Log-Normal FALSE #> 564 36 0.7549084 0.171089345 fv Gamma RP(P), Log-Normal FALSE #> 580 37 0.7130831 0.152936839 fv Gamma RP(P), Log-Normal FALSE #> 596 38 0.6323124 0.137321184 fv Gamma RP(P), Log-Normal FALSE #> 612 39 0.9223978 0.197745952 fv Gamma RP(P), Log-Normal FALSE #> 628 40 0.5917448 0.131429331 fv Gamma RP(P), Log-Normal FALSE #> 644 41 1.7030475 0.362512848 fv Gamma RP(P), Log-Normal TRUE #> 660 42 0.9836085 0.221167054 fv Gamma RP(P), Log-Normal FALSE #> 676 43 1.0892011 0.236781660 fv Gamma RP(P), Log-Normal FALSE #> 692 44 1.0691287 0.229946817 fv Gamma RP(P), Log-Normal FALSE #> 708 45 0.9125777 0.193490742 fv Gamma RP(P), Log-Normal FALSE #> 724 46 0.8640446 0.183399015 fv Gamma RP(P), Log-Normal FALSE #> 740 47 1.3812417 0.310356076 fv Gamma RP(P), Log-Normal FALSE #> 756 48 0.9461687 0.209437725 fv Gamma RP(P), Log-Normal FALSE #> 772 49 1.2123569 0.272535046 fv Gamma RP(P), Log-Normal FALSE #> 788 50 1.0157173 0.219640404 fv Gamma RP(P), Log-Normal FALSE #> 804 51 1.2240924 0.266048868 fv Gamma RP(P), Log-Normal FALSE #> 820 52 0.6314951 0.135520991 fv Gamma RP(P), Log-Normal FALSE #> 836 53 0.7902155 0.170518782 fv Gamma RP(P), Log-Normal FALSE #> 852 54 0.6234466 0.136430712 fv Gamma RP(P), Log-Normal FALSE #> 868 55 1.1077144 0.243206554 fv Gamma RP(P), Log-Normal FALSE #> 884 56 0.8032454 0.176040775 fv Gamma RP(P), Log-Normal FALSE #> 900 57 1.0879018 0.236307364 fv Gamma RP(P), Log-Normal FALSE #> 916 58 0.9079961 0.206563826 fv Gamma RP(P), Log-Normal FALSE #> 932 59 0.8521420 0.182802754 fv Gamma RP(P), Log-Normal FALSE #> 948 60 1.1246211 0.247632446 fv Gamma RP(P), Log-Normal FALSE #> 964 61 0.8496498 0.182406159 fv Gamma RP(P), Log-Normal FALSE #> 980 62 0.6798459 0.145192799 fv Gamma RP(P), Log-Normal FALSE #> 996 63 1.1786060 0.259638432 fv Gamma RP(P), Log-Normal FALSE #> 1012 64 0.8159884 0.175037739 fv Gamma RP(P), Log-Normal FALSE #> 1028 65 0.8800785 0.187329515 fv Gamma RP(P), Log-Normal FALSE #> 1044 66 0.6475174 0.141594919 fv Gamma RP(P), Log-Normal FALSE #> 1060 67 1.1346861 0.243224867 fv Gamma RP(P), Log-Normal FALSE #> 1076 68 0.9451782 0.204530548 fv Gamma RP(P), Log-Normal FALSE #> 1092 69 0.6591367 0.142421595 fv Gamma RP(P), Log-Normal FALSE #> 1108 70 0.8957225 0.201454630 fv Gamma RP(P), Log-Normal FALSE #> 1124 71 1.2425651 0.269862801 fv Gamma RP(P), Log-Normal FALSE #> 1140 72 0.7988484 0.172472083 fv Gamma RP(P), Log-Normal FALSE #> 1156 73 0.5992919 0.131137709 fv Gamma RP(P), Log-Normal FALSE #> 1172 74 0.8804460 0.189838649 fv Gamma RP(P), Log-Normal FALSE #> 1188 75 0.9777687 0.216420261 fv Gamma RP(P), Log-Normal FALSE #> 1204 76 0.9693736 0.219502318 fv Gamma RP(P), Log-Normal FALSE #> 1220 77 1.0165404 0.226139509 fv Gamma RP(P), Log-Normal FALSE #> 1236 78 1.4399271 0.315071555 fv Gamma RP(P), Log-Normal FALSE #> 1252 79 2.1221995 0.470009490 fv Gamma RP(P), Log-Normal TRUE #> 1268 80 0.7791535 0.174703739 fv Gamma RP(P), Log-Normal FALSE #> 1284 81 1.2547237 0.280827316 fv Gamma RP(P), Log-Normal FALSE #> 1300 82 0.9467868 0.204477217 fv Gamma RP(P), Log-Normal FALSE #> 1316 83 0.6230714 0.145922655 fv Gamma RP(P), Log-Normal FALSE #> 1332 84 0.9656183 0.208305949 fv Gamma RP(P), Log-Normal FALSE #> 1348 85 0.8409584 0.179338509 fv Gamma RP(P), Log-Normal FALSE #> 1364 86 0.8783902 0.188634107 fv Gamma RP(P), Log-Normal FALSE #> 1380 87 0.7891754 0.171683960 fv Gamma RP(P), Log-Normal FALSE #> 1396 88 0.8889765 0.189117565 fv Gamma RP(P), Log-Normal FALSE #> 1412 89 1.0136504 0.220546193 fv Gamma RP(P), Log-Normal FALSE #> 1428 90 1.1286349 0.241320253 fv Gamma RP(P), Log-Normal FALSE #> 1444 91 0.9312858 0.201825397 fv Gamma RP(P), Log-Normal FALSE #> 1460 92 0.8289786 0.178341610 fv Gamma RP(P), Log-Normal FALSE #> 1476 93 1.4146168 0.330757275 fv Gamma RP(P), Log-Normal TRUE #> 1492 94 1.1853824 0.265460198 fv Gamma RP(P), Log-Normal FALSE #> 1508 95 0.9465371 0.204446330 fv Gamma RP(P), Log-Normal FALSE #> 1524 96 0.5360025 0.117580795 fv Gamma RP(P), Log-Normal FALSE #> 1540 97 0.7049504 0.150930049 fv Gamma RP(P), Log-Normal FALSE #> 1556 98 1.0626450 0.230692215 fv Gamma RP(P), Log-Normal FALSE #> 1572 99 0.7236906 0.160439565 fv Gamma RP(P), Log-Normal FALSE #> 1588 100 1.2194488 0.261578712 fv Gamma RP(P), Log-Normal FALSE #> 1604 101 1.0668733 0.228523775 fv Gamma RP(P), Log-Normal FALSE #> 1620 102 0.9285004 0.200447554 fv Gamma RP(P), Log-Normal FALSE #> 1636 103 1.3458088 0.304378913 fv Gamma RP(P), Log-Normal FALSE #> 1652 104 1.0710874 0.231465125 fv Gamma RP(P), Log-Normal FALSE #> 1668 105 1.2613946 0.281394393 fv Gamma RP(P), Log-Normal FALSE #> 1684 106 0.8969644 0.193536579 fv Gamma RP(P), Log-Normal FALSE #> 1700 107 1.3073644 0.291540572 fv Gamma RP(P), Log-Normal FALSE #> 1716 108 1.2015396 0.273156263 fv Gamma RP(P), Log-Normal FALSE #> 1732 109 0.9608367 0.215133741 fv Gamma RP(P), Log-Normal FALSE #> 1748 110 1.0549760 0.230967027 fv Gamma RP(P), Log-Normal FALSE #> 1764 111 1.1546607 0.253379239 fv Gamma RP(P), Log-Normal FALSE #> 1780 112 0.5673895 0.125437515 fv Gamma RP(P), Log-Normal FALSE #> 1796 113 0.6343064 0.137652658 fv Gamma RP(P), Log-Normal FALSE #> 1812 114 1.6994774 0.372630539 fv Gamma RP(P), Log-Normal TRUE #> 1828 115 0.8096436 0.174316311 fv Gamma RP(P), Log-Normal FALSE #> 1844 116 0.5983113 0.130571723 fv Gamma RP(P), Log-Normal FALSE #> 1860 117 1.0752666 0.230788747 fv Gamma RP(P), Log-Normal FALSE #> 1876 118 0.6424306 0.138884328 fv Gamma RP(P), Log-Normal FALSE #> 1892 119 0.7987293 0.174838654 fv Gamma RP(P), Log-Normal FALSE #> 1908 120 0.9198102 0.199426585 fv Gamma RP(P), Log-Normal FALSE #> 1924 121 0.7655232 0.165876205 fv Gamma RP(P), Log-Normal FALSE #> 1940 122 0.8673380 0.192315723 fv Gamma RP(P), Log-Normal FALSE #> 1956 123 0.9257457 0.199557099 fv Gamma RP(P), Log-Normal FALSE #> 1972 124 0.9741059 0.208749126 fv Gamma RP(P), Log-Normal FALSE #> 1988 125 1.2460856 0.279458468 fv Gamma RP(P), Log-Normal FALSE #> 2004 126 1.5223418 0.348979386 fv Gamma RP(P), Log-Normal TRUE #> 2020 127 1.0897918 0.233748704 fv Gamma RP(P), Log-Normal FALSE #> 2036 128 1.0913695 0.235245203 fv Gamma RP(P), Log-Normal FALSE #> 2052 129 0.7759233 0.174810378 fv Gamma RP(P), Log-Normal FALSE #> 2068 130 0.8542536 0.185655091 fv Gamma RP(P), Log-Normal FALSE #> 2084 131 0.8677951 0.186392333 fv Gamma RP(P), Log-Normal FALSE #> 2100 132 1.0182273 0.229239447 fv Gamma RP(P), Log-Normal FALSE #> 2116 133 0.9314544 0.204039232 fv Gamma RP(P), Log-Normal FALSE #> 2132 134 1.0852088 0.238460386 fv Gamma RP(P), Log-Normal FALSE #> 2148 135 0.7909149 0.173975625 fv Gamma RP(P), Log-Normal FALSE #> 2164 136 0.9778860 0.214124322 fv Gamma RP(P), Log-Normal FALSE #> 2180 137 1.2598163 0.276133548 fv Gamma RP(P), Log-Normal FALSE #> 2196 138 1.2809055 0.281451627 fv Gamma RP(P), Log-Normal FALSE #> 2212 139 0.7995624 0.172343978 fv Gamma RP(P), Log-Normal FALSE #> 2228 140 1.0542020 0.228792828 fv Gamma RP(P), Log-Normal FALSE #> 2244 141 0.7478963 0.168448746 fv Gamma RP(P), Log-Normal FALSE #> 2260 142 0.9760714 0.213021566 fv Gamma RP(P), Log-Normal FALSE #> 2276 143 1.7801465 0.420367979 fv Gamma RP(P), Log-Normal TRUE #> 2292 144 1.1180069 0.240026858 fv Gamma RP(P), Log-Normal FALSE #> 2308 145 0.8550480 0.185257078 fv Gamma RP(P), Log-Normal FALSE #> 2324 146 0.8869459 0.194368374 fv Gamma RP(P), Log-Normal FALSE #> 2340 147 1.0416163 0.222624864 fv Gamma RP(P), Log-Normal FALSE #> 2356 148 0.6177941 0.133321319 fv Gamma RP(P), Log-Normal FALSE #> 2372 149 0.8384950 0.183594689 fv Gamma RP(P), Log-Normal FALSE #> 2388 150 1.1818709 0.256428027 fv Gamma RP(P), Log-Normal FALSE #> 2404 151 1.1336835 0.246106754 fv Gamma RP(P), Log-Normal FALSE #> 2420 152 1.2047244 0.274407174 fv Gamma RP(P), Log-Normal FALSE #> 2436 153 0.6319178 0.140024355 fv Gamma RP(P), Log-Normal FALSE #> 2452 154 1.1227542 0.243273981 fv Gamma RP(P), Log-Normal FALSE #> 2468 155 0.9472756 0.213435649 fv Gamma RP(P), Log-Normal FALSE #> 2484 156 0.9353948 0.201845857 fv Gamma RP(P), Log-Normal FALSE #> 2500 157 1.4443196 0.325027201 fv Gamma RP(P), Log-Normal FALSE #> 2516 158 1.4804150 0.332558943 fv Gamma RP(P), Log-Normal TRUE #> 2532 159 0.6630153 0.148287051 fv Gamma RP(P), Log-Normal FALSE #> 2548 160 0.6900087 0.149587077 fv Gamma RP(P), Log-Normal FALSE #> 2564 161 1.7387701 0.385887845 fv Gamma RP(P), Log-Normal TRUE #> 2580 162 0.9687233 0.217750869 fv Gamma RP(P), Log-Normal FALSE #> 2596 163 0.6827167 0.145583781 fv Gamma RP(P), Log-Normal FALSE #> 2612 164 1.2172745 0.262189900 fv Gamma RP(P), Log-Normal FALSE #> 2628 165 1.0784115 0.233084303 fv Gamma RP(P), Log-Normal FALSE #> 2644 166 1.1583751 0.261285259 fv Gamma RP(P), Log-Normal FALSE #> 2660 167 1.3212424 0.288994706 fv Gamma RP(P), Log-Normal FALSE #> 2676 168 1.0892162 0.232654723 fv Gamma RP(P), Log-Normal FALSE #> 2692 169 0.9488717 0.210488425 fv Gamma RP(P), Log-Normal FALSE #> 2708 170 0.9425105 0.207346315 fv Gamma RP(P), Log-Normal FALSE #> 2724 171 0.9648281 0.217152696 fv Gamma RP(P), Log-Normal FALSE #> 2740 172 1.1441352 0.247932693 fv Gamma RP(P), Log-Normal FALSE #> 2756 173 0.7910405 0.176024495 fv Gamma RP(P), Log-Normal FALSE #> 2772 174 1.1316952 0.249970141 fv Gamma RP(P), Log-Normal FALSE #> 2788 175 0.8198924 0.180989910 fv Gamma RP(P), Log-Normal FALSE #> 2804 176 0.8753872 0.188037677 fv Gamma RP(P), Log-Normal FALSE #> 2820 177 0.7720114 0.176313354 fv Gamma RP(P), Log-Normal FALSE #> 2836 178 1.1816336 0.253573112 fv Gamma RP(P), Log-Normal FALSE #> 2852 179 0.7570887 0.163987104 fv Gamma RP(P), Log-Normal FALSE #> 2868 180 1.0248482 0.231084001 fv Gamma RP(P), Log-Normal FALSE #> 2884 181 1.1758148 0.255526928 fv Gamma RP(P), Log-Normal FALSE #> 2900 182 0.9353048 0.200381412 fv Gamma RP(P), Log-Normal FALSE #> 2916 183 0.7649203 0.166913250 fv Gamma RP(P), Log-Normal FALSE #> 2932 184 0.9391842 0.210675866 fv Gamma RP(P), Log-Normal FALSE #> 2948 185 1.2001237 0.263877714 fv Gamma RP(P), Log-Normal FALSE #> 2964 186 1.3870806 0.315929817 fv Gamma RP(P), Log-Normal FALSE #> 2980 187 0.9699397 0.211577834 fv Gamma RP(P), Log-Normal FALSE #> 2996 188 0.6690904 0.144881941 fv Gamma RP(P), Log-Normal FALSE #> 3012 189 1.0329302 0.225123247 fv Gamma RP(P), Log-Normal FALSE #> 3028 190 0.9803038 0.208776860 fv Gamma RP(P), Log-Normal FALSE #> 3044 191 1.0084836 0.219927110 fv Gamma RP(P), Log-Normal FALSE #> 3060 192 1.0550664 0.236314960 fv Gamma RP(P), Log-Normal FALSE #> 3076 193 0.8630140 0.189691189 fv Gamma RP(P), Log-Normal FALSE #> 3092 194 0.8052466 0.175195362 fv Gamma RP(P), Log-Normal FALSE #> 3108 195 1.0968900 0.233922924 fv Gamma RP(P), Log-Normal FALSE #> 3124 196 1.1559404 0.256854876 fv Gamma RP(P), Log-Normal FALSE #> 3140 197 0.9197354 0.195423075 fv Gamma RP(P), Log-Normal FALSE #> 3156 198 0.9870597 0.210203075 fv Gamma RP(P), Log-Normal FALSE #> 3172 199 0.7693873 0.169248931 fv Gamma RP(P), Log-Normal FALSE #> 3188 200 1.0852385 0.232970650 fv Gamma RP(P), Log-Normal FALSE #> 3204 201 1.0582087 0.233919328 fv Gamma RP(P), Log-Normal FALSE #> 3220 202 1.1012224 0.237450055 fv Gamma RP(P), Log-Normal FALSE #> 3236 203 0.9917678 0.212158246 fv Gamma RP(P), Log-Normal FALSE #> 3252 204 1.0600987 0.242348250 fv Gamma RP(P), Log-Normal FALSE #> 3268 205 0.7573698 0.166925875 fv Gamma RP(P), Log-Normal FALSE #> 3284 206 1.0214815 0.222696133 fv Gamma RP(P), Log-Normal FALSE #> 3300 207 0.6835123 0.147794118 fv Gamma RP(P), Log-Normal FALSE #> 3316 208 0.9790364 0.214484170 fv Gamma RP(P), Log-Normal FALSE #> 3332 209 0.9284396 0.203537107 fv Gamma RP(P), Log-Normal FALSE #> 3348 210 0.9177248 0.203825830 fv Gamma RP(P), Log-Normal FALSE #> 3364 211 1.4985260 0.338006117 fv Gamma RP(P), Log-Normal TRUE #> 3380 212 0.9970864 0.223396310 fv Gamma RP(P), Log-Normal FALSE #> 3396 213 1.1144267 0.246404561 fv Gamma RP(P), Log-Normal FALSE #> 3412 214 1.0088299 0.226415030 fv Gamma RP(P), Log-Normal FALSE #> 3428 215 1.1291796 0.244563544 fv Gamma RP(P), Log-Normal FALSE #> 3444 216 1.2609631 0.275896977 fv Gamma RP(P), Log-Normal FALSE #> 3460 217 0.8389670 0.184949511 fv Gamma RP(P), Log-Normal FALSE #> 3476 218 0.8453860 0.188622069 fv Gamma RP(P), Log-Normal FALSE #> 3492 219 1.2183609 0.274303728 fv Gamma RP(P), Log-Normal FALSE #> 3508 220 0.7187300 0.156561885 fv Gamma RP(P), Log-Normal FALSE #> 3524 221 0.9388220 0.208447345 fv Gamma RP(P), Log-Normal FALSE #> 3540 222 1.1209367 0.250349485 fv Gamma RP(P), Log-Normal FALSE #> 3556 223 1.0480275 0.237133986 fv Gamma RP(P), Log-Normal FALSE #> 3572 224 1.0128154 0.221061644 fv Gamma RP(P), Log-Normal FALSE #> 3588 225 0.8044790 0.173788213 fv Gamma RP(P), Log-Normal FALSE #> 3604 226 1.3216154 0.300532131 fv Gamma RP(P), Log-Normal FALSE #> 3620 227 0.8680673 0.191662277 fv Gamma RP(P), Log-Normal FALSE #> 3636 228 1.1162978 0.238070849 fv Gamma RP(P), Log-Normal FALSE #> 3652 229 1.1133721 0.244781394 fv Gamma RP(P), Log-Normal FALSE #> 3668 230 0.8878602 0.190636787 fv Gamma RP(P), Log-Normal FALSE #> 3684 231 1.1544228 0.255759683 fv Gamma RP(P), Log-Normal FALSE #> 3700 232 1.0320456 0.230128037 fv Gamma RP(P), Log-Normal FALSE #> 3716 233 1.1888143 0.263237985 fv Gamma RP(P), Log-Normal FALSE #> 3732 234 0.9164521 0.201120134 fv Gamma RP(P), Log-Normal FALSE #> 3748 235 1.1327970 0.257687761 fv Gamma RP(P), Log-Normal FALSE #> 3764 236 0.6460332 0.144131419 fv Gamma RP(P), Log-Normal FALSE #> 3780 237 0.8430326 0.186855350 fv Gamma RP(P), Log-Normal FALSE #> 3796 238 0.8158895 0.183957007 fv Gamma RP(P), Log-Normal FALSE #> 3812 239 0.9394292 0.201459225 fv Gamma RP(P), Log-Normal FALSE #> 3828 240 1.1606621 0.257905170 fv Gamma RP(P), Log-Normal FALSE #> 3844 241 0.8538658 0.185111653 fv Gamma RP(P), Log-Normal FALSE #> 3860 242 0.6336259 0.138341079 fv Gamma RP(P), Log-Normal FALSE #> 3876 243 1.3611347 0.316943569 fv Gamma RP(P), Log-Normal FALSE #> 3892 244 0.6853487 0.148004398 fv Gamma RP(P), Log-Normal FALSE #> 3908 245 1.5239087 0.341431129 fv Gamma RP(P), Log-Normal TRUE #> 3924 246 0.8620671 0.184937320 fv Gamma RP(P), Log-Normal FALSE #> 3940 247 1.0483086 0.230069168 fv Gamma RP(P), Log-Normal FALSE #> 3956 248 1.3814399 0.299598493 fv Gamma RP(P), Log-Normal FALSE #> 3972 249 1.4587490 0.332527808 fv Gamma RP(P), Log-Normal TRUE #> 3988 250 0.9961178 0.219966795 fv Gamma RP(P), Log-Normal FALSE #> 4004 251 1.0802323 0.239577478 fv Gamma RP(P), Log-Normal FALSE #> 4020 252 1.1573802 0.260140925 fv Gamma RP(P), Log-Normal FALSE #> 4036 253 1.2435742 0.287752260 fv Gamma RP(P), Log-Normal FALSE #> 4052 254 0.6213066 0.133993890 fv Gamma RP(P), Log-Normal FALSE #> 4068 255 0.9306108 0.196210153 fv Gamma RP(P), Log-Normal FALSE #> 4084 256 0.9142294 0.199393458 fv Gamma RP(P), Log-Normal FALSE #> 4100 257 0.6756633 0.145660199 fv Gamma RP(P), Log-Normal FALSE #> 4116 258 1.0192314 0.236693687 fv Gamma RP(P), Log-Normal FALSE #> 4132 259 0.9446257 0.205216936 fv Gamma RP(P), Log-Normal FALSE #> 4148 260 1.1233469 0.244803377 fv Gamma RP(P), Log-Normal FALSE #> 4164 261 0.5981253 0.129981226 fv Gamma RP(P), Log-Normal FALSE #> 4180 262 0.8469669 0.185096728 fv Gamma RP(P), Log-Normal FALSE #> 4196 263 0.7899133 0.174604035 fv Gamma RP(P), Log-Normal FALSE #> 4212 264 0.6078800 0.131030433 fv Gamma RP(P), Log-Normal FALSE #> 4228 265 0.7793063 0.167770678 fv Gamma RP(P), Log-Normal FALSE #> 4244 266 0.8557823 0.187576892 fv Gamma RP(P), Log-Normal FALSE #> 4260 267 0.9221636 0.200920447 fv Gamma RP(P), Log-Normal FALSE #> 4276 268 0.9907061 0.213920651 fv Gamma RP(P), Log-Normal FALSE #> 4292 269 1.6707648 0.379565298 fv Gamma RP(P), Log-Normal TRUE #> 4308 270 1.2213651 0.278069743 fv Gamma RP(P), Log-Normal FALSE #> 4324 271 1.2134813 0.268186948 fv Gamma RP(P), Log-Normal FALSE #> 4340 272 0.7105029 0.158227375 fv Gamma RP(P), Log-Normal FALSE #> 4356 273 0.8171010 0.178367886 fv Gamma RP(P), Log-Normal FALSE #> 4372 274 0.9050407 0.193402733 fv Gamma RP(P), Log-Normal FALSE #> 4388 275 1.1353543 0.243983601 fv Gamma RP(P), Log-Normal FALSE #> 4404 276 1.0858343 0.244403762 fv Gamma RP(P), Log-Normal FALSE #> 4420 277 0.8684428 0.186238953 fv Gamma RP(P), Log-Normal FALSE #> 4436 278 1.0203287 0.220451182 fv Gamma RP(P), Log-Normal FALSE #> 4452 279 1.0011619 0.217423012 fv Gamma RP(P), Log-Normal FALSE #> 4468 280 0.9509821 0.203861367 fv Gamma RP(P), Log-Normal FALSE #> 4484 281 1.5506510 0.348875344 fv Gamma RP(P), Log-Normal TRUE #> 4500 282 0.7365934 0.158887674 fv Gamma RP(P), Log-Normal FALSE #> 4516 283 1.1427590 0.261767217 fv Gamma RP(P), Log-Normal FALSE #> 4532 284 0.7622570 0.162455472 fv Gamma RP(P), Log-Normal FALSE #> 4548 285 0.5961491 0.129287813 fv Gamma RP(P), Log-Normal FALSE #> 4564 286 1.0061213 0.217649530 fv Gamma RP(P), Log-Normal FALSE #> 4580 287 0.7806262 0.169733695 fv Gamma RP(P), Log-Normal FALSE #> 4596 288 1.8098902 0.399947941 fv Gamma RP(P), Log-Normal TRUE #> 4612 289 0.8393518 0.185200626 fv Gamma RP(P), Log-Normal FALSE #> 4628 290 0.7468449 0.162723595 fv Gamma RP(P), Log-Normal FALSE #> 4644 291 0.7601939 0.165843465 fv Gamma RP(P), Log-Normal FALSE #> 4660 292 0.7323268 0.156954458 fv Gamma RP(P), Log-Normal FALSE #> 4676 293 1.2258149 0.268151985 fv Gamma RP(P), Log-Normal FALSE #> 4692 294 0.8404157 0.183782801 fv Gamma RP(P), Log-Normal FALSE #> 4708 295 1.5766100 0.346101076 fv Gamma RP(P), Log-Normal TRUE #> 4724 296 1.0056320 0.220767234 fv Gamma RP(P), Log-Normal FALSE #> 4740 297 1.7157538 0.372587669 fv Gamma RP(P), Log-Normal TRUE #> 4756 298 0.6795482 0.146389054 fv Gamma RP(P), Log-Normal FALSE #> 4772 299 0.7207333 0.158465129 fv Gamma RP(P), Log-Normal FALSE #> 4788 300 1.1288850 0.241916357 fv Gamma RP(P), Log-Normal FALSE #> 4804 301 0.6731434 0.147303733 fv Gamma RP(P), Log-Normal FALSE #> 4820 302 1.0472072 0.224351808 fv Gamma RP(P), Log-Normal FALSE #> 4836 303 0.7717841 0.166341408 fv Gamma RP(P), Log-Normal FALSE #> 4852 304 0.8192309 0.175783833 fv Gamma RP(P), Log-Normal FALSE #> 4868 305 1.2026302 0.261708291 fv Gamma RP(P), Log-Normal FALSE #> 4884 306 0.9576788 0.208093071 fv Gamma RP(P), Log-Normal FALSE #> 4900 307 1.0605048 0.238865352 fv Gamma RP(P), Log-Normal FALSE #> 4916 308 0.8711031 0.189633570 fv Gamma RP(P), Log-Normal FALSE #> 4932 309 1.0053989 0.216562485 fv Gamma RP(P), Log-Normal FALSE #> 4948 310 1.6051705 0.357305337 fv Gamma RP(P), Log-Normal TRUE #> 4964 311 1.2178320 0.266118483 fv Gamma RP(P), Log-Normal FALSE #> 4980 312 1.8621584 0.430025773 fv Gamma RP(P), Log-Normal TRUE #> 4996 313 1.1324318 0.248100889 fv Gamma RP(P), Log-Normal FALSE #> 5012 314 0.9259319 0.204944464 fv Gamma RP(P), Log-Normal FALSE #> 5028 315 1.0717161 0.231194628 fv Gamma RP(P), Log-Normal FALSE #> 5044 316 1.5632161 0.343308715 fv Gamma RP(P), Log-Normal TRUE #> 5060 317 0.7911773 0.172163115 fv Gamma RP(P), Log-Normal FALSE #> 5076 318 1.0257467 0.229465201 fv Gamma RP(P), Log-Normal FALSE #> 5092 319 0.7560379 0.164851201 fv Gamma RP(P), Log-Normal FALSE #> 5108 320 0.7598209 0.164946075 fv Gamma RP(P), Log-Normal FALSE #> 5124 321 1.3366113 0.296232365 fv Gamma RP(P), Log-Normal FALSE #> 5140 322 0.6541514 0.142874097 fv Gamma RP(P), Log-Normal FALSE #> 5156 323 1.1888806 0.259384609 fv Gamma RP(P), Log-Normal FALSE #> 5172 324 0.7895205 0.174817665 fv Gamma RP(P), Log-Normal FALSE #> 5188 325 0.9089904 0.195887537 fv Gamma RP(P), Log-Normal FALSE #> 5204 326 0.8991867 0.194800348 fv Gamma RP(P), Log-Normal FALSE #> 5220 327 0.9354573 0.200972552 fv Gamma RP(P), Log-Normal FALSE #> 5236 328 1.4508772 0.321883010 fv Gamma RP(P), Log-Normal FALSE #> 5252 329 1.2389575 0.278410321 fv Gamma RP(P), Log-Normal FALSE #> 5268 330 0.9497564 0.208683102 fv Gamma RP(P), Log-Normal FALSE #> 5284 331 1.1348318 0.243830181 fv Gamma RP(P), Log-Normal FALSE #> 5300 332 0.7406454 0.165819274 fv Gamma RP(P), Log-Normal FALSE #> 5316 333 0.6882928 0.148784950 fv Gamma RP(P), Log-Normal FALSE #> 5332 334 1.3842558 0.296929851 fv Gamma RP(P), Log-Normal FALSE #> 5348 335 1.0741546 0.237337608 fv Gamma RP(P), Log-Normal FALSE #> 5364 336 0.6223286 0.139826644 fv Gamma RP(P), Log-Normal FALSE #> 5380 337 0.8436957 0.186307291 fv Gamma RP(P), Log-Normal FALSE #> 5396 338 0.7251021 0.154411004 fv Gamma RP(P), Log-Normal FALSE #> 5412 339 1.0911888 0.239706177 fv Gamma RP(P), Log-Normal FALSE #> 5428 340 1.1139385 0.259970148 fv Gamma RP(P), Log-Normal FALSE #> 5444 341 0.6722575 0.144746633 fv Gamma RP(P), Log-Normal FALSE #> 5460 342 0.5335198 0.115837477 fv Gamma RP(P), Log-Normal FALSE #> 5476 343 0.7759368 0.168497568 fv Gamma RP(P), Log-Normal FALSE #> 5492 344 1.3745439 0.304745479 fv Gamma RP(P), Log-Normal FALSE #> 5508 345 1.2019517 0.264238640 fv Gamma RP(P), Log-Normal FALSE #> 5524 346 1.0680673 0.228681184 fv Gamma RP(P), Log-Normal FALSE #> 5540 347 0.9424073 0.202173546 fv Gamma RP(P), Log-Normal FALSE #> 5556 348 1.4206305 0.311160176 fv Gamma RP(P), Log-Normal FALSE #> 5572 349 1.1631266 0.253819909 fv Gamma RP(P), Log-Normal FALSE #> 5588 350 1.0587565 0.227239061 fv Gamma RP(P), Log-Normal FALSE #> 5604 351 1.2314624 0.279628007 fv Gamma RP(P), Log-Normal FALSE #> 5620 352 1.1441911 0.257794647 fv Gamma RP(P), Log-Normal FALSE #> 5636 353 0.6759264 0.146595798 fv Gamma RP(P), Log-Normal FALSE #> 5652 354 0.9403395 0.204457172 fv Gamma RP(P), Log-Normal FALSE #> 5668 355 1.1145079 0.239429075 fv Gamma RP(P), Log-Normal FALSE #> 5684 356 1.0944187 0.241452823 fv Gamma RP(P), Log-Normal FALSE #> 5700 357 0.8472675 0.182834330 fv Gamma RP(P), Log-Normal FALSE #> 5716 358 0.8078994 0.171141015 fv Gamma RP(P), Log-Normal FALSE #> 5732 359 0.8715760 0.197056186 fv Gamma RP(P), Log-Normal FALSE #> 5748 360 0.7305572 0.157575039 fv Gamma RP(P), Log-Normal FALSE #> 5764 361 1.3093898 0.295995439 fv Gamma RP(P), Log-Normal FALSE #> 5780 362 0.5932042 0.128820637 fv Gamma RP(P), Log-Normal FALSE #> 5796 363 0.9537684 0.211563876 fv Gamma RP(P), Log-Normal FALSE #> 5812 364 0.6500835 0.143060235 fv Gamma RP(P), Log-Normal FALSE #> 5828 365 0.9988684 0.230090658 fv Gamma RP(P), Log-Normal FALSE #> 5844 366 1.2002573 0.268259798 fv Gamma RP(P), Log-Normal FALSE #> 5860 367 1.1732540 0.253572484 fv Gamma RP(P), Log-Normal FALSE #> 5876 368 1.1839640 0.274942607 fv Gamma RP(P), Log-Normal FALSE #> 5892 369 0.6725999 0.144571959 fv Gamma RP(P), Log-Normal FALSE #> 5908 370 0.6474614 0.141195590 fv Gamma RP(P), Log-Normal FALSE #> 5924 371 1.0778251 0.237098302 fv Gamma RP(P), Log-Normal FALSE #> 5940 372 0.7840598 0.178284497 fv Gamma RP(P), Log-Normal FALSE #> 5956 373 0.9240125 0.200650555 fv Gamma RP(P), Log-Normal FALSE #> 5972 374 0.7215876 0.154150935 fv Gamma RP(P), Log-Normal FALSE #> 5988 375 0.7472158 0.161834638 fv Gamma RP(P), Log-Normal FALSE #> 6004 376 0.7840256 0.168608101 fv Gamma RP(P), Log-Normal FALSE #> 6020 377 1.2063017 0.272271466 fv Gamma RP(P), Log-Normal FALSE #> 6036 378 1.0759738 0.232885696 fv Gamma RP(P), Log-Normal FALSE #> 6052 379 0.7991445 0.171767634 fv Gamma RP(P), Log-Normal FALSE #> 6068 380 0.9835843 0.213394452 fv Gamma RP(P), Log-Normal FALSE #> 6084 381 0.7117307 0.151443197 fv Gamma RP(P), Log-Normal FALSE #> 6100 382 0.9374011 0.204621752 fv Gamma RP(P), Log-Normal FALSE #> 6116 383 1.4564452 0.312580654 fv Gamma RP(P), Log-Normal FALSE #> 6132 384 1.1166026 0.243039524 fv Gamma RP(P), Log-Normal FALSE #> 6148 385 0.6950395 0.150883736 fv Gamma RP(P), Log-Normal FALSE #> 6164 386 0.4544464 0.102122826 fv Gamma RP(P), Log-Normal TRUE #> 6180 387 0.6941927 0.149352262 fv Gamma RP(P), Log-Normal FALSE #> 6196 388 0.8740749 0.189471295 fv Gamma RP(P), Log-Normal FALSE #> 6212 389 0.6379024 0.138928630 fv Gamma RP(P), Log-Normal FALSE #> 6228 390 0.7579377 0.165386684 fv Gamma RP(P), Log-Normal FALSE #> 6244 391 0.6208441 0.135164000 fv Gamma RP(P), Log-Normal FALSE #> 6260 392 1.1388947 0.243164287 fv Gamma RP(P), Log-Normal FALSE #> 6276 393 0.6777050 0.146669241 fv Gamma RP(P), Log-Normal FALSE #> 6292 394 1.2875572 0.285500045 fv Gamma RP(P), Log-Normal FALSE #> 6308 395 0.9594942 0.212902410 fv Gamma RP(P), Log-Normal FALSE #> 6324 396 0.9535688 0.214993979 fv Gamma RP(P), Log-Normal FALSE #> 6340 397 1.1170706 0.239961536 fv Gamma RP(P), Log-Normal FALSE #> 6356 398 0.9337227 0.201800746 fv Gamma RP(P), Log-Normal FALSE #> 6372 399 0.7611877 0.165402284 fv Gamma RP(P), Log-Normal FALSE #> 6388 400 0.8163529 0.177586051 fv Gamma RP(P), Log-Normal FALSE #> 6404 401 1.1755879 0.260480234 fv Gamma RP(P), Log-Normal FALSE #> 6420 402 0.8926168 0.200255305 fv Gamma RP(P), Log-Normal FALSE #> 6436 403 0.8545840 0.183751295 fv Gamma RP(P), Log-Normal FALSE #> 6452 404 1.1315518 0.257023968 fv Gamma RP(P), Log-Normal FALSE #> 6468 405 0.7711867 0.164072761 fv Gamma RP(P), Log-Normal FALSE #> 6484 406 0.7394725 0.158175027 fv Gamma RP(P), Log-Normal FALSE #> 6500 407 1.0465095 0.229942406 fv Gamma RP(P), Log-Normal FALSE #> 6516 408 0.6300849 0.149381842 fv Gamma RP(P), Log-Normal FALSE #> 6532 409 1.2759445 0.275964040 fv Gamma RP(P), Log-Normal FALSE #> 6548 410 1.4092819 0.317311958 fv Gamma RP(P), Log-Normal FALSE #> 6564 411 1.0991484 0.254405935 fv Gamma RP(P), Log-Normal FALSE #> 6580 412 0.8267034 0.177108154 fv Gamma RP(P), Log-Normal FALSE #> 6596 413 0.9031192 0.199459030 fv Gamma RP(P), Log-Normal FALSE #> 6612 414 0.8929692 0.192911734 fv Gamma RP(P), Log-Normal FALSE #> 6628 415 1.1226055 0.241604742 fv Gamma RP(P), Log-Normal FALSE #> 6644 416 0.7277533 0.157426254 fv Gamma RP(P), Log-Normal FALSE #> 6660 417 0.9685098 0.210134619 fv Gamma RP(P), Log-Normal FALSE #> 6676 418 0.9593147 0.209686673 fv Gamma RP(P), Log-Normal FALSE #> 6692 419 0.8180942 0.182657405 fv Gamma RP(P), Log-Normal FALSE #> 6708 420 1.1163400 0.250241104 fv Gamma RP(P), Log-Normal FALSE #> 6724 421 1.0662506 0.230681634 fv Gamma RP(P), Log-Normal FALSE #> 6740 422 0.9590765 0.208021402 fv Gamma RP(P), Log-Normal FALSE #> 6756 423 1.0631685 0.230888818 fv Gamma RP(P), Log-Normal FALSE #> 6772 424 0.9657118 0.217152814 fv Gamma RP(P), Log-Normal FALSE #> 6788 425 0.7349995 0.162179797 fv Gamma RP(P), Log-Normal FALSE #> 6804 426 1.2825616 0.279074728 fv Gamma RP(P), Log-Normal FALSE #> 6820 427 0.5095550 0.112703591 fv Gamma RP(P), Log-Normal FALSE #> 6836 428 1.4523732 0.327933855 fv Gamma RP(P), Log-Normal TRUE #> 6852 429 0.7978037 0.173408480 fv Gamma RP(P), Log-Normal FALSE #> 6868 430 0.6875011 0.147810346 fv Gamma RP(P), Log-Normal FALSE #> 6884 431 1.1006941 0.238750756 fv Gamma RP(P), Log-Normal FALSE #> 6900 432 0.6748862 0.147308411 fv Gamma RP(P), Log-Normal FALSE #> 6916 433 1.1282877 0.250568935 fv Gamma RP(P), Log-Normal FALSE #> 6932 434 1.2431724 0.265520208 fv Gamma RP(P), Log-Normal FALSE #> 6948 435 0.8078352 0.172249398 fv Gamma RP(P), Log-Normal FALSE #> 6964 436 1.2539909 0.282120990 fv Gamma RP(P), Log-Normal FALSE #> 6980 437 0.8230815 0.177122345 fv Gamma RP(P), Log-Normal FALSE #> 6996 438 0.6367504 0.141576527 fv Gamma RP(P), Log-Normal FALSE #> 7012 439 0.9345544 0.208661903 fv Gamma RP(P), Log-Normal FALSE #> 7028 440 0.8145396 0.174404632 fv Gamma RP(P), Log-Normal FALSE #> 7044 441 0.4963037 0.107331468 fv Gamma RP(P), Log-Normal TRUE #> 7060 442 0.9945112 0.210487712 fv Gamma RP(P), Log-Normal FALSE #> 7076 443 0.6687881 0.151032821 fv Gamma RP(P), Log-Normal FALSE #> 7092 444 0.8057132 0.174622153 fv Gamma RP(P), Log-Normal FALSE #> 7108 445 1.2113594 0.278671053 fv Gamma RP(P), Log-Normal FALSE #> 7124 446 1.0112616 0.219825528 fv Gamma RP(P), Log-Normal FALSE #> 7140 447 0.9580334 0.208122592 fv Gamma RP(P), Log-Normal FALSE #> 7156 448 1.0480268 0.231358840 fv Gamma RP(P), Log-Normal FALSE #> 7172 449 1.1654833 0.250305711 fv Gamma RP(P), Log-Normal FALSE #> 7188 450 0.7747101 0.164631434 fv Gamma RP(P), Log-Normal FALSE #> 7204 451 1.0778703 0.233850216 fv Gamma RP(P), Log-Normal FALSE #> 7220 452 0.6532856 0.142936025 fv Gamma RP(P), Log-Normal FALSE #> 7236 453 1.0354556 0.220201966 fv Gamma RP(P), Log-Normal FALSE #> 7252 454 0.8410267 0.188393838 fv Gamma RP(P), Log-Normal FALSE #> 7268 455 1.0590126 0.231017540 fv Gamma RP(P), Log-Normal FALSE #> 7284 456 1.1002554 0.239040113 fv Gamma RP(P), Log-Normal FALSE #> 7300 457 1.1113213 0.242020836 fv Gamma RP(P), Log-Normal FALSE #> 7316 458 1.2737451 0.283902711 fv Gamma RP(P), Log-Normal FALSE #> 7332 459 0.8741005 0.192529765 fv Gamma RP(P), Log-Normal FALSE #> 7348 460 0.8343565 0.185513409 fv Gamma RP(P), Log-Normal FALSE #> 7364 461 1.0413598 0.229681208 fv Gamma RP(P), Log-Normal FALSE #> 7380 462 1.4058311 0.313874121 fv Gamma RP(P), Log-Normal FALSE #> 7396 463 0.7385880 0.157268096 fv Gamma RP(P), Log-Normal FALSE #> 7412 464 0.6749140 0.150334899 fv Gamma RP(P), Log-Normal FALSE #> 7428 465 0.9372626 0.202416087 fv Gamma RP(P), Log-Normal FALSE #> 7444 466 1.0819470 0.240560277 fv Gamma RP(P), Log-Normal FALSE #> 7460 467 1.2583393 0.280960356 fv Gamma RP(P), Log-Normal FALSE #> 7476 468 0.6603316 0.141287880 fv Gamma RP(P), Log-Normal FALSE #> 7492 469 1.0850180 0.243295647 fv Gamma RP(P), Log-Normal FALSE #> 7508 470 0.9881027 0.210406927 fv Gamma RP(P), Log-Normal FALSE #> 7524 471 0.7454241 0.160990011 fv Gamma RP(P), Log-Normal FALSE #> 7540 472 1.1745015 0.256706796 fv Gamma RP(P), Log-Normal FALSE #> 7556 473 0.7959574 0.170031541 fv Gamma RP(P), Log-Normal FALSE #> 7572 474 0.7918319 0.177803843 fv Gamma RP(P), Log-Normal FALSE #> 7588 475 1.6522706 0.375398426 fv Gamma RP(P), Log-Normal TRUE #> 7604 476 0.6916373 0.152453433 fv Gamma RP(P), Log-Normal FALSE #> 7620 477 1.2375353 0.268085782 fv Gamma RP(P), Log-Normal FALSE #> 7636 478 0.9740985 0.216425920 fv Gamma RP(P), Log-Normal FALSE #> 7652 479 1.2632676 0.276699164 fv Gamma RP(P), Log-Normal FALSE #> 7668 480 1.0387783 0.230531068 fv Gamma RP(P), Log-Normal FALSE #> 7684 481 0.9091348 0.201095913 fv Gamma RP(P), Log-Normal FALSE #> 7700 482 0.8691584 0.198334797 fv Gamma RP(P), Log-Normal FALSE #> 7716 483 0.9225715 0.209461889 fv Gamma RP(P), Log-Normal FALSE #> 7732 484 0.9439964 0.201865531 fv Gamma RP(P), Log-Normal FALSE #> 7748 485 1.0052738 0.218556409 fv Gamma RP(P), Log-Normal FALSE #> 7764 486 0.7260035 0.159970767 fv Gamma RP(P), Log-Normal FALSE #> 7780 487 1.1001328 0.238315614 fv Gamma RP(P), Log-Normal FALSE #> 7796 488 0.9538392 0.216822184 fv Gamma RP(P), Log-Normal FALSE #> 7812 489 1.2501391 0.282675830 fv Gamma RP(P), Log-Normal FALSE #> 7828 490 1.6236317 0.352529801 fv Gamma RP(P), Log-Normal TRUE #> 7844 491 0.8316296 0.178919604 fv Gamma RP(P), Log-Normal FALSE #> 7860 492 1.2586735 0.281277951 fv Gamma RP(P), Log-Normal FALSE #> 7876 493 1.1213778 0.258755786 fv Gamma RP(P), Log-Normal FALSE #> 7892 494 0.8594317 0.184538921 fv Gamma RP(P), Log-Normal FALSE #> 7908 495 0.9649592 0.211567053 fv Gamma RP(P), Log-Normal FALSE #> 7924 496 0.6773521 0.150596337 fv Gamma RP(P), Log-Normal FALSE #> 7940 497 0.9052519 0.196094400 fv Gamma RP(P), Log-Normal FALSE #> 7956 498 0.8116850 0.178283650 fv Gamma RP(P), Log-Normal FALSE #> 7972 499 1.1086720 0.241326577 fv Gamma RP(P), Log-Normal FALSE #> 7988 500 1.2773651 0.281428323 fv Gamma RP(P), Log-Normal FALSE #> 8004 501 0.8676161 0.186252713 fv Gamma RP(P), Log-Normal FALSE #> 8020 502 1.0407176 0.226742031 fv Gamma RP(P), Log-Normal FALSE #> 8036 503 0.7548621 0.161416065 fv Gamma RP(P), Log-Normal FALSE #> 8052 504 1.2077979 0.258824089 fv Gamma RP(P), Log-Normal FALSE #> 8068 505 1.4398156 0.321294471 fv Gamma RP(P), Log-Normal FALSE #> 8084 506 0.8624584 0.186157457 fv Gamma RP(P), Log-Normal FALSE #> 8100 507 0.6802796 0.145481059 fv Gamma RP(P), Log-Normal FALSE #> 8116 508 0.8342436 0.181087868 fv Gamma RP(P), Log-Normal FALSE #> 8132 509 0.8612357 0.185773025 fv Gamma RP(P), Log-Normal FALSE #> 8148 510 1.0875058 0.231453325 fv Gamma RP(P), Log-Normal FALSE #> 8164 511 0.9780855 0.214288070 fv Gamma RP(P), Log-Normal FALSE #> 8180 512 0.9185424 0.195605141 fv Gamma RP(P), Log-Normal FALSE #> 8196 513 0.7742017 0.169231006 fv Gamma RP(P), Log-Normal FALSE #> 8212 514 0.9812394 0.218050507 fv Gamma RP(P), Log-Normal FALSE #> 8228 515 0.8492711 0.186072576 fv Gamma RP(P), Log-Normal FALSE #> 8244 516 1.0440155 0.231448528 fv Gamma RP(P), Log-Normal FALSE #> 8260 517 1.1390878 0.249921695 fv Gamma RP(P), Log-Normal FALSE #> 8276 518 1.2314535 0.263976453 fv Gamma RP(P), Log-Normal FALSE #> 8292 519 0.8741643 0.188132491 fv Gamma RP(P), Log-Normal FALSE #> 8308 520 0.7946016 0.172820195 fv Gamma RP(P), Log-Normal FALSE #> 8324 521 0.7155341 0.154658107 fv Gamma RP(P), Log-Normal FALSE #> 8340 522 0.6586910 0.142144906 fv Gamma RP(P), Log-Normal FALSE #> 8356 523 0.9070928 0.201961629 fv Gamma RP(P), Log-Normal FALSE #> 8372 524 0.7949849 0.175434365 fv Gamma RP(P), Log-Normal FALSE #> 8388 525 1.3355748 0.288021411 fv Gamma RP(P), Log-Normal FALSE #> 8404 526 1.1111854 0.243883438 fv Gamma RP(P), Log-Normal FALSE #> 8420 527 0.9980110 0.225250690 fv Gamma RP(P), Log-Normal FALSE #> 8436 528 0.7536701 0.165035815 fv Gamma RP(P), Log-Normal FALSE #> 8452 529 1.2088138 0.264226878 fv Gamma RP(P), Log-Normal FALSE #> 8468 530 1.3388039 0.295083388 fv Gamma RP(P), Log-Normal FALSE #> 8484 531 1.0765928 0.230423607 fv Gamma RP(P), Log-Normal FALSE #> 8500 532 1.1797360 0.260368744 fv Gamma RP(P), Log-Normal FALSE #> 8516 533 0.9477534 0.207558206 fv Gamma RP(P), Log-Normal FALSE #> 8532 534 1.0563309 0.227002868 fv Gamma RP(P), Log-Normal FALSE #> 8548 535 1.4357549 0.313963101 fv Gamma RP(P), Log-Normal FALSE #> 8564 536 1.0051141 0.212301508 fv Gamma RP(P), Log-Normal FALSE #> 8580 537 0.9940413 0.229846666 fv Gamma RP(P), Log-Normal FALSE #> 8596 538 0.7485919 0.163118834 fv Gamma RP(P), Log-Normal FALSE #> 8612 539 1.2009352 0.262424788 fv Gamma RP(P), Log-Normal FALSE #> 8628 540 1.0656493 0.243252483 fv Gamma RP(P), Log-Normal FALSE #> 8644 541 0.7818527 0.171862648 fv Gamma RP(P), Log-Normal FALSE #> 8660 542 1.0476007 0.225722387 fv Gamma RP(P), Log-Normal FALSE #> 8676 543 1.1371033 0.243339241 fv Gamma RP(P), Log-Normal FALSE #> 8692 544 1.0773876 0.231123459 fv Gamma RP(P), Log-Normal FALSE #> 8708 545 0.9565211 0.212700204 fv Gamma RP(P), Log-Normal FALSE #> 8724 546 0.7647347 0.163566244 fv Gamma RP(P), Log-Normal FALSE #> 8740 547 0.8206825 0.176359832 fv Gamma RP(P), Log-Normal FALSE #> 8756 548 0.8505963 0.192550911 fv Gamma RP(P), Log-Normal FALSE #> 8772 549 1.0358106 0.229635225 fv Gamma RP(P), Log-Normal FALSE #> 8788 550 1.3523884 0.318258072 fv Gamma RP(P), Log-Normal FALSE #> 8804 551 0.9140688 0.197916220 fv Gamma RP(P), Log-Normal FALSE #> 8820 552 0.7505092 0.167863310 fv Gamma RP(P), Log-Normal FALSE #> 8836 553 0.7462582 0.163755065 fv Gamma RP(P), Log-Normal FALSE #> 8852 554 0.9503633 0.210343956 fv Gamma RP(P), Log-Normal FALSE #> 8868 555 0.6745831 0.145777323 fv Gamma RP(P), Log-Normal FALSE #> 8884 556 0.6796815 0.149173569 fv Gamma RP(P), Log-Normal FALSE #> 8900 557 1.7294668 0.385290497 fv Gamma RP(P), Log-Normal TRUE #> 8916 558 1.0353587 0.226097195 fv Gamma RP(P), Log-Normal FALSE #> 8932 559 0.8016693 0.181657786 fv Gamma RP(P), Log-Normal FALSE #> 8948 560 0.9729378 0.214345554 fv Gamma RP(P), Log-Normal FALSE #> 8964 561 1.0321929 0.223653751 fv Gamma RP(P), Log-Normal FALSE #> 8980 562 0.5768487 0.127198483 fv Gamma RP(P), Log-Normal FALSE #> 8996 563 1.0433632 0.228621090 fv Gamma RP(P), Log-Normal FALSE #> 9012 564 1.0641236 0.228678050 fv Gamma RP(P), Log-Normal FALSE #> 9028 565 1.1732304 0.270298444 fv Gamma RP(P), Log-Normal FALSE #> 9044 566 1.2237949 0.268476490 fv Gamma RP(P), Log-Normal FALSE #> 9060 567 0.9843680 0.216254289 fv Gamma RP(P), Log-Normal FALSE #> 9076 568 1.0225418 0.226931553 fv Gamma RP(P), Log-Normal FALSE #> 9092 569 0.9425398 0.212381043 fv Gamma RP(P), Log-Normal FALSE #> 9108 570 0.9305842 0.201175459 fv Gamma RP(P), Log-Normal FALSE #> 9124 571 0.9345155 0.201116344 fv Gamma RP(P), Log-Normal FALSE #> 9140 572 1.1021244 0.234409464 fv Gamma RP(P), Log-Normal FALSE #> 9156 573 0.6234484 0.137000395 fv Gamma RP(P), Log-Normal FALSE #> 9172 574 1.1480059 0.255124057 fv Gamma RP(P), Log-Normal FALSE #> 9188 575 0.9620612 0.211148150 fv Gamma RP(P), Log-Normal FALSE #> 9204 576 1.0678341 0.238868687 fv Gamma RP(P), Log-Normal FALSE #> 9220 577 0.9150045 0.204456329 fv Gamma RP(P), Log-Normal FALSE #> 9236 578 0.9233870 0.200603592 fv Gamma RP(P), Log-Normal FALSE #> 9252 579 0.7994219 0.174027563 fv Gamma RP(P), Log-Normal FALSE #> 9268 580 0.8585172 0.187898896 fv Gamma RP(P), Log-Normal FALSE #> 9284 581 1.1376346 0.243722038 fv Gamma RP(P), Log-Normal FALSE #> 9300 582 0.5331588 0.116180181 fv Gamma RP(P), Log-Normal FALSE #> 9316 583 1.2227234 0.266819438 fv Gamma RP(P), Log-Normal FALSE #> 9332 584 0.7424917 0.162892931 fv Gamma RP(P), Log-Normal FALSE #> 9348 585 1.4718067 0.317670941 fv Gamma RP(P), Log-Normal FALSE #> 9364 586 1.3376029 0.285083541 fv Gamma RP(P), Log-Normal FALSE #> 9380 587 1.0466999 0.227298927 fv Gamma RP(P), Log-Normal FALSE #> 9396 588 1.0628152 0.236226350 fv Gamma RP(P), Log-Normal FALSE #> 9412 589 0.7456047 0.162916840 fv Gamma RP(P), Log-Normal FALSE #> 9428 590 0.8908216 0.194809140 fv Gamma RP(P), Log-Normal FALSE #> 9444 591 0.9844521 0.217603161 fv Gamma RP(P), Log-Normal FALSE #> 9460 592 1.2872132 0.280054795 fv Gamma RP(P), Log-Normal FALSE #> 9476 593 0.9145775 0.207193045 fv Gamma RP(P), Log-Normal FALSE #> 9492 594 0.9446292 0.210280528 fv Gamma RP(P), Log-Normal FALSE #> 9508 595 0.8683941 0.185769779 fv Gamma RP(P), Log-Normal FALSE #> 9524 596 1.2043136 0.260901489 fv Gamma RP(P), Log-Normal FALSE #> 9540 597 1.2713689 0.283428607 fv Gamma RP(P), Log-Normal FALSE #> 9556 598 1.0191519 0.221381269 fv Gamma RP(P), Log-Normal FALSE #> 9572 599 1.5192954 0.325918384 fv Gamma RP(P), Log-Normal TRUE #> 9588 600 1.3131604 0.281586578 fv Gamma RP(P), Log-Normal FALSE #> 9604 601 0.9717941 0.212607335 fv Gamma RP(P), Log-Normal FALSE #> 9620 602 1.1056106 0.248359854 fv Gamma RP(P), Log-Normal FALSE #> 9636 603 0.9020656 0.196090741 fv Gamma RP(P), Log-Normal FALSE #> 9652 604 1.2529459 0.293640836 fv Gamma RP(P), Log-Normal FALSE #> 9668 605 1.2259883 0.274240763 fv Gamma RP(P), Log-Normal FALSE #> 9684 606 1.0511216 0.228404129 fv Gamma RP(P), Log-Normal FALSE #> 9700 607 0.8190508 0.180281936 fv Gamma RP(P), Log-Normal FALSE #> 9716 608 1.0311424 0.221802458 fv Gamma RP(P), Log-Normal FALSE #> 9732 609 1.3455592 0.295910286 fv Gamma RP(P), Log-Normal FALSE #> 9748 610 1.1642916 0.254371166 fv Gamma RP(P), Log-Normal FALSE #> 9764 611 0.8758176 0.192522572 fv Gamma RP(P), Log-Normal FALSE #> 9780 612 1.2516100 0.272167401 fv Gamma RP(P), Log-Normal FALSE #> 9796 613 0.9097464 0.194713999 fv Gamma RP(P), Log-Normal FALSE #> 9812 614 0.8241780 0.176682356 fv Gamma RP(P), Log-Normal FALSE #> 9828 615 0.7807667 0.169402047 fv Gamma RP(P), Log-Normal FALSE #> 9844 616 1.3256338 0.290042297 fv Gamma RP(P), Log-Normal FALSE #> 9860 617 1.3554468 0.302421137 fv Gamma RP(P), Log-Normal FALSE #> 9876 618 0.7059805 0.153032728 fv Gamma RP(P), Log-Normal FALSE #> 9892 619 0.7640548 0.164327342 fv Gamma RP(P), Log-Normal FALSE #> 9908 620 0.9324604 0.205897957 fv Gamma RP(P), Log-Normal FALSE #> 9924 621 1.0897527 0.237414370 fv Gamma RP(P), Log-Normal FALSE #> 9940 622 1.6936806 0.371698035 fv Gamma RP(P), Log-Normal TRUE #> 9956 623 0.6527658 0.139972359 fv Gamma RP(P), Log-Normal FALSE #> 9972 624 0.9466176 0.203085311 fv Gamma RP(P), Log-Normal FALSE #> 9988 625 0.9681196 0.214775219 fv Gamma RP(P), Log-Normal FALSE #> 10004 626 0.6523744 0.142834891 fv Gamma RP(P), Log-Normal FALSE #> 10020 627 0.8021879 0.184418783 fv Gamma RP(P), Log-Normal FALSE #> 10036 628 0.9225400 0.197465937 fv Gamma RP(P), Log-Normal FALSE #> 10052 629 0.7501559 0.167348318 fv Gamma RP(P), Log-Normal FALSE #> 10068 630 1.0706745 0.227798971 fv Gamma RP(P), Log-Normal FALSE #> 10084 631 1.2827158 0.297285469 fv Gamma RP(P), Log-Normal FALSE #> 10100 632 0.6876342 0.149439809 fv Gamma RP(P), Log-Normal FALSE #> 10116 633 0.7028224 0.154619674 fv Gamma RP(P), Log-Normal FALSE #> 10132 634 0.7042120 0.153299268 fv Gamma RP(P), Log-Normal FALSE #> 10148 635 0.5541380 0.122244773 fv Gamma RP(P), Log-Normal FALSE #> 10164 636 0.8544896 0.190728571 fv Gamma RP(P), Log-Normal FALSE #> 10180 637 0.9603207 0.207191756 fv Gamma RP(P), Log-Normal FALSE #> 10196 638 0.7983102 0.182031114 fv Gamma RP(P), Log-Normal FALSE #> 10212 639 0.8838410 0.190983119 fv Gamma RP(P), Log-Normal FALSE #> 10228 640 0.6961483 0.152110407 fv Gamma RP(P), Log-Normal FALSE #> 10244 641 0.8369696 0.179150999 fv Gamma RP(P), Log-Normal FALSE #> 10260 642 0.9306106 0.205637032 fv Gamma RP(P), Log-Normal FALSE #> 10276 643 0.8113072 0.177171734 fv Gamma RP(P), Log-Normal FALSE #> 10292 644 1.3693170 0.317286312 fv Gamma RP(P), Log-Normal FALSE #> 10308 645 0.6575557 0.143623229 fv Gamma RP(P), Log-Normal FALSE #> 10324 646 0.7264648 0.160017681 fv Gamma RP(P), Log-Normal FALSE #> 10340 647 1.8140427 0.405472844 fv Gamma RP(P), Log-Normal TRUE #> 10356 648 0.9039734 0.192803400 fv Gamma RP(P), Log-Normal FALSE #> 10372 649 1.1307165 0.245793699 fv Gamma RP(P), Log-Normal FALSE #> 10388 650 1.3697853 0.300532613 fv Gamma RP(P), Log-Normal FALSE #> 10404 651 1.3913723 0.303438110 fv Gamma RP(P), Log-Normal FALSE #> 10420 652 0.9976010 0.218156662 fv Gamma RP(P), Log-Normal FALSE #> 10436 653 1.3997037 0.316519464 fv Gamma RP(P), Log-Normal FALSE #> 10452 654 0.7512885 0.164131512 fv Gamma RP(P), Log-Normal FALSE #> 10468 655 0.8184646 0.175458083 fv Gamma RP(P), Log-Normal FALSE #> 10484 656 0.9856965 0.213573425 fv Gamma RP(P), Log-Normal FALSE #> 10500 657 0.9542220 0.209937231 fv Gamma RP(P), Log-Normal FALSE #> 10516 658 1.0526322 0.230309237 fv Gamma RP(P), Log-Normal FALSE #> 10532 659 1.1040578 0.242269392 fv Gamma RP(P), Log-Normal FALSE #> 10548 660 1.1274148 0.257234161 fv Gamma RP(P), Log-Normal FALSE #> 10564 661 0.8272565 0.181590492 fv Gamma RP(P), Log-Normal FALSE #> 10580 662 0.5442579 0.118095785 fv Gamma RP(P), Log-Normal FALSE #> 10596 663 0.7790189 0.168677889 fv Gamma RP(P), Log-Normal FALSE #> 10612 664 0.9338401 0.199297546 fv Gamma RP(P), Log-Normal FALSE #> 10628 665 0.9666500 0.213744208 fv Gamma RP(P), Log-Normal FALSE #> 10644 666 0.9744446 0.220001257 fv Gamma RP(P), Log-Normal FALSE #> 10660 667 1.1828443 0.261467314 fv Gamma RP(P), Log-Normal FALSE #> 10676 668 1.2192520 0.274526839 fv Gamma RP(P), Log-Normal FALSE #> 10692 669 0.7113574 0.156924713 fv Gamma RP(P), Log-Normal FALSE #> 10708 670 1.1756310 0.262566467 fv Gamma RP(P), Log-Normal FALSE #> 10724 671 1.2383003 0.270216646 fv Gamma RP(P), Log-Normal FALSE #> 10740 672 0.7815664 0.169986858 fv Gamma RP(P), Log-Normal FALSE #> 10756 673 0.8229793 0.176870677 fv Gamma RP(P), Log-Normal FALSE #> 10772 674 1.3774475 0.311832718 fv Gamma RP(P), Log-Normal FALSE #> 10788 675 0.9621601 0.207902235 fv Gamma RP(P), Log-Normal FALSE #> 10804 676 0.6528028 0.150614959 fv Gamma RP(P), Log-Normal FALSE #> 10820 677 0.8233554 0.177246238 fv Gamma RP(P), Log-Normal FALSE #> 10836 678 1.1489514 0.253442670 fv Gamma RP(P), Log-Normal FALSE #> 10852 679 1.4208344 0.311543201 fv Gamma RP(P), Log-Normal FALSE #> 10868 680 1.0054416 0.232372166 fv Gamma RP(P), Log-Normal FALSE #> 10884 681 0.7391488 0.162759723 fv Gamma RP(P), Log-Normal FALSE #> 10900 682 0.9652976 0.207135311 fv Gamma RP(P), Log-Normal FALSE #> 10916 683 1.1870484 0.264442808 fv Gamma RP(P), Log-Normal FALSE #> 10932 684 1.2401849 0.268198690 fv Gamma RP(P), Log-Normal FALSE #> 10948 685 0.8596652 0.187197015 fv Gamma RP(P), Log-Normal FALSE #> 10964 686 0.6571789 0.143054753 fv Gamma RP(P), Log-Normal FALSE #> 10980 687 1.3996390 0.301433070 fv Gamma RP(P), Log-Normal FALSE #> 10996 688 0.9489165 0.205546007 fv Gamma RP(P), Log-Normal FALSE #> 11012 689 0.8114256 0.172547414 fv Gamma RP(P), Log-Normal FALSE #> 11028 690 1.2437062 0.265491213 fv Gamma RP(P), Log-Normal FALSE #> 11044 691 1.0092470 0.219771733 fv Gamma RP(P), Log-Normal FALSE #> 11060 692 0.9598097 0.205613691 fv Gamma RP(P), Log-Normal FALSE #> 11076 693 1.3113167 0.296323950 fv Gamma RP(P), Log-Normal FALSE #> 11092 694 1.0933889 0.242376514 fv Gamma RP(P), Log-Normal FALSE #> 11108 695 1.0333338 0.234007271 fv Gamma RP(P), Log-Normal FALSE #> 11124 696 1.0102497 0.229737838 fv Gamma RP(P), Log-Normal FALSE #> 11140 697 1.0358479 0.225442770 fv Gamma RP(P), Log-Normal FALSE #> 11156 698 1.0073535 0.220756703 fv Gamma RP(P), Log-Normal FALSE #> 11172 699 0.9466231 0.201809941 fv Gamma RP(P), Log-Normal FALSE #> 11188 700 1.6203374 0.346406720 fv Gamma RP(P), Log-Normal TRUE #> 11204 701 0.8178477 0.176518370 fv Gamma RP(P), Log-Normal FALSE #> 11220 702 0.8281316 0.185009839 fv Gamma RP(P), Log-Normal FALSE #> 11236 703 0.7131766 0.156512821 fv Gamma RP(P), Log-Normal FALSE #> 11252 704 1.2908383 0.275089666 fv Gamma RP(P), Log-Normal FALSE #> 11268 705 1.4435519 0.314942107 fv Gamma RP(P), Log-Normal FALSE #> 11284 706 1.0319566 0.223149598 fv Gamma RP(P), Log-Normal FALSE #> 11300 707 0.7611768 0.169895358 fv Gamma RP(P), Log-Normal FALSE #> 11316 708 1.1576638 0.261635419 fv Gamma RP(P), Log-Normal FALSE #> 11332 709 0.9334649 0.200133791 fv Gamma RP(P), Log-Normal FALSE #> 11348 710 0.9774021 0.208540201 fv Gamma RP(P), Log-Normal FALSE #> 11364 711 0.4418561 0.097246388 fv Gamma RP(P), Log-Normal TRUE #> 11380 712 0.9598169 0.208774489 fv Gamma RP(P), Log-Normal FALSE #> 11396 713 1.0013023 0.213927288 fv Gamma RP(P), Log-Normal FALSE #> 11412 714 1.2931185 0.294648103 fv Gamma RP(P), Log-Normal FALSE #> 11428 715 1.3871912 0.304898248 fv Gamma RP(P), Log-Normal FALSE #> 11444 716 1.0762644 0.237239678 fv Gamma RP(P), Log-Normal FALSE #> 11460 717 0.8472068 0.196043062 fv Gamma RP(P), Log-Normal FALSE #> 11476 718 1.0140154 0.225564166 fv Gamma RP(P), Log-Normal FALSE #> 11492 719 0.7918815 0.168968345 fv Gamma RP(P), Log-Normal FALSE #> 11508 720 0.8275318 0.180171933 fv Gamma RP(P), Log-Normal FALSE #> 11524 721 1.0706093 0.233121948 fv Gamma RP(P), Log-Normal FALSE #> 11540 722 1.2852624 0.283010838 fv Gamma RP(P), Log-Normal FALSE #> 11556 723 1.0671711 0.239730437 fv Gamma RP(P), Log-Normal FALSE #> 11572 724 0.7945824 0.172668400 fv Gamma RP(P), Log-Normal FALSE #> 11588 725 0.8761793 0.190162437 fv Gamma RP(P), Log-Normal FALSE #> 11604 726 0.7683224 0.169454349 fv Gamma RP(P), Log-Normal FALSE #> 11620 727 1.1401463 0.252371583 fv Gamma RP(P), Log-Normal FALSE #> 11636 728 0.6869455 0.156140309 fv Gamma RP(P), Log-Normal FALSE #> 11652 729 1.0045609 0.214384308 fv Gamma RP(P), Log-Normal FALSE #> 11668 730 1.3739350 0.314933136 fv Gamma RP(P), Log-Normal FALSE #> 11684 731 1.4105734 0.312439279 fv Gamma RP(P), Log-Normal FALSE #> 11700 732 1.2408039 0.265123430 fv Gamma RP(P), Log-Normal FALSE #> 11716 733 0.7434313 0.162871630 fv Gamma RP(P), Log-Normal FALSE #> 11732 734 0.7670277 0.169974871 fv Gamma RP(P), Log-Normal FALSE #> 11748 735 1.1391446 0.249095776 fv Gamma RP(P), Log-Normal FALSE #> 11764 736 1.0869389 0.241739791 fv Gamma RP(P), Log-Normal FALSE #> 11780 737 0.9900843 0.215836490 fv Gamma RP(P), Log-Normal FALSE #> 11796 738 0.8400574 0.198380530 fv Gamma RP(P), Log-Normal FALSE #> 11812 739 0.9098679 0.198083628 fv Gamma RP(P), Log-Normal FALSE #> 11828 740 0.8715673 0.188184780 fv Gamma RP(P), Log-Normal FALSE #> 11844 741 1.0522008 0.231884466 fv Gamma RP(P), Log-Normal FALSE #> 11860 742 0.7308650 0.157131775 fv Gamma RP(P), Log-Normal FALSE #> 11876 743 1.0840980 0.236451512 fv Gamma RP(P), Log-Normal FALSE #> 11892 744 1.4346874 0.319759809 fv Gamma RP(P), Log-Normal FALSE #> 11908 745 0.8684263 0.196492889 fv Gamma RP(P), Log-Normal FALSE #> 11924 746 0.5042351 0.108711465 fv Gamma RP(P), Log-Normal FALSE #> 11940 747 0.8521053 0.186267508 fv Gamma RP(P), Log-Normal FALSE #> 11956 748 1.0776501 0.229694112 fv Gamma RP(P), Log-Normal FALSE #> 11972 749 0.8956342 0.198659923 fv Gamma RP(P), Log-Normal FALSE #> 11988 750 0.6991894 0.151825792 fv Gamma RP(P), Log-Normal FALSE #> 12004 751 1.1707087 0.250296870 fv Gamma RP(P), Log-Normal FALSE #> 12020 752 1.0602200 0.230669899 fv Gamma RP(P), Log-Normal FALSE #> 12036 753 0.7372900 0.163529975 fv Gamma RP(P), Log-Normal FALSE #> 12052 754 1.0951085 0.238851460 fv Gamma RP(P), Log-Normal FALSE #> 12068 755 0.9993447 0.215552225 fv Gamma RP(P), Log-Normal FALSE #> 12084 756 1.5740582 0.337943971 fv Gamma RP(P), Log-Normal TRUE #> 12100 757 0.7728525 0.169474840 fv Gamma RP(P), Log-Normal FALSE #> 12116 758 0.6452476 0.140301410 fv Gamma RP(P), Log-Normal FALSE #> 12132 759 0.7901227 0.171488061 fv Gamma RP(P), Log-Normal FALSE #> 12148 760 0.7639433 0.164920427 fv Gamma RP(P), Log-Normal FALSE #> 12164 761 1.0515490 0.232290105 fv Gamma RP(P), Log-Normal FALSE #> 12180 762 0.8354865 0.180633162 fv Gamma RP(P), Log-Normal FALSE #> 12196 763 0.7587626 0.164916919 fv Gamma RP(P), Log-Normal FALSE #> 12212 764 0.9886533 0.219427415 fv Gamma RP(P), Log-Normal FALSE #> 12228 765 0.7802736 0.170307432 fv Gamma RP(P), Log-Normal FALSE #> 12244 766 0.6561777 0.142009060 fv Gamma RP(P), Log-Normal FALSE #> 12260 767 0.9769743 0.213573667 fv Gamma RP(P), Log-Normal FALSE #> 12276 768 1.0293469 0.224440289 fv Gamma RP(P), Log-Normal FALSE #> 12292 769 1.0177818 0.217646319 fv Gamma RP(P), Log-Normal FALSE #> 12308 770 0.7562416 0.168946252 fv Gamma RP(P), Log-Normal FALSE #> 12324 771 0.6463465 0.139187794 fv Gamma RP(P), Log-Normal FALSE #> 12340 772 1.1961842 0.271932662 fv Gamma RP(P), Log-Normal FALSE #> 12356 773 0.8067420 0.176962096 fv Gamma RP(P), Log-Normal FALSE #> 12372 774 0.9520088 0.205128560 fv Gamma RP(P), Log-Normal FALSE #> 12388 775 1.4347408 0.319703347 fv Gamma RP(P), Log-Normal FALSE #> 12404 776 0.9481417 0.202311942 fv Gamma RP(P), Log-Normal FALSE #> 12420 777 0.8016802 0.175031737 fv Gamma RP(P), Log-Normal FALSE #> 12436 778 1.1275293 0.249908367 fv Gamma RP(P), Log-Normal FALSE #> 12452 779 1.1870282 0.261537316 fv Gamma RP(P), Log-Normal FALSE #> 12468 780 1.1268945 0.249877221 fv Gamma RP(P), Log-Normal FALSE #> 12484 781 0.8099723 0.181662555 fv Gamma RP(P), Log-Normal FALSE #> 12500 782 0.9387734 0.218754552 fv Gamma RP(P), Log-Normal FALSE #> 12516 783 0.9578883 0.204613312 fv Gamma RP(P), Log-Normal FALSE #> 12532 784 0.8156845 0.174404492 fv Gamma RP(P), Log-Normal FALSE #> 12548 785 0.8247289 0.177841946 fv Gamma RP(P), Log-Normal FALSE #> 12564 786 1.0226574 0.217558799 fv Gamma RP(P), Log-Normal FALSE #> 12580 787 1.2335064 0.284150031 fv Gamma RP(P), Log-Normal FALSE #> 12596 788 1.0013196 0.221958849 fv Gamma RP(P), Log-Normal FALSE #> 12612 789 1.0288684 0.227267275 fv Gamma RP(P), Log-Normal FALSE #> 12628 790 1.3948807 0.318147375 fv Gamma RP(P), Log-Normal FALSE #> 12644 791 1.2962548 0.289253927 fv Gamma RP(P), Log-Normal FALSE #> 12660 792 1.3337738 0.290805393 fv Gamma RP(P), Log-Normal FALSE #> 12676 793 0.8720682 0.188928270 fv Gamma RP(P), Log-Normal FALSE #> 12692 794 0.4682845 0.102407124 fv Gamma RP(P), Log-Normal TRUE #> 12708 795 0.9519556 0.210182873 fv Gamma RP(P), Log-Normal FALSE #> 12724 796 1.0864968 0.238092719 fv Gamma RP(P), Log-Normal FALSE #> 12740 797 0.7159644 0.155862128 fv Gamma RP(P), Log-Normal FALSE #> 12756 798 0.7497156 0.165610200 fv Gamma RP(P), Log-Normal FALSE #> 12772 799 1.4945789 0.345846891 fv Gamma RP(P), Log-Normal TRUE #> 12788 800 1.2630625 0.274880885 fv Gamma RP(P), Log-Normal FALSE #> 12804 801 0.7800030 0.172871017 fv Gamma RP(P), Log-Normal FALSE #> 12820 802 0.8108326 0.174897662 fv Gamma RP(P), Log-Normal FALSE #> 12836 803 0.9512588 0.202956493 fv Gamma RP(P), Log-Normal FALSE #> 12852 804 1.0362523 0.225794955 fv Gamma RP(P), Log-Normal FALSE #> 12868 805 0.9811922 0.212636632 fv Gamma RP(P), Log-Normal FALSE #> 12884 806 0.7326683 0.158761559 fv Gamma RP(P), Log-Normal FALSE #> 12900 807 1.2740750 0.276544259 fv Gamma RP(P), Log-Normal FALSE #> 12916 808 0.9781884 0.222359075 fv Gamma RP(P), Log-Normal FALSE #> 12932 809 1.3453651 0.309478390 fv Gamma RP(P), Log-Normal FALSE #> 12948 810 0.9232016 0.196664367 fv Gamma RP(P), Log-Normal FALSE #> 12964 811 1.3197955 0.283396132 fv Gamma RP(P), Log-Normal FALSE #> 12980 812 0.8368495 0.182262628 fv Gamma RP(P), Log-Normal FALSE #> 12996 813 1.1692435 0.253391788 fv Gamma RP(P), Log-Normal FALSE #> 13012 814 0.9869950 0.215275425 fv Gamma RP(P), Log-Normal FALSE #> 13028 815 1.4267797 0.314102008 fv Gamma RP(P), Log-Normal FALSE #> 13044 816 0.7096351 0.156897106 fv Gamma RP(P), Log-Normal FALSE #> 13060 817 1.2207826 0.279563602 fv Gamma RP(P), Log-Normal FALSE #> 13076 818 0.8781833 0.195168438 fv Gamma RP(P), Log-Normal FALSE #> 13092 819 1.3528171 0.307115701 fv Gamma RP(P), Log-Normal FALSE #> 13108 820 0.8750937 0.190140123 fv Gamma RP(P), Log-Normal FALSE #> 13124 821 1.0024784 0.225742050 fv Gamma RP(P), Log-Normal FALSE #> 13140 822 0.6059361 0.130452065 fv Gamma RP(P), Log-Normal FALSE #> 13156 823 1.0219096 0.227328071 fv Gamma RP(P), Log-Normal FALSE #> 13172 824 0.9918559 0.217538890 fv Gamma RP(P), Log-Normal FALSE #> 13188 825 0.6366212 0.136266805 fv Gamma RP(P), Log-Normal FALSE #> 13204 826 0.9444450 0.201370921 fv Gamma RP(P), Log-Normal FALSE #> 13220 827 0.9275230 0.201228122 fv Gamma RP(P), Log-Normal FALSE #> 13236 828 1.4648905 0.331911086 fv Gamma RP(P), Log-Normal TRUE #> 13252 829 0.7088462 0.152408167 fv Gamma RP(P), Log-Normal FALSE #> 13268 830 1.2836749 0.282634446 fv Gamma RP(P), Log-Normal FALSE #> 13284 831 0.7178710 0.163143070 fv Gamma RP(P), Log-Normal FALSE #> 13300 832 0.8691501 0.185987043 fv Gamma RP(P), Log-Normal FALSE #> 13316 833 0.9918025 0.216794384 fv Gamma RP(P), Log-Normal FALSE #> 13332 834 0.6561897 0.145029001 fv Gamma RP(P), Log-Normal FALSE #> 13348 835 0.9531690 0.206507185 fv Gamma RP(P), Log-Normal FALSE #> 13364 836 0.9457929 0.208627065 fv Gamma RP(P), Log-Normal FALSE #> 13380 837 0.9604259 0.214827897 fv Gamma RP(P), Log-Normal FALSE #> 13396 838 1.2231002 0.262948896 fv Gamma RP(P), Log-Normal FALSE #> 13412 839 0.7639873 0.164814888 fv Gamma RP(P), Log-Normal FALSE #> 13428 840 1.0584085 0.233394444 fv Gamma RP(P), Log-Normal FALSE #> 13444 841 0.9060566 0.191644127 fv Gamma RP(P), Log-Normal FALSE #> 13460 842 0.9981854 0.222833868 fv Gamma RP(P), Log-Normal FALSE #> 13476 843 1.3271882 0.294385787 fv Gamma RP(P), Log-Normal FALSE #> 13492 844 1.0083776 0.222785765 fv Gamma RP(P), Log-Normal FALSE #> 13508 845 1.4067028 0.311118514 fv Gamma RP(P), Log-Normal FALSE #> 13524 846 0.8457063 0.189664761 fv Gamma RP(P), Log-Normal FALSE #> 13540 847 0.8266072 0.185765621 fv Gamma RP(P), Log-Normal FALSE #> 13556 848 0.5911078 0.127933794 fv Gamma RP(P), Log-Normal FALSE #> 13572 849 0.9435684 0.200827455 fv Gamma RP(P), Log-Normal FALSE #> 13588 850 0.8421106 0.180835192 fv Gamma RP(P), Log-Normal FALSE #> 13604 851 0.9838631 0.215975837 fv Gamma RP(P), Log-Normal FALSE #> 13620 852 0.5626470 0.122791446 fv Gamma RP(P), Log-Normal FALSE #> 13636 853 0.9664855 0.207250226 fv Gamma RP(P), Log-Normal FALSE #> 13652 854 0.7210802 0.158669568 fv Gamma RP(P), Log-Normal FALSE #> 13668 855 1.2549558 0.273909144 fv Gamma RP(P), Log-Normal FALSE #> 13684 856 1.0890084 0.235216876 fv Gamma RP(P), Log-Normal FALSE #> 13700 857 0.7349918 0.162187111 fv Gamma RP(P), Log-Normal FALSE #> 13716 858 0.8738882 0.193200988 fv Gamma RP(P), Log-Normal FALSE #> 13732 859 0.8725583 0.195344571 fv Gamma RP(P), Log-Normal FALSE #> 13748 860 0.7565733 0.161739089 fv Gamma RP(P), Log-Normal FALSE #> 13764 861 1.1321227 0.246524283 fv Gamma RP(P), Log-Normal FALSE #> 13780 862 0.8393021 0.180926336 fv Gamma RP(P), Log-Normal FALSE #> 13796 863 1.0161557 0.222141368 fv Gamma RP(P), Log-Normal FALSE #> 13812 864 0.9572296 0.210418635 fv Gamma RP(P), Log-Normal FALSE #> 13828 865 1.0152870 0.222102537 fv Gamma RP(P), Log-Normal FALSE #> 13844 866 0.7984746 0.170205293 fv Gamma RP(P), Log-Normal FALSE #> 13860 867 0.9096029 0.196759398 fv Gamma RP(P), Log-Normal FALSE #> 13876 868 0.9705552 0.210115673 fv Gamma RP(P), Log-Normal FALSE #> 13892 869 1.0294965 0.226495818 fv Gamma RP(P), Log-Normal FALSE #> 13908 870 0.9585866 0.217548683 fv Gamma RP(P), Log-Normal FALSE #> 13924 871 1.2540751 0.273750013 fv Gamma RP(P), Log-Normal FALSE #> 13940 872 1.3178539 0.292907644 fv Gamma RP(P), Log-Normal FALSE #> 13956 873 1.1780594 0.254082562 fv Gamma RP(P), Log-Normal FALSE #> 13972 874 1.5369549 0.349989569 fv Gamma RP(P), Log-Normal TRUE #> 13988 875 0.7606339 0.164512020 fv Gamma RP(P), Log-Normal FALSE #> 14004 876 0.8818046 0.191259261 fv Gamma RP(P), Log-Normal FALSE #> 14020 877 1.0016215 0.217910809 fv Gamma RP(P), Log-Normal FALSE #> 14036 878 1.0960247 0.243448439 fv Gamma RP(P), Log-Normal FALSE #> 14052 879 0.9010159 0.208415640 fv Gamma RP(P), Log-Normal FALSE #> 14068 880 1.4167836 0.309960875 fv Gamma RP(P), Log-Normal FALSE #> 14084 881 1.1367712 0.251722155 fv Gamma RP(P), Log-Normal FALSE #> 14100 882 1.2721470 0.272715293 fv Gamma RP(P), Log-Normal FALSE #> 14116 883 0.7534025 0.164687938 fv Gamma RP(P), Log-Normal FALSE #> 14132 884 0.7895471 0.169947985 fv Gamma RP(P), Log-Normal FALSE #> 14148 885 0.7598150 0.165598184 fv Gamma RP(P), Log-Normal FALSE #> 14164 886 0.7546992 0.165577188 fv Gamma RP(P), Log-Normal FALSE #> 14180 887 0.9464325 0.207391951 fv Gamma RP(P), Log-Normal FALSE #> 14196 888 1.3249936 0.285528452 fv Gamma RP(P), Log-Normal FALSE #> 14212 889 1.0483529 0.223855961 fv Gamma RP(P), Log-Normal FALSE #> 14228 890 0.7960197 0.175686722 fv Gamma RP(P), Log-Normal FALSE #> 14244 891 0.6057941 0.129842155 fv Gamma RP(P), Log-Normal FALSE #> 14260 892 0.9117945 0.197815689 fv Gamma RP(P), Log-Normal FALSE #> 14276 893 1.1931191 0.269494148 fv Gamma RP(P), Log-Normal FALSE #> 14292 894 0.7163861 0.156284310 fv Gamma RP(P), Log-Normal FALSE #> 14308 895 0.8521234 0.181727642 fv Gamma RP(P), Log-Normal FALSE #> 14324 896 1.1969657 0.257466332 fv Gamma RP(P), Log-Normal FALSE #> 14340 897 0.8738869 0.187008230 fv Gamma RP(P), Log-Normal FALSE #> 14356 898 1.1901902 0.254087597 fv Gamma RP(P), Log-Normal FALSE #> 14372 899 1.0493014 0.231872092 fv Gamma RP(P), Log-Normal FALSE #> 14388 900 1.1641367 0.259296079 fv Gamma RP(P), Log-Normal FALSE #> 14404 901 0.7441833 0.162379902 fv Gamma RP(P), Log-Normal FALSE #> 14420 902 0.7006841 0.150598713 fv Gamma RP(P), Log-Normal FALSE #> 14436 903 0.7852252 0.167720028 fv Gamma RP(P), Log-Normal FALSE #> 14452 904 1.5979510 0.368445748 fv Gamma RP(P), Log-Normal TRUE #> 14468 905 0.7930490 0.170065240 fv Gamma RP(P), Log-Normal FALSE #> 14484 906 1.3977134 0.301200536 fv Gamma RP(P), Log-Normal FALSE #> 14500 907 1.0303398 0.225804461 fv Gamma RP(P), Log-Normal FALSE #> 14516 908 0.8813457 0.201251276 fv Gamma RP(P), Log-Normal FALSE #> 14532 909 0.7644669 0.167107442 fv Gamma RP(P), Log-Normal FALSE #> 14548 910 0.6744757 0.145971855 fv Gamma RP(P), Log-Normal FALSE #> 14564 911 0.9481477 0.214870715 fv Gamma RP(P), Log-Normal FALSE #> 14580 912 0.6898847 0.148216456 fv Gamma RP(P), Log-Normal FALSE #> 14596 913 0.9740810 0.210880647 fv Gamma RP(P), Log-Normal FALSE #> 14612 914 0.8619948 0.192708186 fv Gamma RP(P), Log-Normal FALSE #> 14628 915 1.1804584 0.260025660 fv Gamma RP(P), Log-Normal FALSE #> 14644 916 0.6691827 0.144375958 fv Gamma RP(P), Log-Normal FALSE #> 14660 917 1.0113326 0.222850102 fv Gamma RP(P), Log-Normal FALSE #> 14676 918 1.0209571 0.217855650 fv Gamma RP(P), Log-Normal FALSE #> 14692 919 0.6796905 0.145360386 fv Gamma RP(P), Log-Normal FALSE #> 14708 920 0.9871577 0.211586286 fv Gamma RP(P), Log-Normal FALSE #> 14724 921 1.1250715 0.248801866 fv Gamma RP(P), Log-Normal FALSE #> 14740 922 1.6097787 0.362204329 fv Gamma RP(P), Log-Normal TRUE #> 14756 923 0.9436780 0.203595015 fv Gamma RP(P), Log-Normal FALSE #> 14772 924 0.9564219 0.203337756 fv Gamma RP(P), Log-Normal FALSE #> 14788 925 1.2119817 0.273392844 fv Gamma RP(P), Log-Normal FALSE #> 14804 926 0.9400838 0.200647180 fv Gamma RP(P), Log-Normal FALSE #> 14820 927 0.5509122 0.120006203 fv Gamma RP(P), Log-Normal FALSE #> 14836 928 0.9335398 0.201024284 fv Gamma RP(P), Log-Normal FALSE #> 14852 929 1.0175155 0.223295340 fv Gamma RP(P), Log-Normal FALSE #> 14868 930 1.4778512 0.339083118 fv Gamma RP(P), Log-Normal TRUE #> 14884 931 0.9049402 0.195294270 fv Gamma RP(P), Log-Normal FALSE #> 14900 932 1.2187532 0.262280942 fv Gamma RP(P), Log-Normal FALSE #> 14916 933 0.7691144 0.167095118 fv Gamma RP(P), Log-Normal FALSE #> 14932 934 0.7255674 0.155278746 fv Gamma RP(P), Log-Normal FALSE #> 14948 935 0.5660748 0.122968010 fv Gamma RP(P), Log-Normal FALSE #> 14964 936 0.7769992 0.168390284 fv Gamma RP(P), Log-Normal FALSE #> 14980 937 1.4918244 0.328500321 fv Gamma RP(P), Log-Normal TRUE #> 14996 938 1.0659751 0.233315986 fv Gamma RP(P), Log-Normal FALSE #> 15012 939 1.0236145 0.218522667 fv Gamma RP(P), Log-Normal FALSE #> 15028 940 1.0295400 0.221691720 fv Gamma RP(P), Log-Normal FALSE #> 15044 941 0.8047617 0.173567485 fv Gamma RP(P), Log-Normal FALSE #> 15060 942 0.8464834 0.185539126 fv Gamma RP(P), Log-Normal FALSE #> 15076 943 0.5599465 0.122123725 fv Gamma RP(P), Log-Normal FALSE #> 15092 944 0.7749006 0.165689234 fv Gamma RP(P), Log-Normal FALSE #> 15108 945 0.7455152 0.160417654 fv Gamma RP(P), Log-Normal FALSE #> 15124 946 1.1738343 0.268801235 fv Gamma RP(P), Log-Normal FALSE #> 15140 947 0.8388128 0.185803625 fv Gamma RP(P), Log-Normal FALSE #> 15156 948 0.6952556 0.158342180 fv Gamma RP(P), Log-Normal FALSE #> 15172 949 0.8177120 0.182041579 fv Gamma RP(P), Log-Normal FALSE #> 15188 950 0.7743235 0.171749308 fv Gamma RP(P), Log-Normal FALSE #> 15204 951 1.0063523 0.219655118 fv Gamma RP(P), Log-Normal FALSE #> 15220 952 0.8235324 0.177580617 fv Gamma RP(P), Log-Normal FALSE #> 15236 953 1.6557073 0.364829706 fv Gamma RP(P), Log-Normal TRUE #> 15252 954 0.8653755 0.187285027 fv Gamma RP(P), Log-Normal FALSE #> 15268 955 1.0301056 0.220205471 fv Gamma RP(P), Log-Normal FALSE #> 15284 956 0.7894323 0.172205969 fv Gamma RP(P), Log-Normal FALSE #> 15300 957 0.7333930 0.159610119 fv Gamma RP(P), Log-Normal FALSE #> 15316 958 0.6756133 0.147379474 fv Gamma RP(P), Log-Normal FALSE #> 15332 959 0.8148421 0.177271917 fv Gamma RP(P), Log-Normal FALSE #> 15348 960 1.0392486 0.227370460 fv Gamma RP(P), Log-Normal FALSE #> 15364 961 0.6272968 0.137352074 fv Gamma RP(P), Log-Normal FALSE #> 15380 962 1.2355976 0.269890470 fv Gamma RP(P), Log-Normal FALSE #> 15396 963 1.3179458 0.295990708 fv Gamma RP(P), Log-Normal FALSE #> 15412 964 0.9410797 0.206058732 fv Gamma RP(P), Log-Normal FALSE #> 15428 965 0.7249062 0.156451201 fv Gamma RP(P), Log-Normal FALSE #> 15444 966 1.0797601 0.240333361 fv Gamma RP(P), Log-Normal FALSE #> 15460 967 0.8711198 0.188877816 fv Gamma RP(P), Log-Normal FALSE #> 15476 968 0.7484915 0.163756006 fv Gamma RP(P), Log-Normal FALSE #> 15492 969 1.0608001 0.239446947 fv Gamma RP(P), Log-Normal FALSE #> 15508 970 1.0392551 0.242127789 fv Gamma RP(P), Log-Normal FALSE #> 15524 971 0.8947299 0.198047800 fv Gamma RP(P), Log-Normal FALSE #> 15540 972 0.8458660 0.191087294 fv Gamma RP(P), Log-Normal FALSE #> 15556 973 1.4370855 0.329114189 fv Gamma RP(P), Log-Normal TRUE #> 15572 974 0.6426835 0.141462608 fv Gamma RP(P), Log-Normal FALSE #> 15588 975 0.5829796 0.126731490 fv Gamma RP(P), Log-Normal FALSE #> 15604 976 0.9819053 0.214952765 fv Gamma RP(P), Log-Normal FALSE #> 15620 977 1.2025767 0.259993700 fv Gamma RP(P), Log-Normal FALSE #> 15636 978 1.1207741 0.253448839 fv Gamma RP(P), Log-Normal FALSE #> 15652 979 1.2212617 0.277004405 fv Gamma RP(P), Log-Normal FALSE #> 15668 980 0.6660679 0.144904550 fv Gamma RP(P), Log-Normal FALSE #> 15684 981 0.9800822 0.220568363 fv Gamma RP(P), Log-Normal FALSE #> 15700 982 1.2715142 0.278377255 fv Gamma RP(P), Log-Normal FALSE #> 15716 983 0.6362243 0.139600397 fv Gamma RP(P), Log-Normal FALSE #> 15732 984 0.9930194 0.216807089 fv Gamma RP(P), Log-Normal FALSE #> 15748 985 1.1721930 0.263401263 fv Gamma RP(P), Log-Normal FALSE #> 15764 986 0.8120336 0.173385919 fv Gamma RP(P), Log-Normal FALSE #> 15780 987 0.6828491 0.148950787 fv Gamma RP(P), Log-Normal FALSE #> 15796 988 0.8144041 0.176435041 fv Gamma RP(P), Log-Normal FALSE #> 15812 989 1.1247055 0.243500492 fv Gamma RP(P), Log-Normal FALSE #> 15828 990 0.8947567 0.191212448 fv Gamma RP(P), Log-Normal FALSE #> 15844 991 1.0661028 0.236299935 fv Gamma RP(P), Log-Normal FALSE #> 15860 992 1.1284313 0.252598990 fv Gamma RP(P), Log-Normal FALSE #> 15876 993 1.4178796 0.311252553 fv Gamma RP(P), Log-Normal FALSE #> 15892 994 0.9354356 0.205470856 fv Gamma RP(P), Log-Normal FALSE #> 15908 995 0.9748574 0.210421807 fv Gamma RP(P), Log-Normal FALSE #> 15924 996 0.8126153 0.174760175 fv Gamma RP(P), Log-Normal FALSE #> 15940 997 0.7325642 0.165565100 fv Gamma RP(P), Log-Normal FALSE #> 15956 998 0.8758146 0.191746972 fv Gamma RP(P), Log-Normal FALSE #> 15972 999 0.6360544 0.137587237 fv Gamma RP(P), Log-Normal FALSE #> 15988 1000 0.6592714 0.146375303 fv Gamma RP(P), Log-Normal FALSE #> 5 1 0.6394722 0.122380809 fv Log-Normal Cox, Gamma FALSE #> 21 2 0.6045856 NA fv Log-Normal Cox, Gamma NA #> 37 3 0.8010657 0.151976580 fv Log-Normal Cox, Gamma FALSE #> 53 4 0.5251708 0.102995382 fv Log-Normal Cox, Gamma FALSE #> 69 5 0.7983593 0.148846197 fv Log-Normal Cox, Gamma FALSE #> 85 6 0.6885611 0.130409358 fv Log-Normal Cox, Gamma FALSE #> 101 7 0.5151179 0.100941935 fv Log-Normal Cox, Gamma FALSE #> 117 8 0.7621628 0.144318000 fv Log-Normal Cox, Gamma FALSE #> 133 9 0.6643665 0.127376922 fv Log-Normal Cox, Gamma FALSE #> 149 10 0.8283729 0.155318927 fv Log-Normal Cox, Gamma FALSE #> 165 11 0.7869555 0.147558877 fv Log-Normal Cox, Gamma FALSE #> 181 12 0.5133479 0.101148388 fv Log-Normal Cox, Gamma FALSE #> 197 13 0.7532925 0.143254004 fv Log-Normal Cox, Gamma FALSE #> 213 14 0.6319419 0.120525268 fv Log-Normal Cox, Gamma FALSE #> 229 15 0.6431606 NA fv Log-Normal Cox, Gamma NA #> 245 16 0.5317893 0.104988331 fv Log-Normal Cox, Gamma FALSE #> 261 17 0.6485239 NA fv Log-Normal Cox, Gamma NA #> 277 18 0.6937009 0.131641157 fv Log-Normal Cox, Gamma FALSE #> 293 19 0.7893061 0.147649710 fv Log-Normal Cox, Gamma FALSE #> 309 20 0.5473277 0.107505962 fv Log-Normal Cox, Gamma FALSE #> 325 21 0.6159281 0.119712689 fv Log-Normal Cox, Gamma FALSE #> 341 22 0.5034632 0.098706022 fv Log-Normal Cox, Gamma FALSE #> 357 23 0.8872145 0.167318484 fv Log-Normal Cox, Gamma FALSE #> 373 24 0.6747845 0.128587018 fv Log-Normal Cox, Gamma FALSE #> 389 25 0.5306071 0.103635336 fv Log-Normal Cox, Gamma FALSE #> 405 26 0.6424292 0.123098114 fv Log-Normal Cox, Gamma FALSE #> 421 27 0.4616309 0.092627917 fv Log-Normal Cox, Gamma FALSE #> 437 28 0.6455285 0.124584641 fv Log-Normal Cox, Gamma FALSE #> 453 29 0.9355245 0.171887190 fv Log-Normal Cox, Gamma TRUE #> 469 30 0.5683618 NA fv Log-Normal Cox, Gamma NA #> 485 31 0.5122115 0.101457499 fv Log-Normal Cox, Gamma FALSE #> 501 32 0.5137421 0.101410278 fv Log-Normal Cox, Gamma FALSE #> 517 33 0.6617973 0.126758113 fv Log-Normal Cox, Gamma FALSE #> 533 34 0.8792537 0.165007321 fv Log-Normal Cox, Gamma FALSE #> 549 35 0.5056708 0.102050813 fv Log-Normal Cox, Gamma FALSE #> 565 36 0.4631456 0.092364702 fv Log-Normal Cox, Gamma FALSE #> 581 37 0.6402471 0.123639086 fv Log-Normal Cox, Gamma FALSE #> 597 38 0.6072469 0.118505183 fv Log-Normal Cox, Gamma FALSE #> 613 39 0.7170843 0.136908818 fv Log-Normal Cox, Gamma FALSE #> 629 40 0.5771348 0.115752065 fv Log-Normal Cox, Gamma FALSE #> 645 41 0.6529139 0.124393480 fv Log-Normal Cox, Gamma FALSE #> 661 42 0.5148011 0.101711999 fv Log-Normal Cox, Gamma FALSE #> 677 43 0.4666952 0.004937570 fv Log-Normal Cox, Gamma TRUE #> 693 44 0.6189380 0.118445497 fv Log-Normal Cox, Gamma FALSE #> 709 45 0.5376220 0.104802034 fv Log-Normal Cox, Gamma FALSE #> 725 46 0.3144607 0.065053567 fv Log-Normal Cox, Gamma TRUE #> 741 47 0.7584395 0.142672550 fv Log-Normal Cox, Gamma FALSE #> 757 48 0.8275518 0.156556744 fv Log-Normal Cox, Gamma FALSE #> 773 49 0.8489886 0.158293529 fv Log-Normal Cox, Gamma FALSE #> 789 50 0.5482973 0.107386748 fv Log-Normal Cox, Gamma FALSE #> 805 51 0.6839991 0.129492956 fv Log-Normal Cox, Gamma FALSE #> 821 52 0.4843987 0.096408435 fv Log-Normal Cox, Gamma FALSE #> 837 53 0.8510057 0.158864620 fv Log-Normal Cox, Gamma FALSE #> 853 54 0.6256909 0.120555710 fv Log-Normal Cox, Gamma FALSE #> 869 55 0.8346268 0.156087294 fv Log-Normal Cox, Gamma FALSE #> 885 56 0.7882049 0.150416666 fv Log-Normal Cox, Gamma FALSE #> 901 57 0.8201443 0.154000281 fv Log-Normal Cox, Gamma FALSE #> 917 58 0.7040050 0.135316400 fv Log-Normal Cox, Gamma FALSE #> 933 59 0.6359651 0.121923449 fv Log-Normal Cox, Gamma FALSE #> 949 60 0.8198970 0.153870480 fv Log-Normal Cox, Gamma FALSE #> 965 61 0.7175756 0.137152304 fv Log-Normal Cox, Gamma FALSE #> 981 62 0.6076507 0.118508879 fv Log-Normal Cox, Gamma FALSE #> 997 63 0.7819970 0.147791047 fv Log-Normal Cox, Gamma FALSE #> 1013 64 0.6957054 0.132639426 fv Log-Normal Cox, Gamma FALSE #> 1029 65 0.9526125 0.009775405 fv Log-Normal Cox, Gamma TRUE #> 1045 66 0.5441474 0.106172085 fv Log-Normal Cox, Gamma FALSE #> 1061 67 0.5523208 0.108353716 fv Log-Normal Cox, Gamma FALSE #> 1077 68 0.4929681 0.098414398 fv Log-Normal Cox, Gamma FALSE #> 1093 69 0.7299153 0.138530230 fv Log-Normal Cox, Gamma FALSE #> 1109 70 0.6423527 0.122802482 fv Log-Normal Cox, Gamma FALSE #> 1125 71 0.8632862 0.161486059 fv Log-Normal Cox, Gamma FALSE #> 1141 72 0.5591545 0.109417396 fv Log-Normal Cox, Gamma FALSE #> 1157 73 0.6075278 0.117438980 fv Log-Normal Cox, Gamma FALSE #> 1173 74 0.4193468 0.085150618 fv Log-Normal Cox, Gamma FALSE #> 1189 75 0.6458334 0.123807889 fv Log-Normal Cox, Gamma FALSE #> 1205 76 0.5319590 0.103524013 fv Log-Normal Cox, Gamma FALSE #> 1221 77 0.8210381 0.156007454 fv Log-Normal Cox, Gamma FALSE #> 1237 78 0.7326486 0.139950963 fv Log-Normal Cox, Gamma FALSE #> 1253 79 0.9943199 0.182305762 fv Log-Normal Cox, Gamma TRUE #> 1269 80 0.5401692 0.105772312 fv Log-Normal Cox, Gamma FALSE #> 1285 81 0.8195515 0.152333242 fv Log-Normal Cox, Gamma FALSE #> 1301 82 0.5996208 0.115639258 fv Log-Normal Cox, Gamma FALSE #> 1317 83 0.6878985 0.131159675 fv Log-Normal Cox, Gamma FALSE #> 1333 84 0.5677818 0.110729113 fv Log-Normal Cox, Gamma FALSE #> 1349 85 0.6777671 0.132744504 fv Log-Normal Cox, Gamma FALSE #> 1365 86 0.5697309 0.113283344 fv Log-Normal Cox, Gamma FALSE #> 1381 87 0.6515879 0.125557308 fv Log-Normal Cox, Gamma FALSE #> 1397 88 0.6589741 0.126940719 fv Log-Normal Cox, Gamma FALSE #> 1413 89 0.9088941 0.169266584 fv Log-Normal Cox, Gamma TRUE #> 1429 90 0.7931475 0.150240420 fv Log-Normal Cox, Gamma FALSE #> 1445 91 0.7963163 0.149402965 fv Log-Normal Cox, Gamma FALSE #> 1461 92 0.7857943 0.149847987 fv Log-Normal Cox, Gamma FALSE #> 1477 93 0.5504720 0.107382694 fv Log-Normal Cox, Gamma FALSE #> 1493 94 0.6884429 0.131346884 fv Log-Normal Cox, Gamma FALSE #> 1509 95 0.6380857 0.123419439 fv Log-Normal Cox, Gamma FALSE #> 1525 96 0.5041330 0.099649898 fv Log-Normal Cox, Gamma FALSE #> 1541 97 0.7322696 0.139902706 fv Log-Normal Cox, Gamma FALSE #> 1557 98 0.4127046 0.082919455 fv Log-Normal Cox, Gamma FALSE #> 1573 99 0.6763370 0.128560573 fv Log-Normal Cox, Gamma FALSE #> 1589 100 0.5878556 0.114387018 fv Log-Normal Cox, Gamma FALSE #> 1605 101 0.5514084 0.106995494 fv Log-Normal Cox, Gamma FALSE #> 1621 102 0.4762293 0.094742579 fv Log-Normal Cox, Gamma FALSE #> 1637 103 0.7020256 0.133873178 fv Log-Normal Cox, Gamma FALSE #> 1653 104 0.7099326 0.137457024 fv Log-Normal Cox, Gamma FALSE #> 1669 105 0.5077478 0.103091644 fv Log-Normal Cox, Gamma FALSE #> 1685 106 0.5839560 NA fv Log-Normal Cox, Gamma NA #> 1701 107 0.6986634 0.132088893 fv Log-Normal Cox, Gamma FALSE #> 1717 108 0.6167183 0.119245954 fv Log-Normal Cox, Gamma FALSE #> 1733 109 0.8992052 0.168845162 fv Log-Normal Cox, Gamma FALSE #> 1749 110 0.7958962 0.150043027 fv Log-Normal Cox, Gamma FALSE #> 1765 111 0.6292353 0.123510171 fv Log-Normal Cox, Gamma FALSE #> 1781 112 0.6629978 0.127077109 fv Log-Normal Cox, Gamma FALSE #> 1797 113 0.7261570 0.136779956 fv Log-Normal Cox, Gamma FALSE #> 1813 114 0.6276345 0.122291276 fv Log-Normal Cox, Gamma FALSE #> 1829 115 0.6639073 0.126950626 fv Log-Normal Cox, Gamma FALSE #> 1845 116 0.6771155 0.129017151 fv Log-Normal Cox, Gamma FALSE #> 1861 117 0.7574856 0.142852173 fv Log-Normal Cox, Gamma FALSE #> 1877 118 0.5400931 0.105299387 fv Log-Normal Cox, Gamma FALSE #> 1893 119 0.5348068 0.104913423 fv Log-Normal Cox, Gamma FALSE #> 1909 120 0.7474894 0.142057002 fv Log-Normal Cox, Gamma FALSE #> 1925 121 0.6748811 0.129647969 fv Log-Normal Cox, Gamma FALSE #> 1941 122 0.5375076 0.108052856 fv Log-Normal Cox, Gamma FALSE #> 1957 123 0.4856003 0.096121275 fv Log-Normal Cox, Gamma FALSE #> 1973 124 0.5246200 0.103885319 fv Log-Normal Cox, Gamma FALSE #> 1989 125 0.4720605 NA fv Log-Normal Cox, Gamma NA #> 2005 126 0.9482783 0.174156199 fv Log-Normal Cox, Gamma TRUE #> 2021 127 0.4306473 0.085975068 fv Log-Normal Cox, Gamma FALSE #> 2037 128 0.4410806 0.087616373 fv Log-Normal Cox, Gamma FALSE #> 2053 129 0.5998340 0.116337857 fv Log-Normal Cox, Gamma FALSE #> 2069 130 0.5329207 0.106038502 fv Log-Normal Cox, Gamma FALSE #> 2085 131 0.5852483 0.113419735 fv Log-Normal Cox, Gamma FALSE #> 2101 132 0.6742929 0.128681326 fv Log-Normal Cox, Gamma FALSE #> 2117 133 0.8438814 0.157495241 fv Log-Normal Cox, Gamma FALSE #> 2133 134 0.8725599 0.161209909 fv Log-Normal Cox, Gamma FALSE #> 2149 135 0.6599414 0.127969864 fv Log-Normal Cox, Gamma FALSE #> 2165 136 0.5626806 0.112982953 fv Log-Normal Cox, Gamma FALSE #> 2181 137 0.4613542 0.092148877 fv Log-Normal Cox, Gamma FALSE #> 2197 138 0.4897440 0.096970193 fv Log-Normal Cox, Gamma FALSE #> 2213 139 0.6186832 0.118880800 fv Log-Normal Cox, Gamma FALSE #> 2229 140 0.6882313 0.130677278 fv Log-Normal Cox, Gamma FALSE #> 2245 141 0.4057784 0.082456100 fv Log-Normal Cox, Gamma FALSE #> 2261 142 0.4533127 0.090505938 fv Log-Normal Cox, Gamma FALSE #> 2277 143 0.5205757 0.101899405 fv Log-Normal Cox, Gamma FALSE #> 2293 144 0.6642470 0.129879650 fv Log-Normal Cox, Gamma FALSE #> 2309 145 0.4846138 0.095680840 fv Log-Normal Cox, Gamma FALSE #> 2325 146 0.6727758 0.128705520 fv Log-Normal Cox, Gamma FALSE #> 2341 147 0.6505837 0.128350311 fv Log-Normal Cox, Gamma FALSE #> 2357 148 0.5095640 0.100748115 fv Log-Normal Cox, Gamma FALSE #> 2373 149 0.3838389 0.078579334 fv Log-Normal Cox, Gamma FALSE #> 2389 150 0.5015661 0.098921642 fv Log-Normal Cox, Gamma FALSE #> 2405 151 0.8316167 0.156175999 fv Log-Normal Cox, Gamma FALSE #> 2421 152 0.6107663 0.117805851 fv Log-Normal Cox, Gamma FALSE #> 2437 153 0.7774550 0.147567258 fv Log-Normal Cox, Gamma FALSE #> 2453 154 0.6456305 0.123420490 fv Log-Normal Cox, Gamma FALSE #> 2469 155 0.9161229 0.170688228 fv Log-Normal Cox, Gamma TRUE #> 2485 156 0.5364627 0.104848903 fv Log-Normal Cox, Gamma FALSE #> 2501 157 0.5613152 0.109806565 fv Log-Normal Cox, Gamma FALSE #> 2517 158 0.6129741 NA fv Log-Normal Cox, Gamma NA #> 2533 159 0.6589814 0.126591843 fv Log-Normal Cox, Gamma FALSE #> 2549 160 0.6071451 0.116592113 fv Log-Normal Cox, Gamma FALSE #> 2565 161 0.8464096 0.158851699 fv Log-Normal Cox, Gamma FALSE #> 2581 162 0.8600343 0.160292687 fv Log-Normal Cox, Gamma FALSE #> 2597 163 0.5244066 0.102558542 fv Log-Normal Cox, Gamma FALSE #> 2613 164 0.6350957 0.122832752 fv Log-Normal Cox, Gamma FALSE #> 2629 165 0.4845964 0.095537265 fv Log-Normal Cox, Gamma FALSE #> 2645 166 0.4272914 0.086071366 fv Log-Normal Cox, Gamma FALSE #> 2661 167 0.6479949 0.124144693 fv Log-Normal Cox, Gamma FALSE #> 2677 168 0.7462762 0.140607751 fv Log-Normal Cox, Gamma FALSE #> 2693 169 0.6323112 0.122436745 fv Log-Normal Cox, Gamma FALSE #> 2709 170 0.6601451 0.125902988 fv Log-Normal Cox, Gamma FALSE #> 2725 171 0.7032168 0.133018961 fv Log-Normal Cox, Gamma FALSE #> 2741 172 0.6390154 0.122082524 fv Log-Normal Cox, Gamma FALSE #> 2757 173 0.7009973 0.134209465 fv Log-Normal Cox, Gamma FALSE #> 2773 174 0.5290113 0.103348766 fv Log-Normal Cox, Gamma FALSE #> 2789 175 0.7105678 0.135604428 fv Log-Normal Cox, Gamma FALSE #> 2805 176 0.8662738 0.161421953 fv Log-Normal Cox, Gamma FALSE #> 2821 177 0.6637685 0.126258249 fv Log-Normal Cox, Gamma FALSE #> 2837 178 0.4790982 0.094932397 fv Log-Normal Cox, Gamma FALSE #> 2853 179 0.7824449 0.146344350 fv Log-Normal Cox, Gamma FALSE #> 2869 180 0.4960902 0.097942874 fv Log-Normal Cox, Gamma FALSE #> 2885 181 0.6319581 NA fv Log-Normal Cox, Gamma NA #> 2901 182 1.0215608 0.186181702 fv Log-Normal Cox, Gamma TRUE #> 2917 183 0.6556942 0.127650618 fv Log-Normal Cox, Gamma FALSE #> 2933 184 0.8197292 0.152798041 fv Log-Normal Cox, Gamma FALSE #> 2949 185 0.7209598 0.136991783 fv Log-Normal Cox, Gamma FALSE #> 2965 186 0.6961555 0.132783636 fv Log-Normal Cox, Gamma FALSE #> 2981 187 0.6427010 0.124017514 fv Log-Normal Cox, Gamma FALSE #> 2997 188 0.8413523 0.159781367 fv Log-Normal Cox, Gamma FALSE #> 3013 189 0.6291343 0.120949937 fv Log-Normal Cox, Gamma FALSE #> 3029 190 0.6312602 0.120553681 fv Log-Normal Cox, Gamma FALSE #> 3045 191 0.6229767 0.120163049 fv Log-Normal Cox, Gamma FALSE #> 3061 192 0.6625294 0.128824188 fv Log-Normal Cox, Gamma FALSE #> 3077 193 0.6095303 0.117152349 fv Log-Normal Cox, Gamma FALSE #> 3093 194 0.8906886 0.165363633 fv Log-Normal Cox, Gamma FALSE #> 3109 195 0.5763599 0.113600171 fv Log-Normal Cox, Gamma FALSE #> 3125 196 0.5388661 0.105243328 fv Log-Normal Cox, Gamma FALSE #> 3141 197 0.6062427 0.117145578 fv Log-Normal Cox, Gamma FALSE #> 3157 198 0.6999424 0.133524072 fv Log-Normal Cox, Gamma FALSE #> 3173 199 0.4751412 0.094093909 fv Log-Normal Cox, Gamma FALSE #> 3189 200 0.5362176 0.105172510 fv Log-Normal Cox, Gamma FALSE #> 3205 201 0.7915355 0.148896926 fv Log-Normal Cox, Gamma FALSE #> 3221 202 0.6256725 0.120094411 fv Log-Normal Cox, Gamma FALSE #> 3237 203 0.5558678 0.108296694 fv Log-Normal Cox, Gamma FALSE #> 3253 204 0.5876585 0.113892273 fv Log-Normal Cox, Gamma FALSE #> 3269 205 0.5468949 0.106525018 fv Log-Normal Cox, Gamma FALSE #> 3285 206 0.6698007 0.128281193 fv Log-Normal Cox, Gamma FALSE #> 3301 207 0.8537181 0.163478068 fv Log-Normal Cox, Gamma FALSE #> 3317 208 0.8151591 0.151573969 fv Log-Normal Cox, Gamma FALSE #> 3333 209 0.5738887 0.112038746 fv Log-Normal Cox, Gamma FALSE #> 3349 210 0.5948765 0.115005913 fv Log-Normal Cox, Gamma FALSE #> 3365 211 0.7051577 0.134016025 fv Log-Normal Cox, Gamma FALSE #> 3381 212 0.6688139 0.127473682 fv Log-Normal Cox, Gamma FALSE #> 3397 213 0.5682107 0.111343598 fv Log-Normal Cox, Gamma FALSE #> 3413 214 0.5596977 0.108622186 fv Log-Normal Cox, Gamma FALSE #> 3429 215 0.6736498 0.131769952 fv Log-Normal Cox, Gamma FALSE #> 3445 216 0.8402526 0.156811031 fv Log-Normal Cox, Gamma FALSE #> 3461 217 0.6569014 0.126067931 fv Log-Normal Cox, Gamma FALSE #> 3477 218 0.6265203 NA fv Log-Normal Cox, Gamma NA #> 3493 219 0.8265282 0.156692936 fv Log-Normal Cox, Gamma FALSE #> 3509 220 0.7025852 0.132963964 fv Log-Normal Cox, Gamma FALSE #> 3525 221 0.5591480 0.109170032 fv Log-Normal Cox, Gamma FALSE #> 3541 222 0.3308424 0.068028520 fv Log-Normal Cox, Gamma TRUE #> 3557 223 0.4912096 0.096931558 fv Log-Normal Cox, Gamma FALSE #> 3573 224 0.4900371 0.096260044 fv Log-Normal Cox, Gamma FALSE #> 3589 225 0.7671184 0.144972525 fv Log-Normal Cox, Gamma FALSE #> 3605 226 0.8535113 0.158140918 fv Log-Normal Cox, Gamma FALSE #> 3621 227 0.6378454 0.121921746 fv Log-Normal Cox, Gamma FALSE #> 3637 228 0.7197385 0.135876027 fv Log-Normal Cox, Gamma FALSE #> 3653 229 0.3791053 0.077674263 fv Log-Normal Cox, Gamma TRUE #> 3669 230 0.5811553 0.113632012 fv Log-Normal Cox, Gamma FALSE #> 3685 231 0.5860880 0.113549906 fv Log-Normal Cox, Gamma FALSE #> 3701 232 0.8037955 0.151262566 fv Log-Normal Cox, Gamma FALSE #> 3717 233 0.8533986 0.160021433 fv Log-Normal Cox, Gamma FALSE #> 3733 234 0.8484815 0.159241562 fv Log-Normal Cox, Gamma FALSE #> 3749 235 0.4897224 0.096400413 fv Log-Normal Cox, Gamma FALSE #> 3765 236 0.5762535 0.112239275 fv Log-Normal Cox, Gamma FALSE #> 3781 237 0.5269204 0.103993561 fv Log-Normal Cox, Gamma FALSE #> 3797 238 0.7820117 0.148029154 fv Log-Normal Cox, Gamma FALSE #> 3813 239 0.8192601 0.155041621 fv Log-Normal Cox, Gamma FALSE #> 3829 240 0.5402785 0.105436912 fv Log-Normal Cox, Gamma FALSE #> 3845 241 0.6507911 0.125139921 fv Log-Normal Cox, Gamma FALSE #> 3861 242 0.4837204 0.095399989 fv Log-Normal Cox, Gamma FALSE #> 3877 243 0.6195218 0.119990163 fv Log-Normal Cox, Gamma FALSE #> 3893 244 0.5100376 0.100590658 fv Log-Normal Cox, Gamma FALSE #> 3909 245 0.4265852 0.085555768 fv Log-Normal Cox, Gamma FALSE #> 3925 246 0.7625282 0.147743867 fv Log-Normal Cox, Gamma FALSE #> 3941 247 0.6393146 0.124452824 fv Log-Normal Cox, Gamma FALSE #> 3957 248 0.8878569 0.164863233 fv Log-Normal Cox, Gamma FALSE #> 3973 249 0.5104467 0.100139240 fv Log-Normal Cox, Gamma FALSE #> 3989 250 0.7090348 0.135416883 fv Log-Normal Cox, Gamma FALSE #> 4005 251 0.5665994 0.110662478 fv Log-Normal Cox, Gamma FALSE #> 4021 252 0.4789176 0.096840906 fv Log-Normal Cox, Gamma FALSE #> 4037 253 0.7726023 0.145748257 fv Log-Normal Cox, Gamma FALSE #> 4053 254 0.6799045 0.131222201 fv Log-Normal Cox, Gamma FALSE #> 4069 255 0.8679381 0.163075058 fv Log-Normal Cox, Gamma FALSE #> 4085 256 0.7877915 0.149581667 fv Log-Normal Cox, Gamma FALSE #> 4101 257 0.7172398 0.135506691 fv Log-Normal Cox, Gamma FALSE #> 4117 258 0.4064345 0.082947195 fv Log-Normal Cox, Gamma FALSE #> 4133 259 0.5807491 0.112471382 fv Log-Normal Cox, Gamma FALSE #> 4149 260 0.5464734 0.106275466 fv Log-Normal Cox, Gamma FALSE #> 4165 261 0.7065837 0.133504731 fv Log-Normal Cox, Gamma FALSE #> 4181 262 0.5931230 0.114792244 fv Log-Normal Cox, Gamma FALSE #> 4197 263 0.7014259 0.133353663 fv Log-Normal Cox, Gamma FALSE #> 4213 264 0.7179491 0.137495764 fv Log-Normal Cox, Gamma FALSE #> 4229 265 0.5649677 0.109814735 fv Log-Normal Cox, Gamma FALSE #> 4245 266 0.5471308 0.106789710 fv Log-Normal Cox, Gamma FALSE #> 4261 267 0.5878749 0.115444716 fv Log-Normal Cox, Gamma FALSE #> 4277 268 0.8704538 0.161935150 fv Log-Normal Cox, Gamma FALSE #> 4293 269 0.5588668 0.109315818 fv Log-Normal Cox, Gamma FALSE #> 4309 270 0.5682294 0.110657678 fv Log-Normal Cox, Gamma FALSE #> 4325 271 0.7742804 0.148840997 fv Log-Normal Cox, Gamma FALSE #> 4341 272 0.5158531 0.101581050 fv Log-Normal Cox, Gamma FALSE #> 4357 273 0.6160109 NA fv Log-Normal Cox, Gamma NA #> 4373 274 0.7917479 0.153086307 fv Log-Normal Cox, Gamma FALSE #> 4389 275 0.6364515 0.126896193 fv Log-Normal Cox, Gamma FALSE #> 4405 276 0.6699600 0.127579619 fv Log-Normal Cox, Gamma FALSE #> 4421 277 0.6950828 0.007187089 fv Log-Normal Cox, Gamma TRUE #> 4437 278 0.5145957 0.101023595 fv Log-Normal Cox, Gamma FALSE #> 4453 279 0.8117977 0.153216708 fv Log-Normal Cox, Gamma FALSE #> 4469 280 0.6997337 0.133181330 fv Log-Normal Cox, Gamma FALSE #> 4485 281 0.6982049 0.133445042 fv Log-Normal Cox, Gamma FALSE #> 4501 282 0.5416213 0.105440717 fv Log-Normal Cox, Gamma FALSE #> 4517 283 0.6857669 0.130142790 fv Log-Normal Cox, Gamma FALSE #> 4533 284 0.5399607 0.105818606 fv Log-Normal Cox, Gamma FALSE #> 4549 285 0.5893622 0.113916611 fv Log-Normal Cox, Gamma FALSE #> 4565 286 0.6293867 0.121852607 fv Log-Normal Cox, Gamma FALSE #> 4581 287 0.5320429 0.104084556 fv Log-Normal Cox, Gamma FALSE #> 4597 288 0.5385214 NA fv Log-Normal Cox, Gamma NA #> 4613 289 0.6079604 0.117589769 fv Log-Normal Cox, Gamma FALSE #> 4629 290 0.6198681 0.119709759 fv Log-Normal Cox, Gamma FALSE #> 4645 291 0.6348176 0.121448764 fv Log-Normal Cox, Gamma FALSE #> 4661 292 0.5566394 0.109253711 fv Log-Normal Cox, Gamma FALSE #> 4677 293 0.5642341 0.108813689 fv Log-Normal Cox, Gamma FALSE #> 4693 294 0.6430886 0.123339440 fv Log-Normal Cox, Gamma FALSE #> 4709 295 0.5805056 0.113140088 fv Log-Normal Cox, Gamma FALSE #> 4725 296 0.7567236 0.143584763 fv Log-Normal Cox, Gamma FALSE #> 4741 297 0.3855174 0.078215125 fv Log-Normal Cox, Gamma FALSE #> 4757 298 0.5794998 0.112104842 fv Log-Normal Cox, Gamma FALSE #> 4773 299 0.7028882 0.133589533 fv Log-Normal Cox, Gamma FALSE #> 4789 300 0.5797419 0.112542288 fv Log-Normal Cox, Gamma FALSE #> 4805 301 0.9211398 0.170258250 fv Log-Normal Cox, Gamma TRUE #> 4821 302 0.7451349 0.144010919 fv Log-Normal Cox, Gamma FALSE #> 4837 303 0.5897070 0.114105453 fv Log-Normal Cox, Gamma FALSE #> 4853 304 0.5902198 0.114066882 fv Log-Normal Cox, Gamma FALSE #> 4869 305 0.6998113 0.132962809 fv Log-Normal Cox, Gamma FALSE #> 4885 306 0.5558410 0.108825873 fv Log-Normal Cox, Gamma FALSE #> 4901 307 0.5096845 0.099400324 fv Log-Normal Cox, Gamma FALSE #> 4917 308 0.6120856 0.118043549 fv Log-Normal Cox, Gamma FALSE #> 4933 309 0.5238446 0.102522839 fv Log-Normal Cox, Gamma FALSE #> 4949 310 0.5755179 0.112344745 fv Log-Normal Cox, Gamma FALSE #> 4965 311 0.7940267 0.148985319 fv Log-Normal Cox, Gamma FALSE #> 4981 312 0.5853714 0.006099306 fv Log-Normal Cox, Gamma TRUE #> 4997 313 0.4366253 0.087746151 fv Log-Normal Cox, Gamma FALSE #> 5013 314 0.6141543 0.119168693 fv Log-Normal Cox, Gamma FALSE #> 5029 315 0.5634745 0.109117311 fv Log-Normal Cox, Gamma FALSE #> 5045 316 0.5563368 0.109703245 fv Log-Normal Cox, Gamma FALSE #> 5061 317 0.7188303 0.135419985 fv Log-Normal Cox, Gamma FALSE #> 5077 318 0.5950034 0.119644402 fv Log-Normal Cox, Gamma FALSE #> 5093 319 0.6531083 0.125747127 fv Log-Normal Cox, Gamma FALSE #> 5109 320 0.7196713 0.136030114 fv Log-Normal Cox, Gamma FALSE #> 5125 321 0.8308015 0.156780085 fv Log-Normal Cox, Gamma FALSE #> 5141 322 0.4956023 0.097888214 fv Log-Normal Cox, Gamma FALSE #> 5157 323 0.6546792 0.124835750 fv Log-Normal Cox, Gamma FALSE #> 5173 324 0.4840185 0.095889192 fv Log-Normal Cox, Gamma FALSE #> 5189 325 0.5702055 0.111852128 fv Log-Normal Cox, Gamma FALSE #> 5205 326 0.7875548 0.148425894 fv Log-Normal Cox, Gamma FALSE #> 5221 327 0.4456639 0.088551255 fv Log-Normal Cox, Gamma FALSE #> 5237 328 0.6199910 0.118511296 fv Log-Normal Cox, Gamma FALSE #> 5253 329 0.6070999 0.118226137 fv Log-Normal Cox, Gamma FALSE #> 5269 330 0.4693525 0.092970101 fv Log-Normal Cox, Gamma FALSE #> 5285 331 0.7782761 0.145952440 fv Log-Normal Cox, Gamma FALSE #> 5301 332 0.6147740 0.118149084 fv Log-Normal Cox, Gamma FALSE #> 5317 333 0.4880236 0.097261035 fv Log-Normal Cox, Gamma FALSE #> 5333 334 0.4884141 0.096379233 fv Log-Normal Cox, Gamma FALSE #> 5349 335 0.5032586 0.099171283 fv Log-Normal Cox, Gamma FALSE #> 5365 336 0.7805535 0.148128686 fv Log-Normal Cox, Gamma FALSE #> 5381 337 0.6032561 0.116743833 fv Log-Normal Cox, Gamma FALSE #> 5397 338 0.6551628 0.125118867 fv Log-Normal Cox, Gamma FALSE #> 5413 339 0.5169801 0.101821996 fv Log-Normal Cox, Gamma FALSE #> 5429 340 0.8196064 0.154398664 fv Log-Normal Cox, Gamma FALSE #> 5445 341 0.5937845 0.117321745 fv Log-Normal Cox, Gamma FALSE #> 5461 342 0.5195210 0.101714573 fv Log-Normal Cox, Gamma FALSE #> 5477 343 0.5449285 0.106821634 fv Log-Normal Cox, Gamma FALSE #> 5493 344 0.6178628 0.119729312 fv Log-Normal Cox, Gamma FALSE #> 5509 345 0.5748172 0.111195189 fv Log-Normal Cox, Gamma FALSE #> 5525 346 0.4467481 0.089775532 fv Log-Normal Cox, Gamma FALSE #> 5541 347 0.5922002 0.115336519 fv Log-Normal Cox, Gamma FALSE #> 5557 348 0.5431553 0.107023045 fv Log-Normal Cox, Gamma FALSE #> 5573 349 0.5963678 0.115282859 fv Log-Normal Cox, Gamma FALSE #> 5589 350 0.7126978 0.135785768 fv Log-Normal Cox, Gamma FALSE #> 5605 351 0.5000000 0.098314792 fv Log-Normal Cox, Gamma FALSE #> 5621 352 0.7598097 0.144565206 fv Log-Normal Cox, Gamma FALSE #> 5637 353 0.6849065 0.131859665 fv Log-Normal Cox, Gamma FALSE #> 5653 354 0.5847636 0.113209083 fv Log-Normal Cox, Gamma FALSE #> 5669 355 0.6647230 0.126982092 fv Log-Normal Cox, Gamma FALSE #> 5685 356 0.6167743 NA fv Log-Normal Cox, Gamma NA #> 5701 357 0.9010051 0.172186528 fv Log-Normal Cox, Gamma FALSE #> 5717 358 0.6069449 0.117219188 fv Log-Normal Cox, Gamma FALSE #> 5733 359 0.4821542 0.096106206 fv Log-Normal Cox, Gamma FALSE #> 5749 360 0.5664989 0.109859357 fv Log-Normal Cox, Gamma FALSE #> 5765 361 0.5678027 0.110631454 fv Log-Normal Cox, Gamma FALSE #> 5781 362 0.6276318 NA fv Log-Normal Cox, Gamma NA #> 5797 363 0.5816629 0.114016656 fv Log-Normal Cox, Gamma FALSE #> 5813 364 0.6859902 0.129879220 fv Log-Normal Cox, Gamma FALSE #> 5829 365 0.6491866 0.124319049 fv Log-Normal Cox, Gamma FALSE #> 5845 366 0.5865690 0.113684228 fv Log-Normal Cox, Gamma FALSE #> 5861 367 0.7319157 0.139897352 fv Log-Normal Cox, Gamma FALSE #> 5877 368 0.8046332 0.150989946 fv Log-Normal Cox, Gamma FALSE #> 5893 369 0.5082926 0.099866024 fv Log-Normal Cox, Gamma FALSE #> 5909 370 0.6604881 0.126498901 fv Log-Normal Cox, Gamma FALSE #> 5925 371 0.6356362 0.124258194 fv Log-Normal Cox, Gamma FALSE #> 5941 372 0.4589990 0.091576188 fv Log-Normal Cox, Gamma FALSE #> 5957 373 0.8629317 0.160738289 fv Log-Normal Cox, Gamma FALSE #> 5973 374 0.5057169 0.100061515 fv Log-Normal Cox, Gamma FALSE #> 5989 375 0.6330062 0.123040876 fv Log-Normal Cox, Gamma FALSE #> 6005 376 0.6046560 0.116978108 fv Log-Normal Cox, Gamma FALSE #> 6021 377 0.4747655 0.005013608 fv Log-Normal Cox, Gamma TRUE #> 6037 378 0.5334781 0.005584094 fv Log-Normal Cox, Gamma TRUE #> 6053 379 0.4830196 0.095784689 fv Log-Normal Cox, Gamma FALSE #> 6069 380 0.5694002 0.110358969 fv Log-Normal Cox, Gamma FALSE #> 6085 381 0.6863816 0.130635692 fv Log-Normal Cox, Gamma FALSE #> 6101 382 0.6287443 0.121561327 fv Log-Normal Cox, Gamma FALSE #> 6117 383 0.6705983 0.128564833 fv Log-Normal Cox, Gamma FALSE #> 6133 384 0.5832236 NA fv Log-Normal Cox, Gamma NA #> 6149 385 0.5054799 0.100036351 fv Log-Normal Cox, Gamma FALSE #> 6165 386 0.7721235 0.146738604 fv Log-Normal Cox, Gamma FALSE #> 6181 387 0.5792390 0.113921561 fv Log-Normal Cox, Gamma FALSE #> 6197 388 0.6998366 0.131999951 fv Log-Normal Cox, Gamma FALSE #> 6213 389 0.6587321 0.125619377 fv Log-Normal Cox, Gamma FALSE #> 6229 390 0.5746738 0.111840939 fv Log-Normal Cox, Gamma FALSE #> 6245 391 0.7150477 0.135480569 fv Log-Normal Cox, Gamma FALSE #> 6261 392 0.5580029 0.109198136 fv Log-Normal Cox, Gamma FALSE #> 6277 393 0.5189269 0.101936787 fv Log-Normal Cox, Gamma FALSE #> 6293 394 0.8337900 0.157631224 fv Log-Normal Cox, Gamma FALSE #> 6309 395 0.6557804 0.125496415 fv Log-Normal Cox, Gamma FALSE #> 6325 396 0.8542463 0.159311110 fv Log-Normal Cox, Gamma FALSE #> 6341 397 0.5753214 0.111380720 fv Log-Normal Cox, Gamma FALSE #> 6357 398 0.5763301 NA fv Log-Normal Cox, Gamma NA #> 6373 399 0.7343354 0.139561737 fv Log-Normal Cox, Gamma FALSE #> 6389 400 0.4829329 0.095986778 fv Log-Normal Cox, Gamma FALSE #> 6405 401 0.5236326 0.102648828 fv Log-Normal Cox, Gamma FALSE #> 6421 402 0.4724927 0.094782726 fv Log-Normal Cox, Gamma FALSE #> 6437 403 0.4746930 0.093432378 fv Log-Normal Cox, Gamma FALSE #> 6453 404 0.5498989 0.108729092 fv Log-Normal Cox, Gamma FALSE #> 6469 405 0.4680169 0.093560491 fv Log-Normal Cox, Gamma FALSE #> 6485 406 0.5976504 0.115198092 fv Log-Normal Cox, Gamma FALSE #> 6501 407 0.7073151 0.135807607 fv Log-Normal Cox, Gamma FALSE #> 6517 408 0.4534840 0.092196184 fv Log-Normal Cox, Gamma FALSE #> 6533 409 0.5996849 0.115802131 fv Log-Normal Cox, Gamma FALSE #> 6549 410 0.7350483 0.141098444 fv Log-Normal Cox, Gamma FALSE #> 6565 411 0.5844294 0.114213027 fv Log-Normal Cox, Gamma FALSE #> 6581 412 0.6355002 0.123732471 fv Log-Normal Cox, Gamma FALSE #> 6597 413 0.4795980 0.095797688 fv Log-Normal Cox, Gamma FALSE #> 6613 414 0.8214290 0.154482941 fv Log-Normal Cox, Gamma FALSE #> 6629 415 1.0474272 0.190204210 fv Log-Normal Cox, Gamma TRUE #> 6645 416 0.5058717 0.100738059 fv Log-Normal Cox, Gamma FALSE #> 6661 417 0.5077597 0.099999290 fv Log-Normal Cox, Gamma FALSE #> 6677 418 0.7561877 0.141887306 fv Log-Normal Cox, Gamma FALSE #> 6693 419 0.4072063 0.081901396 fv Log-Normal Cox, Gamma FALSE #> 6709 420 0.6455902 0.124271550 fv Log-Normal Cox, Gamma FALSE #> 6725 421 0.7228223 0.137917495 fv Log-Normal Cox, Gamma FALSE #> 6741 422 0.5497526 0.108664623 fv Log-Normal Cox, Gamma FALSE #> 6757 423 0.5299681 0.103771903 fv Log-Normal Cox, Gamma FALSE #> 6773 424 0.5967779 0.115501171 fv Log-Normal Cox, Gamma FALSE #> 6789 425 0.7086593 0.136018726 fv Log-Normal Cox, Gamma FALSE #> 6805 426 0.7463880 0.141871924 fv Log-Normal Cox, Gamma FALSE #> 6821 427 0.9312417 0.173523729 fv Log-Normal Cox, Gamma TRUE #> 6837 428 0.7297720 0.139335836 fv Log-Normal Cox, Gamma FALSE #> 6853 429 0.6423904 0.123215428 fv Log-Normal Cox, Gamma FALSE #> 6869 430 0.7904786 0.149398357 fv Log-Normal Cox, Gamma FALSE #> 6885 431 0.5748521 0.111859450 fv Log-Normal Cox, Gamma FALSE #> 6901 432 0.7837588 0.147930476 fv Log-Normal Cox, Gamma FALSE #> 6917 433 0.5077611 0.099539593 fv Log-Normal Cox, Gamma FALSE #> 6933 434 0.5698565 0.111750053 fv Log-Normal Cox, Gamma FALSE #> 6949 435 0.4345445 0.087168355 fv Log-Normal Cox, Gamma FALSE #> 6965 436 0.6488462 0.124059132 fv Log-Normal Cox, Gamma FALSE #> 6981 437 0.4985519 0.098328201 fv Log-Normal Cox, Gamma FALSE #> 6997 438 0.7555537 0.142820397 fv Log-Normal Cox, Gamma FALSE #> 7013 439 0.5195431 0.102728067 fv Log-Normal Cox, Gamma FALSE #> 7029 440 0.4001901 0.081978639 fv Log-Normal Cox, Gamma FALSE #> 7045 441 0.5221735 0.103055594 fv Log-Normal Cox, Gamma FALSE #> 7061 442 0.6261760 0.120790762 fv Log-Normal Cox, Gamma FALSE #> 7077 443 0.7115103 0.135894182 fv Log-Normal Cox, Gamma FALSE #> 7093 444 0.8105371 0.154148350 fv Log-Normal Cox, Gamma FALSE #> 7109 445 0.7507591 0.141487559 fv Log-Normal Cox, Gamma FALSE #> 7125 446 0.5493869 0.107028499 fv Log-Normal Cox, Gamma FALSE #> 7141 447 0.7140244 0.135131039 fv Log-Normal Cox, Gamma FALSE #> 7157 448 0.7267933 0.007501018 fv Log-Normal Cox, Gamma TRUE #> 7173 449 0.8146904 0.153718357 fv Log-Normal Cox, Gamma FALSE #> 7189 450 0.5712926 0.005956948 fv Log-Normal Cox, Gamma TRUE #> 7205 451 0.6845371 0.007089436 fv Log-Normal Cox, Gamma TRUE #> 7221 452 0.6853901 0.130472792 fv Log-Normal Cox, Gamma FALSE #> 7237 453 0.6417479 0.123250237 fv Log-Normal Cox, Gamma FALSE #> 7253 454 0.5911276 0.114601422 fv Log-Normal Cox, Gamma FALSE #> 7269 455 0.5984098 0.116590552 fv Log-Normal Cox, Gamma FALSE #> 7285 456 0.4505173 0.090165786 fv Log-Normal Cox, Gamma FALSE #> 7301 457 0.7620831 0.143403670 fv Log-Normal Cox, Gamma FALSE #> 7317 458 0.6686242 0.128940301 fv Log-Normal Cox, Gamma FALSE #> 7333 459 0.7889405 0.148922011 fv Log-Normal Cox, Gamma FALSE #> 7349 460 0.5358846 0.103974358 fv Log-Normal Cox, Gamma FALSE #> 7365 461 0.6733711 0.128134140 fv Log-Normal Cox, Gamma FALSE #> 7381 462 0.5991040 0.115019026 fv Log-Normal Cox, Gamma FALSE #> 7397 463 0.8014668 0.152431379 fv Log-Normal Cox, Gamma FALSE #> 7413 464 0.6531009 0.124232793 fv Log-Normal Cox, Gamma FALSE #> 7429 465 0.7414829 0.140694298 fv Log-Normal Cox, Gamma FALSE #> 7445 466 0.7425237 0.140996639 fv Log-Normal Cox, Gamma FALSE #> 7461 467 0.6586817 0.127143401 fv Log-Normal Cox, Gamma FALSE #> 7477 468 0.7449020 0.139983687 fv Log-Normal Cox, Gamma FALSE #> 7493 469 0.7953894 0.151211847 fv Log-Normal Cox, Gamma FALSE #> 7509 470 0.6709136 0.129021836 fv Log-Normal Cox, Gamma FALSE #> 7525 471 0.5187494 0.101602830 fv Log-Normal Cox, Gamma FALSE #> 7541 472 0.7762352 0.146346463 fv Log-Normal Cox, Gamma FALSE #> 7557 473 0.6079842 0.117712573 fv Log-Normal Cox, Gamma FALSE #> 7573 474 0.8214972 0.153722361 fv Log-Normal Cox, Gamma FALSE #> 7589 475 0.5320746 0.103794209 fv Log-Normal Cox, Gamma FALSE #> 7605 476 0.4423624 0.088897145 fv Log-Normal Cox, Gamma FALSE #> 7621 477 0.4959494 0.099039376 fv Log-Normal Cox, Gamma FALSE #> 7637 478 0.6609360 0.125421024 fv Log-Normal Cox, Gamma FALSE #> 7653 479 0.6794332 0.129846506 fv Log-Normal Cox, Gamma FALSE #> 7669 480 0.9217237 0.171612582 fv Log-Normal Cox, Gamma TRUE #> 7685 481 0.8691868 0.161785535 fv Log-Normal Cox, Gamma FALSE #> 7701 482 0.6070555 0.116947739 fv Log-Normal Cox, Gamma FALSE #> 7717 483 0.7383561 0.139682652 fv Log-Normal Cox, Gamma FALSE #> 7733 484 0.7324532 0.138770244 fv Log-Normal Cox, Gamma FALSE #> 7749 485 0.5259924 0.102916295 fv Log-Normal Cox, Gamma FALSE #> 7765 486 0.3905568 0.078816713 fv Log-Normal Cox, Gamma FALSE #> 7781 487 0.7444582 0.140331842 fv Log-Normal Cox, Gamma FALSE #> 7797 488 0.3979924 0.080542514 fv Log-Normal Cox, Gamma FALSE #> 7813 489 0.6556261 0.126188084 fv Log-Normal Cox, Gamma FALSE #> 7829 490 0.6030237 NA fv Log-Normal Cox, Gamma NA #> 7845 491 0.6246608 0.120905487 fv Log-Normal Cox, Gamma FALSE #> 7861 492 0.4825731 0.094903496 fv Log-Normal Cox, Gamma FALSE #> 7877 493 0.9584215 0.177094162 fv Log-Normal Cox, Gamma TRUE #> 7893 494 0.6014177 NA fv Log-Normal Cox, Gamma NA #> 7909 495 0.7160493 0.135345935 fv Log-Normal Cox, Gamma FALSE #> 7925 496 0.8782739 0.009032245 fv Log-Normal Cox, Gamma TRUE #> 7941 497 0.5213246 0.102227484 fv Log-Normal Cox, Gamma FALSE #> 7957 498 0.6085879 NA fv Log-Normal Cox, Gamma NA #> 7973 499 0.7577549 0.144119208 fv Log-Normal Cox, Gamma FALSE #> 7989 500 0.6578232 NA fv Log-Normal Cox, Gamma NA #> 8005 501 1.1931654 0.214830369 fv Log-Normal Cox, Gamma TRUE #> 8021 502 0.7043797 0.134622077 fv Log-Normal Cox, Gamma FALSE #> 8037 503 0.6449373 0.123467432 fv Log-Normal Cox, Gamma FALSE #> 8053 504 0.7763836 0.146112050 fv Log-Normal Cox, Gamma FALSE #> 8069 505 0.6039837 0.115828958 fv Log-Normal Cox, Gamma FALSE #> 8085 506 0.8130845 0.152643800 fv Log-Normal Cox, Gamma FALSE #> 8101 507 0.5864967 0.112727930 fv Log-Normal Cox, Gamma FALSE #> 8117 508 0.5052933 0.100823068 fv Log-Normal Cox, Gamma FALSE #> 8133 509 0.5737083 0.111195098 fv Log-Normal Cox, Gamma FALSE #> 8149 510 0.5598720 0.108532643 fv Log-Normal Cox, Gamma FALSE #> 8165 511 0.4042964 0.081176179 fv Log-Normal Cox, Gamma FALSE #> 8181 512 0.5921053 0.114606976 fv Log-Normal Cox, Gamma FALSE #> 8197 513 0.6463252 0.123735617 fv Log-Normal Cox, Gamma FALSE #> 8213 514 0.6396754 0.123749665 fv Log-Normal Cox, Gamma FALSE #> 8229 515 0.5031870 0.099629425 fv Log-Normal Cox, Gamma FALSE #> 8245 516 0.6478424 0.124667693 fv Log-Normal Cox, Gamma FALSE #> 8261 517 0.3317136 0.068474900 fv Log-Normal Cox, Gamma TRUE #> 8277 518 0.6553708 0.125632038 fv Log-Normal Cox, Gamma FALSE #> 8293 519 0.6725635 0.128430012 fv Log-Normal Cox, Gamma FALSE #> 8309 520 0.6841932 0.129888821 fv Log-Normal Cox, Gamma FALSE #> 8325 521 0.6377897 NA fv Log-Normal Cox, Gamma NA #> 8341 522 0.4878991 0.096317522 fv Log-Normal Cox, Gamma FALSE #> 8357 523 0.6491452 0.123990211 fv Log-Normal Cox, Gamma FALSE #> 8373 524 0.5224167 0.104004647 fv Log-Normal Cox, Gamma FALSE #> 8389 525 0.6777538 0.130516488 fv Log-Normal Cox, Gamma FALSE #> 8405 526 0.5584814 0.109562292 fv Log-Normal Cox, Gamma FALSE #> 8421 527 0.6843104 0.132090449 fv Log-Normal Cox, Gamma FALSE #> 8437 528 0.7413526 0.140137362 fv Log-Normal Cox, Gamma FALSE #> 8453 529 0.7941552 0.148738686 fv Log-Normal Cox, Gamma FALSE #> 8469 530 0.3946714 0.079959532 fv Log-Normal Cox, Gamma FALSE #> 8485 531 0.7861082 0.147135826 fv Log-Normal Cox, Gamma FALSE #> 8501 532 0.6150512 NA fv Log-Normal Cox, Gamma NA #> 8517 533 0.6126927 0.118046878 fv Log-Normal Cox, Gamma FALSE #> 8533 534 0.6733886 0.129512171 fv Log-Normal Cox, Gamma FALSE #> 8549 535 0.7332816 0.138322504 fv Log-Normal Cox, Gamma FALSE #> 8565 536 0.5205081 0.102413941 fv Log-Normal Cox, Gamma FALSE #> 8581 537 1.0384914 0.188738973 fv Log-Normal Cox, Gamma TRUE #> 8597 538 0.4543334 0.090536911 fv Log-Normal Cox, Gamma FALSE #> 8613 539 0.6715901 NA fv Log-Normal Cox, Gamma NA #> 8629 540 0.5523389 0.107900473 fv Log-Normal Cox, Gamma FALSE #> 8645 541 0.8043327 0.150755997 fv Log-Normal Cox, Gamma FALSE #> 8661 542 0.6934063 0.132246580 fv Log-Normal Cox, Gamma FALSE #> 8677 543 0.7469130 0.142208358 fv Log-Normal Cox, Gamma FALSE #> 8693 544 0.6771137 0.129576795 fv Log-Normal Cox, Gamma FALSE #> 8709 545 0.5138754 0.100742098 fv Log-Normal Cox, Gamma FALSE #> 8725 546 0.8303685 0.156135534 fv Log-Normal Cox, Gamma FALSE #> 8741 547 0.6111091 0.118380971 fv Log-Normal Cox, Gamma FALSE #> 8757 548 0.5141719 0.102038969 fv Log-Normal Cox, Gamma FALSE #> 8773 549 0.7349328 0.138690104 fv Log-Normal Cox, Gamma FALSE #> 8789 550 0.5083307 0.101829261 fv Log-Normal Cox, Gamma FALSE #> 8805 551 0.6683084 0.127523621 fv Log-Normal Cox, Gamma FALSE #> 8821 552 0.6281157 NA fv Log-Normal Cox, Gamma NA #> 8837 553 0.7055114 0.132958925 fv Log-Normal Cox, Gamma FALSE #> 8853 554 0.8280844 0.156933583 fv Log-Normal Cox, Gamma FALSE #> 8869 555 0.6843468 0.130041654 fv Log-Normal Cox, Gamma FALSE #> 8885 556 0.7533713 0.142048697 fv Log-Normal Cox, Gamma FALSE #> 8901 557 0.6250902 0.120157525 fv Log-Normal Cox, Gamma FALSE #> 8917 558 0.6066749 0.117016286 fv Log-Normal Cox, Gamma FALSE #> 8933 559 0.5426162 0.106388816 fv Log-Normal Cox, Gamma FALSE #> 8949 560 0.7141690 0.135766994 fv Log-Normal Cox, Gamma FALSE #> 8965 561 1.0274772 0.187741551 fv Log-Normal Cox, Gamma TRUE #> 8981 562 0.7421217 0.140796140 fv Log-Normal Cox, Gamma FALSE #> 8997 563 0.6799533 0.129434410 fv Log-Normal Cox, Gamma FALSE #> 9013 564 0.5069500 0.099182157 fv Log-Normal Cox, Gamma FALSE #> 9029 565 0.5192371 0.102478262 fv Log-Normal Cox, Gamma FALSE #> 9045 566 0.6242465 0.120118523 fv Log-Normal Cox, Gamma FALSE #> 9061 567 0.5965461 0.115018660 fv Log-Normal Cox, Gamma FALSE #> 9077 568 0.4716597 0.093558081 fv Log-Normal Cox, Gamma FALSE #> 9093 569 0.7968988 0.150002405 fv Log-Normal Cox, Gamma FALSE #> 9109 570 0.4621690 0.091289543 fv Log-Normal Cox, Gamma FALSE #> 9125 571 0.5841130 0.112584938 fv Log-Normal Cox, Gamma FALSE #> 9141 572 0.5706712 0.111580535 fv Log-Normal Cox, Gamma FALSE #> 9157 573 0.5738192 0.111598149 fv Log-Normal Cox, Gamma FALSE #> 9173 574 0.6448252 0.123758649 fv Log-Normal Cox, Gamma FALSE #> 9189 575 0.5479147 0.107160503 fv Log-Normal Cox, Gamma FALSE #> 9205 576 0.5551117 0.108212537 fv Log-Normal Cox, Gamma FALSE #> 9221 577 0.9281460 0.174612909 fv Log-Normal Cox, Gamma TRUE #> 9237 578 0.5259939 0.103027487 fv Log-Normal Cox, Gamma FALSE #> 9253 579 0.5383092 0.106116519 fv Log-Normal Cox, Gamma FALSE #> 9269 580 0.4711285 0.094424105 fv Log-Normal Cox, Gamma FALSE #> 9285 581 0.6494811 0.124008306 fv Log-Normal Cox, Gamma FALSE #> 9301 582 0.6771744 0.129385168 fv Log-Normal Cox, Gamma FALSE #> 9317 583 0.8865092 0.163523339 fv Log-Normal Cox, Gamma FALSE #> 9333 584 0.5000000 0.098868076 fv Log-Normal Cox, Gamma FALSE #> 9349 585 0.6156845 0.118126235 fv Log-Normal Cox, Gamma FALSE #> 9365 586 0.6909358 0.132262861 fv Log-Normal Cox, Gamma FALSE #> 9381 587 0.8254731 0.156164504 fv Log-Normal Cox, Gamma FALSE #> 9397 588 0.4985840 0.098185971 fv Log-Normal Cox, Gamma FALSE #> 9413 589 0.5667331 0.110590810 fv Log-Normal Cox, Gamma FALSE #> 9429 590 0.6755327 0.128974744 fv Log-Normal Cox, Gamma FALSE #> 9445 591 0.7100735 0.134783444 fv Log-Normal Cox, Gamma FALSE #> 9461 592 0.6398759 0.122043702 fv Log-Normal Cox, Gamma FALSE #> 9477 593 0.8497606 0.159346921 fv Log-Normal Cox, Gamma FALSE #> 9493 594 0.5974971 0.114783658 fv Log-Normal Cox, Gamma FALSE #> 9509 595 0.4889633 0.096514942 fv Log-Normal Cox, Gamma FALSE #> 9525 596 0.7551888 0.146743300 fv Log-Normal Cox, Gamma FALSE #> 9541 597 0.5546966 0.108577585 fv Log-Normal Cox, Gamma FALSE #> 9557 598 0.8867973 0.164441792 fv Log-Normal Cox, Gamma FALSE #> 9573 599 0.7171896 0.139493732 fv Log-Normal Cox, Gamma FALSE #> 9589 600 0.4879105 0.096772910 fv Log-Normal Cox, Gamma FALSE #> 9605 601 1.0026921 NA fv Log-Normal Cox, Gamma TRUE #> 9621 602 0.9325088 0.173557163 fv Log-Normal Cox, Gamma TRUE #> 9637 603 0.3888751 0.079033438 fv Log-Normal Cox, Gamma FALSE #> 9653 604 0.6842209 0.130715889 fv Log-Normal Cox, Gamma FALSE #> 9669 605 1.2003127 0.217054265 fv Log-Normal Cox, Gamma TRUE #> 9685 606 0.6547442 NA fv Log-Normal Cox, Gamma NA #> 9701 607 0.5317105 0.105097289 fv Log-Normal Cox, Gamma FALSE #> 9717 608 0.3897320 0.078854986 fv Log-Normal Cox, Gamma FALSE #> 9733 609 0.7396654 0.139623911 fv Log-Normal Cox, Gamma FALSE #> 9749 610 0.5778586 0.112592700 fv Log-Normal Cox, Gamma FALSE #> 9765 611 0.7311360 0.139959143 fv Log-Normal Cox, Gamma FALSE #> 9781 612 0.4822317 0.094986841 fv Log-Normal Cox, Gamma FALSE #> 9797 613 0.6700561 0.127315233 fv Log-Normal Cox, Gamma FALSE #> 9813 614 0.6139652 0.117963537 fv Log-Normal Cox, Gamma FALSE #> 9829 615 0.7041258 0.133147573 fv Log-Normal Cox, Gamma FALSE #> 9845 616 0.6486597 0.123698992 fv Log-Normal Cox, Gamma FALSE #> 9861 617 0.6631049 0.126776116 fv Log-Normal Cox, Gamma FALSE #> 9877 618 0.6326642 0.122967228 fv Log-Normal Cox, Gamma FALSE #> 9893 619 0.7031687 0.133526200 fv Log-Normal Cox, Gamma FALSE #> 9909 620 0.7016931 0.134030260 fv Log-Normal Cox, Gamma FALSE #> 9925 621 0.4804179 0.094630231 fv Log-Normal Cox, Gamma FALSE #> 9941 622 0.5398830 0.105518836 fv Log-Normal Cox, Gamma FALSE #> 9957 623 0.7882768 NA fv Log-Normal Cox, Gamma NA #> 9973 624 0.5199565 0.102594438 fv Log-Normal Cox, Gamma FALSE #> 9989 625 0.6821884 0.131007762 fv Log-Normal Cox, Gamma FALSE #> 10005 626 0.5553299 0.108156062 fv Log-Normal Cox, Gamma FALSE #> 10021 627 0.5171324 0.100946474 fv Log-Normal Cox, Gamma FALSE #> 10037 628 0.6021959 0.117996583 fv Log-Normal Cox, Gamma FALSE #> 10053 629 0.5988361 0.116317156 fv Log-Normal Cox, Gamma FALSE #> 10069 630 0.7275214 0.137648611 fv Log-Normal Cox, Gamma FALSE #> 10085 631 0.6014324 0.116267022 fv Log-Normal Cox, Gamma FALSE #> 10101 632 0.6539662 0.125735227 fv Log-Normal Cox, Gamma FALSE #> 10117 633 0.4515294 0.090140744 fv Log-Normal Cox, Gamma FALSE #> 10133 634 0.5366501 0.104960671 fv Log-Normal Cox, Gamma FALSE #> 10149 635 0.7992162 0.151686284 fv Log-Normal Cox, Gamma FALSE #> 10165 636 0.3679142 0.074745635 fv Log-Normal Cox, Gamma TRUE #> 10181 637 0.8172567 0.153430015 fv Log-Normal Cox, Gamma FALSE #> 10197 638 0.6188470 0.119900789 fv Log-Normal Cox, Gamma FALSE #> 10213 639 0.4075475 0.082636108 fv Log-Normal Cox, Gamma FALSE #> 10229 640 0.6079813 0.117311944 fv Log-Normal Cox, Gamma FALSE #> 10245 641 0.5327991 0.105035147 fv Log-Normal Cox, Gamma FALSE #> 10261 642 0.5597292 0.109129262 fv Log-Normal Cox, Gamma FALSE #> 10277 643 0.6139384 0.118367241 fv Log-Normal Cox, Gamma FALSE #> 10293 644 0.5866635 NA fv Log-Normal Cox, Gamma NA #> 10309 645 0.7208784 0.137431969 fv Log-Normal Cox, Gamma FALSE #> 10325 646 0.6933400 0.131413088 fv Log-Normal Cox, Gamma FALSE #> 10341 647 0.5671578 0.109870687 fv Log-Normal Cox, Gamma FALSE #> 10357 648 0.9313582 0.172295847 fv Log-Normal Cox, Gamma TRUE #> 10373 649 0.5481963 0.107649002 fv Log-Normal Cox, Gamma FALSE #> 10389 650 0.7605507 0.143662754 fv Log-Normal Cox, Gamma FALSE #> 10405 651 0.6464110 0.123572571 fv Log-Normal Cox, Gamma FALSE #> 10421 652 1.0094659 NA fv Log-Normal Cox, Gamma TRUE #> 10437 653 0.4670246 0.092824199 fv Log-Normal Cox, Gamma FALSE #> 10453 654 0.5010104 0.099183261 fv Log-Normal Cox, Gamma FALSE #> 10469 655 0.6150549 NA fv Log-Normal Cox, Gamma NA #> 10485 656 0.5876953 0.113979268 fv Log-Normal Cox, Gamma FALSE #> 10501 657 0.4694330 0.093140718 fv Log-Normal Cox, Gamma FALSE #> 10517 658 0.9549667 0.176185188 fv Log-Normal Cox, Gamma TRUE #> 10533 659 0.9190884 0.171500306 fv Log-Normal Cox, Gamma TRUE #> 10549 660 0.6910145 0.131000152 fv Log-Normal Cox, Gamma FALSE #> 10565 661 0.4568377 0.090509242 fv Log-Normal Cox, Gamma FALSE #> 10581 662 0.5172112 0.101535270 fv Log-Normal Cox, Gamma FALSE #> 10597 663 0.5894338 0.114077847 fv Log-Normal Cox, Gamma FALSE #> 10613 664 0.6056533 0.116455334 fv Log-Normal Cox, Gamma FALSE #> 10629 665 0.7852957 0.148553995 fv Log-Normal Cox, Gamma FALSE #> 10645 666 0.9859896 0.180554439 fv Log-Normal Cox, Gamma TRUE #> 10661 667 0.5862766 0.113642712 fv Log-Normal Cox, Gamma FALSE #> 10677 668 0.5949446 0.115866220 fv Log-Normal Cox, Gamma FALSE #> 10693 669 0.7850263 0.147802853 fv Log-Normal Cox, Gamma FALSE #> 10709 670 0.5635746 NA fv Log-Normal Cox, Gamma NA #> 10725 671 0.7259235 0.138202958 fv Log-Normal Cox, Gamma FALSE #> 10741 672 0.8718181 0.163010978 fv Log-Normal Cox, Gamma FALSE #> 10757 673 0.6408388 0.123876096 fv Log-Normal Cox, Gamma FALSE #> 10773 674 0.7466389 0.142055048 fv Log-Normal Cox, Gamma FALSE #> 10789 675 0.5421365 0.106966298 fv Log-Normal Cox, Gamma FALSE #> 10805 676 0.8391278 0.157251504 fv Log-Normal Cox, Gamma FALSE #> 10821 677 0.6225082 0.120465864 fv Log-Normal Cox, Gamma FALSE #> 10837 678 0.5245500 0.103447698 fv Log-Normal Cox, Gamma FALSE #> 10853 679 0.5851618 NA fv Log-Normal Cox, Gamma NA #> 10869 680 0.6683333 0.127906739 fv Log-Normal Cox, Gamma FALSE #> 10885 681 0.8702246 0.162150474 fv Log-Normal Cox, Gamma FALSE #> 10901 682 0.5397913 0.104974509 fv Log-Normal Cox, Gamma FALSE #> 10917 683 0.7569255 0.145064290 fv Log-Normal Cox, Gamma FALSE #> 10933 684 0.9591995 0.177344786 fv Log-Normal Cox, Gamma TRUE #> 10949 685 0.5623235 0.109076488 fv Log-Normal Cox, Gamma FALSE #> 10965 686 0.8192108 0.153746623 fv Log-Normal Cox, Gamma FALSE #> 10981 687 0.5286876 0.103347965 fv Log-Normal Cox, Gamma FALSE #> 10997 688 0.5358129 0.105056766 fv Log-Normal Cox, Gamma FALSE #> 11013 689 0.5913183 0.115293694 fv Log-Normal Cox, Gamma FALSE #> 11029 690 0.7268248 0.137887225 fv Log-Normal Cox, Gamma FALSE #> 11045 691 0.7463031 0.145380092 fv Log-Normal Cox, Gamma FALSE #> 11061 692 0.5489217 0.106600253 fv Log-Normal Cox, Gamma FALSE #> 11077 693 0.4519482 0.090149874 fv Log-Normal Cox, Gamma FALSE #> 11093 694 0.6822745 0.130763160 fv Log-Normal Cox, Gamma FALSE #> 11109 695 0.5559127 0.108383281 fv Log-Normal Cox, Gamma FALSE #> 11125 696 0.6691356 0.127526992 fv Log-Normal Cox, Gamma FALSE #> 11141 697 0.8042098 0.152144346 fv Log-Normal Cox, Gamma FALSE #> 11157 698 0.4023952 0.081060891 fv Log-Normal Cox, Gamma FALSE #> 11173 699 0.6212888 0.120567498 fv Log-Normal Cox, Gamma FALSE #> 11189 700 0.4839348 0.095596275 fv Log-Normal Cox, Gamma FALSE #> 11205 701 0.7137080 0.135569766 fv Log-Normal Cox, Gamma FALSE #> 11221 702 0.7879064 0.150369164 fv Log-Normal Cox, Gamma FALSE #> 11237 703 0.6841934 0.131021982 fv Log-Normal Cox, Gamma FALSE #> 11253 704 0.5994003 0.116696139 fv Log-Normal Cox, Gamma FALSE #> 11269 705 0.5822209 0.112386316 fv Log-Normal Cox, Gamma FALSE #> 11285 706 0.6451694 0.123668202 fv Log-Normal Cox, Gamma FALSE #> 11301 707 0.7728336 0.144921118 fv Log-Normal Cox, Gamma FALSE #> 11317 708 0.7578368 0.142268276 fv Log-Normal Cox, Gamma FALSE #> 11333 709 0.7044466 0.137535324 fv Log-Normal Cox, Gamma FALSE #> 11349 710 0.4848854 0.096366538 fv Log-Normal Cox, Gamma FALSE #> 11365 711 0.6696038 0.131629200 fv Log-Normal Cox, Gamma FALSE #> 11381 712 0.6364269 NA fv Log-Normal Cox, Gamma NA #> 11397 713 0.8785677 0.164027544 fv Log-Normal Cox, Gamma FALSE #> 11413 714 0.7289698 0.139114880 fv Log-Normal Cox, Gamma FALSE #> 11429 715 0.6760923 0.128597343 fv Log-Normal Cox, Gamma FALSE #> 11445 716 0.6206559 0.118841559 fv Log-Normal Cox, Gamma FALSE #> 11461 717 0.6715545 0.128487711 fv Log-Normal Cox, Gamma FALSE #> 11477 718 0.7875216 0.148889321 fv Log-Normal Cox, Gamma FALSE #> 11493 719 0.9351608 0.174706425 fv Log-Normal Cox, Gamma TRUE #> 11509 720 0.6329848 0.120820543 fv Log-Normal Cox, Gamma FALSE #> 11525 721 0.5076976 0.099834680 fv Log-Normal Cox, Gamma FALSE #> 11541 722 0.7036759 0.133565138 fv Log-Normal Cox, Gamma FALSE #> 11557 723 0.5811768 0.113354759 fv Log-Normal Cox, Gamma FALSE #> 11573 724 0.6810073 0.131625143 fv Log-Normal Cox, Gamma FALSE #> 11589 725 0.6749253 0.128842134 fv Log-Normal Cox, Gamma FALSE #> 11605 726 0.5682980 0.110789939 fv Log-Normal Cox, Gamma FALSE #> 11621 727 0.6973867 0.132403499 fv Log-Normal Cox, Gamma FALSE #> 11637 728 0.9034403 0.167176467 fv Log-Normal Cox, Gamma FALSE #> 11653 729 0.6618256 0.126659612 fv Log-Normal Cox, Gamma FALSE #> 11669 730 0.7355975 0.139569325 fv Log-Normal Cox, Gamma FALSE #> 11685 731 0.4578597 0.091222814 fv Log-Normal Cox, Gamma FALSE #> 11701 732 0.3962879 0.079619289 fv Log-Normal Cox, Gamma FALSE #> 11717 733 0.7799217 0.146397355 fv Log-Normal Cox, Gamma FALSE #> 11733 734 0.7250782 0.136961355 fv Log-Normal Cox, Gamma FALSE #> 11749 735 0.8080674 0.150410061 fv Log-Normal Cox, Gamma FALSE #> 11765 736 0.7302051 0.138445599 fv Log-Normal Cox, Gamma FALSE #> 11781 737 0.6501185 0.124084760 fv Log-Normal Cox, Gamma FALSE #> 11797 738 0.5133997 0.101780781 fv Log-Normal Cox, Gamma FALSE #> 11813 739 0.5361525 0.104999322 fv Log-Normal Cox, Gamma FALSE #> 11829 740 0.7272712 0.138201013 fv Log-Normal Cox, Gamma FALSE #> 11845 741 0.7920042 0.148046562 fv Log-Normal Cox, Gamma FALSE #> 11861 742 0.5971878 0.115515589 fv Log-Normal Cox, Gamma FALSE #> 11877 743 0.6372487 0.122156878 fv Log-Normal Cox, Gamma FALSE #> 11893 744 0.6076604 0.117080863 fv Log-Normal Cox, Gamma FALSE #> 11909 745 0.6258474 0.120185601 fv Log-Normal Cox, Gamma FALSE #> 11925 746 0.6137741 0.122398199 fv Log-Normal Cox, Gamma FALSE #> 11941 747 0.5661390 0.109952145 fv Log-Normal Cox, Gamma FALSE #> 11957 748 0.8181814 0.154842528 fv Log-Normal Cox, Gamma FALSE #> 11973 749 0.8883396 0.166043136 fv Log-Normal Cox, Gamma FALSE #> 11989 750 0.6714251 0.128300301 fv Log-Normal Cox, Gamma FALSE #> 12005 751 0.7715463 0.145206839 fv Log-Normal Cox, Gamma FALSE #> 12021 752 0.6441060 0.126152659 fv Log-Normal Cox, Gamma FALSE #> 12037 753 0.4018435 0.081668489 fv Log-Normal Cox, Gamma FALSE #> 12053 754 0.6463386 0.123715910 fv Log-Normal Cox, Gamma FALSE #> 12069 755 0.5965575 0.115533717 fv Log-Normal Cox, Gamma FALSE #> 12085 756 0.3440358 0.070858933 fv Log-Normal Cox, Gamma TRUE #> 12101 757 0.6413942 0.123412706 fv Log-Normal Cox, Gamma FALSE #> 12117 758 0.6787276 0.129764259 fv Log-Normal Cox, Gamma FALSE #> 12133 759 0.5787070 0.112332541 fv Log-Normal Cox, Gamma FALSE #> 12149 760 0.8563906 0.161448535 fv Log-Normal Cox, Gamma FALSE #> 12165 761 0.5460240 0.107074937 fv Log-Normal Cox, Gamma FALSE #> 12181 762 0.7127921 0.136154341 fv Log-Normal Cox, Gamma FALSE #> 12197 763 0.5129074 0.101292545 fv Log-Normal Cox, Gamma FALSE #> 12213 764 0.5763837 0.111781244 fv Log-Normal Cox, Gamma FALSE #> 12229 765 0.7664589 0.143748738 fv Log-Normal Cox, Gamma FALSE #> 12245 766 0.5600605 0.108454352 fv Log-Normal Cox, Gamma FALSE #> 12261 767 0.7366908 0.139359440 fv Log-Normal Cox, Gamma FALSE #> 12277 768 0.4817040 0.094934157 fv Log-Normal Cox, Gamma FALSE #> 12293 769 0.8405919 0.157104432 fv Log-Normal Cox, Gamma FALSE #> 12309 770 0.5195843 0.102208060 fv Log-Normal Cox, Gamma FALSE #> 12325 771 0.5317918 0.106680566 fv Log-Normal Cox, Gamma FALSE #> 12341 772 0.5016173 0.098605760 fv Log-Normal Cox, Gamma FALSE #> 12357 773 0.5638723 0.111342842 fv Log-Normal Cox, Gamma FALSE #> 12373 774 0.6730202 0.129443064 fv Log-Normal Cox, Gamma FALSE #> 12389 775 0.6121184 NA fv Log-Normal Cox, Gamma NA #> 12405 776 0.5603536 0.108454516 fv Log-Normal Cox, Gamma FALSE #> 12421 777 0.5635692 0.109901110 fv Log-Normal Cox, Gamma FALSE #> 12437 778 0.5287791 0.103608108 fv Log-Normal Cox, Gamma FALSE #> 12453 779 0.5459400 0.106667094 fv Log-Normal Cox, Gamma FALSE #> 12469 780 0.5454313 0.106487875 fv Log-Normal Cox, Gamma FALSE #> 12485 781 0.6435394 0.123723033 fv Log-Normal Cox, Gamma FALSE #> 12501 782 0.5440785 0.106183644 fv Log-Normal Cox, Gamma FALSE #> 12517 783 0.5646684 0.110072451 fv Log-Normal Cox, Gamma FALSE #> 12533 784 0.7140410 0.135997697 fv Log-Normal Cox, Gamma FALSE #> 12549 785 0.4320567 0.086209585 fv Log-Normal Cox, Gamma FALSE #> 12565 786 0.5871582 0.114417704 fv Log-Normal Cox, Gamma FALSE #> 12581 787 0.8307302 0.154887306 fv Log-Normal Cox, Gamma FALSE #> 12597 788 0.6235801 NA fv Log-Normal Cox, Gamma NA #> 12613 789 0.7648412 0.144381392 fv Log-Normal Cox, Gamma FALSE #> 12629 790 0.6109958 0.117593356 fv Log-Normal Cox, Gamma FALSE #> 12645 791 0.3740806 0.075608302 fv Log-Normal Cox, Gamma TRUE #> 12661 792 0.5561341 0.110068462 fv Log-Normal Cox, Gamma FALSE #> 12677 793 0.7406961 0.139600573 fv Log-Normal Cox, Gamma FALSE #> 12693 794 0.6753768 0.133145979 fv Log-Normal Cox, Gamma FALSE #> 12709 795 0.5773739 0.112448186 fv Log-Normal Cox, Gamma FALSE #> 12725 796 0.5102600 0.100449198 fv Log-Normal Cox, Gamma FALSE #> 12741 797 0.5152045 0.100934224 fv Log-Normal Cox, Gamma FALSE #> 12757 798 0.4019849 0.081496314 fv Log-Normal Cox, Gamma FALSE #> 12773 799 0.6295888 0.120381526 fv Log-Normal Cox, Gamma FALSE #> 12789 800 0.6506860 0.125151707 fv Log-Normal Cox, Gamma FALSE #> 12805 801 0.9235044 0.172121125 fv Log-Normal Cox, Gamma TRUE #> 12821 802 0.6243786 0.119285799 fv Log-Normal Cox, Gamma FALSE #> 12837 803 0.6127131 0.118494093 fv Log-Normal Cox, Gamma FALSE #> 12853 804 0.6683181 0.127845508 fv Log-Normal Cox, Gamma FALSE #> 12869 805 0.8655709 0.164958554 fv Log-Normal Cox, Gamma FALSE #> 12885 806 0.8307338 0.158511657 fv Log-Normal Cox, Gamma FALSE #> 12901 807 0.6847624 0.007098338 fv Log-Normal Cox, Gamma TRUE #> 12917 808 0.4608903 0.091363357 fv Log-Normal Cox, Gamma FALSE #> 12933 809 0.5746463 0.111581806 fv Log-Normal Cox, Gamma FALSE #> 12949 810 0.6261066 0.120222463 fv Log-Normal Cox, Gamma FALSE #> 12965 811 0.4101906 0.082327643 fv Log-Normal Cox, Gamma FALSE #> 12981 812 0.6375601 0.122977631 fv Log-Normal Cox, Gamma FALSE #> 12997 813 0.7067174 0.133583771 fv Log-Normal Cox, Gamma FALSE #> 13013 814 0.6125992 0.118493837 fv Log-Normal Cox, Gamma FALSE #> 13029 815 0.5418829 0.107600002 fv Log-Normal Cox, Gamma FALSE #> 13045 816 0.5858533 NA fv Log-Normal Cox, Gamma NA #> 13061 817 0.4076984 0.081983169 fv Log-Normal Cox, Gamma FALSE #> 13077 818 0.6378915 0.124745913 fv Log-Normal Cox, Gamma FALSE #> 13093 819 0.7019073 0.132946154 fv Log-Normal Cox, Gamma FALSE #> 13109 820 0.8104918 0.153613082 fv Log-Normal Cox, Gamma FALSE #> 13125 821 0.4928717 0.096887270 fv Log-Normal Cox, Gamma FALSE #> 13141 822 0.8106514 0.152692972 fv Log-Normal Cox, Gamma FALSE #> 13157 823 0.9414082 0.176020573 fv Log-Normal Cox, Gamma TRUE #> 13173 824 0.7807771 0.147247985 fv Log-Normal Cox, Gamma FALSE #> 13189 825 0.7034024 0.134541272 fv Log-Normal Cox, Gamma FALSE #> 13205 826 0.7094238 0.135741788 fv Log-Normal Cox, Gamma FALSE #> 13221 827 0.8135921 0.154539346 fv Log-Normal Cox, Gamma FALSE #> 13237 828 0.5962366 0.116746571 fv Log-Normal Cox, Gamma FALSE #> 13253 829 0.6516192 0.125243568 fv Log-Normal Cox, Gamma FALSE #> 13269 830 0.7515323 0.142232279 fv Log-Normal Cox, Gamma FALSE #> 13285 831 0.6930557 0.131294024 fv Log-Normal Cox, Gamma FALSE #> 13301 832 0.4914554 0.097267429 fv Log-Normal Cox, Gamma FALSE #> 13317 833 0.7539417 0.142658069 fv Log-Normal Cox, Gamma FALSE #> 13333 834 0.5800657 0.113033660 fv Log-Normal Cox, Gamma FALSE #> 13349 835 0.6207208 0.120104030 fv Log-Normal Cox, Gamma FALSE #> 13365 836 0.6793893 0.129865727 fv Log-Normal Cox, Gamma FALSE #> 13381 837 0.7548904 0.143482390 fv Log-Normal Cox, Gamma FALSE #> 13397 838 0.6016750 0.116332111 fv Log-Normal Cox, Gamma FALSE #> 13413 839 0.5676191 0.111629149 fv Log-Normal Cox, Gamma FALSE #> 13429 840 0.5784233 0.006032357 fv Log-Normal Cox, Gamma TRUE #> 13445 841 0.9024294 0.169028872 fv Log-Normal Cox, Gamma FALSE #> 13461 842 0.4944220 0.097387303 fv Log-Normal Cox, Gamma FALSE #> 13477 843 0.6174343 NA fv Log-Normal Cox, Gamma NA #> 13493 844 0.7765827 0.145469783 fv Log-Normal Cox, Gamma FALSE #> 13509 845 0.8061865 0.151157541 fv Log-Normal Cox, Gamma FALSE #> 13525 846 0.4946398 0.097713008 fv Log-Normal Cox, Gamma FALSE #> 13541 847 0.8872828 0.164244428 fv Log-Normal Cox, Gamma FALSE #> 13557 848 0.6722396 0.128137186 fv Log-Normal Cox, Gamma FALSE #> 13573 849 0.5499169 0.107476581 fv Log-Normal Cox, Gamma FALSE #> 13589 850 0.7639498 0.144795253 fv Log-Normal Cox, Gamma FALSE #> 13605 851 0.5845154 0.112833034 fv Log-Normal Cox, Gamma FALSE #> 13621 852 0.6056401 0.116696724 fv Log-Normal Cox, Gamma FALSE #> 13637 853 0.8570990 0.158665026 fv Log-Normal Cox, Gamma FALSE #> 13653 854 0.6183688 NA fv Log-Normal Cox, Gamma NA #> 13669 855 0.5442098 0.106470731 fv Log-Normal Cox, Gamma FALSE #> 13685 856 0.7602114 0.143711564 fv Log-Normal Cox, Gamma FALSE #> 13701 857 0.7054449 0.134533671 fv Log-Normal Cox, Gamma FALSE #> 13717 858 0.8738845 0.162323725 fv Log-Normal Cox, Gamma FALSE #> 13733 859 0.8433205 0.158129658 fv Log-Normal Cox, Gamma FALSE #> 13749 860 0.6194807 0.120192334 fv Log-Normal Cox, Gamma FALSE #> 13765 861 0.4240218 0.085035129 fv Log-Normal Cox, Gamma FALSE #> 13781 862 0.5727095 0.111056530 fv Log-Normal Cox, Gamma FALSE #> 13797 863 0.5931713 0.114924197 fv Log-Normal Cox, Gamma FALSE #> 13813 864 0.7886915 0.148632446 fv Log-Normal Cox, Gamma FALSE #> 13829 865 0.8417216 0.157705339 fv Log-Normal Cox, Gamma FALSE #> 13845 866 0.7324513 0.140415114 fv Log-Normal Cox, Gamma FALSE #> 13861 867 0.5336145 0.105020826 fv Log-Normal Cox, Gamma FALSE #> 13877 868 0.8326129 0.157190658 fv Log-Normal Cox, Gamma FALSE #> 13893 869 0.4553176 0.090454476 fv Log-Normal Cox, Gamma FALSE #> 13909 870 0.7275115 0.139000119 fv Log-Normal Cox, Gamma FALSE #> 13925 871 0.4562028 0.090945564 fv Log-Normal Cox, Gamma FALSE #> 13941 872 0.4282411 0.086039728 fv Log-Normal Cox, Gamma FALSE #> 13957 873 0.7410010 0.139529175 fv Log-Normal Cox, Gamma FALSE #> 13973 874 0.6406572 0.123512358 fv Log-Normal Cox, Gamma FALSE #> 13989 875 0.5379126 0.104728825 fv Log-Normal Cox, Gamma FALSE #> 14005 876 0.5522451 0.108150503 fv Log-Normal Cox, Gamma FALSE #> 14021 877 0.5176314 0.102540214 fv Log-Normal Cox, Gamma FALSE #> 14037 878 0.6117499 0.118653415 fv Log-Normal Cox, Gamma FALSE #> 14053 879 0.6092139 0.117915292 fv Log-Normal Cox, Gamma FALSE #> 14069 880 0.7281917 0.137629429 fv Log-Normal Cox, Gamma FALSE #> 14085 881 0.4806627 0.094979574 fv Log-Normal Cox, Gamma FALSE #> 14101 882 0.6538869 0.126627474 fv Log-Normal Cox, Gamma FALSE #> 14117 883 0.5610964 0.109264809 fv Log-Normal Cox, Gamma FALSE #> 14133 884 0.4925104 0.097240268 fv Log-Normal Cox, Gamma FALSE #> 14149 885 0.6589978 0.126130195 fv Log-Normal Cox, Gamma FALSE #> 14165 886 0.5726060 0.111766627 fv Log-Normal Cox, Gamma FALSE #> 14181 887 0.3455108 0.071029692 fv Log-Normal Cox, Gamma TRUE #> 14197 888 0.5385587 0.104973741 fv Log-Normal Cox, Gamma FALSE #> 14213 889 0.6028528 0.116696393 fv Log-Normal Cox, Gamma FALSE #> 14229 890 0.6115686 0.117674263 fv Log-Normal Cox, Gamma FALSE #> 14245 891 0.6530045 0.124860018 fv Log-Normal Cox, Gamma FALSE #> 14261 892 0.9512529 0.177813247 fv Log-Normal Cox, Gamma TRUE #> 14277 893 0.4324512 0.086825693 fv Log-Normal Cox, Gamma FALSE #> 14293 894 0.5597415 0.110075287 fv Log-Normal Cox, Gamma FALSE #> 14309 895 0.7000887 0.134095874 fv Log-Normal Cox, Gamma FALSE #> 14325 896 0.4728721 0.093547165 fv Log-Normal Cox, Gamma FALSE #> 14341 897 0.5701801 0.110691422 fv Log-Normal Cox, Gamma FALSE #> 14357 898 0.6771217 0.129572295 fv Log-Normal Cox, Gamma FALSE #> 14373 899 0.7731560 0.148972225 fv Log-Normal Cox, Gamma FALSE #> 14389 900 0.6242420 0.120427482 fv Log-Normal Cox, Gamma FALSE #> 14405 901 0.6907226 0.131189457 fv Log-Normal Cox, Gamma FALSE #> 14421 902 0.7152259 0.135339899 fv Log-Normal Cox, Gamma FALSE #> 14437 903 0.5105152 0.100732976 fv Log-Normal Cox, Gamma FALSE #> 14453 904 0.5856935 0.113481600 fv Log-Normal Cox, Gamma FALSE #> 14469 905 0.5997602 NA fv Log-Normal Cox, Gamma NA #> 14485 906 0.6365419 0.122578578 fv Log-Normal Cox, Gamma FALSE #> 14501 907 0.5898802 0.115521684 fv Log-Normal Cox, Gamma FALSE #> 14517 908 0.4531988 0.090312108 fv Log-Normal Cox, Gamma FALSE #> 14533 909 0.7511674 0.141395630 fv Log-Normal Cox, Gamma FALSE #> 14549 910 0.5647211 0.109999123 fv Log-Normal Cox, Gamma FALSE #> 14565 911 0.6067530 0.117194452 fv Log-Normal Cox, Gamma FALSE #> 14581 912 0.3617871 0.073947377 fv Log-Normal Cox, Gamma TRUE #> 14597 913 0.5505871 0.107420031 fv Log-Normal Cox, Gamma FALSE #> 14613 914 0.7699292 0.145248215 fv Log-Normal Cox, Gamma FALSE #> 14629 915 0.5864275 0.113192932 fv Log-Normal Cox, Gamma FALSE #> 14645 916 0.6235821 NA fv Log-Normal Cox, Gamma NA #> 14661 917 0.4809311 0.095930729 fv Log-Normal Cox, Gamma FALSE #> 14677 918 0.5527238 0.108983870 fv Log-Normal Cox, Gamma FALSE #> 14693 919 0.6191935 0.119875457 fv Log-Normal Cox, Gamma FALSE #> 14709 920 0.5966615 NA fv Log-Normal Cox, Gamma NA #> 14725 921 0.9739077 0.178572509 fv Log-Normal Cox, Gamma TRUE #> 14741 922 0.5740252 0.111843075 fv Log-Normal Cox, Gamma FALSE #> 14757 923 0.8611072 0.160092580 fv Log-Normal Cox, Gamma FALSE #> 14773 924 0.6116145 0.118190811 fv Log-Normal Cox, Gamma FALSE #> 14789 925 0.6970632 0.133922744 fv Log-Normal Cox, Gamma FALSE #> 14805 926 0.7548431 0.141797187 fv Log-Normal Cox, Gamma FALSE #> 14821 927 0.7246747 0.137313580 fv Log-Normal Cox, Gamma FALSE #> 14837 928 0.6419417 NA fv Log-Normal Cox, Gamma NA #> 14853 929 0.6743449 0.128440051 fv Log-Normal Cox, Gamma FALSE #> 14869 930 0.5122725 0.101372331 fv Log-Normal Cox, Gamma FALSE #> 14885 931 0.7130454 0.135971450 fv Log-Normal Cox, Gamma FALSE #> 14901 932 0.5066433 0.100500273 fv Log-Normal Cox, Gamma FALSE #> 14917 933 0.4945458 0.097082695 fv Log-Normal Cox, Gamma FALSE #> 14933 934 0.6492706 NA fv Log-Normal Cox, Gamma NA #> 14949 935 0.7595802 0.142781942 fv Log-Normal Cox, Gamma FALSE #> 14965 936 0.6649180 0.127703570 fv Log-Normal Cox, Gamma FALSE #> 14981 937 0.6533127 0.124319736 fv Log-Normal Cox, Gamma FALSE #> 14997 938 0.6926645 0.131356315 fv Log-Normal Cox, Gamma FALSE #> 15013 939 0.5077710 0.099590277 fv Log-Normal Cox, Gamma FALSE #> 15029 940 0.6933669 0.133191128 fv Log-Normal Cox, Gamma FALSE #> 15045 941 0.4268047 0.085815756 fv Log-Normal Cox, Gamma FALSE #> 15061 942 0.7084437 0.133839212 fv Log-Normal Cox, Gamma FALSE #> 15077 943 0.4584328 0.090854771 fv Log-Normal Cox, Gamma FALSE #> 15093 944 0.5666850 0.110036299 fv Log-Normal Cox, Gamma FALSE #> 15109 945 0.9440737 0.175421907 fv Log-Normal Cox, Gamma TRUE #> 15125 946 0.7158152 0.136016918 fv Log-Normal Cox, Gamma FALSE #> 15141 947 0.7167894 0.135529442 fv Log-Normal Cox, Gamma FALSE #> 15157 948 0.4493495 0.091216146 fv Log-Normal Cox, Gamma FALSE #> 15173 949 0.5803668 0.112156181 fv Log-Normal Cox, Gamma FALSE #> 15189 950 0.6935612 0.132417693 fv Log-Normal Cox, Gamma FALSE #> 15205 951 0.4651010 0.092037357 fv Log-Normal Cox, Gamma FALSE #> 15221 952 0.5304067 0.103569265 fv Log-Normal Cox, Gamma FALSE #> 15237 953 0.5574506 NA fv Log-Normal Cox, Gamma NA #> 15253 954 0.7829632 0.149765497 fv Log-Normal Cox, Gamma FALSE #> 15269 955 0.6315200 0.121635710 fv Log-Normal Cox, Gamma FALSE #> 15285 956 0.7256935 0.136559638 fv Log-Normal Cox, Gamma FALSE #> 15301 957 0.5255019 0.102668152 fv Log-Normal Cox, Gamma FALSE #> 15317 958 0.5515319 0.108203497 fv Log-Normal Cox, Gamma FALSE #> 15333 959 0.6365335 0.006618674 fv Log-Normal Cox, Gamma TRUE #> 15349 960 0.4975672 0.097788653 fv Log-Normal Cox, Gamma FALSE #> 15365 961 0.7256961 0.136960775 fv Log-Normal Cox, Gamma FALSE #> 15381 962 0.6723918 0.128074823 fv Log-Normal Cox, Gamma FALSE #> 15397 963 0.8582505 0.161076038 fv Log-Normal Cox, Gamma FALSE #> 15413 964 0.6765533 0.131222054 fv Log-Normal Cox, Gamma FALSE #> 15429 965 0.4969462 0.098034066 fv Log-Normal Cox, Gamma FALSE #> 15445 966 0.8281505 0.153884185 fv Log-Normal Cox, Gamma FALSE #> 15461 967 0.8024846 0.151662537 fv Log-Normal Cox, Gamma FALSE #> 15477 968 0.7562529 0.144638541 fv Log-Normal Cox, Gamma FALSE #> 15493 969 0.9270354 0.171035756 fv Log-Normal Cox, Gamma TRUE #> 15509 970 0.7075527 0.135390065 fv Log-Normal Cox, Gamma FALSE #> 15525 971 0.7638483 0.143021387 fv Log-Normal Cox, Gamma FALSE #> 15541 972 0.5393256 0.105657239 fv Log-Normal Cox, Gamma FALSE #> 15557 973 0.7927163 0.148657584 fv Log-Normal Cox, Gamma FALSE #> 15573 974 0.8194812 0.153583984 fv Log-Normal Cox, Gamma FALSE #> 15589 975 0.8901438 0.164621225 fv Log-Normal Cox, Gamma FALSE #> 15605 976 0.7033173 0.135752844 fv Log-Normal Cox, Gamma FALSE #> 15621 977 0.9184243 0.169985183 fv Log-Normal Cox, Gamma TRUE #> 15637 978 0.7000262 0.133687476 fv Log-Normal Cox, Gamma FALSE #> 15653 979 0.5554882 0.108354847 fv Log-Normal Cox, Gamma FALSE #> 15669 980 0.6736097 0.129146495 fv Log-Normal Cox, Gamma FALSE #> 15685 981 0.5661670 0.109523726 fv Log-Normal Cox, Gamma FALSE #> 15701 982 0.5354088 0.104414629 fv Log-Normal Cox, Gamma FALSE #> 15717 983 0.6487939 0.124135434 fv Log-Normal Cox, Gamma FALSE #> 15733 984 0.6188661 0.120173122 fv Log-Normal Cox, Gamma FALSE #> 15749 985 0.7714019 0.145426296 fv Log-Normal Cox, Gamma FALSE #> 15765 986 0.6954945 0.133563065 fv Log-Normal Cox, Gamma FALSE #> 15781 987 0.6624646 0.129133922 fv Log-Normal Cox, Gamma FALSE #> 15797 988 0.7075265 0.133801077 fv Log-Normal Cox, Gamma FALSE #> 15813 989 0.7489396 0.140608370 fv Log-Normal Cox, Gamma FALSE #> 15829 990 0.6790675 0.130260397 fv Log-Normal Cox, Gamma FALSE #> 15845 991 0.7490903 0.141714729 fv Log-Normal Cox, Gamma FALSE #> 15861 992 0.6467935 0.124231773 fv Log-Normal Cox, Gamma FALSE #> 15877 993 0.6374168 0.121764982 fv Log-Normal Cox, Gamma FALSE #> 15893 994 0.6287016 0.122781015 fv Log-Normal Cox, Gamma FALSE #> 15909 995 0.5297770 0.103847152 fv Log-Normal Cox, Gamma FALSE #> 15925 996 0.6734033 0.130429589 fv Log-Normal Cox, Gamma FALSE #> 15941 997 0.5717180 0.110420307 fv Log-Normal Cox, Gamma FALSE #> 15957 998 0.5513744 0.107819150 fv Log-Normal Cox, Gamma FALSE #> 15973 999 0.6754048 0.129106649 fv Log-Normal Cox, Gamma FALSE #> 15989 1000 0.5817786 0.112687286 fv Log-Normal Cox, Gamma FALSE #> 6 1 0.7573628 0.123506225 fv Log-Normal Cox, Log-Normal FALSE #> 22 2 0.6405703 0.151148609 fv Log-Normal Cox, Log-Normal FALSE #> 38 3 0.8261367 0.185927234 fv Log-Normal Cox, Log-Normal FALSE #> 54 4 0.6143026 0.132920004 fv Log-Normal Cox, Log-Normal FALSE #> 70 5 1.0036278 0.198158194 fv Log-Normal Cox, Log-Normal FALSE #> 86 6 0.8832715 0.168543121 fv Log-Normal Cox, Log-Normal FALSE #> 102 7 0.5928196 0.100287978 fv Log-Normal Cox, Log-Normal FALSE #> 118 8 0.8252806 0.180131613 fv Log-Normal Cox, Log-Normal FALSE #> 134 9 0.7244461 0.143635393 fv Log-Normal Cox, Log-Normal FALSE #> 150 10 1.0102669 0.202207973 fv Log-Normal Cox, Log-Normal FALSE #> 166 11 0.9143155 0.184227624 fv Log-Normal Cox, Log-Normal FALSE #> 182 12 0.5534246 0.104169695 fv Log-Normal Cox, Log-Normal FALSE #> 198 13 0.8283860 0.166449749 fv Log-Normal Cox, Log-Normal FALSE #> 214 14 0.8115641 0.147107977 fv Log-Normal Cox, Log-Normal FALSE #> 230 15 0.7390334 0.149549271 fv Log-Normal Cox, Log-Normal FALSE #> 246 16 0.5808222 0.137956200 fv Log-Normal Cox, Log-Normal FALSE #> 262 17 0.6452196 0.146194236 fv Log-Normal Cox, Log-Normal FALSE #> 278 18 0.8714554 0.169853265 fv Log-Normal Cox, Log-Normal FALSE #> 294 19 0.9410003 0.159312483 fv Log-Normal Cox, Log-Normal FALSE #> 310 20 0.6101011 0.120280145 fv Log-Normal Cox, Log-Normal FALSE #> 326 21 0.7051458 0.143022121 fv Log-Normal Cox, Log-Normal FALSE #> 342 22 0.5999060 0.090970833 fv Log-Normal Cox, Log-Normal FALSE #> 358 23 0.8708236 0.203636912 fv Log-Normal Cox, Log-Normal FALSE #> 374 24 0.8089626 0.168542382 fv Log-Normal Cox, Log-Normal FALSE #> 390 25 0.6228305 0.119304963 fv Log-Normal Cox, Log-Normal FALSE #> 406 26 0.7537106 0.142965921 fv Log-Normal Cox, Log-Normal FALSE #> 422 27 0.5366948 0.165486396 fv Log-Normal Cox, Log-Normal FALSE #> 438 28 0.7237506 0.149495788 fv Log-Normal Cox, Log-Normal FALSE #> 454 29 1.0748691 0.171233165 fv Log-Normal Cox, Log-Normal TRUE #> 470 30 0.7213200 0.196299621 fv Log-Normal Cox, Log-Normal FALSE #> 486 31 0.5593267 0.126828054 fv Log-Normal Cox, Log-Normal FALSE #> 502 32 0.5324768 0.090967716 fv Log-Normal Cox, Log-Normal FALSE #> 518 33 0.7693620 0.147380984 fv Log-Normal Cox, Log-Normal FALSE #> 534 34 0.9152415 0.206375212 fv Log-Normal Cox, Log-Normal FALSE #> 550 35 0.5246976 0.132009450 fv Log-Normal Cox, Log-Normal FALSE #> 566 36 0.5188294 0.102537117 fv Log-Normal Cox, Log-Normal FALSE #> 582 37 0.7011186 0.157272513 fv Log-Normal Cox, Log-Normal FALSE #> 598 38 0.6353909 0.145388120 fv Log-Normal Cox, Log-Normal FALSE #> 614 39 0.8001182 0.162578217 fv Log-Normal Cox, Log-Normal FALSE #> 630 40 0.5711178 0.160784364 fv Log-Normal Cox, Log-Normal FALSE #> 646 41 0.8319567 0.168130783 fv Log-Normal Cox, Log-Normal FALSE #> 662 42 0.5614636 0.119677372 fv Log-Normal Cox, Log-Normal FALSE #> 678 43 0.5634340 0.106012887 fv Log-Normal Cox, Log-Normal FALSE #> 694 44 0.7924587 0.144458133 fv Log-Normal Cox, Log-Normal FALSE #> 710 45 0.6313241 0.120340182 fv Log-Normal Cox, Log-Normal FALSE #> 726 46 0.3400322 0.055945672 fv Log-Normal Cox, Log-Normal TRUE #> 742 47 0.9526428 0.199570335 fv Log-Normal Cox, Log-Normal FALSE #> 758 48 0.8841695 0.209442515 fv Log-Normal Cox, Log-Normal FALSE #> 774 49 0.9679034 0.166504814 fv Log-Normal Cox, Log-Normal FALSE #> 790 50 0.6036607 0.119569376 fv Log-Normal Cox, Log-Normal FALSE #> 806 51 0.8862827 0.155150877 fv Log-Normal Cox, Log-Normal FALSE #> 822 52 0.5297618 0.099447197 fv Log-Normal Cox, Log-Normal FALSE #> 838 53 0.9292767 0.157610779 fv Log-Normal Cox, Log-Normal FALSE #> 854 54 0.7239010 0.141347724 fv Log-Normal Cox, Log-Normal FALSE #> 870 55 0.9331984 0.171379276 fv Log-Normal Cox, Log-Normal FALSE #> 886 56 0.7706847 0.175186290 fv Log-Normal Cox, Log-Normal FALSE #> 902 57 0.9189265 0.207804687 fv Log-Normal Cox, Log-Normal FALSE #> 918 58 0.7658154 0.166165565 fv Log-Normal Cox, Log-Normal FALSE #> 934 59 0.7182062 0.124324102 fv Log-Normal Cox, Log-Normal FALSE #> 950 60 1.0041047 0.255917467 fv Log-Normal Cox, Log-Normal TRUE #> 966 61 0.7553592 0.164985154 fv Log-Normal Cox, Log-Normal FALSE #> 982 62 0.6225567 0.137396308 fv Log-Normal Cox, Log-Normal FALSE #> 998 63 0.8218612 0.151697592 fv Log-Normal Cox, Log-Normal FALSE #> 1014 64 0.7358860 0.131559640 fv Log-Normal Cox, Log-Normal FALSE #> 1030 65 0.9223297 0.240231970 fv Log-Normal Cox, Log-Normal TRUE #> 1046 66 0.6545818 0.131376390 fv Log-Normal Cox, Log-Normal FALSE #> 1062 67 0.6277202 0.131711521 fv Log-Normal Cox, Log-Normal FALSE #> 1078 68 0.5256708 0.115778396 fv Log-Normal Cox, Log-Normal FALSE #> 1094 69 0.8150341 0.153682813 fv Log-Normal Cox, Log-Normal FALSE #> 1110 70 0.7740717 0.131663013 fv Log-Normal Cox, Log-Normal FALSE #> 1126 71 1.0082462 0.227978478 fv Log-Normal Cox, Log-Normal TRUE #> 1142 72 0.6084139 0.122907751 fv Log-Normal Cox, Log-Normal FALSE #> 1158 73 0.7363271 0.136694735 fv Log-Normal Cox, Log-Normal FALSE #> 1174 74 0.4269599 0.099018016 fv Log-Normal Cox, Log-Normal FALSE #> 1190 75 0.7249021 0.145933489 fv Log-Normal Cox, Log-Normal FALSE #> 1206 76 0.6560751 0.124898132 fv Log-Normal Cox, Log-Normal FALSE #> 1222 77 0.8511698 0.197171406 fv Log-Normal Cox, Log-Normal FALSE #> 1238 78 0.7871053 0.166915910 fv Log-Normal Cox, Log-Normal FALSE #> 1254 79 1.0822921 0.209965236 fv Log-Normal Cox, Log-Normal TRUE #> 1270 80 0.5922208 0.101102935 fv Log-Normal Cox, Log-Normal FALSE #> 1286 81 1.0111710 0.155662408 fv Log-Normal Cox, Log-Normal FALSE #> 1302 82 0.6914727 0.112813615 fv Log-Normal Cox, Log-Normal FALSE #> 1318 83 0.8092839 0.153960210 fv Log-Normal Cox, Log-Normal FALSE #> 1334 84 0.6559520 0.132512452 fv Log-Normal Cox, Log-Normal FALSE #> 1350 85 0.6577962 0.171457580 fv Log-Normal Cox, Log-Normal FALSE #> 1366 86 0.5651294 0.146528647 fv Log-Normal Cox, Log-Normal FALSE #> 1382 87 0.7661226 0.160460673 fv Log-Normal Cox, Log-Normal FALSE #> 1398 88 0.7721346 0.178271337 fv Log-Normal Cox, Log-Normal FALSE #> 1414 89 1.0368109 0.213632342 fv Log-Normal Cox, Log-Normal FALSE #> 1430 90 0.8168601 0.156924329 fv Log-Normal Cox, Log-Normal FALSE #> 1446 91 0.9053362 0.158323513 fv Log-Normal Cox, Log-Normal FALSE #> 1462 92 0.8835783 0.208147013 fv Log-Normal Cox, Log-Normal FALSE #> 1478 93 0.6132071 0.113008294 fv Log-Normal Cox, Log-Normal FALSE #> 1494 94 0.8483006 0.176707967 fv Log-Normal Cox, Log-Normal FALSE #> 1510 95 0.6763772 0.139840226 fv Log-Normal Cox, Log-Normal FALSE #> 1526 96 0.5777829 0.104392446 fv Log-Normal Cox, Log-Normal FALSE #> 1542 97 0.8161674 0.168581778 fv Log-Normal Cox, Log-Normal FALSE #> 1558 98 0.4622867 0.077274220 fv Log-Normal Cox, Log-Normal FALSE #> 1574 99 0.9279581 0.217300732 fv Log-Normal Cox, Log-Normal FALSE #> 1590 100 0.6855048 0.169304914 fv Log-Normal Cox, Log-Normal FALSE #> 1606 101 0.6455828 0.111943749 fv Log-Normal Cox, Log-Normal FALSE #> 1622 102 0.4964866 0.090284117 fv Log-Normal Cox, Log-Normal FALSE #> 1638 103 0.7884297 0.140191610 fv Log-Normal Cox, Log-Normal FALSE #> 1654 104 0.7372374 0.160504976 fv Log-Normal Cox, Log-Normal FALSE #> 1670 105 0.4689447 0.130167559 fv Log-Normal Cox, Log-Normal FALSE #> 1686 106 0.6774750 0.142381935 fv Log-Normal Cox, Log-Normal FALSE #> 1702 107 0.8642295 0.176000808 fv Log-Normal Cox, Log-Normal FALSE #> 1718 108 0.7159932 0.164105206 fv Log-Normal Cox, Log-Normal FALSE #> 1734 109 0.9263322 0.205073657 fv Log-Normal Cox, Log-Normal FALSE #> 1750 110 0.9255388 0.203254399 fv Log-Normal Cox, Log-Normal FALSE #> 1766 111 0.6391791 0.151025676 fv Log-Normal Cox, Log-Normal FALSE #> 1782 112 0.7006322 0.121622711 fv Log-Normal Cox, Log-Normal FALSE #> 1798 113 0.8573833 0.120517037 fv Log-Normal Cox, Log-Normal FALSE #> 1814 114 0.6713922 0.143109099 fv Log-Normal Cox, Log-Normal FALSE #> 1830 115 0.7800116 0.158241038 fv Log-Normal Cox, Log-Normal FALSE #> 1846 116 0.7935211 0.143635068 fv Log-Normal Cox, Log-Normal FALSE #> 1862 117 0.8402853 0.144118761 fv Log-Normal Cox, Log-Normal FALSE #> 1878 118 0.6211441 0.115222597 fv Log-Normal Cox, Log-Normal FALSE #> 1894 119 0.5731702 0.104678548 fv Log-Normal Cox, Log-Normal FALSE #> 1910 120 0.8207332 0.162722934 fv Log-Normal Cox, Log-Normal FALSE #> 1926 121 0.7191754 0.144618775 fv Log-Normal Cox, Log-Normal FALSE #> 1942 122 0.5527592 0.153698623 fv Log-Normal Cox, Log-Normal FALSE #> 1958 123 0.5289509 0.095546347 fv Log-Normal Cox, Log-Normal FALSE #> 1974 124 0.5600358 0.120518423 fv Log-Normal Cox, Log-Normal FALSE #> 1990 125 0.5451336 0.088492549 fv Log-Normal Cox, Log-Normal FALSE #> 2006 126 1.2150397 0.221438937 fv Log-Normal Cox, Log-Normal TRUE #> 2022 127 0.5215282 0.106426631 fv Log-Normal Cox, Log-Normal FALSE #> 2038 128 0.5208087 0.101330616 fv Log-Normal Cox, Log-Normal FALSE #> 2054 129 0.7158500 0.146716475 fv Log-Normal Cox, Log-Normal FALSE #> 2070 130 0.5736312 0.140201893 fv Log-Normal Cox, Log-Normal FALSE #> 2086 131 0.6678274 0.113502192 fv Log-Normal Cox, Log-Normal FALSE #> 2102 132 0.7954489 0.169093243 fv Log-Normal Cox, Log-Normal FALSE #> 2118 133 0.9256333 0.173618373 fv Log-Normal Cox, Log-Normal FALSE #> 2134 134 1.0816300 0.168628629 fv Log-Normal Cox, Log-Normal TRUE #> 2150 135 0.6646850 0.165230055 fv Log-Normal Cox, Log-Normal FALSE #> 2166 136 0.5493449 0.148696582 fv Log-Normal Cox, Log-Normal FALSE #> 2182 137 0.5273812 0.117786553 fv Log-Normal Cox, Log-Normal FALSE #> 2198 138 0.5253386 0.088599027 fv Log-Normal Cox, Log-Normal FALSE #> 2214 139 0.7508027 0.135122381 fv Log-Normal Cox, Log-Normal FALSE #> 2230 140 0.8098031 0.141963269 fv Log-Normal Cox, Log-Normal FALSE #> 2246 141 0.4369386 0.083891814 fv Log-Normal Cox, Log-Normal FALSE #> 2262 142 0.4940935 0.087599059 fv Log-Normal Cox, Log-Normal FALSE #> 2278 143 0.5792783 0.101315528 fv Log-Normal Cox, Log-Normal FALSE #> 2294 144 0.6762864 0.155722587 fv Log-Normal Cox, Log-Normal FALSE #> 2310 145 0.5822286 0.120935529 fv Log-Normal Cox, Log-Normal FALSE #> 2326 146 0.7312281 0.136443900 fv Log-Normal Cox, Log-Normal FALSE #> 2342 147 0.6361521 0.169644112 fv Log-Normal Cox, Log-Normal FALSE #> 2358 148 0.5484598 0.111863218 fv Log-Normal Cox, Log-Normal FALSE #> 2374 149 0.4096536 0.100250733 fv Log-Normal Cox, Log-Normal TRUE #> 2390 150 0.5619967 0.105650453 fv Log-Normal Cox, Log-Normal FALSE #> 2406 151 0.9789970 0.195216476 fv Log-Normal Cox, Log-Normal FALSE #> 2422 152 0.7259292 0.151900672 fv Log-Normal Cox, Log-Normal FALSE #> 2438 153 0.7965834 0.152245452 fv Log-Normal Cox, Log-Normal FALSE #> 2454 154 0.7530393 0.132140632 fv Log-Normal Cox, Log-Normal FALSE #> 2470 155 1.0025250 0.232384531 fv Log-Normal Cox, Log-Normal TRUE #> 2486 156 0.6533424 0.120684343 fv Log-Normal Cox, Log-Normal FALSE #> 2502 157 0.6428468 0.167081803 fv Log-Normal Cox, Log-Normal FALSE #> 2518 158 0.6380194 0.127185912 fv Log-Normal Cox, Log-Normal FALSE #> 2534 159 0.8212363 0.203723673 fv Log-Normal Cox, Log-Normal FALSE #> 2550 160 0.8091504 0.165469968 fv Log-Normal Cox, Log-Normal FALSE #> 2566 161 0.9019637 0.169031267 fv Log-Normal Cox, Log-Normal FALSE #> 2582 162 1.0323230 0.200155147 fv Log-Normal Cox, Log-Normal FALSE #> 2598 163 0.6359122 0.120933159 fv Log-Normal Cox, Log-Normal FALSE #> 2614 164 0.6830636 0.149902066 fv Log-Normal Cox, Log-Normal FALSE #> 2630 165 0.5514472 0.106974805 fv Log-Normal Cox, Log-Normal FALSE #> 2646 166 0.4478951 0.089446434 fv Log-Normal Cox, Log-Normal FALSE #> 2662 167 0.7607050 0.130475089 fv Log-Normal Cox, Log-Normal FALSE #> 2678 168 0.8939775 0.171724578 fv Log-Normal Cox, Log-Normal FALSE #> 2694 169 0.6535068 0.134031000 fv Log-Normal Cox, Log-Normal FALSE #> 2710 170 0.7646505 0.136587486 fv Log-Normal Cox, Log-Normal FALSE #> 2726 171 0.8427968 0.138307896 fv Log-Normal Cox, Log-Normal FALSE #> 2742 172 0.7751922 0.140039170 fv Log-Normal Cox, Log-Normal FALSE #> 2758 173 0.7330887 0.134029421 fv Log-Normal Cox, Log-Normal FALSE #> 2774 174 0.6091521 0.106460561 fv Log-Normal Cox, Log-Normal FALSE #> 2790 175 0.8038532 0.153669430 fv Log-Normal Cox, Log-Normal FALSE #> 2806 176 1.0095644 0.198360609 fv Log-Normal Cox, Log-Normal FALSE #> 2822 177 0.8252955 0.152377027 fv Log-Normal Cox, Log-Normal FALSE #> 2838 178 0.5408288 0.097128672 fv Log-Normal Cox, Log-Normal FALSE #> 2854 179 0.9621040 0.157483433 fv Log-Normal Cox, Log-Normal FALSE #> 2870 180 0.5787665 0.115056496 fv Log-Normal Cox, Log-Normal FALSE #> 2886 181 0.7536706 0.134534082 fv Log-Normal Cox, Log-Normal FALSE #> 2902 182 1.2239585 0.231054881 fv Log-Normal Cox, Log-Normal TRUE #> 2918 183 0.7538198 0.198686043 fv Log-Normal Cox, Log-Normal FALSE #> 2934 184 0.9676200 0.162661310 fv Log-Normal Cox, Log-Normal FALSE #> 2950 185 0.8095095 0.154239320 fv Log-Normal Cox, Log-Normal FALSE #> 2966 186 0.7963401 0.151409478 fv Log-Normal Cox, Log-Normal FALSE #> 2982 187 0.6878139 0.128133229 fv Log-Normal Cox, Log-Normal FALSE #> 2998 188 0.8316980 0.199665691 fv Log-Normal Cox, Log-Normal FALSE #> 3014 189 0.6992176 0.115061086 fv Log-Normal Cox, Log-Normal FALSE #> 3030 190 0.8038076 0.144511600 fv Log-Normal Cox, Log-Normal FALSE #> 3046 191 0.7962095 0.180472090 fv Log-Normal Cox, Log-Normal FALSE #> 3062 192 0.6544469 0.152934636 fv Log-Normal Cox, Log-Normal FALSE #> 3078 193 0.7893740 0.183862164 fv Log-Normal Cox, Log-Normal FALSE #> 3094 194 0.9888659 0.175645880 fv Log-Normal Cox, Log-Normal FALSE #> 3110 195 0.5870695 0.128305897 fv Log-Normal Cox, Log-Normal FALSE #> 3126 196 0.6371292 0.130232476 fv Log-Normal Cox, Log-Normal FALSE #> 3142 197 0.6610005 0.111740926 fv Log-Normal Cox, Log-Normal FALSE #> 3158 198 0.7978277 0.140662110 fv Log-Normal Cox, Log-Normal FALSE #> 3174 199 0.5343989 0.094741806 fv Log-Normal Cox, Log-Normal FALSE #> 3190 200 0.6102206 0.130221390 fv Log-Normal Cox, Log-Normal FALSE #> 3206 201 0.8895148 0.164670932 fv Log-Normal Cox, Log-Normal FALSE #> 3222 202 0.7229980 0.120155652 fv Log-Normal Cox, Log-Normal FALSE #> 3238 203 0.6368252 0.115279152 fv Log-Normal Cox, Log-Normal FALSE #> 3254 204 0.6809315 0.138454115 fv Log-Normal Cox, Log-Normal FALSE #> 3270 205 0.6617769 0.130662589 fv Log-Normal Cox, Log-Normal FALSE #> 3286 206 0.7916678 0.146803021 fv Log-Normal Cox, Log-Normal FALSE #> 3302 207 0.8047997 0.205254562 fv Log-Normal Cox, Log-Normal FALSE #> 3318 208 1.0690480 0.176315972 fv Log-Normal Cox, Log-Normal TRUE #> 3334 209 0.6734025 0.157675845 fv Log-Normal Cox, Log-Normal FALSE #> 3350 210 0.7235119 0.168335407 fv Log-Normal Cox, Log-Normal FALSE #> 3366 211 0.8209679 0.150541551 fv Log-Normal Cox, Log-Normal FALSE #> 3382 212 0.8093963 0.164234906 fv Log-Normal Cox, Log-Normal FALSE #> 3398 213 0.6197138 0.117369296 fv Log-Normal Cox, Log-Normal FALSE #> 3414 214 0.6649361 0.120661018 fv Log-Normal Cox, Log-Normal FALSE #> 3430 215 0.6650857 0.179625366 fv Log-Normal Cox, Log-Normal FALSE #> 3446 216 0.9689108 0.174717968 fv Log-Normal Cox, Log-Normal FALSE #> 3462 217 0.7612506 0.147631973 fv Log-Normal Cox, Log-Normal FALSE #> 3478 218 0.5926323 0.153430759 fv Log-Normal Cox, Log-Normal FALSE #> 3494 219 0.8441365 0.191720259 fv Log-Normal Cox, Log-Normal FALSE #> 3510 220 0.9102425 0.169208023 fv Log-Normal Cox, Log-Normal FALSE #> 3526 221 0.6440419 0.169991151 fv Log-Normal Cox, Log-Normal FALSE #> 3542 222 0.3699244 0.073773612 fv Log-Normal Cox, Log-Normal TRUE #> 3558 223 0.5477821 0.112031749 fv Log-Normal Cox, Log-Normal FALSE #> 3574 224 0.5942285 0.107253851 fv Log-Normal Cox, Log-Normal FALSE #> 3590 225 0.8208106 0.157270676 fv Log-Normal Cox, Log-Normal FALSE #> 3606 226 1.0721837 0.179757807 fv Log-Normal Cox, Log-Normal TRUE #> 3622 227 0.7651791 0.135412199 fv Log-Normal Cox, Log-Normal FALSE #> 3638 228 0.8680490 0.143223630 fv Log-Normal Cox, Log-Normal FALSE #> 3654 229 0.4073158 0.083161888 fv Log-Normal Cox, Log-Normal TRUE #> 3670 230 0.6139439 0.120049198 fv Log-Normal Cox, Log-Normal FALSE #> 3686 231 0.6567719 0.124099366 fv Log-Normal Cox, Log-Normal FALSE #> 3702 232 0.9446119 0.189529640 fv Log-Normal Cox, Log-Normal FALSE #> 3718 233 0.9526530 0.209694354 fv Log-Normal Cox, Log-Normal FALSE #> 3734 234 0.9358169 0.188575345 fv Log-Normal Cox, Log-Normal FALSE #> 3750 235 0.5533697 0.097841887 fv Log-Normal Cox, Log-Normal FALSE #> 3766 236 0.6345935 0.120180217 fv Log-Normal Cox, Log-Normal FALSE #> 3782 237 0.5440302 0.109896985 fv Log-Normal Cox, Log-Normal FALSE #> 3798 238 0.8898235 0.229632108 fv Log-Normal Cox, Log-Normal TRUE #> 3814 239 0.9262859 0.200846435 fv Log-Normal Cox, Log-Normal FALSE #> 3830 240 0.6338872 0.129524301 fv Log-Normal Cox, Log-Normal FALSE #> 3846 241 0.7667705 0.153378360 fv Log-Normal Cox, Log-Normal FALSE #> 3862 242 0.5466475 0.100527491 fv Log-Normal Cox, Log-Normal FALSE #> 3878 243 0.6728653 0.123466796 fv Log-Normal Cox, Log-Normal FALSE #> 3894 244 0.6107308 0.139143285 fv Log-Normal Cox, Log-Normal FALSE #> 3910 245 0.4997340 0.111627420 fv Log-Normal Cox, Log-Normal FALSE #> 3926 246 0.7877534 0.194794439 fv Log-Normal Cox, Log-Normal FALSE #> 3942 247 0.6585011 0.152234917 fv Log-Normal Cox, Log-Normal FALSE #> 3958 248 1.1751511 0.286449350 fv Log-Normal Cox, Log-Normal TRUE #> 3974 249 0.5939856 0.117058074 fv Log-Normal Cox, Log-Normal FALSE #> 3990 250 0.7479317 0.166505164 fv Log-Normal Cox, Log-Normal FALSE #> 4006 251 0.6258817 0.112068474 fv Log-Normal Cox, Log-Normal FALSE #> 4022 252 0.4768019 0.119359450 fv Log-Normal Cox, Log-Normal FALSE #> 4038 253 0.8642953 0.190101155 fv Log-Normal Cox, Log-Normal FALSE #> 4054 254 0.7457473 0.159020740 fv Log-Normal Cox, Log-Normal FALSE #> 4070 255 0.9277065 0.230633805 fv Log-Normal Cox, Log-Normal TRUE #> 4086 256 0.8557776 0.195869085 fv Log-Normal Cox, Log-Normal FALSE #> 4102 257 0.8342419 0.124293996 fv Log-Normal Cox, Log-Normal FALSE #> 4118 258 0.4166917 0.091790350 fv Log-Normal Cox, Log-Normal TRUE #> 4134 259 0.6658868 0.122476181 fv Log-Normal Cox, Log-Normal FALSE #> 4150 260 0.6874868 0.138634719 fv Log-Normal Cox, Log-Normal FALSE #> 4166 261 0.8838488 0.152030166 fv Log-Normal Cox, Log-Normal FALSE #> 4182 262 0.6874792 0.132166589 fv Log-Normal Cox, Log-Normal FALSE #> 4198 263 0.8748474 0.168551544 fv Log-Normal Cox, Log-Normal FALSE #> 4214 264 0.7949965 0.167523004 fv Log-Normal Cox, Log-Normal FALSE #> 4230 265 0.6229840 0.104494211 fv Log-Normal Cox, Log-Normal FALSE #> 4246 266 0.6632234 0.135646780 fv Log-Normal Cox, Log-Normal FALSE #> 4262 267 0.6158842 0.130400568 fv Log-Normal Cox, Log-Normal FALSE #> 4278 268 0.9506333 0.175878947 fv Log-Normal Cox, Log-Normal FALSE #> 4294 269 0.6188439 0.130825645 fv Log-Normal Cox, Log-Normal FALSE #> 4310 270 0.6262115 0.114392203 fv Log-Normal Cox, Log-Normal FALSE #> 4326 271 0.7801412 0.198342003 fv Log-Normal Cox, Log-Normal FALSE #> 4342 272 0.5658894 0.105200138 fv Log-Normal Cox, Log-Normal FALSE #> 4358 273 0.7581958 0.155271956 fv Log-Normal Cox, Log-Normal FALSE #> 4374 274 0.7608956 0.184496710 fv Log-Normal Cox, Log-Normal FALSE #> 4390 275 0.6392780 0.170823574 fv Log-Normal Cox, Log-Normal FALSE #> 4406 276 0.7882949 0.154743052 fv Log-Normal Cox, Log-Normal FALSE #> 4422 277 0.7194733 0.150653839 fv Log-Normal Cox, Log-Normal FALSE #> 4438 278 0.6262877 0.146135300 fv Log-Normal Cox, Log-Normal FALSE #> 4454 279 0.8160827 0.161699463 fv Log-Normal Cox, Log-Normal FALSE #> 4470 280 0.8380508 0.165760210 fv Log-Normal Cox, Log-Normal FALSE #> 4486 281 0.7250819 0.136678134 fv Log-Normal Cox, Log-Normal FALSE #> 4502 282 0.6543630 0.124834778 fv Log-Normal Cox, Log-Normal FALSE #> 4518 283 0.8861316 0.181607406 fv Log-Normal Cox, Log-Normal FALSE #> 4534 284 0.6234693 0.121773534 fv Log-Normal Cox, Log-Normal FALSE #> 4550 285 0.7075084 0.140506363 fv Log-Normal Cox, Log-Normal FALSE #> 4566 286 0.6991377 0.141637828 fv Log-Normal Cox, Log-Normal FALSE #> 4582 287 0.5969511 0.095232884 fv Log-Normal Cox, Log-Normal FALSE #> 4598 288 0.6185630 0.128807253 fv Log-Normal Cox, Log-Normal FALSE #> 4614 289 0.6932102 0.126244042 fv Log-Normal Cox, Log-Normal FALSE #> 4630 290 0.6795473 0.133309208 fv Log-Normal Cox, Log-Normal FALSE #> 4646 291 0.7658600 0.125787549 fv Log-Normal Cox, Log-Normal FALSE #> 4662 292 0.6655638 0.182337657 fv Log-Normal Cox, Log-Normal FALSE #> 4678 293 0.6811121 0.097619440 fv Log-Normal Cox, Log-Normal FALSE #> 4694 294 0.7341433 0.126424230 fv Log-Normal Cox, Log-Normal FALSE #> 4710 295 0.6397064 0.131345588 fv Log-Normal Cox, Log-Normal FALSE #> 4726 296 0.8036840 0.153632947 fv Log-Normal Cox, Log-Normal FALSE #> 4742 297 0.4156726 0.078965945 fv Log-Normal Cox, Log-Normal TRUE #> 4758 298 0.6992210 0.122399735 fv Log-Normal Cox, Log-Normal FALSE #> 4774 299 0.7895367 0.126931179 fv Log-Normal Cox, Log-Normal FALSE #> 4790 300 0.6389342 0.119908849 fv Log-Normal Cox, Log-Normal FALSE #> 4806 301 1.0721887 0.198275473 fv Log-Normal Cox, Log-Normal TRUE #> 4822 302 0.7313978 0.168882249 fv Log-Normal Cox, Log-Normal FALSE #> 4838 303 0.6443221 0.103189570 fv Log-Normal Cox, Log-Normal FALSE #> 4854 304 0.6883138 0.109793240 fv Log-Normal Cox, Log-Normal FALSE #> 4870 305 0.8457392 0.150880524 fv Log-Normal Cox, Log-Normal FALSE #> 4886 306 0.5848402 0.114151600 fv Log-Normal Cox, Log-Normal FALSE #> 4902 307 0.6233021 0.109508346 fv Log-Normal Cox, Log-Normal FALSE #> 4918 308 0.7261324 0.145349003 fv Log-Normal Cox, Log-Normal FALSE #> 4934 309 0.6156243 0.121821259 fv Log-Normal Cox, Log-Normal FALSE #> 4950 310 0.6653635 0.156392201 fv Log-Normal Cox, Log-Normal FALSE #> 4966 311 0.8914660 0.154933778 fv Log-Normal Cox, Log-Normal FALSE #> 4982 312 0.7331430 0.136281844 fv Log-Normal Cox, Log-Normal FALSE #> 4998 313 0.5088109 0.113177945 fv Log-Normal Cox, Log-Normal FALSE #> 5014 314 0.6998085 0.147494090 fv Log-Normal Cox, Log-Normal FALSE #> 5030 315 0.6788598 0.118669605 fv Log-Normal Cox, Log-Normal FALSE #> 5046 316 0.5935425 0.134907825 fv Log-Normal Cox, Log-Normal FALSE #> 5062 317 0.8622104 0.132961863 fv Log-Normal Cox, Log-Normal FALSE #> 5078 318 0.5477029 0.159243237 fv Log-Normal Cox, Log-Normal FALSE #> 5094 319 0.7504793 0.175775213 fv Log-Normal Cox, Log-Normal FALSE #> 5110 320 0.8374628 0.142534760 fv Log-Normal Cox, Log-Normal FALSE #> 5126 321 0.9088461 0.199125271 fv Log-Normal Cox, Log-Normal FALSE #> 5142 322 0.5883454 0.138882190 fv Log-Normal Cox, Log-Normal FALSE #> 5158 323 0.8097169 0.145185115 fv Log-Normal Cox, Log-Normal FALSE #> 5174 324 0.5327484 0.097126455 fv Log-Normal Cox, Log-Normal FALSE #> 5190 325 0.6209278 0.123937040 fv Log-Normal Cox, Log-Normal FALSE #> 5206 326 1.0813592 0.260419864 fv Log-Normal Cox, Log-Normal TRUE #> 5222 327 0.5318052 0.101090195 fv Log-Normal Cox, Log-Normal FALSE #> 5238 328 0.7967825 0.152965020 fv Log-Normal Cox, Log-Normal FALSE #> 5254 329 0.6356635 0.133230934 fv Log-Normal Cox, Log-Normal FALSE #> 5270 330 0.5814746 0.143686266 fv Log-Normal Cox, Log-Normal FALSE #> 5286 331 0.9345516 0.181733555 fv Log-Normal Cox, Log-Normal FALSE #> 5302 332 0.6891797 0.105822208 fv Log-Normal Cox, Log-Normal FALSE #> 5318 333 0.5057585 0.107033611 fv Log-Normal Cox, Log-Normal FALSE #> 5334 334 0.5523392 0.103592158 fv Log-Normal Cox, Log-Normal FALSE #> 5350 335 0.5487718 0.096238261 fv Log-Normal Cox, Log-Normal FALSE #> 5366 336 0.7938662 0.153381827 fv Log-Normal Cox, Log-Normal FALSE #> 5382 337 0.6558362 0.122412197 fv Log-Normal Cox, Log-Normal FALSE #> 5398 338 0.7716627 0.133216328 fv Log-Normal Cox, Log-Normal FALSE #> 5414 339 0.5946563 0.112089158 fv Log-Normal Cox, Log-Normal FALSE #> 5430 340 0.9258154 0.173020079 fv Log-Normal Cox, Log-Normal FALSE #> 5446 341 0.6554285 0.188998496 fv Log-Normal Cox, Log-Normal FALSE #> 5462 342 0.5903363 0.103543007 fv Log-Normal Cox, Log-Normal FALSE #> 5478 343 0.5801205 0.105220570 fv Log-Normal Cox, Log-Normal FALSE #> 5494 344 0.6781217 0.139143373 fv Log-Normal Cox, Log-Normal FALSE #> 5510 345 0.6961196 0.128199872 fv Log-Normal Cox, Log-Normal FALSE #> 5526 346 0.5227107 0.129366265 fv Log-Normal Cox, Log-Normal FALSE #> 5542 347 0.6271774 0.116481432 fv Log-Normal Cox, Log-Normal FALSE #> 5558 348 0.6129095 0.127848791 fv Log-Normal Cox, Log-Normal FALSE #> 5574 349 0.7061869 0.130911383 fv Log-Normal Cox, Log-Normal FALSE #> 5590 350 0.7924372 0.140354741 fv Log-Normal Cox, Log-Normal FALSE #> 5606 351 0.6081129 0.110915071 fv Log-Normal Cox, Log-Normal FALSE #> 5622 352 0.8113829 0.207987891 fv Log-Normal Cox, Log-Normal FALSE #> 5638 353 0.7123554 0.148029613 fv Log-Normal Cox, Log-Normal FALSE #> 5654 354 0.6733492 0.120250828 fv Log-Normal Cox, Log-Normal FALSE #> 5670 355 0.7413575 0.117491541 fv Log-Normal Cox, Log-Normal FALSE #> 5686 356 0.6356097 0.136723847 fv Log-Normal Cox, Log-Normal FALSE #> 5702 357 0.9077288 0.201687015 fv Log-Normal Cox, Log-Normal FALSE #> 5718 358 0.6760533 0.114786462 fv Log-Normal Cox, Log-Normal FALSE #> 5734 359 0.5219090 0.108201573 fv Log-Normal Cox, Log-Normal FALSE #> 5750 360 0.6815372 0.124079334 fv Log-Normal Cox, Log-Normal FALSE #> 5766 361 0.6430326 0.131155722 fv Log-Normal Cox, Log-Normal FALSE #> 5782 362 0.6311695 0.139240974 fv Log-Normal Cox, Log-Normal FALSE #> 5798 363 0.6177379 0.136118552 fv Log-Normal Cox, Log-Normal FALSE #> 5814 364 0.8976105 0.177776665 fv Log-Normal Cox, Log-Normal FALSE #> 5830 365 0.8077777 0.181160990 fv Log-Normal Cox, Log-Normal FALSE #> 5846 366 0.6859270 0.163243165 fv Log-Normal Cox, Log-Normal FALSE #> 5862 367 0.8039909 0.173052304 fv Log-Normal Cox, Log-Normal FALSE #> 5878 368 0.9904820 0.206693114 fv Log-Normal Cox, Log-Normal FALSE #> 5894 369 0.6043360 0.105582542 fv Log-Normal Cox, Log-Normal FALSE #> 5910 370 0.7742858 0.160759545 fv Log-Normal Cox, Log-Normal FALSE #> 5926 371 0.6578030 0.151843773 fv Log-Normal Cox, Log-Normal FALSE #> 5942 372 0.5007659 0.102818471 fv Log-Normal Cox, Log-Normal FALSE #> 5958 373 1.1151799 0.262411215 fv Log-Normal Cox, Log-Normal TRUE #> 5974 374 0.5438101 0.110074187 fv Log-Normal Cox, Log-Normal FALSE #> 5990 375 0.6580755 0.148102054 fv Log-Normal Cox, Log-Normal FALSE #> 6006 376 0.7039508 0.155302979 fv Log-Normal Cox, Log-Normal FALSE #> 6022 377 0.5414599 0.090535372 fv Log-Normal Cox, Log-Normal FALSE #> 6038 378 0.6197608 0.130994750 fv Log-Normal Cox, Log-Normal FALSE #> 6054 379 0.5067599 0.084260679 fv Log-Normal Cox, Log-Normal FALSE #> 6070 380 0.6564966 0.109664243 fv Log-Normal Cox, Log-Normal FALSE #> 6086 381 0.8540702 0.184255358 fv Log-Normal Cox, Log-Normal FALSE #> 6102 382 0.7318377 0.153279580 fv Log-Normal Cox, Log-Normal FALSE #> 6118 383 0.7133871 0.142053344 fv Log-Normal Cox, Log-Normal FALSE #> 6134 384 0.7092118 0.136370965 fv Log-Normal Cox, Log-Normal FALSE #> 6150 385 0.5917005 0.147258323 fv Log-Normal Cox, Log-Normal FALSE #> 6166 386 0.9153763 0.229498321 fv Log-Normal Cox, Log-Normal TRUE #> 6182 387 0.5871767 0.123612345 fv Log-Normal Cox, Log-Normal FALSE #> 6198 388 0.9291695 0.122982818 fv Log-Normal Cox, Log-Normal FALSE #> 6214 389 0.8058096 0.150461962 fv Log-Normal Cox, Log-Normal FALSE #> 6230 390 0.6773542 0.151801071 fv Log-Normal Cox, Log-Normal FALSE #> 6246 391 0.8182120 0.134244623 fv Log-Normal Cox, Log-Normal FALSE #> 6262 392 0.6261693 0.144322919 fv Log-Normal Cox, Log-Normal FALSE #> 6278 393 0.5608767 0.087397909 fv Log-Normal Cox, Log-Normal FALSE #> 6294 394 0.8782935 0.189730141 fv Log-Normal Cox, Log-Normal FALSE #> 6310 395 0.7611073 0.155530156 fv Log-Normal Cox, Log-Normal FALSE #> 6326 396 1.0179662 0.186941257 fv Log-Normal Cox, Log-Normal FALSE #> 6342 397 0.7116466 0.138074147 fv Log-Normal Cox, Log-Normal FALSE #> 6358 398 0.6727192 0.112933246 fv Log-Normal Cox, Log-Normal FALSE #> 6374 399 0.8183800 0.153200171 fv Log-Normal Cox, Log-Normal FALSE #> 6390 400 0.5367667 0.115885505 fv Log-Normal Cox, Log-Normal FALSE #> 6406 401 0.6126184 0.116844582 fv Log-Normal Cox, Log-Normal FALSE #> 6422 402 0.5449950 0.165808259 fv Log-Normal Cox, Log-Normal FALSE #> 6438 403 0.6208233 0.124821022 fv Log-Normal Cox, Log-Normal FALSE #> 6454 404 0.5770424 0.151038157 fv Log-Normal Cox, Log-Normal FALSE #> 6470 405 0.4747106 0.100298660 fv Log-Normal Cox, Log-Normal FALSE #> 6486 406 0.7328698 0.142571527 fv Log-Normal Cox, Log-Normal FALSE #> 6502 407 0.7521805 0.168896665 fv Log-Normal Cox, Log-Normal FALSE #> 6518 408 0.4939505 0.126659415 fv Log-Normal Cox, Log-Normal FALSE #> 6534 409 0.7342496 0.137209818 fv Log-Normal Cox, Log-Normal FALSE #> 6550 410 0.7711058 0.166901809 fv Log-Normal Cox, Log-Normal FALSE #> 6566 411 0.6537021 0.158644072 fv Log-Normal Cox, Log-Normal FALSE #> 6582 412 0.6641258 0.185779173 fv Log-Normal Cox, Log-Normal FALSE #> 6598 413 0.5336693 0.120967307 fv Log-Normal Cox, Log-Normal FALSE #> 6614 414 0.8645269 0.156417045 fv Log-Normal Cox, Log-Normal FALSE #> 6630 415 1.2669904 0.221355780 fv Log-Normal Cox, Log-Normal TRUE #> 6646 416 0.5679880 0.136164326 fv Log-Normal Cox, Log-Normal FALSE #> 6662 417 0.5518002 0.097475326 fv Log-Normal Cox, Log-Normal FALSE #> 6678 418 0.8899199 0.126041947 fv Log-Normal Cox, Log-Normal FALSE #> 6694 419 0.4910310 0.096522319 fv Log-Normal Cox, Log-Normal FALSE #> 6710 420 0.7613114 0.168472044 fv Log-Normal Cox, Log-Normal FALSE #> 6726 421 0.7927672 0.149403972 fv Log-Normal Cox, Log-Normal FALSE #> 6742 422 0.5762327 0.132336946 fv Log-Normal Cox, Log-Normal FALSE #> 6758 423 0.5858586 0.109042212 fv Log-Normal Cox, Log-Normal FALSE #> 6774 424 0.6812210 0.135407029 fv Log-Normal Cox, Log-Normal FALSE #> 6790 425 0.7494056 0.158380464 fv Log-Normal Cox, Log-Normal FALSE #> 6806 426 0.8255828 0.167092229 fv Log-Normal Cox, Log-Normal FALSE #> 6822 427 0.9580083 0.193525749 fv Log-Normal Cox, Log-Normal FALSE #> 6838 428 0.8200189 0.174800466 fv Log-Normal Cox, Log-Normal FALSE #> 6854 429 0.7253120 0.138989939 fv Log-Normal Cox, Log-Normal FALSE #> 6870 430 0.8015608 0.159246665 fv Log-Normal Cox, Log-Normal FALSE #> 6886 431 0.6839649 0.163805863 fv Log-Normal Cox, Log-Normal FALSE #> 6902 432 0.8651093 0.182008216 fv Log-Normal Cox, Log-Normal FALSE #> 6918 433 0.5920234 0.102567571 fv Log-Normal Cox, Log-Normal FALSE #> 6934 434 0.5880071 0.117101961 fv Log-Normal Cox, Log-Normal FALSE #> 6950 435 0.4973641 0.107090021 fv Log-Normal Cox, Log-Normal FALSE #> 6966 436 0.7631187 0.131617867 fv Log-Normal Cox, Log-Normal FALSE #> 6982 437 0.5823778 0.125462900 fv Log-Normal Cox, Log-Normal FALSE #> 6998 438 0.8514556 0.152749346 fv Log-Normal Cox, Log-Normal FALSE #> 7014 439 0.5976061 0.142466128 fv Log-Normal Cox, Log-Normal FALSE #> 7030 440 0.4167886 0.097617508 fv Log-Normal Cox, Log-Normal TRUE #> 7046 441 0.5600775 0.113085806 fv Log-Normal Cox, Log-Normal FALSE #> 7062 442 0.7506161 0.147798952 fv Log-Normal Cox, Log-Normal FALSE #> 7078 443 0.8033583 0.166071013 fv Log-Normal Cox, Log-Normal FALSE #> 7094 444 0.8324845 0.192734911 fv Log-Normal Cox, Log-Normal FALSE #> 7110 445 0.9003486 0.176256265 fv Log-Normal Cox, Log-Normal FALSE #> 7126 446 0.6375473 0.120152949 fv Log-Normal Cox, Log-Normal FALSE #> 7142 447 0.8891201 0.168609893 fv Log-Normal Cox, Log-Normal FALSE #> 7158 448 0.9157472 0.197688993 fv Log-Normal Cox, Log-Normal FALSE #> 7174 449 0.9081860 0.189349612 fv Log-Normal Cox, Log-Normal FALSE #> 7190 450 0.7032306 0.140992126 fv Log-Normal Cox, Log-Normal FALSE #> 7206 451 0.7939868 0.149065953 fv Log-Normal Cox, Log-Normal FALSE #> 7222 452 0.7822568 0.149666090 fv Log-Normal Cox, Log-Normal FALSE #> 7238 453 0.6987296 0.135190518 fv Log-Normal Cox, Log-Normal FALSE #> 7254 454 0.6802980 0.149217852 fv Log-Normal Cox, Log-Normal FALSE #> 7270 455 0.6300706 0.117145542 fv Log-Normal Cox, Log-Normal FALSE #> 7286 456 0.4853340 0.098943448 fv Log-Normal Cox, Log-Normal FALSE #> 7302 457 0.9159317 0.166991448 fv Log-Normal Cox, Log-Normal FALSE #> 7318 458 0.7926127 0.218179833 fv Log-Normal Cox, Log-Normal FALSE #> 7334 459 0.9673546 0.239194160 fv Log-Normal Cox, Log-Normal TRUE #> 7350 460 0.6824635 0.114496923 fv Log-Normal Cox, Log-Normal FALSE #> 7366 461 0.7838993 0.123060287 fv Log-Normal Cox, Log-Normal FALSE #> 7382 462 0.7263722 0.136940630 fv Log-Normal Cox, Log-Normal FALSE #> 7398 463 0.8725465 0.208727400 fv Log-Normal Cox, Log-Normal FALSE #> 7414 464 0.8133746 0.125786465 fv Log-Normal Cox, Log-Normal FALSE #> 7430 465 0.8180210 0.162596932 fv Log-Normal Cox, Log-Normal FALSE #> 7446 466 0.8447400 0.174373325 fv Log-Normal Cox, Log-Normal FALSE #> 7462 467 0.7417616 0.156331232 fv Log-Normal Cox, Log-Normal FALSE #> 7478 468 0.9181124 0.152344493 fv Log-Normal Cox, Log-Normal FALSE #> 7494 469 0.8086114 0.162584399 fv Log-Normal Cox, Log-Normal FALSE #> 7510 470 0.7530716 0.158528182 fv Log-Normal Cox, Log-Normal FALSE #> 7526 471 0.6314900 0.146336756 fv Log-Normal Cox, Log-Normal FALSE #> 7542 472 0.8683746 0.156186168 fv Log-Normal Cox, Log-Normal FALSE #> 7558 473 0.6937239 0.141938343 fv Log-Normal Cox, Log-Normal FALSE #> 7574 474 1.0218309 0.201167398 fv Log-Normal Cox, Log-Normal FALSE #> 7590 475 0.6337743 0.116592408 fv Log-Normal Cox, Log-Normal FALSE #> 7606 476 0.4770815 0.107961700 fv Log-Normal Cox, Log-Normal FALSE #> 7622 477 0.5086332 0.109130539 fv Log-Normal Cox, Log-Normal FALSE #> 7638 478 0.8075402 0.117965092 fv Log-Normal Cox, Log-Normal FALSE #> 7654 479 0.7389806 0.136893016 fv Log-Normal Cox, Log-Normal FALSE #> 7670 480 1.0175151 0.199915585 fv Log-Normal Cox, Log-Normal FALSE #> 7686 481 1.0192289 0.206087507 fv Log-Normal Cox, Log-Normal FALSE #> 7702 482 0.7832508 0.159491148 fv Log-Normal Cox, Log-Normal FALSE #> 7718 483 0.9418885 0.220672055 fv Log-Normal Cox, Log-Normal TRUE #> 7734 484 0.8962617 0.202093121 fv Log-Normal Cox, Log-Normal FALSE #> 7750 485 0.5958992 0.105063175 fv Log-Normal Cox, Log-Normal FALSE #> 7766 486 0.4667542 0.102867880 fv Log-Normal Cox, Log-Normal FALSE #> 7782 487 0.8900147 0.175007983 fv Log-Normal Cox, Log-Normal FALSE #> 7798 488 0.4449524 0.087682549 fv Log-Normal Cox, Log-Normal FALSE #> 7814 489 0.8004214 0.186144327 fv Log-Normal Cox, Log-Normal FALSE #> 7830 490 0.7127792 0.119173213 fv Log-Normal Cox, Log-Normal FALSE #> 7846 491 0.6889070 0.133673254 fv Log-Normal Cox, Log-Normal FALSE #> 7862 492 0.5582058 0.086242399 fv Log-Normal Cox, Log-Normal FALSE #> 7878 493 1.0663941 0.245806620 fv Log-Normal Cox, Log-Normal TRUE #> 7894 494 0.6613066 0.106604021 fv Log-Normal Cox, Log-Normal FALSE #> 7910 495 0.8228011 0.118045197 fv Log-Normal Cox, Log-Normal FALSE #> 7926 496 1.0887179 0.237339281 fv Log-Normal Cox, Log-Normal TRUE #> 7942 497 0.5916038 0.114587057 fv Log-Normal Cox, Log-Normal FALSE #> 7958 498 0.6348066 0.135633761 fv Log-Normal Cox, Log-Normal FALSE #> 7974 499 0.8889109 0.216181001 fv Log-Normal Cox, Log-Normal FALSE #> 7990 500 0.6773264 0.138954096 fv Log-Normal Cox, Log-Normal FALSE #> 8006 501 1.3435254 0.291530812 fv Log-Normal Cox, Log-Normal TRUE #> 8022 502 0.7736005 0.146718156 fv Log-Normal Cox, Log-Normal FALSE #> 8038 503 0.7460948 0.134956945 fv Log-Normal Cox, Log-Normal FALSE #> 8054 504 0.8756279 0.159497799 fv Log-Normal Cox, Log-Normal FALSE #> 8070 505 0.7539893 0.111108625 fv Log-Normal Cox, Log-Normal FALSE #> 8086 506 1.0221922 0.240938697 fv Log-Normal Cox, Log-Normal TRUE #> 8102 507 0.7310864 0.114690626 fv Log-Normal Cox, Log-Normal FALSE #> 8118 508 0.5378310 0.123741319 fv Log-Normal Cox, Log-Normal FALSE #> 8134 509 0.6777937 0.130389895 fv Log-Normal Cox, Log-Normal FALSE #> 8150 510 0.6842877 0.138741429 fv Log-Normal Cox, Log-Normal FALSE #> 8166 511 0.4603930 0.088394301 fv Log-Normal Cox, Log-Normal FALSE #> 8182 512 0.7229525 0.147506273 fv Log-Normal Cox, Log-Normal FALSE #> 8198 513 0.8035298 0.149275045 fv Log-Normal Cox, Log-Normal FALSE #> 8214 514 0.7179322 0.136809080 fv Log-Normal Cox, Log-Normal FALSE #> 8230 515 0.5586526 0.122315382 fv Log-Normal Cox, Log-Normal FALSE #> 8246 516 0.7377219 0.143754572 fv Log-Normal Cox, Log-Normal FALSE #> 8262 517 0.3667741 0.085169579 fv Log-Normal Cox, Log-Normal TRUE #> 8278 518 0.7435838 0.138029022 fv Log-Normal Cox, Log-Normal FALSE #> 8294 519 0.7674745 0.150261965 fv Log-Normal Cox, Log-Normal FALSE #> 8310 520 0.8003345 0.122407092 fv Log-Normal Cox, Log-Normal FALSE #> 8326 521 0.7988626 0.169064785 fv Log-Normal Cox, Log-Normal FALSE #> 8342 522 0.5375144 0.095228819 fv Log-Normal Cox, Log-Normal FALSE #> 8358 523 0.7667009 0.131558815 fv Log-Normal Cox, Log-Normal FALSE #> 8374 524 0.5269024 0.120077784 fv Log-Normal Cox, Log-Normal FALSE #> 8390 525 0.7031804 0.154586399 fv Log-Normal Cox, Log-Normal FALSE #> 8406 526 0.6061274 0.117091908 fv Log-Normal Cox, Log-Normal FALSE #> 8422 527 0.7137822 0.163596077 fv Log-Normal Cox, Log-Normal FALSE #> 8438 528 0.9252247 0.189829300 fv Log-Normal Cox, Log-Normal FALSE #> 8454 529 0.9342341 0.181406052 fv Log-Normal Cox, Log-Normal FALSE #> 8470 530 0.4498170 0.111087235 fv Log-Normal Cox, Log-Normal FALSE #> 8486 531 0.9979562 0.213629379 fv Log-Normal Cox, Log-Normal FALSE #> 8502 532 0.7223377 0.116231722 fv Log-Normal Cox, Log-Normal FALSE #> 8518 533 0.6906718 0.122960600 fv Log-Normal Cox, Log-Normal FALSE #> 8534 534 0.7416424 0.148941672 fv Log-Normal Cox, Log-Normal FALSE #> 8550 535 0.8626834 0.157323432 fv Log-Normal Cox, Log-Normal FALSE #> 8566 536 0.5963041 0.116089213 fv Log-Normal Cox, Log-Normal FALSE #> 8582 537 1.2345153 0.237582349 fv Log-Normal Cox, Log-Normal TRUE #> 8598 538 0.5063558 0.092401072 fv Log-Normal Cox, Log-Normal FALSE #> 8614 539 0.6862567 0.149536685 fv Log-Normal Cox, Log-Normal FALSE #> 8630 540 0.6141186 0.114391863 fv Log-Normal Cox, Log-Normal FALSE #> 8646 541 0.8968782 0.167673684 fv Log-Normal Cox, Log-Normal FALSE #> 8662 542 0.8198767 0.169342183 fv Log-Normal Cox, Log-Normal FALSE #> 8678 543 0.7575504 0.148707340 fv Log-Normal Cox, Log-Normal FALSE #> 8694 544 0.7617908 0.155859277 fv Log-Normal Cox, Log-Normal FALSE #> 8710 545 0.5717824 0.084305835 fv Log-Normal Cox, Log-Normal FALSE #> 8726 546 0.9040874 0.167410002 fv Log-Normal Cox, Log-Normal FALSE #> 8742 547 0.6870910 0.129415648 fv Log-Normal Cox, Log-Normal FALSE #> 8758 548 0.5381865 0.117060922 fv Log-Normal Cox, Log-Normal FALSE #> 8774 549 0.8835431 0.179113769 fv Log-Normal Cox, Log-Normal FALSE #> 8790 550 0.5208702 0.124333872 fv Log-Normal Cox, Log-Normal FALSE #> 8806 551 0.7964585 0.156422129 fv Log-Normal Cox, Log-Normal FALSE #> 8822 552 0.7041652 0.128276679 fv Log-Normal Cox, Log-Normal FALSE #> 8838 553 0.8459051 0.122339846 fv Log-Normal Cox, Log-Normal FALSE #> 8854 554 0.8977503 0.179088453 fv Log-Normal Cox, Log-Normal FALSE #> 8870 555 0.8326376 0.128746242 fv Log-Normal Cox, Log-Normal FALSE #> 8886 556 0.8753515 0.143451520 fv Log-Normal Cox, Log-Normal FALSE #> 8902 557 0.6984218 0.127912102 fv Log-Normal Cox, Log-Normal FALSE #> 8918 558 0.6669430 0.112161043 fv Log-Normal Cox, Log-Normal FALSE #> 8934 559 0.6132347 0.122896494 fv Log-Normal Cox, Log-Normal FALSE #> 8950 560 0.7760753 0.145292156 fv Log-Normal Cox, Log-Normal FALSE #> 8966 561 1.2406263 0.221751865 fv Log-Normal Cox, Log-Normal TRUE #> 8982 562 0.8951923 0.192853014 fv Log-Normal Cox, Log-Normal FALSE #> 8998 563 0.7936453 0.148256364 fv Log-Normal Cox, Log-Normal FALSE #> 9014 564 0.6496611 0.154999773 fv Log-Normal Cox, Log-Normal FALSE #> 9030 565 0.5558608 0.112968507 fv Log-Normal Cox, Log-Normal FALSE #> 9046 566 0.7784225 0.197678997 fv Log-Normal Cox, Log-Normal FALSE #> 9062 567 0.7390722 0.134151819 fv Log-Normal Cox, Log-Normal FALSE #> 9078 568 0.5370427 0.106409861 fv Log-Normal Cox, Log-Normal FALSE #> 9094 569 0.8446977 0.151362680 fv Log-Normal Cox, Log-Normal FALSE #> 9110 570 0.5783874 0.154235730 fv Log-Normal Cox, Log-Normal FALSE #> 9126 571 0.6980819 0.132611887 fv Log-Normal Cox, Log-Normal FALSE #> 9142 572 0.6078955 0.113509666 fv Log-Normal Cox, Log-Normal FALSE #> 9158 573 0.6531702 0.123193776 fv Log-Normal Cox, Log-Normal FALSE #> 9174 574 0.7369219 0.133697888 fv Log-Normal Cox, Log-Normal FALSE #> 9190 575 0.6652456 0.174809549 fv Log-Normal Cox, Log-Normal FALSE #> 9206 576 0.7042127 0.184240750 fv Log-Normal Cox, Log-Normal FALSE #> 9222 577 0.9058959 0.206369728 fv Log-Normal Cox, Log-Normal FALSE #> 9238 578 0.5871046 0.099243005 fv Log-Normal Cox, Log-Normal FALSE #> 9254 579 0.6010841 0.132716062 fv Log-Normal Cox, Log-Normal FALSE #> 9270 580 0.4971421 0.107766896 fv Log-Normal Cox, Log-Normal FALSE #> 9286 581 0.7923715 0.151082100 fv Log-Normal Cox, Log-Normal FALSE #> 9302 582 0.7728312 0.153502508 fv Log-Normal Cox, Log-Normal FALSE #> 9318 583 1.0323624 0.163822527 fv Log-Normal Cox, Log-Normal FALSE #> 9334 584 0.5414420 0.108025677 fv Log-Normal Cox, Log-Normal FALSE #> 9350 585 0.7190622 0.114529054 fv Log-Normal Cox, Log-Normal FALSE #> 9366 586 0.7455106 0.124365353 fv Log-Normal Cox, Log-Normal FALSE #> 9382 587 0.9302355 0.214573938 fv Log-Normal Cox, Log-Normal FALSE #> 9398 588 0.5806374 0.109803503 fv Log-Normal Cox, Log-Normal FALSE #> 9414 589 0.6039216 0.119344261 fv Log-Normal Cox, Log-Normal FALSE #> 9430 590 0.8219766 0.176507665 fv Log-Normal Cox, Log-Normal FALSE #> 9446 591 0.8456887 0.166784984 fv Log-Normal Cox, Log-Normal FALSE #> 9462 592 0.8298067 0.163691115 fv Log-Normal Cox, Log-Normal FALSE #> 9478 593 0.9301881 0.184785185 fv Log-Normal Cox, Log-Normal FALSE #> 9494 594 0.7212752 0.124340342 fv Log-Normal Cox, Log-Normal FALSE #> 9510 595 0.5431571 0.090258789 fv Log-Normal Cox, Log-Normal FALSE #> 9526 596 0.7293813 0.174344234 fv Log-Normal Cox, Log-Normal FALSE #> 9542 597 0.6050940 0.111506243 fv Log-Normal Cox, Log-Normal FALSE #> 9558 598 1.0673488 0.205896016 fv Log-Normal Cox, Log-Normal TRUE #> 9574 599 0.7497517 0.183646091 fv Log-Normal Cox, Log-Normal FALSE #> 9590 600 0.5310092 0.109738635 fv Log-Normal Cox, Log-Normal FALSE #> 9606 601 1.1622807 0.252214764 fv Log-Normal Cox, Log-Normal TRUE #> 9622 602 0.9860745 0.203449964 fv Log-Normal Cox, Log-Normal FALSE #> 9638 603 0.4156386 0.069227727 fv Log-Normal Cox, Log-Normal TRUE #> 9654 604 0.7547442 0.131357593 fv Log-Normal Cox, Log-Normal FALSE #> 9670 605 1.2270888 0.254788035 fv Log-Normal Cox, Log-Normal TRUE #> 9686 606 0.6744288 0.140766466 fv Log-Normal Cox, Log-Normal FALSE #> 9702 607 0.6089607 0.135399445 fv Log-Normal Cox, Log-Normal FALSE #> 9718 608 0.4385750 0.078430090 fv Log-Normal Cox, Log-Normal FALSE #> 9734 609 0.8290773 0.146094145 fv Log-Normal Cox, Log-Normal FALSE #> 9750 610 0.6340374 0.128702321 fv Log-Normal Cox, Log-Normal FALSE #> 9766 611 0.8007515 0.201200477 fv Log-Normal Cox, Log-Normal FALSE #> 9782 612 0.5875066 0.117282979 fv Log-Normal Cox, Log-Normal FALSE #> 9798 613 0.8175702 0.130135551 fv Log-Normal Cox, Log-Normal FALSE #> 9814 614 0.7773840 0.134334791 fv Log-Normal Cox, Log-Normal FALSE #> 9830 615 0.8689451 0.145406422 fv Log-Normal Cox, Log-Normal FALSE #> 9846 616 0.7820989 0.151533700 fv Log-Normal Cox, Log-Normal FALSE #> 9862 617 0.7837638 0.136211673 fv Log-Normal Cox, Log-Normal FALSE #> 9878 618 0.6788178 0.142475685 fv Log-Normal Cox, Log-Normal FALSE #> 9894 619 0.8183659 0.154788400 fv Log-Normal Cox, Log-Normal FALSE #> 9910 620 0.8171046 0.180268515 fv Log-Normal Cox, Log-Normal FALSE #> 9926 621 0.5639292 0.107073034 fv Log-Normal Cox, Log-Normal FALSE #> 9942 622 0.6314516 0.125356048 fv Log-Normal Cox, Log-Normal FALSE #> 9958 623 0.8785102 0.184572000 fv Log-Normal Cox, Log-Normal FALSE #> 9974 624 0.5825642 0.140201227 fv Log-Normal Cox, Log-Normal FALSE #> 9990 625 0.7614824 0.157638018 fv Log-Normal Cox, Log-Normal FALSE #> 10006 626 0.6383478 0.128329406 fv Log-Normal Cox, Log-Normal FALSE #> 10022 627 0.6242897 0.114015728 fv Log-Normal Cox, Log-Normal FALSE #> 10038 628 0.6642862 0.172314284 fv Log-Normal Cox, Log-Normal FALSE #> 10054 629 0.6375845 0.122839399 fv Log-Normal Cox, Log-Normal FALSE #> 10070 630 0.8324783 0.130755118 fv Log-Normal Cox, Log-Normal FALSE #> 10086 631 0.6702640 0.108227424 fv Log-Normal Cox, Log-Normal FALSE #> 10102 632 0.7767630 0.177729336 fv Log-Normal Cox, Log-Normal FALSE #> 10118 633 0.4914987 0.093416187 fv Log-Normal Cox, Log-Normal FALSE #> 10134 634 0.6746632 0.175170229 fv Log-Normal Cox, Log-Normal FALSE #> 10150 635 0.9036130 0.202423279 fv Log-Normal Cox, Log-Normal FALSE #> 10166 636 0.4183601 0.083783931 fv Log-Normal Cox, Log-Normal TRUE #> 10182 637 0.8719040 0.157295311 fv Log-Normal Cox, Log-Normal FALSE #> 10198 638 0.6832427 0.161228334 fv Log-Normal Cox, Log-Normal FALSE #> 10214 639 0.4325527 0.097111445 fv Log-Normal Cox, Log-Normal FALSE #> 10230 640 0.7229937 0.154618672 fv Log-Normal Cox, Log-Normal FALSE #> 10246 641 0.5857330 0.122395333 fv Log-Normal Cox, Log-Normal FALSE #> 10262 642 0.6360379 0.117279907 fv Log-Normal Cox, Log-Normal FALSE #> 10278 643 0.6645645 0.116264569 fv Log-Normal Cox, Log-Normal FALSE #> 10294 644 0.6190932 0.107311160 fv Log-Normal Cox, Log-Normal FALSE #> 10310 645 0.7533956 0.134819768 fv Log-Normal Cox, Log-Normal FALSE #> 10326 646 0.8375410 0.134833528 fv Log-Normal Cox, Log-Normal FALSE #> 10342 647 0.6563751 0.098262571 fv Log-Normal Cox, Log-Normal FALSE #> 10358 648 1.0706016 0.216998183 fv Log-Normal Cox, Log-Normal TRUE #> 10374 649 0.6314217 0.139306982 fv Log-Normal Cox, Log-Normal FALSE #> 10390 650 0.8102765 0.157581814 fv Log-Normal Cox, Log-Normal FALSE #> 10406 651 0.7925761 0.156304582 fv Log-Normal Cox, Log-Normal FALSE #> 10422 652 1.2665462 0.209947407 fv Log-Normal Cox, Log-Normal TRUE #> 10438 653 0.5434712 0.103592893 fv Log-Normal Cox, Log-Normal FALSE #> 10454 654 0.5856523 0.164414521 fv Log-Normal Cox, Log-Normal FALSE #> 10470 655 0.7001387 0.134566498 fv Log-Normal Cox, Log-Normal FALSE #> 10486 656 0.7099659 0.150674082 fv Log-Normal Cox, Log-Normal FALSE #> 10502 657 0.5343694 0.110794639 fv Log-Normal Cox, Log-Normal FALSE #> 10518 658 1.1477870 0.241951186 fv Log-Normal Cox, Log-Normal TRUE #> 10534 659 1.0433141 0.268908122 fv Log-Normal Cox, Log-Normal TRUE #> 10550 660 0.8574517 0.160474979 fv Log-Normal Cox, Log-Normal FALSE #> 10566 661 0.5656016 0.115462157 fv Log-Normal Cox, Log-Normal FALSE #> 10582 662 0.5913374 0.112065321 fv Log-Normal Cox, Log-Normal FALSE #> 10598 663 0.7014024 0.115616243 fv Log-Normal Cox, Log-Normal FALSE #> 10614 664 0.7024798 0.117240169 fv Log-Normal Cox, Log-Normal FALSE #> 10630 665 0.8771094 0.169469126 fv Log-Normal Cox, Log-Normal FALSE #> 10646 666 1.1630685 0.201255082 fv Log-Normal Cox, Log-Normal TRUE #> 10662 667 0.6484067 0.117314626 fv Log-Normal Cox, Log-Normal FALSE #> 10678 668 0.6308263 0.131132730 fv Log-Normal Cox, Log-Normal FALSE #> 10694 669 0.9142532 0.187111491 fv Log-Normal Cox, Log-Normal FALSE #> 10710 670 0.6192754 0.147049588 fv Log-Normal Cox, Log-Normal FALSE #> 10726 671 0.7969559 0.146088966 fv Log-Normal Cox, Log-Normal FALSE #> 10742 672 0.9573071 0.193663466 fv Log-Normal Cox, Log-Normal FALSE #> 10758 673 0.6501472 0.117106072 fv Log-Normal Cox, Log-Normal FALSE #> 10774 674 0.8224194 0.160584426 fv Log-Normal Cox, Log-Normal FALSE #> 10790 675 0.6495018 0.188477878 fv Log-Normal Cox, Log-Normal FALSE #> 10806 676 0.8711933 0.164562370 fv Log-Normal Cox, Log-Normal FALSE #> 10822 677 0.6800675 0.117054835 fv Log-Normal Cox, Log-Normal FALSE #> 10838 678 0.5713441 0.107816673 fv Log-Normal Cox, Log-Normal FALSE #> 10854 679 0.6112346 0.133477913 fv Log-Normal Cox, Log-Normal FALSE #> 10870 680 0.7496116 0.136062520 fv Log-Normal Cox, Log-Normal FALSE #> 10886 681 1.0147299 0.200149345 fv Log-Normal Cox, Log-Normal FALSE #> 10902 682 0.6897060 0.140083930 fv Log-Normal Cox, Log-Normal FALSE #> 10918 683 0.8143957 0.185740341 fv Log-Normal Cox, Log-Normal FALSE #> 10934 684 1.0560264 0.219153739 fv Log-Normal Cox, Log-Normal TRUE #> 10950 685 0.6654488 0.115993957 fv Log-Normal Cox, Log-Normal FALSE #> 10966 686 0.8930725 0.173037645 fv Log-Normal Cox, Log-Normal FALSE #> 10982 687 0.5843867 0.083530258 fv Log-Normal Cox, Log-Normal FALSE #> 10998 688 0.6143148 0.131684418 fv Log-Normal Cox, Log-Normal FALSE #> 11014 689 0.6573937 0.127658438 fv Log-Normal Cox, Log-Normal FALSE #> 11030 690 0.8718297 0.179672033 fv Log-Normal Cox, Log-Normal FALSE #> 11046 691 0.7069982 0.288250138 fv Log-Normal Cox, Log-Normal TRUE #> 11062 692 0.6778167 0.148233924 fv Log-Normal Cox, Log-Normal FALSE #> 11078 693 0.5430129 0.135999915 fv Log-Normal Cox, Log-Normal FALSE #> 11094 694 0.7297001 0.140998825 fv Log-Normal Cox, Log-Normal FALSE #> 11110 695 0.6424014 0.105666649 fv Log-Normal Cox, Log-Normal FALSE #> 11126 696 0.7792619 0.119330409 fv Log-Normal Cox, Log-Normal FALSE #> 11142 697 0.8896887 0.198744409 fv Log-Normal Cox, Log-Normal FALSE #> 11158 698 0.4671205 0.106620840 fv Log-Normal Cox, Log-Normal FALSE #> 11174 699 0.7181789 0.160616129 fv Log-Normal Cox, Log-Normal FALSE #> 11190 700 0.5477280 0.108273968 fv Log-Normal Cox, Log-Normal FALSE #> 11206 701 0.8589172 0.180922288 fv Log-Normal Cox, Log-Normal FALSE #> 11222 702 0.8686646 0.196511490 fv Log-Normal Cox, Log-Normal FALSE #> 11238 703 0.7410847 0.159178375 fv Log-Normal Cox, Log-Normal FALSE #> 11254 704 0.6408199 0.125427367 fv Log-Normal Cox, Log-Normal FALSE #> 11270 705 0.7057959 0.146779535 fv Log-Normal Cox, Log-Normal FALSE #> 11286 706 0.7643511 0.148323471 fv Log-Normal Cox, Log-Normal FALSE #> 11302 707 0.9700524 0.160443888 fv Log-Normal Cox, Log-Normal FALSE #> 11318 708 0.9265933 0.149354147 fv Log-Normal Cox, Log-Normal FALSE #> 11334 709 0.6749683 0.172123684 fv Log-Normal Cox, Log-Normal FALSE #> 11350 710 0.5117771 0.091200765 fv Log-Normal Cox, Log-Normal FALSE #> 11366 711 0.6439905 0.167360644 fv Log-Normal Cox, Log-Normal FALSE #> 11382 712 0.6767084 0.108127089 fv Log-Normal Cox, Log-Normal FALSE #> 11398 713 1.0129778 0.274729370 fv Log-Normal Cox, Log-Normal TRUE #> 11414 714 0.8089406 0.174250652 fv Log-Normal Cox, Log-Normal FALSE #> 11430 715 0.8597580 0.165342420 fv Log-Normal Cox, Log-Normal FALSE #> 11446 716 0.7624100 0.134839371 fv Log-Normal Cox, Log-Normal FALSE #> 11462 717 0.8249533 0.167079927 fv Log-Normal Cox, Log-Normal FALSE #> 11478 718 0.8576847 0.162024555 fv Log-Normal Cox, Log-Normal FALSE #> 11494 719 0.9824621 0.237930201 fv Log-Normal Cox, Log-Normal TRUE #> 11510 720 0.7869505 0.125298604 fv Log-Normal Cox, Log-Normal FALSE #> 11526 721 0.6114592 0.138309040 fv Log-Normal Cox, Log-Normal FALSE #> 11542 722 0.8040976 0.146430602 fv Log-Normal Cox, Log-Normal FALSE #> 11558 723 0.6317170 0.117974648 fv Log-Normal Cox, Log-Normal FALSE #> 11574 724 0.7495479 0.173784769 fv Log-Normal Cox, Log-Normal FALSE #> 11590 725 0.7586515 0.141571771 fv Log-Normal Cox, Log-Normal FALSE #> 11606 726 0.6758165 0.142506550 fv Log-Normal Cox, Log-Normal FALSE #> 11622 727 0.7878067 0.116750587 fv Log-Normal Cox, Log-Normal FALSE #> 11638 728 1.0293747 0.182526831 fv Log-Normal Cox, Log-Normal FALSE #> 11654 729 0.7858074 0.152231699 fv Log-Normal Cox, Log-Normal FALSE #> 11670 730 0.8523065 0.177705684 fv Log-Normal Cox, Log-Normal FALSE #> 11686 731 0.5676312 0.154710463 fv Log-Normal Cox, Log-Normal FALSE #> 11702 732 0.4997332 0.136812917 fv Log-Normal Cox, Log-Normal FALSE #> 11718 733 0.9890456 0.207143362 fv Log-Normal Cox, Log-Normal FALSE #> 11734 734 0.8982896 0.180036540 fv Log-Normal Cox, Log-Normal FALSE #> 11750 735 1.0022962 0.154539597 fv Log-Normal Cox, Log-Normal FALSE #> 11766 736 0.8541157 0.183590550 fv Log-Normal Cox, Log-Normal FALSE #> 11782 737 0.7416449 0.113810433 fv Log-Normal Cox, Log-Normal FALSE #> 11798 738 0.5320803 0.105301645 fv Log-Normal Cox, Log-Normal FALSE #> 11814 739 0.6012800 0.128194651 fv Log-Normal Cox, Log-Normal FALSE #> 11830 740 0.8138247 0.152345638 fv Log-Normal Cox, Log-Normal FALSE #> 11846 741 1.0145235 0.181258293 fv Log-Normal Cox, Log-Normal FALSE #> 11862 742 0.6611129 0.120578274 fv Log-Normal Cox, Log-Normal FALSE #> 11878 743 0.7645426 0.114386181 fv Log-Normal Cox, Log-Normal FALSE #> 11894 744 0.7905449 0.201901154 fv Log-Normal Cox, Log-Normal FALSE #> 11910 745 0.7800280 0.154382410 fv Log-Normal Cox, Log-Normal FALSE #> 11926 746 0.5983568 0.171488391 fv Log-Normal Cox, Log-Normal FALSE #> 11942 747 0.6553279 0.126681997 fv Log-Normal Cox, Log-Normal FALSE #> 11958 748 0.8596291 0.190755108 fv Log-Normal Cox, Log-Normal FALSE #> 11974 749 0.9163101 0.186289412 fv Log-Normal Cox, Log-Normal FALSE #> 11990 750 0.7524690 0.142892311 fv Log-Normal Cox, Log-Normal FALSE #> 12006 751 0.8953943 0.163271302 fv Log-Normal Cox, Log-Normal FALSE #> 12022 752 0.6902168 0.167689577 fv Log-Normal Cox, Log-Normal FALSE #> 12038 753 0.4443201 0.114075408 fv Log-Normal Cox, Log-Normal FALSE #> 12054 754 0.7877421 0.145197625 fv Log-Normal Cox, Log-Normal FALSE #> 12070 755 0.6689381 0.126865509 fv Log-Normal Cox, Log-Normal FALSE #> 12086 756 0.3785131 0.082873155 fv Log-Normal Cox, Log-Normal TRUE #> 12102 757 0.6779404 0.130786163 fv Log-Normal Cox, Log-Normal FALSE #> 12118 758 0.7746253 0.163500811 fv Log-Normal Cox, Log-Normal FALSE #> 12134 759 0.6781740 0.122448396 fv Log-Normal Cox, Log-Normal FALSE #> 12150 760 0.8695697 0.184253732 fv Log-Normal Cox, Log-Normal FALSE #> 12166 761 0.6318074 0.126609451 fv Log-Normal Cox, Log-Normal FALSE #> 12182 762 0.7612468 0.155081467 fv Log-Normal Cox, Log-Normal FALSE #> 12198 763 0.5637018 0.111824322 fv Log-Normal Cox, Log-Normal FALSE #> 12214 764 0.6553212 0.114285817 fv Log-Normal Cox, Log-Normal FALSE #> 12230 765 0.9462467 0.163155624 fv Log-Normal Cox, Log-Normal FALSE #> 12246 766 0.6537097 0.106200814 fv Log-Normal Cox, Log-Normal FALSE #> 12262 767 0.8747035 0.162635548 fv Log-Normal Cox, Log-Normal FALSE #> 12278 768 0.5877160 0.115237900 fv Log-Normal Cox, Log-Normal FALSE #> 12294 769 1.0167998 0.184375254 fv Log-Normal Cox, Log-Normal FALSE #> 12310 770 0.6130030 0.145352310 fv Log-Normal Cox, Log-Normal FALSE #> 12326 771 0.5745927 0.203706310 fv Log-Normal Cox, Log-Normal FALSE #> 12342 772 0.5853131 0.110646970 fv Log-Normal Cox, Log-Normal FALSE #> 12358 773 0.5687756 0.134007492 fv Log-Normal Cox, Log-Normal FALSE #> 12374 774 0.7226932 0.149336319 fv Log-Normal Cox, Log-Normal FALSE #> 12390 775 0.6797903 0.122447722 fv Log-Normal Cox, Log-Normal FALSE #> 12406 776 0.6853206 0.109785022 fv Log-Normal Cox, Log-Normal FALSE #> 12422 777 0.6212015 0.129042772 fv Log-Normal Cox, Log-Normal FALSE #> 12438 778 0.7164382 0.234844057 fv Log-Normal Cox, Log-Normal TRUE #> 12454 779 0.6742564 0.143043418 fv Log-Normal Cox, Log-Normal FALSE #> 12470 780 0.6170242 0.105097932 fv Log-Normal Cox, Log-Normal FALSE #> 12486 781 0.7318112 0.142735071 fv Log-Normal Cox, Log-Normal FALSE #> 12502 782 0.6610061 0.135449920 fv Log-Normal Cox, Log-Normal FALSE #> 12518 783 0.6278950 0.104305213 fv Log-Normal Cox, Log-Normal FALSE #> 12534 784 0.8094113 0.169945752 fv Log-Normal Cox, Log-Normal FALSE #> 12550 785 0.4946073 0.092835822 fv Log-Normal Cox, Log-Normal FALSE #> 12566 786 0.6267274 0.128041392 fv Log-Normal Cox, Log-Normal FALSE #> 12582 787 1.0178487 0.161660428 fv Log-Normal Cox, Log-Normal FALSE #> 12598 788 0.7008192 0.129005706 fv Log-Normal Cox, Log-Normal FALSE #> 12614 789 0.9344409 0.209106923 fv Log-Normal Cox, Log-Normal FALSE #> 12630 790 0.7454167 0.158623779 fv Log-Normal Cox, Log-Normal FALSE #> 12646 791 0.4161568 0.067941163 fv Log-Normal Cox, Log-Normal TRUE #> 12662 792 0.5456873 0.127448237 fv Log-Normal Cox, Log-Normal FALSE #> 12678 793 0.8498802 0.152802063 fv Log-Normal Cox, Log-Normal FALSE #> 12694 794 0.6776564 0.170730758 fv Log-Normal Cox, Log-Normal FALSE #> 12710 795 0.6364088 0.114399391 fv Log-Normal Cox, Log-Normal FALSE #> 12726 796 0.6120280 0.123040994 fv Log-Normal Cox, Log-Normal FALSE #> 12742 797 0.6868664 0.174130114 fv Log-Normal Cox, Log-Normal FALSE #> 12758 798 0.4111110 0.073952807 fv Log-Normal Cox, Log-Normal TRUE #> 12774 799 0.7667146 0.131502219 fv Log-Normal Cox, Log-Normal FALSE #> 12790 800 0.7651482 0.172314768 fv Log-Normal Cox, Log-Normal FALSE #> 12806 801 0.9872713 0.175396964 fv Log-Normal Cox, Log-Normal FALSE #> 12822 802 0.7981148 0.154386226 fv Log-Normal Cox, Log-Normal FALSE #> 12838 803 0.6583993 0.114725176 fv Log-Normal Cox, Log-Normal FALSE #> 12854 804 0.7555532 0.134524463 fv Log-Normal Cox, Log-Normal FALSE #> 12870 805 0.8249342 0.224337487 fv Log-Normal Cox, Log-Normal TRUE #> 12886 806 0.7903732 0.194773703 fv Log-Normal Cox, Log-Normal FALSE #> 12902 807 0.6441408 0.165412856 fv Log-Normal Cox, Log-Normal FALSE #> 12918 808 0.5046575 0.080358900 fv Log-Normal Cox, Log-Normal FALSE #> 12934 809 0.6864933 0.146661840 fv Log-Normal Cox, Log-Normal FALSE #> 12950 810 0.8124512 0.154133092 fv Log-Normal Cox, Log-Normal FALSE #> 12966 811 0.4692017 0.082645886 fv Log-Normal Cox, Log-Normal FALSE #> 12982 812 0.7250259 0.147300631 fv Log-Normal Cox, Log-Normal FALSE #> 12998 813 0.8814457 0.152466669 fv Log-Normal Cox, Log-Normal FALSE #> 13014 814 0.6852626 0.133497265 fv Log-Normal Cox, Log-Normal FALSE #> 13030 815 0.5973459 0.152294373 fv Log-Normal Cox, Log-Normal FALSE #> 13046 816 0.6997353 0.136317443 fv Log-Normal Cox, Log-Normal FALSE #> 13062 817 0.4710155 0.088285645 fv Log-Normal Cox, Log-Normal FALSE #> 13078 818 0.6451949 0.153857802 fv Log-Normal Cox, Log-Normal FALSE #> 13094 819 0.8337783 0.122400350 fv Log-Normal Cox, Log-Normal FALSE #> 13110 820 0.8563875 0.184562604 fv Log-Normal Cox, Log-Normal FALSE #> 13126 821 0.5642452 0.099701124 fv Log-Normal Cox, Log-Normal FALSE #> 13142 822 0.8848165 0.173698620 fv Log-Normal Cox, Log-Normal FALSE #> 13158 823 0.9679673 0.224333994 fv Log-Normal Cox, Log-Normal TRUE #> 13174 824 0.9169811 0.190827566 fv Log-Normal Cox, Log-Normal FALSE #> 13190 825 0.7620785 0.143634398 fv Log-Normal Cox, Log-Normal FALSE #> 13206 826 0.8129126 0.187223856 fv Log-Normal Cox, Log-Normal FALSE #> 13222 827 0.8913960 0.200847045 fv Log-Normal Cox, Log-Normal FALSE #> 13238 828 0.7526682 0.217873031 fv Log-Normal Cox, Log-Normal FALSE #> 13254 829 0.7129035 0.141271513 fv Log-Normal Cox, Log-Normal FALSE #> 13270 830 0.8093686 0.161447055 fv Log-Normal Cox, Log-Normal FALSE #> 13286 831 0.8728235 0.152899961 fv Log-Normal Cox, Log-Normal FALSE #> 13302 832 0.5911143 0.140956737 fv Log-Normal Cox, Log-Normal FALSE #> 13318 833 0.8823798 0.182578061 fv Log-Normal Cox, Log-Normal FALSE #> 13334 834 0.6489802 0.138432704 fv Log-Normal Cox, Log-Normal FALSE #> 13350 835 0.6823934 0.138367545 fv Log-Normal Cox, Log-Normal FALSE #> 13366 836 0.7826148 0.163460070 fv Log-Normal Cox, Log-Normal FALSE #> 13382 837 0.7736597 0.176327722 fv Log-Normal Cox, Log-Normal FALSE #> 13398 838 0.7054494 0.122169599 fv Log-Normal Cox, Log-Normal FALSE #> 13414 839 0.5919390 0.130336343 fv Log-Normal Cox, Log-Normal FALSE #> 13430 840 0.6180481 0.108543993 fv Log-Normal Cox, Log-Normal FALSE #> 13446 841 0.9302992 0.196914198 fv Log-Normal Cox, Log-Normal FALSE #> 13462 842 0.5602323 0.109237597 fv Log-Normal Cox, Log-Normal FALSE #> 13478 843 0.6748513 0.144994565 fv Log-Normal Cox, Log-Normal FALSE #> 13494 844 0.9129811 0.159326671 fv Log-Normal Cox, Log-Normal FALSE #> 13510 845 0.9877512 0.201813260 fv Log-Normal Cox, Log-Normal FALSE #> 13526 846 0.5533760 0.112530844 fv Log-Normal Cox, Log-Normal FALSE #> 13542 847 1.0264997 0.158287594 fv Log-Normal Cox, Log-Normal FALSE #> 13558 848 0.8399707 0.148734031 fv Log-Normal Cox, Log-Normal FALSE #> 13574 849 0.6201535 0.111310526 fv Log-Normal Cox, Log-Normal FALSE #> 13590 850 0.8142559 0.145644218 fv Log-Normal Cox, Log-Normal FALSE #> 13606 851 0.7006251 0.122041091 fv Log-Normal Cox, Log-Normal FALSE #> 13622 852 0.7511030 0.133087367 fv Log-Normal Cox, Log-Normal FALSE #> 13638 853 1.0390655 0.145203301 fv Log-Normal Cox, Log-Normal FALSE #> 13654 854 0.7097626 0.174226283 fv Log-Normal Cox, Log-Normal FALSE #> 13670 855 0.6546727 0.164479144 fv Log-Normal Cox, Log-Normal FALSE #> 13686 856 0.8742938 0.176632638 fv Log-Normal Cox, Log-Normal FALSE #> 13702 857 0.8235076 0.201058874 fv Log-Normal Cox, Log-Normal FALSE #> 13718 858 1.0655379 0.200597120 fv Log-Normal Cox, Log-Normal TRUE #> 13734 859 0.9019343 0.175412623 fv Log-Normal Cox, Log-Normal FALSE #> 13750 860 0.6622603 0.126053239 fv Log-Normal Cox, Log-Normal FALSE #> 13766 861 0.4665198 0.077897819 fv Log-Normal Cox, Log-Normal FALSE #> 13782 862 0.6543993 0.124272472 fv Log-Normal Cox, Log-Normal FALSE #> 13798 863 0.6978115 0.134982065 fv Log-Normal Cox, Log-Normal FALSE #> 13814 864 0.9283803 0.173095332 fv Log-Normal Cox, Log-Normal FALSE #> 13830 865 0.9136195 0.174912207 fv Log-Normal Cox, Log-Normal FALSE #> 13846 866 0.7371495 0.158525534 fv Log-Normal Cox, Log-Normal FALSE #> 13862 867 0.6008699 0.124295016 fv Log-Normal Cox, Log-Normal FALSE #> 13878 868 0.8928902 0.189023552 fv Log-Normal Cox, Log-Normal FALSE #> 13894 869 0.5323448 0.094885987 fv Log-Normal Cox, Log-Normal FALSE #> 13910 870 0.7740212 0.153614509 fv Log-Normal Cox, Log-Normal FALSE #> 13926 871 0.5040690 0.094185702 fv Log-Normal Cox, Log-Normal FALSE #> 13942 872 0.4682306 0.082330866 fv Log-Normal Cox, Log-Normal FALSE #> 13958 873 0.8744887 0.139709149 fv Log-Normal Cox, Log-Normal FALSE #> 13974 874 0.7783567 0.192580753 fv Log-Normal Cox, Log-Normal FALSE #> 13990 875 0.6773657 0.139640942 fv Log-Normal Cox, Log-Normal FALSE #> 14006 876 0.6165045 0.121485821 fv Log-Normal Cox, Log-Normal FALSE #> 14022 877 0.5859028 0.131899842 fv Log-Normal Cox, Log-Normal FALSE #> 14038 878 0.6917847 0.157165569 fv Log-Normal Cox, Log-Normal FALSE #> 14054 879 0.6977268 0.137740612 fv Log-Normal Cox, Log-Normal FALSE #> 14070 880 0.8483322 0.141854241 fv Log-Normal Cox, Log-Normal FALSE #> 14086 881 0.5661982 0.102733370 fv Log-Normal Cox, Log-Normal FALSE #> 14102 882 0.7169868 0.152447981 fv Log-Normal Cox, Log-Normal FALSE #> 14118 883 0.6447592 0.153543953 fv Log-Normal Cox, Log-Normal FALSE #> 14134 884 0.5975498 0.128517356 fv Log-Normal Cox, Log-Normal FALSE #> 14150 885 0.7782512 0.162836252 fv Log-Normal Cox, Log-Normal FALSE #> 14166 886 0.6628296 0.148932066 fv Log-Normal Cox, Log-Normal FALSE #> 14182 887 0.3830570 0.087415331 fv Log-Normal Cox, Log-Normal TRUE #> 14198 888 0.6791310 0.150167427 fv Log-Normal Cox, Log-Normal FALSE #> 14214 889 0.7780627 0.203727025 fv Log-Normal Cox, Log-Normal FALSE #> 14230 890 0.7108866 0.125667784 fv Log-Normal Cox, Log-Normal FALSE #> 14246 891 0.7540428 0.144451491 fv Log-Normal Cox, Log-Normal FALSE #> 14262 892 1.0121293 0.224929443 fv Log-Normal Cox, Log-Normal TRUE #> 14278 893 0.4956099 0.115792086 fv Log-Normal Cox, Log-Normal FALSE #> 14294 894 0.5889320 0.111970124 fv Log-Normal Cox, Log-Normal FALSE #> 14310 895 0.8335347 0.185574046 fv Log-Normal Cox, Log-Normal FALSE #> 14326 896 0.6037923 0.156766168 fv Log-Normal Cox, Log-Normal FALSE #> 14342 897 0.6843269 0.122402774 fv Log-Normal Cox, Log-Normal FALSE #> 14358 898 0.9409321 0.285299319 fv Log-Normal Cox, Log-Normal TRUE #> 14374 899 0.9418146 0.342156384 fv Log-Normal Cox, Log-Normal TRUE #> 14390 900 0.7374075 0.157498955 fv Log-Normal Cox, Log-Normal FALSE #> 14406 901 0.7858528 0.120999175 fv Log-Normal Cox, Log-Normal FALSE #> 14422 902 0.8540252 0.162479893 fv Log-Normal Cox, Log-Normal FALSE #> 14438 903 0.5849627 0.125627421 fv Log-Normal Cox, Log-Normal FALSE #> 14454 904 0.7057806 0.149798576 fv Log-Normal Cox, Log-Normal FALSE #> 14470 905 0.7357375 0.126263556 fv Log-Normal Cox, Log-Normal FALSE #> 14486 906 0.7226696 0.143793789 fv Log-Normal Cox, Log-Normal FALSE #> 14502 907 0.6382255 0.144489887 fv Log-Normal Cox, Log-Normal FALSE #> 14518 908 0.5633960 0.116541748 fv Log-Normal Cox, Log-Normal FALSE #> 14534 909 0.9533251 0.171236085 fv Log-Normal Cox, Log-Normal FALSE #> 14550 910 0.6853516 0.148763485 fv Log-Normal Cox, Log-Normal FALSE #> 14566 911 0.6876648 0.117291524 fv Log-Normal Cox, Log-Normal FALSE #> 14582 912 0.3920258 0.067947080 fv Log-Normal Cox, Log-Normal TRUE #> 14598 913 0.6137430 0.109088353 fv Log-Normal Cox, Log-Normal FALSE #> 14614 914 0.8636100 0.164033956 fv Log-Normal Cox, Log-Normal FALSE #> 14630 915 0.6906558 0.126734273 fv Log-Normal Cox, Log-Normal FALSE #> 14646 916 0.7289457 0.129897014 fv Log-Normal Cox, Log-Normal FALSE #> 14662 917 0.5314274 0.129139130 fv Log-Normal Cox, Log-Normal FALSE #> 14678 918 0.5742138 0.121553839 fv Log-Normal Cox, Log-Normal FALSE #> 14694 919 0.6544943 0.119380355 fv Log-Normal Cox, Log-Normal FALSE #> 14710 920 0.6868399 0.113637131 fv Log-Normal Cox, Log-Normal FALSE #> 14726 921 1.1773278 0.226105941 fv Log-Normal Cox, Log-Normal TRUE #> 14742 922 0.6144325 0.114228710 fv Log-Normal Cox, Log-Normal FALSE #> 14758 923 1.0843000 0.228582600 fv Log-Normal Cox, Log-Normal TRUE #> 14774 924 0.6749561 0.128183794 fv Log-Normal Cox, Log-Normal FALSE #> 14790 925 0.7478889 0.156179177 fv Log-Normal Cox, Log-Normal FALSE #> 14806 926 0.9518760 0.174183082 fv Log-Normal Cox, Log-Normal FALSE #> 14822 927 0.8086761 0.157608442 fv Log-Normal Cox, Log-Normal FALSE #> 14838 928 0.6843932 0.138396866 fv Log-Normal Cox, Log-Normal FALSE #> 14854 929 0.7647168 0.139036563 fv Log-Normal Cox, Log-Normal FALSE #> 14870 930 0.5777332 0.125461849 fv Log-Normal Cox, Log-Normal FALSE #> 14886 931 0.8122488 0.151665716 fv Log-Normal Cox, Log-Normal FALSE #> 14902 932 0.5420925 0.116762834 fv Log-Normal Cox, Log-Normal FALSE #> 14918 933 0.5739756 0.094085379 fv Log-Normal Cox, Log-Normal FALSE #> 14934 934 0.6826506 0.151986119 fv Log-Normal Cox, Log-Normal FALSE #> 14950 935 0.8998188 0.151748807 fv Log-Normal Cox, Log-Normal FALSE #> 14966 936 0.6997538 0.130621651 fv Log-Normal Cox, Log-Normal FALSE #> 14982 937 0.8472782 0.151815981 fv Log-Normal Cox, Log-Normal FALSE #> 14998 938 0.9004974 0.178529342 fv Log-Normal Cox, Log-Normal FALSE #> 15014 939 0.5682556 0.086970214 fv Log-Normal Cox, Log-Normal FALSE #> 15030 940 0.8662010 0.228227941 fv Log-Normal Cox, Log-Normal TRUE #> 15046 941 0.4726126 0.093706557 fv Log-Normal Cox, Log-Normal FALSE #> 15062 942 0.8714100 0.165388066 fv Log-Normal Cox, Log-Normal FALSE #> 15078 943 0.5203635 0.076183783 fv Log-Normal Cox, Log-Normal FALSE #> 15094 944 0.6583700 0.114715236 fv Log-Normal Cox, Log-Normal FALSE #> 15110 945 1.0014192 0.198006785 fv Log-Normal Cox, Log-Normal FALSE #> 15126 946 0.8283976 0.138699106 fv Log-Normal Cox, Log-Normal FALSE #> 15142 947 0.8336294 0.130080513 fv Log-Normal Cox, Log-Normal FALSE #> 15158 948 0.4624278 0.106368903 fv Log-Normal Cox, Log-Normal FALSE #> 15174 949 0.7755816 0.201619990 fv Log-Normal Cox, Log-Normal FALSE #> 15190 950 0.7749094 0.131061734 fv Log-Normal Cox, Log-Normal FALSE #> 15206 951 0.5867880 0.126974333 fv Log-Normal Cox, Log-Normal FALSE #> 15222 952 0.6279933 0.113401628 fv Log-Normal Cox, Log-Normal FALSE #> 15238 953 0.6028978 0.127851761 fv Log-Normal Cox, Log-Normal FALSE #> 15254 954 0.8198247 0.196525947 fv Log-Normal Cox, Log-Normal FALSE #> 15270 955 0.7011257 0.118020695 fv Log-Normal Cox, Log-Normal FALSE #> 15286 956 0.8909384 0.147092482 fv Log-Normal Cox, Log-Normal FALSE #> 15302 957 0.6256487 0.123780844 fv Log-Normal Cox, Log-Normal FALSE #> 15318 958 0.6012760 0.127411782 fv Log-Normal Cox, Log-Normal FALSE #> 15334 959 0.6842127 0.110349251 fv Log-Normal Cox, Log-Normal FALSE #> 15350 960 0.5962401 0.132639556 fv Log-Normal Cox, Log-Normal FALSE #> 15366 961 0.8256761 0.134731038 fv Log-Normal Cox, Log-Normal FALSE #> 15382 962 0.8480599 0.146238080 fv Log-Normal Cox, Log-Normal FALSE #> 15398 963 0.8964273 0.190800209 fv Log-Normal Cox, Log-Normal FALSE #> 15414 964 0.6844403 0.155462521 fv Log-Normal Cox, Log-Normal FALSE #> 15430 965 0.5646155 0.099615793 fv Log-Normal Cox, Log-Normal FALSE #> 15446 966 1.0564302 0.173266059 fv Log-Normal Cox, Log-Normal TRUE #> 15462 967 0.8965299 0.184549026 fv Log-Normal Cox, Log-Normal FALSE #> 15478 968 0.8387679 0.191014624 fv Log-Normal Cox, Log-Normal FALSE #> 15494 969 1.0086294 0.181030289 fv Log-Normal Cox, Log-Normal FALSE #> 15510 970 0.7743469 0.160146415 fv Log-Normal Cox, Log-Normal FALSE #> 15526 971 0.9588093 0.163447254 fv Log-Normal Cox, Log-Normal FALSE #> 15542 972 0.6142044 0.129972343 fv Log-Normal Cox, Log-Normal FALSE #> 15558 973 0.9177821 0.145918328 fv Log-Normal Cox, Log-Normal FALSE #> 15574 974 0.9095060 0.166708944 fv Log-Normal Cox, Log-Normal FALSE #> 15590 975 1.0452709 0.179306204 fv Log-Normal Cox, Log-Normal TRUE #> 15606 976 0.8166536 0.248030345 fv Log-Normal Cox, Log-Normal TRUE #> 15622 977 1.1346207 0.218925064 fv Log-Normal Cox, Log-Normal TRUE #> 15638 978 0.8376048 0.216970640 fv Log-Normal Cox, Log-Normal FALSE #> 15654 979 0.6250216 0.119316195 fv Log-Normal Cox, Log-Normal FALSE #> 15670 980 0.8403925 0.203135178 fv Log-Normal Cox, Log-Normal FALSE #> 15686 981 0.6682226 0.111181799 fv Log-Normal Cox, Log-Normal FALSE #> 15702 982 0.7057857 0.165757380 fv Log-Normal Cox, Log-Normal FALSE #> 15718 983 0.7389994 0.128759268 fv Log-Normal Cox, Log-Normal FALSE #> 15734 984 0.6410471 0.118385691 fv Log-Normal Cox, Log-Normal FALSE #> 15750 985 0.8274032 0.154219628 fv Log-Normal Cox, Log-Normal FALSE #> 15766 986 0.7677255 0.160069092 fv Log-Normal Cox, Log-Normal FALSE #> 15782 987 0.6687190 0.167108475 fv Log-Normal Cox, Log-Normal FALSE #> 15798 988 0.8994325 0.141177294 fv Log-Normal Cox, Log-Normal FALSE #> 15814 989 0.9739533 0.164384471 fv Log-Normal Cox, Log-Normal FALSE #> 15830 990 0.7007834 0.125967616 fv Log-Normal Cox, Log-Normal FALSE #> 15846 991 0.7971769 0.144583688 fv Log-Normal Cox, Log-Normal FALSE #> 15862 992 0.7144825 0.127981863 fv Log-Normal Cox, Log-Normal FALSE #> 15878 993 0.7552077 0.121304392 fv Log-Normal Cox, Log-Normal FALSE #> 15894 994 0.6920912 0.164611440 fv Log-Normal Cox, Log-Normal FALSE #> 15910 995 0.6370552 0.159854672 fv Log-Normal Cox, Log-Normal FALSE #> 15926 996 0.7158013 0.157550693 fv Log-Normal Cox, Log-Normal FALSE #> 15942 997 0.7112983 0.119441114 fv Log-Normal Cox, Log-Normal FALSE #> 15958 998 0.6493443 0.159161298 fv Log-Normal Cox, Log-Normal FALSE #> 15974 999 0.8004319 0.155806429 fv Log-Normal Cox, Log-Normal FALSE #> 15990 1000 0.7192738 0.144032838 fv Log-Normal Cox, Log-Normal FALSE #> 7 1 0.6405455 0.122690524 fv Log-Normal RP(P), Gamma FALSE #> 23 2 0.6040462 0.117656180 fv Log-Normal RP(P), Gamma FALSE #> 39 3 0.8022026 0.152352601 fv Log-Normal RP(P), Gamma FALSE #> 55 4 0.5259592 0.103211324 fv Log-Normal RP(P), Gamma FALSE #> 71 5 0.7983299 0.149019874 fv Log-Normal RP(P), Gamma FALSE #> 87 6 0.6887647 0.130581125 fv Log-Normal RP(P), Gamma FALSE #> 103 7 0.5143373 0.100826891 fv Log-Normal RP(P), Gamma FALSE #> 119 8 0.7636843 0.144723641 fv Log-Normal RP(P), Gamma FALSE #> 135 9 0.6642983 0.127490449 fv Log-Normal RP(P), Gamma FALSE #> 151 10 0.8292666 0.155612348 fv Log-Normal RP(P), Gamma FALSE #> 167 11 0.7870963 0.147766260 fv Log-Normal RP(P), Gamma FALSE #> 183 12 0.5128538 0.101130755 fv Log-Normal RP(P), Gamma FALSE #> 199 13 0.7531485 0.143377407 fv Log-Normal RP(P), Gamma FALSE #> 215 14 0.6331756 0.120852213 fv Log-Normal RP(P), Gamma FALSE #> 231 15 0.6426603 0.123809994 fv Log-Normal RP(P), Gamma FALSE #> 247 16 0.5322474 0.105162595 fv Log-Normal RP(P), Gamma FALSE #> 263 17 0.6467134 0.126503719 fv Log-Normal RP(P), Gamma FALSE #> 279 18 0.6943998 0.131886091 fv Log-Normal RP(P), Gamma FALSE #> 295 19 0.7899824 0.147933146 fv Log-Normal RP(P), Gamma FALSE #> 311 20 0.5484487 0.107786986 fv Log-Normal RP(P), Gamma FALSE #> 327 21 0.6161933 0.119855712 fv Log-Normal RP(P), Gamma FALSE #> 343 22 0.5040710 0.098879998 fv Log-Normal RP(P), Gamma FALSE #> 359 23 0.8877674 0.167618206 fv Log-Normal RP(P), Gamma FALSE #> 375 24 0.6757630 0.128886073 fv Log-Normal RP(P), Gamma FALSE #> 391 25 0.5307117 0.103738093 fv Log-Normal RP(P), Gamma FALSE #> 407 26 0.6429191 0.123298527 fv Log-Normal RP(P), Gamma FALSE #> 423 27 0.4611677 0.092589138 fv Log-Normal RP(P), Gamma FALSE #> 439 28 0.6456617 0.124703184 fv Log-Normal RP(P), Gamma FALSE #> 455 29 0.9326416 0.171576792 fv Log-Normal RP(P), Gamma TRUE #> 471 30 0.5693105 0.110689741 fv Log-Normal RP(P), Gamma FALSE #> 487 31 0.5125629 0.101588852 fv Log-Normal RP(P), Gamma FALSE #> 503 32 0.5118841 0.101147723 fv Log-Normal RP(P), Gamma FALSE #> 519 33 0.6618378 0.126871990 fv Log-Normal RP(P), Gamma FALSE #> 535 34 0.8797795 0.165259342 fv Log-Normal RP(P), Gamma FALSE #> 551 35 0.5063559 0.102207355 fv Log-Normal RP(P), Gamma FALSE #> 567 36 0.4635876 0.092513305 fv Log-Normal RP(P), Gamma FALSE #> 583 37 0.6395122 0.123631418 fv Log-Normal RP(P), Gamma FALSE #> 599 38 0.6075237 0.118657265 fv Log-Normal RP(P), Gamma FALSE #> 615 39 0.7176400 0.137133349 fv Log-Normal RP(P), Gamma FALSE #> 631 40 0.5781112 0.116042341 fv Log-Normal RP(P), Gamma FALSE #> 647 41 0.6542709 0.124754965 fv Log-Normal RP(P), Gamma FALSE #> 663 42 0.5154684 0.101882146 fv Log-Normal RP(P), Gamma FALSE #> 679 43 0.4670205 0.092725837 fv Log-Normal RP(P), Gamma FALSE #> 695 44 0.6203867 0.118800155 fv Log-Normal RP(P), Gamma FALSE #> 711 45 0.5393777 0.105195798 fv Log-Normal RP(P), Gamma FALSE #> 727 46 0.3151313 0.065214531 fv Log-Normal RP(P), Gamma TRUE #> 743 47 0.7594989 0.142998177 fv Log-Normal RP(P), Gamma FALSE #> 759 48 0.8276292 0.156727119 fv Log-Normal RP(P), Gamma FALSE #> 775 49 0.8478641 0.158244438 fv Log-Normal RP(P), Gamma FALSE #> 791 50 0.5475928 0.107331065 fv Log-Normal RP(P), Gamma FALSE #> 807 51 0.6844050 0.129691061 fv Log-Normal RP(P), Gamma FALSE #> 823 52 0.4849833 0.096565419 fv Log-Normal RP(P), Gamma FALSE #> 839 53 0.8506738 0.158927483 fv Log-Normal RP(P), Gamma FALSE #> 855 54 0.6258808 0.120694285 fv Log-Normal RP(P), Gamma FALSE #> 871 55 0.8334571 0.156035069 fv Log-Normal RP(P), Gamma FALSE #> 887 56 0.7883870 0.150629653 fv Log-Normal RP(P), Gamma FALSE #> 903 57 0.8198680 0.154099203 fv Log-Normal RP(P), Gamma FALSE #> 919 58 0.7046033 0.135489320 fv Log-Normal RP(P), Gamma FALSE #> 935 59 0.6362143 0.122087484 fv Log-Normal RP(P), Gamma FALSE #> 951 60 0.8194371 0.153940246 fv Log-Normal RP(P), Gamma FALSE #> 967 61 0.7165910 0.137115513 fv Log-Normal RP(P), Gamma FALSE #> 983 62 0.6072289 0.118534620 fv Log-Normal RP(P), Gamma FALSE #> 999 63 0.7813425 0.147824198 fv Log-Normal RP(P), Gamma FALSE #> 1015 64 0.6962526 0.132885352 fv Log-Normal RP(P), Gamma FALSE #> 1031 65 0.9532066 0.179257953 fv Log-Normal RP(P), Gamma TRUE #> 1047 66 0.5446300 0.106323243 fv Log-Normal RP(P), Gamma FALSE #> 1063 67 0.5523958 0.108439867 fv Log-Normal RP(P), Gamma FALSE #> 1079 68 0.4935455 0.098591049 fv Log-Normal RP(P), Gamma FALSE #> 1095 69 0.7293272 0.138575438 fv Log-Normal RP(P), Gamma FALSE #> 1111 70 0.6433089 0.123090851 fv Log-Normal RP(P), Gamma FALSE #> 1127 71 0.8654650 0.161985674 fv Log-Normal RP(P), Gamma FALSE #> 1143 72 0.5596582 0.109600090 fv Log-Normal RP(P), Gamma FALSE #> 1159 73 0.6080334 0.117616590 fv Log-Normal RP(P), Gamma FALSE #> 1175 74 0.4192212 0.085190539 fv Log-Normal RP(P), Gamma FALSE #> 1191 75 0.6459502 0.123937508 fv Log-Normal RP(P), Gamma FALSE #> 1207 76 0.5317111 0.103568281 fv Log-Normal RP(P), Gamma FALSE #> 1223 77 0.8201123 0.155989547 fv Log-Normal RP(P), Gamma FALSE #> 1239 78 0.7324703 0.140075929 fv Log-Normal RP(P), Gamma FALSE #> 1255 79 0.9938648 0.182439175 fv Log-Normal RP(P), Gamma TRUE #> 1271 80 0.5406339 0.105944290 fv Log-Normal RP(P), Gamma FALSE #> 1287 81 0.8194269 0.152455464 fv Log-Normal RP(P), Gamma FALSE #> 1303 82 0.6005756 0.115909588 fv Log-Normal RP(P), Gamma FALSE #> 1319 83 0.6898550 0.131609094 fv Log-Normal RP(P), Gamma FALSE #> 1335 84 0.5667630 0.110642783 fv Log-Normal RP(P), Gamma FALSE #> 1351 85 0.6773712 0.132784297 fv Log-Normal RP(P), Gamma FALSE #> 1367 86 0.5699243 0.113421403 fv Log-Normal RP(P), Gamma FALSE #> 1383 87 0.6537014 0.126044444 fv Log-Normal RP(P), Gamma FALSE #> 1399 88 0.6600437 0.127234347 fv Log-Normal RP(P), Gamma FALSE #> 1415 89 0.9099395 0.169648022 fv Log-Normal RP(P), Gamma TRUE #> 1431 90 0.7941829 0.150612563 fv Log-Normal RP(P), Gamma FALSE #> 1447 91 0.7956442 0.149468843 fv Log-Normal RP(P), Gamma FALSE #> 1463 92 0.7891605 0.150545862 fv Log-Normal RP(P), Gamma FALSE #> 1479 93 0.5507555 0.107524863 fv Log-Normal RP(P), Gamma FALSE #> 1495 94 0.6893063 0.131615461 fv Log-Normal RP(P), Gamma FALSE #> 1511 95 0.6382982 0.123572285 fv Log-Normal RP(P), Gamma FALSE #> 1527 96 0.5046216 0.099786695 fv Log-Normal RP(P), Gamma FALSE #> 1543 97 0.7335341 0.140274698 fv Log-Normal RP(P), Gamma FALSE #> 1559 98 0.4142127 0.083239347 fv Log-Normal RP(P), Gamma FALSE #> 1575 99 0.6777154 0.128918607 fv Log-Normal RP(P), Gamma FALSE #> 1591 100 0.5891772 0.114720160 fv Log-Normal RP(P), Gamma FALSE #> 1607 101 0.5518648 0.107174335 fv Log-Normal RP(P), Gamma FALSE #> 1623 102 0.4756834 0.094711857 fv Log-Normal RP(P), Gamma FALSE #> 1639 103 0.7016967 0.133963829 fv Log-Normal RP(P), Gamma FALSE #> 1655 104 0.7084303 0.137263107 fv Log-Normal RP(P), Gamma FALSE #> 1671 105 0.5064685 0.102906578 fv Log-Normal RP(P), Gamma FALSE #> 1687 106 0.5857525 0.114320345 fv Log-Normal RP(P), Gamma FALSE #> 1703 107 0.6995063 0.132392724 fv Log-Normal RP(P), Gamma FALSE #> 1719 108 0.6165509 0.119326267 fv Log-Normal RP(P), Gamma FALSE #> 1735 109 0.8984590 0.168924157 fv Log-Normal RP(P), Gamma FALSE #> 1751 110 0.7971634 0.150429620 fv Log-Normal RP(P), Gamma FALSE #> 1767 111 0.6308884 0.123949462 fv Log-Normal RP(P), Gamma FALSE #> 1783 112 0.6636078 0.127316904 fv Log-Normal RP(P), Gamma FALSE #> 1799 113 0.7259975 0.136892504 fv Log-Normal RP(P), Gamma FALSE #> 1815 114 0.6262837 0.122125778 fv Log-Normal RP(P), Gamma FALSE #> 1831 115 0.6652682 0.127308897 fv Log-Normal RP(P), Gamma FALSE #> 1847 116 0.6770393 0.129129051 fv Log-Normal RP(P), Gamma FALSE #> 1863 117 0.7575098 0.143016176 fv Log-Normal RP(P), Gamma FALSE #> 1879 118 0.5399997 0.105372939 fv Log-Normal RP(P), Gamma FALSE #> 1895 119 0.5340591 0.104867540 fv Log-Normal RP(P), Gamma FALSE #> 1911 120 0.7487613 0.142422272 fv Log-Normal RP(P), Gamma FALSE #> 1927 121 0.6742231 0.129655167 fv Log-Normal RP(P), Gamma FALSE #> 1943 122 0.5368862 0.108010594 fv Log-Normal RP(P), Gamma FALSE #> 1959 123 0.4854876 0.096157026 fv Log-Normal RP(P), Gamma FALSE #> 1975 124 0.5249067 0.104010179 fv Log-Normal RP(P), Gamma FALSE #> 1991 125 0.4728895 0.093518687 fv Log-Normal RP(P), Gamma FALSE #> 2007 126 0.9488240 0.174441002 fv Log-Normal RP(P), Gamma TRUE #> 2023 127 0.4311185 0.086119704 fv Log-Normal RP(P), Gamma FALSE #> 2039 128 0.4413847 0.087730859 fv Log-Normal RP(P), Gamma FALSE #> 2055 129 NA NA fv Log-Normal RP(P), Gamma NA #> 2071 130 0.5336320 0.106231024 fv Log-Normal RP(P), Gamma FALSE #> 2087 131 0.5858983 0.113618046 fv Log-Normal RP(P), Gamma FALSE #> 2103 132 0.6742043 0.128792567 fv Log-Normal RP(P), Gamma FALSE #> 2119 133 0.8441107 0.157692189 fv Log-Normal RP(P), Gamma FALSE #> 2135 134 0.8722116 0.161293518 fv Log-Normal RP(P), Gamma FALSE #> 2151 135 0.6602743 0.128176844 fv Log-Normal RP(P), Gamma FALSE #> 2167 136 0.5612475 0.112751238 fv Log-Normal RP(P), Gamma FALSE #> 2183 137 0.4623204 0.092357534 fv Log-Normal RP(P), Gamma FALSE #> 2199 138 0.4908476 0.097235287 fv Log-Normal RP(P), Gamma FALSE #> 2215 139 0.6199716 0.119201745 fv Log-Normal RP(P), Gamma FALSE #> 2231 140 0.6891782 0.130965978 fv Log-Normal RP(P), Gamma FALSE #> 2247 141 0.4059617 0.082546224 fv Log-Normal RP(P), Gamma FALSE #> 2263 142 0.4534912 0.090599077 fv Log-Normal RP(P), Gamma FALSE #> 2279 143 0.5205738 0.101978989 fv Log-Normal RP(P), Gamma FALSE #> 2295 144 0.6658738 0.130280150 fv Log-Normal RP(P), Gamma FALSE #> 2311 145 0.4853461 0.095873172 fv Log-Normal RP(P), Gamma FALSE #> 2327 146 0.6720809 0.128706896 fv Log-Normal RP(P), Gamma FALSE #> 2343 147 0.6507118 0.128489909 fv Log-Normal RP(P), Gamma FALSE #> 2359 148 0.5095945 0.100822955 fv Log-Normal RP(P), Gamma FALSE #> 2375 149 0.3835714 0.078576851 fv Log-Normal RP(P), Gamma FALSE #> 2391 150 0.5016718 0.099016609 fv Log-Normal RP(P), Gamma FALSE #> 2407 151 0.8315877 0.156138668 fv Log-Normal RP(P), Gamma FALSE #> 2423 152 0.6110434 0.117965209 fv Log-Normal RP(P), Gamma FALSE #> 2439 153 0.7767963 0.147635467 fv Log-Normal RP(P), Gamma FALSE #> 2455 154 0.6464367 0.123675217 fv Log-Normal RP(P), Gamma FALSE #> 2471 155 0.9166992 0.171012178 fv Log-Normal RP(P), Gamma TRUE #> 2487 156 0.5371060 0.105038383 fv Log-Normal RP(P), Gamma FALSE #> 2503 157 0.5603420 0.109709264 fv Log-Normal RP(P), Gamma FALSE #> 2519 158 0.6131854 0.119373111 fv Log-Normal RP(P), Gamma FALSE #> 2535 159 0.6606685 0.127011784 fv Log-Normal RP(P), Gamma FALSE #> 2551 160 0.6082429 0.116880821 fv Log-Normal RP(P), Gamma FALSE #> 2567 161 0.8477261 0.159265826 fv Log-Normal RP(P), Gamma FALSE #> 2583 162 0.8610655 0.160638530 fv Log-Normal RP(P), Gamma FALSE #> 2599 163 0.5255327 0.102820821 fv Log-Normal RP(P), Gamma FALSE #> 2615 164 0.6363234 0.123177257 fv Log-Normal RP(P), Gamma FALSE #> 2631 165 0.4847113 0.095621852 fv Log-Normal RP(P), Gamma FALSE #> 2647 166 0.4273386 0.086136647 fv Log-Normal RP(P), Gamma FALSE #> 2663 167 0.6483222 0.124315665 fv Log-Normal RP(P), Gamma FALSE #> 2679 168 0.7464834 0.140802165 fv Log-Normal RP(P), Gamma FALSE #> 2695 169 0.6310328 0.122313242 fv Log-Normal RP(P), Gamma FALSE #> 2711 170 0.6614880 0.126258548 fv Log-Normal RP(P), Gamma FALSE #> 2727 171 0.7041851 0.133318185 fv Log-Normal RP(P), Gamma FALSE #> 2743 172 0.6398290 0.122342065 fv Log-Normal RP(P), Gamma FALSE #> 2759 173 0.7006805 0.134276835 fv Log-Normal RP(P), Gamma FALSE #> 2775 174 0.5291788 0.103456703 fv Log-Normal RP(P), Gamma FALSE #> 2791 175 0.7108273 0.135795471 fv Log-Normal RP(P), Gamma FALSE #> 2807 176 0.8661291 0.161557935 fv Log-Normal RP(P), Gamma FALSE #> 2823 177 0.6642310 0.126471594 fv Log-Normal RP(P), Gamma FALSE #> 2839 178 0.4796659 0.095097392 fv Log-Normal RP(P), Gamma FALSE #> 2855 179 0.7824077 0.146493201 fv Log-Normal RP(P), Gamma FALSE #> 2871 180 0.4968833 0.098150177 fv Log-Normal RP(P), Gamma FALSE #> 2887 181 0.6323696 0.121435745 fv Log-Normal RP(P), Gamma FALSE #> 2903 182 1.0216845 0.186453940 fv Log-Normal RP(P), Gamma TRUE #> 2919 183 0.6566254 0.127917698 fv Log-Normal RP(P), Gamma FALSE #> 2935 184 0.8214407 0.153256632 fv Log-Normal RP(P), Gamma FALSE #> 2951 185 0.7216302 0.137253976 fv Log-Normal RP(P), Gamma FALSE #> 2967 186 0.6969526 0.133055560 fv Log-Normal RP(P), Gamma FALSE #> 2983 187 0.6428409 0.124161801 fv Log-Normal RP(P), Gamma FALSE #> 2999 188 0.8407790 0.159841769 fv Log-Normal RP(P), Gamma FALSE #> 3015 189 0.6289527 0.121021866 fv Log-Normal RP(P), Gamma FALSE #> 3031 190 0.6326976 0.120915735 fv Log-Normal RP(P), Gamma FALSE #> 3047 191 0.6249393 0.120592489 fv Log-Normal RP(P), Gamma FALSE #> 3063 192 0.6598537 0.128466551 fv Log-Normal RP(P), Gamma FALSE #> 3079 193 0.6102061 0.117379674 fv Log-Normal RP(P), Gamma FALSE #> 3095 194 0.8914916 0.165672989 fv Log-Normal RP(P), Gamma FALSE #> 3111 195 0.5772301 0.113864924 fv Log-Normal RP(P), Gamma FALSE #> 3127 196 0.5383756 0.105235105 fv Log-Normal RP(P), Gamma FALSE #> 3143 197 0.6041119 0.116883514 fv Log-Normal RP(P), Gamma FALSE #> 3159 198 0.7005811 0.133773352 fv Log-Normal RP(P), Gamma FALSE #> 3175 199 0.4750485 0.094149962 fv Log-Normal RP(P), Gamma FALSE #> 3191 200 0.5370248 0.105409839 fv Log-Normal RP(P), Gamma FALSE #> 3207 201 0.7905997 0.148883784 fv Log-Normal RP(P), Gamma FALSE #> 3223 202 0.6263271 0.120314826 fv Log-Normal RP(P), Gamma FALSE #> 3239 203 0.5566798 0.108533443 fv Log-Normal RP(P), Gamma FALSE #> 3255 204 0.5878622 0.114038141 fv Log-Normal RP(P), Gamma FALSE #> 3271 205 0.5479470 0.106767841 fv Log-Normal RP(P), Gamma FALSE #> 3287 206 0.6715801 0.128670374 fv Log-Normal RP(P), Gamma FALSE #> 3303 207 0.8542152 0.163744329 fv Log-Normal RP(P), Gamma FALSE #> 3319 208 0.8157609 0.151809241 fv Log-Normal RP(P), Gamma FALSE #> 3335 209 0.5728611 0.111944591 fv Log-Normal RP(P), Gamma FALSE #> 3351 210 0.5943906 0.115022190 fv Log-Normal RP(P), Gamma FALSE #> 3367 211 0.7064552 0.134382106 fv Log-Normal RP(P), Gamma FALSE #> 3383 212 0.6689386 0.127628218 fv Log-Normal RP(P), Gamma FALSE #> 3399 213 0.5688727 0.111551542 fv Log-Normal RP(P), Gamma FALSE #> 3415 214 0.5600375 0.108774437 fv Log-Normal RP(P), Gamma FALSE #> 3431 215 0.6737893 0.131910998 fv Log-Normal RP(P), Gamma FALSE #> 3447 216 0.8405789 0.157041468 fv Log-Normal RP(P), Gamma FALSE #> 3463 217 0.6564690 0.126109444 fv Log-Normal RP(P), Gamma FALSE #> 3479 218 0.6246779 0.123646184 fv Log-Normal RP(P), Gamma FALSE #> 3495 219 0.8259887 0.156771669 fv Log-Normal RP(P), Gamma FALSE #> 3511 220 0.7024489 0.133066264 fv Log-Normal RP(P), Gamma FALSE #> 3527 221 0.5596475 0.109357114 fv Log-Normal RP(P), Gamma FALSE #> 3543 222 0.3319187 0.068263082 fv Log-Normal RP(P), Gamma TRUE #> 3559 223 0.4898847 0.096767377 fv Log-Normal RP(P), Gamma FALSE #> 3575 224 0.4907177 0.096440093 fv Log-Normal RP(P), Gamma FALSE #> 3591 225 0.7652595 0.144819052 fv Log-Normal RP(P), Gamma FALSE #> 3607 226 0.8552764 0.158589758 fv Log-Normal RP(P), Gamma FALSE #> 3623 227 0.6388617 0.122214127 fv Log-Normal RP(P), Gamma FALSE #> 3639 228 0.7198722 0.136042538 fv Log-Normal RP(P), Gamma FALSE #> 3655 229 0.3795975 0.077804857 fv Log-Normal RP(P), Gamma TRUE #> 3671 230 0.5809617 0.113716968 fv Log-Normal RP(P), Gamma FALSE #> 3687 231 0.5863665 0.113707295 fv Log-Normal RP(P), Gamma FALSE #> 3703 232 0.8032751 0.151280169 fv Log-Normal RP(P), Gamma FALSE #> 3719 233 0.8531541 0.160153943 fv Log-Normal RP(P), Gamma FALSE #> 3735 234 0.8495275 0.159594009 fv Log-Normal RP(P), Gamma FALSE #> 3751 235 0.4897131 0.096464651 fv Log-Normal RP(P), Gamma FALSE #> 3767 236 0.5762813 0.112345236 fv Log-Normal RP(P), Gamma FALSE #> 3783 237 0.5286123 0.104396860 fv Log-Normal RP(P), Gamma FALSE #> 3799 238 0.7811056 0.148031077 fv Log-Normal RP(P), Gamma FALSE #> 3815 239 0.8198879 0.155297026 fv Log-Normal RP(P), Gamma FALSE #> 3831 240 0.5414650 0.105722595 fv Log-Normal RP(P), Gamma FALSE #> 3847 241 0.6511463 0.125298011 fv Log-Normal RP(P), Gamma FALSE #> 3863 242 0.4836988 0.095465475 fv Log-Normal RP(P), Gamma FALSE #> 3879 243 0.6196244 0.120104981 fv Log-Normal RP(P), Gamma FALSE #> 3895 244 0.5113606 0.100849696 fv Log-Normal RP(P), Gamma FALSE #> 3911 245 0.4278909 0.085833193 fv Log-Normal RP(P), Gamma FALSE #> 3927 246 0.7643256 0.148247377 fv Log-Normal RP(P), Gamma FALSE #> 3943 247 0.6396835 0.124646729 fv Log-Normal RP(P), Gamma FALSE #> 3959 248 0.8887262 0.165189703 fv Log-Normal RP(P), Gamma FALSE #> 3975 249 0.5107049 0.100257685 fv Log-Normal RP(P), Gamma FALSE #> 3991 250 0.7077054 0.135338727 fv Log-Normal RP(P), Gamma FALSE #> 4007 251 0.5668351 0.110779312 fv Log-Normal RP(P), Gamma FALSE #> 4023 252 0.4787966 0.096884322 fv Log-Normal RP(P), Gamma FALSE #> 4039 253 0.7726230 0.145916040 fv Log-Normal RP(P), Gamma FALSE #> 4055 254 0.6804182 0.131478555 fv Log-Normal RP(P), Gamma FALSE #> 4071 255 0.8644481 0.162650447 fv Log-Normal RP(P), Gamma FALSE #> 4087 256 0.7870450 0.149599723 fv Log-Normal RP(P), Gamma FALSE #> 4103 257 0.7192110 0.135991127 fv Log-Normal RP(P), Gamma FALSE #> 4119 258 0.4068613 0.083073788 fv Log-Normal RP(P), Gamma FALSE #> 4135 259 0.5817998 0.112751709 fv Log-Normal RP(P), Gamma FALSE #> 4151 260 0.5469431 0.106420507 fv Log-Normal RP(P), Gamma FALSE #> 4167 261 0.7080536 0.133881161 fv Log-Normal RP(P), Gamma FALSE #> 4183 262 0.5942497 0.115095777 fv Log-Normal RP(P), Gamma FALSE #> 4199 263 0.7020528 0.133587665 fv Log-Normal RP(P), Gamma FALSE #> 4215 264 0.7159177 0.137273577 fv Log-Normal RP(P), Gamma FALSE #> 4231 265 0.5643244 0.109794624 fv Log-Normal RP(P), Gamma FALSE #> 4247 266 0.5478052 0.106965318 fv Log-Normal RP(P), Gamma FALSE #> 4263 267 0.5885489 0.115653369 fv Log-Normal RP(P), Gamma FALSE #> 4279 268 0.8693749 0.161917429 fv Log-Normal RP(P), Gamma FALSE #> 4295 269 0.5582825 0.109290397 fv Log-Normal RP(P), Gamma FALSE #> 4311 270 0.5684455 0.110779055 fv Log-Normal RP(P), Gamma FALSE #> 4327 271 0.7749650 0.149141098 fv Log-Normal RP(P), Gamma FALSE #> 4343 272 0.5156209 0.101591602 fv Log-Normal RP(P), Gamma FALSE #> 4359 273 0.6159012 0.118371233 fv Log-Normal RP(P), Gamma FALSE #> 4375 274 0.7947242 0.153820357 fv Log-Normal RP(P), Gamma FALSE #> 4391 275 0.6368109 0.127096784 fv Log-Normal RP(P), Gamma FALSE #> 4407 276 0.6711689 0.127922100 fv Log-Normal RP(P), Gamma FALSE #> 4423 277 0.6940475 0.133116364 fv Log-Normal RP(P), Gamma FALSE #> 4439 278 0.5152790 0.101199568 fv Log-Normal RP(P), Gamma FALSE #> 4455 279 0.8113280 0.153290256 fv Log-Normal RP(P), Gamma FALSE #> 4471 280 0.7000853 0.133350179 fv Log-Normal RP(P), Gamma FALSE #> 4487 281 0.6962477 0.133227021 fv Log-Normal RP(P), Gamma FALSE #> 4503 282 0.5426193 0.105700649 fv Log-Normal RP(P), Gamma FALSE #> 4519 283 0.6864975 0.130397237 fv Log-Normal RP(P), Gamma FALSE #> 4535 284 0.5396176 0.105832850 fv Log-Normal RP(P), Gamma FALSE #> 4551 285 0.5913837 0.114382562 fv Log-Normal RP(P), Gamma FALSE #> 4567 286 0.6302251 0.122112449 fv Log-Normal RP(P), Gamma FALSE #> 4583 287 0.5331961 0.104369454 fv Log-Normal RP(P), Gamma FALSE #> 4599 288 0.5392503 0.105693369 fv Log-Normal RP(P), Gamma FALSE #> 4615 289 0.6092166 0.117897281 fv Log-Normal RP(P), Gamma FALSE #> 4631 290 0.6196235 0.119781773 fv Log-Normal RP(P), Gamma FALSE #> 4647 291 0.6359919 0.121775820 fv Log-Normal RP(P), Gamma FALSE #> 4663 292 0.5575946 0.109509524 fv Log-Normal RP(P), Gamma FALSE #> 4679 293 0.5651291 0.109070835 fv Log-Normal RP(P), Gamma FALSE #> 4695 294 0.6422035 0.123311702 fv Log-Normal RP(P), Gamma FALSE #> 4711 295 0.5802791 0.113172050 fv Log-Normal RP(P), Gamma FALSE #> 4727 296 0.7555790 0.143540463 fv Log-Normal RP(P), Gamma FALSE #> 4743 297 0.3852702 0.078217517 fv Log-Normal RP(P), Gamma TRUE #> 4759 298 0.5804362 0.112370909 fv Log-Normal RP(P), Gamma FALSE #> 4775 299 0.7034566 0.133837283 fv Log-Normal RP(P), Gamma FALSE #> 4791 300 0.5792017 0.112548997 fv Log-Normal RP(P), Gamma FALSE #> 4807 301 0.9200582 0.170247237 fv Log-Normal RP(P), Gamma TRUE #> 4823 302 0.7453558 0.144203963 fv Log-Normal RP(P), Gamma FALSE #> 4839 303 0.5897325 0.114210118 fv Log-Normal RP(P), Gamma FALSE #> 4855 304 0.5895917 0.114060297 fv Log-Normal RP(P), Gamma FALSE #> 4871 305 0.7011073 0.133304181 fv Log-Normal RP(P), Gamma FALSE #> 4887 306 0.5567072 0.109075590 fv Log-Normal RP(P), Gamma FALSE #> 4903 307 0.5115247 0.099800267 fv Log-Normal RP(P), Gamma FALSE #> 4919 308 0.6127341 0.118267081 fv Log-Normal RP(P), Gamma FALSE #> 4935 309 0.5241423 0.102639868 fv Log-Normal RP(P), Gamma FALSE #> 4951 310 0.5755538 0.112432453 fv Log-Normal RP(P), Gamma FALSE #> 4967 311 0.7951455 0.149340322 fv Log-Normal RP(P), Gamma FALSE #> 4983 312 0.5859886 0.113064816 fv Log-Normal RP(P), Gamma FALSE #> 4999 313 0.4372528 0.087909712 fv Log-Normal RP(P), Gamma FALSE #> 5015 314 0.6147684 0.119382806 fv Log-Normal RP(P), Gamma FALSE #> 5031 315 0.5645028 0.109393669 fv Log-Normal RP(P), Gamma FALSE #> 5047 316 0.5565989 0.109845464 fv Log-Normal RP(P), Gamma FALSE #> 5063 317 0.7191520 0.135613702 fv Log-Normal RP(P), Gamma FALSE #> 5079 318 0.5965863 0.120080385 fv Log-Normal RP(P), Gamma FALSE #> 5095 319 0.6537813 0.125979738 fv Log-Normal RP(P), Gamma FALSE #> 5111 320 0.7201799 0.136255734 fv Log-Normal RP(P), Gamma FALSE #> 5127 321 0.8328070 0.157289651 fv Log-Normal RP(P), Gamma FALSE #> 5143 322 0.4960487 0.098036056 fv Log-Normal RP(P), Gamma FALSE #> 5159 323 0.6557055 0.125129845 fv Log-Normal RP(P), Gamma FALSE #> 5175 324 0.4850376 0.096139606 fv Log-Normal RP(P), Gamma FALSE #> 5191 325 0.5705067 0.111972275 fv Log-Normal RP(P), Gamma FALSE #> 5207 326 0.7884406 0.148717603 fv Log-Normal RP(P), Gamma FALSE #> 5223 327 0.4470598 0.088883562 fv Log-Normal RP(P), Gamma FALSE #> 5239 328 0.6211920 0.118836862 fv Log-Normal RP(P), Gamma FALSE #> 5255 329 0.6073953 0.118395269 fv Log-Normal RP(P), Gamma FALSE #> 5271 330 0.4730565 0.093665743 fv Log-Normal RP(P), Gamma FALSE #> 5287 331 0.7787809 0.146186396 fv Log-Normal RP(P), Gamma FALSE #> 5303 332 0.6139570 0.118138831 fv Log-Normal RP(P), Gamma FALSE #> 5319 333 0.4885412 0.097414696 fv Log-Normal RP(P), Gamma FALSE #> 5335 334 0.4894316 0.096621925 fv Log-Normal RP(P), Gamma FALSE #> 5351 335 0.5028639 0.099176225 fv Log-Normal RP(P), Gamma FALSE #> 5367 336 0.7814231 0.148463487 fv Log-Normal RP(P), Gamma FALSE #> 5383 337 0.6035500 0.116907362 fv Log-Normal RP(P), Gamma FALSE #> 5399 338 0.6560915 0.125409466 fv Log-Normal RP(P), Gamma FALSE #> 5415 339 0.5183767 0.102142302 fv Log-Normal RP(P), Gamma FALSE #> 5431 340 0.8199144 0.154586635 fv Log-Normal RP(P), Gamma FALSE #> 5447 341 0.5944860 0.117533729 fv Log-Normal RP(P), Gamma FALSE #> 5463 342 0.5193587 0.101756311 fv Log-Normal RP(P), Gamma FALSE #> 5479 343 0.5446257 0.106850374 fv Log-Normal RP(P), Gamma FALSE #> 5495 344 0.6177256 0.119809792 fv Log-Normal RP(P), Gamma FALSE #> 5511 345 0.5759749 0.111483975 fv Log-Normal RP(P), Gamma FALSE #> 5527 346 0.4476355 0.090001470 fv Log-Normal RP(P), Gamma FALSE #> 5543 347 0.5928304 0.115552336 fv Log-Normal RP(P), Gamma FALSE #> 5559 348 0.5431772 0.107072485 fv Log-Normal RP(P), Gamma FALSE #> 5575 349 0.5982843 0.115709329 fv Log-Normal RP(P), Gamma FALSE #> 5591 350 0.7122423 0.135849723 fv Log-Normal RP(P), Gamma FALSE #> 5607 351 0.5011156 0.098603090 fv Log-Normal RP(P), Gamma FALSE #> 5623 352 0.7612241 0.144981811 fv Log-Normal RP(P), Gamma FALSE #> 5639 353 0.6852220 0.132046410 fv Log-Normal RP(P), Gamma FALSE #> 5655 354 0.5857311 0.113477028 fv Log-Normal RP(P), Gamma FALSE #> 5671 355 0.6652417 0.127193917 fv Log-Normal RP(P), Gamma FALSE #> 5687 356 0.6173133 0.120742547 fv Log-Normal RP(P), Gamma FALSE #> 5703 357 0.9043420 0.173016497 fv Log-Normal RP(P), Gamma TRUE #> 5719 358 0.6080989 0.117536852 fv Log-Normal RP(P), Gamma FALSE #> 5735 359 0.4819349 0.096115857 fv Log-Normal RP(P), Gamma FALSE #> 5751 360 0.5666892 0.109982691 fv Log-Normal RP(P), Gamma FALSE #> 5767 361 0.5681239 0.110789224 fv Log-Normal RP(P), Gamma FALSE #> 5783 362 0.6273366 0.122363810 fv Log-Normal RP(P), Gamma FALSE #> 5799 363 0.5816115 0.114102264 fv Log-Normal RP(P), Gamma FALSE #> 5815 364 0.6876475 0.130288820 fv Log-Normal RP(P), Gamma FALSE #> 5831 365 0.6489056 0.124382293 fv Log-Normal RP(P), Gamma FALSE #> 5847 366 0.5872749 0.113916746 fv Log-Normal RP(P), Gamma FALSE #> 5863 367 0.7316313 0.139986854 fv Log-Normal RP(P), Gamma FALSE #> 5879 368 0.8058332 0.151315932 fv Log-Normal RP(P), Gamma FALSE #> 5895 369 0.5094609 0.100121566 fv Log-Normal RP(P), Gamma FALSE #> 5911 370 0.6612134 0.126708507 fv Log-Normal RP(P), Gamma FALSE #> 5927 371 0.6350437 0.124249605 fv Log-Normal RP(P), Gamma FALSE #> 5943 372 0.4578136 0.091413362 fv Log-Normal RP(P), Gamma FALSE #> 5959 373 0.8627763 0.160868809 fv Log-Normal RP(P), Gamma FALSE #> 5975 374 0.5059833 0.100171027 fv Log-Normal RP(P), Gamma FALSE #> 5991 375 0.6308717 0.122756047 fv Log-Normal RP(P), Gamma FALSE #> 6007 376 0.6040654 0.116977417 fv Log-Normal RP(P), Gamma FALSE #> 6023 377 0.4763770 0.094353796 fv Log-Normal RP(P), Gamma FALSE #> 6039 378 0.5335836 0.104644051 fv Log-Normal RP(P), Gamma FALSE #> 6055 379 0.4834626 0.095929962 fv Log-Normal RP(P), Gamma FALSE #> 6071 380 0.5706786 0.110657205 fv Log-Normal RP(P), Gamma FALSE #> 6087 381 0.6870494 0.130888764 fv Log-Normal RP(P), Gamma FALSE #> 6103 382 0.6297807 0.121858418 fv Log-Normal RP(P), Gamma FALSE #> 6119 383 0.6695102 0.128506247 fv Log-Normal RP(P), Gamma FALSE #> 6135 384 0.5836747 0.112718407 fv Log-Normal RP(P), Gamma FALSE #> 6151 385 0.5061154 0.100209905 fv Log-Normal RP(P), Gamma FALSE #> 6167 386 0.7746371 0.147352863 fv Log-Normal RP(P), Gamma FALSE #> 6183 387 0.5793071 0.114012787 fv Log-Normal RP(P), Gamma FALSE #> 6199 388 0.7006456 0.132262925 fv Log-Normal RP(P), Gamma FALSE #> 6215 389 0.6591775 0.125828401 fv Log-Normal RP(P), Gamma FALSE #> 6231 390 0.5756189 0.112118694 fv Log-Normal RP(P), Gamma FALSE #> 6247 391 0.7166769 0.135906531 fv Log-Normal RP(P), Gamma FALSE #> 6263 392 0.5582759 0.109346080 fv Log-Normal RP(P), Gamma FALSE #> 6279 393 0.5188225 0.102003293 fv Log-Normal RP(P), Gamma FALSE #> 6295 394 0.8340129 0.157802893 fv Log-Normal RP(P), Gamma FALSE #> 6311 395 0.6561839 0.125677696 fv Log-Normal RP(P), Gamma FALSE #> 6327 396 0.8530720 0.159253424 fv Log-Normal RP(P), Gamma FALSE #> 6343 397 0.5767037 0.111714735 fv Log-Normal RP(P), Gamma FALSE #> 6359 398 0.5759109 0.111597778 fv Log-Normal RP(P), Gamma FALSE #> 6375 399 0.7355098 0.139897611 fv Log-Normal RP(P), Gamma FALSE #> 6391 400 0.4833498 0.096136542 fv Log-Normal RP(P), Gamma FALSE #> 6407 401 0.5287786 0.103547267 fv Log-Normal RP(P), Gamma FALSE #> 6423 402 0.4729205 0.094927871 fv Log-Normal RP(P), Gamma FALSE #> 6439 403 0.4768322 0.093865073 fv Log-Normal RP(P), Gamma FALSE #> 6455 404 0.5503689 0.108894551 fv Log-Normal RP(P), Gamma FALSE #> 6471 405 0.4675984 0.093559702 fv Log-Normal RP(P), Gamma FALSE #> 6487 406 0.5998105 0.115658274 fv Log-Normal RP(P), Gamma FALSE #> 6503 407 0.7071862 0.135917794 fv Log-Normal RP(P), Gamma FALSE #> 6519 408 0.4551711 0.092545500 fv Log-Normal RP(P), Gamma FALSE #> 6535 409 0.6003096 0.116002539 fv Log-Normal RP(P), Gamma FALSE #> 6551 410 0.7354522 0.141341112 fv Log-Normal RP(P), Gamma FALSE #> 6567 411 0.5842355 0.114276721 fv Log-Normal RP(P), Gamma FALSE #> 6583 412 0.6358926 0.123916656 fv Log-Normal RP(P), Gamma FALSE #> 6599 413 0.4809322 0.096109620 fv Log-Normal RP(P), Gamma FALSE #> 6615 414 0.8207219 0.154498864 fv Log-Normal RP(P), Gamma FALSE #> 6631 415 1.0478283 0.190504759 fv Log-Normal RP(P), Gamma TRUE #> 6647 416 0.5063546 0.100886285 fv Log-Normal RP(P), Gamma FALSE #> 6663 417 0.5075324 0.100029009 fv Log-Normal RP(P), Gamma FALSE #> 6679 418 0.7581325 0.142360888 fv Log-Normal RP(P), Gamma FALSE #> 6695 419 0.4093657 0.082325590 fv Log-Normal RP(P), Gamma FALSE #> 6711 420 0.6457404 0.124412096 fv Log-Normal RP(P), Gamma FALSE #> 6727 421 0.7234085 0.138143903 fv Log-Normal RP(P), Gamma FALSE #> 6743 422 0.5477184 0.108345673 fv Log-Normal RP(P), Gamma FALSE #> 6759 423 0.5300261 0.103870701 fv Log-Normal RP(P), Gamma FALSE #> 6775 424 0.5958915 0.115434340 fv Log-Normal RP(P), Gamma FALSE #> 6791 425 0.7100163 0.136393457 fv Log-Normal RP(P), Gamma FALSE #> 6807 426 0.7479045 0.142305623 fv Log-Normal RP(P), Gamma FALSE #> 6823 427 0.9319722 0.173864781 fv Log-Normal RP(P), Gamma TRUE #> 6839 428 0.7297775 0.139498288 fv Log-Normal RP(P), Gamma FALSE #> 6855 429 0.6427432 0.123394639 fv Log-Normal RP(P), Gamma FALSE #> 6871 430 0.7897896 0.149428903 fv Log-Normal RP(P), Gamma FALSE #> 6887 431 0.5758042 0.112117071 fv Log-Normal RP(P), Gamma FALSE #> 6903 432 0.7845424 0.148213986 fv Log-Normal RP(P), Gamma FALSE #> 6919 433 0.5083695 0.099715747 fv Log-Normal RP(P), Gamma FALSE #> 6935 434 0.5697794 0.111842649 fv Log-Normal RP(P), Gamma FALSE #> 6951 435 0.4351491 0.087346250 fv Log-Normal RP(P), Gamma FALSE #> 6967 436 0.6492604 0.124247657 fv Log-Normal RP(P), Gamma FALSE #> 6983 437 0.4988429 0.098454001 fv Log-Normal RP(P), Gamma FALSE #> 6999 438 0.7564725 0.143124263 fv Log-Normal RP(P), Gamma FALSE #> 7015 439 0.5207554 0.103025427 fv Log-Normal RP(P), Gamma FALSE #> 7031 440 0.4006907 0.082110901 fv Log-Normal RP(P), Gamma FALSE #> 7047 441 0.5223614 0.103142164 fv Log-Normal RP(P), Gamma FALSE #> 7063 442 0.6273843 0.121115548 fv Log-Normal RP(P), Gamma FALSE #> 7079 443 0.7123241 0.136178257 fv Log-Normal RP(P), Gamma FALSE #> 7095 444 0.8116075 0.154510279 fv Log-Normal RP(P), Gamma FALSE #> 7111 445 0.7520363 0.141861132 fv Log-Normal RP(P), Gamma FALSE #> 7127 446 0.5504050 0.107298726 fv Log-Normal RP(P), Gamma FALSE #> 7143 447 0.7152656 0.135495651 fv Log-Normal RP(P), Gamma FALSE #> 7159 448 0.7269417 0.137299228 fv Log-Normal RP(P), Gamma FALSE #> 7175 449 0.8130967 0.153586780 fv Log-Normal RP(P), Gamma FALSE #> 7191 450 0.5713784 0.110828743 fv Log-Normal RP(P), Gamma FALSE #> 7207 451 0.6855537 0.130631019 fv Log-Normal RP(P), Gamma FALSE #> 7223 452 0.6852773 0.130601824 fv Log-Normal RP(P), Gamma FALSE #> 7239 453 0.6419976 0.123417285 fv Log-Normal RP(P), Gamma FALSE #> 7255 454 0.5915648 0.114794688 fv Log-Normal RP(P), Gamma FALSE #> 7271 455 0.5989062 0.116767828 fv Log-Normal RP(P), Gamma FALSE #> 7287 456 0.4514905 0.090400569 fv Log-Normal RP(P), Gamma FALSE #> 7303 457 0.7626711 0.143657175 fv Log-Normal RP(P), Gamma FALSE #> 7319 458 0.6695412 0.129232733 fv Log-Normal RP(P), Gamma FALSE #> 7335 459 0.7901092 0.149271994 fv Log-Normal RP(P), Gamma FALSE #> 7351 460 0.5384375 0.104506896 fv Log-Normal RP(P), Gamma FALSE #> 7367 461 0.6738614 0.128328530 fv Log-Normal RP(P), Gamma FALSE #> 7383 462 0.5995043 0.115203166 fv Log-Normal RP(P), Gamma FALSE #> 7399 463 0.8008576 0.152482024 fv Log-Normal RP(P), Gamma FALSE #> 7415 464 0.6534097 0.124409356 fv Log-Normal RP(P), Gamma FALSE #> 7431 465 0.7405431 0.140658325 fv Log-Normal RP(P), Gamma FALSE #> 7447 466 0.7429010 0.141190155 fv Log-Normal RP(P), Gamma FALSE #> 7463 467 0.6592663 0.127357206 fv Log-Normal RP(P), Gamma FALSE #> 7479 468 0.7478064 0.140591623 fv Log-Normal RP(P), Gamma FALSE #> 7495 469 0.7980469 0.151851588 fv Log-Normal RP(P), Gamma FALSE #> 7511 470 0.6707510 0.129109794 fv Log-Normal RP(P), Gamma FALSE #> 7527 471 0.5195360 0.101809578 fv Log-Normal RP(P), Gamma FALSE #> 7543 472 0.7761691 0.146491082 fv Log-Normal RP(P), Gamma FALSE #> 7559 473 0.6077641 0.117774706 fv Log-Normal RP(P), Gamma FALSE #> 7575 474 0.8208932 0.153749136 fv Log-Normal RP(P), Gamma FALSE #> 7591 475 0.5398973 0.105059599 fv Log-Normal RP(P), Gamma FALSE #> 7607 476 0.4413755 0.088778916 fv Log-Normal RP(P), Gamma FALSE #> 7623 477 0.4970617 0.099301281 fv Log-Normal RP(P), Gamma FALSE #> 7639 478 0.6622706 0.125773445 fv Log-Normal RP(P), Gamma FALSE #> 7655 479 0.6789292 0.129891752 fv Log-Normal RP(P), Gamma FALSE #> 7671 480 0.9229350 0.172022096 fv Log-Normal RP(P), Gamma TRUE #> 7687 481 0.8684971 0.161812769 fv Log-Normal RP(P), Gamma FALSE #> 7703 482 0.6084379 0.117279552 fv Log-Normal RP(P), Gamma FALSE #> 7719 483 0.7379684 0.139763885 fv Log-Normal RP(P), Gamma FALSE #> 7735 484 0.7328743 0.138984469 fv Log-Normal RP(P), Gamma FALSE #> 7751 485 0.5262836 0.103060594 fv Log-Normal RP(P), Gamma FALSE #> 7767 486 0.3908574 0.078920916 fv Log-Normal RP(P), Gamma FALSE #> 7783 487 0.7438818 0.140375079 fv Log-Normal RP(P), Gamma FALSE #> 7799 488 0.3983944 0.080663557 fv Log-Normal RP(P), Gamma FALSE #> 7815 489 0.6557783 0.126320270 fv Log-Normal RP(P), Gamma FALSE #> 7831 490 0.6026455 0.116547326 fv Log-Normal RP(P), Gamma FALSE #> 7847 491 0.6247174 0.121016263 fv Log-Normal RP(P), Gamma FALSE #> 7863 492 0.4832708 0.095096379 fv Log-Normal RP(P), Gamma FALSE #> 7879 493 0.9574865 0.177139532 fv Log-Normal RP(P), Gamma TRUE #> 7895 494 0.6006230 0.115956493 fv Log-Normal RP(P), Gamma FALSE #> 7911 495 0.7155432 0.135390082 fv Log-Normal RP(P), Gamma FALSE #> 7927 496 0.8779148 0.162996545 fv Log-Normal RP(P), Gamma FALSE #> 7943 497 0.5217565 0.102371859 fv Log-Normal RP(P), Gamma FALSE #> 7959 498 0.6078818 0.118535765 fv Log-Normal RP(P), Gamma FALSE #> 7975 499 0.7589340 0.144470802 fv Log-Normal RP(P), Gamma FALSE #> 7991 500 0.6576165 0.127056728 fv Log-Normal RP(P), Gamma FALSE #> 8007 501 1.1934506 0.215189767 fv Log-Normal RP(P), Gamma TRUE #> 8023 502 0.7026905 0.134449675 fv Log-Normal RP(P), Gamma FALSE #> 8039 503 0.6461175 0.123792245 fv Log-Normal RP(P), Gamma FALSE #> 8055 504 0.7780519 0.146498296 fv Log-Normal RP(P), Gamma FALSE #> 8071 505 0.6050506 0.116115429 fv Log-Normal RP(P), Gamma FALSE #> 8087 506 0.8133249 0.152842454 fv Log-Normal RP(P), Gamma FALSE #> 8103 507 0.5879703 0.113085205 fv Log-Normal RP(P), Gamma FALSE #> 8119 508 0.5068504 0.101178044 fv Log-Normal RP(P), Gamma FALSE #> 8135 509 0.5746260 0.111451015 fv Log-Normal RP(P), Gamma FALSE #> 8151 510 0.5602904 0.108703773 fv Log-Normal RP(P), Gamma FALSE #> 8167 511 0.4046575 0.081300884 fv Log-Normal RP(P), Gamma FALSE #> 8183 512 0.5938522 0.114988561 fv Log-Normal RP(P), Gamma FALSE #> 8199 513 0.6468916 0.123938467 fv Log-Normal RP(P), Gamma FALSE #> 8215 514 0.6397314 0.123893154 fv Log-Normal RP(P), Gamma FALSE #> 8231 515 0.5028497 0.099639884 fv Log-Normal RP(P), Gamma FALSE #> 8247 516 0.6476726 0.124767612 fv Log-Normal RP(P), Gamma FALSE #> 8263 517 0.3325667 0.068670557 fv Log-Normal RP(P), Gamma TRUE #> 8279 518 0.6558678 0.125826549 fv Log-Normal RP(P), Gamma FALSE #> 8295 519 0.6732987 0.128685268 fv Log-Normal RP(P), Gamma FALSE #> 8311 520 0.6850792 0.130179158 fv Log-Normal RP(P), Gamma FALSE #> 8327 521 0.6370219 0.122012074 fv Log-Normal RP(P), Gamma FALSE #> 8343 522 0.4885136 0.096484117 fv Log-Normal RP(P), Gamma FALSE #> 8359 523 0.6496220 0.124197298 fv Log-Normal RP(P), Gamma FALSE #> 8375 524 0.5234049 0.104270802 fv Log-Normal RP(P), Gamma FALSE #> 8391 525 0.6765518 0.130414457 fv Log-Normal RP(P), Gamma FALSE #> 8407 526 0.5584063 0.109625927 fv Log-Normal RP(P), Gamma FALSE #> 8423 527 0.6834322 0.132081427 fv Log-Normal RP(P), Gamma FALSE #> 8439 528 0.7426000 0.140512963 fv Log-Normal RP(P), Gamma FALSE #> 8455 529 0.7934196 0.148789101 fv Log-Normal RP(P), Gamma FALSE #> 8471 530 0.3948235 0.080023161 fv Log-Normal RP(P), Gamma FALSE #> 8487 531 0.7875890 0.147558495 fv Log-Normal RP(P), Gamma FALSE #> 8503 532 0.6135217 0.117702935 fv Log-Normal RP(P), Gamma FALSE #> 8519 533 0.6120718 0.118048211 fv Log-Normal RP(P), Gamma FALSE #> 8535 534 0.6716551 0.129306507 fv Log-Normal RP(P), Gamma FALSE #> 8551 535 0.7335196 0.138512829 fv Log-Normal RP(P), Gamma FALSE #> 8567 536 0.5204424 0.102465629 fv Log-Normal RP(P), Gamma FALSE #> 8583 537 1.0379600 0.188908964 fv Log-Normal RP(P), Gamma TRUE #> 8599 538 0.4548943 0.090692268 fv Log-Normal RP(P), Gamma FALSE #> 8615 539 0.6713151 0.130815161 fv Log-Normal RP(P), Gamma FALSE #> 8631 540 0.5523580 0.107988775 fv Log-Normal RP(P), Gamma FALSE #> 8647 541 0.8042797 0.150903144 fv Log-Normal RP(P), Gamma FALSE #> 8663 542 0.6949027 0.132583092 fv Log-Normal RP(P), Gamma FALSE #> 8679 543 0.7476093 0.142469608 fv Log-Normal RP(P), Gamma FALSE #> 8695 544 0.6774908 0.129791800 fv Log-Normal RP(P), Gamma FALSE #> 8711 545 0.5143813 0.100902954 fv Log-Normal RP(P), Gamma FALSE #> 8727 546 0.8312447 0.156455946 fv Log-Normal RP(P), Gamma FALSE #> 8743 547 0.6121114 0.118650971 fv Log-Normal RP(P), Gamma FALSE #> 8759 548 0.5140565 0.102068375 fv Log-Normal RP(P), Gamma FALSE #> 8775 549 0.7348816 0.138826062 fv Log-Normal RP(P), Gamma FALSE #> 8791 550 0.5090552 0.102033236 fv Log-Normal RP(P), Gamma FALSE #> 8807 551 0.6688984 0.127755112 fv Log-Normal RP(P), Gamma FALSE #> 8823 552 0.6265386 0.120777429 fv Log-Normal RP(P), Gamma FALSE #> 8839 553 0.7047650 0.132991368 fv Log-Normal RP(P), Gamma FALSE #> 8855 554 0.8291163 0.157127475 fv Log-Normal RP(P), Gamma FALSE #> 8871 555 0.6850161 0.130269138 fv Log-Normal RP(P), Gamma FALSE #> 8887 556 0.7538022 0.142279468 fv Log-Normal RP(P), Gamma FALSE #> 8903 557 0.6250217 0.120230852 fv Log-Normal RP(P), Gamma FALSE #> 8919 558 0.6063746 0.117061554 fv Log-Normal RP(P), Gamma FALSE #> 8935 559 0.5429581 0.106505362 fv Log-Normal RP(P), Gamma FALSE #> 8951 560 0.7137899 0.135857490 fv Log-Normal RP(P), Gamma FALSE #> 8967 561 1.0273063 0.187917372 fv Log-Normal RP(P), Gamma TRUE #> 8983 562 0.7434955 0.141140034 fv Log-Normal RP(P), Gamma FALSE #> 8999 563 0.6801410 0.129591934 fv Log-Normal RP(P), Gamma FALSE #> 9015 564 0.5086320 0.099547959 fv Log-Normal RP(P), Gamma FALSE #> 9031 565 0.5188484 0.102466411 fv Log-Normal RP(P), Gamma FALSE #> 9047 566 0.6244033 0.120264371 fv Log-Normal RP(P), Gamma FALSE #> 9063 567 0.5979873 0.115359367 fv Log-Normal RP(P), Gamma FALSE #> 9079 568 0.4721114 0.093701853 fv Log-Normal RP(P), Gamma FALSE #> 9095 569 0.7965129 0.150098223 fv Log-Normal RP(P), Gamma FALSE #> 9111 570 0.4628960 0.091470885 fv Log-Normal RP(P), Gamma FALSE #> 9127 571 0.5842951 0.112728421 fv Log-Normal RP(P), Gamma FALSE #> 9143 572 0.5708745 0.111699420 fv Log-Normal RP(P), Gamma FALSE #> 9159 573 0.5750242 0.111902694 fv Log-Normal RP(P), Gamma FALSE #> 9175 574 0.6440778 0.123736426 fv Log-Normal RP(P), Gamma FALSE #> 9191 575 0.5468114 0.107030650 fv Log-Normal RP(P), Gamma FALSE #> 9207 576 0.5554273 0.108360345 fv Log-Normal RP(P), Gamma FALSE #> 9223 577 0.9266912 0.174564789 fv Log-Normal RP(P), Gamma TRUE #> 9239 578 0.5261017 0.103127649 fv Log-Normal RP(P), Gamma FALSE #> 9255 579 0.5387574 0.106274310 fv Log-Normal RP(P), Gamma FALSE #> 9271 580 0.4707019 0.094408535 fv Log-Normal RP(P), Gamma FALSE #> 9287 581 0.6504271 0.124298433 fv Log-Normal RP(P), Gamma FALSE #> 9303 582 0.6775845 0.129556677 fv Log-Normal RP(P), Gamma FALSE #> 9319 583 0.8861042 0.163642549 fv Log-Normal RP(P), Gamma FALSE #> 9335 584 0.5002307 0.099003587 fv Log-Normal RP(P), Gamma FALSE #> 9351 585 0.6170829 0.118479185 fv Log-Normal RP(P), Gamma FALSE #> 9367 586 0.6901922 0.132247790 fv Log-Normal RP(P), Gamma FALSE #> 9383 587 0.8271364 0.156625337 fv Log-Normal RP(P), Gamma FALSE #> 9399 588 0.4991248 0.098354530 fv Log-Normal RP(P), Gamma FALSE #> 9415 589 0.5658254 0.110527743 fv Log-Normal RP(P), Gamma FALSE #> 9431 590 0.6760460 0.129168104 fv Log-Normal RP(P), Gamma FALSE #> 9447 591 0.7096084 0.134844438 fv Log-Normal RP(P), Gamma FALSE #> 9463 592 0.6397263 0.122142964 fv Log-Normal RP(P), Gamma FALSE #> 9479 593 0.8485950 0.159290802 fv Log-Normal RP(P), Gamma FALSE #> 9495 594 0.5980829 0.115005110 fv Log-Normal RP(P), Gamma FALSE #> 9511 595 0.4900971 0.096783028 fv Log-Normal RP(P), Gamma FALSE #> 9527 596 0.7574788 0.147358757 fv Log-Normal RP(P), Gamma FALSE #> 9543 597 0.5555007 0.108764648 fv Log-Normal RP(P), Gamma FALSE #> 9559 598 0.8869603 0.164652912 fv Log-Normal RP(P), Gamma FALSE #> 9575 599 0.7172531 0.139602364 fv Log-Normal RP(P), Gamma FALSE #> 9591 600 0.4875005 0.096751810 fv Log-Normal RP(P), Gamma FALSE #> 9607 601 1.0034908 0.185067542 fv Log-Normal RP(P), Gamma TRUE #> 9623 602 0.9315667 0.173569567 fv Log-Normal RP(P), Gamma TRUE #> 9639 603 0.3891561 0.079134558 fv Log-Normal RP(P), Gamma FALSE #> 9655 604 0.6831090 0.130655727 fv Log-Normal RP(P), Gamma FALSE #> 9671 605 1.2021178 0.217657229 fv Log-Normal RP(P), Gamma TRUE #> 9687 606 0.6513685 0.125714802 fv Log-Normal RP(P), Gamma FALSE #> 9703 607 0.5322629 0.105264233 fv Log-Normal RP(P), Gamma FALSE #> 9719 608 0.3897829 0.078912911 fv Log-Normal RP(P), Gamma FALSE #> 9735 609 0.7388302 0.139633573 fv Log-Normal RP(P), Gamma FALSE #> 9751 610 0.5779827 0.112718737 fv Log-Normal RP(P), Gamma FALSE #> 9767 611 0.7309416 0.140033806 fv Log-Normal RP(P), Gamma FALSE #> 9783 612 0.4843671 0.095423699 fv Log-Normal RP(P), Gamma FALSE #> 9799 613 0.6706920 0.127546045 fv Log-Normal RP(P), Gamma FALSE #> 9815 614 0.6183168 0.118772783 fv Log-Normal RP(P), Gamma FALSE #> 9831 615 0.7045260 0.133355951 fv Log-Normal RP(P), Gamma FALSE #> 9847 616 0.6489493 0.123879789 fv Log-Normal RP(P), Gamma FALSE #> 9863 617 0.6632689 0.126921727 fv Log-Normal RP(P), Gamma FALSE #> 9879 618 0.6334784 0.123145460 fv Log-Normal RP(P), Gamma FALSE #> 9895 619 0.7035638 0.133736565 fv Log-Normal RP(P), Gamma FALSE #> 9911 620 0.7020430 0.134210585 fv Log-Normal RP(P), Gamma FALSE #> 9927 621 0.4819005 0.094952770 fv Log-Normal RP(P), Gamma FALSE #> 9943 622 0.5397034 0.105579639 fv Log-Normal RP(P), Gamma FALSE #> 9959 623 0.7881921 0.149884077 fv Log-Normal RP(P), Gamma FALSE #> 9975 624 0.5203504 0.102733074 fv Log-Normal RP(P), Gamma FALSE #> 9991 625 0.6837447 0.131406762 fv Log-Normal RP(P), Gamma FALSE #> 10007 626 0.5549372 0.108180877 fv Log-Normal RP(P), Gamma FALSE #> 10023 627 0.5179683 0.101178304 fv Log-Normal RP(P), Gamma FALSE #> 10039 628 0.6020692 0.118086101 fv Log-Normal RP(P), Gamma FALSE #> 10055 629 0.6000282 0.116646938 fv Log-Normal RP(P), Gamma FALSE #> 10071 630 0.7279731 0.137843137 fv Log-Normal RP(P), Gamma FALSE #> 10087 631 0.6027202 0.116593410 fv Log-Normal RP(P), Gamma FALSE #> 10103 632 0.6537910 0.125818670 fv Log-Normal RP(P), Gamma FALSE #> 10119 633 0.4513900 0.090185550 fv Log-Normal RP(P), Gamma FALSE #> 10135 634 0.5375152 0.105208433 fv Log-Normal RP(P), Gamma FALSE #> 10151 635 0.7997065 0.151945464 fv Log-Normal RP(P), Gamma FALSE #> 10167 636 0.3688985 0.074968576 fv Log-Normal RP(P), Gamma TRUE #> 10183 637 0.8181358 0.153742550 fv Log-Normal RP(P), Gamma FALSE #> 10199 638 0.6190300 0.120041647 fv Log-Normal RP(P), Gamma FALSE #> 10215 639 0.4075020 0.082684708 fv Log-Normal RP(P), Gamma FALSE #> 10231 640 0.6079183 0.117406864 fv Log-Normal RP(P), Gamma FALSE #> 10247 641 0.5327102 0.105110772 fv Log-Normal RP(P), Gamma FALSE #> 10263 642 0.5627774 0.109736079 fv Log-Normal RP(P), Gamma FALSE #> 10279 643 0.6140868 0.118512864 fv Log-Normal RP(P), Gamma FALSE #> 10295 644 0.5859136 0.113867905 fv Log-Normal RP(P), Gamma FALSE #> 10311 645 0.7201751 0.137426049 fv Log-Normal RP(P), Gamma FALSE #> 10327 646 NA NA fv Log-Normal RP(P), Gamma NA #> 10343 647 0.5681908 0.110136754 fv Log-Normal RP(P), Gamma FALSE #> 10359 648 0.9305917 0.172374754 fv Log-Normal RP(P), Gamma TRUE #> 10375 649 0.5485075 0.107764779 fv Log-Normal RP(P), Gamma FALSE #> 10391 650 0.7601556 0.143756671 fv Log-Normal RP(P), Gamma FALSE #> 10407 651 0.6466322 0.123731016 fv Log-Normal RP(P), Gamma FALSE #> 10423 652 1.0102019 0.184233698 fv Log-Normal RP(P), Gamma TRUE #> 10439 653 0.4677185 0.093001021 fv Log-Normal RP(P), Gamma FALSE #> 10455 654 0.5012781 0.099290261 fv Log-Normal RP(P), Gamma FALSE #> 10471 655 0.6184514 0.119322143 fv Log-Normal RP(P), Gamma FALSE #> 10487 656 0.5893034 0.114337156 fv Log-Normal RP(P), Gamma FALSE #> 10503 657 0.4700947 0.093330712 fv Log-Normal RP(P), Gamma FALSE #> 10519 658 0.9548714 0.176352345 fv Log-Normal RP(P), Gamma TRUE #> 10535 659 0.9221158 0.172214444 fv Log-Normal RP(P), Gamma TRUE #> 10551 660 0.6906597 0.131068552 fv Log-Normal RP(P), Gamma FALSE #> 10567 661 0.4580311 0.090771001 fv Log-Normal RP(P), Gamma FALSE #> 10583 662 0.5164133 0.101474521 fv Log-Normal RP(P), Gamma FALSE #> 10599 663 0.5910451 0.114456254 fv Log-Normal RP(P), Gamma FALSE #> 10615 664 0.6069571 0.116792001 fv Log-Normal RP(P), Gamma FALSE #> 10631 665 0.7872832 0.148967481 fv Log-Normal RP(P), Gamma FALSE #> 10647 666 0.9872431 0.180995966 fv Log-Normal RP(P), Gamma TRUE #> 10663 667 0.5861609 0.113728094 fv Log-Normal RP(P), Gamma FALSE #> 10679 668 0.5965077 0.116224148 fv Log-Normal RP(P), Gamma FALSE #> 10695 669 0.7858658 0.148111774 fv Log-Normal RP(P), Gamma FALSE #> 10711 670 0.5644456 0.111070175 fv Log-Normal RP(P), Gamma FALSE #> 10727 671 0.7257817 0.138317915 fv Log-Normal RP(P), Gamma FALSE #> 10743 672 0.8699537 0.162873189 fv Log-Normal RP(P), Gamma FALSE #> 10759 673 NA NA fv Log-Normal RP(P), Gamma NA #> 10775 674 0.7477157 0.142416167 fv Log-Normal RP(P), Gamma FALSE #> 10791 675 0.5433898 0.107245880 fv Log-Normal RP(P), Gamma FALSE #> 10807 676 0.8399640 0.157547560 fv Log-Normal RP(P), Gamma FALSE #> 10823 677 0.6227503 0.120604554 fv Log-Normal RP(P), Gamma FALSE #> 10839 678 0.5245707 0.103511296 fv Log-Normal RP(P), Gamma FALSE #> 10855 679 0.5837353 0.114105618 fv Log-Normal RP(P), Gamma FALSE #> 10871 680 0.6687400 0.128093769 fv Log-Normal RP(P), Gamma FALSE #> 10887 681 0.8689437 0.162084794 fv Log-Normal RP(P), Gamma FALSE #> 10903 682 0.5411130 0.105287312 fv Log-Normal RP(P), Gamma FALSE #> 10919 683 0.7576341 0.145307823 fv Log-Normal RP(P), Gamma FALSE #> 10935 684 0.9589529 0.177509901 fv Log-Normal RP(P), Gamma TRUE #> 10951 685 0.5633214 0.109342344 fv Log-Normal RP(P), Gamma FALSE #> 10967 686 0.8200752 0.154050410 fv Log-Normal RP(P), Gamma FALSE #> 10983 687 0.5295936 0.103602159 fv Log-Normal RP(P), Gamma FALSE #> 10999 688 0.5361570 0.105208722 fv Log-Normal RP(P), Gamma FALSE #> 11015 689 0.5920704 0.115501697 fv Log-Normal RP(P), Gamma FALSE #> 11031 690 0.7275334 0.138140884 fv Log-Normal RP(P), Gamma FALSE #> 11047 691 0.7479373 0.145837123 fv Log-Normal RP(P), Gamma FALSE #> 11063 692 0.5492636 0.106737488 fv Log-Normal RP(P), Gamma FALSE #> 11079 693 0.4530186 0.090401153 fv Log-Normal RP(P), Gamma FALSE #> 11095 694 0.6821877 0.130885389 fv Log-Normal RP(P), Gamma FALSE #> 11111 695 0.5561848 0.108503923 fv Log-Normal RP(P), Gamma FALSE #> 11127 696 0.6698984 0.127785352 fv Log-Normal RP(P), Gamma FALSE #> 11143 697 0.8044238 0.152341904 fv Log-Normal RP(P), Gamma FALSE #> 11159 698 0.4029591 0.081215489 fv Log-Normal RP(P), Gamma FALSE #> 11175 699 0.6220318 0.120794862 fv Log-Normal RP(P), Gamma FALSE #> 11191 700 0.4838667 0.095650738 fv Log-Normal RP(P), Gamma FALSE #> 11207 701 0.7141305 0.135782693 fv Log-Normal RP(P), Gamma FALSE #> 11223 702 0.7876228 0.150480099 fv Log-Normal RP(P), Gamma FALSE #> 11239 703 0.6834653 0.131044510 fv Log-Normal RP(P), Gamma FALSE #> 11255 704 0.6006202 0.117032734 fv Log-Normal RP(P), Gamma FALSE #> 11271 705 0.5825614 0.112553700 fv Log-Normal RP(P), Gamma FALSE #> 11287 706 0.6462783 0.123967447 fv Log-Normal RP(P), Gamma FALSE #> 11303 707 0.7719009 0.144912433 fv Log-Normal RP(P), Gamma FALSE #> 11319 708 0.7589118 0.142597681 fv Log-Normal RP(P), Gamma FALSE #> 11335 709 0.7050173 0.137776068 fv Log-Normal RP(P), Gamma FALSE #> 11351 710 0.4858904 0.096616911 fv Log-Normal RP(P), Gamma FALSE #> 11367 711 0.6714817 0.132119633 fv Log-Normal RP(P), Gamma FALSE #> 11383 712 0.6359158 0.122551215 fv Log-Normal RP(P), Gamma FALSE #> 11399 713 0.8791749 0.164312628 fv Log-Normal RP(P), Gamma FALSE #> 11415 714 0.7282695 0.139130739 fv Log-Normal RP(P), Gamma FALSE #> 11431 715 0.6771839 0.128896557 fv Log-Normal RP(P), Gamma FALSE #> 11447 716 0.6207014 0.118958633 fv Log-Normal RP(P), Gamma FALSE #> 11463 717 0.6726106 0.128777566 fv Log-Normal RP(P), Gamma FALSE #> 11479 718 0.7884210 0.149205688 fv Log-Normal RP(P), Gamma FALSE #> 11495 719 0.9354300 0.174953745 fv Log-Normal RP(P), Gamma TRUE #> 11511 720 0.6328266 0.120907672 fv Log-Normal RP(P), Gamma FALSE #> 11527 721 0.5089454 0.100114135 fv Log-Normal RP(P), Gamma FALSE #> 11543 722 0.7041724 0.133806495 fv Log-Normal RP(P), Gamma FALSE #> 11559 723 0.5814509 0.113499196 fv Log-Normal RP(P), Gamma FALSE #> 11575 724 0.6792830 0.131396754 fv Log-Normal RP(P), Gamma FALSE #> 11591 725 0.6745890 0.128900101 fv Log-Normal RP(P), Gamma FALSE #> 11607 726 0.5696167 0.111100388 fv Log-Normal RP(P), Gamma FALSE #> 11623 727 0.6978610 0.132614516 fv Log-Normal RP(P), Gamma FALSE #> 11639 728 0.9034155 0.167348520 fv Log-Normal RP(P), Gamma FALSE #> 11655 729 0.6633172 0.127045130 fv Log-Normal RP(P), Gamma FALSE #> 11671 730 0.7354073 0.139683994 fv Log-Normal RP(P), Gamma FALSE #> 11687 731 0.4588272 0.091441953 fv Log-Normal RP(P), Gamma FALSE #> 11703 732 0.3973257 0.079866721 fv Log-Normal RP(P), Gamma FALSE #> 11719 733 0.7814645 0.146827178 fv Log-Normal RP(P), Gamma FALSE #> 11735 734 0.7249903 0.137092513 fv Log-Normal RP(P), Gamma FALSE #> 11751 735 0.8071961 0.150405379 fv Log-Normal RP(P), Gamma FALSE #> 11767 736 0.7304049 0.138624944 fv Log-Normal RP(P), Gamma FALSE #> 11783 737 0.6499469 0.124179968 fv Log-Normal RP(P), Gamma FALSE #> 11799 738 0.5145282 0.102065122 fv Log-Normal RP(P), Gamma FALSE #> 11815 739 0.5378257 0.105378663 fv Log-Normal RP(P), Gamma FALSE #> 11831 740 0.7258771 0.138116188 fv Log-Normal RP(P), Gamma FALSE #> 11847 741 0.7920583 0.148213635 fv Log-Normal RP(P), Gamma FALSE #> 11863 742 0.5970828 0.115587617 fv Log-Normal RP(P), Gamma FALSE #> 11879 743 0.6394701 0.122627568 fv Log-Normal RP(P), Gamma FALSE #> 11895 744 0.6091485 0.117450392 fv Log-Normal RP(P), Gamma FALSE #> 11911 745 0.6261920 0.120351132 fv Log-Normal RP(P), Gamma FALSE #> 11927 746 0.6135938 0.122447852 fv Log-Normal RP(P), Gamma FALSE #> 11943 747 0.5673960 0.110262652 fv Log-Normal RP(P), Gamma FALSE #> 11959 748 0.8174448 0.154866402 fv Log-Normal RP(P), Gamma FALSE #> 11975 749 0.8885850 0.166289328 fv Log-Normal RP(P), Gamma FALSE #> 11991 750 0.6699179 0.128164911 fv Log-Normal RP(P), Gamma FALSE #> 12007 751 0.7705349 0.145197488 fv Log-Normal RP(P), Gamma FALSE #> 12023 752 0.6450425 0.126445127 fv Log-Normal RP(P), Gamma FALSE #> 12039 753 0.4026709 0.081871038 fv Log-Normal RP(P), Gamma FALSE #> 12055 754 0.6467650 0.123887308 fv Log-Normal RP(P), Gamma FALSE #> 12071 755 0.5962017 0.115578760 fv Log-Normal RP(P), Gamma FALSE #> 12087 756 0.3445761 0.070995077 fv Log-Normal RP(P), Gamma TRUE #> 12103 757 0.6404506 0.123358322 fv Log-Normal RP(P), Gamma FALSE #> 12119 758 0.6790225 0.129965624 fv Log-Normal RP(P), Gamma FALSE #> 12135 759 0.5793013 0.112522796 fv Log-Normal RP(P), Gamma FALSE #> 12151 760 0.8538180 0.161150772 fv Log-Normal RP(P), Gamma FALSE #> 12167 761 0.5461966 0.107166035 fv Log-Normal RP(P), Gamma FALSE #> 12183 762 0.7113599 0.136036958 fv Log-Normal RP(P), Gamma FALSE #> 12199 763 0.5127570 0.101335906 fv Log-Normal RP(P), Gamma FALSE #> 12215 764 0.5758858 0.111788456 fv Log-Normal RP(P), Gamma FALSE #> 12231 765 0.7675959 0.144097832 fv Log-Normal RP(P), Gamma FALSE #> 12247 766 0.5609105 0.108690460 fv Log-Normal RP(P), Gamma FALSE #> 12263 767 0.7365808 0.139483235 fv Log-Normal RP(P), Gamma FALSE #> 12279 768 0.4824173 0.095129579 fv Log-Normal RP(P), Gamma FALSE #> 12295 769 0.8394776 0.157050045 fv Log-Normal RP(P), Gamma FALSE #> 12311 770 0.5206753 0.102467205 fv Log-Normal RP(P), Gamma FALSE #> 12327 771 0.5324155 0.106859081 fv Log-Normal RP(P), Gamma FALSE #> 12343 772 0.5028216 0.098894975 fv Log-Normal RP(P), Gamma FALSE #> 12359 773 0.5634591 0.111361709 fv Log-Normal RP(P), Gamma FALSE #> 12375 774 0.6726680 0.129487861 fv Log-Normal RP(P), Gamma FALSE #> 12391 775 0.6117312 0.118219973 fv Log-Normal RP(P), Gamma FALSE #> 12407 776 0.5611248 0.108670367 fv Log-Normal RP(P), Gamma FALSE #> 12423 777 0.5629907 0.109897969 fv Log-Normal RP(P), Gamma FALSE #> 12439 778 0.5298195 0.103885618 fv Log-Normal RP(P), Gamma FALSE #> 12455 779 0.5462480 0.106788201 fv Log-Normal RP(P), Gamma FALSE #> 12471 780 0.5444594 0.106379957 fv Log-Normal RP(P), Gamma FALSE #> 12487 781 0.6444463 0.124004297 fv Log-Normal RP(P), Gamma FALSE #> 12503 782 0.5443616 0.106294312 fv Log-Normal RP(P), Gamma FALSE #> 12519 783 0.5651637 0.110239835 fv Log-Normal RP(P), Gamma FALSE #> 12535 784 0.7141628 0.136152496 fv Log-Normal RP(P), Gamma FALSE #> 12551 785 0.4331883 0.086467176 fv Log-Normal RP(P), Gamma FALSE #> 12567 786 0.5881396 0.114710602 fv Log-Normal RP(P), Gamma FALSE #> 12583 787 0.8314603 0.155149305 fv Log-Normal RP(P), Gamma FALSE #> 12599 788 0.6241300 0.120299910 fv Log-Normal RP(P), Gamma FALSE #> 12615 789 0.7653722 0.144630922 fv Log-Normal RP(P), Gamma FALSE #> 12631 790 0.6111340 0.117710305 fv Log-Normal RP(P), Gamma FALSE #> 12647 791 0.3753609 0.075903655 fv Log-Normal RP(P), Gamma TRUE #> 12663 792 0.5553672 0.110018225 fv Log-Normal RP(P), Gamma FALSE #> 12679 793 0.7380648 0.139320411 fv Log-Normal RP(P), Gamma FALSE #> 12695 794 0.6753683 0.133256274 fv Log-Normal RP(P), Gamma FALSE #> 12711 795 0.5768839 0.112455428 fv Log-Normal RP(P), Gamma FALSE #> 12727 796 0.5128957 0.100971449 fv Log-Normal RP(P), Gamma FALSE #> 12743 797 0.5171431 0.101337411 fv Log-Normal RP(P), Gamma FALSE #> 12759 798 0.4026960 0.081677375 fv Log-Normal RP(P), Gamma FALSE #> 12775 799 0.6303514 0.120628692 fv Log-Normal RP(P), Gamma FALSE #> 12791 800 0.6501893 0.125184344 fv Log-Normal RP(P), Gamma FALSE #> 12807 801 0.9250278 0.172573485 fv Log-Normal RP(P), Gamma TRUE #> 12823 802 0.6252328 0.119546062 fv Log-Normal RP(P), Gamma FALSE #> 12839 803 0.6134816 0.118753122 fv Log-Normal RP(P), Gamma FALSE #> 12855 804 0.6678647 0.127903390 fv Log-Normal RP(P), Gamma FALSE #> 12871 805 0.8631726 0.164708763 fv Log-Normal RP(P), Gamma FALSE #> 12887 806 0.8331630 0.159110944 fv Log-Normal RP(P), Gamma FALSE #> 12903 807 0.6846960 0.136036587 fv Log-Normal RP(P), Gamma FALSE #> 12919 808 0.4612360 0.091479967 fv Log-Normal RP(P), Gamma FALSE #> 12935 809 0.5738387 0.111513989 fv Log-Normal RP(P), Gamma FALSE #> 12951 810 0.6283526 0.120695686 fv Log-Normal RP(P), Gamma FALSE #> 12967 811 0.4109691 0.082520063 fv Log-Normal RP(P), Gamma FALSE #> 12983 812 0.6375459 0.123083940 fv Log-Normal RP(P), Gamma FALSE #> 12999 813 0.7069596 0.133763426 fv Log-Normal RP(P), Gamma FALSE #> 13015 814 0.6129295 0.118654574 fv Log-Normal RP(P), Gamma FALSE #> 13031 815 0.5429190 0.107859435 fv Log-Normal RP(P), Gamma FALSE #> 13047 816 0.5861718 0.113598258 fv Log-Normal RP(P), Gamma FALSE #> 13063 817 0.4079590 0.082085894 fv Log-Normal RP(P), Gamma FALSE #> 13079 818 0.6366459 0.124630856 fv Log-Normal RP(P), Gamma FALSE #> 13095 819 0.7049751 0.133589547 fv Log-Normal RP(P), Gamma FALSE #> 13111 820 0.8116920 0.153995715 fv Log-Normal RP(P), Gamma FALSE #> 13127 821 0.4937436 0.097102999 fv Log-Normal RP(P), Gamma FALSE #> 13143 822 0.8114681 0.152991774 fv Log-Normal RP(P), Gamma FALSE #> 13159 823 0.9386106 0.175718415 fv Log-Normal RP(P), Gamma TRUE #> 13175 824 0.7808530 0.147394509 fv Log-Normal RP(P), Gamma FALSE #> 13191 825 0.7047845 0.134917093 fv Log-Normal RP(P), Gamma FALSE #> 13207 826 0.7088981 0.135782107 fv Log-Normal RP(P), Gamma FALSE #> 13223 827 0.8137925 0.154712370 fv Log-Normal RP(P), Gamma FALSE #> 13239 828 0.5961539 0.116832078 fv Log-Normal RP(P), Gamma FALSE #> 13255 829 0.6508909 0.125234317 fv Log-Normal RP(P), Gamma FALSE #> 13271 830 0.7521623 0.142500178 fv Log-Normal RP(P), Gamma FALSE #> 13287 831 0.6926346 0.131352292 fv Log-Normal RP(P), Gamma FALSE #> 13303 832 0.4914520 0.097328337 fv Log-Normal RP(P), Gamma FALSE #> 13319 833 0.7543088 0.142866110 fv Log-Normal RP(P), Gamma FALSE #> 13335 834 0.5803865 0.113194461 fv Log-Normal RP(P), Gamma FALSE #> 13351 835 0.6213117 0.120310790 fv Log-Normal RP(P), Gamma FALSE #> 13367 836 0.6794638 0.130019762 fv Log-Normal RP(P), Gamma FALSE #> 13383 837 0.7571700 0.144029552 fv Log-Normal RP(P), Gamma FALSE #> 13399 838 0.6022522 0.116527948 fv Log-Normal RP(P), Gamma FALSE #> 13415 839 0.5678387 0.111762360 fv Log-Normal RP(P), Gamma FALSE #> 13431 840 0.5794574 0.112732652 fv Log-Normal RP(P), Gamma FALSE #> 13447 841 0.9027367 0.169264440 fv Log-Normal RP(P), Gamma TRUE #> 13463 842 0.4945054 0.097465716 fv Log-Normal RP(P), Gamma FALSE #> 13479 843 0.6164251 0.120453087 fv Log-Normal RP(P), Gamma FALSE #> 13495 844 0.7770622 0.145721886 fv Log-Normal RP(P), Gamma FALSE #> 13511 845 0.8054185 0.151160755 fv Log-Normal RP(P), Gamma FALSE #> 13527 846 0.4947152 0.097800871 fv Log-Normal RP(P), Gamma FALSE #> 13543 847 0.8873520 0.164465959 fv Log-Normal RP(P), Gamma FALSE #> 13559 848 0.6732286 0.128419353 fv Log-Normal RP(P), Gamma FALSE #> 13575 849 0.5501974 0.107615525 fv Log-Normal RP(P), Gamma FALSE #> 13591 850 0.7657343 0.145271938 fv Log-Normal RP(P), Gamma FALSE #> 13607 851 0.5838296 0.112816077 fv Log-Normal RP(P), Gamma FALSE #> 13623 852 0.6089890 0.117360510 fv Log-Normal RP(P), Gamma FALSE #> 13639 853 0.8570792 0.158811310 fv Log-Normal RP(P), Gamma FALSE #> 13655 854 0.6181706 0.120058291 fv Log-Normal RP(P), Gamma FALSE #> 13671 855 0.5443013 0.106559331 fv Log-Normal RP(P), Gamma FALSE #> 13687 856 0.7619340 0.144167343 fv Log-Normal RP(P), Gamma FALSE #> 13703 857 0.7054784 0.134681813 fv Log-Normal RP(P), Gamma FALSE #> 13719 858 0.8737770 0.162469522 fv Log-Normal RP(P), Gamma FALSE #> 13735 859 0.8436609 0.158355957 fv Log-Normal RP(P), Gamma FALSE #> 13751 860 0.6203294 0.120462203 fv Log-Normal RP(P), Gamma FALSE #> 13767 861 0.4246650 0.085201724 fv Log-Normal RP(P), Gamma FALSE #> 13783 862 0.5717094 0.110974928 fv Log-Normal RP(P), Gamma FALSE #> 13799 863 0.5930878 0.114981994 fv Log-Normal RP(P), Gamma FALSE #> 13815 864 0.7889726 0.148845738 fv Log-Normal RP(P), Gamma FALSE #> 13831 865 0.8396676 0.157504805 fv Log-Normal RP(P), Gamma FALSE #> 13847 866 0.7315134 0.140372989 fv Log-Normal RP(P), Gamma FALSE #> 13863 867 0.5339683 0.105161674 fv Log-Normal RP(P), Gamma FALSE #> 13879 868 0.8342745 0.157649889 fv Log-Normal RP(P), Gamma FALSE #> 13895 869 0.4553345 0.090508558 fv Log-Normal RP(P), Gamma FALSE #> 13911 870 0.7264093 0.138973381 fv Log-Normal RP(P), Gamma FALSE #> 13927 871 0.4569173 0.091103928 fv Log-Normal RP(P), Gamma FALSE #> 13943 872 0.4280552 0.086058153 fv Log-Normal RP(P), Gamma FALSE #> 13959 873 0.7410597 0.139690887 fv Log-Normal RP(P), Gamma FALSE #> 13975 874 0.6408185 0.123644052 fv Log-Normal RP(P), Gamma FALSE #> 13991 875 0.5388062 0.104971339 fv Log-Normal RP(P), Gamma FALSE #> 14007 876 0.5538235 0.108515653 fv Log-Normal RP(P), Gamma FALSE #> 14023 877 0.5173804 0.102558125 fv Log-Normal RP(P), Gamma FALSE #> 14039 878 0.6131328 0.119010688 fv Log-Normal RP(P), Gamma FALSE #> 14055 879 0.6097417 0.118099906 fv Log-Normal RP(P), Gamma FALSE #> 14071 880 0.7281233 0.137755819 fv Log-Normal RP(P), Gamma FALSE #> 14087 881 0.4819108 0.095257938 fv Log-Normal RP(P), Gamma FALSE #> 14103 882 0.6543178 0.126842054 fv Log-Normal RP(P), Gamma FALSE #> 14119 883 0.5607813 0.109303367 fv Log-Normal RP(P), Gamma FALSE #> 14135 884 0.4932391 0.097437433 fv Log-Normal RP(P), Gamma FALSE #> 14151 885 0.6588153 0.126232716 fv Log-Normal RP(P), Gamma FALSE #> 14167 886 0.5743023 0.112137457 fv Log-Normal RP(P), Gamma FALSE #> 14183 887 0.3462275 0.071202207 fv Log-Normal RP(P), Gamma TRUE #> 14199 888 0.5389566 0.105124924 fv Log-Normal RP(P), Gamma FALSE #> 14215 889 0.6030921 0.116845053 fv Log-Normal RP(P), Gamma FALSE #> 14231 890 0.6118626 0.117833825 fv Log-Normal RP(P), Gamma FALSE #> 14247 891 0.6524154 0.124896117 fv Log-Normal RP(P), Gamma FALSE #> 14263 892 0.9531941 0.178350481 fv Log-Normal RP(P), Gamma TRUE #> 14279 893 0.4343296 0.087215814 fv Log-Normal RP(P), Gamma FALSE #> 14295 894 0.5594749 0.110073852 fv Log-Normal RP(P), Gamma FALSE #> 14311 895 0.7014979 0.134457311 fv Log-Normal RP(P), Gamma FALSE #> 14327 896 0.4731205 0.093660204 fv Log-Normal RP(P), Gamma FALSE #> 14343 897 0.5714472 0.110989910 fv Log-Normal RP(P), Gamma FALSE #> 14359 898 0.6785190 0.129913470 fv Log-Normal RP(P), Gamma FALSE #> 14375 899 0.7737308 0.149258753 fv Log-Normal RP(P), Gamma FALSE #> 14391 900 0.6258468 0.120819485 fv Log-Normal RP(P), Gamma FALSE #> 14407 901 0.6898911 0.131170243 fv Log-Normal RP(P), Gamma FALSE #> 14423 902 0.7154328 0.135521156 fv Log-Normal RP(P), Gamma FALSE #> 14439 903 0.5104288 0.100779991 fv Log-Normal RP(P), Gamma FALSE #> 14455 904 0.5856834 0.113572720 fv Log-Normal RP(P), Gamma FALSE #> 14471 905 0.6004749 0.115324014 fv Log-Normal RP(P), Gamma FALSE #> 14487 906 0.6359688 0.122586572 fv Log-Normal RP(P), Gamma FALSE #> 14503 907 0.5900934 0.115657031 fv Log-Normal RP(P), Gamma FALSE #> 14519 908 0.4540465 0.090511303 fv Log-Normal RP(P), Gamma FALSE #> 14535 909 0.7511004 0.141521670 fv Log-Normal RP(P), Gamma FALSE #> 14551 910 0.5658137 0.110268564 fv Log-Normal RP(P), Gamma FALSE #> 14567 911 0.6072191 0.117365255 fv Log-Normal RP(P), Gamma FALSE #> 14583 912 0.3616722 0.073972649 fv Log-Normal RP(P), Gamma TRUE #> 14599 913 0.5503152 0.107431667 fv Log-Normal RP(P), Gamma FALSE #> 14615 914 0.7685300 0.145147343 fv Log-Normal RP(P), Gamma FALSE #> 14631 915 0.5856077 0.113156906 fv Log-Normal RP(P), Gamma FALSE #> 14647 916 0.6230510 0.119988154 fv Log-Normal RP(P), Gamma FALSE #> 14663 917 0.4810465 0.096021894 fv Log-Normal RP(P), Gamma FALSE #> 14679 918 0.5535167 0.109209013 fv Log-Normal RP(P), Gamma FALSE #> 14695 919 0.6199536 0.120122996 fv Log-Normal RP(P), Gamma FALSE #> 14711 920 0.5967302 0.115422824 fv Log-Normal RP(P), Gamma FALSE #> 14727 921 0.9743057 0.178872657 fv Log-Normal RP(P), Gamma TRUE #> 14743 922 0.5749685 0.112106133 fv Log-Normal RP(P), Gamma FALSE #> 14759 923 0.8627857 0.160537625 fv Log-Normal RP(P), Gamma FALSE #> 14775 924 0.6123826 0.118440207 fv Log-Normal RP(P), Gamma FALSE #> 14791 925 0.6977269 0.134168790 fv Log-Normal RP(P), Gamma FALSE #> 14807 926 0.7560266 0.142158465 fv Log-Normal RP(P), Gamma FALSE #> 14823 927 0.7244242 0.137428355 fv Log-Normal RP(P), Gamma FALSE #> 14839 928 0.6414165 0.123785383 fv Log-Normal RP(P), Gamma FALSE #> 14855 929 0.6732490 0.128390941 fv Log-Normal RP(P), Gamma FALSE #> 14871 930 0.5125839 0.101497596 fv Log-Normal RP(P), Gamma FALSE #> 14887 931 0.7127123 0.136040162 fv Log-Normal RP(P), Gamma FALSE #> 14903 932 0.5071163 0.100658331 fv Log-Normal RP(P), Gamma FALSE #> 14919 933 0.4956539 0.097351924 fv Log-Normal RP(P), Gamma FALSE #> 14935 934 0.6492066 0.125778769 fv Log-Normal RP(P), Gamma FALSE #> 14951 935 0.7579194 0.142654366 fv Log-Normal RP(P), Gamma FALSE #> 14967 936 0.6662641 0.128059082 fv Log-Normal RP(P), Gamma FALSE #> 14983 937 0.6552375 0.124704511 fv Log-Normal RP(P), Gamma FALSE #> 14999 938 0.6935610 0.131635443 fv Log-Normal RP(P), Gamma FALSE #> 15015 939 0.5076373 0.099638563 fv Log-Normal RP(P), Gamma FALSE #> 15031 940 0.6941711 0.133443392 fv Log-Normal RP(P), Gamma FALSE #> 15047 941 0.4272667 0.085962338 fv Log-Normal RP(P), Gamma FALSE #> 15063 942 0.7084198 0.133980596 fv Log-Normal RP(P), Gamma FALSE #> 15079 943 0.4592534 0.091044580 fv Log-Normal RP(P), Gamma FALSE #> 15095 944 0.5670107 0.110185647 fv Log-Normal RP(P), Gamma FALSE #> 15111 945 0.9419069 0.175234747 fv Log-Normal RP(P), Gamma TRUE #> 15127 946 0.7159091 0.136177032 fv Log-Normal RP(P), Gamma FALSE #> 15143 947 0.7179454 0.135868745 fv Log-Normal RP(P), Gamma FALSE #> 15159 948 0.4495258 0.091309189 fv Log-Normal RP(P), Gamma FALSE #> 15175 949 0.5815352 0.112460379 fv Log-Normal RP(P), Gamma FALSE #> 15191 950 0.6932335 0.132488165 fv Log-Normal RP(P), Gamma FALSE #> 15207 951 0.4666819 0.092380052 fv Log-Normal RP(P), Gamma FALSE #> 15223 952 0.5314269 0.103829685 fv Log-Normal RP(P), Gamma FALSE #> 15239 953 0.5565247 0.109149397 fv Log-Normal RP(P), Gamma FALSE #> 15255 954 0.7841108 0.150127737 fv Log-Normal RP(P), Gamma FALSE #> 15271 955 0.6303305 0.121517200 fv Log-Normal RP(P), Gamma FALSE #> 15287 956 0.7256964 0.136703077 fv Log-Normal RP(P), Gamma FALSE #> 15303 957 0.5263540 0.102902469 fv Log-Normal RP(P), Gamma FALSE #> 15319 958 0.5512942 0.108239740 fv Log-Normal RP(P), Gamma FALSE #> 15335 959 0.6362485 0.122428233 fv Log-Normal RP(P), Gamma FALSE #> 15351 960 0.4981004 0.097951714 fv Log-Normal RP(P), Gamma FALSE #> 15367 961 0.7240723 0.136822170 fv Log-Normal RP(P), Gamma FALSE #> 15383 962 0.6738336 0.128430099 fv Log-Normal RP(P), Gamma FALSE #> 15399 963 0.8590658 0.161400634 fv Log-Normal RP(P), Gamma FALSE #> 15415 964 0.6778286 0.131550538 fv Log-Normal RP(P), Gamma FALSE #> 15431 965 0.4974168 0.098176690 fv Log-Normal RP(P), Gamma FALSE #> 15447 966 0.8272373 0.153861102 fv Log-Normal RP(P), Gamma FALSE #> 15463 967 0.8021231 0.151700494 fv Log-Normal RP(P), Gamma FALSE #> 15479 968 0.7554846 0.144617670 fv Log-Normal RP(P), Gamma FALSE #> 15495 969 0.9243088 0.170805922 fv Log-Normal RP(P), Gamma TRUE #> 15511 970 0.7071617 0.135442111 fv Log-Normal RP(P), Gamma FALSE #> 15527 971 0.7640821 0.143246252 fv Log-Normal RP(P), Gamma FALSE #> 15543 972 0.5395954 0.105794951 fv Log-Normal RP(P), Gamma FALSE #> 15559 973 0.7931946 0.148915324 fv Log-Normal RP(P), Gamma FALSE #> 15575 974 0.8197008 0.153760685 fv Log-Normal RP(P), Gamma FALSE #> 15591 975 0.8907927 0.164905062 fv Log-Normal RP(P), Gamma FALSE #> 15607 976 0.7038651 0.135980149 fv Log-Normal RP(P), Gamma FALSE #> 15623 977 0.9187497 0.170234899 fv Log-Normal RP(P), Gamma TRUE #> 15639 978 0.7007673 0.133951052 fv Log-Normal RP(P), Gamma FALSE #> 15655 979 0.5554255 0.108409573 fv Log-Normal RP(P), Gamma FALSE #> 15671 980 0.6745765 0.129438354 fv Log-Normal RP(P), Gamma FALSE #> 15687 981 0.5670618 0.109771497 fv Log-Normal RP(P), Gamma FALSE #> 15703 982 0.5361854 0.104634937 fv Log-Normal RP(P), Gamma FALSE #> 15719 983 0.6498347 0.124437335 fv Log-Normal RP(P), Gamma FALSE #> 15735 984 0.6185397 0.120212982 fv Log-Normal RP(P), Gamma FALSE #> 15751 985 0.7716535 0.145635881 fv Log-Normal RP(P), Gamma FALSE #> 15767 986 0.6954360 0.133693819 fv Log-Normal RP(P), Gamma FALSE #> 15783 987 0.6610757 0.128995735 fv Log-Normal RP(P), Gamma FALSE #> 15799 988 0.7090702 0.134191221 fv Log-Normal RP(P), Gamma FALSE #> 15815 989 0.7499270 0.140913712 fv Log-Normal RP(P), Gamma FALSE #> 15831 990 0.6791009 0.130402853 fv Log-Normal RP(P), Gamma FALSE #> 15847 991 0.7486170 0.141785330 fv Log-Normal RP(P), Gamma FALSE #> 15863 992 0.6478979 0.124552181 fv Log-Normal RP(P), Gamma FALSE #> 15879 993 0.6378838 0.121975666 fv Log-Normal RP(P), Gamma FALSE #> 15895 994 0.6296675 0.123056122 fv Log-Normal RP(P), Gamma FALSE #> 15911 995 0.5297010 0.103909524 fv Log-Normal RP(P), Gamma FALSE #> 15927 996 0.6733473 0.130527337 fv Log-Normal RP(P), Gamma FALSE #> 15943 997 0.5759983 0.111233442 fv Log-Normal RP(P), Gamma FALSE #> 15959 998 0.5520605 0.108023635 fv Log-Normal RP(P), Gamma FALSE #> 15975 999 0.6755070 0.129234930 fv Log-Normal RP(P), Gamma FALSE #> 15991 1000 0.5820900 0.112838328 fv Log-Normal RP(P), Gamma FALSE #> 8 1 0.7587269 0.160310074 fv Log-Normal RP(P), Log-Normal FALSE #> 24 2 0.6427095 0.136481613 fv Log-Normal RP(P), Log-Normal FALSE #> 40 3 0.8272743 0.174133172 fv Log-Normal RP(P), Log-Normal FALSE #> 56 4 0.6154492 0.132224678 fv Log-Normal RP(P), Log-Normal FALSE #> 72 5 1.0040595 0.212010663 fv Log-Normal RP(P), Log-Normal FALSE #> 88 6 0.8839655 0.187498893 fv Log-Normal RP(P), Log-Normal FALSE #> 104 7 0.5927076 0.126010284 fv Log-Normal RP(P), Log-Normal FALSE #> 120 8 0.8303076 0.176094173 fv Log-Normal RP(P), Log-Normal FALSE #> 136 9 0.7248036 0.153480938 fv Log-Normal RP(P), Log-Normal FALSE #> 152 10 1.0116901 0.215026028 fv Log-Normal RP(P), Log-Normal FALSE #> 168 11 0.9163779 0.192812176 fv Log-Normal RP(P), Log-Normal FALSE #> 184 12 0.5531775 0.117536667 fv Log-Normal RP(P), Log-Normal FALSE #> 200 13 0.8309998 0.174965974 fv Log-Normal RP(P), Log-Normal FALSE #> 216 14 0.8142702 0.172262423 fv Log-Normal RP(P), Log-Normal FALSE #> 232 15 0.7403548 0.157621039 fv Log-Normal RP(P), Log-Normal FALSE #> 248 16 0.5815212 0.124702775 fv Log-Normal RP(P), Log-Normal FALSE #> 264 17 0.6448992 0.136415060 fv Log-Normal RP(P), Log-Normal FALSE #> 280 18 0.8723504 0.185445247 fv Log-Normal RP(P), Log-Normal FALSE #> 296 19 0.9424444 0.197979689 fv Log-Normal RP(P), Log-Normal FALSE #> 312 20 0.6112837 0.130269558 fv Log-Normal RP(P), Log-Normal FALSE #> 328 21 0.7055255 0.150812066 fv Log-Normal RP(P), Log-Normal FALSE #> 344 22 0.6008341 0.128261543 fv Log-Normal RP(P), Log-Normal FALSE #> 360 23 0.8761728 0.183388185 fv Log-Normal RP(P), Log-Normal FALSE #> 376 24 0.8105771 0.171983797 fv Log-Normal RP(P), Log-Normal FALSE #> 392 25 0.6233797 0.132823464 fv Log-Normal RP(P), Log-Normal FALSE #> 408 26 0.7552494 0.159767947 fv Log-Normal RP(P), Log-Normal FALSE #> 424 27 0.5365736 0.118347519 fv Log-Normal RP(P), Log-Normal FALSE #> 440 28 0.7291543 0.155121274 fv Log-Normal RP(P), Log-Normal FALSE #> 456 29 1.0757698 0.224219202 fv Log-Normal RP(P), Log-Normal TRUE #> 472 30 0.7238761 0.156782077 fv Log-Normal RP(P), Log-Normal FALSE #> 488 31 0.5599923 0.120185524 fv Log-Normal RP(P), Log-Normal FALSE #> 504 32 0.5305952 0.112891465 fv Log-Normal RP(P), Log-Normal FALSE #> 520 33 0.7705200 0.164509859 fv Log-Normal RP(P), Log-Normal FALSE #> 536 34 0.9181142 0.193544815 fv Log-Normal RP(P), Log-Normal FALSE #> 552 35 0.5262293 0.112984685 fv Log-Normal RP(P), Log-Normal FALSE #> 568 36 0.5191213 0.111910048 fv Log-Normal RP(P), Log-Normal FALSE #> 584 37 0.7019126 0.149573895 fv Log-Normal RP(P), Log-Normal FALSE #> 600 38 0.6378678 0.135525656 fv Log-Normal RP(P), Log-Normal FALSE #> 616 39 0.8017794 0.170404386 fv Log-Normal RP(P), Log-Normal FALSE #> 632 40 0.5714472 0.121859157 fv Log-Normal RP(P), Log-Normal FALSE #> 648 41 0.8335074 0.177134554 fv Log-Normal RP(P), Log-Normal FALSE #> 664 42 0.5632683 0.120257577 fv Log-Normal RP(P), Log-Normal FALSE #> 680 43 0.5641544 0.122123217 fv Log-Normal RP(P), Log-Normal FALSE #> 696 44 0.7949684 0.169464289 fv Log-Normal RP(P), Log-Normal FALSE #> 712 45 0.6326050 0.134725078 fv Log-Normal RP(P), Log-Normal FALSE #> 728 46 0.3403314 0.074346940 fv Log-Normal RP(P), Log-Normal TRUE #> 744 47 0.9563960 0.202431253 fv Log-Normal RP(P), Log-Normal FALSE #> 760 48 0.8868588 0.187192828 fv Log-Normal RP(P), Log-Normal FALSE #> 776 49 0.9689607 0.202879027 fv Log-Normal RP(P), Log-Normal FALSE #> 792 50 0.6034856 0.129155376 fv Log-Normal RP(P), Log-Normal FALSE #> 808 51 0.8875662 0.188455833 fv Log-Normal RP(P), Log-Normal FALSE #> 824 52 0.5304852 0.114409866 fv Log-Normal RP(P), Log-Normal FALSE #> 840 53 0.9347285 0.195611763 fv Log-Normal RP(P), Log-Normal FALSE #> 856 54 0.7253010 0.153848983 fv Log-Normal RP(P), Log-Normal FALSE #> 872 55 0.9365095 0.197246816 fv Log-Normal RP(P), Log-Normal FALSE #> 888 56 0.7698460 0.161108352 fv Log-Normal RP(P), Log-Normal FALSE #> 904 57 0.9240850 0.195363045 fv Log-Normal RP(P), Log-Normal FALSE #> 920 58 0.7679395 0.161928888 fv Log-Normal RP(P), Log-Normal FALSE #> 936 59 0.7182305 0.151499862 fv Log-Normal RP(P), Log-Normal FALSE #> 952 60 1.0058746 0.216721875 fv Log-Normal RP(P), Log-Normal FALSE #> 968 61 0.7566231 0.160366843 fv Log-Normal RP(P), Log-Normal FALSE #> 984 62 0.6235933 0.132341918 fv Log-Normal RP(P), Log-Normal FALSE #> 1000 63 0.8330331 0.174751715 fv Log-Normal RP(P), Log-Normal FALSE #> 1016 64 0.7372343 0.154560392 fv Log-Normal RP(P), Log-Normal FALSE #> 1032 65 0.9324597 0.196214421 fv Log-Normal RP(P), Log-Normal FALSE #> 1048 66 0.6556111 0.140836763 fv Log-Normal RP(P), Log-Normal FALSE #> 1064 67 0.6283832 0.133766573 fv Log-Normal RP(P), Log-Normal FALSE #> 1080 68 0.5259450 0.113787629 fv Log-Normal RP(P), Log-Normal FALSE #> 1096 69 0.8150040 0.171983367 fv Log-Normal RP(P), Log-Normal FALSE #> 1112 70 0.7752526 0.163616805 fv Log-Normal RP(P), Log-Normal FALSE #> 1128 71 1.0256382 0.217584719 fv Log-Normal RP(P), Log-Normal FALSE #> 1144 72 0.6090315 0.129986511 fv Log-Normal RP(P), Log-Normal FALSE #> 1160 73 0.7378555 0.157540359 fv Log-Normal RP(P), Log-Normal FALSE #> 1176 74 0.4266073 0.091598299 fv Log-Normal RP(P), Log-Normal FALSE #> 1192 75 0.7264828 0.153774539 fv Log-Normal RP(P), Log-Normal FALSE #> 1208 76 0.6558995 0.140177692 fv Log-Normal RP(P), Log-Normal FALSE #> 1224 77 0.8527293 0.179762381 fv Log-Normal RP(P), Log-Normal FALSE #> 1240 78 0.7870716 0.165681047 fv Log-Normal RP(P), Log-Normal FALSE #> 1256 79 1.0961721 0.229344262 fv Log-Normal RP(P), Log-Normal TRUE #> 1272 80 0.5928102 0.126126879 fv Log-Normal RP(P), Log-Normal FALSE #> 1288 81 1.0116718 0.212214328 fv Log-Normal RP(P), Log-Normal FALSE #> 1304 82 0.6932804 0.146529625 fv Log-Normal RP(P), Log-Normal FALSE #> 1320 83 0.8128450 0.173169547 fv Log-Normal RP(P), Log-Normal FALSE #> 1336 84 0.6546543 0.140338914 fv Log-Normal RP(P), Log-Normal FALSE #> 1352 85 0.6580420 0.139756530 fv Log-Normal RP(P), Log-Normal FALSE #> 1368 86 0.5651574 0.120395675 fv Log-Normal RP(P), Log-Normal FALSE #> 1384 87 0.7739794 0.164331266 fv Log-Normal RP(P), Log-Normal FALSE #> 1400 88 0.7745832 0.167238556 fv Log-Normal RP(P), Log-Normal FALSE #> 1416 89 1.0368143 0.217170812 fv Log-Normal RP(P), Log-Normal FALSE #> 1432 90 0.8166873 0.170720378 fv Log-Normal RP(P), Log-Normal FALSE #> 1448 91 0.9071331 0.190130518 fv Log-Normal RP(P), Log-Normal FALSE #> 1464 92 0.8923346 0.189677791 fv Log-Normal RP(P), Log-Normal FALSE #> 1480 93 0.6132879 0.130286551 fv Log-Normal RP(P), Log-Normal FALSE #> 1496 94 0.8505242 0.181240095 fv Log-Normal RP(P), Log-Normal FALSE #> 1512 95 0.6782855 0.143566528 fv Log-Normal RP(P), Log-Normal FALSE #> 1528 96 0.5793421 0.124444915 fv Log-Normal RP(P), Log-Normal FALSE #> 1544 97 0.8184744 0.172217358 fv Log-Normal RP(P), Log-Normal FALSE #> 1560 98 0.4638964 0.100253533 fv Log-Normal RP(P), Log-Normal FALSE #> 1576 99 0.9303806 0.199727243 fv Log-Normal RP(P), Log-Normal FALSE #> 1592 100 0.6869339 0.148166559 fv Log-Normal RP(P), Log-Normal FALSE #> 1608 101 0.6467181 0.136969509 fv Log-Normal RP(P), Log-Normal FALSE #> 1624 102 0.4957626 0.105808839 fv Log-Normal RP(P), Log-Normal FALSE #> 1640 103 0.7884881 0.166125050 fv Log-Normal RP(P), Log-Normal FALSE #> 1656 104 0.7369302 0.156103668 fv Log-Normal RP(P), Log-Normal FALSE #> 1672 105 0.4680770 0.100530696 fv Log-Normal RP(P), Log-Normal FALSE #> 1688 106 0.6814912 0.146176406 fv Log-Normal RP(P), Log-Normal FALSE #> 1704 107 0.8653450 0.182292080 fv Log-Normal RP(P), Log-Normal FALSE #> 1720 108 0.7160621 0.153662080 fv Log-Normal RP(P), Log-Normal FALSE #> 1736 109 0.9318352 0.195104641 fv Log-Normal RP(P), Log-Normal FALSE #> 1752 110 0.9333831 0.197785385 fv Log-Normal RP(P), Log-Normal FALSE #> 1768 111 0.6395728 0.135269065 fv Log-Normal RP(P), Log-Normal FALSE #> 1784 112 0.7016627 0.147545888 fv Log-Normal RP(P), Log-Normal FALSE #> 1800 113 0.8576238 0.179983637 fv Log-Normal RP(P), Log-Normal FALSE #> 1816 114 0.6710954 0.142328711 fv Log-Normal RP(P), Log-Normal FALSE #> 1832 115 0.7820406 0.166205449 fv Log-Normal RP(P), Log-Normal FALSE #> 1848 116 0.7939534 0.167711038 fv Log-Normal RP(P), Log-Normal FALSE #> 1864 117 0.8430940 0.176684051 fv Log-Normal RP(P), Log-Normal FALSE #> 1880 118 0.6212618 0.132330606 fv Log-Normal RP(P), Log-Normal FALSE #> 1896 119 0.5727404 0.121504334 fv Log-Normal RP(P), Log-Normal FALSE #> 1912 120 0.8243130 0.174444030 fv Log-Normal RP(P), Log-Normal FALSE #> 1928 121 0.7202072 0.152475354 fv Log-Normal RP(P), Log-Normal FALSE #> 1944 122 0.5561335 0.119749873 fv Log-Normal RP(P), Log-Normal FALSE #> 1960 123 0.5294622 0.113195261 fv Log-Normal RP(P), Log-Normal FALSE #> 1976 124 0.5606144 0.119830783 fv Log-Normal RP(P), Log-Normal FALSE #> 1992 125 0.5467464 0.117088993 fv Log-Normal RP(P), Log-Normal FALSE #> 2008 126 1.2215715 0.256569950 fv Log-Normal RP(P), Log-Normal TRUE #> 2024 127 0.5218994 0.113209374 fv Log-Normal RP(P), Log-Normal FALSE #> 2040 128 0.5216607 0.111937164 fv Log-Normal RP(P), Log-Normal FALSE #> 2056 129 0.7174736 0.154534528 fv Log-Normal RP(P), Log-Normal FALSE #> 2072 130 0.5770054 0.123890286 fv Log-Normal RP(P), Log-Normal FALSE #> 2088 131 0.6689280 0.142266715 fv Log-Normal RP(P), Log-Normal FALSE #> 2104 132 0.7957550 0.170120599 fv Log-Normal RP(P), Log-Normal FALSE #> 2120 133 0.9412438 0.196855270 fv Log-Normal RP(P), Log-Normal FALSE #> 2136 134 1.0838532 0.226912038 fv Log-Normal RP(P), Log-Normal TRUE #> 2152 135 0.6648603 0.140092983 fv Log-Normal RP(P), Log-Normal FALSE #> 2168 136 0.5492014 0.117363787 fv Log-Normal RP(P), Log-Normal FALSE #> 2184 137 0.5291266 0.115402392 fv Log-Normal RP(P), Log-Normal FALSE #> 2200 138 0.5264330 0.112494837 fv Log-Normal RP(P), Log-Normal FALSE #> 2216 139 0.7533269 0.160159857 fv Log-Normal RP(P), Log-Normal FALSE #> 2232 140 0.8110847 0.171158128 fv Log-Normal RP(P), Log-Normal FALSE #> 2248 141 0.4367489 0.094597121 fv Log-Normal RP(P), Log-Normal FALSE #> 2264 142 0.4940670 0.106169645 fv Log-Normal RP(P), Log-Normal FALSE #> 2280 143 0.5794493 0.122951278 fv Log-Normal RP(P), Log-Normal FALSE #> 2296 144 0.6778027 0.143521271 fv Log-Normal RP(P), Log-Normal FALSE #> 2312 145 0.5837892 0.125941371 fv Log-Normal RP(P), Log-Normal FALSE #> 2328 146 0.7325227 0.154220307 fv Log-Normal RP(P), Log-Normal FALSE #> 2344 147 0.6357226 0.135958395 fv Log-Normal RP(P), Log-Normal FALSE #> 2360 148 0.5487951 0.117138970 fv Log-Normal RP(P), Log-Normal FALSE #> 2376 149 0.4091531 0.089138976 fv Log-Normal RP(P), Log-Normal TRUE #> 2392 150 0.5623525 0.119787569 fv Log-Normal RP(P), Log-Normal FALSE #> 2408 151 0.9870081 0.207968406 fv Log-Normal RP(P), Log-Normal FALSE #> 2424 152 0.7257533 0.155576929 fv Log-Normal RP(P), Log-Normal FALSE #> 2440 153 0.7938888 0.166001332 fv Log-Normal RP(P), Log-Normal FALSE #> 2456 154 0.7543676 0.159096926 fv Log-Normal RP(P), Log-Normal FALSE #> 2472 155 1.0111457 0.212971620 fv Log-Normal RP(P), Log-Normal FALSE #> 2488 156 0.6544524 0.141043356 fv Log-Normal RP(P), Log-Normal FALSE #> 2504 157 0.6432003 0.138898907 fv Log-Normal RP(P), Log-Normal FALSE #> 2520 158 0.6411141 0.135716820 fv Log-Normal RP(P), Log-Normal FALSE #> 2536 159 0.8229442 0.176716197 fv Log-Normal RP(P), Log-Normal FALSE #> 2552 160 0.8120361 0.174187032 fv Log-Normal RP(P), Log-Normal FALSE #> 2568 161 0.9019813 0.188117850 fv Log-Normal RP(P), Log-Normal FALSE #> 2584 162 1.0499623 0.220400899 fv Log-Normal RP(P), Log-Normal TRUE #> 2600 163 0.6371458 0.137262190 fv Log-Normal RP(P), Log-Normal FALSE #> 2616 164 0.6859633 0.145451105 fv Log-Normal RP(P), Log-Normal FALSE #> 2632 165 0.5519135 0.117940756 fv Log-Normal RP(P), Log-Normal FALSE #> 2648 166 0.4479469 0.095793295 fv Log-Normal RP(P), Log-Normal FALSE #> 2664 167 0.7613875 0.161975639 fv Log-Normal RP(P), Log-Normal FALSE #> 2680 168 0.8959044 0.188861131 fv Log-Normal RP(P), Log-Normal FALSE #> 2696 169 0.6531845 0.138023079 fv Log-Normal RP(P), Log-Normal FALSE #> 2712 170 0.7664620 0.162066953 fv Log-Normal RP(P), Log-Normal FALSE #> 2728 171 0.8455567 0.178186955 fv Log-Normal RP(P), Log-Normal FALSE #> 2744 172 0.7766548 0.164499182 fv Log-Normal RP(P), Log-Normal FALSE #> 2760 173 0.7349752 0.154532530 fv Log-Normal RP(P), Log-Normal FALSE #> 2776 174 0.6099624 0.129739699 fv Log-Normal RP(P), Log-Normal FALSE #> 2792 175 0.8046287 0.169421952 fv Log-Normal RP(P), Log-Normal FALSE #> 2808 176 1.0156282 0.214174421 fv Log-Normal RP(P), Log-Normal FALSE #> 2824 177 0.8256876 0.175175875 fv Log-Normal RP(P), Log-Normal FALSE #> 2840 178 0.5414903 0.116046912 fv Log-Normal RP(P), Log-Normal FALSE #> 2856 179 0.9627749 0.202015293 fv Log-Normal RP(P), Log-Normal FALSE #> 2872 180 0.5801914 0.124401399 fv Log-Normal RP(P), Log-Normal FALSE #> 2888 181 0.7554494 0.159701514 fv Log-Normal RP(P), Log-Normal FALSE #> 2904 182 1.2537245 0.262312759 fv Log-Normal RP(P), Log-Normal TRUE #> 2920 183 0.7659203 0.165867012 fv Log-Normal RP(P), Log-Normal FALSE #> 2936 184 0.9738310 0.203471702 fv Log-Normal RP(P), Log-Normal FALSE #> 2952 185 0.8121692 0.171028940 fv Log-Normal RP(P), Log-Normal FALSE #> 2968 186 0.7982599 0.168832783 fv Log-Normal RP(P), Log-Normal FALSE #> 2984 187 0.6883828 0.145342853 fv Log-Normal RP(P), Log-Normal FALSE #> 3000 188 0.8374741 0.176193562 fv Log-Normal RP(P), Log-Normal FALSE #> 3016 189 0.6993496 0.147808847 fv Log-Normal RP(P), Log-Normal FALSE #> 3032 190 0.8064399 0.170804825 fv Log-Normal RP(P), Log-Normal FALSE #> 3048 191 0.8008227 0.173861583 fv Log-Normal RP(P), Log-Normal FALSE #> 3064 192 0.6525505 0.137788950 fv Log-Normal RP(P), Log-Normal FALSE #> 3080 193 0.7916083 0.170491952 fv Log-Normal RP(P), Log-Normal FALSE #> 3096 194 0.9988075 0.209353233 fv Log-Normal RP(P), Log-Normal FALSE #> 3112 195 0.5880564 0.124916660 fv Log-Normal RP(P), Log-Normal FALSE #> 3128 196 0.6367192 0.135928623 fv Log-Normal RP(P), Log-Normal FALSE #> 3144 197 0.6587380 0.139314113 fv Log-Normal RP(P), Log-Normal FALSE #> 3160 198 0.7988690 0.168411544 fv Log-Normal RP(P), Log-Normal FALSE #> 3176 199 0.5340730 0.114133322 fv Log-Normal RP(P), Log-Normal FALSE #> 3192 200 0.6108400 0.131066750 fv Log-Normal RP(P), Log-Normal FALSE #> 3208 201 0.8908497 0.188126967 fv Log-Normal RP(P), Log-Normal FALSE #> 3224 202 0.7243823 0.152769551 fv Log-Normal RP(P), Log-Normal FALSE #> 3240 203 0.6371139 0.135630072 fv Log-Normal RP(P), Log-Normal FALSE #> 3256 204 0.6812425 0.144876357 fv Log-Normal RP(P), Log-Normal FALSE #> 3272 205 0.6640707 0.142647914 fv Log-Normal RP(P), Log-Normal FALSE #> 3288 206 0.7955822 0.169584226 fv Log-Normal RP(P), Log-Normal FALSE #> 3304 207 0.8122343 0.171305716 fv Log-Normal RP(P), Log-Normal FALSE #> 3320 208 1.0716857 0.225174141 fv Log-Normal RP(P), Log-Normal TRUE #> 3336 209 0.6729434 0.145634249 fv Log-Normal RP(P), Log-Normal FALSE #> 3352 210 0.7233139 0.155217656 fv Log-Normal RP(P), Log-Normal FALSE #> 3368 211 0.8224261 0.173753257 fv Log-Normal RP(P), Log-Normal FALSE #> 3384 212 0.8106002 0.171929743 fv Log-Normal RP(P), Log-Normal FALSE #> 3400 213 0.6209349 0.132488452 fv Log-Normal RP(P), Log-Normal FALSE #> 3416 214 0.6651939 0.141701897 fv Log-Normal RP(P), Log-Normal FALSE #> 3432 215 0.6681925 0.142692548 fv Log-Normal RP(P), Log-Normal FALSE #> 3448 216 0.9718383 0.203611298 fv Log-Normal RP(P), Log-Normal FALSE #> 3464 217 0.7615306 0.161592701 fv Log-Normal RP(P), Log-Normal FALSE #> 3480 218 0.5932685 0.126182039 fv Log-Normal RP(P), Log-Normal FALSE #> 3496 219 0.8440250 0.177280275 fv Log-Normal RP(P), Log-Normal FALSE #> 3512 220 0.9111737 0.193577494 fv Log-Normal RP(P), Log-Normal FALSE #> 3528 221 0.6454833 0.139083353 fv Log-Normal RP(P), Log-Normal FALSE #> 3544 222 0.3710342 0.081236086 fv Log-Normal RP(P), Log-Normal TRUE #> 3560 223 0.5463579 0.116226442 fv Log-Normal RP(P), Log-Normal FALSE #> 3576 224 0.5958494 0.127390309 fv Log-Normal RP(P), Log-Normal FALSE #> 3592 225 0.8256615 0.173178721 fv Log-Normal RP(P), Log-Normal FALSE #> 3608 226 1.0751549 0.225902510 fv Log-Normal RP(P), Log-Normal TRUE #> 3624 227 0.7671138 0.162589102 fv Log-Normal RP(P), Log-Normal FALSE #> 3640 228 0.8685262 0.182915069 fv Log-Normal RP(P), Log-Normal FALSE #> 3656 229 0.4077865 0.089309434 fv Log-Normal RP(P), Log-Normal TRUE #> 3672 230 0.6142203 0.130122245 fv Log-Normal RP(P), Log-Normal FALSE #> 3688 231 0.6568914 0.139096135 fv Log-Normal RP(P), Log-Normal FALSE #> 3704 232 0.9518400 0.200405291 fv Log-Normal RP(P), Log-Normal FALSE #> 3720 233 0.9620535 0.203495174 fv Log-Normal RP(P), Log-Normal FALSE #> 3736 234 0.9386042 0.197203991 fv Log-Normal RP(P), Log-Normal FALSE #> 3752 235 0.5533993 0.117867348 fv Log-Normal RP(P), Log-Normal FALSE #> 3768 236 0.6340348 0.134447642 fv Log-Normal RP(P), Log-Normal FALSE #> 3784 237 0.5453294 0.115930957 fv Log-Normal RP(P), Log-Normal FALSE #> 3800 238 0.8944895 0.191484666 fv Log-Normal RP(P), Log-Normal FALSE #> 3816 239 0.9288279 0.195513931 fv Log-Normal RP(P), Log-Normal FALSE #> 3832 240 0.6350098 0.135823593 fv Log-Normal RP(P), Log-Normal FALSE #> 3848 241 0.7685612 0.163948020 fv Log-Normal RP(P), Log-Normal FALSE #> 3864 242 0.5467803 0.117102138 fv Log-Normal RP(P), Log-Normal FALSE #> 3880 243 0.6730960 0.142931552 fv Log-Normal RP(P), Log-Normal FALSE #> 3896 244 0.6142116 0.131941975 fv Log-Normal RP(P), Log-Normal FALSE #> 3912 245 0.5020462 0.109122006 fv Log-Normal RP(P), Log-Normal FALSE #> 3928 246 0.7921927 0.168021380 fv Log-Normal RP(P), Log-Normal FALSE #> 3944 247 0.6592181 0.139530433 fv Log-Normal RP(P), Log-Normal FALSE #> 3960 248 1.1777612 0.254244197 fv Log-Normal RP(P), Log-Normal TRUE #> 3976 249 0.5943575 0.127544821 fv Log-Normal RP(P), Log-Normal FALSE #> 3992 250 0.7502168 0.158141093 fv Log-Normal RP(P), Log-Normal FALSE #> 4008 251 0.6268527 0.133734241 fv Log-Normal RP(P), Log-Normal FALSE #> 4024 252 0.4776854 0.102284469 fv Log-Normal RP(P), Log-Normal FALSE #> 4040 253 0.8681536 0.183500004 fv Log-Normal RP(P), Log-Normal FALSE #> 4056 254 0.7439174 0.156041861 fv Log-Normal RP(P), Log-Normal FALSE #> 4072 255 0.9441697 0.201330530 fv Log-Normal RP(P), Log-Normal FALSE #> 4088 256 0.8607312 0.182317109 fv Log-Normal RP(P), Log-Normal FALSE #> 4104 257 0.8369787 0.175261357 fv Log-Normal RP(P), Log-Normal FALSE #> 4120 258 0.4171869 0.089856660 fv Log-Normal RP(P), Log-Normal TRUE #> 4136 259 0.6676815 0.141483812 fv Log-Normal RP(P), Log-Normal FALSE #> 4152 260 0.6884486 0.147931703 fv Log-Normal RP(P), Log-Normal FALSE #> 4168 261 0.8876474 0.187002433 fv Log-Normal RP(P), Log-Normal FALSE #> 4184 262 0.6886344 0.145893409 fv Log-Normal RP(P), Log-Normal FALSE #> 4200 263 0.8769823 0.186762641 fv Log-Normal RP(P), Log-Normal FALSE #> 4216 264 0.7973775 0.168952281 fv Log-Normal RP(P), Log-Normal FALSE #> 4232 265 0.6224204 0.131746513 fv Log-Normal RP(P), Log-Normal FALSE #> 4248 266 0.6649661 0.143208152 fv Log-Normal RP(P), Log-Normal FALSE #> 4264 267 0.6170590 0.130985777 fv Log-Normal RP(P), Log-Normal FALSE #> 4280 268 0.9638015 0.201609273 fv Log-Normal RP(P), Log-Normal FALSE #> 4296 269 0.6192713 0.132297670 fv Log-Normal RP(P), Log-Normal FALSE #> 4312 270 0.6272993 0.133300944 fv Log-Normal RP(P), Log-Normal FALSE #> 4328 271 0.7800909 0.164123810 fv Log-Normal RP(P), Log-Normal FALSE #> 4344 272 0.5661606 0.121060836 fv Log-Normal RP(P), Log-Normal FALSE #> 4360 273 0.7588228 0.161878411 fv Log-Normal RP(P), Log-Normal FALSE #> 4376 274 0.7671855 0.161327099 fv Log-Normal RP(P), Log-Normal FALSE #> 4392 275 0.6394525 0.136719057 fv Log-Normal RP(P), Log-Normal FALSE #> 4408 276 0.7903120 0.166291219 fv Log-Normal RP(P), Log-Normal FALSE #> 4424 277 0.7234781 0.152518392 fv Log-Normal RP(P), Log-Normal FALSE #> 4440 278 0.6278358 0.135101300 fv Log-Normal RP(P), Log-Normal FALSE #> 4456 279 0.8158385 0.171062766 fv Log-Normal RP(P), Log-Normal FALSE #> 4472 280 0.8400655 0.178662425 fv Log-Normal RP(P), Log-Normal FALSE #> 4488 281 0.7252124 0.152822320 fv Log-Normal RP(P), Log-Normal FALSE #> 4504 282 0.6556109 0.140682373 fv Log-Normal RP(P), Log-Normal FALSE #> 4520 283 0.8872840 0.188990041 fv Log-Normal RP(P), Log-Normal FALSE #> 4536 284 0.6237917 0.133109411 fv Log-Normal RP(P), Log-Normal FALSE #> 4552 285 0.7104471 0.150620789 fv Log-Normal RP(P), Log-Normal FALSE #> 4568 286 0.7010266 0.148553607 fv Log-Normal RP(P), Log-Normal FALSE #> 4584 287 0.5983036 0.127533893 fv Log-Normal RP(P), Log-Normal FALSE #> 4600 288 0.6194319 0.132300120 fv Log-Normal RP(P), Log-Normal FALSE #> 4616 289 0.6953902 0.147668888 fv Log-Normal RP(P), Log-Normal FALSE #> 4632 290 0.6789570 0.143987778 fv Log-Normal RP(P), Log-Normal FALSE #> 4648 291 0.7671789 0.162019778 fv Log-Normal RP(P), Log-Normal FALSE #> 4664 292 0.6671205 0.145690555 fv Log-Normal RP(P), Log-Normal FALSE #> 4680 293 0.6823554 0.144154584 fv Log-Normal RP(P), Log-Normal FALSE #> 4696 294 0.7332624 0.154464681 fv Log-Normal RP(P), Log-Normal FALSE #> 4712 295 0.6404999 0.135858256 fv Log-Normal RP(P), Log-Normal FALSE #> 4728 296 0.8064440 0.169134786 fv Log-Normal RP(P), Log-Normal FALSE #> 4744 297 0.4154099 0.089707885 fv Log-Normal RP(P), Log-Normal TRUE #> 4760 298 0.7001526 0.148958370 fv Log-Normal RP(P), Log-Normal FALSE #> 4776 299 0.7901542 0.166005499 fv Log-Normal RP(P), Log-Normal FALSE #> 4792 300 0.6383931 0.135316588 fv Log-Normal RP(P), Log-Normal FALSE #> 4808 301 1.0797894 0.226631922 fv Log-Normal RP(P), Log-Normal TRUE #> 4824 302 0.7333982 0.154129270 fv Log-Normal RP(P), Log-Normal FALSE #> 4840 303 0.6448902 0.136135374 fv Log-Normal RP(P), Log-Normal FALSE #> 4856 304 0.6874369 0.145600025 fv Log-Normal RP(P), Log-Normal FALSE #> 4872 305 0.8473673 0.180072933 fv Log-Normal RP(P), Log-Normal FALSE #> 4888 306 0.5855319 0.124660389 fv Log-Normal RP(P), Log-Normal FALSE #> 4904 307 0.6260604 0.133351831 fv Log-Normal RP(P), Log-Normal FALSE #> 4920 308 0.7265619 0.155227234 fv Log-Normal RP(P), Log-Normal FALSE #> 4936 309 0.6165858 0.131736323 fv Log-Normal RP(P), Log-Normal FALSE #> 4952 310 0.6669932 0.143636364 fv Log-Normal RP(P), Log-Normal FALSE #> 4968 311 0.8948024 0.187518922 fv Log-Normal RP(P), Log-Normal FALSE #> 4984 312 0.7340584 0.156045396 fv Log-Normal RP(P), Log-Normal FALSE #> 5000 313 0.5098630 0.110514496 fv Log-Normal RP(P), Log-Normal FALSE #> 5016 314 0.7006581 0.149757043 fv Log-Normal RP(P), Log-Normal FALSE #> 5032 315 0.6800828 0.144554310 fv Log-Normal RP(P), Log-Normal FALSE #> 5048 316 0.5944615 0.126393843 fv Log-Normal RP(P), Log-Normal FALSE #> 5064 317 0.8636833 0.180934577 fv Log-Normal RP(P), Log-Normal FALSE #> 5080 318 0.5483091 0.116304349 fv Log-Normal RP(P), Log-Normal FALSE #> 5096 319 0.7523237 0.160342794 fv Log-Normal RP(P), Log-Normal FALSE #> 5112 320 0.8391743 0.176178376 fv Log-Normal RP(P), Log-Normal FALSE #> 5128 321 0.9163775 0.194154288 fv Log-Normal RP(P), Log-Normal FALSE #> 5144 322 0.5894324 0.127298736 fv Log-Normal RP(P), Log-Normal FALSE #> 5160 323 0.8114798 0.171935681 fv Log-Normal RP(P), Log-Normal FALSE #> 5176 324 0.5338577 0.114284662 fv Log-Normal RP(P), Log-Normal FALSE #> 5192 325 0.6217815 0.132298631 fv Log-Normal RP(P), Log-Normal FALSE #> 5208 326 1.0836512 0.235917887 fv Log-Normal RP(P), Log-Normal TRUE #> 5224 327 0.5334750 0.115076500 fv Log-Normal RP(P), Log-Normal FALSE #> 5240 328 0.7989732 0.169468715 fv Log-Normal RP(P), Log-Normal FALSE #> 5256 329 0.6360385 0.134479974 fv Log-Normal RP(P), Log-Normal FALSE #> 5272 330 0.5875593 0.128101031 fv Log-Normal RP(P), Log-Normal FALSE #> 5288 331 0.9377907 0.197762013 fv Log-Normal RP(P), Log-Normal FALSE #> 5304 332 0.6885284 0.145055687 fv Log-Normal RP(P), Log-Normal FALSE #> 5320 333 0.5064415 0.108148237 fv Log-Normal RP(P), Log-Normal FALSE #> 5336 334 0.5541498 0.118443759 fv Log-Normal RP(P), Log-Normal FALSE #> 5352 335 0.5482213 0.116736851 fv Log-Normal RP(P), Log-Normal FALSE #> 5368 336 0.7934025 0.166004228 fv Log-Normal RP(P), Log-Normal FALSE #> 5384 337 0.6571731 0.138502229 fv Log-Normal RP(P), Log-Normal FALSE #> 5400 338 0.7728687 0.163033764 fv Log-Normal RP(P), Log-Normal FALSE #> 5416 339 0.5965669 0.128341597 fv Log-Normal RP(P), Log-Normal FALSE #> 5432 340 0.9275768 0.195141879 fv Log-Normal RP(P), Log-Normal FALSE #> 5448 341 0.6692119 0.145172381 fv Log-Normal RP(P), Log-Normal FALSE #> 5464 342 0.5902572 0.125475073 fv Log-Normal RP(P), Log-Normal FALSE #> 5480 343 0.5801466 0.123098768 fv Log-Normal RP(P), Log-Normal FALSE #> 5496 344 0.6785553 0.144580820 fv Log-Normal RP(P), Log-Normal FALSE #> 5512 345 0.6981478 0.149010321 fv Log-Normal RP(P), Log-Normal FALSE #> 5528 346 0.5238796 0.114762954 fv Log-Normal RP(P), Log-Normal FALSE #> 5544 347 0.6274841 0.133216940 fv Log-Normal RP(P), Log-Normal FALSE #> 5560 348 0.6138076 0.132661263 fv Log-Normal RP(P), Log-Normal FALSE #> 5576 349 0.7089060 0.151241295 fv Log-Normal RP(P), Log-Normal FALSE #> 5592 350 0.7922423 0.166710243 fv Log-Normal RP(P), Log-Normal FALSE #> 5608 351 0.6095110 0.131638592 fv Log-Normal RP(P), Log-Normal FALSE #> 5624 352 0.8227668 0.174673506 fv Log-Normal RP(P), Log-Normal FALSE #> 5640 353 0.7124254 0.149873339 fv Log-Normal RP(P), Log-Normal FALSE #> 5656 354 0.6746969 0.142588109 fv Log-Normal RP(P), Log-Normal FALSE #> 5672 355 0.7436915 0.155836291 fv Log-Normal RP(P), Log-Normal FALSE #> 5688 356 0.6364339 0.135095851 fv Log-Normal RP(P), Log-Normal FALSE #> 5704 357 0.9283883 0.195684960 fv Log-Normal RP(P), Log-Normal FALSE #> 5720 358 0.6779987 0.143013219 fv Log-Normal RP(P), Log-Normal FALSE #> 5736 359 0.5223231 0.112182424 fv Log-Normal RP(P), Log-Normal FALSE #> 5752 360 0.6818928 0.145867770 fv Log-Normal RP(P), Log-Normal FALSE #> 5768 361 0.6438289 0.136908189 fv Log-Normal RP(P), Log-Normal FALSE #> 5784 362 0.6308484 0.133550798 fv Log-Normal RP(P), Log-Normal FALSE #> 5800 363 0.6184552 0.131494207 fv Log-Normal RP(P), Log-Normal FALSE #> 5816 364 0.9020074 0.191480398 fv Log-Normal RP(P), Log-Normal FALSE #> 5832 365 0.8085743 0.174120700 fv Log-Normal RP(P), Log-Normal FALSE #> 5848 366 0.6868125 0.146863645 fv Log-Normal RP(P), Log-Normal FALSE #> 5864 367 0.8043925 0.169415489 fv Log-Normal RP(P), Log-Normal FALSE #> 5880 368 0.9940984 0.211797215 fv Log-Normal RP(P), Log-Normal FALSE #> 5896 369 0.6067818 0.130133487 fv Log-Normal RP(P), Log-Normal FALSE #> 5912 370 0.7791594 0.164610115 fv Log-Normal RP(P), Log-Normal FALSE #> 5928 371 0.6579660 0.139290440 fv Log-Normal RP(P), Log-Normal FALSE #> 5944 372 0.4998593 0.107079991 fv Log-Normal RP(P), Log-Normal FALSE #> 5960 373 1.1187507 0.239669973 fv Log-Normal RP(P), Log-Normal TRUE #> 5976 374 0.5445436 0.116192907 fv Log-Normal RP(P), Log-Normal FALSE #> 5992 375 0.6589562 0.140315215 fv Log-Normal RP(P), Log-Normal FALSE #> 6008 376 0.7039143 0.151300247 fv Log-Normal RP(P), Log-Normal FALSE #> 6024 377 0.5442462 0.116958497 fv Log-Normal RP(P), Log-Normal FALSE #> 6040 378 0.6207517 0.133000762 fv Log-Normal RP(P), Log-Normal FALSE #> 6056 379 0.5070180 0.108149121 fv Log-Normal RP(P), Log-Normal FALSE #> 6072 380 0.6588885 0.139471825 fv Log-Normal RP(P), Log-Normal FALSE #> 6088 381 0.8548545 0.181832063 fv Log-Normal RP(P), Log-Normal FALSE #> 6104 382 0.7335509 0.156313750 fv Log-Normal RP(P), Log-Normal FALSE #> 6120 383 0.7137172 0.150203860 fv Log-Normal RP(P), Log-Normal FALSE #> 6136 384 0.7104134 0.150412373 fv Log-Normal RP(P), Log-Normal FALSE #> 6152 385 0.5935099 0.129534784 fv Log-Normal RP(P), Log-Normal FALSE #> 6168 386 0.9411797 0.201815466 fv Log-Normal RP(P), Log-Normal FALSE #> 6184 387 0.5892174 0.125279876 fv Log-Normal RP(P), Log-Normal FALSE #> 6200 388 0.9310919 0.196820097 fv Log-Normal RP(P), Log-Normal FALSE #> 6216 389 0.8066429 0.170511534 fv Log-Normal RP(P), Log-Normal FALSE #> 6232 390 0.6786750 0.144396146 fv Log-Normal RP(P), Log-Normal FALSE #> 6248 391 0.8198229 0.172515332 fv Log-Normal RP(P), Log-Normal FALSE #> 6264 392 0.6270577 0.133542272 fv Log-Normal RP(P), Log-Normal FALSE #> 6280 393 0.5605416 0.119072930 fv Log-Normal RP(P), Log-Normal FALSE #> 6296 394 0.8810824 0.186080625 fv Log-Normal RP(P), Log-Normal FALSE #> 6312 395 0.7626802 0.161748237 fv Log-Normal RP(P), Log-Normal FALSE #> 6328 396 1.0186980 0.215519936 fv Log-Normal RP(P), Log-Normal FALSE #> 6344 397 0.7136712 0.152808078 fv Log-Normal RP(P), Log-Normal FALSE #> 6360 398 0.6724088 0.142879285 fv Log-Normal RP(P), Log-Normal FALSE #> 6376 399 0.8200587 0.173443890 fv Log-Normal RP(P), Log-Normal FALSE #> 6392 400 0.5373662 0.114719406 fv Log-Normal RP(P), Log-Normal FALSE #> 6408 401 0.6198081 0.133051510 fv Log-Normal RP(P), Log-Normal FALSE #> 6424 402 0.5456393 0.120676593 fv Log-Normal RP(P), Log-Normal FALSE #> 6440 403 0.6242481 0.134826074 fv Log-Normal RP(P), Log-Normal FALSE #> 6456 404 0.5789455 0.124683392 fv Log-Normal RP(P), Log-Normal FALSE #> 6472 405 0.4740742 0.101148159 fv Log-Normal RP(P), Log-Normal FALSE #> 6488 406 0.7363722 0.157413363 fv Log-Normal RP(P), Log-Normal FALSE #> 6504 407 0.7570074 0.160550534 fv Log-Normal RP(P), Log-Normal FALSE #> 6520 408 0.4959259 0.108490225 fv Log-Normal RP(P), Log-Normal FALSE #> 6536 409 0.7356424 0.157765466 fv Log-Normal RP(P), Log-Normal FALSE #> 6552 410 0.7712851 0.162320795 fv Log-Normal RP(P), Log-Normal FALSE #> 6568 411 0.6541786 0.140317219 fv Log-Normal RP(P), Log-Normal FALSE #> 6584 412 0.6661183 0.143455097 fv Log-Normal RP(P), Log-Normal FALSE #> 6600 413 0.5350439 0.115753646 fv Log-Normal RP(P), Log-Normal FALSE #> 6616 414 0.8643640 0.180317810 fv Log-Normal RP(P), Log-Normal FALSE #> 6632 415 1.2739619 0.266898773 fv Log-Normal RP(P), Log-Normal TRUE #> 6648 416 0.5686275 0.124459667 fv Log-Normal RP(P), Log-Normal FALSE #> 6664 417 0.5516460 0.117282911 fv Log-Normal RP(P), Log-Normal FALSE #> 6680 418 0.8937930 0.187628969 fv Log-Normal RP(P), Log-Normal FALSE #> 6696 419 0.4939313 0.107958764 fv Log-Normal RP(P), Log-Normal FALSE #> 6712 420 0.7618818 0.162553523 fv Log-Normal RP(P), Log-Normal FALSE #> 6728 421 0.7941336 0.166611656 fv Log-Normal RP(P), Log-Normal FALSE #> 6744 422 0.5760020 0.123123483 fv Log-Normal RP(P), Log-Normal FALSE #> 6760 423 0.5860742 0.124560347 fv Log-Normal RP(P), Log-Normal FALSE #> 6776 424 0.6808656 0.144707278 fv Log-Normal RP(P), Log-Normal FALSE #> 6792 425 0.7515341 0.158171202 fv Log-Normal RP(P), Log-Normal FALSE #> 6808 426 0.8278194 0.174409626 fv Log-Normal RP(P), Log-Normal FALSE #> 6824 427 0.9565671 0.199453527 fv Log-Normal RP(P), Log-Normal FALSE #> 6840 428 0.8208074 0.173449828 fv Log-Normal RP(P), Log-Normal FALSE #> 6856 429 0.7261118 0.153860717 fv Log-Normal RP(P), Log-Normal FALSE #> 6872 430 0.8154937 0.170888139 fv Log-Normal RP(P), Log-Normal FALSE #> 6888 431 0.6854336 0.147503360 fv Log-Normal RP(P), Log-Normal FALSE #> 6904 432 0.8698979 0.183151737 fv Log-Normal RP(P), Log-Normal FALSE #> 6920 433 0.5932630 0.126716505 fv Log-Normal RP(P), Log-Normal FALSE #> 6936 434 0.5884706 0.124621858 fv Log-Normal RP(P), Log-Normal FALSE #> 6952 435 0.4976009 0.107213878 fv Log-Normal RP(P), Log-Normal FALSE #> 6968 436 0.7641928 0.161595804 fv Log-Normal RP(P), Log-Normal FALSE #> 6984 437 0.5831031 0.126014583 fv Log-Normal RP(P), Log-Normal FALSE #> 7000 438 0.8816506 0.185159712 fv Log-Normal RP(P), Log-Normal FALSE #> 7016 439 0.5992139 0.129551688 fv Log-Normal RP(P), Log-Normal FALSE #> 7032 440 0.4173110 0.090549796 fv Log-Normal RP(P), Log-Normal TRUE #> 7048 441 0.5608792 0.120279561 fv Log-Normal RP(P), Log-Normal FALSE #> 7064 442 0.7522919 0.160420421 fv Log-Normal RP(P), Log-Normal FALSE #> 7080 443 0.8041542 0.170485517 fv Log-Normal RP(P), Log-Normal FALSE #> 7096 444 0.8333665 0.174907941 fv Log-Normal RP(P), Log-Normal FALSE #> 7112 445 0.9032992 0.190709150 fv Log-Normal RP(P), Log-Normal FALSE #> 7128 446 0.6382998 0.136039454 fv Log-Normal RP(P), Log-Normal FALSE #> 7144 447 0.8913664 0.188101809 fv Log-Normal RP(P), Log-Normal FALSE #> 7160 448 0.9185656 0.194708815 fv Log-Normal RP(P), Log-Normal FALSE #> 7176 449 0.9114504 0.192914583 fv Log-Normal RP(P), Log-Normal FALSE #> 7192 450 0.7040628 0.150193038 fv Log-Normal RP(P), Log-Normal FALSE #> 7208 451 0.7951696 0.168085049 fv Log-Normal RP(P), Log-Normal FALSE #> 7224 452 0.7822380 0.164962493 fv Log-Normal RP(P), Log-Normal FALSE #> 7240 453 0.6990982 0.147390463 fv Log-Normal RP(P), Log-Normal FALSE #> 7256 454 0.6810218 0.145335768 fv Log-Normal RP(P), Log-Normal FALSE #> 7272 455 0.6300676 0.133453170 fv Log-Normal RP(P), Log-Normal FALSE #> 7288 456 0.4863927 0.104457276 fv Log-Normal RP(P), Log-Normal FALSE #> 7304 457 0.9178214 0.193997798 fv Log-Normal RP(P), Log-Normal FALSE #> 7320 458 0.7946535 0.172717509 fv Log-Normal RP(P), Log-Normal FALSE #> 7336 459 0.9718512 0.208815317 fv Log-Normal RP(P), Log-Normal FALSE #> 7352 460 0.6861966 0.146417539 fv Log-Normal RP(P), Log-Normal FALSE #> 7368 461 0.7851648 0.165669430 fv Log-Normal RP(P), Log-Normal FALSE #> 7384 462 0.7271394 0.153568596 fv Log-Normal RP(P), Log-Normal FALSE #> 7400 463 0.8837419 0.187918773 fv Log-Normal RP(P), Log-Normal FALSE #> 7416 464 0.8135415 0.171708945 fv Log-Normal RP(P), Log-Normal FALSE #> 7432 465 0.8182940 0.172522261 fv Log-Normal RP(P), Log-Normal FALSE #> 7448 466 0.8493356 0.179784542 fv Log-Normal RP(P), Log-Normal FALSE #> 7464 467 0.7431155 0.158019881 fv Log-Normal RP(P), Log-Normal FALSE #> 7480 468 0.9245746 0.194819936 fv Log-Normal RP(P), Log-Normal FALSE #> 7496 469 0.8093364 0.169629324 fv Log-Normal RP(P), Log-Normal FALSE #> 7512 470 0.7536124 0.160736238 fv Log-Normal RP(P), Log-Normal FALSE #> 7528 471 0.6319489 0.135425252 fv Log-Normal RP(P), Log-Normal FALSE #> 7544 472 0.8705816 0.183151533 fv Log-Normal RP(P), Log-Normal FALSE #> 7560 473 0.6939116 0.147277985 fv Log-Normal RP(P), Log-Normal FALSE #> 7576 474 1.0226695 0.218679643 fv Log-Normal RP(P), Log-Normal FALSE #> 7592 475 0.6441230 0.137039433 fv Log-Normal RP(P), Log-Normal FALSE #> 7608 476 0.4760739 0.102644848 fv Log-Normal RP(P), Log-Normal FALSE #> 7624 477 0.5102537 0.108874669 fv Log-Normal RP(P), Log-Normal FALSE #> 7640 478 0.8094600 0.170268803 fv Log-Normal RP(P), Log-Normal FALSE #> 7656 479 0.7402423 0.155742727 fv Log-Normal RP(P), Log-Normal FALSE #> 7672 480 1.0188028 0.213534164 fv Log-Normal RP(P), Log-Normal FALSE #> 7688 481 1.0312072 0.216978595 fv Log-Normal RP(P), Log-Normal FALSE #> 7704 482 0.7865807 0.168666058 fv Log-Normal RP(P), Log-Normal FALSE #> 7720 483 0.9423222 0.201963450 fv Log-Normal RP(P), Log-Normal FALSE #> 7736 484 0.8973102 0.192445828 fv Log-Normal RP(P), Log-Normal FALSE #> 7752 485 0.5963984 0.127055639 fv Log-Normal RP(P), Log-Normal FALSE #> 7768 486 0.4671000 0.102302527 fv Log-Normal RP(P), Log-Normal FALSE #> 7784 487 0.8902634 0.188247313 fv Log-Normal RP(P), Log-Normal FALSE #> 7800 488 0.4450478 0.096615368 fv Log-Normal RP(P), Log-Normal FALSE #> 7816 489 0.8021624 0.173231327 fv Log-Normal RP(P), Log-Normal FALSE #> 7832 490 0.7137305 0.152534661 fv Log-Normal RP(P), Log-Normal FALSE #> 7848 491 0.6903608 0.146100755 fv Log-Normal RP(P), Log-Normal FALSE #> 7864 492 0.5592670 0.118971312 fv Log-Normal RP(P), Log-Normal FALSE #> 7880 493 1.0805007 0.228198880 fv Log-Normal RP(P), Log-Normal TRUE #> 7896 494 0.6613173 0.139508951 fv Log-Normal RP(P), Log-Normal FALSE #> 7912 495 0.8229525 0.172706856 fv Log-Normal RP(P), Log-Normal FALSE #> 7928 496 1.0935848 0.231781117 fv Log-Normal RP(P), Log-Normal TRUE #> 7944 497 0.5926421 0.126095802 fv Log-Normal RP(P), Log-Normal FALSE #> 7960 498 0.6349464 0.134880116 fv Log-Normal RP(P), Log-Normal FALSE #> 7976 499 0.9057009 0.193169237 fv Log-Normal RP(P), Log-Normal FALSE #> 7992 500 0.6787804 0.143590515 fv Log-Normal RP(P), Log-Normal FALSE #> 8008 501 1.3525305 0.283084001 fv Log-Normal RP(P), Log-Normal TRUE #> 8024 502 0.7740755 0.163786111 fv Log-Normal RP(P), Log-Normal FALSE #> 8040 503 0.7478861 0.158084965 fv Log-Normal RP(P), Log-Normal FALSE #> 8056 504 0.8826810 0.185135409 fv Log-Normal RP(P), Log-Normal FALSE #> 8072 505 0.7557309 0.160151723 fv Log-Normal RP(P), Log-Normal FALSE #> 8088 506 1.0247701 0.219285990 fv Log-Normal RP(P), Log-Normal FALSE #> 8104 507 0.7332673 0.155458606 fv Log-Normal RP(P), Log-Normal FALSE #> 8120 508 0.5395012 0.115690840 fv Log-Normal RP(P), Log-Normal FALSE #> 8136 509 0.6787263 0.144817990 fv Log-Normal RP(P), Log-Normal FALSE #> 8152 510 0.6847482 0.146363988 fv Log-Normal RP(P), Log-Normal FALSE #> 8168 511 0.4605915 0.099150023 fv Log-Normal RP(P), Log-Normal FALSE #> 8184 512 0.7265371 0.156046468 fv Log-Normal RP(P), Log-Normal FALSE #> 8200 513 0.8072477 0.171715037 fv Log-Normal RP(P), Log-Normal FALSE #> 8216 514 0.7180859 0.151783993 fv Log-Normal RP(P), Log-Normal FALSE #> 8232 515 0.5582958 0.119831433 fv Log-Normal RP(P), Log-Normal FALSE #> 8248 516 0.7381316 0.155789374 fv Log-Normal RP(P), Log-Normal FALSE #> 8264 517 0.3674411 0.080541276 fv Log-Normal RP(P), Log-Normal TRUE #> 8280 518 0.7450873 0.157554369 fv Log-Normal RP(P), Log-Normal FALSE #> 8296 519 0.7681291 0.162465401 fv Log-Normal RP(P), Log-Normal FALSE #> 8312 520 0.8008281 0.168852756 fv Log-Normal RP(P), Log-Normal FALSE #> 8328 521 0.7998675 0.170293482 fv Log-Normal RP(P), Log-Normal FALSE #> 8344 522 0.5387534 0.114980391 fv Log-Normal RP(P), Log-Normal FALSE #> 8360 523 0.7672604 0.162198321 fv Log-Normal RP(P), Log-Normal FALSE #> 8376 524 0.5280884 0.112519890 fv Log-Normal RP(P), Log-Normal FALSE #> 8392 525 0.7053708 0.149423744 fv Log-Normal RP(P), Log-Normal FALSE #> 8408 526 0.6066376 0.129241961 fv Log-Normal RP(P), Log-Normal FALSE #> 8424 527 0.7129661 0.150656058 fv Log-Normal RP(P), Log-Normal FALSE #> 8440 528 0.9281260 0.195995962 fv Log-Normal RP(P), Log-Normal FALSE #> 8456 529 0.9355893 0.196208641 fv Log-Normal RP(P), Log-Normal FALSE #> 8472 530 0.4504997 0.097884739 fv Log-Normal RP(P), Log-Normal FALSE #> 8488 531 1.0001840 0.211155769 fv Log-Normal RP(P), Log-Normal FALSE #> 8504 532 0.7216514 0.152077098 fv Log-Normal RP(P), Log-Normal FALSE #> 8520 533 0.6905167 0.145804123 fv Log-Normal RP(P), Log-Normal FALSE #> 8536 534 0.7425754 0.157498257 fv Log-Normal RP(P), Log-Normal FALSE #> 8552 535 0.8638945 0.181911550 fv Log-Normal RP(P), Log-Normal FALSE #> 8568 536 0.5969459 0.128825659 fv Log-Normal RP(P), Log-Normal FALSE #> 8584 537 1.2497526 0.261387193 fv Log-Normal RP(P), Log-Normal TRUE #> 8600 538 0.5072017 0.109014290 fv Log-Normal RP(P), Log-Normal FALSE #> 8616 539 0.6856868 0.144442198 fv Log-Normal RP(P), Log-Normal FALSE #> 8632 540 0.6145395 0.130947333 fv Log-Normal RP(P), Log-Normal FALSE #> 8648 541 0.9003393 0.188467630 fv Log-Normal RP(P), Log-Normal FALSE #> 8664 542 0.8263942 0.175286712 fv Log-Normal RP(P), Log-Normal FALSE #> 8680 543 0.7581448 0.159106779 fv Log-Normal RP(P), Log-Normal FALSE #> 8696 544 0.7628214 0.161333872 fv Log-Normal RP(P), Log-Normal FALSE #> 8712 545 0.5729157 0.121622886 fv Log-Normal RP(P), Log-Normal FALSE #> 8728 546 0.9048540 0.189585012 fv Log-Normal RP(P), Log-Normal FALSE #> 8744 547 0.6888985 0.146237060 fv Log-Normal RP(P), Log-Normal FALSE #> 8760 548 0.5388485 0.114867872 fv Log-Normal RP(P), Log-Normal FALSE #> 8776 549 0.8844165 0.187783761 fv Log-Normal RP(P), Log-Normal FALSE #> 8792 550 0.5216935 0.112325747 fv Log-Normal RP(P), Log-Normal FALSE #> 8808 551 0.7981204 0.168826559 fv Log-Normal RP(P), Log-Normal FALSE #> 8824 552 0.7043843 0.148695174 fv Log-Normal RP(P), Log-Normal FALSE #> 8840 553 0.8456647 0.176887854 fv Log-Normal RP(P), Log-Normal FALSE #> 8856 554 0.9029274 0.189275208 fv Log-Normal RP(P), Log-Normal FALSE #> 8872 555 0.8338211 0.176687000 fv Log-Normal RP(P), Log-Normal FALSE #> 8888 556 0.8771735 0.184240708 fv Log-Normal RP(P), Log-Normal FALSE #> 8904 557 0.6994326 0.147519245 fv Log-Normal RP(P), Log-Normal FALSE #> 8920 558 0.6675003 0.140850673 fv Log-Normal RP(P), Log-Normal FALSE #> 8936 559 0.6142336 0.132089175 fv Log-Normal RP(P), Log-Normal FALSE #> 8952 560 0.7787745 0.163344772 fv Log-Normal RP(P), Log-Normal FALSE #> 8968 561 1.2512491 0.263068744 fv Log-Normal RP(P), Log-Normal TRUE #> 8984 562 0.8979502 0.193680428 fv Log-Normal RP(P), Log-Normal FALSE #> 9000 563 0.7952133 0.167695091 fv Log-Normal RP(P), Log-Normal FALSE #> 9016 564 0.6546188 0.141378883 fv Log-Normal RP(P), Log-Normal FALSE #> 9032 565 0.5562875 0.118568595 fv Log-Normal RP(P), Log-Normal FALSE #> 9048 566 0.7792219 0.167873773 fv Log-Normal RP(P), Log-Normal FALSE #> 9064 567 0.7419551 0.158352827 fv Log-Normal RP(P), Log-Normal FALSE #> 9080 568 0.5379826 0.115223660 fv Log-Normal RP(P), Log-Normal FALSE #> 9096 569 0.8461880 0.177143809 fv Log-Normal RP(P), Log-Normal FALSE #> 9112 570 0.5799163 0.126002183 fv Log-Normal RP(P), Log-Normal FALSE #> 9128 571 0.6983018 0.147992860 fv Log-Normal RP(P), Log-Normal FALSE #> 9144 572 0.6094856 0.128898875 fv Log-Normal RP(P), Log-Normal FALSE #> 9160 573 0.6552102 0.139040826 fv Log-Normal RP(P), Log-Normal FALSE #> 9176 574 0.7370159 0.156124757 fv Log-Normal RP(P), Log-Normal FALSE #> 9192 575 0.6652785 0.143329039 fv Log-Normal RP(P), Log-Normal FALSE #> 9208 576 0.7048646 0.153254428 fv Log-Normal RP(P), Log-Normal FALSE #> 9224 577 0.9167098 0.191907050 fv Log-Normal RP(P), Log-Normal FALSE #> 9240 578 0.5877871 0.124960960 fv Log-Normal RP(P), Log-Normal FALSE #> 9256 579 0.6016587 0.129835840 fv Log-Normal RP(P), Log-Normal FALSE #> 9272 580 0.4967792 0.106638664 fv Log-Normal RP(P), Log-Normal FALSE #> 9288 581 0.7942713 0.168013813 fv Log-Normal RP(P), Log-Normal FALSE #> 9304 582 0.7758947 0.163986474 fv Log-Normal RP(P), Log-Normal FALSE #> 9320 583 1.0340860 0.215440480 fv Log-Normal RP(P), Log-Normal FALSE #> 9336 584 0.5415647 0.114993075 fv Log-Normal RP(P), Log-Normal FALSE #> 9352 585 0.7207829 0.152475876 fv Log-Normal RP(P), Log-Normal FALSE #> 9368 586 0.7453476 0.156907193 fv Log-Normal RP(P), Log-Normal FALSE #> 9384 587 0.9381973 0.198355658 fv Log-Normal RP(P), Log-Normal FALSE #> 9400 588 0.5818223 0.125118084 fv Log-Normal RP(P), Log-Normal FALSE #> 9416 589 0.6031015 0.127799852 fv Log-Normal RP(P), Log-Normal FALSE #> 9432 590 0.8243606 0.175362711 fv Log-Normal RP(P), Log-Normal FALSE #> 9448 591 0.8454856 0.179386646 fv Log-Normal RP(P), Log-Normal FALSE #> 9464 592 0.8293279 0.176428804 fv Log-Normal RP(P), Log-Normal FALSE #> 9480 593 0.9311402 0.195578453 fv Log-Normal RP(P), Log-Normal FALSE #> 9496 594 0.7218285 0.152965863 fv Log-Normal RP(P), Log-Normal FALSE #> 9512 595 0.5446728 0.116520386 fv Log-Normal RP(P), Log-Normal FALSE #> 9528 596 0.7359036 0.154479518 fv Log-Normal RP(P), Log-Normal FALSE #> 9544 597 0.6073041 0.128691128 fv Log-Normal RP(P), Log-Normal FALSE #> 9560 598 1.0738637 0.225311791 fv Log-Normal RP(P), Log-Normal TRUE #> 9576 599 0.7532017 0.160702035 fv Log-Normal RP(P), Log-Normal FALSE #> 9592 600 0.5313748 0.113456443 fv Log-Normal RP(P), Log-Normal FALSE #> 9608 601 1.1762696 0.247690829 fv Log-Normal RP(P), Log-Normal TRUE #> 9624 602 0.9869736 0.208165567 fv Log-Normal RP(P), Log-Normal FALSE #> 9640 603 0.4156015 0.089856898 fv Log-Normal RP(P), Log-Normal TRUE #> 9656 604 0.7562236 0.159112332 fv Log-Normal RP(P), Log-Normal FALSE #> 9672 605 1.2356747 0.256716135 fv Log-Normal RP(P), Log-Normal TRUE #> 9688 606 0.6753278 0.142231678 fv Log-Normal RP(P), Log-Normal FALSE #> 9704 607 0.6100967 0.131469811 fv Log-Normal RP(P), Log-Normal FALSE #> 9720 608 0.4384887 0.095081321 fv Log-Normal RP(P), Log-Normal FALSE #> 9736 609 0.8299211 0.173601960 fv Log-Normal RP(P), Log-Normal FALSE #> 9752 610 0.6332973 0.134588006 fv Log-Normal RP(P), Log-Normal FALSE #> 9768 611 0.8122094 0.173499710 fv Log-Normal RP(P), Log-Normal FALSE #> 9784 612 0.5912979 0.127198194 fv Log-Normal RP(P), Log-Normal FALSE #> 9800 613 0.8186354 0.172772228 fv Log-Normal RP(P), Log-Normal FALSE #> 9816 614 0.7847640 0.167841517 fv Log-Normal RP(P), Log-Normal FALSE #> 9832 615 0.8697196 0.183433952 fv Log-Normal RP(P), Log-Normal FALSE #> 9848 616 0.7828021 0.165439563 fv Log-Normal RP(P), Log-Normal FALSE #> 9864 617 0.7846758 0.165990375 fv Log-Normal RP(P), Log-Normal FALSE #> 9880 618 0.6823886 0.144285111 fv Log-Normal RP(P), Log-Normal FALSE #> 9896 619 0.8198467 0.172557735 fv Log-Normal RP(P), Log-Normal FALSE #> 9912 620 0.8185053 0.173878169 fv Log-Normal RP(P), Log-Normal FALSE #> 9928 621 0.5663070 0.121246532 fv Log-Normal RP(P), Log-Normal FALSE #> 9944 622 0.6302051 0.135303879 fv Log-Normal RP(P), Log-Normal FALSE #> 9960 623 0.8783656 0.185679970 fv Log-Normal RP(P), Log-Normal FALSE #> 9976 624 0.5837145 0.125580529 fv Log-Normal RP(P), Log-Normal FALSE #> 9992 625 0.7638096 0.162639813 fv Log-Normal RP(P), Log-Normal FALSE #> 10008 626 0.6378765 0.135851705 fv Log-Normal RP(P), Log-Normal FALSE #> 10024 627 0.6253581 0.133238137 fv Log-Normal RP(P), Log-Normal FALSE #> 10040 628 0.6694660 0.143767320 fv Log-Normal RP(P), Log-Normal FALSE #> 10056 629 0.6392508 0.134956518 fv Log-Normal RP(P), Log-Normal FALSE #> 10072 630 0.8351055 0.175262379 fv Log-Normal RP(P), Log-Normal FALSE #> 10088 631 0.6715506 0.142213889 fv Log-Normal RP(P), Log-Normal FALSE #> 10104 632 0.7776511 0.166721548 fv Log-Normal RP(P), Log-Normal FALSE #> 10120 633 0.4910653 0.105740740 fv Log-Normal RP(P), Log-Normal FALSE #> 10136 634 0.6757272 0.146378271 fv Log-Normal RP(P), Log-Normal FALSE #> 10152 635 0.9063761 0.191682174 fv Log-Normal RP(P), Log-Normal FALSE #> 10168 636 0.4196552 0.091166924 fv Log-Normal RP(P), Log-Normal TRUE #> 10184 637 0.8757533 0.183031296 fv Log-Normal RP(P), Log-Normal FALSE #> 10200 638 0.6839210 0.145657493 fv Log-Normal RP(P), Log-Normal FALSE #> 10216 639 0.4323877 0.093765125 fv Log-Normal RP(P), Log-Normal FALSE #> 10232 640 0.7235325 0.154259737 fv Log-Normal RP(P), Log-Normal FALSE #> 10248 641 0.5858835 0.125271208 fv Log-Normal RP(P), Log-Normal FALSE #> 10264 642 0.6400015 0.136631265 fv Log-Normal RP(P), Log-Normal FALSE #> 10280 643 0.6645860 0.140296010 fv Log-Normal RP(P), Log-Normal FALSE #> 10296 644 0.6198370 0.131300536 fv Log-Normal RP(P), Log-Normal FALSE #> 10312 645 0.7546684 0.158768904 fv Log-Normal RP(P), Log-Normal FALSE #> 10328 646 0.8385785 0.177475226 fv Log-Normal RP(P), Log-Normal FALSE #> 10344 647 0.6580940 0.139159678 fv Log-Normal RP(P), Log-Normal FALSE #> 10360 648 1.0746985 0.225177802 fv Log-Normal RP(P), Log-Normal TRUE #> 10376 649 0.6308988 0.136195814 fv Log-Normal RP(P), Log-Normal FALSE #> 10392 650 0.8130078 0.170621264 fv Log-Normal RP(P), Log-Normal FALSE #> 10408 651 0.7933222 0.168885503 fv Log-Normal RP(P), Log-Normal FALSE #> 10424 652 1.2738896 0.266494041 fv Log-Normal RP(P), Log-Normal TRUE #> 10440 653 0.5448666 0.117388941 fv Log-Normal RP(P), Log-Normal FALSE #> 10456 654 0.5869671 0.127309334 fv Log-Normal RP(P), Log-Normal FALSE #> 10472 655 0.7057334 0.149997780 fv Log-Normal RP(P), Log-Normal FALSE #> 10488 656 0.7129275 0.153121486 fv Log-Normal RP(P), Log-Normal FALSE #> 10504 657 0.5353386 0.115029010 fv Log-Normal RP(P), Log-Normal FALSE #> 10520 658 1.1549453 0.246231092 fv Log-Normal RP(P), Log-Normal TRUE #> 10536 659 1.0576571 0.224338275 fv Log-Normal RP(P), Log-Normal TRUE #> 10552 660 0.8581929 0.181070027 fv Log-Normal RP(P), Log-Normal FALSE #> 10568 661 0.5674477 0.122688388 fv Log-Normal RP(P), Log-Normal FALSE #> 10584 662 0.5904257 0.125804978 fv Log-Normal RP(P), Log-Normal FALSE #> 10600 663 0.7041159 0.150024604 fv Log-Normal RP(P), Log-Normal FALSE #> 10616 664 0.7043639 0.148712478 fv Log-Normal RP(P), Log-Normal FALSE #> 10632 665 0.8841932 0.186280285 fv Log-Normal RP(P), Log-Normal FALSE #> 10648 666 1.1689748 0.244131156 fv Log-Normal RP(P), Log-Normal TRUE #> 10664 667 0.6492794 0.137535848 fv Log-Normal RP(P), Log-Normal FALSE #> 10680 668 0.6326668 0.134054761 fv Log-Normal RP(P), Log-Normal FALSE #> 10696 669 0.9185632 0.194052341 fv Log-Normal RP(P), Log-Normal FALSE #> 10712 670 0.6207600 0.134223983 fv Log-Normal RP(P), Log-Normal FALSE #> 10728 671 0.7991586 0.168309558 fv Log-Normal RP(P), Log-Normal FALSE #> 10744 672 0.9575733 0.201175273 fv Log-Normal RP(P), Log-Normal FALSE #> 10760 673 0.6513651 0.137218194 fv Log-Normal RP(P), Log-Normal FALSE #> 10776 674 0.8220483 0.172548799 fv Log-Normal RP(P), Log-Normal FALSE #> 10792 675 0.6542018 0.144640287 fv Log-Normal RP(P), Log-Normal FALSE #> 10808 676 0.8790873 0.184291598 fv Log-Normal RP(P), Log-Normal FALSE #> 10824 677 0.6809257 0.143968265 fv Log-Normal RP(P), Log-Normal FALSE #> 10840 678 0.5718382 0.122834126 fv Log-Normal RP(P), Log-Normal FALSE #> 10856 679 0.6114109 0.129944256 fv Log-Normal RP(P), Log-Normal FALSE #> 10872 680 0.7505338 0.159061609 fv Log-Normal RP(P), Log-Normal FALSE #> 10888 681 1.0280511 0.216051309 fv Log-Normal RP(P), Log-Normal FALSE #> 10904 682 0.6922360 0.148686633 fv Log-Normal RP(P), Log-Normal FALSE #> 10920 683 0.8160459 0.173021939 fv Log-Normal RP(P), Log-Normal FALSE #> 10936 684 1.0630183 0.223385225 fv Log-Normal RP(P), Log-Normal TRUE #> 10952 685 0.6666902 0.142274967 fv Log-Normal RP(P), Log-Normal FALSE #> 10968 686 0.8987511 0.188963362 fv Log-Normal RP(P), Log-Normal FALSE #> 10984 687 0.5852340 0.124061916 fv Log-Normal RP(P), Log-Normal FALSE #> 11000 688 0.6144874 0.131917388 fv Log-Normal RP(P), Log-Normal FALSE #> 11016 689 0.6590173 0.140975370 fv Log-Normal RP(P), Log-Normal FALSE #> 11032 690 0.8739728 0.185496227 fv Log-Normal RP(P), Log-Normal FALSE #> 11048 691 0.8872853 0.197067546 fv Log-Normal RP(P), Log-Normal FALSE #> 11064 692 0.6787807 0.144806881 fv Log-Normal RP(P), Log-Normal FALSE #> 11080 693 0.5443873 0.119028846 fv Log-Normal RP(P), Log-Normal FALSE #> 11096 694 0.7311672 0.154007226 fv Log-Normal RP(P), Log-Normal FALSE #> 11112 695 0.6437481 0.137433283 fv Log-Normal RP(P), Log-Normal FALSE #> 11128 696 0.7796264 0.164444138 fv Log-Normal RP(P), Log-Normal FALSE #> 11144 697 0.8935000 0.188433606 fv Log-Normal RP(P), Log-Normal FALSE #> 11160 698 0.4678461 0.101556136 fv Log-Normal RP(P), Log-Normal FALSE #> 11176 699 0.7196923 0.155980475 fv Log-Normal RP(P), Log-Normal FALSE #> 11192 700 0.5476779 0.117221047 fv Log-Normal RP(P), Log-Normal FALSE #> 11208 701 0.8599958 0.182880781 fv Log-Normal RP(P), Log-Normal FALSE #> 11224 702 0.8684833 0.183468073 fv Log-Normal RP(P), Log-Normal FALSE #> 11240 703 0.7419362 0.157049016 fv Log-Normal RP(P), Log-Normal FALSE #> 11256 704 0.6422867 0.136115231 fv Log-Normal RP(P), Log-Normal FALSE #> 11272 705 0.7063944 0.150466188 fv Log-Normal RP(P), Log-Normal FALSE #> 11288 706 0.7662985 0.163581974 fv Log-Normal RP(P), Log-Normal FALSE #> 11304 707 0.9691335 0.204225294 fv Log-Normal RP(P), Log-Normal FALSE #> 11320 708 0.9287081 0.195346367 fv Log-Normal RP(P), Log-Normal FALSE #> 11336 709 0.6754008 0.142370655 fv Log-Normal RP(P), Log-Normal FALSE #> 11352 710 0.5128397 0.109458719 fv Log-Normal RP(P), Log-Normal FALSE #> 11368 711 0.6479967 0.136748161 fv Log-Normal RP(P), Log-Normal FALSE #> 11384 712 0.6760885 0.143146392 fv Log-Normal RP(P), Log-Normal FALSE #> 11400 713 1.0587777 0.226926537 fv Log-Normal RP(P), Log-Normal TRUE #> 11416 714 0.8103874 0.172391443 fv Log-Normal RP(P), Log-Normal FALSE #> 11432 715 0.8616532 0.183384192 fv Log-Normal RP(P), Log-Normal FALSE #> 11448 716 0.7627301 0.161883444 fv Log-Normal RP(P), Log-Normal FALSE #> 11464 717 0.8267358 0.177301411 fv Log-Normal RP(P), Log-Normal FALSE #> 11480 718 0.8593514 0.180603036 fv Log-Normal RP(P), Log-Normal FALSE #> 11496 719 0.9936252 0.208990822 fv Log-Normal RP(P), Log-Normal FALSE #> 11512 720 0.7871392 0.166350119 fv Log-Normal RP(P), Log-Normal FALSE #> 11528 721 0.6135418 0.132430075 fv Log-Normal RP(P), Log-Normal FALSE #> 11544 722 0.8048205 0.169138187 fv Log-Normal RP(P), Log-Normal FALSE #> 11560 723 0.6336888 0.133709011 fv Log-Normal RP(P), Log-Normal FALSE #> 11576 724 0.7570649 0.162435404 fv Log-Normal RP(P), Log-Normal FALSE #> 11592 725 0.7604770 0.159995583 fv Log-Normal RP(P), Log-Normal FALSE #> 11608 726 0.6782080 0.145809322 fv Log-Normal RP(P), Log-Normal FALSE #> 11624 727 0.7886025 0.166038605 fv Log-Normal RP(P), Log-Normal FALSE #> 11640 728 1.0345666 0.216064658 fv Log-Normal RP(P), Log-Normal FALSE #> 11656 729 0.7882665 0.167027116 fv Log-Normal RP(P), Log-Normal FALSE #> 11672 730 0.8534764 0.181349873 fv Log-Normal RP(P), Log-Normal FALSE #> 11688 731 0.5696950 0.125642912 fv Log-Normal RP(P), Log-Normal FALSE #> 11704 732 0.5007401 0.109484333 fv Log-Normal RP(P), Log-Normal FALSE #> 11720 733 0.9913558 0.210293324 fv Log-Normal RP(P), Log-Normal FALSE #> 11736 734 0.8984254 0.190596960 fv Log-Normal RP(P), Log-Normal FALSE #> 11752 735 1.0045821 0.209748742 fv Log-Normal RP(P), Log-Normal FALSE #> 11768 736 0.8546730 0.181624950 fv Log-Normal RP(P), Log-Normal FALSE #> 11784 737 0.7414317 0.156044397 fv Log-Normal RP(P), Log-Normal FALSE #> 11800 738 0.5333088 0.113415989 fv Log-Normal RP(P), Log-Normal FALSE #> 11816 739 0.6038187 0.128465242 fv Log-Normal RP(P), Log-Normal FALSE #> 11832 740 0.8191753 0.172172004 fv Log-Normal RP(P), Log-Normal FALSE #> 11848 741 1.0159289 0.214617959 fv Log-Normal RP(P), Log-Normal FALSE #> 11864 742 0.6619821 0.140186802 fv Log-Normal RP(P), Log-Normal FALSE #> 11880 743 0.7680557 0.163357348 fv Log-Normal RP(P), Log-Normal FALSE #> 11896 744 0.7937786 0.169514194 fv Log-Normal RP(P), Log-Normal FALSE #> 11912 745 0.7812691 0.167323224 fv Log-Normal RP(P), Log-Normal FALSE #> 11928 746 0.5998087 0.127989709 fv Log-Normal RP(P), Log-Normal FALSE #> 11944 747 0.6568120 0.139744765 fv Log-Normal RP(P), Log-Normal FALSE #> 11960 748 0.8625290 0.182461742 fv Log-Normal RP(P), Log-Normal FALSE #> 11976 749 0.9144162 0.190862281 fv Log-Normal RP(P), Log-Normal FALSE #> 11992 750 0.7515278 0.158912889 fv Log-Normal RP(P), Log-Normal FALSE #> 12008 751 0.8962423 0.188510336 fv Log-Normal RP(P), Log-Normal FALSE #> 12024 752 0.6919608 0.146949221 fv Log-Normal RP(P), Log-Normal FALSE #> 12040 753 0.4449890 0.097148812 fv Log-Normal RP(P), Log-Normal FALSE #> 12056 754 0.7894919 0.168720623 fv Log-Normal RP(P), Log-Normal FALSE #> 12072 755 0.6692060 0.141962729 fv Log-Normal RP(P), Log-Normal FALSE #> 12088 756 0.3791451 0.083307800 fv Log-Normal RP(P), Log-Normal TRUE #> 12104 757 0.6778335 0.142766228 fv Log-Normal RP(P), Log-Normal FALSE #> 12120 758 0.7767465 0.163788353 fv Log-Normal RP(P), Log-Normal FALSE #> 12136 759 0.6789998 0.145162056 fv Log-Normal RP(P), Log-Normal FALSE #> 12152 760 0.8683342 0.182144862 fv Log-Normal RP(P), Log-Normal FALSE #> 12168 761 0.6313595 0.135984337 fv Log-Normal RP(P), Log-Normal FALSE #> 12184 762 0.7627906 0.160815382 fv Log-Normal RP(P), Log-Normal FALSE #> 12200 763 0.5636338 0.120435542 fv Log-Normal RP(P), Log-Normal FALSE #> 12216 764 0.6550750 0.139154314 fv Log-Normal RP(P), Log-Normal FALSE #> 12232 765 0.9488338 0.199510616 fv Log-Normal RP(P), Log-Normal FALSE #> 12248 766 0.6551717 0.138803758 fv Log-Normal RP(P), Log-Normal FALSE #> 12264 767 0.8757343 0.184959715 fv Log-Normal RP(P), Log-Normal FALSE #> 12280 768 0.5887793 0.126819926 fv Log-Normal RP(P), Log-Normal FALSE #> 12296 769 1.0171618 0.215500452 fv Log-Normal RP(P), Log-Normal FALSE #> 12312 770 0.6148654 0.132775036 fv Log-Normal RP(P), Log-Normal FALSE #> 12328 771 0.5976970 0.132295735 fv Log-Normal RP(P), Log-Normal FALSE #> 12344 772 0.5871158 0.125960628 fv Log-Normal RP(P), Log-Normal FALSE #> 12360 773 0.5685788 0.121516270 fv Log-Normal RP(P), Log-Normal FALSE #> 12376 774 0.7244019 0.153578398 fv Log-Normal RP(P), Log-Normal FALSE #> 12392 775 0.6802586 0.143831811 fv Log-Normal RP(P), Log-Normal FALSE #> 12408 776 0.6866827 0.146032205 fv Log-Normal RP(P), Log-Normal FALSE #> 12424 777 0.6203969 0.132172613 fv Log-Normal RP(P), Log-Normal FALSE #> 12440 778 0.7183854 0.158574836 fv Log-Normal RP(P), Log-Normal FALSE #> 12456 779 0.6753122 0.144883399 fv Log-Normal RP(P), Log-Normal FALSE #> 12472 780 0.6160541 0.131106508 fv Log-Normal RP(P), Log-Normal FALSE #> 12488 781 0.7326720 0.155116377 fv Log-Normal RP(P), Log-Normal FALSE #> 12504 782 0.6621541 0.142738346 fv Log-Normal RP(P), Log-Normal FALSE #> 12520 783 0.6287083 0.133979151 fv Log-Normal RP(P), Log-Normal FALSE #> 12536 784 0.8098296 0.172015664 fv Log-Normal RP(P), Log-Normal FALSE #> 12552 785 0.4960243 0.106711922 fv Log-Normal RP(P), Log-Normal FALSE #> 12568 786 0.6282832 0.132700908 fv Log-Normal RP(P), Log-Normal FALSE #> 12584 787 1.0193503 0.214991602 fv Log-Normal RP(P), Log-Normal FALSE #> 12600 788 0.7023544 0.148436749 fv Log-Normal RP(P), Log-Normal FALSE #> 12616 789 0.9366437 0.198809199 fv Log-Normal RP(P), Log-Normal FALSE #> 12632 790 0.7471967 0.159328647 fv Log-Normal RP(P), Log-Normal FALSE #> 12648 791 0.4173760 0.089707369 fv Log-Normal RP(P), Log-Normal TRUE #> 12664 792 0.5457081 0.116097924 fv Log-Normal RP(P), Log-Normal FALSE #> 12680 793 0.8483324 0.177748663 fv Log-Normal RP(P), Log-Normal FALSE #> 12696 794 0.6784384 0.143937841 fv Log-Normal RP(P), Log-Normal FALSE #> 12712 795 0.6359556 0.134828170 fv Log-Normal RP(P), Log-Normal FALSE #> 12728 796 0.6165200 0.132435256 fv Log-Normal RP(P), Log-Normal FALSE #> 12744 797 0.6907832 0.150317886 fv Log-Normal RP(P), Log-Normal FALSE #> 12760 798 0.4117881 0.088709883 fv Log-Normal RP(P), Log-Normal TRUE #> 12776 799 0.7682074 0.162286568 fv Log-Normal RP(P), Log-Normal FALSE #> 12792 800 0.7651115 0.163718433 fv Log-Normal RP(P), Log-Normal FALSE #> 12808 801 0.9873650 0.205793074 fv Log-Normal RP(P), Log-Normal FALSE #> 12824 802 0.8000314 0.169900579 fv Log-Normal RP(P), Log-Normal FALSE #> 12840 803 0.6589400 0.139023748 fv Log-Normal RP(P), Log-Normal FALSE #> 12856 804 0.7561575 0.159117690 fv Log-Normal RP(P), Log-Normal FALSE #> 12872 805 0.8335457 0.177422828 fv Log-Normal RP(P), Log-Normal FALSE #> 12888 806 0.7948196 0.167169091 fv Log-Normal RP(P), Log-Normal FALSE #> 12904 807 0.6478946 0.137327899 fv Log-Normal RP(P), Log-Normal FALSE #> 12920 808 0.5049294 0.107753449 fv Log-Normal RP(P), Log-Normal FALSE #> 12936 809 0.6866783 0.146444220 fv Log-Normal RP(P), Log-Normal FALSE #> 12952 810 0.8176093 0.175570535 fv Log-Normal RP(P), Log-Normal FALSE #> 12968 811 0.4701681 0.101472086 fv Log-Normal RP(P), Log-Normal FALSE #> 12984 812 0.7254187 0.154409760 fv Log-Normal RP(P), Log-Normal FALSE #> 13000 813 0.8822935 0.186603747 fv Log-Normal RP(P), Log-Normal FALSE #> 13016 814 0.6854783 0.145765097 fv Log-Normal RP(P), Log-Normal FALSE #> 13032 815 0.6016377 0.128446956 fv Log-Normal RP(P), Log-Normal FALSE #> 13048 816 0.7010985 0.149468580 fv Log-Normal RP(P), Log-Normal FALSE #> 13064 817 0.4708990 0.102155376 fv Log-Normal RP(P), Log-Normal FALSE #> 13080 818 0.6450147 0.137380618 fv Log-Normal RP(P), Log-Normal FALSE #> 13096 819 0.8378345 0.176970921 fv Log-Normal RP(P), Log-Normal FALSE #> 13112 820 0.8576343 0.180150135 fv Log-Normal RP(P), Log-Normal FALSE #> 13128 821 0.5662469 0.120721140 fv Log-Normal RP(P), Log-Normal FALSE #> 13144 822 0.8889136 0.187187876 fv Log-Normal RP(P), Log-Normal FALSE #> 13160 823 0.9775185 0.205187695 fv Log-Normal RP(P), Log-Normal FALSE #> 13176 824 0.9211403 0.195513547 fv Log-Normal RP(P), Log-Normal FALSE #> 13192 825 0.7635747 0.160829429 fv Log-Normal RP(P), Log-Normal FALSE #> 13208 826 0.8164489 0.174414205 fv Log-Normal RP(P), Log-Normal FALSE #> 13224 827 0.8926966 0.188893449 fv Log-Normal RP(P), Log-Normal FALSE #> 13240 828 0.7527147 0.166002735 fv Log-Normal RP(P), Log-Normal FALSE #> 13256 829 0.7122050 0.151290715 fv Log-Normal RP(P), Log-Normal FALSE #> 13272 830 0.8138187 0.170842420 fv Log-Normal RP(P), Log-Normal FALSE #> 13288 831 0.8730454 0.184519785 fv Log-Normal RP(P), Log-Normal FALSE #> 13304 832 0.5916892 0.128420243 fv Log-Normal RP(P), Log-Normal FALSE #> 13320 833 0.8830502 0.188067591 fv Log-Normal RP(P), Log-Normal FALSE #> 13336 834 0.6506210 0.138700701 fv Log-Normal RP(P), Log-Normal FALSE #> 13352 835 0.6835081 0.144988682 fv Log-Normal RP(P), Log-Normal FALSE #> 13368 836 0.7839667 0.166049829 fv Log-Normal RP(P), Log-Normal FALSE #> 13384 837 0.7779566 0.164337100 fv Log-Normal RP(P), Log-Normal FALSE #> 13400 838 0.7060874 0.150748480 fv Log-Normal RP(P), Log-Normal FALSE #> 13416 839 0.5924718 0.126535761 fv Log-Normal RP(P), Log-Normal FALSE #> 13432 840 0.6193618 0.130899012 fv Log-Normal RP(P), Log-Normal FALSE #> 13448 841 0.9297818 0.194868377 fv Log-Normal RP(P), Log-Normal FALSE #> 13464 842 0.5606622 0.119736556 fv Log-Normal RP(P), Log-Normal FALSE #> 13480 843 0.6762162 0.144251070 fv Log-Normal RP(P), Log-Normal FALSE #> 13496 844 0.9144180 0.191981506 fv Log-Normal RP(P), Log-Normal FALSE #> 13512 845 0.9881628 0.211034090 fv Log-Normal RP(P), Log-Normal FALSE #> 13528 846 0.5534972 0.118336281 fv Log-Normal RP(P), Log-Normal FALSE #> 13544 847 1.0290028 0.214054040 fv Log-Normal RP(P), Log-Normal FALSE #> 13560 848 0.8411118 0.179136575 fv Log-Normal RP(P), Log-Normal FALSE #> 13576 849 0.6203488 0.132377496 fv Log-Normal RP(P), Log-Normal FALSE #> 13592 850 0.8147564 0.170744905 fv Log-Normal RP(P), Log-Normal FALSE #> 13608 851 0.6998219 0.148832242 fv Log-Normal RP(P), Log-Normal FALSE #> 13624 852 0.7564399 0.162157304 fv Log-Normal RP(P), Log-Normal FALSE #> 13640 853 1.0395607 0.217703991 fv Log-Normal RP(P), Log-Normal FALSE #> 13656 854 0.7111847 0.153481986 fv Log-Normal RP(P), Log-Normal FALSE #> 13672 855 0.6556235 0.141046741 fv Log-Normal RP(P), Log-Normal FALSE #> 13688 856 0.8817583 0.185649134 fv Log-Normal RP(P), Log-Normal FALSE #> 13704 857 0.8236771 0.176693971 fv Log-Normal RP(P), Log-Normal FALSE #> 13720 858 1.0746228 0.225811089 fv Log-Normal RP(P), Log-Normal TRUE #> 13736 859 0.9032464 0.189257870 fv Log-Normal RP(P), Log-Normal FALSE #> 13752 860 0.6669187 0.140695981 fv Log-Normal RP(P), Log-Normal FALSE #> 13768 861 0.4674381 0.100584211 fv Log-Normal RP(P), Log-Normal FALSE #> 13784 862 0.6539350 0.139109487 fv Log-Normal RP(P), Log-Normal FALSE #> 13800 863 0.6985242 0.149374254 fv Log-Normal RP(P), Log-Normal FALSE #> 13816 864 0.9300939 0.195732499 fv Log-Normal RP(P), Log-Normal FALSE #> 13832 865 0.9147309 0.192068804 fv Log-Normal RP(P), Log-Normal FALSE #> 13848 866 0.7371777 0.155715515 fv Log-Normal RP(P), Log-Normal FALSE #> 13864 867 0.6011364 0.129343485 fv Log-Normal RP(P), Log-Normal FALSE #> 13880 868 0.9004135 0.190191869 fv Log-Normal RP(P), Log-Normal FALSE #> 13896 869 0.5327774 0.115070470 fv Log-Normal RP(P), Log-Normal FALSE #> 13912 870 0.7729887 0.162396364 fv Log-Normal RP(P), Log-Normal FALSE #> 13928 871 0.5056960 0.108030427 fv Log-Normal RP(P), Log-Normal FALSE #> 13944 872 0.4679061 0.100976748 fv Log-Normal RP(P), Log-Normal FALSE #> 13960 873 0.8761508 0.183471906 fv Log-Normal RP(P), Log-Normal FALSE #> 13976 874 0.7799599 0.169034662 fv Log-Normal RP(P), Log-Normal FALSE #> 13992 875 0.6787270 0.145232289 fv Log-Normal RP(P), Log-Normal FALSE #> 14008 876 0.6180641 0.132265443 fv Log-Normal RP(P), Log-Normal FALSE #> 14024 877 0.5860993 0.126704444 fv Log-Normal RP(P), Log-Normal FALSE #> 14040 878 0.6935008 0.147945921 fv Log-Normal RP(P), Log-Normal FALSE #> 14056 879 0.6991619 0.148966789 fv Log-Normal RP(P), Log-Normal FALSE #> 14072 880 0.8484464 0.178825011 fv Log-Normal RP(P), Log-Normal FALSE #> 14088 881 0.5680401 0.122215485 fv Log-Normal RP(P), Log-Normal FALSE #> 14104 882 0.7194115 0.152466317 fv Log-Normal RP(P), Log-Normal FALSE #> 14120 883 0.6455610 0.138335850 fv Log-Normal RP(P), Log-Normal FALSE #> 14136 884 0.5987946 0.129856482 fv Log-Normal RP(P), Log-Normal FALSE #> 14152 885 0.7790563 0.165257741 fv Log-Normal RP(P), Log-Normal FALSE #> 14168 886 0.6659939 0.143104558 fv Log-Normal RP(P), Log-Normal FALSE #> 14184 887 0.3835719 0.083984835 fv Log-Normal RP(P), Log-Normal TRUE #> 14200 888 0.6800915 0.145916762 fv Log-Normal RP(P), Log-Normal FALSE #> 14216 889 0.7790675 0.168710053 fv Log-Normal RP(P), Log-Normal FALSE #> 14232 890 0.7112296 0.150790256 fv Log-Normal RP(P), Log-Normal FALSE #> 14248 891 0.7533556 0.158934342 fv Log-Normal RP(P), Log-Normal FALSE #> 14264 892 1.0280236 0.216825888 fv Log-Normal RP(P), Log-Normal FALSE #> 14280 893 0.4979805 0.108875811 fv Log-Normal RP(P), Log-Normal FALSE #> 14296 894 0.5899637 0.125759510 fv Log-Normal RP(P), Log-Normal FALSE #> 14312 895 0.8458281 0.181512736 fv Log-Normal RP(P), Log-Normal FALSE #> 14328 896 0.6045651 0.132440253 fv Log-Normal RP(P), Log-Normal FALSE #> 14344 897 0.6866283 0.146988855 fv Log-Normal RP(P), Log-Normal FALSE #> 14360 898 0.9461391 0.207475067 fv Log-Normal RP(P), Log-Normal FALSE #> 14376 899 0.9445390 0.209309102 fv Log-Normal RP(P), Log-Normal FALSE #> 14392 900 0.7393498 0.158497566 fv Log-Normal RP(P), Log-Normal FALSE #> 14408 901 0.7860897 0.165549053 fv Log-Normal RP(P), Log-Normal FALSE #> 14424 902 0.8546871 0.180690608 fv Log-Normal RP(P), Log-Normal FALSE #> 14440 903 0.5857383 0.126360181 fv Log-Normal RP(P), Log-Normal FALSE #> 14456 904 0.7061914 0.151616081 fv Log-Normal RP(P), Log-Normal FALSE #> 14472 905 0.7376254 0.156073478 fv Log-Normal RP(P), Log-Normal FALSE #> 14488 906 0.7232913 0.153209296 fv Log-Normal RP(P), Log-Normal FALSE #> 14504 907 0.6382404 0.136709915 fv Log-Normal RP(P), Log-Normal FALSE #> 14520 908 0.5651374 0.123783693 fv Log-Normal RP(P), Log-Normal FALSE #> 14536 909 0.9548552 0.202591456 fv Log-Normal RP(P), Log-Normal FALSE #> 14552 910 0.6873823 0.148859446 fv Log-Normal RP(P), Log-Normal FALSE #> 14568 911 0.6891131 0.146179957 fv Log-Normal RP(P), Log-Normal FALSE #> 14584 912 0.3917437 0.085173152 fv Log-Normal RP(P), Log-Normal TRUE #> 14600 913 0.6144485 0.130166853 fv Log-Normal RP(P), Log-Normal FALSE #> 14616 914 0.8656710 0.182025187 fv Log-Normal RP(P), Log-Normal FALSE #> 14632 915 0.6897622 0.146139260 fv Log-Normal RP(P), Log-Normal FALSE #> 14648 916 0.7306908 0.154546332 fv Log-Normal RP(P), Log-Normal FALSE #> 14664 917 0.5319260 0.114753494 fv Log-Normal RP(P), Log-Normal FALSE #> 14680 918 0.5755386 0.122888377 fv Log-Normal RP(P), Log-Normal FALSE #> 14696 919 0.6552902 0.138537843 fv Log-Normal RP(P), Log-Normal FALSE #> 14712 920 0.6870121 0.145734240 fv Log-Normal RP(P), Log-Normal FALSE #> 14728 921 1.1915721 0.250004473 fv Log-Normal RP(P), Log-Normal TRUE #> 14744 922 0.6152027 0.130501228 fv Log-Normal RP(P), Log-Normal FALSE #> 14760 923 1.0916553 0.230692777 fv Log-Normal RP(P), Log-Normal TRUE #> 14776 924 0.6760298 0.142944236 fv Log-Normal RP(P), Log-Normal FALSE #> 14792 925 0.7494020 0.158189841 fv Log-Normal RP(P), Log-Normal FALSE #> 14808 926 0.9539570 0.201126456 fv Log-Normal RP(P), Log-Normal FALSE #> 14824 927 0.8094500 0.170148180 fv Log-Normal RP(P), Log-Normal FALSE #> 14840 928 0.6872926 0.144714385 fv Log-Normal RP(P), Log-Normal FALSE #> 14856 929 0.7639833 0.160366801 fv Log-Normal RP(P), Log-Normal FALSE #> 14872 930 0.5785785 0.123893681 fv Log-Normal RP(P), Log-Normal FALSE #> 14888 931 0.8122490 0.171642861 fv Log-Normal RP(P), Log-Normal FALSE #> 14904 932 0.5424141 0.116670467 fv Log-Normal RP(P), Log-Normal FALSE #> 14920 933 0.5758885 0.122632998 fv Log-Normal RP(P), Log-Normal FALSE #> 14936 934 0.6847454 0.144785290 fv Log-Normal RP(P), Log-Normal FALSE #> 14952 935 0.8990435 0.189337431 fv Log-Normal RP(P), Log-Normal FALSE #> 14968 936 0.7029922 0.148015811 fv Log-Normal RP(P), Log-Normal FALSE #> 14984 937 0.8511214 0.180869991 fv Log-Normal RP(P), Log-Normal FALSE #> 15000 938 0.9018481 0.192865935 fv Log-Normal RP(P), Log-Normal FALSE #> 15016 939 0.5681631 0.120827024 fv Log-Normal RP(P), Log-Normal FALSE #> 15032 940 0.8683425 0.190570808 fv Log-Normal RP(P), Log-Normal FALSE #> 15048 941 0.4731799 0.101370652 fv Log-Normal RP(P), Log-Normal FALSE #> 15064 942 0.8718579 0.184619662 fv Log-Normal RP(P), Log-Normal FALSE #> 15080 943 0.5215956 0.111687693 fv Log-Normal RP(P), Log-Normal FALSE #> 15096 944 0.6585742 0.139791246 fv Log-Normal RP(P), Log-Normal FALSE #> 15112 945 0.9998814 0.208886842 fv Log-Normal RP(P), Log-Normal FALSE #> 15128 946 0.8286117 0.174615350 fv Log-Normal RP(P), Log-Normal FALSE #> 15144 947 0.8353904 0.175679093 fv Log-Normal RP(P), Log-Normal FALSE #> 15160 948 0.4626225 0.099317399 fv Log-Normal RP(P), Log-Normal FALSE #> 15176 949 0.7781009 0.168477774 fv Log-Normal RP(P), Log-Normal FALSE #> 15192 950 0.7759783 0.163272466 fv Log-Normal RP(P), Log-Normal FALSE #> 15208 951 0.5897491 0.127953505 fv Log-Normal RP(P), Log-Normal FALSE #> 15224 952 0.6290545 0.134915562 fv Log-Normal RP(P), Log-Normal FALSE #> 15240 953 0.6030549 0.128014906 fv Log-Normal RP(P), Log-Normal FALSE #> 15256 954 0.8211460 0.173732484 fv Log-Normal RP(P), Log-Normal FALSE #> 15272 955 0.7009093 0.148157664 fv Log-Normal RP(P), Log-Normal FALSE #> 15288 956 0.8915759 0.187676590 fv Log-Normal RP(P), Log-Normal FALSE #> 15304 957 0.6267329 0.133922808 fv Log-Normal RP(P), Log-Normal FALSE #> 15320 958 0.6016424 0.128035145 fv Log-Normal RP(P), Log-Normal FALSE #> 15336 959 0.6840954 0.143990005 fv Log-Normal RP(P), Log-Normal FALSE #> 15352 960 0.5972503 0.128658505 fv Log-Normal RP(P), Log-Normal FALSE #> 15368 961 0.8240171 0.173195111 fv Log-Normal RP(P), Log-Normal FALSE #> 15384 962 0.8506117 0.181056393 fv Log-Normal RP(P), Log-Normal FALSE #> 15400 963 0.8979819 0.188022071 fv Log-Normal RP(P), Log-Normal FALSE #> 15416 964 0.6863717 0.145397560 fv Log-Normal RP(P), Log-Normal FALSE #> 15432 965 0.5656577 0.120857677 fv Log-Normal RP(P), Log-Normal FALSE #> 15448 966 1.0575889 0.222503361 fv Log-Normal RP(P), Log-Normal TRUE #> 15464 967 0.9055166 0.192117872 fv Log-Normal RP(P), Log-Normal FALSE #> 15480 968 0.8399767 0.178050315 fv Log-Normal RP(P), Log-Normal FALSE #> 15496 969 1.0258198 0.213819100 fv Log-Normal RP(P), Log-Normal FALSE #> 15512 970 0.7745776 0.163833552 fv Log-Normal RP(P), Log-Normal FALSE #> 15528 971 0.9605636 0.200926578 fv Log-Normal RP(P), Log-Normal FALSE #> 15544 972 0.6146916 0.130993578 fv Log-Normal RP(P), Log-Normal FALSE #> 15560 973 0.9199785 0.192746059 fv Log-Normal RP(P), Log-Normal FALSE #> 15576 974 0.9125999 0.192011883 fv Log-Normal RP(P), Log-Normal FALSE #> 15592 975 1.0480335 0.219730800 fv Log-Normal RP(P), Log-Normal FALSE #> 15608 976 0.8193862 0.179589718 fv Log-Normal RP(P), Log-Normal FALSE #> 15624 977 1.1556586 0.244268056 fv Log-Normal RP(P), Log-Normal TRUE #> 15640 978 0.8382332 0.180255798 fv Log-Normal RP(P), Log-Normal FALSE #> 15656 979 0.6259659 0.132736866 fv Log-Normal RP(P), Log-Normal FALSE #> 15672 980 0.8406804 0.182112889 fv Log-Normal RP(P), Log-Normal FALSE #> 15688 981 0.6702017 0.142022616 fv Log-Normal RP(P), Log-Normal FALSE #> 15704 982 0.7070367 0.153212663 fv Log-Normal RP(P), Log-Normal FALSE #> 15720 983 0.7404223 0.156213950 fv Log-Normal RP(P), Log-Normal FALSE #> 15736 984 0.6419067 0.135852588 fv Log-Normal RP(P), Log-Normal FALSE #> 15752 985 0.8310183 0.173870127 fv Log-Normal RP(P), Log-Normal FALSE #> 15768 986 0.7701285 0.162750927 fv Log-Normal RP(P), Log-Normal FALSE #> 15784 987 0.6682787 0.141252244 fv Log-Normal RP(P), Log-Normal FALSE #> 15800 988 0.9022389 0.190619051 fv Log-Normal RP(P), Log-Normal FALSE #> 15816 989 0.9754269 0.206348524 fv Log-Normal RP(P), Log-Normal FALSE #> 15832 990 0.7016794 0.147600528 fv Log-Normal RP(P), Log-Normal FALSE #> 15848 991 0.7990861 0.167185785 fv Log-Normal RP(P), Log-Normal FALSE #> 15864 992 0.7155265 0.151583447 fv Log-Normal RP(P), Log-Normal FALSE #> 15880 993 0.7555724 0.158552064 fv Log-Normal RP(P), Log-Normal FALSE #> 15896 994 0.7013507 0.151341125 fv Log-Normal RP(P), Log-Normal FALSE #> 15912 995 0.6369622 0.137876294 fv Log-Normal RP(P), Log-Normal FALSE #> 15928 996 0.7173666 0.152233112 fv Log-Normal RP(P), Log-Normal FALSE #> 15944 997 0.7181560 0.152642728 fv Log-Normal RP(P), Log-Normal FALSE #> 15960 998 0.6523091 0.140451142 fv Log-Normal RP(P), Log-Normal FALSE #> 15976 999 0.8016289 0.171180170 fv Log-Normal RP(P), Log-Normal FALSE #> 15992 1000 0.7201794 0.155276856 fv Log-Normal RP(P), Log-Normal FALSE"},{"path":"https://ellessenne.github.io/rsimsum/reference/frailty.html","id":null,"dir":"Reference","previous_headings":"","what":"Example of a simulation study on frailty survival models — frailty","title":"Example of a simulation study on frailty survival models — frailty","text":"dataset simulation study comparing frailty flexible parametric models fitted using penalised likelihood semiparametric frailty models. models fitted assuming Gamma log-Normal frailty. One thousand datasets simulated, containing binary treatment variable log-hazard ratio -0.50. Clustered survival data simulated assuming 50 clusters 50 individuals , mixture Weibull baseline hazard function frailty following either Gamma Log-Normal distribution. comparison involves estimates log-treatment effect, estimates heterogeneity (.e. estimated frailty variance).","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/frailty.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example of a simulation study on frailty survival models — frailty","text":"","code":"frailty frailty2"},{"path":"https://ellessenne.github.io/rsimsum/reference/frailty.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example of a simulation study on frailty survival models — frailty","text":"data frame 16,000 rows 6 variables: Simulated dataset number. b Point estimate. se Standard error point estimate. par estimand. trt log-treatment effect, fv variance frailty. fv_dist true frailty distribution. model Method used (Cox, Gamma, Cox, Log-Normal, RP(P), Gamma, RP(P), Log-Normal). object class data.frame 16000 rows 7 columns.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/frailty.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Example of a simulation study on frailty survival models — frailty","text":"frailty2 version dataset model column split two columns, m_baseline m_frailty.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/frailty.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Example of a simulation study on frailty survival models — frailty","text":"","code":"data(\"frailty\", package = \"rsimsum\") data(\"frailty2\", package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/reference/get_data.html","id":null,"dir":"Reference","previous_headings":"","what":"get_data — get_data","title":"get_data — get_data","text":"Extract data slots object class simsum, summary.simsum, multisimsum, summary.multisimsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/get_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"get_data — get_data","text":"","code":"get_data(x, stats = NULL, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/get_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"get_data — get_data","text":"x object class simsum. stats Summary statistics include; can scalar value vector. Possible choices : nsim, number replications non-missing point estimates standard error. thetamean, average point estimate. thetamedian, median point estimate. se2mean, average standard error. se2median, median standard error. bias, bias point estimate. empse, empirical standard error. mse, mean squared error. relprec, percentage gain precision relative reference method. modelse, model-based standard error. relerror, relative percentage error standard error. cover, coverage nominal level\\ becover, bias-eliminated coverage nominal level\\ power, power (1 - level)\\ Defaults NULL, case summary statistics returned. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/get_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"get_data — get_data","text":"data.frame containing summary statistics simulation study.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/get_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"get_data — get_data","text":"","code":"data(MIsim) x <- simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\" ) #> 'ref' method was not specified, CC set as the reference get_data(x) #> Warning: `get_data()` was deprecated in rsimsum 0.10.0. #> ℹ Please use `tidy()` instead. #> stat est mcse method #> 1 nsim 1.000000e+03 NA CC #> 2 thetamean 5.167662e-01 NA CC #> 3 thetamedian 5.069935e-01 NA CC #> 4 se2mean 2.163731e-02 NA CC #> 5 se2median 2.114245e-02 NA CC #> 6 bias 1.676616e-02 0.0047786757 CC #> 7 rbias 3.353232e-02 0.0095573514 CC #> 8 empse 1.511150e-01 0.0033807248 CC #> 9 mse 2.309401e-02 0.0011338389 CC #> 10 relprec 0.000000e+00 0.0000000000 CC #> 11 modelse 1.470963e-01 0.0005274099 CC #> 12 relerror -2.659384e+00 2.2054817330 CC #> 13 cover 9.430000e-01 0.0073315073 CC #> 14 becover 9.400000e-01 0.0075099933 CC #> 15 power 9.460000e-01 0.0071473072 CC #> 16 nsim 1.000000e+03 NA MI_LOGT #> 17 thetamean 5.009231e-01 NA MI_LOGT #> 18 thetamedian 4.969223e-01 NA MI_LOGT #> 19 se2mean 1.820915e-02 NA MI_LOGT #> 20 se2median 1.721574e-02 NA MI_LOGT #> 21 bias 9.230987e-04 0.0041744101 MI_LOGT #> 22 rbias 1.846197e-03 0.0083488201 MI_LOGT #> 23 empse 1.320064e-01 0.0029532306 MI_LOGT #> 24 mse 1.740913e-02 0.0008812805 MI_LOGT #> 25 relprec 3.104634e+01 3.9374726448 MI_LOGT #> 26 modelse 1.349413e-01 0.0006046041 MI_LOGT #> 27 relerror 2.223259e+00 2.3323382138 MI_LOGT #> 28 cover 9.490000e-01 0.0069569390 MI_LOGT #> 29 becover 9.490000e-01 0.0069569390 MI_LOGT #> 30 power 9.690000e-01 0.0054807846 MI_LOGT #> 31 nsim 1.000000e+03 NA MI_T #> 32 thetamean 4.988092e-01 NA MI_T #> 33 thetamedian 4.939111e-01 NA MI_T #> 34 se2mean 1.791169e-02 NA MI_T #> 35 se2median 1.693191e-02 NA MI_T #> 36 bias -1.190835e-03 0.0042509767 MI_T #> 37 rbias -2.381670e-03 0.0085019534 MI_T #> 38 empse 1.344277e-01 0.0030073985 MI_T #> 39 mse 1.805415e-02 0.0009112249 MI_T #> 40 relprec 2.636816e+01 3.8423791135 MI_T #> 41 modelse 1.338346e-01 0.0005856362 MI_T #> 42 relerror -4.412233e-01 2.2695215740 MI_T #> 43 cover 9.430000e-01 0.0073315073 MI_T #> 44 becover 9.430000e-01 0.0073315073 MI_T #> 45 power 9.630000e-01 0.0059691708 MI_T # Extracting only bias and coverage: get_data(x, stats = c(\"bias\", \"cover\")) #> stat est mcse method #> 1 bias 0.0167661608 0.004778676 CC #> 2 cover 0.9430000000 0.007331507 CC #> 3 bias 0.0009230987 0.004174410 MI_LOGT #> 4 cover 0.9490000000 0.006956939 MI_LOGT #> 5 bias -0.0011908351 0.004250977 MI_T #> 6 cover 0.9430000000 0.007331507 MI_T xs <- summary(x) get_data(xs) #> stat est mcse method lower upper #> 1 nsim 1.000000e+03 NA CC NA NA #> 2 thetamean 5.167662e-01 NA CC NA NA #> 3 thetamedian 5.069935e-01 NA CC NA NA #> 4 se2mean 2.163731e-02 NA CC NA NA #> 5 se2median 2.114245e-02 NA CC NA NA #> 6 bias 1.676616e-02 0.0047786757 CC 0.007400129 0.026132193 #> 7 rbias 3.353232e-02 0.0095573514 CC 0.014800257 0.052264386 #> 8 empse 1.511150e-01 0.0033807248 CC 0.144488895 0.157741093 #> 9 mse 2.309401e-02 0.0011338389 CC 0.020871727 0.025316293 #> 10 relprec 0.000000e+00 0.0000000000 CC 0.000000000 0.000000000 #> 11 modelse 1.470963e-01 0.0005274099 CC 0.146062561 0.148129970 #> 12 relerror -2.659384e+00 2.2054817330 CC -6.982048962 1.663280569 #> 13 cover 9.430000e-01 0.0073315073 CC 0.928630510 0.957369490 #> 14 becover 9.400000e-01 0.0075099933 CC 0.925280684 0.954719316 #> 15 power 9.460000e-01 0.0071473072 CC 0.931991535 0.960008465 #> 16 nsim 1.000000e+03 NA MI_LOGT NA NA #> 17 thetamean 5.009231e-01 NA MI_LOGT NA NA #> 18 thetamedian 4.969223e-01 NA MI_LOGT NA NA #> 19 se2mean 1.820915e-02 NA MI_LOGT NA NA #> 20 se2median 1.721574e-02 NA MI_LOGT NA NA #> 21 bias 9.230987e-04 0.0041744101 MI_LOGT -0.007258595 0.009104792 #> 22 rbias 1.846197e-03 0.0083488201 MI_LOGT -0.014517189 0.018209584 #> 23 empse 1.320064e-01 0.0029532306 MI_LOGT 0.126218211 0.137794663 #> 24 mse 1.740913e-02 0.0008812805 MI_LOGT 0.015681848 0.019136404 #> 25 relprec 3.104634e+01 3.9374726448 MI_LOGT 23.329036439 38.763645587 #> 26 modelse 1.349413e-01 0.0006046041 MI_LOGT 0.133756280 0.136126285 #> 27 relerror 2.223259e+00 2.3323382138 MI_LOGT -2.348039558 6.794558240 #> 28 cover 9.490000e-01 0.0069569390 MI_LOGT 0.935364650 0.962635350 #> 29 becover 9.490000e-01 0.0069569390 MI_LOGT 0.935364650 0.962635350 #> 30 power 9.690000e-01 0.0054807846 MI_LOGT 0.958257860 0.979742140 #> 31 nsim 1.000000e+03 NA MI_T NA NA #> 32 thetamean 4.988092e-01 NA MI_T NA NA #> 33 thetamedian 4.939111e-01 NA MI_T NA NA #> 34 se2mean 1.791169e-02 NA MI_T NA NA #> 35 se2median 1.693191e-02 NA MI_T NA NA #> 36 bias -1.190835e-03 0.0042509767 MI_T -0.009522596 0.007140926 #> 37 rbias -2.381670e-03 0.0085019534 MI_T -0.019045193 0.014281852 #> 38 empse 1.344277e-01 0.0030073985 MI_T 0.128533294 0.140322080 #> 39 mse 1.805415e-02 0.0009112249 MI_T 0.016268182 0.019840118 #> 40 relprec 2.636816e+01 3.8423791135 MI_T 18.837236583 33.899085938 #> 41 modelse 1.338346e-01 0.0005856362 MI_T 0.132686735 0.134982387 #> 42 relerror -4.412233e-01 2.2695215740 MI_T -4.889403808 4.006957286 #> 43 cover 9.430000e-01 0.0073315073 MI_T 0.928630510 0.957369490 #> 44 becover 9.430000e-01 0.0073315073 MI_T 0.928630510 0.957369490 #> 45 power 9.630000e-01 0.0059691708 MI_T 0.951300640 0.974699360"},{"path":"https://ellessenne.github.io/rsimsum/reference/is.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"is.multisimsum — is.multisimsum","title":"is.multisimsum — is.multisimsum","text":"Reports whether x multisimsum object","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"is.multisimsum — is.multisimsum","text":"","code":"is.multisimsum(x)"},{"path":"https://ellessenne.github.io/rsimsum/reference/is.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"is.multisimsum — is.multisimsum","text":"x object test.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"is.simsum — is.simsum","title":"is.simsum — is.simsum","text":"Reports whether x simsum object","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"is.simsum — is.simsum","text":"","code":"is.simsum(x)"},{"path":"https://ellessenne.github.io/rsimsum/reference/is.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"is.simsum — is.simsum","text":"x object test.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.summary.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"is.summary.multisimsum — is.summary.multisimsum","title":"is.summary.multisimsum — is.summary.multisimsum","text":"Reports whether x summary.multisimsum object","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.summary.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"is.summary.multisimsum — is.summary.multisimsum","text":"","code":"is.summary.multisimsum(x)"},{"path":"https://ellessenne.github.io/rsimsum/reference/is.summary.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"is.summary.multisimsum — is.summary.multisimsum","text":"x object test.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.summary.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"is.summary.simsum — is.summary.simsum","title":"is.summary.simsum — is.summary.simsum","text":"Reports whether x summary.simsum object","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.summary.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"is.summary.simsum — is.summary.simsum","text":"","code":"is.summary.simsum(x)"},{"path":"https://ellessenne.github.io/rsimsum/reference/is.summary.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"is.summary.simsum — is.summary.simsum","text":"x object test.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/kable.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"Create 'kable's — kable.simsum","title":"Create 'kable's — kable.simsum","text":"Create tables LaTeX, HTML, Markdown, reStructuredText objects class simsum, summary.simsum, multisimsum, summary.multisimsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/kable.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create 'kable's — kable.simsum","text":"","code":"# S3 method for simsum kable(x, stats = NULL, digits = max(3, getOption(\"digits\") - 3), ...) # S3 method for summary.simsum kable(x, stats = NULL, digits = max(3, getOption(\"digits\") - 3), ...) # S3 method for multisimsum kable(x, stats = NULL, digits = max(3, getOption(\"digits\") - 3), ...) # S3 method for summary.multisimsum kable(x, stats = NULL, digits = max(3, getOption(\"digits\") - 3), ...) kable(x, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/kable.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create 'kable's — kable.simsum","text":"x object class simsum, summary.simsum, multisimsum, summary.multisimsum; stats Summary statistics include. See tidy() details; digits Maximum number digits numeric columns; ... arguments passed knitr::kable().","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/reference/multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","title":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","text":"multisimsum extension simsum() can handle multiple estimated parameters . multisimsum calls simsum() internally, estimands . one new argument must set calling multisimsum: par, string representing column data identifies different estimands. Additionally, multisimsum argument true can named vector, names correspond estimand (see examples). Otherwise, constant values (values identified column data) utilised. See vignette(\"E-custom-inputs\", package = \"rsimsum\") details.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","text":"","code":"multisimsum( data, par, estvarname, se = NULL, true = NULL, methodvar = NULL, ref = NULL, by = NULL, ci.limits = NULL, df = NULL, dropbig = FALSE, x = FALSE, control = list() )"},{"path":"https://ellessenne.github.io/rsimsum/reference/multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","text":"data data.frame variable names interpreted. tidy format, e.g. variable forms column observation forms row. par name variable containing methods compare. Can NULL. estvarname name variable containing point estimates. se name variable containing standard errors point estimates. true true value parameter; used calculations bias, relative bias, coverage, mean squared error required whenever performance measures requested. true can numeric value string identifies column data. former setting, simsum assume value replications; conversely, replication use distinct value true identified row data. See vignette(\"E-custom-inputs\", package = \"rsimsum\") details. methodvar name variable containing methods compare. instance, methods models compared within simulation study. Can NULL. vector column names passed simsum(), columns combined single column named :methodvar using base::interaction() function computing performance measures. ref Specifies reference method relative precision calculated. useful methodvar specified. vector variable names compute performance measures list factors. Factors listed (potentially several) data-generating mechanisms used simulate data different scenarios (e.g. sample size, true distribution variable, etc.). Can NULL. ci.limits Can used specify limits (lower upper) confidence intervals used calculate coverage bias-eliminated coverage. Useful non-Wald type estimators (e.g. bootstrap). Defaults NULL, Wald-type confidence intervals based provided SEs calculated coverage; otherwise, can numeric vector (fixed confidence intervals) vector strings identify columns data replication-specific lower upper limits. See vignette(\"E-custom-inputs\", package = \"rsimsum\") details. df Can used specify column containing replication-specific number degrees freedom used calculate confidence intervals coverage (bias-eliminated coverage) assuming t-distributed critical values (rather normal theory intervals). See vignette(\"E-custom-inputs\", package = \"rsimsum\") details. dropbig Specifies point estimates standard errors beyond maximum acceptable values dropped. Defaults FALSE. x Set TRUE include data argument used calculate summary statistics (.e. pre-processing input dataset e.g. removing values deemed large via dropbig argument) slot. Calling simsum x = TRUE required produce zipper plots. downside size returned object increases considerably, therefore set FALSE default. control list parameters control behaviour simsum. Possible values : mcse, whether calculate Monte Carlo standard errors. Defaults TRUE; level, significance level used coverage, bias-eliminated coverage, power. Defaults 0.95; power_df, whether use robust critical values t distribution power_df degrees freedom calculating power. Defaults NULL, case Gaussian distribution used; na.rm, whether remove point estimates standard errors either () missing. Defaults TRUE; char.sep, character utilised splitting input dataset data. Generally, changed; dropbig.max, specifies maximum acceptable absolute value point estimates, standardisation. Defaults 10; dropbig.semax, specifies maximum acceptable absolute value standard error, standardisation. Defaults 100 dropbig.robust, specifies whether use robust standardisation (using median inter-quartile range) rather normal standardisation (using mean standard deviation). Defaults TRUE, case robust standardisation used dropbig.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/multisimsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","text":"object class multisimsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/multisimsum.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","text":"following names allowed estvarname, se, methodvar, , par: stat, est, mcse, lower, upper, :methodvar.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/multisimsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","text":"","code":"data(\"frailty\", package = \"rsimsum\") ms <- multisimsum( data = frailty, par = \"par\", true = c(trt = -0.50, fv = 0.75), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\" ) #> 'ref' method was not specified, Cox, Gamma set as the reference ms #> #> Estimands variable: par #> \tUnique estimands: fv, trt #> \tTrue values: fv = -0.5, trt = 0.75 #> #> Method variable: model #> \tUnique methods: Cox, Gamma, Cox, Log-Normal, RP(P), Gamma, RP(P), Log-Normal #> \tReference method: Cox, Gamma #> #> By factors: fv_dist #> #> Monte Carlo standard errors were computed."},{"path":"https://ellessenne.github.io/rsimsum/reference/nlp.html","id":null,"dir":"Reference","previous_headings":"","what":"Example of a simulation study on survival modelling — nlp","title":"Example of a simulation study on survival modelling — nlp","text":"dataset simulation study 150 data-generating mechanisms, useful illustrate nested loop plots. simulation study aims compare Cox model flexible parametric models variety scenarios: different baseline hazard functions, sample size, varying amount heterogeneity unaccounted model (simulated white noise given variance). Cox model Royston-Parmar model 5 degrees freedom fit replication.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nlp.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example of a simulation study on survival modelling — nlp","text":"","code":"nlp"},{"path":"https://ellessenne.github.io/rsimsum/reference/nlp.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example of a simulation study on survival modelling — nlp","text":"data frame 30,000 rows 10 variables: dgm Data-generating mechanism, 1 150. Simulated dataset number. model Method used, 1 Cox model 2 RP(5) model. b Point estimate log-hazard ratio. se Standard error point estimate. baseline Baseline hazard function simulated dataset. ss Sample size simulated dataset. esigma Standard deviation white noise. pars (Ancillary) Parameters baseline hazard function.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nlp.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Example of a simulation study on survival modelling — nlp","text":"details simulation study can found R script used generate dataset, available GitHub: https://github.com/ellessenne/rsimsum/blob/master/data-raw/nlp-data.R","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nlp.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Example of a simulation study on survival modelling — nlp","text":"Cox D.R. 1972. Regression models life-tables. Journal Royal Statistical Society, Series B (Methodological) 34(2):187-220. doi:10.1007/978-1-4612-4380-9_37 Royston, P. Parmar, M.K. 2002. Flexible parametric proportional-hazards proportional-odds models censored survival data, application prognostic modelling estimation treatment effects. Statistics Medicine 21(15):2175-2197 doi:10.1002/sim.1203 Rücker, G. Schwarzer, G. 2014. Presenting simulation results nested loop plot. BMC Medical Research Methodology 14:129 doi:10.1186/1471-2288-14-129","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nlp.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Example of a simulation study on survival modelling — nlp","text":"","code":"data(\"nlp\", package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/reference/nsim.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute number of simulations required — nsim","title":"Compute number of simulations required — nsim","text":"function nsim computes number simulations \\(B\\) perform based accuracy estimate interest, using following equation: $$B = \\left( \\frac{(Z_{1 - \\alpha / 2} + Z_{1 - theta}) \\sigma}{\\delta} \\right) ^ 2,$$ \\(\\delta\\) specified level accuracy estimate interest willing accept (.e. permissible difference true value \\(\\beta\\)), \\(Z_{1 - \\alpha / 2}\\) \\((1 - \\alpha / 2)\\) quantile standard normal distribution, \\(Z_{1 - \\theta}\\) \\((1 - \\theta)\\) quantile standard normal distribution \\((1 - \\theta)\\) power detect specific difference true value significant, \\(\\sigma ^ 2\\) variance parameter interest.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nsim.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute number of simulations required — nsim","text":"","code":"nsim(alpha, sigma, delta, power = 0.5)"},{"path":"https://ellessenne.github.io/rsimsum/reference/nsim.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute number of simulations required — nsim","text":"alpha Significance level. Must value 0 1. sigma Variance parameter interest. Must greater 0. delta Specified level accuracy estimate interest willing accept. Must greater 0. power Power detect specific difference true value significant. Must value 0 1. Defaults 0.5, e.g. power 50%.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nsim.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute number of simulations required — nsim","text":"scalar value \\(B\\) representing number simulations perform based accuracy required.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nsim.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Compute number of simulations required — nsim","text":"Burton, ., Douglas G. Altman, P. Royston. et al. 2006. design simulation studies medical statistics. Statistics Medicine 25: 4279-4292 doi:10.1002/sim.2673","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nsim.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute number of simulations required — nsim","text":"","code":"# Number of simulations required to produce an estimate to within 5% # accuracy of the true coefficient of 0.349 with a 5% significance level, # assuming the variance of the estimate is 0.0166 and 50% power: nsim(alpha = 0.05, sigma = sqrt(0.0166), delta = 0.349 * 5 / 100, power = 0.5) #> [1] 209.4177 # Number of simulations required to produce an estimate to within 1% # accuracy of the true coefficient of 0.349 with a 5% significance level, # assuming the variance of the estimate is 0.0166 and 50% power: nsim(alpha = 0.05, sigma = sqrt(0.0166), delta = 0.349 * 1 / 100, power = 0.5) #> [1] 5235.443"},{"path":"https://ellessenne.github.io/rsimsum/reference/print.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"print.multisimsum — print.multisimsum","title":"print.multisimsum — print.multisimsum","text":"Print method multisimsum objects","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"print.multisimsum — print.multisimsum","text":"","code":"# S3 method for multisimsum print(x, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/print.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"print.multisimsum — print.multisimsum","text":"x object class multisimsum. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.multisimsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"print.multisimsum — print.multisimsum","text":"","code":"data(frailty) ms <- multisimsum( data = frailty, par = \"par\", true = c( trt = -0.50, fv = 0.75 ), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\" ) #> 'ref' method was not specified, Cox, Gamma set as the reference ms #> #> Estimands variable: par #> \tUnique estimands: fv, trt #> \tTrue values: fv = -0.5, trt = 0.75 #> #> Method variable: model #> \tUnique methods: Cox, Gamma, Cox, Log-Normal, RP(P), Gamma, RP(P), Log-Normal #> \tReference method: Cox, Gamma #> #> By factors: fv_dist #> #> Monte Carlo standard errors were computed. data(\"frailty\", package = \"rsimsum\") frailty$true <- ifelse(frailty$par == \"trt\", -0.50, 0.75) ms <- multisimsum(data = frailty, par = \"par\", estvarname = \"b\", true = \"true\") ms #> #> Estimands variable: par #> \tUnique estimands: fv, trt #> \tTrue values from column 'true' #> #> Method variable: none #> #> By factors: none #> #> Monte Carlo standard errors were computed."},{"path":"https://ellessenne.github.io/rsimsum/reference/print.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"print.simsum — print.simsum","title":"print.simsum — print.simsum","text":"Print method simsum objects","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"print.simsum — print.simsum","text":"","code":"# S3 method for simsum print(x, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/print.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"print.simsum — print.simsum","text":"x object class simsum. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.simsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"print.simsum — print.simsum","text":"","code":"data(\"MIsim\") x <- simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\" ) #> 'ref' method was not specified, CC set as the reference x #> Summary of a simulation study with a single estimand. #> True value of the estimand: 0.5 #> #> Method variable: method #> \tUnique methods: CC, MI_LOGT, MI_T #> \tReference method: CC #> #> By factors: none #> #> Monte Carlo standard errors were computed. MIsim$true <- 0.5 x <- simsum(data = MIsim, estvarname = \"b\", true = \"true\", se = \"se\") x #> Summary of a simulation study with a single estimand. #> True value of the estimand from column 'true' #> #> Method variable: none #> #> By factors: none #> #> Monte Carlo standard errors were computed."},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"print.summary.multisimsum — print.summary.multisimsum","title":"print.summary.multisimsum — print.summary.multisimsum","text":"Print method summary.multisimsum objects","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"print.summary.multisimsum — print.summary.multisimsum","text":"","code":"# S3 method for summary.multisimsum print(x, digits = 4, mcse = TRUE, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"print.summary.multisimsum — print.summary.multisimsum","text":"x object class summary.multisimsum. digits Number significant digits used printing. Defaults 4. mcse Monte Carlo standard errors reported? mcse = FALSE, confidence intervals based Monte Carlo standard errors reported instead, see summary.multisimsum(). NULL value passed, point estimates printed regardless whether Monte Carlo standard errors computed . Defaults TRUE. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.multisimsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"print.summary.multisimsum — print.summary.multisimsum","text":"","code":"data(frailty) ms <- multisimsum( data = frailty, par = \"par\", true = c( trt = -0.50, fv = 0.75 ), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\" ) #> 'ref' method was not specified, Cox, Gamma set as the reference sms <- summary(ms, stats = c(\"bias\", \"cover\", \"mse\")) sms #> Values are: #> \tPoint Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma -0.0124 (0.0045) 0.2299 (0.0076) -0.0179 (0.0044) #> Log-Normal -0.1064 (0.0043) -0.0175 (0.0049) -0.1066 (0.0041) #> RP(P), Log-Normal #> 0.2347 (0.0077) #> -0.0152 (0.0050) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0203 (0.0010) 0.1107 (0.0055) 0.0195 (0.0009) 0.1145 (0.0057) #> Log-Normal 0.0287 (0.0010) 0.0244 (0.0011) 0.0284 (0.0010) 0.0248 (0.0012) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9201 (0.0087) 0.9220 (0.0085) 0.9300 (0.0082) 0.9030 (0.0094) #> Log-Normal 0.7503 (0.0140) 0.9020 (0.0094) 0.7683 (0.0134) 0.9280 (0.0082) #> #> -------------------------------------------------------------------------------- #> #> Parameter: trt #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma -0.0006 (0.0016) -0.0013 (0.0016) -0.0003 (0.0016) #> Log-Normal -0.0006 (0.0015) -0.0014 (0.0015) -0.0006 (0.0015) #> RP(P), Log-Normal #> -0.0015 (0.0016) #> -0.0016 (0.0015) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0026 (0.0001) 0.0026 (0.0001) 0.0026 (0.0001) 0.0026 (0.0001) #> Log-Normal 0.0022 (0.0001) 0.0022 (0.0001) 0.0022 (0.0001) 0.0022 (0.0001) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9500 (0.0069) 0.9490 (0.0070) 0.9506 (0.0070) 0.9500 (0.0069) #> Log-Normal 0.9410 (0.0075) 0.9420 (0.0074) 0.9428 (0.0074) 0.9430 (0.0073) # Printing less significant digits: print(sms, digits = 3) #> Values are: #> \tPoint Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.012 (0.005) 0.230 (0.008) -0.018 (0.004) 0.235 (0.008) #> Log-Normal -0.106 (0.004) -0.017 (0.005) -0.107 (0.004) -0.015 (0.005) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.020 (0.001) 0.111 (0.005) 0.020 (0.001) 0.114 (0.006) #> Log-Normal 0.029 (0.001) 0.024 (0.001) 0.028 (0.001) 0.025 (0.001) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.920 (0.009) 0.922 (0.008) 0.930 (0.008) 0.903 (0.009) #> Log-Normal 0.750 (0.014) 0.902 (0.009) 0.768 (0.013) 0.928 (0.008) #> #> -------------------------------------------------------------------------------- #> #> Parameter: trt #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.001 (0.002) -0.001 (0.002) -0.000 (0.002) -0.002 (0.002) #> Log-Normal -0.001 (0.001) -0.001 (0.001) -0.001 (0.001) -0.002 (0.001) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.003 (0.000) 0.003 (0.000) 0.003 (0.000) 0.003 (0.000) #> Log-Normal 0.002 (0.000) 0.002 (0.000) 0.002 (0.000) 0.002 (0.000) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.950 (0.007) 0.949 (0.007) 0.951 (0.007) 0.950 (0.007) #> Log-Normal 0.941 (0.007) 0.942 (0.007) 0.943 (0.007) 0.943 (0.007) # Printing confidence intervals: print(sms, digits = 3, mcse = FALSE) #> Values are: #> \tPoint Estimate (95% Confidence Interval based on Monte Carlo Standard Errors) #> #> #> Parameter: fv #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal #> Gamma -0.012 (-0.021, -0.003) 0.230 (0.215, 0.245) #> Log-Normal -0.106 (-0.115, -0.098) -0.017 (-0.027, -0.008) #> RP(P), Gamma RP(P), Log-Normal #> -0.018 (-0.027, -0.009) 0.235 (0.220, 0.250) #> -0.107 (-0.115, -0.098) -0.015 (-0.025, -0.006) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma 0.020 (0.018, 0.022) 0.111 (0.100, 0.121) 0.020 (0.018, 0.021) #> Log-Normal 0.029 (0.027, 0.031) 0.024 (0.022, 0.027) 0.028 (0.026, 0.030) #> RP(P), Log-Normal #> 0.114 (0.103, 0.126) #> 0.025 (0.023, 0.027) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma 0.920 (0.903, 0.937) 0.922 (0.905, 0.939) 0.930 (0.914, 0.946) #> Log-Normal 0.750 (0.723, 0.778) 0.902 (0.884, 0.920) 0.768 (0.742, 0.794) #> RP(P), Log-Normal #> 0.903 (0.885, 0.921) #> 0.928 (0.912, 0.944) #> #> -------------------------------------------------------------------------------- #> #> Parameter: trt #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal #> Gamma -0.001 (-0.004, 0.003) -0.001 (-0.004, 0.002) #> Log-Normal -0.001 (-0.004, 0.002) -0.001 (-0.004, 0.002) #> RP(P), Gamma RP(P), Log-Normal #> -0.000 (-0.003, 0.003) -0.002 (-0.005, 0.002) #> -0.001 (-0.004, 0.002) -0.002 (-0.005, 0.001) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma 0.003 (0.002, 0.003) 0.003 (0.002, 0.003) 0.003 (0.002, 0.003) #> Log-Normal 0.002 (0.002, 0.002) 0.002 (0.002, 0.002) 0.002 (0.002, 0.002) #> RP(P), Log-Normal #> 0.003 (0.002, 0.003) #> 0.002 (0.002, 0.002) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma 0.950 (0.936, 0.964) 0.949 (0.935, 0.963) 0.951 (0.937, 0.964) #> Log-Normal 0.941 (0.926, 0.956) 0.942 (0.928, 0.956) 0.943 (0.928, 0.957) #> RP(P), Log-Normal #> 0.950 (0.936, 0.964) #> 0.943 (0.929, 0.957) # Printing values only: print(sms, mcse = NULL) #> Values are: #> \tPoint Estimate #> #> #> Parameter: fv #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0124 0.2299 -0.0179 0.2347 #> Log-Normal -0.1064 -0.0175 -0.1066 -0.0152 #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0203 0.1107 0.0195 0.1145 #> Log-Normal 0.0287 0.0244 0.0284 0.0248 #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9201 0.9220 0.9300 0.9030 #> Log-Normal 0.7503 0.9020 0.7683 0.9280 #> #> -------------------------------------------------------------------------------- #> #> Parameter: trt #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0006 -0.0013 -0.0003 -0.0015 #> Log-Normal -0.0006 -0.0014 -0.0006 -0.0016 #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0026 0.0026 0.0026 0.0026 #> Log-Normal 0.0022 0.0022 0.0022 0.0022 #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9500 0.9490 0.9506 0.9500 #> Log-Normal 0.9410 0.9420 0.9428 0.9430"},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"print.summary.simsum — print.summary.simsum","title":"print.summary.simsum — print.summary.simsum","text":"Print method summary.simsum objects","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"print.summary.simsum — print.summary.simsum","text":"","code":"# S3 method for summary.simsum print(x, digits = 4, mcse = TRUE, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"print.summary.simsum — print.summary.simsum","text":"x object class summary.simsum. digits Number significant digits used printing. Defaults 4. mcse Monte Carlo standard errors reported? mcse = FALSE, confidence intervals based Monte Carlo standard errors reported instead, see summary.simsum(). NULL value passed, point estimates printed regardless whether Monte Carlo standard errors computed . Defaults TRUE. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.simsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"print.summary.simsum — print.summary.simsum","text":"","code":"data(\"MIsim\") x <- simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\" ) #> 'ref' method was not specified, CC set as the reference xs <- summary(x) xs #> Values are: #> \tPoint Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 (0.0048) 0.0009 (0.0042) -0.0012 (0.0043) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 (0.0096) 0.0018 (0.0083) -0.0024 (0.0085) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 (0.0034) 0.1320 (0.0030) 0.1344 (0.0030) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000) 31.0463 (3.9375) 26.3682 (3.8424) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 (0.0011) 0.0174 (0.0009) 0.0181 (0.0009) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 (0.0005) 0.1349 (0.0006) 0.1338 (0.0006) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 (2.2055) 2.2233 (2.3323) -0.4412 (2.2695) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 (0.0073) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 (0.0075) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 (0.0071) 0.9690 (0.0055) 0.9630 (0.0060) # Printing less significant digits: print(xs, digits = 2) #> Values are: #> \tPoint Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.52 0.50 0.50 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.51 0.50 0.49 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.02 0.02 0.02 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.02 0.02 0.02 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.02 (0.00) 0.00 (0.00) -0.00 (0.00) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.03 (0.01) 0.00 (0.01) -0.00 (0.01) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.15 (0.00) 0.13 (0.00) 0.13 (0.00) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.00 (0.00) 31.05 (3.94) 26.37 (3.84) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.15 (0.00) 0.13 (0.00) 0.13 (0.00) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.66 (2.21) 2.22 (2.33) -0.44 (2.27) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.94 (0.01) 0.95 (0.01) 0.94 (0.01) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.94 (0.01) 0.95 (0.01) 0.94 (0.01) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.95 (0.01) 0.97 (0.01) 0.96 (0.01) # Printing confidence intervals: print(xs, mcse = FALSE) #> Values are: #> \tPoint Estimate (95% Confidence Interval based on Monte Carlo Standard Errors) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 (0.0074, 0.0261) 0.0009 (-0.0073, 0.0091) -0.0012 (-0.0095, 0.0071) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 (0.0148, 0.0523) 0.0018 (-0.0145, 0.0182) -0.0024 (-0.0190, 0.0143) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 (0.1445, 0.1577) 0.1320 (0.1262, 0.1378) 0.1344 (0.1285, 0.1403) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000, 0.0000) 31.0463 (23.3290, 38.7636) 26.3682 (18.8372, 33.8991) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 (0.0209, 0.0253) 0.0174 (0.0157, 0.0191) 0.0181 (0.0163, 0.0198) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 (0.1461, 0.1481) 0.1349 (0.1338, 0.1361) 0.1338 (0.1327, 0.1350) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 (-6.9820, 1.6633) 2.2233 (-2.3480, 6.7946) -0.4412 (-4.8894, 4.0070) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 (0.9286, 0.9574) 0.9490 (0.9354, 0.9626) 0.9430 (0.9286, 0.9574) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 (0.9253, 0.9547) 0.9490 (0.9354, 0.9626) 0.9430 (0.9286, 0.9574) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 (0.9320, 0.9600) 0.9690 (0.9583, 0.9797) 0.9630 (0.9513, 0.9747) # Printing values only: print(xs, mcse = NULL) #> Values are: #> \tPoint Estimate #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 0.0009 -0.0012 #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 0.0018 -0.0024 #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 0.1320 0.1344 #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 31.0463 26.3682 #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 0.0174 0.0181 #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 0.1349 0.1338 #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 2.2233 -0.4412 #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 0.9490 0.9430 #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 0.9490 0.9430 #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 0.9690 0.9630"},{"path":"https://ellessenne.github.io/rsimsum/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. generics tidy","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/relhaz.html","id":null,"dir":"Reference","previous_headings":"","what":"Example of a simulation study on survival modelling — relhaz","title":"Example of a simulation study on survival modelling — relhaz","text":"dataset simulation study assessing impact misspecifying baseline hazard survival models regression coefficients. One thousand datasets simulated, containing binary treatment variable log-hazard ratio -0.50. Survival data simulated two different sample sizes, 50 250 individuals, two different baseline hazard functions, exponential Weibull. Consequently, Cox model (Cox, 1972), fully parametric exponential model, Royston-Parmar (Royston Parmar, 2002) model two degrees freedom fit simulated dataset. See vignette(\"B-relhaz\", package = \"rsimsum\") information.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/relhaz.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example of a simulation study on survival modelling — relhaz","text":"","code":"relhaz"},{"path":"https://ellessenne.github.io/rsimsum/reference/relhaz.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example of a simulation study on survival modelling — relhaz","text":"data frame 1,200 rows 6 variables: dataset Simulated dataset number. n Sample size simulate dataset. baseline Baseline hazard function simulated dataset. model Method used (Cox, Exp, RP(2)). theta Point estimate log-hazard ratio. se Standard error point estimate.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/relhaz.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Example of a simulation study on survival modelling — relhaz","text":"Cox D.R. 1972. Regression models life-tables. Journal Royal Statistical Society, Series B (Methodological) 34(2):187-220. doi:10.1007/978-1-4612-4380-9_37 Royston, P. Parmar, M.K. 2002. Flexible parametric proportional-hazards proportional-odds models censored survival data, application prognostic modelling estimation treatment effects. Statistics Medicine 21(15):2175-2197 doi:10.1002/sim.1203","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/relhaz.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Example of a simulation study on survival modelling — relhaz","text":"","code":"data(\"relhaz\", package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/reference/rsimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"Analysis of Simulation Studies Including Monte Carlo Error — rsimsum","title":"Analysis of Simulation Studies Including Monte Carlo Error — rsimsum","text":"Summarise results simulation studies compute Monte Carlo standard errors commonly used summary statistics. package modelled 'simsum' user-written command 'Stata' (See White .R., 2010 https://www.stata-journal.com/article.html?article=st0200).","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/rsimsum.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Analysis of Simulation Studies Including Monte Carlo Error — rsimsum","text":"Alessandro Gasparini (alessandro.gasparini@ki.se)","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"Analyses of simulation studies including Monte Carlo error — simsum","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"simsum() computes performance measures simulation studies simulated data set yields point estimates one analysis methods. Bias, relative bias, empirical standard error precision relative reference method can computed method. , addition, model-based standard errors available simsum() can compute average model-based standard error, relative error model-based standard error, coverage nominal confidence intervals, coverage assumption bias (bias-eliminated coverage), power reject null hypothesis. Monte Carlo errors available estimated quantities.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"","code":"simsum( data, estvarname, se = NULL, true = NULL, methodvar = NULL, ref = NULL, by = NULL, ci.limits = NULL, df = NULL, dropbig = FALSE, x = FALSE, control = list() )"},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"data data.frame variable names interpreted. tidy format, e.g. variable forms column observation forms row. estvarname name variable containing point estimates. se name variable containing standard errors point estimates. true true value parameter; used calculations bias, relative bias, coverage, mean squared error required whenever performance measures requested. true can numeric value string identifies column data. former setting, simsum assume value replications; conversely, replication use distinct value true identified row data. See vignette(\"E-custom-inputs\", package = \"rsimsum\") details. methodvar name variable containing methods compare. instance, methods models compared within simulation study. Can NULL. vector column names passed simsum(), columns combined single column named :methodvar using base::interaction() function computing performance measures. ref Specifies reference method relative precision calculated. useful methodvar specified. vector variable names compute performance measures list factors. Factors listed (potentially several) data-generating mechanisms used simulate data different scenarios (e.g. sample size, true distribution variable, etc.). Can NULL. ci.limits Can used specify limits (lower upper) confidence intervals used calculate coverage bias-eliminated coverage. Useful non-Wald type estimators (e.g. bootstrap). Defaults NULL, Wald-type confidence intervals based provided SEs calculated coverage; otherwise, can numeric vector (fixed confidence intervals) vector strings identify columns data replication-specific lower upper limits. See vignette(\"E-custom-inputs\", package = \"rsimsum\") details. df Can used specify column containing replication-specific number degrees freedom used calculate confidence intervals coverage (bias-eliminated coverage) assuming t-distributed critical values (rather normal theory intervals). See vignette(\"E-custom-inputs\", package = \"rsimsum\") details. dropbig Specifies point estimates standard errors beyond maximum acceptable values dropped. Defaults FALSE. x Set TRUE include data argument used calculate summary statistics (.e. pre-processing input dataset e.g. removing values deemed large via dropbig argument) slot. Calling simsum x = TRUE required produce zipper plots. downside size returned object increases considerably, therefore set FALSE default. control list parameters control behaviour simsum. Possible values : mcse, whether calculate Monte Carlo standard errors. Defaults TRUE; level, significance level used coverage, bias-eliminated coverage, power. Defaults 0.95; power_df, whether use robust critical values t distribution power_df degrees freedom calculating power. Defaults NULL, case Gaussian distribution used; na.rm, whether remove point estimates standard errors either () missing. Defaults TRUE; char.sep, character utilised splitting input dataset data. Generally, changed; dropbig.max, specifies maximum acceptable absolute value point estimates, standardisation. Defaults 10; dropbig.semax, specifies maximum acceptable absolute value standard error, standardisation. Defaults 100 dropbig.robust, specifies whether use robust standardisation (using median inter-quartile range) rather normal standardisation (using mean standard deviation). Defaults TRUE, case robust standardisation used dropbig.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"object class simsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"following names allowed estvarname, se, methodvar, : stat, est, mcse, lower, upper, :methodvar.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"White, .R. 2010. simsum: Analyses simulation studies including Monte Carlo error. Stata Journal 10(3): 369-385. https://www.stata-journal.com/article.html?article=st0200 Morris, T.P., White, .R. Crowther, M.J. 2019. Using simulation studies evaluate statistical methods. Statistics Medicine, doi:10.1002/sim.8086 Gasparini, . 2018. rsimsum: Summarise results Monte Carlo simulation studies. Journal Open Source Software 3(26):739, doi:10.21105/joss.00739","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"","code":"data(\"MIsim\", package = \"rsimsum\") s <- simsum(data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\", ref = \"CC\") # If 'ref' is not specified, the reference method is inferred s <- simsum(data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\") #> 'ref' method was not specified, CC set as the reference"},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarising multisimsum objects — summary.multisimsum","title":"Summarising multisimsum objects — summary.multisimsum","text":"summary() method objects class multisimsum returns confidence intervals performance measures based Monte Carlo standard errors.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarising multisimsum objects — summary.multisimsum","text":"","code":"# S3 method for multisimsum summary(object, ci_level = 0.95, df = NULL, stats = NULL, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarising multisimsum objects — summary.multisimsum","text":"object object class multisimsum. ci_level Significance level confidence intervals based Monte Carlo standard errors. Ignored multisimsum object control parameter mcse = FALSE passed. df Degrees freedom t distribution used calculate confidence intervals based Monte Carlo standard errors. NULL (default), quantiles Normal distribution used instead. stats Summary statistics include; can scalar value vector (multiple summary statistics ). Possible choices : nsim, number replications non-missing point estimates standard error. thetamean, average point estimate. thetamedian, median point estimate. se2mean, average standard error. se2median, median standard error. bias, bias point estimate. rbias, relative (true value) bias point estimate. empse, empirical standard error. mse, mean squared error. relprec, percentage gain precision relative reference method. modelse, model-based standard error. relerror, relative percentage error standard error. cover, coverage nominal level\\ becover, bias corrected coverage nominal level\\ power, power (1 - level)\\ Defaults NULL, case possible summary statistics included. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.multisimsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarising multisimsum objects — summary.multisimsum","text":"object class summary.multisimsum.","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.multisimsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summarising multisimsum objects — summary.multisimsum","text":"","code":"data(frailty) ms <- multisimsum( data = frailty, par = \"par\", true = c( trt = -0.50, fv = 0.75 ), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\" ) #> 'ref' method was not specified, Cox, Gamma set as the reference sms <- summary(ms) sms #> Values are: #> \tPoint Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Non-missing point estimates/standard errors: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 976 1000 971 1000 #> Log-Normal 957 1000 997 1000 #> #> Average point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.7376 0.9799 0.7321 0.9847 #> Log-Normal 0.6436 0.7325 0.6434 0.7348 #> #> Median point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.7271 0.9566 0.7225 0.9597 #> Log-Normal 0.6365 0.7182 0.6324 0.7199 #> #> Average variance: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0203 0.0600 0.0202 0.0498 #> Log-Normal 0.0156 0.0230 0.0158 0.0254 #> #> Median variance: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0193 0.0483 0.0191 0.0442 #> Log-Normal 0.0149 0.0206 0.0149 0.0235 #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma -0.0124 (0.0045) 0.2299 (0.0076) -0.0179 (0.0044) #> Log-Normal -0.1064 (0.0043) -0.0175 (0.0049) -0.1066 (0.0041) #> RP(P), Log-Normal #> 0.2347 (0.0077) #> -0.0152 (0.0050) #> #> Relative bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0165 (NA) 0.3066 (0.0101) -0.0239 (NA) 0.3130 (0.0103) #> Log-Normal -0.1419 (NA) -0.0233 (0.0066) -0.1421 (NA) -0.0203 (0.0066) #> #> Empirical standard error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.1421 (0.0032) 0.2406 (0.0054) 0.1387 (0.0031) 0.2438 (0.0055) #> Log-Normal 0.1320 (0.0030) 0.1554 (0.0035) 0.1307 (0.0029) 0.1570 (0.0035) #> #> % gain in precision relative to method Cox, Gamma: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0000 (0.0000) -65.1290 (0.6149) 5.0048 (0.0507) -66.0342 (0.5911) #> Log-Normal 0.0000 (0.0000) -27.8283 (1.5037) 2.0492 (0.0466) -29.3058 (1.4591) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0203 (0.0010) 0.1107 (0.0055) 0.0195 (0.0009) 0.1145 (0.0057) #> Log-Normal 0.0287 (0.0010) 0.0244 (0.0011) 0.0284 (0.0010) 0.0248 (0.0012) #> #> Model-based standard error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.1426 (0.0008) 0.2449 (0.0027) 0.1420 (0.0008) 0.2232 (0.0019) #> Log-Normal 0.1249 (0.0008) 0.1517 (0.0013) 0.1258 (0.0007) 0.1594 (0.0011) #> #> Relative % error in standard error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma 0.3574 (2.3463) 1.7896 (2.5449) 2.3922 (2.3950) #> Log-Normal -5.3912 (2.2452) -2.3382 (2.3301) -3.7112 (2.2300) #> RP(P), Log-Normal #> -8.4531 (2.1890) #> 1.5422 (2.3713) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9201 (0.0087) 0.9220 (0.0085) 0.9300 (0.0082) 0.9030 (0.0094) #> Log-Normal 0.7503 (0.0140) 0.9020 (0.0094) 0.7683 (0.0134) 0.9280 (0.0082) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9334 (0.0080) 0.8980 (0.0096) 0.9434 (0.0074) 0.8930 (0.0098) #> Log-Normal 0.9164 (0.0089) 0.9130 (0.0089) 0.9308 (0.0080) 0.9360 (0.0077) #> #> Power of 5% level test: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) #> Log-Normal 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) #> #> -------------------------------------------------------------------------------- #> #> Parameter: trt #> #> Non-missing point estimates/standard errors: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 1000 1000 971 1000 #> Log-Normal 1000 1000 997 1000 #> #> Average point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.5006 -0.5013 -0.5003 -0.5015 #> Log-Normal -0.5006 -0.5014 -0.5006 -0.5016 #> #> Median point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.5011 -0.5021 -0.5010 -0.5025 #> Log-Normal -0.5014 -0.5021 -0.5014 -0.5022 #> #> Average variance: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0026 0.0026 0.0026 0.0026 #> Log-Normal 0.0023 0.0023 0.0023 0.0023 #> #> Median variance: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0026 0.0026 0.0026 0.0026 #> Log-Normal 0.0022 0.0022 0.0022 0.0022 #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma -0.0006 (0.0016) -0.0013 (0.0016) -0.0003 (0.0016) #> Log-Normal -0.0006 (0.0015) -0.0014 (0.0015) -0.0006 (0.0015) #> RP(P), Log-Normal #> -0.0015 (0.0016) #> -0.0016 (0.0015) #> #> Relative bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0011 (0.0032) 0.0027 (0.0032) 0.0006 (NA) 0.0031 (0.0032) #> Log-Normal 0.0012 (0.0030) 0.0028 (0.0030) 0.0013 (NA) 0.0032 (0.0030) #> #> Empirical standard error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0508 (0.0011) 0.0509 (0.0011) 0.0506 (0.0011) 0.0509 (0.0011) #> Log-Normal 0.0474 (0.0011) 0.0474 (0.0011) 0.0473 (0.0011) 0.0474 (0.0011) #> #> % gain in precision relative to method Cox, Gamma: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0000 (0.0000) -0.4457 (0.1133) 0.4394 (0.0845) -0.5782 (0.1641) #> Log-Normal 0.0000 (0.0000) -0.1417 (0.1367) 0.0918 (0.0853) -0.2078 (0.1589) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0026 (0.0001) 0.0026 (0.0001) 0.0026 (0.0001) 0.0026 (0.0001) #> Log-Normal 0.0022 (0.0001) 0.0022 (0.0001) 0.0022 (0.0001) 0.0022 (0.0001) #> #> Model-based standard error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0506 (0.0000) 0.0507 (0.0000) 0.0506 (0.0000) 0.0507 (0.0000) #> Log-Normal 0.0475 (0.0000) 0.0475 (0.0000) 0.0475 (0.0000) 0.0475 (0.0000) #> #> Relative % error in standard error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma -0.2017 (2.2346) -0.3890 (2.2304) -0.0544 (2.2710) #> Log-Normal 0.2507 (2.2438) 0.1815 (2.2423) 0.3319 (2.2490) #> RP(P), Log-Normal #> -0.4330 (2.2294) #> 0.2101 (2.2429) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9500 (0.0069) 0.9490 (0.0070) 0.9506 (0.0070) 0.9500 (0.0069) #> Log-Normal 0.9410 (0.0075) 0.9420 (0.0074) 0.9428 (0.0074) 0.9430 (0.0073) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9500 (0.0069) 0.9500 (0.0069) 0.9506 (0.0070) 0.9490 (0.0070) #> Log-Normal 0.9420 (0.0074) 0.9400 (0.0075) 0.9428 (0.0074) 0.9410 (0.0075) #> #> Power of 5% level test: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) #> Log-Normal 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)"},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarising simsum objects — summary.simsum","title":"Summarising simsum objects — summary.simsum","text":"summary() method objects class simsum returns confidence intervals performance measures based Monte Carlo standard errors.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarising simsum objects — summary.simsum","text":"","code":"# S3 method for simsum summary(object, ci_level = 0.95, df = NULL, stats = NULL, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarising simsum objects — summary.simsum","text":"object object class simsum. ci_level Significance level confidence intervals based Monte Carlo standard errors. Ignored simsum object control parameter mcse = FALSE passed. df Degrees freedom t distribution used calculate confidence intervals based Monte Carlo standard errors. NULL (default), quantiles Normal distribution used instead. However, using Z-based t-based confidence intervals valid summary statistics bias coverage. Confidence intervals quantities may appropriate, therefore usage recommended. stats Summary statistics include; can scalar value vector (multiple summary statistics ). Possible choices : nsim, number replications non-missing point estimates standard error. thetamean, average point estimate. thetamedian, median point estimate. se2mean, average variance. se2median, median variance. bias, bias point estimate. rbias, relative (true value) bias point estimate. empse, empirical standard error. mse, mean squared error. relprec, percentage gain precision relative reference method. modelse, model-based standard error. relerror, relative percentage error standard error. cover, coverage nominal level\\ becover, bias corrected coverage nominal level\\ power, power (1 - level)\\ Defaults NULL, case possible summary statistics included. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.simsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarising simsum objects — summary.simsum","text":"object class summary.simsum.","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.simsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summarising simsum objects — summary.simsum","text":"","code":"data(\"MIsim\") object <- simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\" ) #> 'ref' method was not specified, CC set as the reference xs <- summary(object) xs #> Values are: #> \tPoint Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 (0.0048) 0.0009 (0.0042) -0.0012 (0.0043) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 (0.0096) 0.0018 (0.0083) -0.0024 (0.0085) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 (0.0034) 0.1320 (0.0030) 0.1344 (0.0030) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000) 31.0463 (3.9375) 26.3682 (3.8424) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 (0.0011) 0.0174 (0.0009) 0.0181 (0.0009) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 (0.0005) 0.1349 (0.0006) 0.1338 (0.0006) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 (2.2055) 2.2233 (2.3323) -0.4412 (2.2695) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 (0.0073) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 (0.0075) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 (0.0071) 0.9690 (0.0055) 0.9630 (0.0060)"},{"path":"https://ellessenne.github.io/rsimsum/reference/tidy.html","id":null,"dir":"Reference","previous_headings":"","what":"Turn an object into a tidy dataset — tidy.simsum","title":"Turn an object into a tidy dataset — tidy.simsum","text":"Extract tidy dataset results object class simsum, summary.simsum, multisimsum, summary.multisimsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/tidy.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Turn an object into a tidy dataset — tidy.simsum","text":"","code":"# S3 method for simsum tidy(x, stats = NULL, ...) # S3 method for summary.simsum tidy(x, stats = NULL, ...) # S3 method for multisimsum tidy(x, stats = NULL, ...) # S3 method for summary.multisimsum tidy(x, stats = NULL, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/tidy.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Turn an object into a tidy dataset — tidy.simsum","text":"x object class simsum. stats Summary statistics include; can scalar value vector. Possible choices : nsim, number replications non-missing point estimates standard error. thetamean, average point estimate. thetamedian, median point estimate. se2mean, average standard error. se2median, median standard error. bias, bias point estimate. rbias, relative (true value) bias point estimate. empse, empirical standard error. mse, mean squared error. relprec, percentage gain precision relative reference method. modelse, model-based standard error. relerror, relative percentage error standard error. cover, coverage nominal level\\ becover, bias-eliminated coverage nominal level\\ power, power (1 - level)\\ Defaults NULL, case summary statistics returned. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/tidy.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Turn an object into a tidy dataset — tidy.simsum","text":"data.frame containing summary statistics simulation study.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/tidy.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Turn an object into a tidy dataset — tidy.simsum","text":"","code":"data(MIsim) x <- simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\" ) #> 'ref' method was not specified, CC set as the reference tidy(x) #> stat est mcse method #> 1 nsim 1.000000e+03 NA CC #> 2 thetamean 5.167662e-01 NA CC #> 3 thetamedian 5.069935e-01 NA CC #> 4 se2mean 2.163731e-02 NA CC #> 5 se2median 2.114245e-02 NA CC #> 6 bias 1.676616e-02 0.0047786757 CC #> 7 rbias 3.353232e-02 0.0095573514 CC #> 8 empse 1.511150e-01 0.0033807248 CC #> 9 mse 2.309401e-02 0.0011338389 CC #> 10 relprec 0.000000e+00 0.0000000000 CC #> 11 modelse 1.470963e-01 0.0005274099 CC #> 12 relerror -2.659384e+00 2.2054817330 CC #> 13 cover 9.430000e-01 0.0073315073 CC #> 14 becover 9.400000e-01 0.0075099933 CC #> 15 power 9.460000e-01 0.0071473072 CC #> 16 nsim 1.000000e+03 NA MI_LOGT #> 17 thetamean 5.009231e-01 NA MI_LOGT #> 18 thetamedian 4.969223e-01 NA MI_LOGT #> 19 se2mean 1.820915e-02 NA MI_LOGT #> 20 se2median 1.721574e-02 NA MI_LOGT #> 21 bias 9.230987e-04 0.0041744101 MI_LOGT #> 22 rbias 1.846197e-03 0.0083488201 MI_LOGT #> 23 empse 1.320064e-01 0.0029532306 MI_LOGT #> 24 mse 1.740913e-02 0.0008812805 MI_LOGT #> 25 relprec 3.104634e+01 3.9374726448 MI_LOGT #> 26 modelse 1.349413e-01 0.0006046041 MI_LOGT #> 27 relerror 2.223259e+00 2.3323382138 MI_LOGT #> 28 cover 9.490000e-01 0.0069569390 MI_LOGT #> 29 becover 9.490000e-01 0.0069569390 MI_LOGT #> 30 power 9.690000e-01 0.0054807846 MI_LOGT #> 31 nsim 1.000000e+03 NA MI_T #> 32 thetamean 4.988092e-01 NA MI_T #> 33 thetamedian 4.939111e-01 NA MI_T #> 34 se2mean 1.791169e-02 NA MI_T #> 35 se2median 1.693191e-02 NA MI_T #> 36 bias -1.190835e-03 0.0042509767 MI_T #> 37 rbias -2.381670e-03 0.0085019534 MI_T #> 38 empse 1.344277e-01 0.0030073985 MI_T #> 39 mse 1.805415e-02 0.0009112249 MI_T #> 40 relprec 2.636816e+01 3.8423791135 MI_T #> 41 modelse 1.338346e-01 0.0005856362 MI_T #> 42 relerror -4.412233e-01 2.2695215740 MI_T #> 43 cover 9.430000e-01 0.0073315073 MI_T #> 44 becover 9.430000e-01 0.0073315073 MI_T #> 45 power 9.630000e-01 0.0059691708 MI_T # Extracting only bias and coverage: tidy(x, stats = c(\"bias\", \"cover\")) #> stat est mcse method #> 1 bias 0.0167661608 0.004778676 CC #> 2 cover 0.9430000000 0.007331507 CC #> 3 bias 0.0009230987 0.004174410 MI_LOGT #> 4 cover 0.9490000000 0.006956939 MI_LOGT #> 5 bias -0.0011908351 0.004250977 MI_T #> 6 cover 0.9430000000 0.007331507 MI_T xs <- summary(x) tidy(xs) #> stat est mcse method lower upper #> 1 nsim 1.000000e+03 NA CC NA NA #> 2 thetamean 5.167662e-01 NA CC NA NA #> 3 thetamedian 5.069935e-01 NA CC NA NA #> 4 se2mean 2.163731e-02 NA CC NA NA #> 5 se2median 2.114245e-02 NA CC NA NA #> 6 bias 1.676616e-02 0.0047786757 CC 0.007400129 0.026132193 #> 7 rbias 3.353232e-02 0.0095573514 CC 0.014800257 0.052264386 #> 8 empse 1.511150e-01 0.0033807248 CC 0.144488895 0.157741093 #> 9 mse 2.309401e-02 0.0011338389 CC 0.020871727 0.025316293 #> 10 relprec 0.000000e+00 0.0000000000 CC 0.000000000 0.000000000 #> 11 modelse 1.470963e-01 0.0005274099 CC 0.146062561 0.148129970 #> 12 relerror -2.659384e+00 2.2054817330 CC -6.982048962 1.663280569 #> 13 cover 9.430000e-01 0.0073315073 CC 0.928630510 0.957369490 #> 14 becover 9.400000e-01 0.0075099933 CC 0.925280684 0.954719316 #> 15 power 9.460000e-01 0.0071473072 CC 0.931991535 0.960008465 #> 16 nsim 1.000000e+03 NA MI_LOGT NA NA #> 17 thetamean 5.009231e-01 NA MI_LOGT NA NA #> 18 thetamedian 4.969223e-01 NA MI_LOGT NA NA #> 19 se2mean 1.820915e-02 NA MI_LOGT NA NA #> 20 se2median 1.721574e-02 NA MI_LOGT NA NA #> 21 bias 9.230987e-04 0.0041744101 MI_LOGT -0.007258595 0.009104792 #> 22 rbias 1.846197e-03 0.0083488201 MI_LOGT -0.014517189 0.018209584 #> 23 empse 1.320064e-01 0.0029532306 MI_LOGT 0.126218211 0.137794663 #> 24 mse 1.740913e-02 0.0008812805 MI_LOGT 0.015681848 0.019136404 #> 25 relprec 3.104634e+01 3.9374726448 MI_LOGT 23.329036439 38.763645587 #> 26 modelse 1.349413e-01 0.0006046041 MI_LOGT 0.133756280 0.136126285 #> 27 relerror 2.223259e+00 2.3323382138 MI_LOGT -2.348039558 6.794558240 #> 28 cover 9.490000e-01 0.0069569390 MI_LOGT 0.935364650 0.962635350 #> 29 becover 9.490000e-01 0.0069569390 MI_LOGT 0.935364650 0.962635350 #> 30 power 9.690000e-01 0.0054807846 MI_LOGT 0.958257860 0.979742140 #> 31 nsim 1.000000e+03 NA MI_T NA NA #> 32 thetamean 4.988092e-01 NA MI_T NA NA #> 33 thetamedian 4.939111e-01 NA MI_T NA NA #> 34 se2mean 1.791169e-02 NA MI_T NA NA #> 35 se2median 1.693191e-02 NA MI_T NA NA #> 36 bias -1.190835e-03 0.0042509767 MI_T -0.009522596 0.007140926 #> 37 rbias -2.381670e-03 0.0085019534 MI_T -0.019045193 0.014281852 #> 38 empse 1.344277e-01 0.0030073985 MI_T 0.128533294 0.140322080 #> 39 mse 1.805415e-02 0.0009112249 MI_T 0.016268182 0.019840118 #> 40 relprec 2.636816e+01 3.8423791135 MI_T 18.837236583 33.899085938 #> 41 modelse 1.338346e-01 0.0005856362 MI_T 0.132686735 0.134982387 #> 42 relerror -4.412233e-01 2.2695215740 MI_T -4.889403808 4.006957286 #> 43 cover 9.430000e-01 0.0073315073 MI_T 0.928630510 0.957369490 #> 44 becover 9.430000e-01 0.0073315073 MI_T 0.928630510 0.957369490 #> 45 power 9.630000e-01 0.0059691708 MI_T 0.951300640 0.974699360"},{"path":"https://ellessenne.github.io/rsimsum/reference/tt.html","id":null,"dir":"Reference","previous_headings":"","what":"Example of a simulation study on the t-test — tt","title":"Example of a simulation study on the t-test — tt","text":"dataset simulation study 4 data-generating mechanisms, useful illustrate custom input confidence intervals calculate coverage probability. simulation study aims compare t-test assuming pooled unpooled variance violation () t-test assumptions: normality data, equality () variance groups. true value difference groups -1.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/tt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example of a simulation study on the t-test — tt","text":"","code":"tt"},{"path":"https://ellessenne.github.io/rsimsum/reference/tt.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example of a simulation study on the t-test — tt","text":"data frame 4,000 rows 8 variables: diff difference mean groups estimated t-test; se Standard error estimated difference; lower, upper Confidence interval difference mean reported t-test; df number degrees freedom assumed t-test; repno Identifies replication, 1 500; dgm Identifies data-generating mechanism: 1 corresponds normal data equal variance groups, 2 normal data unequal variance, 3 4 skewed data (simulated Gamma distribution) equal unequal variance groups, respectively; method Analysis method: 1 represents t-test pooled variance, 2 represents t-test unpooled variance.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/tt.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Example of a simulation study on the t-test — tt","text":"details simulation study can found R script used generate dataset, available GitHub: https://github.com/ellessenne/rsimsum/blob/master/data-raw/tt-data.R","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/tt.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Example of a simulation study on the t-test — tt","text":"","code":"data(\"tt\", package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-development-version","dir":"Changelog","previous_headings":"","what":"rsimsum (development version)","title":"rsimsum (development version)","text":"Fixed issues nested loop plot simulation design fully-factorial (#47, thanks @mikesweeting).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0120","dir":"Changelog","previous_headings":"","what":"rsimsum 0.12.0","title":"rsimsum 0.12.0","text":"new performance measure, relative bias, can now calculated along Monte Carlo error (#41). details formulae introductory vignette, updated accordingly. Fixed issues stat(level), deprecated {ggplot2} 3.4.0 (#44). Fixed error calculation Monte Carlo standard error relative % error ModSE (#45, thanks @LaurenSamuels reporting ). Several improvements package documentation.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0113","dir":"Changelog","previous_headings":"","what":"rsimsum 0.11.3","title":"rsimsum 0.11.3","text":"CRAN release: 2022-08-17 minor release, following changes: Updated hex sticker. Updated maintainer e-mail.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0112","dir":"Changelog","previous_headings":"","what":"rsimsum 0.11.2","title":"rsimsum 0.11.2","text":"CRAN release: 2022-03-22","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-11-2","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.11.2","text":"Fixed issues overlapping/missing intervals zip plots (#40, thanks @ge-li reporting ).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0111","dir":"Changelog","previous_headings":"","what":"rsimsum 0.11.1","title":"rsimsum 0.11.1","text":"CRAN release: 2022-01-04","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-11-1","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.11.1","text":"Fixed conflicts tidy() function {broom} package {broom} {rsimsum} loaded time. lead error kind: Thanks Theodosia Salika reporting . {pkgdown} website documentation updated use Bootstrap 5 ({pkgdown} ≥ 2.0.0). new site can found : https://ellessenne.github.io/rsimsum/ Updated DOI returning HTTP Error 503.","code":"#> Error: No tidy method recognized for this list."},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0110","dir":"Changelog","previous_headings":"","what":"rsimsum 0.11.0","title":"rsimsum 0.11.0","text":"CRAN release: 2021-10-20","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"new-features-0-11-0","dir":"Changelog","previous_headings":"","what":"New features:","title":"rsimsum 0.11.0","text":"print.summary.simsum() now return (invisibly) list section output, e.g. performance measure. useful printing small sections output, e.g. using kable() (thanks @ge-li, see discussion #22): implemented print.summary.multisimsum() well, additional level nesting (parameter).","code":"library(rsimsum) s2 <- simsum(data = relhaz, estvarname = \"theta\", true = -0.50, se = \"se\", methodvar = \"model\", by = c(\"baseline\", \"n\")) out <- print(summary(s2, stats = \"bias\")) library(knitr) kable(out[[1]], caption = names(out)[1], align = \"r\")"},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bux-fixes-0-11-0","dir":"Changelog","previous_headings":"","what":"Bux fixes:","title":"rsimsum 0.11.0","text":"Fixed broken links vignettes (introduced bunch time ago renaming .Rmd files), thanks @remlapmot reporting (#36).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0101","dir":"Changelog","previous_headings":"","what":"rsimsum 0.10.1","title":"rsimsum 0.10.1","text":"CRAN release: 2021-07-05","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-10-1","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.10.1","text":"Even power_df passed control argument, used (regression introduced {rsimsum} 0.9.0). Now fixed, thanks @Kaladani (#33).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0100","dir":"Changelog","previous_headings":"","what":"rsimsum 0.10.0","title":"rsimsum 0.10.0","text":"CRAN release: 2021-05-21","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"breaking-changes-0-10-0","dir":"Changelog","previous_headings":"","what":"Breaking changes:","title":"rsimsum 0.10.0","text":"get_data() now deprecated favour tidy(); get_data() still works (fully tested), now throws warning fully removed time future.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"new-features-0-10-0","dir":"Changelog","previous_headings":"","what":"New features:","title":"rsimsum 0.10.0","text":"simsum() multisimsum() now accept multiple column inputs identify unique methods (see e.g. #24, #30). Internally, combines unique values column factorially using interaction() function; , methods analysed reported . See vignette(\"E-custom-inputs\", package = \"rsimsum\") examples. Two new datasets, MIsim2 frailty2, now bundled rsimsum test new functionality introduced . correspond MIsim frailty, respectively, difference (single) column identifying methods now split two distinct columns.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-091","dir":"Changelog","previous_headings":"","what":"rsimsum 0.9.1","title":"rsimsum 0.9.1","text":"CRAN release: 2020-09-03","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-9-1","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.9.1","text":"Improved printing simulation studies ‘non-standard’ way passing true values (see e.g. #28 GitHub); Fixed typo introductory vignette; internal housekeeping.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-090","dir":"Changelog","previous_headings":"","what":"rsimsum 0.9.0","title":"rsimsum 0.9.0","text":"CRAN release: 2020-04-15","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"breaking-changes-0-9-0","dir":"Changelog","previous_headings":"","what":"Breaking changes:","title":"rsimsum 0.9.0","text":"control argument df renamed power_df, now affects power calculations .","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"new-features-0-9-0","dir":"Changelog","previous_headings":"","what":"New features:","title":"rsimsum 0.9.0","text":"New df argument, simsum multisimum now accept column data containing number degrees freedom used calculate confidence intervals coverage (bias-eliminated coverage) t critical values (instead normal-theory intervals, default behaviour). Notably, zip plots behave accordingly calculating ranking confidence intervals; Calculations zip plots noticeably faster now; Added simple kable method objects class simsum, summary.simsum, multisimsum, summary.multisimsum ease creation LaTeX/HTML/Markdown/reStructuredText tables.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-9-0","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.9.0","text":"Fixed bug prevented zip plots factors plotted.","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"changes-to-default-behaviour-0-8-1","dir":"Changelog","previous_headings":"","what":"Changes to default behaviour:","title":"rsimsum 0.8.1","text":"autoplot methods now plot number non-missing point estimates/SEs default (stat argument set user). previous default plot bias, might always available anymore since rsimsum 0.8.0.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"improvements-0-8-1","dir":"Changelog","previous_headings":"","what":"Improvements:","title":"rsimsum 0.8.1","text":"Handling plotting edge cases, instance standard errors true values available; Improved multisimsum example vignette custom inputs.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-8-1","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.8.1","text":"Fixed typo vignette formulae (#25, thanks @samperochkin).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-080","dir":"Changelog","previous_headings":"","what":"rsimsum 0.8.0","title":"rsimsum 0.8.0","text":"CRAN release: 2020-02-29","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"improvements-0-8-0","dir":"Changelog","previous_headings":"","what":"Improvements:","title":"rsimsum 0.8.0","text":"Added new argument zoom autoplot methods: now possible zoom top x% zip plot improve readability; Added new example dataset toy simulation study assessing robustness t-test. See ?\"tt\" details; true argument rsimsum multisimsum now accepts string identifies column data. especially useful settings true value varies across replications, e.g. depends characteristics simulated data. See vignette(\"E-custom-inputs\", package = \"rsimsum\") details examples; Analogously, ci.limits argument now accepts vector strings identifies lower upper limits custom-defined confidence intervals columns data. , details included vignette(\"E-custom-inputs\", package = \"rsimsum\"); rsimsum now correctly uses inherits(obj, \"someclass\") instead class(obj) == \"someclass\" (#20); Fixed bugs errors appeared auto-plotting results simulation studies methods compared (#23).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-071","dir":"Changelog","previous_headings":"","what":"rsimsum 0.7.1","title":"rsimsum 0.7.1","text":"autoplot supports two new visualisations: contour plots hexbin plots, either point estimates standard errors. can obtained selecting argument type = \"est_density\", type = \"se_density\", type = \"est_hex\", type = \"se_hex\".","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-070","dir":"Changelog","previous_headings":"","what":"rsimsum 0.7.0","title":"rsimsum 0.7.0","text":"CRAN release: 2019-11-12","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"improvements-0-7-0","dir":"Changelog","previous_headings":"","what":"Improvements:","title":"rsimsum 0.7.0","text":"Passing true value estimand (true argument) longer required; true passed simsum multisimsum, bias, coverage, mean squared error computed; Passing estimated standard errors per replication (se argument) longer required; , average median variances, model-based standard errors, relative error, coverage probability, bias-eliminated coverage probability, power computed.","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-6-2","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.6.2","text":"Fixed bug introduced rsimsum 0.6.1 (average median variances printed).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-061","dir":"Changelog","previous_headings":"","what":"rsimsum 0.6.1","title":"rsimsum 0.6.1","text":"CRAN release: 2019-09-12","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-6-1","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.6.1","text":"Fixed labelling bug zipper plots (thanks @syriop-elisa reporting ); Clarified simsum multisimsum report average (median) estimated variances, standard errors (thanks Ian R. White reporting ).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-060","dir":"Changelog","previous_headings":"","what":"rsimsum 0.6.0","title":"rsimsum 0.6.0","text":"CRAN release: 2019-07-15","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"improvements-0-6-0","dir":"Changelog","previous_headings":"","what":"Improvements:","title":"rsimsum 0.6.0","text":"Implemented fully automated nested loop plots simulation studies several data-generating mechanisms: autoplot(object, type = \"nlp\"); Added data(\"nlp\", package = \"rsimsum\"), dataset simulation study 150 data-generating. particularly useful illustrate nested loop plots; Added new vignette nested loop plots; Improved ordering vignettes.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-6-0","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.6.0","text":"Updated unquoting compatibility rlang 0.4.0; Fixed missing details options documentation autoplot.multisimsum autoplot.summary.multisimsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-052","dir":"Changelog","previous_headings":"","what":"rsimsum 0.5.2","title":"rsimsum 0.5.2","text":"CRAN release: 2019-04-25","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-5-2","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.5.2","text":"Fixed labelling facetting plot types, now defaults ggplot2::label_both ‘’ factors (included).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-051","dir":"Changelog","previous_headings":"","what":"rsimsum 0.5.1","title":"rsimsum 0.5.1","text":"CRAN release: 2019-03-15","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-5-1","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.5.1","text":"Fixed calculations “Relative % increase precision” (thanks Ian R. White reporting ).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-050","dir":"Changelog","previous_headings":"","what":"rsimsum 0.5.0","title":"rsimsum 0.5.0","text":"CRAN release: 2019-02-21","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"improvements-0-5-0","dir":"Changelog","previous_headings":"","what":"Improvements:","title":"rsimsum 0.5.0","text":"Implemented autoplot method multisimsum summary.multisimsum objects; Implemented heat plot types simsum multisimsum objects; autoplot methods pick value true passed simsum, multisimsum inferring target value stats = (thetamean, thetamedian) target = NULL. plain English, true value estimand picked target value plotting mean (median) estimated value; Updated vignettes references; Updated pkgdown website, published https://ellessenne.github.io/rsimsum/; Improved code coverage.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-5-0","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.5.0","text":"Fixed bug autoplot caused premature slicing arguments, arguments included.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-042","dir":"Changelog","previous_headings":"","what":"rsimsum 0.4.2","title":"rsimsum 0.4.2","text":"Implemented autoplot method simsum summary.simsum objects; calling autoplot summary.simsum objects, confidence intervals based Monte Carlo standard errors included well (sensible). Supported plot types : forest plot estimated summary statistics; lolly plot summary statistics; zip plot coverage probability; scatter plot methods-wise comparison (e.g. X vs Y) point estimates standard errors, per replication; , implemented Bland-Altman type plot; ridgeline plot estimates, standard errors compare distribution estimates, standard errors method. Several options customise behaviour autoplot, see ?autoplot.simsum ?autoplot.summary.simsum details.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-041","dir":"Changelog","previous_headings":"","what":"rsimsum 0.4.1","title":"rsimsum 0.4.1","text":"Fixed bug dropbig related internal function returning standardised values instead actual observed values.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-040","dir":"Changelog","previous_headings":"","what":"rsimsum 0.4.0","title":"rsimsum 0.4.0","text":"rsimsum 0.4.0 large refactoring rsimsum. several improvements breaking changes, outlined .","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"improvements-0-4-0","dir":"Changelog","previous_headings":"","what":"Improvements","title":"rsimsum 0.4.0","text":"rsimsum robust using factor variables (e.g. methodvar factor), ordering preserved defined dataset passed simsum (multisimsum); Confidence intervals based Monte Carlo standard errors can now computed using quantiles t distribution; see help(summary.simsum) details; Added comparison results Stata’s simsum testing purposes - differences negligible, calculations simsum wrong (already reported). differences can attributed calculations (conversions, comparison) different scales.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"breaking-changes-0-4-0","dir":"Changelog","previous_headings":"","what":"Breaking changes","title":"rsimsum 0.4.0","text":"syntax simsum multisimsum slightly changed, arguments removed others moved control list several tuning parameters. Please check updated examples details; dropbig longer S3 method simsum multisimsum objects. Now, dropbig exported function can used identify rows input data.frame dropped simsum (multisimsum); Point estimates standard errors dropped simsum (multisimsum) dropbig = TRUE) longer included returned object; therefore, S3 method miss removed; get_data longer S3 method, still requires object class simsum, summary.simsum, multisimsum, summary.multisimsum passed input; plotting methods removed preparation complete overhaul planned rsimsum 0.5.0.","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"breaking-changes-0-3-5","dir":"Changelog","previous_headings":"","what":"Breaking changes","title":"rsimsum 0.3.5","text":"zip method renamed zipper() avoid name collision utils::zip().","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-034","dir":"Changelog","previous_headings":"","what":"rsimsum 0.3.4","title":"rsimsum 0.3.4","text":"Added ability define custom confidence interval limits calculating coverage via ci.limits argument (#6, @MvanSmeden). functionality considered experimental, hence feedback much appreciated; Updated Simulating simulation study vignette therefore relhaz dataset bundled rsimsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-033","dir":"Changelog","previous_headings":"","what":"rsimsum 0.3.3","title":"rsimsum 0.3.3","text":"CRAN release: 2018-06-20 rsimsum 0.3.3 focuses improving documentation package. Improvements: * Improved printing confidence intervals summary statistics based Monte Carlo standard errors; * Added description argument get_data method, append column description summary statistics exported; defaults FALSE; * Improved documentation introductory vignette clarify several points (#3, @lebebr01); * Improved plotting vignette document customise plots (#4, @lebebr01). New: * Added CITATION file references paper JOSS.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-032","dir":"Changelog","previous_headings":"","what":"rsimsum 0.3.2","title":"rsimsum 0.3.2","text":"rsimsum 0.3.2 small maintenance release: * Merged pull request #1 @mllg adapting new version checkmate package; * Fixed bug automatic labels bar() forest() selected properly.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-031","dir":"Changelog","previous_headings":"","what":"rsimsum 0.3.1","title":"rsimsum 0.3.1","text":"CRAN release: 2018-04-04 Bug fixes: * bar(), forest(), lolly(), heat() now appropriately pick discrete X (Y) axis scale methods (defined) method variable numeric; * simsum() multisimsum() coerce methodvar variable string format (specified already string); * fixed typos empirical standard errors documentation . Updated code conduct (CONDUCT.md) contributing guidelines (CONTRIBUTING.md). Removed dependency tidyverse package (thanks Mara Averick).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-030","dir":"Changelog","previous_headings":"","what":"rsimsum 0.3.0","title":"rsimsum 0.3.0","text":"CRAN release: 2018-02-22 Bug fixes: * pattern() now appropriately pick discrete colour scale methods (defined) method variable numeric. New plots supported: * forest(), forest plots; * bar(), bar plots. Changes existing functionality: * par argument lolly.multisimsum now required; provided, plots faceted estimand (well factor); * updated Visualising results rsimsum vignette. Added CONTRIBUTING.md CONDUCT.md.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-020","dir":"Changelog","previous_headings":"","what":"rsimsum 0.2.0","title":"rsimsum 0.2.0","text":"CRAN release: 2018-02-15 Internal housekeeping. Added S3 methods simsum multisimsum objects visualise results: * lolly(), lolly plots; * zip(), zip plots; * heat(), heat plots; * pattern(), scatter plots estimates vs SEs. Added new vignette Visualising results rsimsum introduce -mentioned plots. Added x argument simsum multisimsum include original dataset slot returned object. Added miss function obtaining basic information missingness simulation results. miss methods print get_data.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-010","dir":"Changelog","previous_headings":"","what":"rsimsum 0.1.0","title":"rsimsum 0.1.0","text":"CRAN release: 2018-02-05 First submission CRAN. rsimsum can handle: simulation studies single estimand simulation studies multiple estimands simulation studies multiple methods compare simulation studies multiple data-generating mechanisms (e.g. ‘’ factors) Summary statistics can computed : bias, empirical standard error, mean squared error, percentage gain precision relative reference method, model-based standard error, coverage, bias-corrected coverage, power. Monte Carlo standard errors summary statistic can computed well.","code":""}] +[{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"interest fostering open welcoming environment, contributors maintainers pledge making participation project community harassment-free experience everyone, regardless age, body size, disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, religion, sexual identity orientation.","code":""},{"path":"https://ellessenne.github.io/rsimsum/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes creating positive environment include: Using welcoming inclusive language respectful differing viewpoints experiences Gracefully accepting constructive criticism Focusing best community Showing empathy towards community members Examples unacceptable behavior participants include: use sexualized language imagery unwelcome sexual attention advances Trolling, insulting/derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical electronic address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"https://ellessenne.github.io/rsimsum/CODE_OF_CONDUCT.html","id":"our-responsibilities","dir":"","previous_headings":"","what":"Our Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Project maintainers responsible clarifying standards acceptable behavior expected take appropriate fair corrective action response instances unacceptable behavior. Project maintainers right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, ban temporarily permanently contributor behaviors deem inappropriate, threatening, offensive, harmful.","code":""},{"path":"https://ellessenne.github.io/rsimsum/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within project spaces public spaces individual representing project community. Examples representing project community include using official project e-mail address, posting via official social media account, acting appointed representative online offline event. Representation project may defined clarified project maintainers.","code":""},{"path":"https://ellessenne.github.io/rsimsum/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported contacting project team alessandro.gasparini@ki.se. complaints reviewed investigated result response deemed necessary appropriate circumstances. project team obligated maintain confidentiality regard reporter incident. details specific enforcement policies may posted separately. Project maintainers follow enforce Code Conduct good faith may face temporary permanent repercussions determined members project’s leadership.","code":""},{"path":"https://ellessenne.github.io/rsimsum/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 1.4, available https://www.contributor-covenant.org/version/1/4/code--conduct.html answers common questions code conduct, see https://www.contributor-covenant.org/faq","code":""},{"path":"https://ellessenne.github.io/rsimsum/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contributing","title":"Contributing","text":"want contribute project make better, help welcome. small, simple changes fixing typos can edit file directly GitHub clicking Edit button opening . complicated changes, manually create pull request (PR) forking repository. See next section information. submit non-trivial pull request (e.g. just fixing typo), may add name Authors@R field contributor (ctb) R package DESCRIPTION file wish.","code":""},{"path":"https://ellessenne.github.io/rsimsum/CONTRIBUTING.html","id":"pull-request-workflow","dir":"","previous_headings":"","what":"Pull Request Workflow","title":"Contributing","text":"Create personal fork project Github, clone fork local machine; Create new branch work ; Implement/fix feature, comment code; Follow code style project, including indentation; Run tests using devtools: devtools::test(); Write adapt tests needed; Add change documentation needed. Please run roxygen2, include changes .Rd files pull request - re-roxygenise documentation ; Push branch fork Github; fork open pull request correct branch. step--step workflow adapted https://github.com/MarcDiethelm/contributing. Working first Pull Request? can learn free series Contribute Open Source Project GitHub.","code":""},{"path":"https://ellessenne.github.io/rsimsum/CONTRIBUTING.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contributing","text":"contributing project agree adhere Contributors Code Conduct: please read CONDUCT.md proposing change.","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"rsimsum","dir":"Articles","previous_headings":"","what":"rsimsum","title":"Introduction to rsimsum","text":"rsimsum R package can compute summary statistics simulation studies. inspired user-written command simsum Stata (White .R., 2010). aim rsimsum helping reporting simulation studies, including understanding role chance results simulation studies. Specifically, rsimsum can compute Monte Carlo standard errors summary statistics, defined standard deviation estimated summary statistic; reported default. Formula summary statistics Monte Carlo standard errors presented next section. Note terms summary statistic performance measure used interchangeably.","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"notation","dir":"Articles","previous_headings":"","what":"Notation","title":"Introduction to rsimsum","text":"use th following notation throughout vignette: \\(\\theta\\): estimand, true value \\(n_{\\text{sim}}\\): number simulations \\(= 1, \\dots, n_{\\text{sim}}\\): indexes given simulation \\(\\hat{\\theta}_i\\): estimated value \\(\\theta\\) \\(^{\\text{th}}\\) replication \\(\\widehat{\\text{Var}}(\\hat{\\theta}_i)\\): estimated variance \\(\\text{Var}(\\hat{\\theta}_i)\\) \\(\\hat{\\theta}_i\\) \\(^{\\text{th}}\\) replication \\(\\text{Var}(\\hat{\\theta})\\): empirical variance \\(\\hat{\\theta}\\) \\(\\alpha\\): nominal significance level","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"performance-measures","dir":"Articles","previous_headings":"","what":"Performance measures","title":"Introduction to rsimsum","text":"first performance measure interest bias, quantifies whether estimator targets true value \\(\\theta\\) average. Bias calculated : \\[\\text{Bias} = \\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} \\hat{\\theta}_i - \\theta\\] Monte Carlo standard error bias calculated : \\[\\text{MCSE(Bias)} = \\sqrt{\\frac{\\frac{1}{n_{\\text{sim}} - 1} \\sum_{= 1} ^ {n_{\\text{sim}}} (\\hat{\\theta}_i - \\bar{\\theta}) ^ 2}{n_{\\text{sim}}}}\\] rsimsum can also compute relative bias (relative true value \\(\\theta\\)), can interpreted similarly bias, relative terms rather absolute. calculated : \\[\\text{Relative Bias} = \\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} \\frac{\\hat{\\theta}_i - \\theta}{\\theta}\\] Monte Carlo standard error calculated : \\[ \\text{MCSE(Relative Bias)} = \\sqrt{\\frac{1}{n_{\\text{sim}} (n_{\\text{sim}} - 1)} \\sum_i^{n_{\\text{sim} \\left[ \\frac{\\hat{\\theta}_i - \\theta}{\\theta} - \\widehat{\\text{Relative Bias}} \\right]^2} \\] empirical standard error \\(\\theta\\) depends \\(\\hat{\\theta}\\) require knowledge \\(\\theta\\). estimates standard deviation \\(\\hat{\\theta}\\) \\(n_{\\text{sim}}\\) replications: \\[\\text{Empirical SE} = \\sqrt{\\frac{1}{n_{\\text{sim}} - 1} \\sum_{= 1} ^ {n_{\\text{sim}}} (\\hat{\\theta}_i - \\bar{\\theta}) ^ 2}\\] Monte Carlo standard error calculated : \\[\\text{MCSE(Emp. SE)} = \\frac{\\widehat{\\text{Emp. SE}}}{\\sqrt{2 (n_{\\text{sim}} - 1)}}\\] comparing different methods, relative precision given method B reference method computed : \\[\\text{Relative % increase precision} = 100 \\left[ \\left( \\frac{\\widehat{\\text{Emp. SE}}_A}{\\widehat{\\text{Emp. SE}}_B} \\right) ^ 2 - 1 \\right]\\] (approximated) Monte Carlo standard error : \\[\\text{MCSE(Relative % increase precision)} \\simeq 200 \\left( \\frac{\\widehat{\\text{Emp. SE}}_A}{\\widehat{\\text{Emp. SE}}_B} \\right)^2 \\sqrt{\\frac{1 - \\rho^2_{AB}}{n_{\\text{sim}} - 1}}\\] \\(\\rho^2_{AB}\\) correlation \\(\\hat{\\theta}_A\\) \\(\\hat{\\theta}_B\\). measure takes account precision accuracy method mean squared error, sum squared bias variance \\(\\hat{\\theta}\\): \\[\\text{MSE} = \\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} (\\hat{\\theta}_i - \\theta) ^ 2\\] Monte Carlo standard error : \\[\\text{MCSE(MSE)} = \\sqrt{\\frac{\\sum_{= 1} ^ {n_{\\text{sim}}} \\left[ (\\hat{\\theta}_i - \\theta) ^2 - \\text{MSE} \\right] ^ 2}{n_{\\text{sim}} (n_{\\text{sim}} - 1)}}\\] model based standard error computed averaging estimated standard errors replication: \\[\\text{Model SE} = \\sqrt{\\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} \\widehat{\\text{Var}}(\\hat{\\theta}_i)}\\] (approximated) Monte Carlo standard error computed : \\[\\text{MCSE(Model SE)} \\simeq \\sqrt{\\frac{\\text{Var}[\\widehat{\\text{Var}}(\\hat{\\theta}_i)]}{4 n_{\\text{sim}} \\widehat{\\text{Model SE}}}}\\] model standard error targets empirical standard error. Hence, relative error model standard error informative performance measure: \\[\\text{Relative % error model SE} = 100 \\left( \\frac{\\text{Model SE}}{\\text{Empirical SE}} - 1\\right)\\] Monte Carlo standard error computed : \\[\\text{MCSE(Relative % error model SE)} = 100 \\left( \\frac{\\text{Model SE}}{\\text{Empirical SE}} \\right) \\sqrt{\\frac{\\text{Var}[\\widehat{\\text{Var}}(\\hat{\\theta}_i)]}{4 n_{\\text{sim}} \\widehat{\\text{Model SE}} ^ 4} + \\frac{1}{2(n_{\\text{sim}} - 1)}}\\] Coverage another key property estimator. defined probability confidence interval contains true value \\(\\theta\\), computed : \\[\\text{Coverage} = \\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} (\\hat{\\theta}_{, \\text{low}} \\le \\theta \\le \\hat{\\theta}_{, \\text{upp}})\\] \\((\\cdot)\\) indicator function. Monte Carlo standard error computed : \\[\\text{MCSE(Coverage)} = \\sqrt{\\frac{\\text{Coverage} \\times (1 - \\text{Coverage})}{n_{\\text{sim}}}}\\] coverage expected : \\(\\text{Bias} \\ne 0\\), \\(\\text{Models SE} < \\text{Empirical SE}\\), distribution \\(\\hat{\\theta}\\) normal intervals constructed assuming normality, \\(\\widehat{\\text{Var}}(\\hat{\\theta}_i)\\) variable coverage occurs result \\(\\text{Models SE} > \\text{Empirical SE}\\). coverage may result bias, another useful summary statistic bias-eliminated coverage: \\[\\text{Bias-eliminated coverage} = \\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} (\\hat{\\theta}_{, \\text{low}} \\le \\bar{\\theta} \\le \\hat{\\theta}_{, \\text{upp}}) \\] Monte Carlo standard error analogously coverage: \\[\\text{MCSE(Bias-eliminated coverage)} = \\sqrt{\\frac{\\text{Bias-eliminated coverage} \\times (1 - \\text{Bias-eliminated coverage})}{n_{\\text{sim}}}}\\] Finally, power significance test \\(\\alpha\\) level defined : \\[\\text{Power} = \\frac{1}{n_{\\text{sim}}} \\sum_{= 1} ^ {n_{\\text{sim}}} \\left[ |\\hat{\\theta}_i| \\ge z_{\\alpha/2} \\times \\sqrt{\\widehat{\\text{Var}}(\\hat{\\theta_i})} \\right]\\] Monte Carlo standard error analogously coverage: \\[\\text{MCSE(Power)} = \\sqrt{\\frac{\\text{Power} \\times (1 - \\text{Power})}{n_{\\text{sim}}}}\\] information summary statistics simulation studies can found White (2010) Morris, White, Crowther (2019).","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"example-1-simulation-study-on-missing-data","dir":"Articles","previous_headings":"","what":"Example 1: Simulation study on missing data","title":"Introduction to rsimsum","text":"example dataset included rsimsum aim summarise simulation study comparing different ways handle missing covariates fitting Cox model (White Royston, 2009). One thousand datasets simulated, containing normally distributed covariates \\(x\\) \\(z\\) time--event outcome. covariates \\(20\\%\\) values deleted independently variables data became missing completely random (Little Rubin, 2002). simulated dataset analysed three ways. Cox model fit complete cases (CC). two methods multiple imputation using chained equations (van Buuren, Boshuizen, Knook, 1999) used. MI_LOGT method multiply imputes missing values \\(x\\) \\(z\\) outcome included \\(\\log(t)\\) \\(d\\), \\(t\\) survival time \\(d\\) event indicator. MI_T method except \\(\\log(t)\\) replaced \\(t\\) imputation model. load data usual way: Let’s look first 10 rows dataset: included variables : dataset, number simulated dataset; method, method used (CC, MI_LOGT MI_T); b, point estimate; se, standard error point estimate. summarise results simulation study method using simsum function: set true = 0.50 true value point estimate b - data simulated - 0.50. select CC reference method consider complete cases analysis reference method benchmark ; set reference method, simsum picks one automatically. Using default settings, Monte Carlo standard errors computed returned. Summarising simsum object, obtain following output: output begins brief overview setting simulation study (e.g. method variable, unique methods, etc.), continues summary statistic method (defined, case). values reported point estimates Monte Carlo standard errors brackets; however, also possible require confidence intervals based Monte Carlo standard errors reported instead: Highlighting points interest summary results : CC method small-sample bias away null (point estimate 0.0168, 95% confidence interval: 0.0074 - 0.0261); CC inefficient compared MI_LOGT MI_T: relative gain precision two methods 1.3105% 1.2637% compared CC, respectively; Model-based standard errors close empirical standard errors; Coverage nominal 95% confidence intervals also seems fine, surprising view generally low (lack ) bias good model-based standard errors; CC lower power compared MI_LOGT MI_T, surprising view inefficiency.","code":"library(rsimsum) data(\"MIsim\", package = \"rsimsum\") head(MIsim, n = 10) #> # A tibble: 10 × 4 #> dataset method b se #> #> 1 1 CC 0.707 0.147 #> 2 1 MI_T 0.684 0.126 #> 3 1 MI_LOGT 0.712 0.141 #> 4 2 CC 0.349 0.160 #> 5 2 MI_T 0.406 0.141 #> 6 2 MI_LOGT 0.429 0.136 #> 7 3 CC 0.650 0.152 #> 8 3 MI_T 0.503 0.130 #> 9 3 MI_LOGT 0.560 0.117 #> 10 4 CC 0.432 0.126 str(MIsim) #> tibble [3,000 × 4] (S3: tbl_df/tbl/data.frame) #> $ dataset: num [1:3000] 1 1 1 2 2 2 3 3 3 4 ... #> $ method : chr [1:3000] \"CC\" \"MI_T\" \"MI_LOGT\" \"CC\" ... #> $ b : num [1:3000] 0.707 0.684 0.712 0.349 0.406 ... #> $ se : num [1:3000] 0.147 0.126 0.141 0.16 0.141 ... #> - attr(*, \"label\")= chr \"simsum example: data from a simulation study comparing 3 ways to handle missing\" s1 <- simsum(data = MIsim, estvarname = \"b\", true = 0.50, se = \"se\", methodvar = \"method\", ref = \"CC\") ss1 <- summary(s1) ss1 #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 (0.0048) 0.0009 (0.0042) -0.0012 (0.0043) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 (0.0096) 0.0018 (0.0083) -0.0024 (0.0085) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 (0.0034) 0.1320 (0.0030) 0.1344 (0.0030) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000) 31.0463 (3.9375) 26.3682 (3.8424) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 (0.0011) 0.0174 (0.0009) 0.0181 (0.0009) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 (0.0005) 0.1349 (0.0006) 0.1338 (0.0006) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 (2.2055) 2.2233 (2.3323) -0.4412 (2.2695) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 (0.0073) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 (0.0075) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 (0.0071) 0.9690 (0.0055) 0.9630 (0.0060) print(ss1, mcse = FALSE) #> Values are: #> Point Estimate (95% Confidence Interval based on Monte Carlo Standard Errors) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 (0.0074, 0.0261) 0.0009 (-0.0073, 0.0091) -0.0012 (-0.0095, 0.0071) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 (0.0148, 0.0523) 0.0018 (-0.0145, 0.0182) -0.0024 (-0.0190, 0.0143) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 (0.1445, 0.1577) 0.1320 (0.1262, 0.1378) 0.1344 (0.1285, 0.1403) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000, 0.0000) 31.0463 (23.3290, 38.7636) 26.3682 (18.8372, 33.8991) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 (0.0209, 0.0253) 0.0174 (0.0157, 0.0191) 0.0181 (0.0163, 0.0198) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 (0.1461, 0.1481) 0.1349 (0.1338, 0.1361) 0.1338 (0.1327, 0.1350) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 (-6.9820, 1.6633) 2.2233 (-2.3480, 6.7946) -0.4412 (-4.8894, 4.0070) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 (0.9286, 0.9574) 0.9490 (0.9354, 0.9626) 0.9430 (0.9286, 0.9574) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 (0.9253, 0.9547) 0.9490 (0.9354, 0.9626) 0.9430 (0.9286, 0.9574) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 (0.9320, 0.9600) 0.9690 (0.9583, 0.9797) 0.9630 (0.9513, 0.9747)"},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"tabulating-summary-statistics","dir":"Articles","previous_headings":"Example 1: Simulation study on missing data","what":"Tabulating summary statistics","title":"Introduction to rsimsum","text":"straightforward produce table summary statistics use R Markdown document: Using tidy() combination R packages xtable, kableExtra, tables can yield variety tables suit purposes. information producing tables directly R can found CRAN Task View Reproducible Research.","code":"library(knitr) #> #> Attaching package: 'knitr' #> The following object is masked from 'package:rsimsum': #> #> kable kable(tidy(ss1))"},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"plotting-summary-statistics","dir":"Articles","previous_headings":"Example 1: Simulation study on missing data","what":"Plotting summary statistics","title":"Introduction to rsimsum","text":"section, show plot compare summary statistics using popular R package ggplot. Plotting bias method \\(95\\%\\) confidence intervals based Monte Carlo standard errors: Conversely, say want visually compare coverage three methods compared simulation study:","code":"library(ggplot2) ggplot(tidy(ss1, stats = \"bias\"), aes(x = method, y = est, ymin = lower, ymax = upper)) + geom_hline(yintercept = 0, color = \"red\", lty = \"dashed\") + geom_point() + geom_errorbar(width = 1 / 3) + theme_bw() + labs(x = \"Method\", y = \"Bias\") ggplot(tidy(ss1, stats = \"cover\"), aes(x = method, y = est, ymin = lower, ymax = upper)) + geom_hline(yintercept = 0.95, color = \"red\", lty = \"dashed\") + geom_point() + geom_errorbar(width = 1 / 3) + coord_cartesian(ylim = c(0, 1)) + theme_bw() + labs(x = \"Method\", y = \"Coverage\")"},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"dropping-large-estimates-and-standard-errors","dir":"Articles","previous_headings":"Example 1: Simulation study on missing data","what":"Dropping large estimates and standard errors","title":"Introduction to rsimsum","text":"rsimsum allows automatically drop estimates standard errors larger predefined value. Specifically, argument simsum control behaviour dropbig, tuning parameters dropbig.max dropbig.semax can passed via control argument. Set dropbig TRUE standardised estimates larger max absolute value dropped; standard errors larger semax times average standard error dropped . default, robust standardisation used (based median inter-quartile range); however, also possible request regular standardisation (based mean standard deviation) setting control parameter dropbig.robust = FALSE. instance, say want drop standardised estimates larger \\(3\\) absolute value standard errors larger \\(1.5\\) times average standard error: estimates dropped, can see number non-missing point estimates, standard errors: Everything else works analogously ; instance, summarise results:","code":"s1.2 <- simsum(data = MIsim, estvarname = \"b\", true = 0.50, se = \"se\", methodvar = \"method\", ref = \"CC\", dropbig = TRUE, control = list(dropbig.max = 4, dropbig.semax = 1.5)) summary(s1.2, stats = \"nsim\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 958 951 944 summary(s1.2) #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 958 951 944 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5142 0.4978 0.4973 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5065 0.4934 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0213 0.0175 0.0173 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0170 0.0167 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0142 (0.0048) -0.0022 (0.0043) -0.0027 (0.0043) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0283 (NA) -0.0044 (NA) -0.0055 (NA) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1493 (0.0034) 0.1320 (0.0030) 0.1323 (0.0030) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000) 27.9890 (3.9442) 27.4611 (4.0317) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0225 (0.0011) 0.0174 (0.0009) 0.0175 (0.0009) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1459 (0.0005) 0.1323 (0.0005) 0.1314 (0.0005) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.2821 (2.2545) 0.2271 (2.3291) -0.6949 (2.3128) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9447 (0.0074) 0.9464 (0.0073) 0.9417 (0.0076) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9426 (0.0075) 0.9453 (0.0074) 0.9439 (0.0075) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9457 (0.0073) 0.9685 (0.0057) 0.9661 (0.0059)"},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"example-2-simulation-study-on-survival-modelling","dir":"Articles","previous_headings":"","what":"Example 2: Simulation study on survival modelling","title":"Introduction to rsimsum","text":"Let’s look first 10 rows dataset: included variables : dataset, simulated dataset number; n, sample size simulate dataset; baseline, baseline hazard function simulated dataset; model, method used (Cox model Royston-Parmar model 2 degrees freedom); theta, point estimate log-hazard ratio; se, standard error point estimate. rsimsum can summarise results simulation studies several data-generating mechanisms. instance, example show compute summary statistics baseline hazard function sample size. order summarise results data-generating factors, sufficient define “” factors call simsum: difference methodvar follows: methodvar represents methods (e.g. two models, example) compared simulation study, represents possible data-generating factors varied simulating data (case, sample size true baseline hazard function). Summarising results printed method combination data-generating factors:","code":"data(\"relhaz\", package = \"rsimsum\") head(relhaz, n = 10) #> dataset n baseline theta se model #> 1 1 50 Exponential -0.88006151 0.3330172 Cox #> 2 2 50 Exponential -0.81460242 0.3253010 Cox #> 3 3 50 Exponential -0.14262887 0.3050516 Cox #> 4 4 50 Exponential -0.33251820 0.3144033 Cox #> 5 5 50 Exponential -0.48269940 0.3064726 Cox #> 6 6 50 Exponential -0.03160756 0.3097203 Cox #> 7 7 50 Exponential -0.23578090 0.3121350 Cox #> 8 8 50 Exponential -0.05046332 0.3136058 Cox #> 9 9 50 Exponential -0.22378715 0.3066037 Cox #> 10 10 50 Exponential -0.45326446 0.3330173 Cox str(relhaz) #> 'data.frame': 1200 obs. of 6 variables: #> $ dataset : int 1 2 3 4 5 6 7 8 9 10 ... #> $ n : num 50 50 50 50 50 50 50 50 50 50 ... #> $ baseline: chr \"Exponential\" \"Exponential\" \"Exponential\" \"Exponential\" ... #> $ theta : num -0.88 -0.815 -0.143 -0.333 -0.483 ... #> $ se : num 0.333 0.325 0.305 0.314 0.306 ... #> $ model : chr \"Cox\" \"Cox\" \"Cox\" \"Cox\" ... s2 <- simsum(data = relhaz, estvarname = \"theta\", true = -0.50, se = \"se\", methodvar = \"model\", by = c(\"baseline\", \"n\")) #> 'ref' method was not specified, Cox set as the reference s2 #> Summary of a simulation study with a single estimand. #> True value of the estimand: -0.5 #> #> Method variable: model #> Unique methods: Cox, Exp, RP(2) #> Reference method: Cox #> #> By factors: baseline, n #> #> Monte Carlo standard errors were computed. ss2 <- summary(s2) ss2 #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> baseline n Cox Exp RP(2) #> Exponential 50 100 100 100 #> Exponential 250 100 100 100 #> Weibull 50 100 100 100 #> Weibull 250 100 100 100 #> #> Average point estimate: #> baseline n Cox Exp RP(2) #> Exponential 50 -0.4785 -0.4761 -0.4817 #> Exponential 250 -0.5215 -0.5214 -0.5227 #> Weibull 50 -0.5282 -0.3491 -0.5348 #> Weibull 250 -0.5120 -0.3518 -0.5139 #> #> Median point estimate: #> baseline n Cox Exp RP(2) #> Exponential 50 -0.4507 -0.4571 -0.4574 #> Exponential 250 -0.5184 -0.5165 -0.5209 #> Weibull 50 -0.5518 -0.3615 -0.5425 #> Weibull 250 -0.5145 -0.3633 -0.5078 #> #> Average variance: #> baseline n Cox Exp RP(2) #> Exponential 50 0.1014 0.0978 0.1002 #> Exponential 250 0.0195 0.0191 0.0194 #> Weibull 50 0.0931 0.0834 0.0898 #> Weibull 250 0.0174 0.0164 0.0172 #> #> Median variance: #> baseline n Cox Exp RP(2) #> Exponential 50 0.1000 0.0972 0.0989 #> Exponential 250 0.0195 0.0190 0.0194 #> Weibull 50 0.0914 0.0825 0.0875 #> Weibull 250 0.0174 0.0164 0.0171 #> #> Bias in point estimate: #> baseline n Cox Exp RP(2) #> Exponential 50 0.0215 (0.0328) 0.0239 (0.0326) 0.0183 (0.0331) #> Exponential 250 -0.0215 (0.0149) -0.0214 (0.0151) -0.0227 (0.0149) #> Weibull 50 -0.0282 (0.0311) 0.1509 (0.0204) -0.0348 (0.0311) #> Weibull 250 -0.0120 (0.0133) 0.1482 (0.0093) -0.0139 (0.0137) #> #> Relative bias in point estimate: #> baseline n Cox Exp RP(2) #> Exponential 50 -0.0430 (0.0657) -0.0478 (0.0652) -0.0366 (0.0662) #> Exponential 250 0.0430 (0.0298) 0.0427 (0.0301) 0.0455 (0.0298) #> Weibull 50 0.0564 (0.0623) -0.3018 (0.0408) 0.0695 (0.0622) #> Weibull 250 0.0241 (0.0267) -0.2963 (0.0186) 0.0279 (0.0274) #> #> Empirical standard error: #> baseline n Cox Exp RP(2) #> Exponential 50 0.3285 (0.0233) 0.3258 (0.0232) 0.3312 (0.0235) #> Exponential 250 0.1488 (0.0106) 0.1506 (0.0107) 0.1489 (0.0106) #> Weibull 50 0.3115 (0.0221) 0.2041 (0.0145) 0.3111 (0.0221) #> Weibull 250 0.1333 (0.0095) 0.0929 (0.0066) 0.1368 (0.0097) #> #> % gain in precision relative to method Cox: #> baseline n Cox Exp RP(2) #> Exponential 50 -0.0000 (0.0000) 1.6773 (3.2902) -1.6228 (1.7887) #> Exponential 250 0.0000 (0.0000) -2.3839 (3.0501) -0.1491 (0.9916) #> Weibull 50 -0.0000 (0.0000) 132.7958 (16.4433) 0.2412 (3.7361) #> Weibull 250 -0.0000 (0.0000) 105.8426 (12.4932) -4.9519 (2.0647) #> #> Mean squared error: #> baseline n Cox Exp RP(2) #> Exponential 50 0.1073 (0.0149) 0.1056 (0.0146) 0.1089 (0.0154) #> Exponential 250 0.0224 (0.0028) 0.0229 (0.0028) 0.0225 (0.0028) #> Weibull 50 0.0968 (0.0117) 0.0640 (0.0083) 0.0970 (0.0117) #> Weibull 250 0.0177 (0.0027) 0.0305 (0.0033) 0.0187 (0.0028) #> #> Model-based standard error: #> baseline n Cox Exp RP(2) #> Exponential 50 0.3185 (0.0013) 0.3127 (0.0010) 0.3165 (0.0012) #> Exponential 250 0.1396 (0.0002) 0.1381 (0.0002) 0.1394 (0.0002) #> Weibull 50 0.3052 (0.0014) 0.2888 (0.0005) 0.2996 (0.0012) #> Weibull 250 0.1320 (0.0002) 0.1281 (0.0001) 0.1313 (0.0002) #> #> Relative % error in standard error: #> baseline n Cox Exp RP(2) #> Exponential 50 -3.0493 (6.9011) -4.0156 (6.8286) -4.4305 (6.8013) #> Exponential 250 -6.2002 (6.6679) -8.3339 (6.5160) -6.4133 (6.6528) #> Weibull 50 -2.0115 (6.9776) 41.4993 (10.0594) -3.6873 (6.8549) #> Weibull 250 -0.9728 (7.0397) 37.7762 (9.7917) -4.0191 (6.8228) #> #> Coverage of nominal 95% confidence interval: #> baseline n Cox Exp RP(2) #> Exponential 50 0.9500 (0.0218) 0.9400 (0.0237) 0.9500 (0.0218) #> Exponential 250 0.9300 (0.0255) 0.9200 (0.0271) 0.9300 (0.0255) #> Weibull 50 0.9700 (0.0171) 0.9900 (0.0099) 0.9500 (0.0218) #> Weibull 250 0.9400 (0.0237) 0.8500 (0.0357) 0.9400 (0.0237) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> baseline n Cox Exp RP(2) #> Exponential 50 0.9500 (0.0218) 0.9500 (0.0218) 0.9500 (0.0218) #> Exponential 250 0.9400 (0.0237) 0.9400 (0.0237) 0.9400 (0.0237) #> Weibull 50 0.9500 (0.0218) 1.0000 (0.0000) 0.9500 (0.0218) #> Weibull 250 0.9500 (0.0218) 0.9900 (0.0099) 0.9400 (0.0237) #> #> Power of 5% level test: #> baseline n Cox Exp RP(2) #> Exponential 50 0.3600 (0.0480) 0.3800 (0.0485) 0.3700 (0.0483) #> Exponential 250 0.9800 (0.0140) 0.9900 (0.0099) 0.9900 (0.0099) #> Weibull 50 0.4300 (0.0495) 0.0900 (0.0286) 0.4700 (0.0499) #> Weibull 250 0.9700 (0.0171) 0.8600 (0.0347) 0.9700 (0.0171)"},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"plotting-summary-statistics-1","dir":"Articles","previous_headings":"Example 2: Simulation study on survival modelling","what":"Plotting summary statistics","title":"Introduction to rsimsum","text":"Tables get cumbersome many different data-generating mechanisms. Plots generally easier interpret, can generated easily . Say want compare bias method baseline hazard function sample size using faceting:","code":"ggplot(tidy(ss2, stats = \"bias\"), aes(x = model, y = est, ymin = lower, ymax = upper)) + geom_hline(yintercept = 0, color = \"red\", lty = \"dashed\") + geom_point() + geom_errorbar(width = 1 / 3) + facet_grid(baseline ~ n) + theme_bw() + labs(x = \"Method\", y = \"Bias\")"},{"path":"https://ellessenne.github.io/rsimsum/articles/A-introduction.html","id":"references","dir":"Articles","previous_headings":"","what":"References","title":"Introduction to rsimsum","text":"White, .R. 2010. simsum: Analyses simulation studies including Monte Carlo error. Stata Journal 10(3): 369-385 Morris, T.P., White, .R. Crowther, M.J. 2019. Using simulation studies evaluate statistical methods. Statistics Medicine 38:2074-2102 White, .R., P. Royston. 2009. Imputing missing covariate values Cox model. Statistics Medicine 28(15):1982-1998 Little, R.J.., D.B. Rubin. 2002. Statistical analysis missing data. 2nd ed. Hoboken, NJ: Wiley van Buuren, S., H.C. Boshuizen, D.L. Knook. 1999. Multiple imputation missing blood pressure covariates survival analysis. Statistics Medicine 18(6):681-694","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Simulating a simulation study","text":"vignette, show simulated data included example dataset simsum generated.","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"motivation","dir":"Articles","previous_headings":"","what":"Motivation","title":"Simulating a simulation study","text":"Say want run simulation study want compare sensitivity parametric semiparametric survival models relative risk estimates.","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"data-generating-mechanisms","dir":"Articles","previous_headings":"","what":"Data generating mechanisms","title":"Simulating a simulation study","text":"simulate hypothetical trial binary treatment. fix log-treatment effect \\(-0.50\\), generate treatment indicator variable simulated individual via \\(Binom(1, 0.5)\\) random variable. simulate two different sample sizes (50 250 individuals) assume two different baseline hazard functions: exponential scale parameter \\(\\lambda = 0.5\\), Weibull scale parameter \\(\\lambda = 0.5\\) shape parameter \\(\\gamma = 1.5\\). Finally, apply administrative censoring time \\(t = 5\\). survival times estimated using approach Bender et al. (2005), based drawing \\(U(0, 1)\\) random variable applying following transformations: exponential baseline hazard, survival time \\(t\\) simulated : \\[t = -\\frac{log(U)}{\\lambda \\exp(\\beta ^ T X)}\\] Weibull baseline hazard, survival time \\(t\\) simulated : \\[t = \\left(-\\frac{log(U)}{\\lambda \\exp(\\beta ^ T X)}\\right) ^ {1 / \\gamma}\\] R function simulate dataset simulation study defined follows:","code":"exp_basehaz <- function(t, lambda = 0.5) lambda * 1 * t^0 exp_weibull <- function(t, lambda = 0.5, gamma = 1.5) lambda * gamma * t^(gamma - 1) curve(exp_basehaz, from = 0, to = 5, lty = 1, ylim = c(0, 2), ylab = expression(h[0](t)), xlab = \"Follow-up time t\") curve(exp_weibull, from = 0, to = 5, lty = 2, add = TRUE) legend(x = \"topleft\", lty = 1:2, legend = c(\"Exponential baseline hazard\", \"Weibull baseline hazard\"), bty = \"n\") simulate_data <- function(dataset, n, baseline, params = list(), coveff = -0.50) { # Simulate treatment indicator variable x <- rbinom(n = n, size = 1, prob = 0.5) # Draw from a U(0,1) random variable u <- runif(n) # Simulate survival times depending on the baseline hazard if (baseline == \"Exponential\") { t <- -log(u) / (params$lambda * exp(x * coveff)) } else { t <- (-log(u) / (params$lambda * exp(x * coveff)))^(1 / params$gamma) } # Winsorising tiny values for t (smaller than one day on a yearly-scale, e.g. 1 / 365.242), and adding a tiny amount of white noise not to have too many concurrent values t <- ifelse(t < 1 / 365.242, 1 / 365.242, t) t[t == 1 / 365.242] <- t[t == 1 / 365.242] + rnorm(length(t[t == 1 / 365.242]), mean = 0, sd = 1e-4) # ...and make sure that the resulting value is positive t <- abs(t) # Make event indicator variable applying administrative censoring at t = 5 d <- as.numeric(t < 5) t <- pmin(t, 5) # Return a data.frame data.frame(dataset = dataset, x = x, t = t, d = d, n = n, baseline = baseline, stringsAsFactors = FALSE) }"},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"methods","dir":"Articles","previous_headings":"","what":"Methods","title":"Simulating a simulation study","text":"compare Cox model (Cox, 1972) fully parametric survival model assuming exponential baseline hazard flexible parametric model 2 degrees freedom modelling baseline hazard (Royston Parmar, 2002). Cox model can fit via coxph function survival package, exponential model can fit via phreg function eha package, Royston-Parmar model can fixed via stpm2 function rstpm2 package.","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"performance-measures","dir":"Articles","previous_headings":"","what":"Performance measures","title":"Simulating a simulation study","text":"Say interested following performance measures: Bias estimated log-treatment effect, corresponding \\(95\\%\\) Monte Carlo confidence intervals Coverage confidence intervals log-treatment effect, defined proportion simulated data sets true log-treatment effect \\(-0.50\\) lies within \\(95\\%\\) confidence intervals obtained model","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"sample-size","dir":"Articles","previous_headings":"","what":"Sample size","title":"Simulating a simulation study","text":"primarily interested bias, assume variance estimated log-treatment effect \\(0.1\\). Monte Carlo standard error bias : \\[\\text{MCSE} = \\sqrt{\\frac{\\text{variance}}{\\# \\text{simulations}}}\\] Aiming Monte Carlo standard error 0.01 estimated bias, require \\(1,000\\) replications. Monte Carlo standard error coverage : \\[\\text{MCSE} = \\sqrt{\\frac{\\text{coverage} \\times (1 - \\text{coverage})}{\\# \\text{simulations}}}\\] Monte Carlo standard error maximised coverage = \\(0.5\\). setting, Monte Carlo standard error \\(1,000\\) replications \\(0.01581139\\), deemed acceptable. Therefore, run \\(1,000\\) replications simulation study. However, simplicity, run \\(100\\) replications speed process.","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"generate-data","dir":"Articles","previous_headings":"Running the simulation study","what":"Generate data","title":"Simulating a simulation study","text":"generate \\(100\\) datasets data-generating mechanism. First, set random seed reproducibility: , simulate data:","code":"set.seed(755353002) reps <- 1:100 data <- list() data[[\"n = 50, baseline = Exp\"]] <- lapply( X = reps, FUN = simulate_data, n = 50, baseline = \"Exponential\", params = list(lambda = 0.5) ) data[[\"n = 250, baseline = Exp\"]] <- lapply( X = reps, FUN = simulate_data, n = 250, baseline = \"Exponential\", params = list(lambda = 0.5) ) data[[\"n = 50, baseline = Wei\"]] <- lapply( X = reps, FUN = simulate_data, n = 50, baseline = \"Weibull\", params = list(lambda = 0.5, gamma = 1.5) ) data[[\"n = 250, baseline = Wei\"]] <- lapply( X = reps, FUN = simulate_data, n = 250, baseline = \"Weibull\", params = list(lambda = 0.5, gamma = 1.5) )"},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"run-models","dir":"Articles","previous_headings":"Running the simulation study","what":"Run models","title":"Simulating a simulation study","text":"define function fit models interest: now run models simulated dataset:","code":"library(survival) library(rstpm2) #> Loading required package: splines #> #> Attaching package: 'rstpm2' #> The following object is masked from 'package:survival': #> #> colon library(eha) fit_models <- function(data, model) { # Fit model if (model == \"Cox\") { fit <- survival::coxph(Surv(t, d) ~ x, data = data) } else if (model == \"RP(2)\") { fit <- rstpm2::stpm2(Surv(t, d) ~ x, data = data, df = 2) } else { fit <- eha::phreg(Surv(t, d) ~ x, data = data, dist = \"weibull\", shape = 1) } # Return relevant coefficients data.frame( dataset = unique(data$dataset), n = unique(data$n), baseline = unique(data$baseline), theta = coef(fit)[\"x\"], se = sqrt(ifelse(model == \"Exp\", fit$var[\"x\", \"x\"], vcov(fit)[\"x\", \"x\"])), model = model, stringsAsFactors = FALSE, row.names = NULL ) } results <- list() results[[\"n = 50, baseline = Exp, model = Cox\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 50, baseline = Exp\"]], FUN = fit_models, model = \"Cox\" ) ) results[[\"n = 250, baseline = Exp, model = Cox\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 250, baseline = Exp\"]], FUN = fit_models, model = \"Cox\" ) ) results[[\"n = 50, baseline = Wei, model = Cox\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 50, baseline = Wei\"]], FUN = fit_models, model = \"Cox\" ) ) results[[\"n = 250, baseline = Wei, model = Cox\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 250, baseline = Wei\"]], FUN = fit_models, model = \"Cox\" ) ) results[[\"n = 50, baseline = Exp, model = Exp\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 50, baseline = Exp\"]], FUN = fit_models, model = \"Exp\" ) ) results[[\"n = 250, baseline = Exp, model = Exp\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 250, baseline = Exp\"]], FUN = fit_models, model = \"Exp\" ) ) results[[\"n = 50, baseline = Wei, model = Exp\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 50, baseline = Wei\"]], FUN = fit_models, model = \"Exp\" ) ) results[[\"n = 250, baseline = Wei, model = Exp\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 250, baseline = Wei\"]], FUN = fit_models, model = \"Exp\" ) ) results[[\"n = 50, baseline = Exp, model = RP(2)\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 50, baseline = Exp\"]], FUN = fit_models, model = \"RP(2)\" ) ) results[[\"n = 250, baseline = Exp, model = RP(2)\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 250, baseline = Exp\"]], FUN = fit_models, model = \"RP(2)\" ) ) results[[\"n = 50, baseline = Wei, model = RP(2)\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 50, baseline = Wei\"]], FUN = fit_models, model = \"RP(2)\" ) ) results[[\"n = 250, baseline = Wei, model = RP(2)\"]] <- do.call( rbind.data.frame, lapply( X = data[[\"n = 250, baseline = Wei\"]], FUN = fit_models, model = \"RP(2)\" ) )"},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"aggregating-results","dir":"Articles","previous_headings":"Running the simulation study","what":"Aggregating results","title":"Simulating a simulation study","text":"save final results, included example R package rsimsum.","code":"relhaz <- do.call( rbind.data.frame, results ) row.names(relhaz) <- NULL library(usethis) usethis::use_data(relhaz, overwrite = TRUE)"},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"summarising-results","dir":"Articles","previous_headings":"Running the simulation study","what":"Summarising results","title":"Simulating a simulation study","text":"Finally, obtain summary statistics calling simsum function:","code":"library(rsimsum) #> #> Attaching package: 'rsimsum' #> The following object is masked _by_ '.GlobalEnv': #> #> relhaz s <- rsimsum::simsum(data = relhaz, estvarname = \"theta\", se = \"se\", true = -0.50, methodvar = \"model\", ref = \"Cox\", by = c(\"n\", \"baseline\")) s #> Summary of a simulation study with a single estimand. #> True value of the estimand: -0.5 #> #> Method variable: model #> Unique methods: Cox, Exp, RP(2) #> Reference method: Cox #> #> By factors: n, baseline #> #> Monte Carlo standard errors were computed. summary(s) #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> n baseline Cox Exp RP(2) #> 50 Exponential 100 100 100 #> 50 Weibull 100 100 100 #> 250 Exponential 100 100 100 #> 250 Weibull 100 100 100 #> #> Average point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.4785 -0.4761 -0.4817 #> 50 Weibull -0.5282 -0.3491 -0.5345 #> 250 Exponential -0.5215 -0.5214 -0.5227 #> 250 Weibull -0.5120 -0.3518 -0.5139 #> #> Median point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.4507 -0.4571 -0.4574 #> 50 Weibull -0.5518 -0.3615 -0.5425 #> 250 Exponential -0.5184 -0.5165 -0.5209 #> 250 Weibull -0.5145 -0.3633 -0.5078 #> #> Average variance: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.1014 0.0978 0.1002 #> 50 Weibull 0.0931 0.0834 0.0898 #> 250 Exponential 0.0195 0.0191 0.0194 #> 250 Weibull 0.0174 0.0164 0.0172 #> #> Median variance: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.1000 0.0972 0.0989 #> 50 Weibull 0.0914 0.0825 0.0875 #> 250 Exponential 0.0195 0.0190 0.0194 #> 250 Weibull 0.0174 0.0164 0.0171 #> #> Bias in point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.0215 (0.0328) 0.0239 (0.0326) 0.0183 (0.0331) #> 50 Weibull -0.0282 (0.0311) 0.1509 (0.0204) -0.0345 (0.0311) #> 250 Exponential -0.0215 (0.0149) -0.0214 (0.0151) -0.0227 (0.0149) #> 250 Weibull -0.0120 (0.0133) 0.1482 (0.0093) -0.0139 (0.0137) #> #> Relative bias in point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.0430 (0.0657) -0.0478 (0.0652) -0.0366 (0.0662) #> 50 Weibull 0.0564 (0.0623) -0.3018 (0.0408) 0.0690 (0.0622) #> 250 Exponential 0.0430 (0.0298) 0.0427 (0.0301) 0.0455 (0.0298) #> 250 Weibull 0.0241 (0.0267) -0.2963 (0.0186) 0.0279 (0.0274) #> #> Empirical standard error: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.3285 (0.0233) 0.3258 (0.0232) 0.3312 (0.0235) #> 50 Weibull 0.3115 (0.0221) 0.2041 (0.0145) 0.3109 (0.0221) #> 250 Exponential 0.1488 (0.0106) 0.1506 (0.0107) 0.1489 (0.0106) #> 250 Weibull 0.1333 (0.0095) 0.0929 (0.0066) 0.1368 (0.0097) #> #> % gain in precision relative to method Cox: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.0000 (0.0000) 1.6773 (3.2902) -1.6262 (1.7888) #> 50 Weibull 0.0000 (0.0000) 132.7958 (16.4433) 0.3583 (3.7387) #> 250 Exponential 0.0000 (0.0000) -2.3839 (3.0501) -0.1491 (0.9917) #> 250 Weibull 0.0000 (0.0000) 105.8426 (12.4932) -4.9534 (2.0649) #> #> Mean squared error: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.1073 (0.0149) 0.1056 (0.0146) 0.1089 (0.0154) #> 50 Weibull 0.0968 (0.0117) 0.0640 (0.0083) 0.0969 (0.0117) #> 250 Exponential 0.0224 (0.0028) 0.0229 (0.0028) 0.0225 (0.0028) #> 250 Weibull 0.0177 (0.0027) 0.0305 (0.0033) 0.0187 (0.0028) #> #> Model-based standard error: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.3185 (0.0013) 0.3127 (0.0010) 0.3165 (0.0012) #> 50 Weibull 0.3052 (0.0014) 0.2888 (0.0005) 0.2996 (0.0012) #> 250 Exponential 0.1396 (0.0002) 0.1381 (0.0002) 0.1394 (0.0002) #> 250 Weibull 0.1320 (0.0002) 0.1281 (0.0001) 0.1313 (0.0002) #> #> Relative % error in standard error: #> n baseline Cox Exp RP(2) #> 50 Exponential -3.0493 (6.9011) -4.0156 (6.8286) -4.4322 (6.8012) #> 50 Weibull -2.0115 (6.9776) 41.4993 (10.0594) -3.6354 (6.8586) #> 250 Exponential -6.2002 (6.6679) -8.3339 (6.5160) -6.4133 (6.6528) #> 250 Weibull -0.9728 (7.0397) 37.7762 (9.7917) -4.0199 (6.8228) #> #> Coverage of nominal 95% confidence interval: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.9500 (0.0218) 0.9400 (0.0237) 0.9500 (0.0218) #> 50 Weibull 0.9700 (0.0171) 0.9900 (0.0099) 0.9500 (0.0218) #> 250 Exponential 0.9300 (0.0255) 0.9200 (0.0271) 0.9300 (0.0255) #> 250 Weibull 0.9400 (0.0237) 0.8500 (0.0357) 0.9400 (0.0237) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.9500 (0.0218) 0.9500 (0.0218) 0.9500 (0.0218) #> 50 Weibull 0.9500 (0.0218) 1.0000 (0.0000) 0.9500 (0.0218) #> 250 Exponential 0.9400 (0.0237) 0.9400 (0.0237) 0.9400 (0.0237) #> 250 Weibull 0.9500 (0.0218) 0.9900 (0.0099) 0.9400 (0.0237) #> #> Power of 5% level test: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.3600 (0.0480) 0.3800 (0.0485) 0.3700 (0.0483) #> 50 Weibull 0.4300 (0.0495) 0.0900 (0.0286) 0.4700 (0.0499) #> 250 Exponential 0.9800 (0.0140) 0.9900 (0.0099) 0.9900 (0.0099) #> 250 Weibull 0.9700 (0.0171) 0.8600 (0.0347) 0.9700 (0.0171)"},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"conclusions","dir":"Articles","previous_headings":"","what":"Conclusions","title":"Simulating a simulation study","text":"vignette showed simulate survival data run small, simple simulation study.","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/B-relhaz.html","id":"references","dir":"Articles","previous_headings":"","what":"References","title":"Simulating a simulation study","text":"Cox D.R. Regression models life-tables. Journal Royal Statistical Society, Series B (Methodological), 1972, 34(2):187-220 Royston P. Parmar M.K. Flexible parametric proportional-hazards proportional-odds models censored survival data, application prognostic modelling estimation treatment effects. Statistics Medicine, 2002, 21(15):2175-2197 Bender R., Augustin T., Blettner M. Generating survival times simulate Cox proportional hazards models. Statistics Medicine, 2005, 24(11):1713-1723","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"data","dir":"Articles","previous_headings":"","what":"Data","title":"Visualising results from rsimsum","text":"use data simulation study misspecification baseline hazard survival models. dataset included rsimsum can loaded : Inspecting structure dataset first 15 rows data:","code":"data(\"relhaz\", package = \"rsimsum\") str(relhaz) #> 'data.frame': 1200 obs. of 6 variables: #> $ dataset : int 1 2 3 4 5 6 7 8 9 10 ... #> $ n : num 50 50 50 50 50 50 50 50 50 50 ... #> $ baseline: chr \"Exponential\" \"Exponential\" \"Exponential\" \"Exponential\" ... #> $ theta : num -0.88 -0.815 -0.143 -0.333 -0.483 ... #> $ se : num 0.333 0.325 0.305 0.314 0.306 ... #> $ model : chr \"Cox\" \"Cox\" \"Cox\" \"Cox\" ... head(relhaz, n = 15) #> dataset n baseline theta se model #> 1 1 50 Exponential -0.88006151 0.3330172 Cox #> 2 2 50 Exponential -0.81460242 0.3253010 Cox #> 3 3 50 Exponential -0.14262887 0.3050516 Cox #> 4 4 50 Exponential -0.33251820 0.3144033 Cox #> 5 5 50 Exponential -0.48269940 0.3064726 Cox #> 6 6 50 Exponential -0.03160756 0.3097203 Cox #> 7 7 50 Exponential -0.23578090 0.3121350 Cox #> 8 8 50 Exponential -0.05046332 0.3136058 Cox #> 9 9 50 Exponential -0.22378715 0.3066037 Cox #> 10 10 50 Exponential -0.45326446 0.3330173 Cox #> 11 11 50 Exponential -0.71402510 0.3251902 Cox #> 12 12 50 Exponential -0.32956944 0.3073481 Cox #> 13 13 50 Exponential -0.15351788 0.3056453 Cox #> 14 14 50 Exponential -0.82742207 0.3283561 Cox #> 15 15 50 Exponential -0.14594648 0.3255636 Cox"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"summarise-results","dir":"Articles","previous_headings":"","what":"Summarise results","title":"Visualising results from rsimsum","text":"use simsum function summarise results: call simsum x = TRUE required types plots (e.g. zip plots, scatter plots, etc.). rsimsum implements autoplot method objects classes: simsum, summary.simsum, multisimsum, summary.multisimsum. See ?ggplot2::autoplot() details S3 generic function.","code":"s1 <- simsum( data = relhaz, estvarname = \"theta\", se = \"se\", true = -0.50, methodvar = \"model\", by = c(\"n\", \"baseline\"), x = TRUE ) #> 'ref' method was not specified, Cox set as the reference s1 #> Summary of a simulation study with a single estimand. #> True value of the estimand: -0.5 #> #> Method variable: model #> Unique methods: Cox, Exp, RP(2) #> Reference method: Cox #> #> By factors: n, baseline #> #> Monte Carlo standard errors were computed. summary(s1) #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> n baseline Cox Exp RP(2) #> 50 Exponential 100 100 100 #> 50 Weibull 100 100 100 #> 250 Exponential 100 100 100 #> 250 Weibull 100 100 100 #> #> Average point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.4785 -0.4761 -0.4817 #> 50 Weibull -0.5282 -0.3491 -0.5348 #> 250 Exponential -0.5215 -0.5214 -0.5227 #> 250 Weibull -0.5120 -0.3518 -0.5139 #> #> Median point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.4507 -0.4571 -0.4574 #> 50 Weibull -0.5518 -0.3615 -0.5425 #> 250 Exponential -0.5184 -0.5165 -0.5209 #> 250 Weibull -0.5145 -0.3633 -0.5078 #> #> Average variance: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.1014 0.0978 0.1002 #> 50 Weibull 0.0931 0.0834 0.0898 #> 250 Exponential 0.0195 0.0191 0.0194 #> 250 Weibull 0.0174 0.0164 0.0172 #> #> Median variance: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.1000 0.0972 0.0989 #> 50 Weibull 0.0914 0.0825 0.0875 #> 250 Exponential 0.0195 0.0190 0.0194 #> 250 Weibull 0.0174 0.0164 0.0171 #> #> Bias in point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.0215 (0.0328) 0.0239 (0.0326) 0.0183 (0.0331) #> 50 Weibull -0.0282 (0.0311) 0.1509 (0.0204) -0.0348 (0.0311) #> 250 Exponential -0.0215 (0.0149) -0.0214 (0.0151) -0.0227 (0.0149) #> 250 Weibull -0.0120 (0.0133) 0.1482 (0.0093) -0.0139 (0.0137) #> #> Relative bias in point estimate: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.0430 (0.0657) -0.0478 (0.0652) -0.0366 (0.0662) #> 50 Weibull 0.0564 (0.0623) -0.3018 (0.0408) 0.0695 (0.0622) #> 250 Exponential 0.0430 (0.0298) 0.0427 (0.0301) 0.0455 (0.0298) #> 250 Weibull 0.0241 (0.0267) -0.2963 (0.0186) 0.0279 (0.0274) #> #> Empirical standard error: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.3285 (0.0233) 0.3258 (0.0232) 0.3312 (0.0235) #> 50 Weibull 0.3115 (0.0221) 0.2041 (0.0145) 0.3111 (0.0221) #> 250 Exponential 0.1488 (0.0106) 0.1506 (0.0107) 0.1489 (0.0106) #> 250 Weibull 0.1333 (0.0095) 0.0929 (0.0066) 0.1368 (0.0097) #> #> % gain in precision relative to method Cox: #> n baseline Cox Exp RP(2) #> 50 Exponential -0.0000 (0.0000) 1.6773 (3.2902) -1.6228 (1.7887) #> 50 Weibull -0.0000 (0.0000) 132.7958 (16.4433) 0.2412 (3.7361) #> 250 Exponential 0.0000 (0.0000) -2.3839 (3.0501) -0.1491 (0.9916) #> 250 Weibull -0.0000 (0.0000) 105.8426 (12.4932) -4.9519 (2.0647) #> #> Mean squared error: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.1073 (0.0149) 0.1056 (0.0146) 0.1089 (0.0154) #> 50 Weibull 0.0968 (0.0117) 0.0640 (0.0083) 0.0970 (0.0117) #> 250 Exponential 0.0224 (0.0028) 0.0229 (0.0028) 0.0225 (0.0028) #> 250 Weibull 0.0177 (0.0027) 0.0305 (0.0033) 0.0187 (0.0028) #> #> Model-based standard error: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.3185 (0.0013) 0.3127 (0.0010) 0.3165 (0.0012) #> 50 Weibull 0.3052 (0.0014) 0.2888 (0.0005) 0.2996 (0.0012) #> 250 Exponential 0.1396 (0.0002) 0.1381 (0.0002) 0.1394 (0.0002) #> 250 Weibull 0.1320 (0.0002) 0.1281 (0.0001) 0.1313 (0.0002) #> #> Relative % error in standard error: #> n baseline Cox Exp RP(2) #> 50 Exponential -3.0493 (6.9011) -4.0156 (6.8286) -4.4305 (6.8013) #> 50 Weibull -2.0115 (6.9776) 41.4993 (10.0594) -3.6873 (6.8549) #> 250 Exponential -6.2002 (6.6679) -8.3339 (6.5160) -6.4133 (6.6528) #> 250 Weibull -0.9728 (7.0397) 37.7762 (9.7917) -4.0191 (6.8228) #> #> Coverage of nominal 95% confidence interval: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.9500 (0.0218) 0.9400 (0.0237) 0.9500 (0.0218) #> 50 Weibull 0.9700 (0.0171) 0.9900 (0.0099) 0.9500 (0.0218) #> 250 Exponential 0.9300 (0.0255) 0.9200 (0.0271) 0.9300 (0.0255) #> 250 Weibull 0.9400 (0.0237) 0.8500 (0.0357) 0.9400 (0.0237) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.9500 (0.0218) 0.9500 (0.0218) 0.9500 (0.0218) #> 50 Weibull 0.9500 (0.0218) 1.0000 (0.0000) 0.9500 (0.0218) #> 250 Exponential 0.9400 (0.0237) 0.9400 (0.0237) 0.9400 (0.0237) #> 250 Weibull 0.9500 (0.0218) 0.9900 (0.0099) 0.9400 (0.0237) #> #> Power of 5% level test: #> n baseline Cox Exp RP(2) #> 50 Exponential 0.3600 (0.0480) 0.3800 (0.0485) 0.3700 (0.0483) #> 50 Weibull 0.4300 (0.0495) 0.0900 (0.0286) 0.4700 (0.0499) #> 250 Exponential 0.9800 (0.0140) 0.9900 (0.0099) 0.9900 (0.0099) #> 250 Weibull 0.9700 (0.0171) 0.8600 (0.0347) 0.9700 (0.0171)"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"scatter-plots","dir":"Articles","previous_headings":"","what":"Scatter plots","title":"Visualising results from rsimsum","text":"Scatter plots allow assess serial trends estimates standard errors. instance, want compare point estimates different methods (across data-generating mechanisms): Analogously, want compare standard errors: two plot types allow comparing estimates (standard errors) obtained different methods ease; ideal settings, points scatterplots lay diagonal (dashed line). estimated regression line (X vs Y, blue line) superimposed default ease comparison even . addition plots comparing estimates standard errors, Bland-Altman-type plots supported well: Bland-Altman plots compare difference estimates two competing methods (y-axis) mean estimates two methods (x-axis). ideal scenario, trend points scatter plot lay around horizontal dashed line. ease comparison, regression line included well. Bland-Altman plots standard errors obtained setting argument type = \"se_ba\".","code":"autoplot(s1, type = \"est\") #> `geom_smooth()` using formula = 'y ~ x' autoplot(s1, type = \"se\") #> `geom_smooth()` using formula = 'y ~ x' autoplot(s1, type = \"est_ba\") #> `geom_smooth()` using formula = 'y ~ x'"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"ridgeline-plots","dir":"Articles","previous_headings":"Scatter plots","what":"Ridgeline plots","title":"Visualising results from rsimsum","text":"Another way visually comparing estimates different methods given ridgeline plots. According documentation ggridges package (source), Ridgeline plots partially overlapping line plots create impression mountain range. can quite useful visualizing changes distributions time space. settings simulation studies, aim visualise changes distribution data-generating mechanisms. instance, say want compare estimates across data-generating mechanisms methods: allows us see estimates Exp method different methods two four data-generating mechanisms: 50, Weibull 250, Weibull. obtain similar plot standard errors, call autoplot method type = \"se_ridge instead.","code":"autoplot(s1, type = \"est_ridge\") #> Picking joint bandwidth of 0.077"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"lolly-plots","dir":"Articles","previous_headings":"","what":"Lolly plots","title":"Visualising results from rsimsum","text":"Lolly plots used present estimates given summary statistic confidence intervals based Monte Carlo standard errors (calling autoplot method summary objects). allow easily compare methods. Say interested bias: straightforward identify exponential model yielding biased results true baseline hazard Weibull, irrespectively sample size. relative scale, can plot relative bias well: confidence intervals based Monte Carlo errors required, sufficient call autoplot method simsum object: Analogously, coverage:","code":"autoplot(summary(s1), type = \"lolly\", stats = \"bias\") autoplot(summary(s1), type = \"lolly\", stats = \"rbias\") autoplot(s1, type = \"lolly\", stats = \"bias\") autoplot(summary(s1), type = \"lolly\", stats = \"cover\")"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"forest-plots","dir":"Articles","previous_headings":"","what":"Forest plots","title":"Visualising results from rsimsum","text":"Forest plots alternative lolly plots, similar interpretation:","code":"autoplot(s1, type = \"forest\", stats = \"bias\") autoplot(summary(s1), type = \"forest\", stats = \"bias\")"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"zipper-plots","dir":"Articles","previous_headings":"","what":"Zipper plots","title":"Visualising results from rsimsum","text":"Zipper plots (zip plots), introduced Morris et al. (2019), help understand coverage visualising confidence intervals directly. data-generating mechanism method, confidence intervals centile-ranked according significance null hypothesis \\(H_0: \\theta\\) = \\(\\theta_{\\text{true}}\\), assessed via Wald-type test. ranking used vertical axis plotted intervals . method 95% coverage, colour intervals switches 95 vertical axis. Finally, horizontal lines represent confidence intervals estimated coverage based Monte Carlo standard errors. zipper plot exponential model n = 50 true Weibull baseline hazard shows coverage approximately 95%; however, intervals right \\(\\theta\\) = -0.50 left: indicates model standard errors must overestimating empirical standard error, coverage appropriate despite bias. also possible zoom top x% zip plot increase readability, e.g. top 30%:","code":"autoplot(s1, type = \"zip\") autoplot(s1, type = \"zip\", zoom = 0.3)"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"heat-plots","dir":"Articles","previous_headings":"","what":"Heat plots","title":"Visualising results from rsimsum","text":"Heat plots new visualisation suggest include first time. heat plots, produce heat-map-like plot filling tile represents given summary statistic, say bias: visualisation type automatically puts data-generating mechanisms y-axis; default, methods included x axis. Therefore, plot useful simulation study includes different methods compared many data-generating mechanisms. Using heat plot, immediate identify visually method performs better data-generating mechanisms. default, heat plots use default ggplot scale filling aesthetic. recommended use different colour palette better characteristics, e.g. viridis colour palette matplotlib; see next section details , details viridis colour palette.","code":"autoplot(s1, type = \"heat\", stats = \"bias\")"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"contour-plots-and-hexbin-plots","dir":"Articles","previous_headings":"","what":"Contour plots and hexbin plots","title":"Visualising results from rsimsum","text":"Individual point estimates standard errors also plotted using contour plots hexbin plots. Contour plots represent 3-dimensional surface plotting constant z slices (called contours) 2-dimensional format. , given value z, lines drawn connecting (x, y) coordinates value z (relatively) homogenous. Hexbin plots useful represent relationship 2 numerical variables lot data points: instead overlapping, plotting window split several hexbins, number points per hexbin counted. colour filling denotes number points. plots provide alternative scatter plots large number data points overlap. Contour plots hexbin plots can easily obtained using autoplot method , using argument type = \"est_density\", type = \"se_density\", type = \"est_hex\", type = \"se_hex\". instance, focussing point estimates: course, analogous plots obtained standard errors.","code":"autoplot(s1, type = \"est_density\") #> `geom_smooth()` using formula = 'y ~ x' autoplot(s1, type = \"est_hex\") #> `geom_smooth()` using formula = 'y ~ x'"},{"path":"https://ellessenne.github.io/rsimsum/articles/C-plotting.html","id":"custom-plotting","dir":"Articles","previous_headings":"","what":"Custom plotting","title":"Visualising results from rsimsum","text":"plots produced rsimsum meant quick explorations results Monte Carlo simulation studies: meant final manuscript-like-quality plots (although can useful starting point). Generally, output types autoplot calls ggplot objects; hence, generally straightforward customise plots. instance, say want add custom theme: Compare default plot: also mentioned colour palette heat plots customised. Say want use default viridis colour palette: Analogously, say want customise colour palette ridgeline plots, using viridis colour palette:","code":"autoplot(summary(s1), type = \"lolly\", stats = \"bias\") + ggplot2::theme_bw() autoplot(summary(s1), type = \"lolly\", stats = \"bias\") autoplot(s1, type = \"heat\", stats = \"bias\") + ggplot2::scale_fill_viridis_c() autoplot(s1, type = \"est_ridge\") + scale_fill_viridis_d() + scale_colour_viridis_d() #> Picking joint bandwidth of 0.077"},{"path":"https://ellessenne.github.io/rsimsum/articles/D-nlp.html","id":"references","dir":"Articles","previous_headings":"","what":"References","title":"Nested loop plots","text":"Rücker, G. Schwarzer, G. 2014 Presenting simulation results nested loop plot. BMC Medical Research Methodology 14(1) ","code":""},{"path":"https://ellessenne.github.io/rsimsum/articles/E-custom-inputs.html","id":"single-estimand","dir":"Articles","previous_headings":"","what":"Single Estimand","title":"Custom input values for confidence intervals and true values","text":"rsimsum supports custom input values true value estimand confidence intervals limits (used calculate coverage probability). illustrate feature, can use tt dataset (bundled rsimsum): includes results simulation study assessing robustness t-test estimating difference means. t-test assumes t distribution, hence confidence intervals estimated mean generally based t distribution. See instance example t-test documentation (?t.test): can incorporate custom confidence intervals passing name two columns data ci.limits argument: , can incorporate different types confidence intervals analysis Monte Carlo simulation studies. Compare default setting: ci.limits also useful using non-symmetrical confidence intervals, e.g. using bootstrapped confidence intervals. pair values can also passed rsimsum ci.limits argument: better example utility method please get touch: ’d love hear ! default, simsum calculate confidence intervals using normal-theory, Wald-type intervals. possible use t-based critical values providing column (replication-specific) degrees freedom (analogously passing confidence bounds ci.limits): Given confidence intervals (conf.low, conf.high) obtained using critical values t distribution, results s4 equivalent results s1: can pass column values true well: Compare default settings: Finally, multiple columns identifying methods well. uses MIsim MIsim2 datasets, bundled {rsimsum}: syntax calling simsum() pretty much : See inferred methods: course, estimated performance measures :","code":"library(rsimsum) data(\"tt\", package = \"rsimsum\") head(tt) #> diff se conf.low conf.high df repno dgm method #> 1 -2.185467 1.130916 -4.432925 0.06199072 88.00000 1 1 1 #> 2 -3.359683 1.572366 -6.484430 -0.23493506 88.00000 1 2 1 #> 3 -2.185467 1.285290 -4.778318 0.40738411 42.53603 1 1 2 #> 4 -3.359683 2.016465 -7.458611 0.73924596 33.78117 1 2 2 #> 5 -2.989333 1.150093 -5.274900 -0.70376532 88.00000 1 3 1 #> 6 -1.152852 1.368553 -3.872563 1.56685875 88.00000 1 4 1 t.test(extra ~ group, data = sleep) #> #> Welch Two Sample t-test #> #> data: extra by group #> t = -1.8608, df = 17.776, p-value = 0.07939 #> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0 #> 95 percent confidence interval: #> -3.3654832 0.2054832 #> sample estimates: #> mean in group 1 mean in group 2 #> 0.75 2.33 s1 <- simsum(data = tt, estvarname = \"diff\", true = -1, se = \"se\", ci.limits = c(\"conf.low\", \"conf.high\"), methodvar = \"method\", by = \"dgm\") #> 'ref' method was not specified, 1 set as the reference summary(s1, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Coverage of nominal 95% confidence interval: #> dgm 1 2 #> 1 0.9400 (0.0106) 0.9400 (0.0106) #> 2 0.8780 (0.0146) 0.9420 (0.0105) #> 3 0.9380 (0.0108) 0.9500 (0.0097) #> 4 0.9020 (0.0133) 0.9420 (0.0105) s2 <- simsum(data = tt, estvarname = \"diff\", true = -1, se = \"se\", methodvar = \"method\", by = \"dgm\") #> 'ref' method was not specified, 1 set as the reference summary(s2, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Coverage of nominal 95% confidence interval: #> dgm 1 2 #> 1 0.9400 (0.0106) 0.9360 (0.0109) #> 2 0.8680 (0.0151) 0.9320 (0.0113) #> 3 0.9380 (0.0108) 0.9420 (0.0105) #> 4 0.8940 (0.0138) 0.9360 (0.0109) s3 <- simsum(data = tt, estvarname = \"diff\", true = -1, se = \"se\", ci.limits = c(-1.5, -0.5), methodvar = \"method\", by = \"dgm\") #> 'ref' method was not specified, 1 set as the reference summary(s3, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Coverage of nominal 95% confidence interval: #> dgm 1 2 #> 1 1.0000 (0.0000) 1.0000 (0.0000) #> 2 1.0000 (0.0000) 1.0000 (0.0000) #> 3 1.0000 (0.0000) 1.0000 (0.0000) #> 4 1.0000 (0.0000) 1.0000 (0.0000) s4 <- simsum(data = tt, estvarname = \"diff\", true = -1, se = \"se\", df = \"df\", methodvar = \"method\", by = \"dgm\") #> 'ref' method was not specified, 1 set as the reference all.equal(tidy(s1), tidy(s4)) #> [1] TRUE tt$true <- -1 s5 <- simsum(data = tt, estvarname = \"diff\", true = \"true\", se = \"se\", ci.limits = c(\"conf.low\", \"conf.high\"), methodvar = \"method\", by = \"dgm\") #> 'ref' method was not specified, 1 set as the reference summary(s5, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Coverage of nominal 95% confidence interval: #> dgm 1 2 #> 1 0.9400 (0.0106) 0.9400 (0.0106) #> 2 0.8780 (0.0146) 0.9420 (0.0105) #> 3 0.9380 (0.0108) 0.9500 (0.0097) #> 4 0.9020 (0.0133) 0.9420 (0.0105) summary(s2, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Coverage of nominal 95% confidence interval: #> dgm 1 2 #> 1 0.9400 (0.0106) 0.9360 (0.0109) #> 2 0.8680 (0.0151) 0.9320 (0.0113) #> 3 0.9380 (0.0108) 0.9420 (0.0105) #> 4 0.8940 (0.0138) 0.9360 (0.0109) data(\"MIsim\", package = \"rsimsum\") data(\"MIsim2\", package = \"rsimsum\") head(MIsim) #> # A tibble: 6 × 4 #> dataset method b se #> #> 1 1 CC 0.707 0.147 #> 2 1 MI_T 0.684 0.126 #> 3 1 MI_LOGT 0.712 0.141 #> 4 2 CC 0.349 0.160 #> 5 2 MI_T 0.406 0.141 #> 6 2 MI_LOGT 0.429 0.136 head(MIsim2) #> # A tibble: 6 × 5 #> dataset m1 m2 b se #> #> 1 1 CC \"\" 0.707 0.147 #> 2 1 MI \"T\" 0.684 0.126 #> 3 1 MI \"LOGT\" 0.712 0.141 #> 4 2 CC \"\" 0.349 0.160 #> 5 2 MI \"T\" 0.406 0.141 #> 6 2 MI \"LOGT\" 0.429 0.136 s6 <- simsum(data = MIsim, estvarname = \"b\", true = 0.50, se = \"se\", methodvar = \"method\") #> 'ref' method was not specified, CC set as the reference s7 <- simsum(data = MIsim2, estvarname = \"b\", true = 0.50, se = \"se\", methodvar = c(\"m1\", \"m2\")) #> 'ref' method was not specified, CC: set as the reference print(s6) #> Summary of a simulation study with a single estimand. #> True value of the estimand: 0.5 #> #> Method variable: method #> Unique methods: CC, MI_LOGT, MI_T #> Reference method: CC #> #> By factors: none #> #> Monte Carlo standard errors were computed. print(s7) #> Summary of a simulation study with a single estimand. #> True value of the estimand: 0.5 #> #> Columns identifying methods: m1, m2 #> Unique methods: CC:, MI:LOGT, MI:T #> #> By factors: none #> #> Monte Carlo standard errors were computed. all.equal(tidy(s6)$est, tidy(s7)$est) #> [1] TRUE"},{"path":"https://ellessenne.github.io/rsimsum/articles/E-custom-inputs.html","id":"multiple-estimands-at-once","dir":"Articles","previous_headings":"","what":"Multiple Estimands at Once","title":"Custom input values for confidence intervals and true values","text":"multisimsum can flexible simsum. Remember default behaviour: example, pass true values estimand named vector c(trt = -0.50, fv = 0.75). Say instead stored true value estimand column dataset: data structure, can pass string value multisimsum identify true column dataset: can confirm obtain results two approaches: approach particularly useful true value might vary across replications (e.g. depends simulated dataset). course, can combined custom confidence interval limits coverage well: completely different : Multiple columns identifying methods supported multisimsum() well; examples omitted , works analogously simsum().","code":"data(\"frailty\", package = \"rsimsum\") ms1 <- multisimsum( data = frailty, par = \"par\", true = c(trt = -0.50, fv = 0.75), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\" ) #> 'ref' method was not specified, Cox, Gamma set as the reference summary(ms1, stats = \"bias\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0124 (0.0045) 0.2299 (0.0076) -0.0179 (0.0044) 0.2347 (0.0077) #> Log-Normal -0.1064 (0.0043) -0.0175 (0.0049) -0.1066 (0.0041) -0.0152 (0.0050) #> #> ------------------------------------------------------------------------------------------------------------------------------------------------------ #> #> Parameter: trt #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0006 (0.0016) -0.0013 (0.0016) -0.0003 (0.0016) -0.0015 (0.0016) #> Log-Normal -0.0006 (0.0015) -0.0014 (0.0015) -0.0006 (0.0015) -0.0016 (0.0015) frailty$true <- ifelse(frailty$par == \"trt\", -0.50, 0.75) head(frailty) #> i b se par fv_dist model true #> 1 1 0.6569546 0.1256964 fv Gamma Cox, Gamma 0.75 #> 2 1 0.8396248 0.1663368 fv Gamma Cox, Log-Normal 0.75 #> 3 1 0.6583130 0.1260354 fv Gamma RP(P), Gamma 0.75 #> 4 1 0.8410503 0.1804898 fv Gamma RP(P), Log-Normal 0.75 #> 5 1 0.6394722 0.1223808 fv Log-Normal Cox, Gamma 0.75 #> 6 1 0.7573628 0.1235062 fv Log-Normal Cox, Log-Normal 0.75 ms2 <- multisimsum( data = frailty, par = \"par\", true = \"true\", estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\" ) #> 'ref' method was not specified, Cox, Gamma set as the reference summary(ms2, stats = \"bias\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0124 (0.0045) 0.2299 (0.0076) -0.0179 (0.0044) 0.2347 (0.0077) #> Log-Normal -0.1064 (0.0043) -0.0175 (0.0049) -0.1066 (0.0041) -0.0152 (0.0050) #> #> ------------------------------------------------------------------------------------------------------------------------------------------------------ #> #> Parameter: trt #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0006 (0.0016) -0.0013 (0.0016) -0.0003 (0.0016) -0.0015 (0.0016) #> Log-Normal -0.0006 (0.0015) -0.0014 (0.0015) -0.0006 (0.0015) -0.0016 (0.0015) identical(tidy(ms1), tidy(ms2)) #> [1] TRUE frailty$conf.low <- frailty$b - qt(1 - 0.05 / 2, df = 10) * frailty$se frailty$conf.high <- frailty$b + qt(1 - 0.05 / 2, df = 10) * frailty$se ms3 <- multisimsum( data = frailty, par = \"par\", true = \"true\", estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\", ci.limits = c(\"conf.low\", \"conf.high\") ) #> 'ref' method was not specified, Cox, Gamma set as the reference summary(ms3, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9477 (0.0071) 0.9680 (0.0056) 0.9516 (0.0069) 0.9640 (0.0059) #> Log-Normal 0.8046 (0.0128) 0.9330 (0.0079) 0.8235 (0.0121) 0.9460 (0.0071) #> #> ------------------------------------------------------------------------------------------------------------------------------------------------------ #> #> Parameter: trt #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9730 (0.0051) 0.9710 (0.0053) 0.9732 (0.0052) 0.9710 (0.0053) #> Log-Normal 0.9710 (0.0053) 0.9690 (0.0055) 0.9719 (0.0052) 0.9690 (0.0055) summary(ms2, stats = \"cover\") #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9201 (0.0087) 0.9220 (0.0085) 0.9300 (0.0082) 0.9030 (0.0094) #> Log-Normal 0.7503 (0.0140) 0.9020 (0.0094) 0.7683 (0.0134) 0.9280 (0.0082) #> #> ------------------------------------------------------------------------------------------------------------------------------------------------------ #> #> Parameter: trt #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9500 (0.0069) 0.9490 (0.0070) 0.9506 (0.0070) 0.9500 (0.0069) #> Log-Normal 0.9410 (0.0075) 0.9420 (0.0074) 0.9428 (0.0074) 0.9430 (0.0073)"},{"path":"https://ellessenne.github.io/rsimsum/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Alessandro Gasparini. Author, maintainer. Ian R. White. Author.","code":""},{"path":"https://ellessenne.github.io/rsimsum/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Gasparini, (2018). rsimsum: Summarise results Monte Carlo simulation studies. Journal Open Source Software, 3(26), 739, https://doi.org/10.21105/joss.00739","code":"@Article{, author = {Alessandro Gasparini}, title = {rsimsum: Summarise results from Monte Carlo simulation studies}, journal = {Journal of Open Source Software}, year = {2018}, volume = {3}, issue = {26}, pages = {739}, doi = {10.21105/joss.00739}, url = {https://doi.org/10.21105/joss.00739}, }"},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"rsimsum-","dir":"","previous_headings":"","what":"Analysis of Simulation Studies Including Monte Carlo Error","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"rsimsum R package can compute summary statistics simulation studies. rsimsum modelled upon similar package available Stata, user-written command simsum (White .R., 2010). aim rsimsum help report simulation studies, including understanding role chance results simulation studies: Monte Carlo standard errors confidence intervals based computed presented user default. rsimsum can compute wide variety summary statistics: bias, empirical model-based standard errors, relative precision, relative error model standard error, mean squared error, coverage, bias. details summary statistic presented elsewhere (White .R., 2010; Morris et al, 2019). main function rsimsum called simsum can handle simulation studies single estimand interest time. Missing values excluded default, possible define boundary values drop estimated values standard errors exceeding limits. possible define variable representing methods compared simulation study, possible define factors, , factors vary different simulated scenarios (data-generating mechanisms, DGMs). However, methods DGMs strictly required: case, simulation study single scenario single method assumed. Finally, rsimsum provides function named multisimsum allows summarising simulation studies multiple estimands well. important step reporting simulation study consists visualising results; therefore, rsimsum exploits R package ggplot2 produce portfolio opinionated data visualisations quick exploration results, inferring colours facetting data-generating mechanisms. rsimsum includes methods produce (1) plots summary statistics confidence intervals based Monte Carlo standard errors (forest plots, lolly plots), (2) zipper plots graphically visualise coverage directly plotting confidence intervals, (3) plots method-wise comparisons estimates standard errors (scatter plots, Bland-Altman plots, ridgeline plots), (4) heat plots. latter visualisation type traditionally used present results simulation studies, consists mosaic plot factor x-axis methods compared current simulation study factor y-axis data-generating factors. tile mosaic plot coloured according value summary statistic interest, red colour representing values target value blue colour representing values target.","code":""},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"can install rsimsum CRAN: Alternatively, possible install development version GitHub using remotes package:","code":"install.packages(\"rsimsum\") # install.packages(\"remotes\") remotes::install_github(\"ellessenne/rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"example","dir":"","previous_headings":"","what":"Example","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"basic example using data simulation study missing data (type help(\"MIsim\", package = \"rsimsum\") R console information): set x = TRUE required plot types. Summarising results:","code":"library(rsimsum) data(\"MIsim\", package = \"rsimsum\") s <- simsum(data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\", x = TRUE) #> 'ref' method was not specified, CC set as the reference s #> Summary of a simulation study with a single estimand. #> True value of the estimand: 0.5 #> #> Method variable: method #> Unique methods: CC, MI_LOGT, MI_T #> Reference method: CC #> #> By factors: none #> #> Monte Carlo standard errors were computed. summary(s) #> Values are: #> Point Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 (0.0048) 0.0009 (0.0042) -0.0012 (0.0043) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 (0.0096) 0.0018 (0.0083) -0.0024 (0.0085) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 (0.0034) 0.1320 (0.0030) 0.1344 (0.0030) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000) 31.0463 (3.9375) 26.3682 (3.8424) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 (0.0011) 0.0174 (0.0009) 0.0181 (0.0009) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 (0.0005) 0.1349 (0.0006) 0.1338 (0.0006) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 (2.2055) 2.2233 (2.3323) -0.4412 (2.2695) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 (0.0073) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 (0.0075) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 (0.0071) 0.9690 (0.0055) 0.9630 (0.0060)"},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"vignettes","dir":"","previous_headings":"","what":"Vignettes","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"rsimsum comes 5 vignettes. particular, check introductory one: list vignettes obtained typing following R console:","code":"vignette(topic = \"A-introduction\", package = \"rsimsum\") vignette(package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"visualising-results","dir":"","previous_headings":"","what":"Visualising results","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"version 0.2.0, rsimsum can produce variety plots: among others, lolly plots, forest plots, zipper plots, etc.: rsimsum 0.5.0 plotting functionality completely rewritten, new plot types implemented: Scatter plots method-wise comparisons, including Bland-Altman type plots; Ridgeline plots. Nested loop plots implemented rsimsum 0.6.0: Finally, rsimsum 0.7.1 contour plots hexbin plots implemented well: provide useful alternative several data points large overlap (e.g. scatterplot). plotting functionality now extend S3 generic autoplot: see ?ggplot2::autoplot ?rsimsum::autoplot.simsum details. details information can found vignettes dedicated plotting:","code":"library(ggplot2) autoplot(s, type = \"lolly\", stats = \"bias\") autoplot(s, type = \"zip\") autoplot(s, type = \"est_ba\") #> `geom_smooth()` using formula = 'y ~ x' autoplot(s, type = \"est_ridge\") #> Picking joint bandwidth of 0.0295 data(\"nlp\", package = \"rsimsum\") s.nlp <- rsimsum::simsum( data = nlp, estvarname = \"b\", true = 0, se = \"se\", methodvar = \"model\", by = c(\"baseline\", \"ss\", \"esigma\") ) #> 'ref' method was not specified, 1 set as the reference autoplot(s.nlp, stats = \"bias\", type = \"nlp\") autoplot(s, type = \"est_density\") #> `geom_smooth()` using formula = 'y ~ x' autoplot(s, type = \"est_hex\") #> `geom_smooth()` using formula = 'y ~ x' vignette(topic = \"C-plotting\", package = \"rsimsum\") vignette(topic = \"D-nlp\", package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"find rsimsum useful, please cite publications:","code":"citation(\"rsimsum\") #> To cite package 'rsimsum' in publications use: #> #> Gasparini, (2018). rsimsum: Summarise results from Monte Carlo simulation studies. #> Journal of Open Source Software, 3(26), 739, https://doi.org/10.21105/joss.00739 #> #> A BibTeX entry for LaTeX users is #> #> @Article{, #> author = {Alessandro Gasparini}, #> title = {rsimsum: Summarise results from Monte Carlo simulation studies}, #> journal = {Journal of Open Source Software}, #> year = {2018}, #> volume = {3}, #> issue = {26}, #> pages = {739}, #> doi = {10.21105/joss.00739}, #> url = {https://doi.org/10.21105/joss.00739}, #> }"},{"path":"https://ellessenne.github.io/rsimsum/index.html","id":"references","dir":"","previous_headings":"","what":"References","title":"Analysis of Simulation Studies Including Monte Carlo Error","text":"White, .R. 2010. simsum: Analyses simulation studies including Monte Carlo error. Stata Journal, 10(3): 369-385 Morris, T.P., White, .R. Crowther, M.J. 2019. Using simulation studies evaluate statistical methods. Statistics Medicine, 38: 2074-2102 Gasparini, . 2018. rsimsum: Summarise results Monte Carlo simulation studies. Journal Open Source Software, 3(26):739","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/MIsim.html","id":null,"dir":"Reference","previous_headings":"","what":"Example of a simulation study on missing data — MIsim","title":"Example of a simulation study on missing data — MIsim","text":"dataset simulation study comparing different ways handle missing covariates fitting Cox model (White Royston, 2009). One thousand datasets simulated, containing normally distributed covariates \\(x\\) \\(z\\) time--event outcome. covariates 20\\ simulated dataset analysed three ways. Cox model fit complete cases (CC). two methods multiple imputation using chained equations (van Buuren, Boshuizen, Knook, 1999) used. MI_LOGT method multiply imputes missing values \\(x\\) \\(z\\) outcome included \\(\\log (t)\\) \\(d\\), \\(t\\) survival time \\(d\\) event indicator. MI_T method except \\(\\log (t)\\) replaced \\(t\\) imputation model. results stored long format.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/MIsim.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example of a simulation study on missing data — MIsim","text":"","code":"MIsim MIsim2"},{"path":"https://ellessenne.github.io/rsimsum/reference/MIsim.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example of a simulation study on missing data — MIsim","text":"data frame 3,000 rows 4 variables: dataset Simulated dataset number. method Method used (CC, MI_LOGT MI_T). b Point estimate. se Standard error point estimate. object class tbl_df (inherits tbl, data.frame) 3000 rows 5 columns.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/MIsim.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Example of a simulation study on missing data — MIsim","text":"MIsim2 version dataset method column split two columns, m1 m2.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/MIsim.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Example of a simulation study on missing data — MIsim","text":"White, .R., P. Royston. 2009. Imputing missing covariate values Cox model. Statistics Medicine 28(15):1982-1998 doi:10.1002/sim.3618","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/MIsim.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Example of a simulation study on missing data — MIsim","text":"","code":"data(\"MIsim\", package = \"rsimsum\") data(\"MIsim2\", package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"autoplot method for multisimsum objects — autoplot.multisimsum","title":"autoplot method for multisimsum objects — autoplot.multisimsum","text":"autoplot can produce series plot summarise results simulation studies. See vignette(\"C-plotting\", package = \"rsimsum\") details.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"autoplot method for multisimsum objects — autoplot.multisimsum","text":"","code":"# S3 method for multisimsum autoplot( object, par, type = \"forest\", stats = \"nsim\", target = NULL, fitted = TRUE, scales = \"fixed\", top = TRUE, density.legend = TRUE, zoom = 1, ... )"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"autoplot method for multisimsum objects — autoplot.multisimsum","text":"object object class multisimsum. par parameter results plot. type type plot produced. Possible choices : forest, lolly, zip, est, se, est_ba, se_ba, est_density, se_density, est_hex, se_hex, est_ridge, se_ridge, heat, nlp, forest default. stats Summary statistic plot, defaults bias. See summary.simsum() details supported summary statistics. target Target summary statistic, e.g. 0 bias. Defaults NULL, case target inferred. fitted Superimpose fitted regression line, useful type = (est, se, est_ba, se_ba, est_density, se_density, est_hex, se_hex). Defaults TRUE. scales scales fixed (fixed, default), free (free), free one dimension (free_x, free_y)? top legend nested loop plot top side plot? Defaults TRUE. density.legend legend density hexbin plots included? Defaults TRUE. zoom numeric value 0 1 signalling zip plot zoom top x% plot (ease interpretation). Defaults 1, whole zip plot displayed. ... used.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.multisimsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"autoplot method for multisimsum objects — autoplot.multisimsum","text":"ggplot object.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.multisimsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"autoplot method for multisimsum objects — autoplot.multisimsum","text":"","code":"data(\"frailty\", package = \"rsimsum\") ms <- multisimsum( data = frailty, par = \"par\", true = c(trt = -0.50, fv = 0.75), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\", x = TRUE ) #> 'ref' method was not specified, Cox, Gamma set as the reference library(ggplot2) autoplot(ms, par = \"trt\") autoplot(ms, par = \"trt\", type = \"lolly\", stats = \"cover\") autoplot(ms, par = \"trt\", type = \"zip\") #> Warning: Removed 32 rows containing missing values (`geom_segment()`). autoplot(ms, par = \"trt\", type = \"est_ba\") #> `geom_smooth()` using formula = 'y ~ x' #> Warning: Removed 96 rows containing non-finite values (`stat_smooth()`). #> Warning: Removed 96 rows containing missing values (`geom_point()`)."},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"autoplot method for simsum objects — autoplot.simsum","title":"autoplot method for simsum objects — autoplot.simsum","text":"autoplot can produce series plot summarise results simulation studies. See vignette(\"C-plotting\", package = \"rsimsum\") details.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"autoplot method for simsum objects — autoplot.simsum","text":"","code":"# S3 method for simsum autoplot( object, type = \"forest\", stats = \"nsim\", target = NULL, fitted = TRUE, scales = \"fixed\", top = TRUE, density.legend = TRUE, zoom = 1, ... )"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"autoplot method for simsum objects — autoplot.simsum","text":"object object class simsum. type type plot produced. Possible choices : forest, lolly, zip, est, se, est_ba, se_ba, est_ridge, se_ridge, est_density, se_density, est_hex, se_hex, heat, nlp, forest default. stats Summary statistic plot, defaults nsim (number replications non-missing point estimates/SEs). See summary.simsum() details supported summary statistics. target Target summary statistic, e.g. 0 bias. Defaults NULL, case target inferred. fitted Superimpose fitted regression line, useful type = (est, se, est_ba, se_ba, est_density, se_density, est_hex, se_hex). Defaults TRUE. scales scales fixed (fixed, default), free (free), free one dimension (free_x, free_y)? top legend nested loop plot top side plot? Defaults TRUE. density.legend legend density hexbin plots included? Defaults TRUE. zoom numeric value 0 1 signalling zip plot zoom top x% plot (ease interpretation). Defaults 1, whole zip plot displayed. ... used.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.simsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"autoplot method for simsum objects — autoplot.simsum","text":"ggplot object.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.simsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"autoplot method for simsum objects — autoplot.simsum","text":"","code":"data(\"MIsim\", package = \"rsimsum\") s <- rsimsum::simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\", x = TRUE ) #> 'ref' method was not specified, CC set as the reference library(ggplot2) autoplot(s) autoplot(s, type = \"lolly\") autoplot(s, type = \"est_hex\") #> `geom_smooth()` using formula = 'y ~ x' autoplot(s, type = \"zip\", zoom = 0.5) # Nested loop plot: data(\"nlp\", package = \"rsimsum\") s1 <- rsimsum::simsum( data = nlp, estvarname = \"b\", true = 0, se = \"se\", methodvar = \"model\", by = c(\"baseline\", \"ss\", \"esigma\") ) #> 'ref' method was not specified, 1 set as the reference autoplot(s1, stats = \"bias\", type = \"nlp\")"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"autoplot method for summary.multisimsum objects — autoplot.summary.multisimsum","title":"autoplot method for summary.multisimsum objects — autoplot.summary.multisimsum","text":"autoplot method summary.multisimsum objects","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"autoplot method for summary.multisimsum objects — autoplot.summary.multisimsum","text":"","code":"# S3 method for summary.multisimsum autoplot( object, par, type = \"forest\", stats = \"nsim\", target = NULL, fitted = TRUE, scales = \"fixed\", top = TRUE, density.legend = TRUE, zoom = 1, ... )"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"autoplot method for summary.multisimsum objects — autoplot.summary.multisimsum","text":"object object class summary.multisimsum. par parameter results plot. type type plot produced. Possible choices : forest, lolly, zip, est, se, est_ba, se_ba, est_density, se_density, est_hex, se_hex, est_ridge, se_ridge, heat, nlp, forest default. stats Summary statistic plot, defaults bias. See summary.simsum() details supported summary statistics. target Target summary statistic, e.g. 0 bias. Defaults NULL, case target inferred. fitted Superimpose fitted regression line, useful type = (est, se, est_ba, se_ba, est_density, se_density, est_hex, se_hex). Defaults TRUE. scales scales fixed (fixed, default), free (free), free one dimension (free_x, free_y)? top legend nested loop plot top side plot? Defaults TRUE. density.legend legend density hexbin plots included? Defaults TRUE. zoom numeric value 0 1 signalling zip plot zoom top x% plot (ease interpretation). Defaults 1, whole zip plot displayed. ... used.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.multisimsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"autoplot method for summary.multisimsum objects — autoplot.summary.multisimsum","text":"ggplot object.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.multisimsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"autoplot method for summary.multisimsum objects — autoplot.summary.multisimsum","text":"","code":"data(\"frailty\", package = \"rsimsum\") ms <- multisimsum( data = frailty, par = \"par\", true = c(trt = -0.50, fv = 0.75), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\", x = TRUE ) #> 'ref' method was not specified, Cox, Gamma set as the reference sms <- summary(ms) library(ggplot2) autoplot(sms, par = \"trt\")"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"autoplot method for summary.simsum objects — autoplot.summary.simsum","title":"autoplot method for summary.simsum objects — autoplot.summary.simsum","text":"autoplot method summary.simsum objects","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"autoplot method for summary.simsum objects — autoplot.summary.simsum","text":"","code":"# S3 method for summary.simsum autoplot( object, type = \"forest\", stats = \"nsim\", target = NULL, fitted = TRUE, scales = \"fixed\", top = TRUE, density.legend = TRUE, zoom = 1, ... )"},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"autoplot method for summary.simsum objects — autoplot.summary.simsum","text":"object object class summary.simsum. type type plot produced. Possible choices : forest, lolly, zip, est, se, est_ba, se_ba, est_ridge, se_ridge, est_density, se_density, est_hex, se_hex, heat, nlp, forest default. stats Summary statistic plot, defaults nsim (number replications non-missing point estimates/SEs). See summary.simsum() details supported summary statistics. target Target summary statistic, e.g. 0 bias. Defaults NULL, case target inferred. fitted Superimpose fitted regression line, useful type = (est, se, est_ba, se_ba, est_density, se_density, est_hex, se_hex). Defaults TRUE. scales scales fixed (fixed, default), free (free), free one dimension (free_x, free_y)? top legend nested loop plot top side plot? Defaults TRUE. density.legend legend density hexbin plots included? Defaults TRUE. zoom numeric value 0 1 signalling zip plot zoom top x% plot (ease interpretation). Defaults 1, whole zip plot displayed. ... used.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.simsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"autoplot method for summary.simsum objects — autoplot.summary.simsum","text":"ggplot object.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/autoplot.summary.simsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"autoplot method for summary.simsum objects — autoplot.summary.simsum","text":"","code":"data(\"MIsim\", package = \"rsimsum\") s <- rsimsum::simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\", x = TRUE ) #> 'ref' method was not specified, CC set as the reference ss <- summary(s) library(ggplot2) autoplot(ss) autoplot(ss, type = \"lolly\") #> Warning: Removed 3 rows containing missing values (`geom_point()`). #> Warning: Removed 3 rows containing missing values (`geom_point()`)."},{"path":"https://ellessenne.github.io/rsimsum/reference/dropbig.html","id":null,"dir":"Reference","previous_headings":"","what":"Identify replications with large point estimates, standard errors — dropbig","title":"Identify replications with large point estimates, standard errors — dropbig","text":"dropbig useful identify replications large point estimates standard errors. Large values defined standardised values given threshold, defined calling dropbig. Regular standardisation using mean standard deviation implemented, well robust standardisation using median inter-quartile range. , standardisation process stratified data-generating mechanism factors defined.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/dropbig.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Identify replications with large point estimates, standard errors — dropbig","text":"","code":"dropbig( data, estvarname, se = NULL, methodvar = NULL, by = NULL, max = 10, semax = 100, robust = TRUE )"},{"path":"https://ellessenne.github.io/rsimsum/reference/dropbig.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Identify replications with large point estimates, standard errors — dropbig","text":"data data.frame variable names interpreted. tidy format, e.g. variable forms column observation forms row. estvarname name variable containing point estimates. se name variable containing standard errors point estimates. methodvar name variable containing methods compare. instance, methods models compared within simulation study. Can NULL. vector variable names compute performance measures list factors. Factors listed (potentially several) data-generating mechanisms used simulate data different scenarios (e.g. sample size, true distribution variable, etc.). Can NULL. max Specifies maximum acceptable absolute value point estimates, standardisation. Defaults 10. semax Specifies maximum acceptable absolute value standard error, standardisation. Defaults 100. robust Specifies whether use robust standardisation (using median inter-quartile range) rather normal standardisation (using mean standard deviation). Defaults TRUE.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/dropbig.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Identify replications with large point estimates, standard errors — dropbig","text":"data.frame given input additional column named .dropbig identifying rows classified large (.dropbig = TRUE) according specified criterion.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/dropbig.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Identify replications with large point estimates, standard errors — dropbig","text":"","code":"data(\"frailty\", package = \"rsimsum\") frailty2 <- subset(frailty, par == \"fv\") # Using low values of max, semax for illustration purposes: dropbig( data = frailty2, estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\", max = 2, semax = 2 ) #> i b se par fv_dist model .dropbig #> 1 1 0.6569546 0.125696425 fv Gamma Cox, Gamma FALSE #> 17 2 0.6613376 0.129510423 fv Gamma Cox, Gamma FALSE #> 33 3 1.0953274 0.206427350 fv Gamma Cox, Gamma TRUE #> 49 4 0.8406551 0.156744704 fv Gamma Cox, Gamma FALSE #> 65 5 0.7027899 0.135173710 fv Gamma Cox, Gamma FALSE #> 81 6 0.7745830 0.145766148 fv Gamma Cox, Gamma FALSE #> 97 7 0.6471639 0.124092810 fv Gamma Cox, Gamma FALSE #> 113 8 0.9999895 0.185104048 fv Gamma Cox, Gamma FALSE #> 129 9 0.8249801 0.156193824 fv Gamma Cox, Gamma FALSE #> 145 10 0.8173031 0.154691420 fv Gamma Cox, Gamma FALSE #> 161 11 0.8131207 0.155467829 fv Gamma Cox, Gamma FALSE #> 177 12 0.9917031 0.183639448 fv Gamma Cox, Gamma FALSE #> 193 13 0.9497115 0.177544292 fv Gamma Cox, Gamma FALSE #> 209 14 0.5818812 0.115038898 fv Gamma Cox, Gamma FALSE #> 225 15 0.8821317 NA fv Gamma Cox, Gamma NA #> 241 16 1.0080549 0.185306797 fv Gamma Cox, Gamma FALSE #> 257 17 0.5966007 NA fv Gamma Cox, Gamma NA #> 273 18 0.4670966 0.096268874 fv Gamma Cox, Gamma FALSE #> 289 19 0.7333278 0.139560619 fv Gamma Cox, Gamma FALSE #> 305 20 0.9569888 0.178946282 fv Gamma Cox, Gamma FALSE #> 321 21 0.5534068 0.111432621 fv Gamma Cox, Gamma FALSE #> 337 22 0.8922715 0.168260755 fv Gamma Cox, Gamma FALSE #> 353 23 0.6148386 0.118749326 fv Gamma Cox, Gamma FALSE #> 369 24 0.7503412 0.141751724 fv Gamma Cox, Gamma FALSE #> 385 25 0.7795077 0.147239297 fv Gamma Cox, Gamma FALSE #> 401 26 0.7226755 0.138933052 fv Gamma Cox, Gamma FALSE #> 417 27 1.1454385 0.211444516 fv Gamma Cox, Gamma TRUE #> 433 28 1.0146311 0.187317613 fv Gamma Cox, Gamma FALSE #> 449 29 0.9243730 0.171650779 fv Gamma Cox, Gamma FALSE #> 465 30 0.9627598 0.180455732 fv Gamma Cox, Gamma FALSE #> 481 31 0.6097090 0.120254015 fv Gamma Cox, Gamma FALSE #> 497 32 0.7776626 0.148059501 fv Gamma Cox, Gamma FALSE #> 513 33 0.5967068 0.115380144 fv Gamma Cox, Gamma FALSE #> 529 34 0.5604221 0.109501220 fv Gamma Cox, Gamma FALSE #> 545 35 0.7513179 0.145994135 fv Gamma Cox, Gamma FALSE #> 561 36 0.6005370 0.119633066 fv Gamma Cox, Gamma FALSE #> 577 37 0.5965864 0.115755917 fv Gamma Cox, Gamma FALSE #> 593 38 0.5250277 0.103624408 fv Gamma Cox, Gamma FALSE #> 609 39 0.7131612 0.135237995 fv Gamma Cox, Gamma FALSE #> 625 40 0.4799652 0.095913495 fv Gamma Cox, Gamma FALSE #> 641 41 1.1936478 0.213913615 fv Gamma Cox, Gamma TRUE #> 657 42 0.7119055 0.138537976 fv Gamma Cox, Gamma FALSE #> 673 43 0.8157571 0.153496265 fv Gamma Cox, Gamma FALSE #> 689 44 0.8510680 0.159321249 fv Gamma Cox, Gamma FALSE #> 705 45 0.7759695 0.146268948 fv Gamma Cox, Gamma FALSE #> 721 46 0.7346442 0.139055138 fv Gamma Cox, Gamma FALSE #> 737 47 0.9080543 0.172117120 fv Gamma Cox, Gamma FALSE #> 753 48 0.7536020 0.144378149 fv Gamma Cox, Gamma FALSE #> 769 49 0.7841137 0.149576489 fv Gamma Cox, Gamma FALSE #> 785 50 0.7177537 0.136129350 fv Gamma Cox, Gamma FALSE #> 801 51 0.8978122 0.167355928 fv Gamma Cox, Gamma FALSE #> 817 52 0.6175795 0.122643583 fv Gamma Cox, Gamma FALSE #> 833 53 0.6747666 0.130004394 fv Gamma Cox, Gamma FALSE #> 849 54 0.5300899 0.104816453 fv Gamma Cox, Gamma FALSE #> 865 55 0.7787970 0.147506719 fv Gamma Cox, Gamma FALSE #> 881 56 0.7118185 0.137916725 fv Gamma Cox, Gamma FALSE #> 897 57 0.7858698 0.147909226 fv Gamma Cox, Gamma FALSE #> 913 58 0.6599301 0.129157781 fv Gamma Cox, Gamma FALSE #> 929 59 0.7204171 0.137316794 fv Gamma Cox, Gamma FALSE #> 945 60 0.7932676 0.149975681 fv Gamma Cox, Gamma FALSE #> 961 61 0.6694679 0.127685261 fv Gamma Cox, Gamma FALSE #> 977 62 0.6581751 0.128702271 fv Gamma Cox, Gamma FALSE #> 993 63 0.8591200 0.161433261 fv Gamma Cox, Gamma FALSE #> 1009 64 0.6534059 0.125264584 fv Gamma Cox, Gamma FALSE #> 1025 65 0.6942950 0.131759071 fv Gamma Cox, Gamma FALSE #> 1041 66 0.5443571 0.107289026 fv Gamma Cox, Gamma FALSE #> 1057 67 0.8156791 0.152361675 fv Gamma Cox, Gamma FALSE #> 1073 68 0.7439907 0.141612286 fv Gamma Cox, Gamma FALSE #> 1089 69 0.5563484 0.109062941 fv Gamma Cox, Gamma FALSE #> 1105 70 0.7094223 0.138731564 fv Gamma Cox, Gamma FALSE #> 1121 71 0.9385094 0.173908062 fv Gamma Cox, Gamma FALSE #> 1137 72 0.6524139 0.125365577 fv Gamma Cox, Gamma FALSE #> 1153 73 0.4720556 0.093786069 fv Gamma Cox, Gamma FALSE #> 1169 74 0.6739725 0.128962357 fv Gamma Cox, Gamma FALSE #> 1185 75 0.6948754 0.133454468 fv Gamma Cox, Gamma FALSE #> 1201 76 0.6981009 0.137070297 fv Gamma Cox, Gamma FALSE #> 1217 77 0.7876992 0.150774294 fv Gamma Cox, Gamma FALSE #> 1233 78 1.0321320 0.191564904 fv Gamma Cox, Gamma FALSE #> 1249 79 1.3305115 0.241107247 fv Gamma Cox, Gamma TRUE #> 1265 80 0.6233959 NA fv Gamma Cox, Gamma NA #> 1281 81 0.9222954 0.175122280 fv Gamma Cox, Gamma FALSE #> 1297 82 0.7312982 0.138898303 fv Gamma Cox, Gamma FALSE #> 1313 83 0.4805826 0.099069389 fv Gamma Cox, Gamma FALSE #> 1329 84 0.7162687 0.135900182 fv Gamma Cox, Gamma FALSE #> 1345 85 0.7361328 0.139875756 fv Gamma Cox, Gamma FALSE #> 1361 86 0.7164863 0.136540922 fv Gamma Cox, Gamma FALSE #> 1377 87 0.5816154 0.112900191 fv Gamma Cox, Gamma FALSE #> 1393 88 0.7229512 0.137090004 fv Gamma Cox, Gamma FALSE #> 1409 89 0.7304707 0.138664712 fv Gamma Cox, Gamma FALSE #> 1425 90 0.8836079 0.164198901 fv Gamma Cox, Gamma FALSE #> 1441 91 0.7189481 NA fv Gamma Cox, Gamma NA #> 1457 92 0.6588464 0.126022294 fv Gamma Cox, Gamma FALSE #> 1473 93 0.9816849 0.189387187 fv Gamma Cox, Gamma FALSE #> 1489 94 0.8230985 0.157285147 fv Gamma Cox, Gamma FALSE #> 1505 95 0.7466798 0.141511812 fv Gamma Cox, Gamma FALSE #> 1521 96 0.4641167 0.092989583 fv Gamma Cox, Gamma FALSE #> 1537 97 0.5859572 0.113349778 fv Gamma Cox, Gamma FALSE #> 1553 98 0.8012617 0.151058934 fv Gamma Cox, Gamma FALSE #> 1569 99 0.5711848 0.112322499 fv Gamma Cox, Gamma FALSE #> 1585 100 0.8500351 0.158095260 fv Gamma Cox, Gamma FALSE #> 1601 101 0.8357950 0.155451666 fv Gamma Cox, Gamma FALSE #> 1617 102 0.7019364 0.133488910 fv Gamma Cox, Gamma FALSE #> 1633 103 0.8787124 0.167784796 fv Gamma Cox, Gamma FALSE #> 1649 104 0.7382161 0.139205129 fv Gamma Cox, Gamma FALSE #> 1665 105 0.8438084 0.159385939 fv Gamma Cox, Gamma FALSE #> 1681 106 0.7100979 0.135186030 fv Gamma Cox, Gamma FALSE #> 1697 107 0.8909452 0.169147434 fv Gamma Cox, Gamma FALSE #> 1713 108 0.7774559 0.150824798 fv Gamma Cox, Gamma FALSE #> 1729 109 0.6953965 0.134268584 fv Gamma Cox, Gamma FALSE #> 1745 110 0.7992946 0.150758285 fv Gamma Cox, Gamma FALSE #> 1761 111 0.8471403 0.159125513 fv Gamma Cox, Gamma FALSE #> 1777 112 0.4643017 0.092950661 fv Gamma Cox, Gamma FALSE #> 1793 113 0.5483133 0.107644803 fv Gamma Cox, Gamma FALSE #> 1809 114 1.1737434 0.213064251 fv Gamma Cox, Gamma TRUE #> 1825 115 0.6447690 0.123844155 fv Gamma Cox, Gamma FALSE #> 1841 116 0.5122411 0.101175678 fv Gamma Cox, Gamma FALSE #> 1857 117 0.7563907 0.142289904 fv Gamma Cox, Gamma FALSE #> 1873 118 0.5579905 0.109454501 fv Gamma Cox, Gamma FALSE #> 1889 119 0.6022598 0.116858325 fv Gamma Cox, Gamma FALSE #> 1905 120 0.7124728 0.135859121 fv Gamma Cox, Gamma FALSE #> 1921 121 0.6402494 0.124028005 fv Gamma Cox, Gamma FALSE #> 1937 122 0.6346064 0.122733103 fv Gamma Cox, Gamma FALSE #> 1953 123 0.7902516 0.149333148 fv Gamma Cox, Gamma FALSE #> 1969 124 0.7329650 0.138554104 fv Gamma Cox, Gamma FALSE #> 1985 125 0.8161002 0.155025922 fv Gamma Cox, Gamma FALSE #> 2001 126 0.9990640 0.191074644 fv Gamma Cox, Gamma FALSE #> 2017 127 0.8700787 0.162375752 fv Gamma Cox, Gamma FALSE #> 2033 128 0.8619723 0.161242325 fv Gamma Cox, Gamma FALSE #> 2049 129 0.5981983 0.118892839 fv Gamma Cox, Gamma FALSE #> 2065 130 0.6716077 0.128978878 fv Gamma Cox, Gamma FALSE #> 2081 131 0.6123596 0.117347356 fv Gamma Cox, Gamma FALSE #> 2097 132 0.7632396 0.147960034 fv Gamma Cox, Gamma FALSE #> 2113 133 0.7684878 0.147084782 fv Gamma Cox, Gamma FALSE #> 2129 134 0.7563895 0.143358097 fv Gamma Cox, Gamma FALSE #> 2145 135 0.5840973 0.113775282 fv Gamma Cox, Gamma FALSE #> 2161 136 0.8139715 0.154214677 fv Gamma Cox, Gamma FALSE #> 2177 137 0.8279570 0.155323396 fv Gamma Cox, Gamma FALSE #> 2193 138 0.9684096 0.181892869 fv Gamma Cox, Gamma FALSE #> 2209 139 0.6380475 0.122896692 fv Gamma Cox, Gamma FALSE #> 2225 140 0.7126356 NA fv Gamma Cox, Gamma NA #> 2241 141 0.5544497 0.005829212 fv Gamma Cox, Gamma TRUE #> 2257 142 0.6984548 0.133299410 fv Gamma Cox, Gamma FALSE #> 2273 143 1.1447313 0.218348635 fv Gamma Cox, Gamma TRUE #> 2289 144 0.8534851 0.158864910 fv Gamma Cox, Gamma FALSE #> 2305 145 0.6954310 0.132985154 fv Gamma Cox, Gamma FALSE #> 2321 146 0.6862429 0.131920086 fv Gamma Cox, Gamma FALSE #> 2337 147 0.8487307 0.158487657 fv Gamma Cox, Gamma FALSE #> 2353 148 0.5181133 0.101967871 fv Gamma Cox, Gamma FALSE #> 2369 149 0.6841244 0.131624816 fv Gamma Cox, Gamma FALSE #> 2385 150 0.8869154 0.165727435 fv Gamma Cox, Gamma FALSE #> 2401 151 0.8331944 0.156397071 fv Gamma Cox, Gamma FALSE #> 2417 152 0.7961492 0.152467958 fv Gamma Cox, Gamma FALSE #> 2433 153 0.4915269 0.097749704 fv Gamma Cox, Gamma FALSE #> 2449 154 0.8353449 0.156425229 fv Gamma Cox, Gamma FALSE #> 2465 155 0.6917804 0.135298989 fv Gamma Cox, Gamma FALSE #> 2481 156 0.7141483 0.135622707 fv Gamma Cox, Gamma FALSE #> 2497 157 0.9579114 0.180865947 fv Gamma Cox, Gamma FALSE #> 2513 158 0.9919173 0.186831104 fv Gamma Cox, Gamma FALSE #> 2529 159 0.5056687 0.100572196 fv Gamma Cox, Gamma FALSE #> 2545 160 0.5668849 0.110729771 fv Gamma Cox, Gamma FALSE #> 2561 161 1.1593267 0.211623189 fv Gamma Cox, Gamma TRUE #> 2577 162 0.6686198 0.129654468 fv Gamma Cox, Gamma FALSE #> 2593 163 0.5947095 0.115432055 fv Gamma Cox, Gamma FALSE #> 2609 164 0.9409729 0.174195456 fv Gamma Cox, Gamma FALSE #> 2625 165 0.7712525 0.145156218 fv Gamma Cox, Gamma FALSE #> 2641 166 0.7944783 0.152945382 fv Gamma Cox, Gamma FALSE #> 2657 167 0.8759279 0.163421782 fv Gamma Cox, Gamma FALSE #> 2673 168 0.9305016 0.172681632 fv Gamma Cox, Gamma FALSE #> 2689 169 0.6998018 0.134466938 fv Gamma Cox, Gamma FALSE #> 2705 170 0.6956819 0.133436242 fv Gamma Cox, Gamma FALSE #> 2721 171 0.6792319 0.131731221 fv Gamma Cox, Gamma FALSE #> 2737 172 0.8680243 0.162039061 fv Gamma Cox, Gamma FALSE #> 2753 173 0.5991408 0.117150299 fv Gamma Cox, Gamma FALSE #> 2769 174 0.8197266 0.154957877 fv Gamma Cox, Gamma FALSE #> 2785 175 0.6402142 0.124225276 fv Gamma Cox, Gamma FALSE #> 2801 176 0.6677623 0.127397054 fv Gamma Cox, Gamma FALSE #> 2817 177 0.5600635 0.111041351 fv Gamma Cox, Gamma FALSE #> 2833 178 0.8664575 0.161085253 fv Gamma Cox, Gamma FALSE #> 2849 179 0.5696270 0.110580250 fv Gamma Cox, Gamma FALSE #> 2865 180 0.7490451 0.145597001 fv Gamma Cox, Gamma FALSE #> 2881 181 0.8332298 0.156165685 fv Gamma Cox, Gamma FALSE #> 2897 182 0.7299111 0.138267866 fv Gamma Cox, Gamma FALSE #> 2913 183 0.5643054 0.109921943 fv Gamma Cox, Gamma FALSE #> 2929 184 0.6713498 0.129903821 fv Gamma Cox, Gamma FALSE #> 2945 185 0.8565735 0.161036493 fv Gamma Cox, Gamma FALSE #> 2961 186 0.9053793 0.172727818 fv Gamma Cox, Gamma FALSE #> 2977 187 0.7412392 0.141072766 fv Gamma Cox, Gamma FALSE #> 2993 188 0.5539059 0.108329615 fv Gamma Cox, Gamma FALSE #> 3009 189 0.7630802 0.144798954 fv Gamma Cox, Gamma FALSE #> 3025 190 0.7739996 0.145679338 fv Gamma Cox, Gamma FALSE #> 3041 191 0.7531330 0.142505520 fv Gamma Cox, Gamma FALSE #> 3057 192 0.7746974 0.149498584 fv Gamma Cox, Gamma FALSE #> 3073 193 0.6405375 0.123698525 fv Gamma Cox, Gamma FALSE #> 3089 194 0.5955132 0.115145832 fv Gamma Cox, Gamma FALSE #> 3105 195 0.8745908 0.162591705 fv Gamma Cox, Gamma FALSE #> 3121 196 0.8178457 0.154589268 fv Gamma Cox, Gamma FALSE #> 3137 197 0.7511736 0.141661815 fv Gamma Cox, Gamma FALSE #> 3153 198 0.7769079 0.146017528 fv Gamma Cox, Gamma FALSE #> 3169 199 0.5582030 0.109200412 fv Gamma Cox, Gamma FALSE #> 3185 200 0.8259496 0.154374691 fv Gamma Cox, Gamma FALSE #> 3201 201 0.7413535 0.141501117 fv Gamma Cox, Gamma FALSE #> 3217 202 0.7883145 0.147891265 fv Gamma Cox, Gamma FALSE #> 3233 203 0.7376850 0.139098696 fv Gamma Cox, Gamma FALSE #> 3249 204 0.7431473 0.145125912 fv Gamma Cox, Gamma FALSE #> 3265 205 0.5968534 0.116380154 fv Gamma Cox, Gamma FALSE #> 3281 206 0.7364319 0.139955581 fv Gamma Cox, Gamma FALSE #> 3297 207 0.5674448 0.110932711 fv Gamma Cox, Gamma FALSE #> 3313 208 0.7440635 0.141631276 fv Gamma Cox, Gamma FALSE #> 3329 209 0.6788077 0.130198366 fv Gamma Cox, Gamma FALSE #> 3345 210 0.6888451 0.132771993 fv Gamma Cox, Gamma FALSE #> 3361 211 0.9803778 0.184836601 fv Gamma Cox, Gamma FALSE #> 3377 212 0.7256449 0.141318320 fv Gamma Cox, Gamma FALSE #> 3393 213 0.8183619 0.154776877 fv Gamma Cox, Gamma FALSE #> 3409 214 0.6497936 0.125621597 fv Gamma Cox, Gamma FALSE #> 3425 215 0.8793079 0.164432320 fv Gamma Cox, Gamma FALSE #> 3441 216 0.9162205 0.170569691 fv Gamma Cox, Gamma FALSE #> 3457 217 0.6777625 0.131187108 fv Gamma Cox, Gamma FALSE #> 3473 218 0.6131194 0.119393013 fv Gamma Cox, Gamma FALSE #> 3489 219 0.8569040 0.162515848 fv Gamma Cox, Gamma FALSE #> 3505 220 0.5628894 0.109933688 fv Gamma Cox, Gamma FALSE #> 3521 221 0.7097276 0.136447984 fv Gamma Cox, Gamma FALSE #> 3537 222 0.7727905 0.147170732 fv Gamma Cox, Gamma FALSE #> 3553 223 0.7964844 0.154284092 fv Gamma Cox, Gamma FALSE #> 3569 224 0.7614475 0.144615174 fv Gamma Cox, Gamma FALSE #> 3585 225 0.6722549 0.129075014 fv Gamma Cox, Gamma FALSE #> 3601 226 0.8333519 0.160111938 fv Gamma Cox, Gamma FALSE #> 3617 227 0.6560251 0.126793123 fv Gamma Cox, Gamma FALSE #> 3633 228 0.8900574 0.165684363 fv Gamma Cox, Gamma FALSE #> 3649 229 0.7783440 0.147316655 fv Gamma Cox, Gamma FALSE #> 3665 230 0.7010892 0.133597427 fv Gamma Cox, Gamma FALSE #> 3681 231 0.7965352 0.151151697 fv Gamma Cox, Gamma FALSE #> 3697 232 0.7331452 0.142033787 fv Gamma Cox, Gamma FALSE #> 3713 233 0.8746416 0.164268652 fv Gamma Cox, Gamma FALSE #> 3729 234 0.6285312 0.121126267 fv Gamma Cox, Gamma FALSE #> 3745 235 0.7432271 0.143094417 fv Gamma Cox, Gamma FALSE #> 3761 236 0.4979838 0.099104026 fv Gamma Cox, Gamma FALSE #> 3777 237 0.6728080 0.130707771 fv Gamma Cox, Gamma FALSE #> 3793 238 0.5840668 0.114928913 fv Gamma Cox, Gamma FALSE #> 3809 239 0.7097176 0.134414945 fv Gamma Cox, Gamma FALSE #> 3825 240 0.8599517 0.164169343 fv Gamma Cox, Gamma FALSE #> 3841 241 0.6564593 0.126134874 fv Gamma Cox, Gamma FALSE #> 3857 242 0.5141763 0.101693306 fv Gamma Cox, Gamma FALSE #> 3873 243 0.8631191 0.166522993 fv Gamma Cox, Gamma FALSE #> 3889 244 0.5648038 0.110152544 fv Gamma Cox, Gamma FALSE #> 3905 245 0.9067207 0.169979694 fv Gamma Cox, Gamma FALSE #> 3921 246 0.6699933 0.127877304 fv Gamma Cox, Gamma FALSE #> 3937 247 0.7658413 0.145211179 fv Gamma Cox, Gamma FALSE #> 3953 248 0.9431198 0.174221858 fv Gamma Cox, Gamma FALSE #> 3969 249 0.9559739 0.179913652 fv Gamma Cox, Gamma FALSE #> 3985 250 0.7309363 0.139895733 fv Gamma Cox, Gamma FALSE #> 4001 251 0.7953055 0.152686790 fv Gamma Cox, Gamma FALSE #> 4017 252 0.8009815 0.153887446 fv Gamma Cox, Gamma FALSE #> 4033 253 0.9063613 0.176153220 fv Gamma Cox, Gamma FALSE #> 4049 254 0.5192107 0.101929593 fv Gamma Cox, Gamma FALSE #> 4065 255 0.7741374 0.145083036 fv Gamma Cox, Gamma FALSE #> 4081 256 0.7237488 0.138470282 fv Gamma Cox, Gamma FALSE #> 4097 257 0.5354834 0.104354126 fv Gamma Cox, Gamma FALSE #> 4113 258 0.7012728 0.138891396 fv Gamma Cox, Gamma FALSE #> 4129 259 0.7423993 0.141143911 fv Gamma Cox, Gamma FALSE #> 4145 260 0.8676835 0.162799994 fv Gamma Cox, Gamma FALSE #> 4161 261 0.4985565 0.098347563 fv Gamma Cox, Gamma FALSE #> 4177 262 0.7309571 0.140660952 fv Gamma Cox, Gamma FALSE #> 4193 263 0.6045868 0.117674653 fv Gamma Cox, Gamma FALSE #> 4209 264 0.5101925 0.100166533 fv Gamma Cox, Gamma FALSE #> 4225 265 0.5926958 0.114423413 fv Gamma Cox, Gamma FALSE #> 4241 266 0.6141473 0.118472417 fv Gamma Cox, Gamma FALSE #> 4257 267 0.7089350 0.135707003 fv Gamma Cox, Gamma FALSE #> 4273 268 0.7461537 0.141208361 fv Gamma Cox, Gamma FALSE #> 4289 269 1.0603612 0.198754812 fv Gamma Cox, Gamma FALSE #> 4305 270 0.9058827 0.173864681 fv Gamma Cox, Gamma FALSE #> 4321 271 0.8913131 0.167006421 fv Gamma Cox, Gamma FALSE #> 4337 272 0.5385219 0.106340887 fv Gamma Cox, Gamma FALSE #> 4353 273 0.6611358 0.127691135 fv Gamma Cox, Gamma FALSE #> 4369 274 0.7211689 0.136721186 fv Gamma Cox, Gamma FALSE #> 4385 275 0.8557535 0.159471673 fv Gamma Cox, Gamma FALSE #> 4401 276 0.8100907 0.155893661 fv Gamma Cox, Gamma FALSE #> 4417 277 0.6766183 0.128987177 fv Gamma Cox, Gamma FALSE #> 4433 278 0.7339860 0.138921953 fv Gamma Cox, Gamma FALSE #> 4449 279 0.7292968 0.138338078 fv Gamma Cox, Gamma FALSE #> 4465 280 0.7607655 0.143846232 fv Gamma Cox, Gamma FALSE #> 4481 281 1.0222759 0.191682241 fv Gamma Cox, Gamma FALSE #> 4497 282 0.6012837 0.116686105 fv Gamma Cox, Gamma FALSE #> 4513 283 0.8065287 0.008370025 fv Gamma Cox, Gamma TRUE #> 4529 284 0.6538202 0.125329340 fv Gamma Cox, Gamma FALSE #> 4545 285 0.5004678 0.098826427 fv Gamma Cox, Gamma FALSE #> 4561 286 0.7617749 0.144340603 fv Gamma Cox, Gamma FALSE #> 4577 287 0.6411900 0.124111128 fv Gamma Cox, Gamma FALSE #> 4593 288 1.2156838 0.222204393 fv Gamma Cox, Gamma TRUE #> 4609 289 0.6293359 0.121873921 fv Gamma Cox, Gamma FALSE #> 4625 290 0.5973796 0.115942379 fv Gamma Cox, Gamma FALSE #> 4641 291 0.6142454 NA fv Gamma Cox, Gamma NA #> 4657 292 0.6275111 0.121149223 fv Gamma Cox, Gamma FALSE #> 4673 293 0.8857171 0.166063448 fv Gamma Cox, Gamma FALSE #> 4689 294 0.6322969 0.122255267 fv Gamma Cox, Gamma FALSE #> 4705 295 1.0640640 0.195201183 fv Gamma Cox, Gamma FALSE #> 4721 296 0.7341485 0.140160744 fv Gamma Cox, Gamma FALSE #> 4737 297 1.1991235 0.216487970 fv Gamma Cox, Gamma TRUE #> 4753 298 0.5712964 0.111273754 fv Gamma Cox, Gamma FALSE #> 4769 299 0.5672383 0.111172863 fv Gamma Cox, Gamma FALSE #> 4785 300 0.8495776 0.158426390 fv Gamma Cox, Gamma FALSE #> 4801 301 0.5310383 0.104267983 fv Gamma Cox, Gamma FALSE #> 4817 302 0.7523369 0.141562397 fv Gamma Cox, Gamma FALSE #> 4833 303 0.6689623 0.129247470 fv Gamma Cox, Gamma FALSE #> 4849 304 0.7352516 0.140697289 fv Gamma Cox, Gamma FALSE #> 4865 305 0.8685145 0.162232921 fv Gamma Cox, Gamma FALSE #> 4881 306 0.7403740 0.140931785 fv Gamma Cox, Gamma FALSE #> 4897 307 0.7625273 0.146362956 fv Gamma Cox, Gamma FALSE #> 4913 308 0.6529047 0.125331572 fv Gamma Cox, Gamma FALSE #> 4929 309 0.7335789 0.138755400 fv Gamma Cox, Gamma FALSE #> 4945 310 1.0352441 0.191706968 fv Gamma Cox, Gamma FALSE #> 4961 311 0.8210888 0.154167236 fv Gamma Cox, Gamma FALSE #> 4977 312 1.1316319 0.214506331 fv Gamma Cox, Gamma TRUE #> 4993 313 0.7858570 0.148363040 fv Gamma Cox, Gamma FALSE #> 5009 314 0.6270082 0.121419429 fv Gamma Cox, Gamma FALSE #> 5025 315 0.7580926 0.143019862 fv Gamma Cox, Gamma FALSE #> 5041 316 1.0442184 0.191879128 fv Gamma Cox, Gamma FALSE #> 5057 317 0.6437053 0.124174313 fv Gamma Cox, Gamma FALSE #> 5073 318 0.8451586 0.162886989 fv Gamma Cox, Gamma FALSE #> 5089 319 0.6154748 0.119202669 fv Gamma Cox, Gamma FALSE #> 5105 320 0.6052390 0.117161496 fv Gamma Cox, Gamma FALSE #> 5121 321 0.8562321 0.161151124 fv Gamma Cox, Gamma FALSE #> 5137 322 0.5475235 0.107601448 fv Gamma Cox, Gamma FALSE #> 5153 323 0.8516726 0.159610025 fv Gamma Cox, Gamma FALSE #> 5169 324 0.6284455 0.122771029 fv Gamma Cox, Gamma FALSE #> 5185 325 0.7340504 0.139368912 fv Gamma Cox, Gamma FALSE #> 5201 326 0.7039394 0.134465568 fv Gamma Cox, Gamma FALSE #> 5217 327 0.7570131 0.143284492 fv Gamma Cox, Gamma FALSE #> 5233 328 1.0241436 0.191230022 fv Gamma Cox, Gamma FALSE #> 5249 329 0.8762071 0.165668652 fv Gamma Cox, Gamma FALSE #> 5265 330 0.6943285 0.133117878 fv Gamma Cox, Gamma FALSE #> 5281 331 0.8439616 0.157763791 fv Gamma Cox, Gamma FALSE #> 5297 332 0.5597510 0.110415552 fv Gamma Cox, Gamma FALSE #> 5313 333 0.5408626 0.105579808 fv Gamma Cox, Gamma FALSE #> 5329 334 0.9467958 0.173919137 fv Gamma Cox, Gamma FALSE #> 5345 335 0.7653749 0.145590511 fv Gamma Cox, Gamma FALSE #> 5361 336 0.4797265 0.096031622 fv Gamma Cox, Gamma FALSE #> 5377 337 0.6413684 0.124650010 fv Gamma Cox, Gamma FALSE #> 5393 338 0.6035586 NA fv Gamma Cox, Gamma NA #> 5409 339 0.8262291 0.156546194 fv Gamma Cox, Gamma FALSE #> 5425 340 0.7801398 0.152957082 fv Gamma Cox, Gamma FALSE #> 5441 341 0.5609456 0.109188392 fv Gamma Cox, Gamma FALSE #> 5457 342 0.4505560 0.089857208 fv Gamma Cox, Gamma FALSE #> 5473 343 0.6379761 0.123470515 fv Gamma Cox, Gamma FALSE #> 5489 344 0.9821211 0.184488378 fv Gamma Cox, Gamma FALSE #> 5505 345 0.8685154 0.163017679 fv Gamma Cox, Gamma FALSE #> 5521 346 0.7913166 0.148203721 fv Gamma Cox, Gamma FALSE #> 5537 347 0.7336193 0.139101579 fv Gamma Cox, Gamma FALSE #> 5553 348 0.9254888 0.171694360 fv Gamma Cox, Gamma FALSE #> 5569 349 0.8488816 0.159294203 fv Gamma Cox, Gamma FALSE #> 5585 350 0.8160615 0.152965564 fv Gamma Cox, Gamma FALSE #> 5601 351 0.8759466 0.167886380 fv Gamma Cox, Gamma FALSE #> 5617 352 0.7981894 0.153964217 fv Gamma Cox, Gamma FALSE #> 5633 353 0.5791672 0.113057885 fv Gamma Cox, Gamma FALSE #> 5649 354 0.7416095 0.141018326 fv Gamma Cox, Gamma FALSE #> 5665 355 0.8010796 0.149943272 fv Gamma Cox, Gamma FALSE #> 5681 356 0.8282803 0.158193917 fv Gamma Cox, Gamma FALSE #> 5697 357 0.6938562 0.132663709 fv Gamma Cox, Gamma FALSE #> 5713 358 0.6402635 0.122101470 fv Gamma Cox, Gamma FALSE #> 5729 359 0.6742980 0.132978427 fv Gamma Cox, Gamma FALSE #> 5745 360 0.6040056 0.117051665 fv Gamma Cox, Gamma FALSE #> 5761 361 0.9421937 0.178772166 fv Gamma Cox, Gamma FALSE #> 5777 362 0.4601477 0.091085384 fv Gamma Cox, Gamma FALSE #> 5793 363 0.7026636 0.135100787 fv Gamma Cox, Gamma FALSE #> 5809 364 0.5302217 0.104442908 fv Gamma Cox, Gamma FALSE #> 5825 365 0.7690703 0.150669849 fv Gamma Cox, Gamma FALSE #> 5841 366 0.8267876 0.157050939 fv Gamma Cox, Gamma FALSE #> 5857 367 0.8874453 0.165351401 fv Gamma Cox, Gamma FALSE #> 5873 368 0.8804541 0.171672792 fv Gamma Cox, Gamma FALSE #> 5889 369 0.5558909 0.108356937 fv Gamma Cox, Gamma FALSE #> 5905 370 0.5224601 0.102908943 fv Gamma Cox, Gamma FALSE #> 5921 371 0.8876388 0.168386174 fv Gamma Cox, Gamma FALSE #> 5937 372 0.6286268 0.125304837 fv Gamma Cox, Gamma FALSE #> 5953 373 0.6690070 0.127890066 fv Gamma Cox, Gamma FALSE #> 5969 374 0.6330213 0.122146795 fv Gamma Cox, Gamma FALSE #> 5985 375 0.6227287 0.120453980 fv Gamma Cox, Gamma FALSE #> 6001 376 0.6703751 0.129140001 fv Gamma Cox, Gamma FALSE #> 6017 377 0.8079140 0.155596402 fv Gamma Cox, Gamma FALSE #> 6033 378 0.7798553 0.146544187 fv Gamma Cox, Gamma FALSE #> 6049 379 0.6475737 0.124463927 fv Gamma Cox, Gamma FALSE #> 6065 380 0.7688097 0.145489816 fv Gamma Cox, Gamma FALSE #> 6081 381 0.6649357 0.128253722 fv Gamma Cox, Gamma FALSE #> 6097 382 0.6807352 0.130459416 fv Gamma Cox, Gamma FALSE #> 6113 383 1.0192008 0.186327756 fv Gamma Cox, Gamma FALSE #> 6129 384 0.8434297 0.158539964 fv Gamma Cox, Gamma FALSE #> 6145 385 0.5428752 0.106117665 fv Gamma Cox, Gamma FALSE #> 6161 386 0.3967401 0.081332469 fv Gamma Cox, Gamma FALSE #> 6177 387 0.5406499 0.105272643 fv Gamma Cox, Gamma FALSE #> 6193 388 0.6602657 0.126552615 fv Gamma Cox, Gamma FALSE #> 6209 389 0.5332555 0.104791180 fv Gamma Cox, Gamma FALSE #> 6225 390 0.6045228 0.117241227 fv Gamma Cox, Gamma FALSE #> 6241 391 0.4999031 NA fv Gamma Cox, Gamma NA #> 6257 392 0.9248187 0.171305899 fv Gamma Cox, Gamma FALSE #> 6273 393 0.5798027 0.113219618 fv Gamma Cox, Gamma FALSE #> 6289 394 0.8907170 0.167374282 fv Gamma Cox, Gamma FALSE #> 6305 395 0.7016240 0.135025361 fv Gamma Cox, Gamma FALSE #> 6321 396 0.7121455 0.139294610 fv Gamma Cox, Gamma FALSE #> 6337 397 0.8229104 0.153784172 fv Gamma Cox, Gamma FALSE #> 6353 398 0.7712521 0.146309386 fv Gamma Cox, Gamma FALSE #> 6369 399 0.6190504 0.119937746 fv Gamma Cox, Gamma FALSE #> 6385 400 0.6672967 0.128315064 fv Gamma Cox, Gamma FALSE #> 6401 401 0.8584411 0.163304952 fv Gamma Cox, Gamma FALSE #> 6417 402 0.7225680 0.141193789 fv Gamma Cox, Gamma FALSE #> 6433 403 0.6821864 0.130069717 fv Gamma Cox, Gamma FALSE #> 6449 404 0.8921011 0.169978122 fv Gamma Cox, Gamma FALSE #> 6465 405 0.6364897 0.121986924 fv Gamma Cox, Gamma FALSE #> 6481 406 0.6312721 0.122132709 fv Gamma Cox, Gamma FALSE #> 6497 407 0.7537675 0.143468500 fv Gamma Cox, Gamma FALSE #> 6513 408 0.4830750 0.100264446 fv Gamma Cox, Gamma FALSE #> 6529 409 0.9120263 0.168875217 fv Gamma Cox, Gamma FALSE #> 6545 410 0.9317740 0.176472419 fv Gamma Cox, Gamma FALSE #> 6561 411 0.7853073 0.155061040 fv Gamma Cox, Gamma FALSE #> 6577 412 0.6760708 0.129238258 fv Gamma Cox, Gamma FALSE #> 6593 413 0.7106746 NA fv Gamma Cox, Gamma NA #> 6609 414 0.7126918 0.136010675 fv Gamma Cox, Gamma FALSE #> 6625 415 0.8278815 0.154436751 fv Gamma Cox, Gamma FALSE #> 6641 416 0.6144755 0.118999790 fv Gamma Cox, Gamma FALSE #> 6657 417 0.7064656 0.134614387 fv Gamma Cox, Gamma FALSE #> 6673 418 0.7280710 0.138588048 fv Gamma Cox, Gamma FALSE #> 6689 419 0.5977421 0.117049099 fv Gamma Cox, Gamma FALSE #> 6705 420 0.7984141 0.153630576 fv Gamma Cox, Gamma FALSE #> 6721 421 0.7789264 0.146973632 fv Gamma Cox, Gamma FALSE #> 6737 422 0.7189249 0.136830403 fv Gamma Cox, Gamma FALSE #> 6753 423 0.7767172 0.146505554 fv Gamma Cox, Gamma FALSE #> 6769 424 0.6711159 0.129971477 fv Gamma Cox, Gamma FALSE #> 6785 425 0.5421033 0.106506310 fv Gamma Cox, Gamma FALSE #> 6801 426 0.9738877 0.180388841 fv Gamma Cox, Gamma FALSE #> 6817 427 0.4334204 0.087612339 fv Gamma Cox, Gamma FALSE #> 6833 428 0.9192375 0.174367363 fv Gamma Cox, Gamma FALSE #> 6849 429 0.6307533 0.121860719 fv Gamma Cox, Gamma FALSE #> 6865 430 0.5862901 0.113931845 fv Gamma Cox, Gamma FALSE #> 6881 431 0.8326353 0.156104642 fv Gamma Cox, Gamma FALSE #> 6897 432 0.5651382 0.111271681 fv Gamma Cox, Gamma FALSE #> 6913 433 0.7605602 0.146061740 fv Gamma Cox, Gamma FALSE #> 6929 434 0.9151370 0.168917938 fv Gamma Cox, Gamma FALSE #> 6945 435 0.6420012 0.123004617 fv Gamma Cox, Gamma FALSE #> 6961 436 0.8857909 0.167510125 fv Gamma Cox, Gamma FALSE #> 6977 437 0.6462434 0.124127766 fv Gamma Cox, Gamma FALSE #> 6993 438 0.4972460 0.098754303 fv Gamma Cox, Gamma FALSE #> 7009 439 0.6779588 0.130863527 fv Gamma Cox, Gamma FALSE #> 7025 440 0.6825645 0.130306052 fv Gamma Cox, Gamma FALSE #> 7041 441 0.4502677 0.089999523 fv Gamma Cox, Gamma FALSE #> 7057 442 0.8187358 0.153159795 fv Gamma Cox, Gamma FALSE #> 7073 443 0.4864113 0.097415951 fv Gamma Cox, Gamma FALSE #> 7089 444 0.6307093 NA fv Gamma Cox, Gamma NA #> 7105 445 0.8960691 0.172700705 fv Gamma Cox, Gamma FALSE #> 7121 446 0.7375956 0.139800669 fv Gamma Cox, Gamma FALSE #> 7137 447 0.7060355 0.134536437 fv Gamma Cox, Gamma FALSE #> 7153 448 0.7606137 0.144593023 fv Gamma Cox, Gamma FALSE #> 7169 449 0.8188267 0.152908387 fv Gamma Cox, Gamma FALSE #> 7185 450 0.6649946 0.127035238 fv Gamma Cox, Gamma FALSE #> 7201 451 0.7889763 0.148648185 fv Gamma Cox, Gamma FALSE #> 7217 452 0.5385995 0.106107012 fv Gamma Cox, Gamma FALSE #> 7233 453 0.7976309 0.149294907 fv Gamma Cox, Gamma FALSE #> 7249 454 0.6812803 0.133807496 fv Gamma Cox, Gamma FALSE #> 7265 455 0.7853285 0.148442373 fv Gamma Cox, Gamma FALSE #> 7281 456 0.8013663 0.150752027 fv Gamma Cox, Gamma FALSE #> 7297 457 0.7567226 0.143306581 fv Gamma Cox, Gamma FALSE #> 7313 458 0.8390265 0.158325038 fv Gamma Cox, Gamma FALSE #> 7329 459 0.6846816 0.131871936 fv Gamma Cox, Gamma FALSE #> 7345 460 0.5993262 NA fv Gamma Cox, Gamma NA #> 7361 461 0.7089733 0.135818026 fv Gamma Cox, Gamma FALSE #> 7377 462 0.9322032 0.176108434 fv Gamma Cox, Gamma FALSE #> 7393 463 0.5899818 0.113578435 fv Gamma Cox, Gamma FALSE #> 7409 464 0.5457337 0.107935854 fv Gamma Cox, Gamma FALSE #> 7425 465 0.6924278 0.131950434 fv Gamma Cox, Gamma FALSE #> 7441 466 0.8586186 0.164067739 fv Gamma Cox, Gamma FALSE #> 7457 467 0.8607295 0.162516222 fv Gamma Cox, Gamma FALSE #> 7473 468 0.5840632 0.113431719 fv Gamma Cox, Gamma FALSE #> 7489 469 0.7721755 0.148974573 fv Gamma Cox, Gamma FALSE #> 7505 470 0.7864966 0.147551158 fv Gamma Cox, Gamma FALSE #> 7521 471 0.6014325 0.116605603 fv Gamma Cox, Gamma FALSE #> 7537 472 0.7782183 0.146490838 fv Gamma Cox, Gamma FALSE #> 7553 473 0.6782043 0.129840010 fv Gamma Cox, Gamma FALSE #> 7569 474 0.6246471 0.122746003 fv Gamma Cox, Gamma FALSE #> 7585 475 1.1066875 0.208302683 fv Gamma Cox, Gamma TRUE #> 7601 476 0.5556522 0.108984002 fv Gamma Cox, Gamma FALSE #> 7617 477 0.8566296 0.159877492 fv Gamma Cox, Gamma FALSE #> 7633 478 0.6815679 0.131090134 fv Gamma Cox, Gamma FALSE #> 7649 479 0.8652759 0.161735280 fv Gamma Cox, Gamma FALSE #> 7665 480 0.7542582 0.144197098 fv Gamma Cox, Gamma FALSE #> 7681 481 0.6792317 0.131026222 fv Gamma Cox, Gamma FALSE #> 7697 482 0.6255814 0.124083667 fv Gamma Cox, Gamma FALSE #> 7713 483 0.6524135 0.127114059 fv Gamma Cox, Gamma FALSE #> 7729 484 0.7084909 0.134146311 fv Gamma Cox, Gamma FALSE #> 7745 485 0.7116749 0.135010465 fv Gamma Cox, Gamma FALSE #> 7761 486 0.5675852 0.111128327 fv Gamma Cox, Gamma FALSE #> 7777 487 0.8227084 0.154214426 fv Gamma Cox, Gamma FALSE #> 7793 488 0.6805839 0.132475141 fv Gamma Cox, Gamma FALSE #> 7809 489 0.8828861 0.168922643 fv Gamma Cox, Gamma FALSE #> 7825 490 1.0616372 0.193890898 fv Gamma Cox, Gamma FALSE #> 7841 491 0.6822397 0.130612568 fv Gamma Cox, Gamma FALSE #> 7857 492 0.8222004 0.155512481 fv Gamma Cox, Gamma FALSE #> 7873 493 0.7750104 0.151083906 fv Gamma Cox, Gamma FALSE #> 7889 494 0.7222312 0.137802429 fv Gamma Cox, Gamma FALSE #> 7905 495 0.7690374 0.146304536 fv Gamma Cox, Gamma FALSE #> 7921 496 0.5161178 0.102242565 fv Gamma Cox, Gamma FALSE #> 7937 497 0.6616442 0.126467428 fv Gamma Cox, Gamma FALSE #> 7953 498 0.6310750 0.122098317 fv Gamma Cox, Gamma FALSE #> 7969 499 0.9368503 0.175074305 fv Gamma Cox, Gamma FALSE #> 7985 500 0.8980660 0.169636790 fv Gamma Cox, Gamma FALSE #> 8001 501 0.6945294 0.132580566 fv Gamma Cox, Gamma FALSE #> 8017 502 0.7586970 0.143861263 fv Gamma Cox, Gamma FALSE #> 8033 503 0.6796761 0.130505602 fv Gamma Cox, Gamma FALSE #> 8049 504 0.8750771 0.162492220 fv Gamma Cox, Gamma FALSE #> 8065 505 0.9242294 0.173034278 fv Gamma Cox, Gamma FALSE #> 8081 506 0.6642908 0.127078492 fv Gamma Cox, Gamma FALSE #> 8097 507 0.6220734 0.120661088 fv Gamma Cox, Gamma FALSE #> 8113 508 0.6638922 0.127459533 fv Gamma Cox, Gamma FALSE #> 8129 509 0.7011241 0.133602323 fv Gamma Cox, Gamma FALSE #> 8145 510 0.9146957 0.169745733 fv Gamma Cox, Gamma FALSE #> 8161 511 0.7417783 0.141579855 fv Gamma Cox, Gamma FALSE #> 8177 512 0.8087679 0.152328374 fv Gamma Cox, Gamma FALSE #> 8193 513 0.5954906 0.116001360 fv Gamma Cox, Gamma FALSE #> 8209 514 0.6569979 0.126927260 fv Gamma Cox, Gamma FALSE #> 8225 515 0.6212970 0.120107176 fv Gamma Cox, Gamma FALSE #> 8241 516 0.7542450 0.144369845 fv Gamma Cox, Gamma FALSE #> 8257 517 0.7857159 0.148313320 fv Gamma Cox, Gamma FALSE #> 8273 518 0.8537068 0.158622013 fv Gamma Cox, Gamma FALSE #> 8289 519 0.7034337 0.134310592 fv Gamma Cox, Gamma FALSE #> 8305 520 0.6197376 0.119943182 fv Gamma Cox, Gamma FALSE #> 8321 521 0.5610014 0.109140591 fv Gamma Cox, Gamma FALSE #> 8337 522 0.5438508 0.106296184 fv Gamma Cox, Gamma FALSE #> 8353 523 0.6698531 0.129490382 fv Gamma Cox, Gamma FALSE #> 8369 524 0.6020242 0.117226384 fv Gamma Cox, Gamma FALSE #> 8385 525 1.0516324 0.192496879 fv Gamma Cox, Gamma FALSE #> 8401 526 0.7609652 0.144096404 fv Gamma Cox, Gamma FALSE #> 8417 527 0.6881981 0.133087351 fv Gamma Cox, Gamma FALSE #> 8433 528 0.6054273 0.117775780 fv Gamma Cox, Gamma FALSE #> 8449 529 0.8516933 0.159701160 fv Gamma Cox, Gamma FALSE #> 8465 530 0.8926019 0.166575907 fv Gamma Cox, Gamma FALSE #> 8481 531 0.7916298 0.148159862 fv Gamma Cox, Gamma FALSE #> 8497 532 0.7897519 0.149192705 fv Gamma Cox, Gamma FALSE #> 8513 533 0.7284274 0.138699326 fv Gamma Cox, Gamma FALSE #> 8529 534 0.7790291 0.146354155 fv Gamma Cox, Gamma FALSE #> 8545 535 0.9538809 0.176303899 fv Gamma Cox, Gamma FALSE #> 8561 536 0.8270741 0.154370683 fv Gamma Cox, Gamma FALSE #> 8577 537 0.7138513 0.139534596 fv Gamma Cox, Gamma FALSE #> 8593 538 0.6246478 NA fv Gamma Cox, Gamma NA #> 8609 539 0.8627532 0.161183355 fv Gamma Cox, Gamma FALSE #> 8625 540 0.7660902 0.149389899 fv Gamma Cox, Gamma FALSE #> 8641 541 0.6295377 0.122597777 fv Gamma Cox, Gamma FALSE #> 8657 542 0.8369873 0.157179557 fv Gamma Cox, Gamma FALSE #> 8673 543 0.9027111 0.167848994 fv Gamma Cox, Gamma FALSE #> 8689 544 0.8231412 0.154281762 fv Gamma Cox, Gamma FALSE #> 8705 545 0.6971651 0.133999902 fv Gamma Cox, Gamma FALSE #> 8721 546 0.6917187 0.132692058 fv Gamma Cox, Gamma FALSE #> 8737 547 0.6612332 0.126891190 fv Gamma Cox, Gamma FALSE #> 8753 548 0.6319194 0.006583581 fv Gamma Cox, Gamma TRUE #> 8769 549 0.8020343 0.153784386 fv Gamma Cox, Gamma FALSE #> 8785 550 0.8857710 0.173416696 fv Gamma Cox, Gamma FALSE #> 8801 551 0.7206925 0.137282217 fv Gamma Cox, Gamma FALSE #> 8817 552 0.5655243 0.111609299 fv Gamma Cox, Gamma FALSE #> 8833 553 0.5894449 0.115099271 fv Gamma Cox, Gamma FALSE #> 8849 554 0.6799194 0.131022822 fv Gamma Cox, Gamma FALSE #> 8865 555 0.5942723 0.116121667 fv Gamma Cox, Gamma FALSE #> 8881 556 0.5409466 0.106333958 fv Gamma Cox, Gamma FALSE #> 8897 557 1.1276785 0.208600321 fv Gamma Cox, Gamma TRUE #> 8913 558 0.8056241 0.152243016 fv Gamma Cox, Gamma FALSE #> 8929 559 0.6165829 0.122550777 fv Gamma Cox, Gamma FALSE #> 8945 560 0.7506013 0.143366986 fv Gamma Cox, Gamma FALSE #> 8961 561 0.7560469 0.142619604 fv Gamma Cox, Gamma FALSE #> 8977 562 0.4475603 0.089294336 fv Gamma Cox, Gamma FALSE #> 8993 563 0.7697251 0.146259739 fv Gamma Cox, Gamma FALSE #> 9009 564 0.7596255 0.143001550 fv Gamma Cox, Gamma FALSE #> 9025 565 0.8209886 0.158901699 fv Gamma Cox, Gamma FALSE #> 9041 566 0.8540708 0.160172577 fv Gamma Cox, Gamma FALSE #> 9057 567 0.7239583 0.138160326 fv Gamma Cox, Gamma FALSE #> 9073 568 0.7918967 0.152246336 fv Gamma Cox, Gamma FALSE #> 9089 569 0.6846417 0.132938759 fv Gamma Cox, Gamma FALSE #> 9105 570 0.7180058 0.136793903 fv Gamma Cox, Gamma FALSE #> 9121 571 0.7534625 0.142541419 fv Gamma Cox, Gamma FALSE #> 9137 572 0.8277711 0.154274630 fv Gamma Cox, Gamma FALSE #> 9153 573 0.5338253 0.105713447 fv Gamma Cox, Gamma FALSE #> 9169 574 0.8516856 0.162398703 fv Gamma Cox, Gamma FALSE #> 9185 575 0.7042959 0.134581473 fv Gamma Cox, Gamma FALSE #> 9201 576 0.7417747 0.142360056 fv Gamma Cox, Gamma FALSE #> 9217 577 0.6314368 0.122446267 fv Gamma Cox, Gamma FALSE #> 9233 578 0.6519440 0.125000623 fv Gamma Cox, Gamma FALSE #> 9249 579 0.6465344 NA fv Gamma Cox, Gamma NA #> 9265 580 0.6101363 0.117780410 fv Gamma Cox, Gamma FALSE #> 9281 581 0.8567743 0.159745166 fv Gamma Cox, Gamma FALSE #> 9297 582 0.4249017 0.084684463 fv Gamma Cox, Gamma FALSE #> 9313 583 0.7812605 0.147186401 fv Gamma Cox, Gamma FALSE #> 9329 584 0.6289872 NA fv Gamma Cox, Gamma NA #> 9345 585 1.1129083 0.202616476 fv Gamma Cox, Gamma TRUE #> 9361 586 1.0020180 0.183131340 fv Gamma Cox, Gamma FALSE #> 9377 587 0.7823646 0.147627151 fv Gamma Cox, Gamma FALSE #> 9393 588 0.7965984 0.151873142 fv Gamma Cox, Gamma FALSE #> 9409 589 0.5848703 0.113875946 fv Gamma Cox, Gamma FALSE #> 9425 590 0.6723444 0.129201859 fv Gamma Cox, Gamma FALSE #> 9441 591 0.7146685 0.136960728 fv Gamma Cox, Gamma FALSE #> 9457 592 0.8875873 0.165449957 fv Gamma Cox, Gamma FALSE #> 9473 593 0.6956131 0.136694985 fv Gamma Cox, Gamma FALSE #> 9489 594 0.7214667 0.138957335 fv Gamma Cox, Gamma FALSE #> 9505 595 0.7101161 0.135025353 fv Gamma Cox, Gamma FALSE #> 9521 596 0.8418777 0.157263827 fv Gamma Cox, Gamma FALSE #> 9537 597 0.9729782 0.183742916 fv Gamma Cox, Gamma FALSE #> 9553 598 0.7302043 0.138489839 fv Gamma Cox, Gamma FALSE #> 9569 599 1.0924857 0.198613543 fv Gamma Cox, Gamma FALSE #> 9585 600 0.9354165 0.172435311 fv Gamma Cox, Gamma FALSE #> 9601 601 0.6883910 0.131587270 fv Gamma Cox, Gamma FALSE #> 9617 602 0.8070003 0.154414727 fv Gamma Cox, Gamma FALSE #> 9633 603 0.6856989 0.130901389 fv Gamma Cox, Gamma FALSE #> 9649 604 0.8376770 0.164630472 fv Gamma Cox, Gamma FALSE #> 9665 605 0.8981670 0.170534144 fv Gamma Cox, Gamma FALSE #> 9681 606 0.7882221 0.148789284 fv Gamma Cox, Gamma FALSE #> 9697 607 0.6476463 0.125475048 fv Gamma Cox, Gamma FALSE #> 9713 608 0.8155224 0.153555972 fv Gamma Cox, Gamma FALSE #> 9729 609 0.8892325 0.166132966 fv Gamma Cox, Gamma FALSE #> 9745 610 0.7927409 0.149226966 fv Gamma Cox, Gamma FALSE #> 9761 611 0.6492237 0.125252832 fv Gamma Cox, Gamma FALSE #> 9777 612 0.8847558 0.164946654 fv Gamma Cox, Gamma FALSE #> 9793 613 0.7555553 0.143065459 fv Gamma Cox, Gamma FALSE #> 9809 614 0.6999420 0.133898539 fv Gamma Cox, Gamma FALSE #> 9825 615 0.6323970 0.121998668 fv Gamma Cox, Gamma FALSE #> 9841 616 0.9258004 0.171970867 fv Gamma Cox, Gamma FALSE #> 9857 617 0.9810413 0.184675944 fv Gamma Cox, Gamma FALSE #> 9873 618 0.5773346 0.112316606 fv Gamma Cox, Gamma FALSE #> 9889 619 0.6347891 0.122523189 fv Gamma Cox, Gamma FALSE #> 9905 620 0.6827832 0.131100442 fv Gamma Cox, Gamma FALSE #> 9921 621 0.7975355 0.150353049 fv Gamma Cox, Gamma FALSE #> 9937 622 1.1223277 0.204313520 fv Gamma Cox, Gamma TRUE #> 9953 623 0.5579222 0.108700678 fv Gamma Cox, Gamma FALSE #> 9969 624 0.7128043 0.135198610 fv Gamma Cox, Gamma FALSE #> 9985 625 0.6645098 0.127866473 fv Gamma Cox, Gamma FALSE #> 10001 626 0.5434477 0.107111683 fv Gamma Cox, Gamma FALSE #> 10017 627 0.6384977 0.127531672 fv Gamma Cox, Gamma FALSE #> 10033 628 0.7155575 0.135607273 fv Gamma Cox, Gamma FALSE #> 10049 629 0.5743986 0.113030438 fv Gamma Cox, Gamma FALSE #> 10065 630 0.9263040 0.171879492 fv Gamma Cox, Gamma FALSE #> 10081 631 0.8454909 0.163553297 fv Gamma Cox, Gamma FALSE #> 10097 632 0.5915189 0.115112532 fv Gamma Cox, Gamma FALSE #> 10113 633 0.5378909 0.105342707 fv Gamma Cox, Gamma FALSE #> 10129 634 0.5606903 0.109482541 fv Gamma Cox, Gamma FALSE #> 10145 635 0.4726450 0.094667526 fv Gamma Cox, Gamma FALSE #> 10161 636 0.6834728 0.132595448 fv Gamma Cox, Gamma FALSE #> 10177 637 0.7517155 0.142228970 fv Gamma Cox, Gamma FALSE #> 10193 638 0.6135361 0.122501483 fv Gamma Cox, Gamma FALSE #> 10209 639 0.7014499 0.133681174 fv Gamma Cox, Gamma FALSE #> 10225 640 0.6128640 NA fv Gamma Cox, Gamma NA #> 10241 641 0.6673911 0.127458375 fv Gamma Cox, Gamma FALSE #> 10257 642 0.6815744 0.131201354 fv Gamma Cox, Gamma FALSE #> 10273 643 0.6395380 0.123473684 fv Gamma Cox, Gamma FALSE #> 10289 644 0.9281496 0.178044104 fv Gamma Cox, Gamma FALSE #> 10305 645 0.5058058 0.099576567 fv Gamma Cox, Gamma FALSE #> 10321 646 0.5752018 0.112537616 fv Gamma Cox, Gamma FALSE #> 10337 647 1.0966623 0.201529503 fv Gamma Cox, Gamma FALSE #> 10353 648 0.7244534 0.137071261 fv Gamma Cox, Gamma FALSE #> 10369 649 0.8332207 0.156331374 fv Gamma Cox, Gamma FALSE #> 10385 650 0.9649527 0.179069982 fv Gamma Cox, Gamma FALSE #> 10401 651 0.9464873 0.175101726 fv Gamma Cox, Gamma FALSE #> 10417 652 0.7609635 0.144258476 fv Gamma Cox, Gamma FALSE #> 10433 653 0.9382049 0.177882581 fv Gamma Cox, Gamma FALSE #> 10449 654 0.6062464 0.117645954 fv Gamma Cox, Gamma FALSE #> 10465 655 0.6767305 0.129314528 fv Gamma Cox, Gamma FALSE #> 10481 656 0.7862486 0.148608077 fv Gamma Cox, Gamma FALSE #> 10497 657 0.7137173 0.136369085 fv Gamma Cox, Gamma FALSE #> 10513 658 0.8178731 0.154550758 fv Gamma Cox, Gamma FALSE #> 10529 659 0.8561291 0.161265853 fv Gamma Cox, Gamma FALSE #> 10545 660 0.7951042 0.153064842 fv Gamma Cox, Gamma FALSE #> 10561 661 0.5838602 0.113215726 fv Gamma Cox, Gamma FALSE #> 10577 662 0.4485783 0.089198580 fv Gamma Cox, Gamma FALSE #> 10593 663 0.6581613 NA fv Gamma Cox, Gamma NA #> 10609 664 0.7241489 0.137001157 fv Gamma Cox, Gamma FALSE #> 10625 665 0.6926612 0.133197792 fv Gamma Cox, Gamma FALSE #> 10641 666 0.6778013 0.132901048 fv Gamma Cox, Gamma FALSE #> 10657 667 0.8867749 0.168166698 fv Gamma Cox, Gamma FALSE #> 10673 668 0.8301043 0.158911230 fv Gamma Cox, Gamma FALSE #> 10689 669 0.5407391 0.106146295 fv Gamma Cox, Gamma FALSE #> 10705 670 0.8485756 0.162192318 fv Gamma Cox, Gamma FALSE #> 10721 671 0.8766589 0.163763076 fv Gamma Cox, Gamma FALSE #> 10737 672 0.6153715 NA fv Gamma Cox, Gamma NA #> 10753 673 0.6107089 0.117370604 fv Gamma Cox, Gamma FALSE #> 10769 674 0.9545713 0.180865051 fv Gamma Cox, Gamma FALSE #> 10785 675 0.6959295 0.132291736 fv Gamma Cox, Gamma FALSE #> 10801 676 0.5082065 0.102830300 fv Gamma Cox, Gamma FALSE #> 10817 677 0.6335714 0.121472662 fv Gamma Cox, Gamma FALSE #> 10833 678 0.8358190 0.157360400 fv Gamma Cox, Gamma FALSE #> 10849 679 0.9489850 0.175902516 fv Gamma Cox, Gamma FALSE #> 10865 680 0.6831995 0.135084593 fv Gamma Cox, Gamma FALSE #> 10881 681 0.5643254 0.110253548 fv Gamma Cox, Gamma FALSE #> 10897 682 0.7617965 0.143922368 fv Gamma Cox, Gamma FALSE #> 10913 683 0.8612983 0.164005648 fv Gamma Cox, Gamma FALSE #> 10929 684 0.9306887 0.172309343 fv Gamma Cox, Gamma FALSE #> 10945 685 0.6426137 0.123487366 fv Gamma Cox, Gamma FALSE #> 10961 686 0.5504300 0.108056938 fv Gamma Cox, Gamma FALSE #> 10977 687 1.0715471 0.195861853 fv Gamma Cox, Gamma FALSE #> 10993 688 0.7247087 0.137711351 fv Gamma Cox, Gamma FALSE #> 11009 689 0.7044312 0.134177121 fv Gamma Cox, Gamma FALSE #> 11025 690 0.9424856 0.173674021 fv Gamma Cox, Gamma FALSE #> 11041 691 0.7890166 0.149550201 fv Gamma Cox, Gamma FALSE #> 11057 692 0.7272266 0.137587457 fv Gamma Cox, Gamma FALSE #> 11073 693 0.8573916 0.162747887 fv Gamma Cox, Gamma FALSE #> 11089 694 0.8534868 0.161603640 fv Gamma Cox, Gamma FALSE #> 11105 695 0.7322424 0.142478400 fv Gamma Cox, Gamma FALSE #> 11121 696 0.7257254 0.140591529 fv Gamma Cox, Gamma FALSE #> 11137 697 0.7333151 0.139148123 fv Gamma Cox, Gamma FALSE #> 11153 698 0.7079694 0.135061149 fv Gamma Cox, Gamma FALSE #> 11169 699 0.7213398 0.136395589 fv Gamma Cox, Gamma FALSE #> 11185 700 1.1804472 0.212933204 fv Gamma Cox, Gamma TRUE #> 11201 701 0.6387989 0.122746463 fv Gamma Cox, Gamma FALSE #> 11217 702 0.7190115 0.141352091 fv Gamma Cox, Gamma FALSE #> 11233 703 0.5731256 0.112207992 fv Gamma Cox, Gamma FALSE #> 11249 704 0.9037123 0.167031332 fv Gamma Cox, Gamma FALSE #> 11265 705 0.9728518 0.179527679 fv Gamma Cox, Gamma FALSE #> 11281 706 0.7500375 0.141850521 fv Gamma Cox, Gamma FALSE #> 11297 707 0.5756002 0.113226216 fv Gamma Cox, Gamma FALSE #> 11313 708 0.8181883 0.157337000 fv Gamma Cox, Gamma FALSE #> 11329 709 0.7474298 0.141423613 fv Gamma Cox, Gamma FALSE #> 11345 710 0.7454622 0.140549261 fv Gamma Cox, Gamma FALSE #> 11361 711 0.3894059 0.079382350 fv Gamma Cox, Gamma FALSE #> 11377 712 0.7212272 0.137524828 fv Gamma Cox, Gamma FALSE #> 11393 713 0.7565196 0.142332022 fv Gamma Cox, Gamma FALSE #> 11409 714 0.8595678 0.164830902 fv Gamma Cox, Gamma FALSE #> 11425 715 0.9462299 0.175784475 fv Gamma Cox, Gamma FALSE #> 11441 716 0.8149458 0.154563840 fv Gamma Cox, Gamma FALSE #> 11457 717 0.6258843 0.125296314 fv Gamma Cox, Gamma FALSE #> 11473 718 0.7241018 0.138809353 fv Gamma Cox, Gamma FALSE #> 11489 719 0.6472919 0.124029879 fv Gamma Cox, Gamma FALSE #> 11505 720 0.6462965 0.124507001 fv Gamma Cox, Gamma FALSE #> 11521 721 0.8668431 0.163374189 fv Gamma Cox, Gamma FALSE #> 11537 722 0.8751804 0.163803285 fv Gamma Cox, Gamma FALSE #> 11553 723 0.7688477 0.148856537 fv Gamma Cox, Gamma FALSE #> 11569 724 0.6330552 0.122262688 fv Gamma Cox, Gamma FALSE #> 11585 725 0.6439821 0.123472393 fv Gamma Cox, Gamma FALSE #> 11601 726 0.6382621 0.124017757 fv Gamma Cox, Gamma FALSE #> 11617 727 0.8274516 0.157670945 fv Gamma Cox, Gamma FALSE #> 11633 728 0.5470298 0.110455707 fv Gamma Cox, Gamma FALSE #> 11649 729 0.7934510 0.149151202 fv Gamma Cox, Gamma FALSE #> 11665 730 0.9028028 0.172657452 fv Gamma Cox, Gamma FALSE #> 11681 731 0.9106973 0.169985677 fv Gamma Cox, Gamma FALSE #> 11697 732 0.8609186 0.159667483 fv Gamma Cox, Gamma FALSE #> 11713 733 0.5696342 0.111161534 fv Gamma Cox, Gamma FALSE #> 11729 734 0.5714461 0.111644351 fv Gamma Cox, Gamma FALSE #> 11745 735 0.7858057 0.147794812 fv Gamma Cox, Gamma FALSE #> 11761 736 0.8311006 0.159563715 fv Gamma Cox, Gamma FALSE #> 11777 737 0.7011583 0.133559009 fv Gamma Cox, Gamma FALSE #> 11793 738 0.6425217 0.129359897 fv Gamma Cox, Gamma FALSE #> 11809 739 0.6952162 0.132859258 fv Gamma Cox, Gamma FALSE #> 11825 740 0.6816161 0.130493619 fv Gamma Cox, Gamma FALSE #> 11841 741 0.7984124 0.151405815 fv Gamma Cox, Gamma FALSE #> 11857 742 0.6113573 0.118351933 fv Gamma Cox, Gamma FALSE #> 11873 743 0.7768640 0.146725181 fv Gamma Cox, Gamma FALSE #> 11889 744 1.0010037 0.187976904 fv Gamma Cox, Gamma FALSE #> 11905 745 0.6369326 0.124638617 fv Gamma Cox, Gamma FALSE #> 11921 746 0.4547392 0.090878742 fv Gamma Cox, Gamma FALSE #> 11937 747 0.6243564 NA fv Gamma Cox, Gamma NA #> 11953 748 0.8321617 0.155213104 fv Gamma Cox, Gamma FALSE #> 11969 749 0.6214388 0.120268760 fv Gamma Cox, Gamma FALSE #> 11985 750 0.5547780 0.108170284 fv Gamma Cox, Gamma FALSE #> 12001 751 0.9029269 0.167251872 fv Gamma Cox, Gamma FALSE #> 12017 752 0.8158367 0.153701903 fv Gamma Cox, Gamma FALSE #> 12033 753 0.6268532 0.122830159 fv Gamma Cox, Gamma FALSE #> 12049 754 0.7604952 0.143957643 fv Gamma Cox, Gamma FALSE #> 12065 755 0.7755205 0.146754514 fv Gamma Cox, Gamma FALSE #> 12081 756 1.1338308 0.205371520 fv Gamma Cox, Gamma TRUE #> 12097 757 0.6141619 0.119190168 fv Gamma Cox, Gamma FALSE #> 12113 758 0.5421448 0.106441629 fv Gamma Cox, Gamma FALSE #> 12129 759 0.6135692 0.118641503 fv Gamma Cox, Gamma FALSE #> 12145 760 0.6039901 NA fv Gamma Cox, Gamma NA #> 12161 761 0.7675576 0.146194900 fv Gamma Cox, Gamma FALSE #> 12177 762 0.6497935 0.124892235 fv Gamma Cox, Gamma FALSE #> 12193 763 0.6141013 0.119005700 fv Gamma Cox, Gamma FALSE #> 12209 764 0.7138323 0.136853512 fv Gamma Cox, Gamma FALSE #> 12225 765 0.6968334 0.134411196 fv Gamma Cox, Gamma FALSE #> 12241 766 0.5653622 0.110834209 fv Gamma Cox, Gamma FALSE #> 12257 767 0.7773964 0.147674261 fv Gamma Cox, Gamma FALSE #> 12273 768 0.7275932 0.138104443 fv Gamma Cox, Gamma FALSE #> 12289 769 0.8012518 0.150258739 fv Gamma Cox, Gamma FALSE #> 12305 770 0.5881467 0.115918836 fv Gamma Cox, Gamma FALSE #> 12321 771 0.5582652 0.109204974 fv Gamma Cox, Gamma FALSE #> 12337 772 0.8615970 0.165608183 fv Gamma Cox, Gamma FALSE #> 12353 773 0.6832303 0.131879273 fv Gamma Cox, Gamma FALSE #> 12369 774 0.7392229 0.139984302 fv Gamma Cox, Gamma FALSE #> 12385 775 0.9718989 0.182805349 fv Gamma Cox, Gamma FALSE #> 12401 776 0.7453084 0.140746137 fv Gamma Cox, Gamma FALSE #> 12417 777 0.6330554 0.122393589 fv Gamma Cox, Gamma FALSE #> 12433 778 0.7985011 0.151646980 fv Gamma Cox, Gamma FALSE #> 12449 779 0.8074756 0.152531003 fv Gamma Cox, Gamma FALSE #> 12465 780 0.8180757 0.154987196 fv Gamma Cox, Gamma FALSE #> 12481 781 0.6082118 0.119222818 fv Gamma Cox, Gamma FALSE #> 12497 782 0.6587172 0.131465834 fv Gamma Cox, Gamma FALSE #> 12513 783 0.7736700 0.145777095 fv Gamma Cox, Gamma FALSE #> 12529 784 0.6471594 0.123949451 fv Gamma Cox, Gamma FALSE #> 12545 785 0.6391755 0.122834514 fv Gamma Cox, Gamma FALSE #> 12561 786 0.9004978 0.168639083 fv Gamma Cox, Gamma FALSE #> 12577 787 0.8098357 0.157221614 fv Gamma Cox, Gamma FALSE #> 12593 788 0.7364478 0.140602985 fv Gamma Cox, Gamma FALSE #> 12609 789 0.8480764 0.161362989 fv Gamma Cox, Gamma FALSE #> 12625 790 0.9009634 0.172274725 fv Gamma Cox, Gamma FALSE #> 12641 791 0.9429739 0.177975160 fv Gamma Cox, Gamma FALSE #> 12657 792 0.9334192 0.173662065 fv Gamma Cox, Gamma FALSE #> 12673 793 0.6720125 0.128866983 fv Gamma Cox, Gamma FALSE #> 12689 794 0.3839860 0.077645568 fv Gamma Cox, Gamma FALSE #> 12705 795 0.6986569 0.134254162 fv Gamma Cox, Gamma FALSE #> 12721 796 0.7909092 0.149755855 fv Gamma Cox, Gamma FALSE #> 12737 797 0.6261971 0.121737443 fv Gamma Cox, Gamma FALSE #> 12753 798 0.5844054 0.114012882 fv Gamma Cox, Gamma FALSE #> 12769 799 0.9180832 0.177794269 fv Gamma Cox, Gamma FALSE #> 12785 800 0.8898310 0.009215322 fv Gamma Cox, Gamma TRUE #> 12801 801 0.6029141 0.118004690 fv Gamma Cox, Gamma FALSE #> 12817 802 0.6136151 0.118209030 fv Gamma Cox, Gamma FALSE #> 12833 803 0.7643843 0.144107978 fv Gamma Cox, Gamma FALSE #> 12849 804 0.7880555 0.148940888 fv Gamma Cox, Gamma FALSE #> 12865 805 0.7998431 0.151085310 fv Gamma Cox, Gamma FALSE #> 12881 806 0.5799163 0.112694012 fv Gamma Cox, Gamma FALSE #> 12897 807 0.9651011 0.178731784 fv Gamma Cox, Gamma FALSE #> 12913 808 0.7025718 0.137651644 fv Gamma Cox, Gamma FALSE #> 12929 809 0.8694688 0.167063978 fv Gamma Cox, Gamma FALSE #> 12945 810 0.7524828 0.142292627 fv Gamma Cox, Gamma FALSE #> 12961 811 0.9760360 0.179659577 fv Gamma Cox, Gamma FALSE #> 12977 812 0.6752901 0.129939984 fv Gamma Cox, Gamma FALSE #> 12993 813 0.8548886 0.159815547 fv Gamma Cox, Gamma FALSE #> 13009 814 0.8475993 0.160224215 fv Gamma Cox, Gamma FALSE #> 13025 815 1.0378135 0.193339139 fv Gamma Cox, Gamma FALSE #> 13041 816 0.6058893 0.118810341 fv Gamma Cox, Gamma FALSE #> 13057 817 0.8294245 0.160278552 fv Gamma Cox, Gamma FALSE #> 13073 818 0.6699606 0.129819938 fv Gamma Cox, Gamma FALSE #> 13089 819 0.9026802 0.171814094 fv Gamma Cox, Gamma FALSE #> 13105 820 0.6607045 0.126534866 fv Gamma Cox, Gamma FALSE #> 13121 821 0.7740695 0.148978813 fv Gamma Cox, Gamma FALSE #> 13137 822 0.5192049 0.101919886 fv Gamma Cox, Gamma FALSE #> 13153 823 0.7124120 0.136595828 fv Gamma Cox, Gamma FALSE #> 13169 824 0.7414032 0.141357073 fv Gamma Cox, Gamma FALSE #> 13185 825 0.5626547 0.109971816 fv Gamma Cox, Gamma FALSE #> 13201 826 0.7043875 0.133119162 fv Gamma Cox, Gamma FALSE #> 13217 827 0.6514503 0.124574860 fv Gamma Cox, Gamma FALSE #> 13233 828 0.9596989 0.181593656 fv Gamma Cox, Gamma FALSE #> 13249 829 0.6007949 0.116361517 fv Gamma Cox, Gamma FALSE #> 13265 830 0.8469501 0.159224212 fv Gamma Cox, Gamma FALSE #> 13281 831 0.5408164 0.107608019 fv Gamma Cox, Gamma FALSE #> 13297 832 0.7255851 0.137920926 fv Gamma Cox, Gamma FALSE #> 13313 833 0.7233601 0.137867717 fv Gamma Cox, Gamma FALSE #> 13329 834 0.5366763 0.106094653 fv Gamma Cox, Gamma FALSE #> 13345 835 0.6807868 0.129887049 fv Gamma Cox, Gamma FALSE #> 13361 836 0.7233304 0.138523590 fv Gamma Cox, Gamma FALSE #> 13377 837 0.6975474 0.134553921 fv Gamma Cox, Gamma FALSE #> 13393 838 0.9069225 0.168108493 fv Gamma Cox, Gamma FALSE #> 13409 839 0.6369026 NA fv Gamma Cox, Gamma NA #> 13425 840 0.7404369 0.141071662 fv Gamma Cox, Gamma FALSE #> 13441 841 0.7236781 0.136543217 fv Gamma Cox, Gamma FALSE #> 13457 842 0.7269617 0.139559720 fv Gamma Cox, Gamma FALSE #> 13473 843 0.9404634 0.175372253 fv Gamma Cox, Gamma FALSE #> 13489 844 0.7591388 0.146210176 fv Gamma Cox, Gamma FALSE #> 13505 845 0.8950945 0.167596204 fv Gamma Cox, Gamma FALSE #> 13521 846 0.6293815 0.123382026 fv Gamma Cox, Gamma FALSE #> 13537 847 0.6395938 0.126059073 fv Gamma Cox, Gamma FALSE #> 13553 848 0.5252646 0.103677785 fv Gamma Cox, Gamma FALSE #> 13569 849 0.7224527 0.136457894 fv Gamma Cox, Gamma FALSE #> 13585 850 0.6655871 0.127329444 fv Gamma Cox, Gamma FALSE #> 13601 851 0.7693731 0.146390092 fv Gamma Cox, Gamma FALSE #> 13617 852 0.4630289 0.092204110 fv Gamma Cox, Gamma FALSE #> 13633 853 0.7458003 0.141114834 fv Gamma Cox, Gamma FALSE #> 13649 854 0.5495523 0.107672747 fv Gamma Cox, Gamma FALSE #> 13665 855 0.9345197 0.173532238 fv Gamma Cox, Gamma FALSE #> 13681 856 0.8111527 0.152332420 fv Gamma Cox, Gamma FALSE #> 13697 857 0.5890767 0.115410240 fv Gamma Cox, Gamma FALSE #> 13713 858 0.6332795 0.122745694 fv Gamma Cox, Gamma FALSE #> 13729 859 0.6800949 0.133382028 fv Gamma Cox, Gamma FALSE #> 13745 860 0.6622329 0.127201962 fv Gamma Cox, Gamma FALSE #> 13761 861 0.8276490 0.155843336 fv Gamma Cox, Gamma FALSE #> 13777 862 0.6250495 0.119957952 fv Gamma Cox, Gamma FALSE #> 13793 863 0.7531449 0.143142148 fv Gamma Cox, Gamma FALSE #> 13809 864 0.7254803 0.138882972 fv Gamma Cox, Gamma FALSE #> 13825 865 0.7898965 0.149750258 fv Gamma Cox, Gamma FALSE #> 13841 866 0.6936516 0.132582282 fv Gamma Cox, Gamma FALSE #> 13857 867 0.7247385 0.138061579 fv Gamma Cox, Gamma FALSE #> 13873 868 0.7636970 0.144736951 fv Gamma Cox, Gamma FALSE #> 13889 869 0.7396685 0.140631206 fv Gamma Cox, Gamma FALSE #> 13905 870 0.6878653 0.134946113 fv Gamma Cox, Gamma FALSE #> 13921 871 0.9322391 0.174943111 fv Gamma Cox, Gamma FALSE #> 13937 872 0.8718313 0.164024706 fv Gamma Cox, Gamma FALSE #> 13953 873 0.8129908 0.152112199 fv Gamma Cox, Gamma FALSE #> 13969 874 1.0572431 0.200675949 fv Gamma Cox, Gamma FALSE #> 13985 875 0.6157512 0.118829283 fv Gamma Cox, Gamma FALSE #> 14001 876 0.6630098 0.126690567 fv Gamma Cox, Gamma FALSE #> 14017 877 0.7466926 0.141466654 fv Gamma Cox, Gamma FALSE #> 14033 878 0.7914158 0.152095093 fv Gamma Cox, Gamma FALSE #> 14049 879 0.7052097 0.139283078 fv Gamma Cox, Gamma FALSE #> 14065 880 0.9210401 0.170865848 fv Gamma Cox, Gamma FALSE #> 14081 881 0.8075285 0.152978998 fv Gamma Cox, Gamma FALSE #> 14097 882 0.9622325 0.177253168 fv Gamma Cox, Gamma FALSE #> 14113 883 0.6113031 0.118690674 fv Gamma Cox, Gamma FALSE #> 14129 884 0.5963768 0.115010525 fv Gamma Cox, Gamma FALSE #> 14145 885 0.5900931 0.114649215 fv Gamma Cox, Gamma FALSE #> 14161 886 0.5895583 0.114812076 fv Gamma Cox, Gamma FALSE #> 14177 887 0.7148329 0.136753996 fv Gamma Cox, Gamma FALSE #> 14193 888 0.9594745 0.176947839 fv Gamma Cox, Gamma FALSE #> 14209 889 0.8042972 0.150368824 fv Gamma Cox, Gamma FALSE #> 14225 890 0.6175176 0.120106236 fv Gamma Cox, Gamma FALSE #> 14241 891 0.5137172 0.100840519 fv Gamma Cox, Gamma FALSE #> 14257 892 0.6850107 0.131015607 fv Gamma Cox, Gamma FALSE #> 14273 893 0.8293255 0.157982630 fv Gamma Cox, Gamma FALSE #> 14289 894 0.5677705 0.110836627 fv Gamma Cox, Gamma FALSE #> 14305 895 0.7644482 0.145093246 fv Gamma Cox, Gamma FALSE #> 14321 896 0.8710288 0.162208151 fv Gamma Cox, Gamma FALSE #> 14337 897 0.7168600 0.136395174 fv Gamma Cox, Gamma FALSE #> 14353 898 0.9065450 0.167962428 fv Gamma Cox, Gamma FALSE #> 14369 899 0.7682189 0.146120927 fv Gamma Cox, Gamma FALSE #> 14385 900 0.7950990 0.152564307 fv Gamma Cox, Gamma FALSE #> 14401 901 0.6035077 NA fv Gamma Cox, Gamma NA #> 14417 902 0.5803465 0.112617990 fv Gamma Cox, Gamma FALSE #> 14433 903 0.6449096 0.123722630 fv Gamma Cox, Gamma FALSE #> 14449 904 1.0645195 0.202580828 fv Gamma Cox, Gamma FALSE #> 14465 905 0.6154062 0.118202301 fv Gamma Cox, Gamma FALSE #> 14481 906 0.9287891 0.171263363 fv Gamma Cox, Gamma FALSE #> 14497 907 0.7180920 0.136679548 fv Gamma Cox, Gamma FALSE #> 14513 908 0.6552036 0.129720385 fv Gamma Cox, Gamma FALSE #> 14529 909 0.6176879 0.120066685 fv Gamma Cox, Gamma FALSE #> 14545 910 0.5521694 0.107962585 fv Gamma Cox, Gamma FALSE #> 14561 911 0.7069066 0.138490781 fv Gamma Cox, Gamma FALSE #> 14577 912 0.5462190 0.106165748 fv Gamma Cox, Gamma FALSE #> 14593 913 0.7016262 0.133463712 fv Gamma Cox, Gamma FALSE #> 14609 914 0.6332994 0.123546571 fv Gamma Cox, Gamma FALSE #> 14625 915 0.8871169 0.168167223 fv Gamma Cox, Gamma FALSE #> 14641 916 0.5314523 0.103737093 fv Gamma Cox, Gamma FALSE #> 14657 917 0.8251601 0.158076990 fv Gamma Cox, Gamma FALSE #> 14673 918 0.7812981 0.146882310 fv Gamma Cox, Gamma FALSE #> 14689 919 0.5633497 0.109510022 fv Gamma Cox, Gamma FALSE #> 14705 920 0.7551588 0.142268945 fv Gamma Cox, Gamma FALSE #> 14721 921 0.8233179 0.155619571 fv Gamma Cox, Gamma FALSE #> 14737 922 1.0592208 0.198177894 fv Gamma Cox, Gamma FALSE #> 14753 923 0.7166090 0.136329906 fv Gamma Cox, Gamma FALSE #> 14769 924 0.7695951 0.144746860 fv Gamma Cox, Gamma FALSE #> 14785 925 0.8674089 0.165902857 fv Gamma Cox, Gamma FALSE #> 14801 926 0.7045694 0.133491756 fv Gamma Cox, Gamma FALSE #> 14817 927 0.4593230 0.091649779 fv Gamma Cox, Gamma FALSE #> 14833 928 0.6908884 0.131414692 fv Gamma Cox, Gamma FALSE #> 14849 929 0.7466114 0.142611050 fv Gamma Cox, Gamma FALSE #> 14865 930 0.8842713 0.169298190 fv Gamma Cox, Gamma FALSE #> 14881 931 0.6753965 0.128818557 fv Gamma Cox, Gamma FALSE #> 14897 932 0.8354712 0.155898458 fv Gamma Cox, Gamma FALSE #> 14913 933 0.6292981 0.121754957 fv Gamma Cox, Gamma FALSE #> 14929 934 0.6014700 0.116226490 fv Gamma Cox, Gamma FALSE #> 14945 935 0.5048390 0.100465756 fv Gamma Cox, Gamma FALSE #> 14961 936 0.5914851 0.114415232 fv Gamma Cox, Gamma FALSE #> 14977 937 1.1046727 0.204362478 fv Gamma Cox, Gamma FALSE #> 14993 938 0.7889907 0.149274856 fv Gamma Cox, Gamma FALSE #> 15009 939 0.8269311 0.155176151 fv Gamma Cox, Gamma FALSE #> 15025 940 0.7645462 0.144080751 fv Gamma Cox, Gamma FALSE #> 15041 941 0.6339856 0.122117198 fv Gamma Cox, Gamma FALSE #> 15057 942 0.6443675 0.124341205 fv Gamma Cox, Gamma FALSE #> 15073 943 0.4804556 0.095616415 fv Gamma Cox, Gamma FALSE #> 15089 944 0.6182545 0.118864711 fv Gamma Cox, Gamma FALSE #> 15105 945 0.6165893 0.119585898 fv Gamma Cox, Gamma FALSE #> 15121 946 0.7660069 0.148721347 fv Gamma Cox, Gamma FALSE #> 15137 947 0.6810811 0.132003647 fv Gamma Cox, Gamma FALSE #> 15153 948 0.5142477 0.102747891 fv Gamma Cox, Gamma FALSE #> 15169 949 0.6180526 0.120672028 fv Gamma Cox, Gamma FALSE #> 15185 950 0.6232314 0.121836187 fv Gamma Cox, Gamma FALSE #> 15201 951 0.7127207 0.135731437 fv Gamma Cox, Gamma FALSE #> 15217 952 0.6730731 0.129521227 fv Gamma Cox, Gamma FALSE #> 15233 953 1.0916190 0.201684689 fv Gamma Cox, Gamma FALSE #> 15249 954 0.6736457 0.128998241 fv Gamma Cox, Gamma FALSE #> 15265 955 0.8188607 0.153567795 fv Gamma Cox, Gamma FALSE #> 15281 956 0.6635977 0.128355306 fv Gamma Cox, Gamma FALSE #> 15297 957 0.6342700 0.123055464 fv Gamma Cox, Gamma FALSE #> 15313 958 0.5356595 0.105054232 fv Gamma Cox, Gamma FALSE #> 15329 959 0.5970231 0.115463296 fv Gamma Cox, Gamma FALSE #> 15345 960 0.7817517 0.148307504 fv Gamma Cox, Gamma FALSE #> 15361 961 0.5115240 0.101112635 fv Gamma Cox, Gamma FALSE #> 15377 962 0.9019772 0.168201411 fv Gamma Cox, Gamma FALSE #> 15393 963 0.8333257 0.157848012 fv Gamma Cox, Gamma FALSE #> 15409 964 0.6911721 0.132489255 fv Gamma Cox, Gamma FALSE #> 15425 965 0.6365177 NA fv Gamma Cox, Gamma NA #> 15441 966 0.7677420 0.146639440 fv Gamma Cox, Gamma FALSE #> 15457 967 0.6649532 0.127278523 fv Gamma Cox, Gamma FALSE #> 15473 968 0.5605857 NA fv Gamma Cox, Gamma NA #> 15489 969 0.7488110 0.144103923 fv Gamma Cox, Gamma FALSE #> 15505 970 0.7009266 0.138336093 fv Gamma Cox, Gamma FALSE #> 15521 971 0.6355460 0.123055558 fv Gamma Cox, Gamma FALSE #> 15537 972 0.6550597 0.129518392 fv Gamma Cox, Gamma FALSE #> 15553 973 0.9634266 0.184669702 fv Gamma Cox, Gamma FALSE #> 15569 974 0.5254167 0.103755606 fv Gamma Cox, Gamma FALSE #> 15585 975 0.5023696 0.099748952 fv Gamma Cox, Gamma FALSE #> 15601 976 0.7553050 0.143657040 fv Gamma Cox, Gamma FALSE #> 15617 977 0.8486740 0.158219365 fv Gamma Cox, Gamma FALSE #> 15633 978 0.8302479 0.159751197 fv Gamma Cox, Gamma FALSE #> 15649 979 0.8144014 0.157040892 fv Gamma Cox, Gamma FALSE #> 15665 980 0.5347503 0.104809583 fv Gamma Cox, Gamma FALSE #> 15681 981 0.7146458 0.137812497 fv Gamma Cox, Gamma FALSE #> 15697 982 0.9672795 0.181190607 fv Gamma Cox, Gamma FALSE #> 15713 983 0.5328782 0.105163422 fv Gamma Cox, Gamma FALSE #> 15729 984 0.7516136 0.142836565 fv Gamma Cox, Gamma FALSE #> 15745 985 0.8197373 0.157629048 fv Gamma Cox, Gamma FALSE #> 15761 986 0.6112163 0.117185425 fv Gamma Cox, Gamma FALSE #> 15777 987 0.5479787 0.107370042 fv Gamma Cox, Gamma FALSE #> 15793 988 0.6274646 0.121024201 fv Gamma Cox, Gamma FALSE #> 15809 989 0.7944407 0.149409280 fv Gamma Cox, Gamma FALSE #> 15825 990 0.7107532 0.134620748 fv Gamma Cox, Gamma FALSE #> 15841 991 0.7552528 0.144020517 fv Gamma Cox, Gamma FALSE #> 15857 992 0.7777255 0.148341692 fv Gamma Cox, Gamma FALSE #> 15873 993 0.9434033 0.174832389 fv Gamma Cox, Gamma FALSE #> 15889 994 0.6601987 0.127035638 fv Gamma Cox, Gamma FALSE #> 15905 995 0.8169684 0.154338190 fv Gamma Cox, Gamma FALSE #> 15921 996 0.6693038 0.128326952 fv Gamma Cox, Gamma FALSE #> 15937 997 0.6015899 0.120247558 fv Gamma Cox, Gamma FALSE #> 15953 998 0.6444796 NA fv Gamma Cox, Gamma NA #> 15969 999 0.5082930 0.099750960 fv Gamma Cox, Gamma FALSE #> 15985 1000 0.4986563 0.099227493 fv Gamma Cox, Gamma FALSE #> 2 1 0.8396248 0.166336769 fv Gamma Cox, Log-Normal FALSE #> 18 2 0.8654809 0.287973324 fv Gamma Cox, Log-Normal FALSE #> 34 3 1.5533362 0.443124033 fv Gamma Cox, Log-Normal TRUE #> 50 4 1.2021700 0.231528152 fv Gamma Cox, Log-Normal FALSE #> 66 5 0.9069256 0.231546211 fv Gamma Cox, Log-Normal FALSE #> 82 6 0.9705696 0.123099170 fv Gamma Cox, Log-Normal FALSE #> 98 7 0.9037494 0.210255478 fv Gamma Cox, Log-Normal FALSE #> 114 8 1.3330730 0.290669413 fv Gamma Cox, Log-Normal FALSE #> 130 9 1.2289061 0.328816511 fv Gamma Cox, Log-Normal FALSE #> 146 10 0.9917595 0.216966969 fv Gamma Cox, Log-Normal FALSE #> 162 11 1.0384351 0.279205813 fv Gamma Cox, Log-Normal FALSE #> 178 12 1.4401730 0.363584050 fv Gamma Cox, Log-Normal FALSE #> 194 13 1.1820887 0.272273545 fv Gamma Cox, Log-Normal FALSE #> 210 14 0.7876591 0.215587735 fv Gamma Cox, Log-Normal FALSE #> 226 15 1.1958391 0.297749174 fv Gamma Cox, Log-Normal FALSE #> 242 16 1.2056374 0.239853982 fv Gamma Cox, Log-Normal FALSE #> 258 17 0.7638555 0.152259647 fv Gamma Cox, Log-Normal FALSE #> 274 18 0.5600481 0.242034309 fv Gamma Cox, Log-Normal FALSE #> 290 19 0.8972620 0.206362814 fv Gamma Cox, Log-Normal FALSE #> 306 20 1.2974784 0.351726424 fv Gamma Cox, Log-Normal FALSE #> 322 21 0.6876797 0.226521087 fv Gamma Cox, Log-Normal FALSE #> 338 22 1.2148856 0.314376529 fv Gamma Cox, Log-Normal FALSE #> 354 23 0.8145580 0.191955407 fv Gamma Cox, Log-Normal FALSE #> 370 24 1.0265042 0.210536939 fv Gamma Cox, Log-Normal FALSE #> 386 25 1.1179286 0.310945298 fv Gamma Cox, Log-Normal FALSE #> 402 26 0.9579917 0.258514556 fv Gamma Cox, Log-Normal FALSE #> 418 27 1.7975474 0.493417117 fv Gamma Cox, Log-Normal TRUE #> 434 28 1.4423476 0.315633062 fv Gamma Cox, Log-Normal FALSE #> 450 29 1.2699356 0.241097065 fv Gamma Cox, Log-Normal FALSE #> 466 30 1.4047494 0.406179915 fv Gamma Cox, Log-Normal FALSE #> 482 31 0.8005746 0.266232147 fv Gamma Cox, Log-Normal FALSE #> 498 32 0.9957436 0.261294995 fv Gamma Cox, Log-Normal FALSE #> 514 33 0.8044589 0.172836665 fv Gamma Cox, Log-Normal FALSE #> 530 34 0.7033578 0.165484797 fv Gamma Cox, Log-Normal FALSE #> 546 35 1.0301148 0.275033997 fv Gamma Cox, Log-Normal FALSE #> 562 36 0.7542718 0.277262843 fv Gamma Cox, Log-Normal FALSE #> 578 37 0.7112477 0.143086191 fv Gamma Cox, Log-Normal FALSE #> 594 38 0.6321543 0.120638937 fv Gamma Cox, Log-Normal FALSE #> 610 39 0.9190196 0.162403199 fv Gamma Cox, Log-Normal FALSE #> 626 40 0.5901511 0.153295406 fv Gamma Cox, Log-Normal FALSE #> 642 41 1.6955260 0.274068495 fv Gamma Cox, Log-Normal TRUE #> 658 42 0.9786594 0.338436250 fv Gamma Cox, Log-Normal FALSE #> 674 43 1.0846014 0.238001169 fv Gamma Cox, Log-Normal FALSE #> 690 44 1.0670686 0.209168137 fv Gamma Cox, Log-Normal FALSE #> 706 45 0.9094972 0.153713130 fv Gamma Cox, Log-Normal FALSE #> 722 46 0.8628380 0.143624017 fv Gamma Cox, Log-Normal FALSE #> 738 47 1.3744833 0.379085783 fv Gamma Cox, Log-Normal FALSE #> 754 48 0.9447438 0.241373759 fv Gamma Cox, Log-Normal FALSE #> 770 49 1.2051056 0.332843614 fv Gamma Cox, Log-Normal FALSE #> 786 50 1.0122736 0.235362960 fv Gamma Cox, Log-Normal FALSE #> 802 51 1.2202208 0.297438475 fv Gamma Cox, Log-Normal FALSE #> 818 52 0.6319282 0.158343089 fv Gamma Cox, Log-Normal FALSE #> 834 53 0.7892154 0.148666919 fv Gamma Cox, Log-Normal FALSE #> 850 54 0.6218626 0.147453939 fv Gamma Cox, Log-Normal FALSE #> 866 55 1.0992895 0.242091300 fv Gamma Cox, Log-Normal FALSE #> 882 56 0.7880115 0.207821575 fv Gamma Cox, Log-Normal FALSE #> 898 57 1.0838536 0.252999308 fv Gamma Cox, Log-Normal FALSE #> 914 58 0.9053863 0.269296974 fv Gamma Cox, Log-Normal FALSE #> 930 59 0.8521828 0.183532101 fv Gamma Cox, Log-Normal FALSE #> 946 60 1.1226700 0.315581488 fv Gamma Cox, Log-Normal FALSE #> 962 61 0.8470775 0.165184536 fv Gamma Cox, Log-Normal FALSE #> 978 62 0.6807293 0.158237205 fv Gamma Cox, Log-Normal FALSE #> 994 63 1.1740857 0.253571694 fv Gamma Cox, Log-Normal FALSE #> 1010 64 0.8143805 0.154909462 fv Gamma Cox, Log-Normal FALSE #> 1026 65 0.8776911 0.151461233 fv Gamma Cox, Log-Normal FALSE #> 1042 66 0.6450936 0.146446549 fv Gamma Cox, Log-Normal FALSE #> 1058 67 1.1252565 0.202649366 fv Gamma Cox, Log-Normal FALSE #> 1074 68 0.9440104 0.190197229 fv Gamma Cox, Log-Normal FALSE #> 1090 69 0.6562820 0.142885574 fv Gamma Cox, Log-Normal FALSE #> 1106 70 0.8936893 0.304947589 fv Gamma Cox, Log-Normal FALSE #> 1122 71 1.2357687 0.253047569 fv Gamma Cox, Log-Normal FALSE #> 1138 72 0.7974302 0.195318813 fv Gamma Cox, Log-Normal FALSE #> 1154 73 0.5968091 0.117975560 fv Gamma Cox, Log-Normal FALSE #> 1170 74 0.8786436 0.164497228 fv Gamma Cox, Log-Normal FALSE #> 1186 75 0.9750754 0.226532064 fv Gamma Cox, Log-Normal FALSE #> 1202 76 0.9645318 0.277393275 fv Gamma Cox, Log-Normal FALSE #> 1218 77 1.0142834 0.249169464 fv Gamma Cox, Log-Normal FALSE #> 1234 78 1.4324625 0.392466363 fv Gamma Cox, Log-Normal FALSE #> 1250 79 2.0973063 0.420079538 fv Gamma Cox, Log-Normal TRUE #> 1266 80 0.7760451 0.266768649 fv Gamma Cox, Log-Normal FALSE #> 1282 81 1.2518287 0.326399591 fv Gamma Cox, Log-Normal FALSE #> 1298 82 0.9445711 0.170469026 fv Gamma Cox, Log-Normal FALSE #> 1314 83 0.6203977 0.269831486 fv Gamma Cox, Log-Normal FALSE #> 1330 84 0.9623414 0.181377810 fv Gamma Cox, Log-Normal FALSE #> 1346 85 0.8411381 0.151718027 fv Gamma Cox, Log-Normal FALSE #> 1362 86 0.8777074 0.173496863 fv Gamma Cox, Log-Normal FALSE #> 1378 87 0.7852935 0.148358262 fv Gamma Cox, Log-Normal FALSE #> 1394 88 0.8880239 0.169358612 fv Gamma Cox, Log-Normal FALSE #> 1410 89 1.0105583 0.218935211 fv Gamma Cox, Log-Normal FALSE #> 1426 90 1.1248867 0.226352162 fv Gamma Cox, Log-Normal FALSE #> 1442 91 0.9313413 0.176657570 fv Gamma Cox, Log-Normal FALSE #> 1458 92 0.8291607 0.161043102 fv Gamma Cox, Log-Normal FALSE #> 1474 93 1.4062271 0.492947581 fv Gamma Cox, Log-Normal TRUE #> 1490 94 1.1792259 0.371694722 fv Gamma Cox, Log-Normal FALSE #> 1506 95 0.9422527 0.186808785 fv Gamma Cox, Log-Normal FALSE #> 1522 96 0.5352317 0.122349552 fv Gamma Cox, Log-Normal FALSE #> 1538 97 0.7041875 0.129219142 fv Gamma Cox, Log-Normal FALSE #> 1554 98 1.0580233 0.191281068 fv Gamma Cox, Log-Normal FALSE #> 1570 99 0.7207367 0.195627282 fv Gamma Cox, Log-Normal FALSE #> 1586 100 1.2143961 0.232039398 fv Gamma Cox, Log-Normal FALSE #> 1602 101 1.1645575 0.202974678 fv Gamma Cox, Log-Normal FALSE #> 1618 102 0.9260904 0.205704353 fv Gamma Cox, Log-Normal FALSE #> 1634 103 1.3313203 0.415434246 fv Gamma Cox, Log-Normal FALSE #> 1650 104 1.0674271 0.230488475 fv Gamma Cox, Log-Normal FALSE #> 1666 105 1.2580642 0.312120608 fv Gamma Cox, Log-Normal FALSE #> 1682 106 0.8964461 0.176933658 fv Gamma Cox, Log-Normal FALSE #> 1698 107 1.3021989 0.320620447 fv Gamma Cox, Log-Normal FALSE #> 1714 108 1.1976726 0.374873974 fv Gamma Cox, Log-Normal FALSE #> 1730 109 0.9569265 0.273685851 fv Gamma Cox, Log-Normal FALSE #> 1746 110 1.0515898 0.268561562 fv Gamma Cox, Log-Normal FALSE #> 1762 111 1.1520637 0.261829502 fv Gamma Cox, Log-Normal FALSE #> 1778 112 0.5659670 0.130417896 fv Gamma Cox, Log-Normal FALSE #> 1794 113 0.6317424 0.122015603 fv Gamma Cox, Log-Normal FALSE #> 1810 114 1.6902270 0.334508909 fv Gamma Cox, Log-Normal TRUE #> 1826 115 0.8076343 0.168987445 fv Gamma Cox, Log-Normal FALSE #> 1842 116 0.5972826 0.130764421 fv Gamma Cox, Log-Normal FALSE #> 1858 117 1.0718606 0.210925331 fv Gamma Cox, Log-Normal FALSE #> 1874 118 0.6408203 0.135263593 fv Gamma Cox, Log-Normal FALSE #> 1890 119 0.7973938 0.174571464 fv Gamma Cox, Log-Normal FALSE #> 1906 120 0.9153147 0.177857493 fv Gamma Cox, Log-Normal FALSE #> 1922 121 0.7644599 0.150392418 fv Gamma Cox, Log-Normal FALSE #> 1938 122 0.8651735 0.261036284 fv Gamma Cox, Log-Normal FALSE #> 1954 123 0.9257951 0.187252850 fv Gamma Cox, Log-Normal FALSE #> 1970 124 0.9726617 0.154366389 fv Gamma Cox, Log-Normal FALSE #> 1986 125 1.2347948 0.317895986 fv Gamma Cox, Log-Normal FALSE #> 2002 126 1.5107344 0.412559767 fv Gamma Cox, Log-Normal FALSE #> 2018 127 1.0864985 0.244291312 fv Gamma Cox, Log-Normal FALSE #> 2034 128 1.0878460 0.217467789 fv Gamma Cox, Log-Normal FALSE #> 2050 129 0.7731209 0.303435174 fv Gamma Cox, Log-Normal FALSE #> 2066 130 0.8530204 0.197021469 fv Gamma Cox, Log-Normal FALSE #> 2082 131 0.8648655 0.165310174 fv Gamma Cox, Log-Normal FALSE #> 2098 132 1.0140972 0.302995158 fv Gamma Cox, Log-Normal FALSE #> 2114 133 0.9104868 0.221438344 fv Gamma Cox, Log-Normal FALSE #> 2130 134 1.0784862 0.271217304 fv Gamma Cox, Log-Normal FALSE #> 2146 135 0.7869113 0.180651674 fv Gamma Cox, Log-Normal FALSE #> 2162 136 0.9755650 0.258643410 fv Gamma Cox, Log-Normal FALSE #> 2178 137 1.2555462 0.298280359 fv Gamma Cox, Log-Normal FALSE #> 2194 138 1.2653651 0.320038448 fv Gamma Cox, Log-Normal FALSE #> 2210 139 0.7961798 0.144604970 fv Gamma Cox, Log-Normal FALSE #> 2226 140 1.0511116 0.243823137 fv Gamma Cox, Log-Normal FALSE #> 2242 141 0.7462247 0.208792390 fv Gamma Cox, Log-Normal FALSE #> 2258 142 0.9738903 0.212138716 fv Gamma Cox, Log-Normal FALSE #> 2274 143 1.5330380 0.537623136 fv Gamma Cox, Log-Normal TRUE #> 2290 144 1.1149075 0.230445555 fv Gamma Cox, Log-Normal FALSE #> 2306 145 0.8547372 0.185823683 fv Gamma Cox, Log-Normal FALSE #> 2322 146 0.8861187 0.183574772 fv Gamma Cox, Log-Normal FALSE #> 2338 147 1.0399587 0.194159810 fv Gamma Cox, Log-Normal FALSE #> 2354 148 0.6173024 0.109281577 fv Gamma Cox, Log-Normal FALSE #> 2370 149 0.8373295 0.191571256 fv Gamma Cox, Log-Normal FALSE #> 2386 150 1.1780887 0.217442230 fv Gamma Cox, Log-Normal FALSE #> 2402 151 1.1285433 0.226278803 fv Gamma Cox, Log-Normal FALSE #> 2418 152 1.1992517 0.394939611 fv Gamma Cox, Log-Normal FALSE #> 2434 153 0.6319684 0.172725513 fv Gamma Cox, Log-Normal FALSE #> 2450 154 1.1200567 0.236910662 fv Gamma Cox, Log-Normal FALSE #> 2466 155 0.9404373 0.309352450 fv Gamma Cox, Log-Normal FALSE #> 2482 156 0.9335558 0.170459226 fv Gamma Cox, Log-Normal FALSE #> 2498 157 1.4355503 0.361703696 fv Gamma Cox, Log-Normal FALSE #> 2514 158 1.4701395 0.366841193 fv Gamma Cox, Log-Normal FALSE #> 2530 159 0.6612553 0.189431483 fv Gamma Cox, Log-Normal FALSE #> 2546 160 0.6884649 0.160081027 fv Gamma Cox, Log-Normal FALSE #> 2562 161 1.7235061 0.366167519 fv Gamma Cox, Log-Normal TRUE #> 2578 162 0.9637307 0.277366991 fv Gamma Cox, Log-Normal FALSE #> 2594 163 0.6826128 0.123999357 fv Gamma Cox, Log-Normal FALSE #> 2610 164 1.2137278 0.254986878 fv Gamma Cox, Log-Normal FALSE #> 2626 165 1.0759865 0.243107518 fv Gamma Cox, Log-Normal FALSE #> 2642 166 1.1514913 0.353009050 fv Gamma Cox, Log-Normal FALSE #> 2658 167 1.3171715 0.267054689 fv Gamma Cox, Log-Normal FALSE #> 2674 168 1.0866206 0.235629785 fv Gamma Cox, Log-Normal FALSE #> 2690 169 0.9467015 0.224115190 fv Gamma Cox, Log-Normal FALSE #> 2706 170 0.9395929 0.217597367 fv Gamma Cox, Log-Normal FALSE #> 2722 171 0.9618300 0.263408111 fv Gamma Cox, Log-Normal FALSE #> 2738 172 1.1425683 0.242325710 fv Gamma Cox, Log-Normal FALSE #> 2754 173 0.7877272 0.217794070 fv Gamma Cox, Log-Normal FALSE #> 2770 174 1.1282426 0.267735233 fv Gamma Cox, Log-Normal FALSE #> 2786 175 0.8178924 0.230738271 fv Gamma Cox, Log-Normal FALSE #> 2802 176 0.8741514 0.162586064 fv Gamma Cox, Log-Normal FALSE #> 2818 177 0.7687814 0.283467846 fv Gamma Cox, Log-Normal FALSE #> 2834 178 1.1744687 0.211056326 fv Gamma Cox, Log-Normal FALSE #> 2850 179 0.7526095 0.150027385 fv Gamma Cox, Log-Normal FALSE #> 2866 180 1.0216310 0.316148826 fv Gamma Cox, Log-Normal FALSE #> 2882 181 1.1712040 0.260266639 fv Gamma Cox, Log-Normal FALSE #> 2898 182 0.9333976 0.175417306 fv Gamma Cox, Log-Normal FALSE #> 2914 183 0.7609429 0.152764885 fv Gamma Cox, Log-Normal FALSE #> 2930 184 0.9364676 0.263118357 fv Gamma Cox, Log-Normal FALSE #> 2946 185 1.1970108 0.256427056 fv Gamma Cox, Log-Normal FALSE #> 2962 186 1.3811930 0.386834280 fv Gamma Cox, Log-Normal FALSE #> 2978 187 0.9677626 0.218961822 fv Gamma Cox, Log-Normal FALSE #> 2994 188 0.6677381 0.129193425 fv Gamma Cox, Log-Normal FALSE #> 3010 189 1.0300136 0.181675457 fv Gamma Cox, Log-Normal FALSE #> 3026 190 0.9781161 0.186623640 fv Gamma Cox, Log-Normal FALSE #> 3042 191 1.0047812 0.234422284 fv Gamma Cox, Log-Normal FALSE #> 3058 192 1.0481335 0.313856424 fv Gamma Cox, Log-Normal FALSE #> 3074 193 0.8578876 0.206851646 fv Gamma Cox, Log-Normal FALSE #> 3090 194 0.8025329 0.177765199 fv Gamma Cox, Log-Normal FALSE #> 3106 195 1.0948348 0.189268663 fv Gamma Cox, Log-Normal FALSE #> 3122 196 1.1531601 0.315355691 fv Gamma Cox, Log-Normal FALSE #> 3138 197 0.9174118 0.146017107 fv Gamma Cox, Log-Normal FALSE #> 3154 198 0.9822719 0.160214536 fv Gamma Cox, Log-Normal FALSE #> 3170 199 0.7665154 0.178048907 fv Gamma Cox, Log-Normal FALSE #> 3186 200 1.0827449 0.216626911 fv Gamma Cox, Log-Normal FALSE #> 3202 201 1.0550061 0.243012425 fv Gamma Cox, Log-Normal FALSE #> 3218 202 1.0972858 0.215662323 fv Gamma Cox, Log-Normal FALSE #> 3234 203 0.9855765 0.182481322 fv Gamma Cox, Log-Normal FALSE #> 3250 204 1.0561904 0.348906497 fv Gamma Cox, Log-Normal FALSE #> 3266 205 0.7564109 0.205512464 fv Gamma Cox, Log-Normal FALSE #> 3282 206 1.0125371 0.222694936 fv Gamma Cox, Log-Normal FALSE #> 3298 207 0.6826566 0.147213825 fv Gamma Cox, Log-Normal FALSE #> 3314 208 0.9760813 0.224712745 fv Gamma Cox, Log-Normal FALSE #> 3330 209 0.9269613 0.220844066 fv Gamma Cox, Log-Normal FALSE #> 3346 210 0.9133674 0.231763968 fv Gamma Cox, Log-Normal FALSE #> 3362 211 1.4904914 0.390725669 fv Gamma Cox, Log-Normal FALSE #> 3378 212 0.9920371 0.255836508 fv Gamma Cox, Log-Normal FALSE #> 3394 213 1.1118333 0.294714345 fv Gamma Cox, Log-Normal FALSE #> 3410 214 1.0039471 0.304092232 fv Gamma Cox, Log-Normal FALSE #> 3426 215 1.1241297 0.264189786 fv Gamma Cox, Log-Normal FALSE #> 3442 216 1.2582014 0.301083523 fv Gamma Cox, Log-Normal FALSE #> 3458 217 0.8366225 0.210156062 fv Gamma Cox, Log-Normal FALSE #> 3474 218 0.8448105 0.236493852 fv Gamma Cox, Log-Normal FALSE #> 3490 219 1.2107113 0.347155926 fv Gamma Cox, Log-Normal FALSE #> 3506 220 0.7158888 0.136382455 fv Gamma Cox, Log-Normal FALSE #> 3522 221 0.9339555 0.266680492 fv Gamma Cox, Log-Normal FALSE #> 3538 222 1.1192118 0.312072336 fv Gamma Cox, Log-Normal FALSE #> 3554 223 1.0452753 0.280574246 fv Gamma Cox, Log-Normal FALSE #> 3570 224 1.0115289 0.233439970 fv Gamma Cox, Log-Normal FALSE #> 3586 225 0.8032168 0.161726631 fv Gamma Cox, Log-Normal FALSE #> 3602 226 1.3087768 0.413967329 fv Gamma Cox, Log-Normal FALSE #> 3618 227 0.8661987 0.237439745 fv Gamma Cox, Log-Normal FALSE #> 3634 228 1.1166755 0.216930095 fv Gamma Cox, Log-Normal FALSE #> 3650 229 1.1105627 0.275511999 fv Gamma Cox, Log-Normal FALSE #> 3666 230 0.8823663 0.147648628 fv Gamma Cox, Log-Normal FALSE #> 3682 231 1.1464490 0.264342378 fv Gamma Cox, Log-Normal FALSE #> 3698 232 1.0282286 0.294509349 fv Gamma Cox, Log-Normal FALSE #> 3714 233 1.1858851 0.308748988 fv Gamma Cox, Log-Normal FALSE #> 3730 234 0.9141730 0.234737862 fv Gamma Cox, Log-Normal FALSE #> 3746 235 1.1254600 0.356891640 fv Gamma Cox, Log-Normal FALSE #> 3762 236 0.6441731 0.174629945 fv Gamma Cox, Log-Normal FALSE #> 3778 237 0.8396326 0.205428196 fv Gamma Cox, Log-Normal FALSE #> 3794 238 0.8108753 0.210967352 fv Gamma Cox, Log-Normal FALSE #> 3810 239 0.9353923 0.175452236 fv Gamma Cox, Log-Normal FALSE #> 3826 240 1.1534031 0.316909074 fv Gamma Cox, Log-Normal FALSE #> 3842 241 0.8525632 0.153161651 fv Gamma Cox, Log-Normal FALSE #> 3858 242 0.6325823 0.110859718 fv Gamma Cox, Log-Normal FALSE #> 3874 243 1.3438274 0.504696267 fv Gamma Cox, Log-Normal TRUE #> 3890 244 0.6847331 0.117664089 fv Gamma Cox, Log-Normal FALSE #> 3906 245 1.5084013 0.416220066 fv Gamma Cox, Log-Normal FALSE #> 3922 246 0.8600815 0.160092148 fv Gamma Cox, Log-Normal FALSE #> 3938 247 1.0459691 0.247888885 fv Gamma Cox, Log-Normal FALSE #> 3954 248 1.3774923 0.295724239 fv Gamma Cox, Log-Normal FALSE #> 3970 249 1.4544026 0.401018407 fv Gamma Cox, Log-Normal FALSE #> 3986 250 0.9930866 0.252367133 fv Gamma Cox, Log-Normal FALSE #> 4002 251 1.0750961 0.286717462 fv Gamma Cox, Log-Normal FALSE #> 4018 252 1.1463194 0.342407069 fv Gamma Cox, Log-Normal FALSE #> 4034 253 1.2383183 0.401788395 fv Gamma Cox, Log-Normal FALSE #> 4050 254 0.6184252 0.098351797 fv Gamma Cox, Log-Normal FALSE #> 4066 255 0.9288740 0.135923481 fv Gamma Cox, Log-Normal FALSE #> 4082 256 0.9116082 0.198199738 fv Gamma Cox, Log-Normal FALSE #> 4098 257 0.6749869 0.129906431 fv Gamma Cox, Log-Normal FALSE #> 4114 258 1.0142908 0.337359222 fv Gamma Cox, Log-Normal FALSE #> 4130 259 0.9440221 0.210134843 fv Gamma Cox, Log-Normal FALSE #> 4146 260 1.1202138 0.249898993 fv Gamma Cox, Log-Normal FALSE #> 4162 261 0.5960250 0.118672454 fv Gamma Cox, Log-Normal FALSE #> 4178 262 0.8366969 0.176398436 fv Gamma Cox, Log-Normal FALSE #> 4194 263 0.7871702 0.205713317 fv Gamma Cox, Log-Normal FALSE #> 4210 264 0.6057126 0.113149327 fv Gamma Cox, Log-Normal FALSE #> 4226 265 0.7758375 0.147043597 fv Gamma Cox, Log-Normal FALSE #> 4242 266 0.8500845 0.224891518 fv Gamma Cox, Log-Normal FALSE #> 4258 267 0.9199981 0.195893000 fv Gamma Cox, Log-Normal FALSE #> 4274 268 0.9880338 0.209263821 fv Gamma Cox, Log-Normal FALSE #> 4290 269 1.6572488 0.438643117 fv Gamma Cox, Log-Normal TRUE #> 4306 270 1.2169293 0.315454041 fv Gamma Cox, Log-Normal FALSE #> 4322 271 1.2092937 0.306710304 fv Gamma Cox, Log-Normal FALSE #> 4338 272 0.7054006 0.192228252 fv Gamma Cox, Log-Normal FALSE #> 4354 273 0.8125655 0.154642396 fv Gamma Cox, Log-Normal FALSE #> 4370 274 0.9034828 0.186117871 fv Gamma Cox, Log-Normal FALSE #> 4386 275 1.1334718 0.225436721 fv Gamma Cox, Log-Normal FALSE #> 4402 276 1.0808167 0.354131546 fv Gamma Cox, Log-Normal FALSE #> 4418 277 0.8663479 0.141176671 fv Gamma Cox, Log-Normal FALSE #> 4434 278 1.0154270 0.195194389 fv Gamma Cox, Log-Normal FALSE #> 4450 279 0.9972416 0.246791708 fv Gamma Cox, Log-Normal FALSE #> 4466 280 0.9485671 0.192665901 fv Gamma Cox, Log-Normal FALSE #> 4482 281 1.5419471 0.432963938 fv Gamma Cox, Log-Normal TRUE #> 4498 282 0.7366272 0.154485998 fv Gamma Cox, Log-Normal FALSE #> 4514 283 1.1387523 0.351311035 fv Gamma Cox, Log-Normal FALSE #> 4530 284 0.7606273 0.130651621 fv Gamma Cox, Log-Normal FALSE #> 4546 285 0.5940809 0.114410663 fv Gamma Cox, Log-Normal FALSE #> 4562 286 0.9980889 0.165993278 fv Gamma Cox, Log-Normal FALSE #> 4578 287 0.7786292 0.173527925 fv Gamma Cox, Log-Normal FALSE #> 4594 288 1.8012469 0.384382846 fv Gamma Cox, Log-Normal TRUE #> 4610 289 0.8352625 0.230080256 fv Gamma Cox, Log-Normal FALSE #> 4626 290 0.7462650 0.161150218 fv Gamma Cox, Log-Normal FALSE #> 4642 291 0.7581738 0.185194416 fv Gamma Cox, Log-Normal FALSE #> 4658 292 0.7315072 0.136632050 fv Gamma Cox, Log-Normal FALSE #> 4674 293 1.1794738 0.263230250 fv Gamma Cox, Log-Normal FALSE #> 4690 294 0.8364797 0.177888851 fv Gamma Cox, Log-Normal FALSE #> 4706 295 1.5702252 0.363660287 fv Gamma Cox, Log-Normal FALSE #> 4722 296 1.0030032 0.212419723 fv Gamma Cox, Log-Normal FALSE #> 4738 297 1.7048282 0.324692247 fv Gamma Cox, Log-Normal TRUE #> 4754 298 0.6792576 0.124013511 fv Gamma Cox, Log-Normal FALSE #> 4770 299 0.7179893 0.156934076 fv Gamma Cox, Log-Normal FALSE #> 4786 300 1.1245685 0.198322193 fv Gamma Cox, Log-Normal FALSE #> 4802 301 0.6708749 0.171248942 fv Gamma Cox, Log-Normal FALSE #> 4818 302 1.0425587 0.181386611 fv Gamma Cox, Log-Normal FALSE #> 4834 303 0.7687011 0.144588971 fv Gamma Cox, Log-Normal FALSE #> 4850 304 0.8183131 0.180688666 fv Gamma Cox, Log-Normal FALSE #> 4866 305 1.1994373 0.254185287 fv Gamma Cox, Log-Normal FALSE #> 4882 306 0.9480399 0.206670969 fv Gamma Cox, Log-Normal FALSE #> 4898 307 1.0547876 0.317754660 fv Gamma Cox, Log-Normal FALSE #> 4914 308 0.8707234 0.206289074 fv Gamma Cox, Log-Normal FALSE #> 4930 309 1.0009221 0.187321610 fv Gamma Cox, Log-Normal FALSE #> 4946 310 1.5183534 0.350397464 fv Gamma Cox, Log-Normal FALSE #> 4962 311 1.2122527 0.296579713 fv Gamma Cox, Log-Normal FALSE #> 4978 312 1.8443405 0.479858067 fv Gamma Cox, Log-Normal TRUE #> 4994 313 1.1266272 0.250518734 fv Gamma Cox, Log-Normal FALSE #> 5010 314 0.9134451 0.223254762 fv Gamma Cox, Log-Normal FALSE #> 5026 315 1.0694137 0.206784794 fv Gamma Cox, Log-Normal FALSE #> 5042 316 1.5557750 0.331763485 fv Gamma Cox, Log-Normal FALSE #> 5058 317 0.7900325 0.184343319 fv Gamma Cox, Log-Normal FALSE #> 5074 318 0.9676750 0.285161091 fv Gamma Cox, Log-Normal FALSE #> 5090 319 0.7534842 0.186475417 fv Gamma Cox, Log-Normal FALSE #> 5106 320 0.7587523 0.158245032 fv Gamma Cox, Log-Normal FALSE #> 5122 321 1.3296280 0.289607929 fv Gamma Cox, Log-Normal FALSE #> 5138 322 0.6540554 0.153362582 fv Gamma Cox, Log-Normal FALSE #> 5154 323 1.1866786 0.246796331 fv Gamma Cox, Log-Normal FALSE #> 5170 324 0.7879666 0.235532790 fv Gamma Cox, Log-Normal FALSE #> 5186 325 0.9063958 0.177813514 fv Gamma Cox, Log-Normal FALSE #> 5202 326 0.8994038 0.180708837 fv Gamma Cox, Log-Normal FALSE #> 5218 327 0.9343756 0.199207745 fv Gamma Cox, Log-Normal FALSE #> 5234 328 1.4427292 0.367840271 fv Gamma Cox, Log-Normal FALSE #> 5250 329 1.2314166 0.320033252 fv Gamma Cox, Log-Normal FALSE #> 5266 330 0.9467010 0.225445798 fv Gamma Cox, Log-Normal FALSE #> 5282 331 1.1330281 0.231943006 fv Gamma Cox, Log-Normal FALSE #> 5298 332 0.7331899 0.197574585 fv Gamma Cox, Log-Normal FALSE #> 5314 333 0.6844227 0.140883756 fv Gamma Cox, Log-Normal FALSE #> 5330 334 1.3781416 0.249637577 fv Gamma Cox, Log-Normal FALSE #> 5346 335 1.0702186 0.271371029 fv Gamma Cox, Log-Normal FALSE #> 5362 336 0.6209932 0.164255992 fv Gamma Cox, Log-Normal FALSE #> 5378 337 0.8421416 0.206148684 fv Gamma Cox, Log-Normal FALSE #> 5394 338 0.7236815 0.112024580 fv Gamma Cox, Log-Normal FALSE #> 5410 339 1.0388795 0.295391600 fv Gamma Cox, Log-Normal FALSE #> 5426 340 1.1095304 0.403572705 fv Gamma Cox, Log-Normal FALSE #> 5442 341 0.6719273 0.137761634 fv Gamma Cox, Log-Normal FALSE #> 5458 342 0.5332889 0.101209542 fv Gamma Cox, Log-Normal FALSE #> 5474 343 0.7748324 0.181756300 fv Gamma Cox, Log-Normal FALSE #> 5490 344 1.3667207 0.352452784 fv Gamma Cox, Log-Normal FALSE #> 5506 345 1.1973392 0.238025218 fv Gamma Cox, Log-Normal FALSE #> 5522 346 1.0638629 0.203973708 fv Gamma Cox, Log-Normal FALSE #> 5538 347 0.9372712 0.157409347 fv Gamma Cox, Log-Normal FALSE #> 5554 348 1.4096446 0.303746493 fv Gamma Cox, Log-Normal FALSE #> 5570 349 1.1515909 0.267338558 fv Gamma Cox, Log-Normal FALSE #> 5586 350 1.0566777 0.204651400 fv Gamma Cox, Log-Normal FALSE #> 5602 351 1.2270499 0.365187960 fv Gamma Cox, Log-Normal FALSE #> 5618 352 1.1384745 0.320730548 fv Gamma Cox, Log-Normal FALSE #> 5634 353 0.6761084 0.151468116 fv Gamma Cox, Log-Normal FALSE #> 5650 354 0.9381758 0.195546224 fv Gamma Cox, Log-Normal FALSE #> 5666 355 1.1119338 0.223665047 fv Gamma Cox, Log-Normal FALSE #> 5682 356 1.0905507 0.292129252 fv Gamma Cox, Log-Normal FALSE #> 5698 357 0.8452529 0.184177665 fv Gamma Cox, Log-Normal FALSE #> 5714 358 0.8066733 0.115900961 fv Gamma Cox, Log-Normal FALSE #> 5730 359 0.8677696 0.265080079 fv Gamma Cox, Log-Normal FALSE #> 5746 360 0.7287289 0.131955369 fv Gamma Cox, Log-Normal FALSE #> 5762 361 1.3008883 0.360862820 fv Gamma Cox, Log-Normal FALSE #> 5778 362 0.5904270 0.130278388 fv Gamma Cox, Log-Normal FALSE #> 5794 363 0.9529346 0.266922925 fv Gamma Cox, Log-Normal FALSE #> 5810 364 0.6480905 0.167160297 fv Gamma Cox, Log-Normal FALSE #> 5826 365 0.9971018 0.330971308 fv Gamma Cox, Log-Normal FALSE #> 5842 366 1.1939180 0.294834729 fv Gamma Cox, Log-Normal FALSE #> 5858 367 1.1703409 0.220120120 fv Gamma Cox, Log-Normal FALSE #> 5874 368 1.1791884 0.429781697 fv Gamma Cox, Log-Normal TRUE #> 5890 369 0.6704603 0.124258362 fv Gamma Cox, Log-Normal FALSE #> 5906 370 0.6437177 0.144677882 fv Gamma Cox, Log-Normal FALSE #> 5922 371 1.0793130 0.276618474 fv Gamma Cox, Log-Normal FALSE #> 5938 372 0.7821637 0.249248520 fv Gamma Cox, Log-Normal FALSE #> 5954 373 0.9198681 0.214796254 fv Gamma Cox, Log-Normal FALSE #> 5970 374 0.7206397 0.140563196 fv Gamma Cox, Log-Normal FALSE #> 5986 375 0.7455317 0.156345249 fv Gamma Cox, Log-Normal FALSE #> 6002 376 0.7820201 0.164687256 fv Gamma Cox, Log-Normal FALSE #> 6018 377 1.2011353 0.333770351 fv Gamma Cox, Log-Normal FALSE #> 6034 378 1.0732917 0.230685922 fv Gamma Cox, Log-Normal FALSE #> 6050 379 0.7956228 0.135068436 fv Gamma Cox, Log-Normal FALSE #> 6066 380 0.9821977 0.202408585 fv Gamma Cox, Log-Normal FALSE #> 6082 381 0.7109656 0.149643496 fv Gamma Cox, Log-Normal FALSE #> 6098 382 0.9332571 0.225055001 fv Gamma Cox, Log-Normal FALSE #> 6114 383 1.4525060 0.252050709 fv Gamma Cox, Log-Normal FALSE #> 6130 384 1.1156376 0.225314386 fv Gamma Cox, Log-Normal FALSE #> 6146 385 0.6937414 0.130805747 fv Gamma Cox, Log-Normal FALSE #> 6162 386 0.4539095 0.143952602 fv Gamma Cox, Log-Normal FALSE #> 6178 387 0.6909378 0.131527306 fv Gamma Cox, Log-Normal FALSE #> 6194 388 0.8732335 0.176442179 fv Gamma Cox, Log-Normal FALSE #> 6210 389 0.6361769 0.145037919 fv Gamma Cox, Log-Normal FALSE #> 6226 390 0.7550553 0.176928641 fv Gamma Cox, Log-Normal FALSE #> 6242 391 0.6148799 0.135829174 fv Gamma Cox, Log-Normal FALSE #> 6258 392 1.1216041 0.230266849 fv Gamma Cox, Log-Normal FALSE #> 6274 393 0.6766989 0.155586331 fv Gamma Cox, Log-Normal FALSE #> 6290 394 1.2809946 0.303295151 fv Gamma Cox, Log-Normal FALSE #> 6306 395 0.9574912 0.257132721 fv Gamma Cox, Log-Normal FALSE #> 6322 396 0.9517729 0.286349874 fv Gamma Cox, Log-Normal FALSE #> 6338 397 1.1124126 0.212177754 fv Gamma Cox, Log-Normal FALSE #> 6354 398 0.9331498 0.195380303 fv Gamma Cox, Log-Normal FALSE #> 6370 399 0.7590104 0.183901117 fv Gamma Cox, Log-Normal FALSE #> 6386 400 0.8141348 0.209282394 fv Gamma Cox, Log-Normal FALSE #> 6402 401 1.1725501 0.302794794 fv Gamma Cox, Log-Normal FALSE #> 6418 402 0.8902602 0.257412268 fv Gamma Cox, Log-Normal FALSE #> 6434 403 0.8519330 0.172126937 fv Gamma Cox, Log-Normal FALSE #> 6450 404 1.0476725 0.336457821 fv Gamma Cox, Log-Normal FALSE #> 6466 405 0.7691769 0.130780437 fv Gamma Cox, Log-Normal FALSE #> 6482 406 0.7361662 0.138962491 fv Gamma Cox, Log-Normal FALSE #> 6498 407 1.0450332 0.255588768 fv Gamma Cox, Log-Normal FALSE #> 6514 408 0.6282204 0.263436321 fv Gamma Cox, Log-Normal FALSE #> 6530 409 1.2675705 0.255827563 fv Gamma Cox, Log-Normal FALSE #> 6546 410 1.4027855 0.405498694 fv Gamma Cox, Log-Normal FALSE #> 6562 411 1.0909367 0.364351515 fv Gamma Cox, Log-Normal FALSE #> 6578 412 0.8247547 0.147850429 fv Gamma Cox, Log-Normal FALSE #> 6594 413 0.9001954 0.207926748 fv Gamma Cox, Log-Normal FALSE #> 6610 414 0.8922666 0.205074388 fv Gamma Cox, Log-Normal FALSE #> 6626 415 1.1201345 0.235581947 fv Gamma Cox, Log-Normal FALSE #> 6642 416 0.7256155 0.151266912 fv Gamma Cox, Log-Normal FALSE #> 6658 417 0.9635329 0.165467319 fv Gamma Cox, Log-Normal FALSE #> 6674 418 0.9579341 0.221398430 fv Gamma Cox, Log-Normal FALSE #> 6690 419 0.8134821 0.226987586 fv Gamma Cox, Log-Normal FALSE #> 6706 420 1.1122495 0.304778954 fv Gamma Cox, Log-Normal FALSE #> 6722 421 1.0634088 0.195189997 fv Gamma Cox, Log-Normal FALSE #> 6738 422 0.9576175 0.239546727 fv Gamma Cox, Log-Normal FALSE #> 6754 423 1.0594321 0.228721736 fv Gamma Cox, Log-Normal FALSE #> 6770 424 0.9597868 0.276897329 fv Gamma Cox, Log-Normal FALSE #> 6786 425 0.7315512 0.180004030 fv Gamma Cox, Log-Normal FALSE #> 6802 426 1.2737580 0.295162754 fv Gamma Cox, Log-Normal FALSE #> 6818 427 0.5082034 0.138832393 fv Gamma Cox, Log-Normal FALSE #> 6834 428 1.4427275 0.408389941 fv Gamma Cox, Log-Normal FALSE #> 6850 429 0.7931159 0.177763555 fv Gamma Cox, Log-Normal FALSE #> 6866 430 0.6869118 0.109383857 fv Gamma Cox, Log-Normal FALSE #> 6882 431 1.0984440 0.245113401 fv Gamma Cox, Log-Normal FALSE #> 6898 432 0.6733838 0.147400668 fv Gamma Cox, Log-Normal FALSE #> 6914 433 1.1186541 0.329798430 fv Gamma Cox, Log-Normal FALSE #> 6930 434 1.2398972 0.222930487 fv Gamma Cox, Log-Normal FALSE #> 6946 435 0.8050301 0.140179777 fv Gamma Cox, Log-Normal FALSE #> 6962 436 1.2438138 0.307965337 fv Gamma Cox, Log-Normal FALSE #> 6978 437 0.8224460 0.126221473 fv Gamma Cox, Log-Normal FALSE #> 6994 438 0.6359268 0.189779025 fv Gamma Cox, Log-Normal FALSE #> 7010 439 0.9316025 0.286812594 fv Gamma Cox, Log-Normal FALSE #> 7026 440 0.8116677 0.150546885 fv Gamma Cox, Log-Normal FALSE #> 7042 441 0.4957894 0.090606260 fv Gamma Cox, Log-Normal FALSE #> 7058 442 0.9920610 0.183115913 fv Gamma Cox, Log-Normal FALSE #> 7074 443 0.6649345 0.222904431 fv Gamma Cox, Log-Normal FALSE #> 7090 444 0.8035197 0.183494932 fv Gamma Cox, Log-Normal FALSE #> 7106 445 1.2090738 0.358004906 fv Gamma Cox, Log-Normal FALSE #> 7122 446 1.0087995 0.220975718 fv Gamma Cox, Log-Normal FALSE #> 7138 447 0.9565913 0.200822801 fv Gamma Cox, Log-Normal FALSE #> 7154 448 1.0441738 0.260365565 fv Gamma Cox, Log-Normal FALSE #> 7170 449 1.1615839 0.216975618 fv Gamma Cox, Log-Normal FALSE #> 7186 450 0.7740953 0.140879888 fv Gamma Cox, Log-Normal FALSE #> 7202 451 1.0692578 0.222198213 fv Gamma Cox, Log-Normal FALSE #> 7218 452 0.6524954 0.123359523 fv Gamma Cox, Log-Normal FALSE #> 7234 453 1.0336945 0.199674407 fv Gamma Cox, Log-Normal FALSE #> 7250 454 0.8403049 0.274222788 fv Gamma Cox, Log-Normal FALSE #> 7266 455 1.0557566 0.225824987 fv Gamma Cox, Log-Normal FALSE #> 7282 456 1.0962428 0.243979297 fv Gamma Cox, Log-Normal FALSE #> 7298 457 1.1029915 0.213750191 fv Gamma Cox, Log-Normal FALSE #> 7314 458 1.2720893 0.351284624 fv Gamma Cox, Log-Normal FALSE #> 7330 459 0.8717904 0.217191101 fv Gamma Cox, Log-Normal FALSE #> 7346 460 0.8326436 0.222186414 fv Gamma Cox, Log-Normal FALSE #> 7362 461 1.0365468 0.264064386 fv Gamma Cox, Log-Normal FALSE #> 7378 462 1.3924264 0.387524188 fv Gamma Cox, Log-Normal FALSE #> 7394 463 0.7356121 0.119417840 fv Gamma Cox, Log-Normal FALSE #> 7410 464 0.6727029 0.179079073 fv Gamma Cox, Log-Normal FALSE #> 7426 465 0.9358999 0.191441499 fv Gamma Cox, Log-Normal FALSE #> 7442 466 1.0797508 0.320286330 fv Gamma Cox, Log-Normal FALSE #> 7458 467 1.2546135 0.331880843 fv Gamma Cox, Log-Normal FALSE #> 7474 468 0.6594459 0.127506910 fv Gamma Cox, Log-Normal FALSE #> 7490 469 1.0773071 0.306539717 fv Gamma Cox, Log-Normal FALSE #> 7506 470 0.9831728 0.182063344 fv Gamma Cox, Log-Normal FALSE #> 7522 471 0.7441140 0.128457720 fv Gamma Cox, Log-Normal FALSE #> 7538 472 1.1705633 0.275046221 fv Gamma Cox, Log-Normal FALSE #> 7554 473 0.7944060 0.160426950 fv Gamma Cox, Log-Normal FALSE #> 7570 474 0.7893312 0.236801144 fv Gamma Cox, Log-Normal FALSE #> 7586 475 1.6420040 0.472204521 fv Gamma Cox, Log-Normal TRUE #> 7602 476 0.6907611 0.179152271 fv Gamma Cox, Log-Normal FALSE #> 7618 477 1.2306596 0.240740348 fv Gamma Cox, Log-Normal FALSE #> 7634 478 0.9703432 0.280043037 fv Gamma Cox, Log-Normal FALSE #> 7650 479 1.2556369 0.278832138 fv Gamma Cox, Log-Normal FALSE #> 7666 480 1.0316289 0.262194195 fv Gamma Cox, Log-Normal FALSE #> 7682 481 0.9069980 0.240001733 fv Gamma Cox, Log-Normal FALSE #> 7698 482 0.8651847 0.324883873 fv Gamma Cox, Log-Normal FALSE #> 7714 483 0.9195134 0.324966495 fv Gamma Cox, Log-Normal FALSE #> 7730 484 0.9354766 0.158821908 fv Gamma Cox, Log-Normal FALSE #> 7746 485 1.0036369 0.235477830 fv Gamma Cox, Log-Normal FALSE #> 7762 486 0.7230942 0.191080579 fv Gamma Cox, Log-Normal FALSE #> 7778 487 1.0953227 0.216107707 fv Gamma Cox, Log-Normal FALSE #> 7794 488 0.9509228 0.341422686 fv Gamma Cox, Log-Normal FALSE #> 7810 489 1.2438654 0.335909184 fv Gamma Cox, Log-Normal FALSE #> 7826 490 1.6108304 0.304536731 fv Gamma Cox, Log-Normal TRUE #> 7842 491 0.8306550 0.168517444 fv Gamma Cox, Log-Normal FALSE #> 7858 492 1.2528581 0.347548040 fv Gamma Cox, Log-Normal FALSE #> 7874 493 1.1141412 0.417141114 fv Gamma Cox, Log-Normal FALSE #> 7890 494 0.8588516 0.179209258 fv Gamma Cox, Log-Normal FALSE #> 7906 495 0.9641937 0.220531498 fv Gamma Cox, Log-Normal FALSE #> 7922 496 0.6759623 0.166289250 fv Gamma Cox, Log-Normal FALSE #> 7938 497 0.9033618 0.200323244 fv Gamma Cox, Log-Normal FALSE #> 7954 498 0.8062435 0.190505432 fv Gamma Cox, Log-Normal FALSE #> 7970 499 1.0779911 0.255751410 fv Gamma Cox, Log-Normal FALSE #> 7986 500 1.2670375 0.297555986 fv Gamma Cox, Log-Normal FALSE #> 8002 501 0.8648506 0.180810911 fv Gamma Cox, Log-Normal FALSE #> 8018 502 1.0364983 0.208051259 fv Gamma Cox, Log-Normal FALSE #> 8034 503 0.7537958 0.149464952 fv Gamma Cox, Log-Normal FALSE #> 8050 504 1.2053252 0.210116068 fv Gamma Cox, Log-Normal FALSE #> 8066 505 1.4316809 0.361150122 fv Gamma Cox, Log-Normal FALSE #> 8082 506 0.8599211 0.164904216 fv Gamma Cox, Log-Normal FALSE #> 8098 507 0.6803896 0.132319900 fv Gamma Cox, Log-Normal FALSE #> 8114 508 0.8321579 0.174584707 fv Gamma Cox, Log-Normal FALSE #> 8130 509 0.8577265 0.171261565 fv Gamma Cox, Log-Normal FALSE #> 8146 510 1.0840758 0.191525801 fv Gamma Cox, Log-Normal FALSE #> 8162 511 0.9751571 0.228962046 fv Gamma Cox, Log-Normal FALSE #> 8178 512 0.9171955 0.141575466 fv Gamma Cox, Log-Normal FALSE #> 8194 513 0.7704456 0.179734941 fv Gamma Cox, Log-Normal FALSE #> 8210 514 0.9767960 0.270516974 fv Gamma Cox, Log-Normal FALSE #> 8226 515 0.8482220 0.193164393 fv Gamma Cox, Log-Normal FALSE #> 8242 516 1.0376892 0.256220330 fv Gamma Cox, Log-Normal FALSE #> 8258 517 1.1357326 0.273350115 fv Gamma Cox, Log-Normal FALSE #> 8274 518 1.2253076 0.238917068 fv Gamma Cox, Log-Normal FALSE #> 8290 519 0.8713882 0.184042855 fv Gamma Cox, Log-Normal FALSE #> 8306 520 0.7926449 0.167454593 fv Gamma Cox, Log-Normal FALSE #> 8322 521 0.7127690 0.140016713 fv Gamma Cox, Log-Normal FALSE #> 8338 522 0.6570335 0.147981785 fv Gamma Cox, Log-Normal FALSE #> 8354 523 0.9035491 0.240796228 fv Gamma Cox, Log-Normal FALSE #> 8370 524 0.7910639 0.197298251 fv Gamma Cox, Log-Normal FALSE #> 8386 525 1.3295251 0.263165691 fv Gamma Cox, Log-Normal FALSE #> 8402 526 1.1085831 0.260362630 fv Gamma Cox, Log-Normal FALSE #> 8418 527 0.9930652 0.328052452 fv Gamma Cox, Log-Normal FALSE #> 8434 528 0.7418328 0.169881227 fv Gamma Cox, Log-Normal FALSE #> 8450 529 1.2037156 0.256995886 fv Gamma Cox, Log-Normal FALSE #> 8466 530 1.3353275 0.308725331 fv Gamma Cox, Log-Normal FALSE #> 8482 531 1.0724559 0.185489763 fv Gamma Cox, Log-Normal FALSE #> 8498 532 1.1767181 0.288783024 fv Gamma Cox, Log-Normal FALSE #> 8514 533 0.9461511 0.224624441 fv Gamma Cox, Log-Normal FALSE #> 8530 534 1.0525213 0.206749296 fv Gamma Cox, Log-Normal FALSE #> 8546 535 1.4301389 0.327696069 fv Gamma Cox, Log-Normal FALSE #> 8562 536 1.0021084 0.171694724 fv Gamma Cox, Log-Normal FALSE #> 8578 537 0.9908633 0.334784893 fv Gamma Cox, Log-Normal FALSE #> 8594 538 0.7459350 0.166232904 fv Gamma Cox, Log-Normal FALSE #> 8610 539 1.1963909 0.302554905 fv Gamma Cox, Log-Normal FALSE #> 8626 540 1.0600937 0.334538983 fv Gamma Cox, Log-Normal FALSE #> 8642 541 0.7824209 0.191635059 fv Gamma Cox, Log-Normal FALSE #> 8658 542 1.0469726 0.186010712 fv Gamma Cox, Log-Normal FALSE #> 8674 543 1.1353147 0.200048549 fv Gamma Cox, Log-Normal FALSE #> 8690 544 1.0727346 0.223928441 fv Gamma Cox, Log-Normal FALSE #> 8706 545 0.9542188 0.258825073 fv Gamma Cox, Log-Normal FALSE #> 8722 546 0.7626356 0.145367051 fv Gamma Cox, Log-Normal FALSE #> 8738 547 0.7998809 0.146606750 fv Gamma Cox, Log-Normal FALSE #> 8754 548 0.8468470 0.311423205 fv Gamma Cox, Log-Normal FALSE #> 8770 549 1.0343320 0.291774386 fv Gamma Cox, Log-Normal FALSE #> 8786 550 1.3436451 0.531137533 fv Gamma Cox, Log-Normal TRUE #> 8802 551 0.9109458 0.190163812 fv Gamma Cox, Log-Normal FALSE #> 8818 552 0.7473400 0.168944580 fv Gamma Cox, Log-Normal FALSE #> 8834 553 0.7435618 0.152999604 fv Gamma Cox, Log-Normal FALSE #> 8850 554 0.9450358 0.248564971 fv Gamma Cox, Log-Normal FALSE #> 8866 555 0.6737041 0.126162135 fv Gamma Cox, Log-Normal FALSE #> 8882 556 0.6772282 0.151785951 fv Gamma Cox, Log-Normal FALSE #> 8898 557 1.6904828 0.395312396 fv Gamma Cox, Log-Normal TRUE #> 8914 558 1.0339234 0.212529669 fv Gamma Cox, Log-Normal FALSE #> 8930 559 0.7993772 0.259858142 fv Gamma Cox, Log-Normal FALSE #> 8946 560 0.9719681 0.242674636 fv Gamma Cox, Log-Normal FALSE #> 8962 561 1.0261247 0.212406152 fv Gamma Cox, Log-Normal FALSE #> 8978 562 0.5757420 0.150997039 fv Gamma Cox, Log-Normal FALSE #> 8994 563 1.0409490 0.228433773 fv Gamma Cox, Log-Normal FALSE #> 9010 564 1.0615467 0.193348628 fv Gamma Cox, Log-Normal FALSE #> 9026 565 1.1679880 0.390837268 fv Gamma Cox, Log-Normal FALSE #> 9042 566 1.2199602 0.278996060 fv Gamma Cox, Log-Normal FALSE #> 9058 567 0.9822957 0.244996294 fv Gamma Cox, Log-Normal FALSE #> 9074 568 1.0201589 0.280017514 fv Gamma Cox, Log-Normal FALSE #> 9090 569 0.9406773 0.270807399 fv Gamma Cox, Log-Normal FALSE #> 9106 570 0.9279776 0.161765327 fv Gamma Cox, Log-Normal FALSE #> 9122 571 0.9326456 0.179721507 fv Gamma Cox, Log-Normal FALSE #> 9138 572 1.1013126 0.198471955 fv Gamma Cox, Log-Normal FALSE #> 9154 573 0.6222332 0.126446396 fv Gamma Cox, Log-Normal FALSE #> 9170 574 1.1432237 0.294379732 fv Gamma Cox, Log-Normal FALSE #> 9186 575 0.9600009 0.226550540 fv Gamma Cox, Log-Normal FALSE #> 9202 576 1.0609559 0.287309234 fv Gamma Cox, Log-Normal FALSE #> 9218 577 0.9115962 0.250289364 fv Gamma Cox, Log-Normal FALSE #> 9234 578 0.9202321 0.181635402 fv Gamma Cox, Log-Normal FALSE #> 9250 579 0.7970005 0.198574996 fv Gamma Cox, Log-Normal FALSE #> 9266 580 0.8541770 0.199446336 fv Gamma Cox, Log-Normal FALSE #> 9282 581 1.1327424 0.203938321 fv Gamma Cox, Log-Normal FALSE #> 9298 582 0.5324844 0.110727241 fv Gamma Cox, Log-Normal FALSE #> 9314 583 1.2170472 0.265887560 fv Gamma Cox, Log-Normal FALSE #> 9330 584 0.7405038 0.190327265 fv Gamma Cox, Log-Normal FALSE #> 9346 585 1.4674663 0.296880097 fv Gamma Cox, Log-Normal FALSE #> 9362 586 1.3357663 0.233595693 fv Gamma Cox, Log-Normal FALSE #> 9378 587 1.0434712 0.197298685 fv Gamma Cox, Log-Normal FALSE #> 9394 588 1.0601227 0.260760641 fv Gamma Cox, Log-Normal FALSE #> 9410 589 0.7426001 0.163007177 fv Gamma Cox, Log-Normal FALSE #> 9426 590 0.8895731 0.197968824 fv Gamma Cox, Log-Normal FALSE #> 9442 591 0.9799824 0.254028822 fv Gamma Cox, Log-Normal FALSE #> 9458 592 1.2819594 0.227298189 fv Gamma Cox, Log-Normal FALSE #> 9474 593 0.9126781 0.272510318 fv Gamma Cox, Log-Normal FALSE #> 9490 594 0.9415930 0.242944719 fv Gamma Cox, Log-Normal FALSE #> 9506 595 0.8669225 0.154822055 fv Gamma Cox, Log-Normal FALSE #> 9522 596 1.2023114 0.234135962 fv Gamma Cox, Log-Normal FALSE #> 9538 597 1.1852910 0.306402855 fv Gamma Cox, Log-Normal FALSE #> 9554 598 1.0144108 0.236994186 fv Gamma Cox, Log-Normal FALSE #> 9570 599 1.5141491 0.267682298 fv Gamma Cox, Log-Normal FALSE #> 9586 600 1.3093034 0.231071705 fv Gamma Cox, Log-Normal FALSE #> 9602 601 0.9685267 0.220530237 fv Gamma Cox, Log-Normal FALSE #> 9618 602 0.9567572 0.270622698 fv Gamma Cox, Log-Normal FALSE #> 9634 603 0.9007697 0.220945058 fv Gamma Cox, Log-Normal FALSE #> 9650 604 1.2452340 0.442246635 fv Gamma Cox, Log-Normal TRUE #> 9666 605 1.2222252 0.357745466 fv Gamma Cox, Log-Normal FALSE #> 9682 606 1.0475542 0.230114466 fv Gamma Cox, Log-Normal FALSE #> 9698 607 0.8173250 0.184012955 fv Gamma Cox, Log-Normal FALSE #> 9714 608 1.0264445 0.211869827 fv Gamma Cox, Log-Normal FALSE #> 9730 609 1.3393035 0.328197864 fv Gamma Cox, Log-Normal FALSE #> 9746 610 1.1612145 0.269944445 fv Gamma Cox, Log-Normal FALSE #> 9762 611 0.8716488 0.218240481 fv Gamma Cox, Log-Normal FALSE #> 9778 612 1.2478780 0.254679202 fv Gamma Cox, Log-Normal FALSE #> 9794 613 0.9089129 0.180981311 fv Gamma Cox, Log-Normal FALSE #> 9810 614 0.8236289 0.176298875 fv Gamma Cox, Log-Normal FALSE #> 9826 615 0.7781034 0.172342440 fv Gamma Cox, Log-Normal FALSE #> 9842 616 1.3207941 0.299666982 fv Gamma Cox, Log-Normal FALSE #> 9858 617 1.3523404 0.308465331 fv Gamma Cox, Log-Normal FALSE #> 9874 618 0.7054131 0.154359305 fv Gamma Cox, Log-Normal FALSE #> 9890 619 0.7621622 0.144288017 fv Gamma Cox, Log-Normal FALSE #> 9906 620 0.9294349 0.245020462 fv Gamma Cox, Log-Normal FALSE #> 9922 621 1.0852212 0.238577452 fv Gamma Cox, Log-Normal FALSE #> 9938 622 1.6889800 0.375733753 fv Gamma Cox, Log-Normal TRUE #> 9954 623 0.6497480 0.112506675 fv Gamma Cox, Log-Normal FALSE #> 9970 624 0.9417119 0.185039732 fv Gamma Cox, Log-Normal FALSE #> 9986 625 0.9615533 0.250108888 fv Gamma Cox, Log-Normal FALSE #> 10002 626 0.6491316 0.143634254 fv Gamma Cox, Log-Normal FALSE #> 10018 627 0.7991016 0.265477031 fv Gamma Cox, Log-Normal FALSE #> 10034 628 0.9209861 0.166585647 fv Gamma Cox, Log-Normal FALSE #> 10050 629 0.7470039 0.203007785 fv Gamma Cox, Log-Normal FALSE #> 10066 630 1.0690011 0.196367163 fv Gamma Cox, Log-Normal FALSE #> 10082 631 1.2764893 0.441219524 fv Gamma Cox, Log-Normal TRUE #> 10098 632 0.6869833 0.163540177 fv Gamma Cox, Log-Normal FALSE #> 10114 633 0.7001066 0.175297359 fv Gamma Cox, Log-Normal FALSE #> 10130 634 0.7032764 0.156311954 fv Gamma Cox, Log-Normal FALSE #> 10146 635 0.5491568 0.134395251 fv Gamma Cox, Log-Normal FALSE #> 10162 636 0.8513401 0.270874157 fv Gamma Cox, Log-Normal FALSE #> 10178 637 0.9566533 0.176784838 fv Gamma Cox, Log-Normal FALSE #> 10194 638 0.7933296 0.280428246 fv Gamma Cox, Log-Normal FALSE #> 10210 639 0.8824408 0.186779642 fv Gamma Cox, Log-Normal FALSE #> 10226 640 0.6936361 0.161515249 fv Gamma Cox, Log-Normal FALSE #> 10242 641 0.8355947 0.150330827 fv Gamma Cox, Log-Normal FALSE #> 10258 642 0.9279600 0.209555469 fv Gamma Cox, Log-Normal FALSE #> 10274 643 0.8074046 0.197113858 fv Gamma Cox, Log-Normal FALSE #> 10290 644 1.3611674 0.423889750 fv Gamma Cox, Log-Normal FALSE #> 10306 645 0.6554522 0.148982743 fv Gamma Cox, Log-Normal FALSE #> 10322 646 0.7228923 0.181773449 fv Gamma Cox, Log-Normal FALSE #> 10338 647 1.8011240 0.416701461 fv Gamma Cox, Log-Normal TRUE #> 10354 648 0.9024813 0.147263424 fv Gamma Cox, Log-Normal FALSE #> 10370 649 1.1228993 0.247566629 fv Gamma Cox, Log-Normal FALSE #> 10386 650 1.3658269 0.347823938 fv Gamma Cox, Log-Normal FALSE #> 10402 651 1.3826703 0.312517206 fv Gamma Cox, Log-Normal FALSE #> 10418 652 0.9966013 0.263252969 fv Gamma Cox, Log-Normal FALSE #> 10434 653 1.3938498 0.378569327 fv Gamma Cox, Log-Normal FALSE #> 10450 654 0.7498765 0.198991232 fv Gamma Cox, Log-Normal FALSE #> 10466 655 0.8188198 0.148632081 fv Gamma Cox, Log-Normal FALSE #> 10482 656 0.9838947 0.237718941 fv Gamma Cox, Log-Normal FALSE #> 10498 657 0.9509122 0.222243095 fv Gamma Cox, Log-Normal FALSE #> 10514 658 1.0495215 0.221859992 fv Gamma Cox, Log-Normal FALSE #> 10530 659 1.1024600 0.246582294 fv Gamma Cox, Log-Normal FALSE #> 10546 660 1.1214802 0.345331077 fv Gamma Cox, Log-Normal FALSE #> 10562 661 0.8252543 0.208741101 fv Gamma Cox, Log-Normal FALSE #> 10578 662 0.5439256 0.113712777 fv Gamma Cox, Log-Normal FALSE #> 10594 663 0.7762586 0.185818017 fv Gamma Cox, Log-Normal FALSE #> 10610 664 0.9321685 0.141486786 fv Gamma Cox, Log-Normal FALSE #> 10626 665 0.9641151 0.245897886 fv Gamma Cox, Log-Normal FALSE #> 10642 666 0.9707480 0.281544181 fv Gamma Cox, Log-Normal FALSE #> 10658 667 1.1775076 0.327488577 fv Gamma Cox, Log-Normal FALSE #> 10674 668 1.2100674 0.383647041 fv Gamma Cox, Log-Normal FALSE #> 10690 669 0.7079595 0.202483076 fv Gamma Cox, Log-Normal FALSE #> 10706 670 1.1701748 0.308158336 fv Gamma Cox, Log-Normal FALSE #> 10722 671 1.2338212 0.274821951 fv Gamma Cox, Log-Normal FALSE #> 10738 672 0.7795158 0.186065151 fv Gamma Cox, Log-Normal FALSE #> 10754 673 0.8208763 0.152826786 fv Gamma Cox, Log-Normal FALSE #> 10770 674 1.3740360 0.392376078 fv Gamma Cox, Log-Normal FALSE #> 10786 675 0.9580433 0.177217021 fv Gamma Cox, Log-Normal FALSE #> 10802 676 0.6479120 0.215451916 fv Gamma Cox, Log-Normal FALSE #> 10818 677 0.8237457 0.173619019 fv Gamma Cox, Log-Normal FALSE #> 10834 678 1.1448183 0.294799498 fv Gamma Cox, Log-Normal FALSE #> 10850 679 1.4160710 0.319465728 fv Gamma Cox, Log-Normal FALSE #> 10866 680 1.0010333 0.366282201 fv Gamma Cox, Log-Normal FALSE #> 10882 681 0.7361065 0.213144710 fv Gamma Cox, Log-Normal FALSE #> 10898 682 0.9640440 0.204357977 fv Gamma Cox, Log-Normal FALSE #> 10914 683 1.1832964 0.328296114 fv Gamma Cox, Log-Normal FALSE #> 10930 684 1.2352413 0.256935059 fv Gamma Cox, Log-Normal FALSE #> 10946 685 0.8576592 0.208323295 fv Gamma Cox, Log-Normal FALSE #> 10962 686 0.6559387 0.148327340 fv Gamma Cox, Log-Normal FALSE #> 10978 687 1.3955422 0.274232845 fv Gamma Cox, Log-Normal FALSE #> 10994 688 0.9477181 0.185695063 fv Gamma Cox, Log-Normal FALSE #> 11010 689 0.8098337 0.146404742 fv Gamma Cox, Log-Normal FALSE #> 11026 690 1.2282291 0.224138226 fv Gamma Cox, Log-Normal FALSE #> 11042 691 1.0052381 0.169059700 fv Gamma Cox, Log-Normal FALSE #> 11058 692 0.9559934 0.175651808 fv Gamma Cox, Log-Normal FALSE #> 11074 693 1.3037994 0.320750495 fv Gamma Cox, Log-Normal FALSE #> 11090 694 1.0887350 0.262845102 fv Gamma Cox, Log-Normal FALSE #> 11106 695 1.0245538 0.316179341 fv Gamma Cox, Log-Normal FALSE #> 11122 696 1.0057025 0.279965660 fv Gamma Cox, Log-Normal FALSE #> 11138 697 1.0332112 0.228229709 fv Gamma Cox, Log-Normal FALSE #> 11154 698 1.0008029 0.230392985 fv Gamma Cox, Log-Normal FALSE #> 11170 699 0.9448768 0.148606204 fv Gamma Cox, Log-Normal FALSE #> 11186 700 1.6100507 0.301322970 fv Gamma Cox, Log-Normal TRUE #> 11202 701 0.8168552 0.166749623 fv Gamma Cox, Log-Normal FALSE #> 11218 702 0.7951008 0.229465092 fv Gamma Cox, Log-Normal FALSE #> 11234 703 0.7124699 0.176676006 fv Gamma Cox, Log-Normal FALSE #> 11250 704 1.2850043 0.227968238 fv Gamma Cox, Log-Normal FALSE #> 11266 705 1.4407282 0.311041525 fv Gamma Cox, Log-Normal FALSE #> 11282 706 1.0292844 0.184432785 fv Gamma Cox, Log-Normal FALSE #> 11298 707 0.7592113 0.220094759 fv Gamma Cox, Log-Normal FALSE #> 11314 708 1.1536924 0.378570168 fv Gamma Cox, Log-Normal FALSE #> 11330 709 0.9301348 0.152019700 fv Gamma Cox, Log-Normal FALSE #> 11346 710 0.9747393 0.152258390 fv Gamma Cox, Log-Normal FALSE #> 11362 711 0.4419933 0.091587040 fv Gamma Cox, Log-Normal FALSE #> 11378 712 0.9574598 0.232824090 fv Gamma Cox, Log-Normal FALSE #> 11394 713 0.9989393 0.196517724 fv Gamma Cox, Log-Normal FALSE #> 11410 714 1.2846766 0.430198645 fv Gamma Cox, Log-Normal TRUE #> 11426 715 1.3765564 0.287137467 fv Gamma Cox, Log-Normal FALSE #> 11442 716 1.0736204 0.271160711 fv Gamma Cox, Log-Normal FALSE #> 11458 717 0.8447250 0.275879055 fv Gamma Cox, Log-Normal FALSE #> 11474 718 1.0081585 0.250844357 fv Gamma Cox, Log-Normal FALSE #> 11490 719 0.7888853 0.143021641 fv Gamma Cox, Log-Normal FALSE #> 11506 720 0.8275914 0.169821218 fv Gamma Cox, Log-Normal FALSE #> 11522 721 1.0362940 0.250343175 fv Gamma Cox, Log-Normal FALSE #> 11538 722 1.2802454 0.333262567 fv Gamma Cox, Log-Normal FALSE #> 11554 723 1.0636312 0.323034788 fv Gamma Cox, Log-Normal FALSE #> 11570 724 0.7908268 0.162506524 fv Gamma Cox, Log-Normal FALSE #> 11586 725 0.8741268 0.195905074 fv Gamma Cox, Log-Normal FALSE #> 11602 726 0.7664078 0.217471393 fv Gamma Cox, Log-Normal FALSE #> 11618 727 1.1345593 0.312048852 fv Gamma Cox, Log-Normal FALSE #> 11634 728 0.6815268 0.256231339 fv Gamma Cox, Log-Normal FALSE #> 11650 729 1.0012762 0.190967467 fv Gamma Cox, Log-Normal FALSE #> 11666 730 1.3645868 0.417363902 fv Gamma Cox, Log-Normal FALSE #> 11682 731 1.4012566 0.325484691 fv Gamma Cox, Log-Normal FALSE #> 11698 732 1.2333383 0.213696113 fv Gamma Cox, Log-Normal FALSE #> 11714 733 0.7422468 0.180001456 fv Gamma Cox, Log-Normal FALSE #> 11730 734 0.7656523 0.212408503 fv Gamma Cox, Log-Normal FALSE #> 11746 735 1.1366086 0.281915857 fv Gamma Cox, Log-Normal FALSE #> 11762 736 1.0835050 0.304493693 fv Gamma Cox, Log-Normal FALSE #> 11778 737 0.9811711 0.246886659 fv Gamma Cox, Log-Normal FALSE #> 11794 738 0.8368011 0.340475523 fv Gamma Cox, Log-Normal FALSE #> 11810 739 0.9087165 0.200542432 fv Gamma Cox, Log-Normal FALSE #> 11826 740 0.8700050 0.193399163 fv Gamma Cox, Log-Normal FALSE #> 11842 741 1.0493966 0.242318925 fv Gamma Cox, Log-Normal FALSE #> 11858 742 0.7285165 0.152167499 fv Gamma Cox, Log-Normal FALSE #> 11874 743 1.0809077 0.253157125 fv Gamma Cox, Log-Normal FALSE #> 11890 744 1.3116924 0.349032088 fv Gamma Cox, Log-Normal FALSE #> 11906 745 0.8668810 0.255673856 fv Gamma Cox, Log-Normal FALSE #> 11922 746 0.5031063 0.086395670 fv Gamma Cox, Log-Normal FALSE #> 11938 747 0.8514091 0.212312538 fv Gamma Cox, Log-Normal FALSE #> 11954 748 1.0763630 0.181266049 fv Gamma Cox, Log-Normal FALSE #> 11970 749 0.8902869 0.251796213 fv Gamma Cox, Log-Normal FALSE #> 11986 750 0.6972912 0.147370632 fv Gamma Cox, Log-Normal FALSE #> 12002 751 1.1695505 0.209407579 fv Gamma Cox, Log-Normal FALSE #> 12018 752 1.0586978 0.231401972 fv Gamma Cox, Log-Normal FALSE #> 12034 753 0.7359262 0.219724376 fv Gamma Cox, Log-Normal FALSE #> 12050 754 1.0893551 0.230029873 fv Gamma Cox, Log-Normal FALSE #> 12066 755 0.9971904 0.175161437 fv Gamma Cox, Log-Normal FALSE #> 12082 756 1.5691599 0.295112101 fv Gamma Cox, Log-Normal FALSE #> 12098 757 0.7713164 0.186796598 fv Gamma Cox, Log-Normal FALSE #> 12114 758 0.6428408 0.152198490 fv Gamma Cox, Log-Normal FALSE #> 12130 759 0.7885099 0.154161821 fv Gamma Cox, Log-Normal FALSE #> 12146 760 0.7606324 0.162254956 fv Gamma Cox, Log-Normal FALSE #> 12162 761 1.0477843 0.279182770 fv Gamma Cox, Log-Normal FALSE #> 12178 762 0.8354850 0.168909484 fv Gamma Cox, Log-Normal FALSE #> 12194 763 0.7569949 0.166489594 fv Gamma Cox, Log-Normal FALSE #> 12210 764 0.9842876 0.267116745 fv Gamma Cox, Log-Normal FALSE #> 12226 765 0.7749107 0.196827870 fv Gamma Cox, Log-Normal FALSE #> 12242 766 0.6556944 0.126006011 fv Gamma Cox, Log-Normal FALSE #> 12258 767 0.9765773 0.221128587 fv Gamma Cox, Log-Normal FALSE #> 12274 768 1.0265077 0.226275490 fv Gamma Cox, Log-Normal FALSE #> 12290 769 1.0165964 0.206041439 fv Gamma Cox, Log-Normal FALSE #> 12306 770 0.7551010 0.216493504 fv Gamma Cox, Log-Normal FALSE #> 12322 771 0.6450434 0.111705699 fv Gamma Cox, Log-Normal FALSE #> 12338 772 1.1912443 0.351233857 fv Gamma Cox, Log-Normal FALSE #> 12354 773 0.8052817 0.219677124 fv Gamma Cox, Log-Normal FALSE #> 12370 774 0.9495006 0.183682679 fv Gamma Cox, Log-Normal FALSE #> 12386 775 1.4295249 0.357730455 fv Gamma Cox, Log-Normal FALSE #> 12402 776 0.9464133 0.161655065 fv Gamma Cox, Log-Normal FALSE #> 12418 777 0.7990472 0.188022633 fv Gamma Cox, Log-Normal FALSE #> 12434 778 1.1233230 0.279950067 fv Gamma Cox, Log-Normal FALSE #> 12450 779 1.1826743 0.287929833 fv Gamma Cox, Log-Normal FALSE #> 12466 780 1.1225019 0.260847577 fv Gamma Cox, Log-Normal FALSE #> 12482 781 0.8087508 0.219948457 fv Gamma Cox, Log-Normal FALSE #> 12498 782 0.9323221 0.354579850 fv Gamma Cox, Log-Normal FALSE #> 12514 783 0.9546923 0.172823948 fv Gamma Cox, Log-Normal FALSE #> 12530 784 0.8109267 0.135871785 fv Gamma Cox, Log-Normal FALSE #> 12546 785 0.8227292 0.153966550 fv Gamma Cox, Log-Normal FALSE #> 12562 786 1.0155313 0.221229923 fv Gamma Cox, Log-Normal FALSE #> 12578 787 1.2265997 0.381780641 fv Gamma Cox, Log-Normal FALSE #> 12594 788 0.9968011 0.271020910 fv Gamma Cox, Log-Normal FALSE #> 12610 789 0.9961110 0.264108258 fv Gamma Cox, Log-Normal FALSE #> 12626 790 1.3866559 0.403052216 fv Gamma Cox, Log-Normal FALSE #> 12642 791 1.2942187 0.345936087 fv Gamma Cox, Log-Normal FALSE #> 12658 792 1.3274802 0.294559219 fv Gamma Cox, Log-Normal FALSE #> 12674 793 0.8710422 0.188337532 fv Gamma Cox, Log-Normal FALSE #> 12690 794 0.4656342 0.086212385 fv Gamma Cox, Log-Normal FALSE #> 12706 795 0.9488004 0.249943737 fv Gamma Cox, Log-Normal FALSE #> 12722 796 1.0833683 0.238579911 fv Gamma Cox, Log-Normal FALSE #> 12738 797 0.7134433 0.174971445 fv Gamma Cox, Log-Normal FALSE #> 12754 798 0.7488683 0.203887403 fv Gamma Cox, Log-Normal FALSE #> 12770 799 1.4826244 0.460159427 fv Gamma Cox, Log-Normal TRUE #> 12786 800 1.2555919 0.228477636 fv Gamma Cox, Log-Normal FALSE #> 12802 801 0.7767814 0.216792490 fv Gamma Cox, Log-Normal FALSE #> 12818 802 0.8039006 0.143589898 fv Gamma Cox, Log-Normal FALSE #> 12834 803 0.9486562 0.154256665 fv Gamma Cox, Log-Normal FALSE #> 12850 804 1.0328948 0.231771198 fv Gamma Cox, Log-Normal FALSE #> 12866 805 0.9798605 0.228212803 fv Gamma Cox, Log-Normal FALSE #> 12882 806 0.7306827 0.144691202 fv Gamma Cox, Log-Normal FALSE #> 12898 807 1.2700539 0.278143788 fv Gamma Cox, Log-Normal FALSE #> 12914 808 0.9736841 0.293168234 fv Gamma Cox, Log-Normal FALSE #> 12930 809 1.3303860 0.442691890 fv Gamma Cox, Log-Normal TRUE #> 12946 810 0.9218010 0.172303136 fv Gamma Cox, Log-Normal FALSE #> 12962 811 1.3147421 0.258687544 fv Gamma Cox, Log-Normal FALSE #> 12978 812 0.8372171 0.211667829 fv Gamma Cox, Log-Normal FALSE #> 12994 813 1.1669162 0.244223344 fv Gamma Cox, Log-Normal FALSE #> 13010 814 0.9559600 0.260826010 fv Gamma Cox, Log-Normal FALSE #> 13026 815 1.4235527 0.327459602 fv Gamma Cox, Log-Normal FALSE #> 13042 816 0.7081849 0.196971428 fv Gamma Cox, Log-Normal FALSE #> 13058 817 1.2131452 0.372971263 fv Gamma Cox, Log-Normal FALSE #> 13074 818 0.8741341 0.256450653 fv Gamma Cox, Log-Normal FALSE #> 13090 819 1.3459854 0.408062364 fv Gamma Cox, Log-Normal FALSE #> 13106 820 0.8721563 0.225198849 fv Gamma Cox, Log-Normal FALSE #> 13122 821 0.9494623 0.270727048 fv Gamma Cox, Log-Normal FALSE #> 13138 822 0.6048632 0.109814168 fv Gamma Cox, Log-Normal FALSE #> 13154 823 1.0187693 0.277289565 fv Gamma Cox, Log-Normal FALSE #> 13170 824 0.9878398 0.232512666 fv Gamma Cox, Log-Normal FALSE #> 13186 825 0.6361843 0.116639807 fv Gamma Cox, Log-Normal FALSE #> 13202 826 0.9407440 0.186621880 fv Gamma Cox, Log-Normal FALSE #> 13218 827 0.9250230 0.206624297 fv Gamma Cox, Log-Normal FALSE #> 13234 828 1.4586544 0.400674246 fv Gamma Cox, Log-Normal FALSE #> 13250 829 0.7062700 0.123119510 fv Gamma Cox, Log-Normal FALSE #> 13266 830 1.2702881 0.292952627 fv Gamma Cox, Log-Normal FALSE #> 13282 831 0.7167738 0.210742781 fv Gamma Cox, Log-Normal FALSE #> 13298 832 0.8667566 0.156346725 fv Gamma Cox, Log-Normal FALSE #> 13314 833 0.9890096 0.226437277 fv Gamma Cox, Log-Normal FALSE #> 13330 834 0.6529406 0.148180979 fv Gamma Cox, Log-Normal FALSE #> 13346 835 0.9492850 0.219981130 fv Gamma Cox, Log-Normal FALSE #> 13362 836 0.9453736 0.258429879 fv Gamma Cox, Log-Normal FALSE #> 13378 837 0.9578582 0.272680782 fv Gamma Cox, Log-Normal FALSE #> 13394 838 1.2202325 0.219416306 fv Gamma Cox, Log-Normal FALSE #> 13410 839 0.7622538 0.136150062 fv Gamma Cox, Log-Normal FALSE #> 13426 840 1.0482271 0.241604455 fv Gamma Cox, Log-Normal FALSE #> 13442 841 0.9043676 0.148058562 fv Gamma Cox, Log-Normal FALSE #> 13458 842 0.9913150 0.280168128 fv Gamma Cox, Log-Normal FALSE #> 13474 843 1.3223045 0.330990887 fv Gamma Cox, Log-Normal FALSE #> 13490 844 1.0021235 0.292823919 fv Gamma Cox, Log-Normal FALSE #> 13506 845 1.4004414 0.318104284 fv Gamma Cox, Log-Normal FALSE #> 13522 846 0.8416453 0.250660878 fv Gamma Cox, Log-Normal FALSE #> 13538 847 0.8243172 0.288155697 fv Gamma Cox, Log-Normal FALSE #> 13554 848 0.5899439 0.122537752 fv Gamma Cox, Log-Normal FALSE #> 13570 849 0.9414000 0.178355553 fv Gamma Cox, Log-Normal FALSE #> 13586 850 0.8407891 0.160878072 fv Gamma Cox, Log-Normal FALSE #> 13602 851 0.9823066 0.238544662 fv Gamma Cox, Log-Normal FALSE #> 13618 852 0.5618333 0.110283440 fv Gamma Cox, Log-Normal FALSE #> 13634 853 0.9624791 0.197866836 fv Gamma Cox, Log-Normal FALSE #> 13650 854 0.7179179 0.157504403 fv Gamma Cox, Log-Normal FALSE #> 13666 855 1.2551276 0.310599897 fv Gamma Cox, Log-Normal FALSE #> 13682 856 1.0833605 0.207529494 fv Gamma Cox, Log-Normal FALSE #> 13698 857 0.7307127 0.179278420 fv Gamma Cox, Log-Normal FALSE #> 13714 858 0.8702718 0.224544233 fv Gamma Cox, Log-Normal FALSE #> 13730 859 0.8669632 0.270433850 fv Gamma Cox, Log-Normal FALSE #> 13746 860 0.7547683 0.132468609 fv Gamma Cox, Log-Normal FALSE #> 13762 861 1.1262160 0.257465167 fv Gamma Cox, Log-Normal FALSE #> 13778 862 0.8389212 0.161464653 fv Gamma Cox, Log-Normal FALSE #> 13794 863 1.0119069 0.212102924 fv Gamma Cox, Log-Normal FALSE #> 13810 864 0.9537157 0.216189336 fv Gamma Cox, Log-Normal FALSE #> 13826 865 1.0120405 0.205255774 fv Gamma Cox, Log-Normal FALSE #> 13842 866 0.7974231 0.133804459 fv Gamma Cox, Log-Normal FALSE #> 13858 867 0.9060825 0.156806604 fv Gamma Cox, Log-Normal FALSE #> 13874 868 0.9688863 0.217092971 fv Gamma Cox, Log-Normal FALSE #> 13890 869 1.0266109 0.254779900 fv Gamma Cox, Log-Normal FALSE #> 13906 870 0.9479034 0.327682086 fv Gamma Cox, Log-Normal FALSE #> 13922 871 1.2468126 0.291359832 fv Gamma Cox, Log-Normal FALSE #> 13938 872 1.3083943 0.333635934 fv Gamma Cox, Log-Normal FALSE #> 13954 873 1.1743319 0.209116592 fv Gamma Cox, Log-Normal FALSE #> 13970 874 1.5305586 0.443951756 fv Gamma Cox, Log-Normal TRUE #> 13986 875 0.7607191 0.145312089 fv Gamma Cox, Log-Normal FALSE #> 14002 876 0.8779484 0.192866111 fv Gamma Cox, Log-Normal FALSE #> 14018 877 0.9984085 0.211132798 fv Gamma Cox, Log-Normal FALSE #> 14034 878 1.0891524 0.319090619 fv Gamma Cox, Log-Normal FALSE #> 14050 879 0.8993115 0.342239070 fv Gamma Cox, Log-Normal FALSE #> 14066 880 1.4072146 0.315934948 fv Gamma Cox, Log-Normal FALSE #> 14082 881 1.1304945 0.294741363 fv Gamma Cox, Log-Normal FALSE #> 14098 882 1.2693027 0.233265611 fv Gamma Cox, Log-Normal FALSE #> 14114 883 0.7511724 0.169083381 fv Gamma Cox, Log-Normal FALSE #> 14130 884 0.7769513 0.153621573 fv Gamma Cox, Log-Normal FALSE #> 14146 885 0.7564225 0.181152611 fv Gamma Cox, Log-Normal FALSE #> 14162 886 0.7533057 0.187639873 fv Gamma Cox, Log-Normal FALSE #> 14178 887 0.9411945 0.197051463 fv Gamma Cox, Log-Normal FALSE #> 14194 888 1.3209266 0.241801270 fv Gamma Cox, Log-Normal FALSE #> 14210 889 1.0464163 0.206246274 fv Gamma Cox, Log-Normal FALSE #> 14226 890 0.7922736 0.208611946 fv Gamma Cox, Log-Normal FALSE #> 14242 891 0.6048097 0.093277354 fv Gamma Cox, Log-Normal FALSE #> 14258 892 0.9090234 0.181751021 fv Gamma Cox, Log-Normal FALSE #> 14274 893 1.1860418 0.343862998 fv Gamma Cox, Log-Normal FALSE #> 14290 894 0.7139899 0.164547200 fv Gamma Cox, Log-Normal FALSE #> 14306 895 0.8511802 0.176060960 fv Gamma Cox, Log-Normal FALSE #> 14322 896 1.1897072 0.217763226 fv Gamma Cox, Log-Normal FALSE #> 14338 897 0.8726068 0.157842972 fv Gamma Cox, Log-Normal FALSE #> 14354 898 1.1845061 0.237803283 fv Gamma Cox, Log-Normal FALSE #> 14370 899 1.0443795 0.246772790 fv Gamma Cox, Log-Normal FALSE #> 14386 900 1.1583504 0.323680854 fv Gamma Cox, Log-Normal FALSE #> 14402 901 0.7415650 0.170452452 fv Gamma Cox, Log-Normal FALSE #> 14418 902 0.7003490 0.139088567 fv Gamma Cox, Log-Normal FALSE #> 14434 903 0.7841447 0.149742194 fv Gamma Cox, Log-Normal FALSE #> 14450 904 1.5901697 0.482677057 fv Gamma Cox, Log-Normal TRUE #> 14466 905 0.7896432 0.138737460 fv Gamma Cox, Log-Normal FALSE #> 14482 906 1.3915225 0.266295262 fv Gamma Cox, Log-Normal FALSE #> 14498 907 1.0235347 0.258435199 fv Gamma Cox, Log-Normal FALSE #> 14514 908 0.8794528 0.274871726 fv Gamma Cox, Log-Normal FALSE #> 14530 909 0.7616585 0.153069885 fv Gamma Cox, Log-Normal FALSE #> 14546 910 0.6709826 0.127266750 fv Gamma Cox, Log-Normal FALSE #> 14562 911 0.9426690 0.305758226 fv Gamma Cox, Log-Normal FALSE #> 14578 912 0.6876512 0.115011789 fv Gamma Cox, Log-Normal FALSE #> 14594 913 0.9720124 0.200778297 fv Gamma Cox, Log-Normal FALSE #> 14610 914 0.8574690 0.251944490 fv Gamma Cox, Log-Normal FALSE #> 14626 915 1.1770862 0.283699685 fv Gamma Cox, Log-Normal FALSE #> 14642 916 0.6674906 0.129719682 fv Gamma Cox, Log-Normal FALSE #> 14658 917 1.0089240 0.301683903 fv Gamma Cox, Log-Normal FALSE #> 14674 918 1.0180468 0.176241349 fv Gamma Cox, Log-Normal FALSE #> 14690 919 0.6774361 0.111074751 fv Gamma Cox, Log-Normal FALSE #> 14706 920 0.9816049 0.176035972 fv Gamma Cox, Log-Normal FALSE #> 14722 921 1.1225462 0.265504818 fv Gamma Cox, Log-Normal FALSE #> 14738 922 1.6005520 0.403568432 fv Gamma Cox, Log-Normal FALSE #> 14754 923 0.9384639 0.171544257 fv Gamma Cox, Log-Normal FALSE #> 14770 924 0.9551133 0.151122096 fv Gamma Cox, Log-Normal FALSE #> 14786 925 1.2062083 0.344311268 fv Gamma Cox, Log-Normal FALSE #> 14802 926 0.9341805 0.185300287 fv Gamma Cox, Log-Normal FALSE #> 14818 927 0.5496008 0.113479221 fv Gamma Cox, Log-Normal FALSE #> 14834 928 0.9298163 0.196767579 fv Gamma Cox, Log-Normal FALSE #> 14850 929 1.0148063 0.250301564 fv Gamma Cox, Log-Normal FALSE #> 14866 930 1.4671972 0.477190164 fv Gamma Cox, Log-Normal TRUE #> 14882 931 0.9037657 0.193220022 fv Gamma Cox, Log-Normal FALSE #> 14898 932 1.2131691 0.230914741 fv Gamma Cox, Log-Normal FALSE #> 14914 933 0.7664552 0.172978498 fv Gamma Cox, Log-Normal FALSE #> 14930 934 0.7235467 0.099478559 fv Gamma Cox, Log-Normal FALSE #> 14946 935 0.5651276 0.109392225 fv Gamma Cox, Log-Normal FALSE #> 14962 936 0.7738704 0.156934151 fv Gamma Cox, Log-Normal FALSE #> 14978 937 1.4874432 0.363632319 fv Gamma Cox, Log-Normal FALSE #> 14994 938 1.0628662 0.267143882 fv Gamma Cox, Log-Normal FALSE #> 15010 939 1.0222365 0.192388758 fv Gamma Cox, Log-Normal FALSE #> 15026 940 1.0277460 0.196087165 fv Gamma Cox, Log-Normal FALSE #> 15042 941 0.8016317 0.159316442 fv Gamma Cox, Log-Normal FALSE #> 15058 942 0.8411527 0.182284638 fv Gamma Cox, Log-Normal FALSE #> 15074 943 0.5594256 0.113623496 fv Gamma Cox, Log-Normal FALSE #> 15090 944 0.7729183 0.124686294 fv Gamma Cox, Log-Normal FALSE #> 15106 945 0.7428305 0.151083868 fv Gamma Cox, Log-Normal FALSE #> 15122 946 1.1677163 0.377504451 fv Gamma Cox, Log-Normal FALSE #> 15138 947 0.8375811 0.210228463 fv Gamma Cox, Log-Normal FALSE #> 15154 948 0.6906720 0.230450716 fv Gamma Cox, Log-Normal FALSE #> 15170 949 0.8148721 0.226169057 fv Gamma Cox, Log-Normal FALSE #> 15186 950 0.7721582 0.203677104 fv Gamma Cox, Log-Normal FALSE #> 15202 951 0.9992324 0.220599272 fv Gamma Cox, Log-Normal FALSE #> 15218 952 0.8222391 0.179491347 fv Gamma Cox, Log-Normal FALSE #> 15234 953 1.6443296 0.391757692 fv Gamma Cox, Log-Normal TRUE #> 15250 954 0.8622421 0.193926799 fv Gamma Cox, Log-Normal FALSE #> 15266 955 1.0271637 0.198165599 fv Gamma Cox, Log-Normal FALSE #> 15282 956 0.7877326 0.190345590 fv Gamma Cox, Log-Normal FALSE #> 15298 957 0.7332077 0.170648591 fv Gamma Cox, Log-Normal FALSE #> 15314 958 0.6742120 0.141736639 fv Gamma Cox, Log-Normal FALSE #> 15330 959 0.8116423 0.176636628 fv Gamma Cox, Log-Normal FALSE #> 15346 960 1.0381126 0.247132858 fv Gamma Cox, Log-Normal FALSE #> 15362 961 0.6263490 0.119573651 fv Gamma Cox, Log-Normal FALSE #> 15378 962 1.2298672 0.279659616 fv Gamma Cox, Log-Normal FALSE #> 15394 963 1.3100317 0.351291999 fv Gamma Cox, Log-Normal FALSE #> 15410 964 0.9385725 0.212853684 fv Gamma Cox, Log-Normal FALSE #> 15426 965 0.7237833 0.136184000 fv Gamma Cox, Log-Normal FALSE #> 15442 966 1.0774498 0.255201646 fv Gamma Cox, Log-Normal FALSE #> 15458 967 0.8661890 0.186999729 fv Gamma Cox, Log-Normal FALSE #> 15474 968 0.7440313 0.163577636 fv Gamma Cox, Log-Normal FALSE #> 15490 969 1.0548245 0.323917765 fv Gamma Cox, Log-Normal FALSE #> 15506 970 1.0335275 0.417785729 fv Gamma Cox, Log-Normal FALSE #> 15522 971 0.8920170 0.217781465 fv Gamma Cox, Log-Normal FALSE #> 15538 972 0.8443654 0.262375588 fv Gamma Cox, Log-Normal FALSE #> 15554 973 1.4316470 0.431582164 fv Gamma Cox, Log-Normal TRUE #> 15570 974 0.6408896 0.154553156 fv Gamma Cox, Log-Normal FALSE #> 15586 975 0.5818109 0.121328131 fv Gamma Cox, Log-Normal FALSE #> 15602 976 0.9803179 0.204723535 fv Gamma Cox, Log-Normal FALSE #> 15618 977 1.1977389 0.247126848 fv Gamma Cox, Log-Normal FALSE #> 15634 978 1.1178645 0.327386366 fv Gamma Cox, Log-Normal FALSE #> 15650 979 1.2145658 0.344268311 fv Gamma Cox, Log-Normal FALSE #> 15666 980 0.6638111 0.139988436 fv Gamma Cox, Log-Normal FALSE #> 15682 981 0.9741935 0.298000366 fv Gamma Cox, Log-Normal FALSE #> 15698 982 1.2667102 0.291885120 fv Gamma Cox, Log-Normal FALSE #> 15714 983 0.6366284 0.142543764 fv Gamma Cox, Log-Normal FALSE #> 15730 984 0.9916257 0.230161087 fv Gamma Cox, Log-Normal FALSE #> 15746 985 1.1673924 0.329455282 fv Gamma Cox, Log-Normal FALSE #> 15762 986 0.8093946 0.131512474 fv Gamma Cox, Log-Normal FALSE #> 15778 987 0.6809663 0.166413324 fv Gamma Cox, Log-Normal FALSE #> 15794 988 0.8090418 0.168468434 fv Gamma Cox, Log-Normal FALSE #> 15810 989 1.1203963 0.254390270 fv Gamma Cox, Log-Normal FALSE #> 15826 990 0.8937730 0.181708706 fv Gamma Cox, Log-Normal FALSE #> 15842 991 1.0581390 0.254618273 fv Gamma Cox, Log-Normal FALSE #> 15858 992 1.1236897 0.339523124 fv Gamma Cox, Log-Normal FALSE #> 15874 993 1.4089872 0.331849490 fv Gamma Cox, Log-Normal FALSE #> 15890 994 0.9304340 0.200697045 fv Gamma Cox, Log-Normal FALSE #> 15906 995 0.9726530 0.218311522 fv Gamma Cox, Log-Normal FALSE #> 15922 996 0.8111108 0.164699823 fv Gamma Cox, Log-Normal FALSE #> 15938 997 0.7307507 0.230449780 fv Gamma Cox, Log-Normal FALSE #> 15954 998 0.8727082 0.192062571 fv Gamma Cox, Log-Normal FALSE #> 15970 999 0.6342790 0.116767975 fv Gamma Cox, Log-Normal FALSE #> 15986 1000 0.6557219 0.167090143 fv Gamma Cox, Log-Normal FALSE #> 3 1 0.6583130 0.126035398 fv Gamma RP(P), Gamma FALSE #> 19 2 0.6622712 0.129798360 fv Gamma RP(P), Gamma FALSE #> 35 3 1.0983598 0.207128706 fv Gamma RP(P), Gamma TRUE #> 51 4 0.8432273 0.157280985 fv Gamma RP(P), Gamma FALSE #> 67 5 0.7044549 0.135560564 fv Gamma RP(P), Gamma FALSE #> 83 6 NA NA fv Gamma RP(P), Gamma NA #> 99 7 0.6501343 0.124699716 fv Gamma RP(P), Gamma FALSE #> 115 8 1.0008371 0.185404780 fv Gamma RP(P), Gamma FALSE #> 131 9 0.8262565 0.156514195 fv Gamma RP(P), Gamma FALSE #> 147 10 0.8201887 0.155263227 fv Gamma RP(P), Gamma FALSE #> 163 11 0.8137370 0.155704386 fv Gamma RP(P), Gamma FALSE #> 179 12 0.9939974 0.184176616 fv Gamma RP(P), Gamma FALSE #> 195 13 0.9504802 0.177824029 fv Gamma RP(P), Gamma FALSE #> 211 14 0.5829730 0.115298145 fv Gamma RP(P), Gamma FALSE #> 227 15 0.8822492 0.165491846 fv Gamma RP(P), Gamma FALSE #> 243 16 1.0082479 0.185522929 fv Gamma RP(P), Gamma FALSE #> 259 17 0.5973382 0.115826569 fv Gamma RP(P), Gamma FALSE #> 275 18 0.4678429 0.096466091 fv Gamma RP(P), Gamma FALSE #> 291 19 0.7328936 0.139614821 fv Gamma RP(P), Gamma FALSE #> 307 20 0.9565953 0.179037879 fv Gamma RP(P), Gamma FALSE #> 323 21 0.5538343 0.111582907 fv Gamma RP(P), Gamma FALSE #> 339 22 0.8928450 0.168502035 fv Gamma RP(P), Gamma FALSE #> 355 23 0.6152640 0.118919219 fv Gamma RP(P), Gamma FALSE #> 371 24 0.7529937 0.142318629 fv Gamma RP(P), Gamma FALSE #> 387 25 0.7807405 0.147597737 fv Gamma RP(P), Gamma FALSE #> 403 26 0.7246273 0.139343002 fv Gamma RP(P), Gamma FALSE #> 419 27 1.1459225 0.211761785 fv Gamma RP(P), Gamma TRUE #> 435 28 1.0210508 0.188347485 fv Gamma RP(P), Gamma FALSE #> 451 29 NA NA fv Gamma RP(P), Gamma NA #> 467 30 0.9633830 0.180741692 fv Gamma RP(P), Gamma FALSE #> 483 31 0.6172289 0.121507402 fv Gamma RP(P), Gamma FALSE #> 499 32 0.7787334 0.148374349 fv Gamma RP(P), Gamma FALSE #> 515 33 0.5966043 0.115428078 fv Gamma RP(P), Gamma FALSE #> 531 34 0.5606909 0.109628967 fv Gamma RP(P), Gamma FALSE #> 547 35 0.7528722 0.146377360 fv Gamma RP(P), Gamma FALSE #> 563 36 0.6003364 0.119702219 fv Gamma RP(P), Gamma FALSE #> 579 37 0.5981520 0.116125997 fv Gamma RP(P), Gamma FALSE #> 595 38 0.5258415 0.103812772 fv Gamma RP(P), Gamma FALSE #> 611 39 0.7151039 0.135677110 fv Gamma RP(P), Gamma FALSE #> 627 40 0.4805411 0.096069472 fv Gamma RP(P), Gamma FALSE #> 643 41 1.1955770 0.214465980 fv Gamma RP(P), Gamma TRUE #> 659 42 0.7131938 0.138882554 fv Gamma RP(P), Gamma FALSE #> 675 43 0.8178025 0.153932387 fv Gamma RP(P), Gamma FALSE #> 691 44 0.8517164 0.159552144 fv Gamma RP(P), Gamma FALSE #> 707 45 0.7770909 0.146570656 fv Gamma RP(P), Gamma FALSE #> 723 46 0.7352140 0.139274517 fv Gamma RP(P), Gamma FALSE #> 739 47 0.9088789 0.172401938 fv Gamma RP(P), Gamma FALSE #> 755 48 0.7543666 0.144637452 fv Gamma RP(P), Gamma FALSE #> 771 49 0.7861070 0.150029967 fv Gamma RP(P), Gamma FALSE #> 787 50 0.7194816 0.136551253 fv Gamma RP(P), Gamma FALSE #> 803 51 0.8995177 0.167805917 fv Gamma RP(P), Gamma FALSE #> 819 52 0.6174492 0.122678304 fv Gamma RP(P), Gamma FALSE #> 835 53 0.6750597 0.130159913 fv Gamma RP(P), Gamma FALSE #> 851 54 0.5309038 0.105027975 fv Gamma RP(P), Gamma FALSE #> 867 55 0.7826463 0.148256356 fv Gamma RP(P), Gamma FALSE #> 883 56 0.7107366 0.137819603 fv Gamma RP(P), Gamma FALSE #> 899 57 0.7873837 0.148295624 fv Gamma RP(P), Gamma FALSE #> 915 58 0.6604236 0.129333742 fv Gamma RP(P), Gamma FALSE #> 931 59 0.7204677 0.137455234 fv Gamma RP(P), Gamma FALSE #> 947 60 0.7937934 0.150215116 fv Gamma RP(P), Gamma FALSE #> 963 61 0.6713512 0.128115321 fv Gamma RP(P), Gamma FALSE #> 979 62 0.6573296 0.128650691 fv Gamma RP(P), Gamma FALSE #> 995 63 0.8607833 0.161828019 fv Gamma RP(P), Gamma FALSE #> 1011 64 0.6543734 0.125543532 fv Gamma RP(P), Gamma FALSE #> 1027 65 0.6954612 0.132073413 fv Gamma RP(P), Gamma FALSE #> 1043 66 0.5448760 0.107425993 fv Gamma RP(P), Gamma FALSE #> 1059 67 0.8194453 0.153073618 fv Gamma RP(P), Gamma FALSE #> 1075 68 0.7446814 0.141854001 fv Gamma RP(P), Gamma FALSE #> 1091 69 0.5579674 0.109410924 fv Gamma RP(P), Gamma FALSE #> 1107 70 0.7098810 0.138933383 fv Gamma RP(P), Gamma FALSE #> 1123 71 0.9406454 0.174400598 fv Gamma RP(P), Gamma FALSE #> 1139 72 0.6530136 0.125588844 fv Gamma RP(P), Gamma FALSE #> 1155 73 0.4734941 0.094092884 fv Gamma RP(P), Gamma FALSE #> 1171 74 0.6754394 0.129318464 fv Gamma RP(P), Gamma FALSE #> 1187 75 0.6957309 0.133701552 fv Gamma RP(P), Gamma FALSE #> 1203 76 0.6999121 0.137477919 fv Gamma RP(P), Gamma FALSE #> 1219 77 0.7887771 0.151086397 fv Gamma RP(P), Gamma FALSE #> 1235 78 1.0335900 0.192017708 fv Gamma RP(P), Gamma FALSE #> 1251 79 NA NA fv Gamma RP(P), Gamma NA #> 1267 80 0.6232660 0.123397871 fv Gamma RP(P), Gamma FALSE #> 1283 81 0.9226520 0.175330403 fv Gamma RP(P), Gamma FALSE #> 1299 82 0.7323600 0.139191757 fv Gamma RP(P), Gamma FALSE #> 1315 83 0.4818189 0.099344646 fv Gamma RP(P), Gamma FALSE #> 1331 84 0.7176281 0.136243403 fv Gamma RP(P), Gamma FALSE #> 1347 85 0.7361589 0.140006217 fv Gamma RP(P), Gamma FALSE #> 1363 86 0.7168970 0.136729680 fv Gamma RP(P), Gamma FALSE #> 1379 87 0.5834150 0.113285946 fv Gamma RP(P), Gamma FALSE #> 1395 88 0.7231209 0.137245493 fv Gamma RP(P), Gamma FALSE #> 1411 89 0.7319681 0.139036681 fv Gamma RP(P), Gamma FALSE #> 1427 90 0.8849887 0.164574278 fv Gamma RP(P), Gamma FALSE #> 1443 91 0.7182218 0.136983847 fv Gamma RP(P), Gamma FALSE #> 1459 92 0.6588262 0.126126153 fv Gamma RP(P), Gamma FALSE #> 1475 93 0.9819063 0.189623911 fv Gamma RP(P), Gamma FALSE #> 1491 94 0.8240654 0.157587552 fv Gamma RP(P), Gamma FALSE #> 1507 95 0.7488191 0.141983395 fv Gamma RP(P), Gamma FALSE #> 1523 96 0.4645649 0.093124853 fv Gamma RP(P), Gamma FALSE #> 1539 97 0.5863916 0.113518710 fv Gamma RP(P), Gamma FALSE #> 1555 98 0.8032145 0.151506486 fv Gamma RP(P), Gamma FALSE #> 1571 99 0.5726988 0.112665995 fv Gamma RP(P), Gamma FALSE #> 1587 100 0.8511137 0.158396953 fv Gamma RP(P), Gamma FALSE #> 1603 101 0.8372638 0.155812635 fv Gamma RP(P), Gamma FALSE #> 1619 102 0.7029086 0.133768529 fv Gamma RP(P), Gamma FALSE #> 1635 103 0.8836859 0.168715151 fv Gamma RP(P), Gamma FALSE #> 1651 104 0.7399044 0.139619137 fv Gamma RP(P), Gamma FALSE #> 1667 105 0.8444006 0.159608342 fv Gamma RP(P), Gamma FALSE #> 1683 106 0.7104030 0.135352973 fv Gamma RP(P), Gamma FALSE #> 1699 107 0.8920210 0.169462833 fv Gamma RP(P), Gamma FALSE #> 1715 108 0.7782067 0.151086705 fv Gamma RP(P), Gamma FALSE #> 1731 109 0.6967850 0.134601272 fv Gamma RP(P), Gamma FALSE #> 1747 110 0.8004486 0.151100596 fv Gamma RP(P), Gamma FALSE #> 1763 111 0.8477821 0.159358489 fv Gamma RP(P), Gamma FALSE #> 1779 112 0.4652326 0.093174135 fv Gamma RP(P), Gamma FALSE #> 1795 113 0.5514675 0.108252595 fv Gamma RP(P), Gamma FALSE #> 1811 114 1.1754267 0.213550148 fv Gamma RP(P), Gamma TRUE #> 1827 115 0.6453176 0.124038453 fv Gamma RP(P), Gamma FALSE #> 1843 116 0.5128212 0.101337623 fv Gamma RP(P), Gamma FALSE #> 1859 117 0.7576375 0.142629401 fv Gamma RP(P), Gamma FALSE #> 1875 118 0.5586394 0.109635442 fv Gamma RP(P), Gamma FALSE #> 1891 119 0.6029588 0.117070228 fv Gamma RP(P), Gamma FALSE #> 1907 120 0.7150186 0.136386100 fv Gamma RP(P), Gamma FALSE #> 1923 121 0.6403640 0.124114963 fv Gamma RP(P), Gamma FALSE #> 1939 122 0.6358076 0.123045049 fv Gamma RP(P), Gamma FALSE #> 1955 123 0.7902879 0.149476111 fv Gamma RP(P), Gamma FALSE #> 1971 124 0.7337196 0.138801406 fv Gamma RP(P), Gamma FALSE #> 1987 125 0.8200071 0.155766631 fv Gamma RP(P), Gamma FALSE #> 2003 126 1.0013545 0.191643283 fv Gamma RP(P), Gamma FALSE #> 2019 127 0.8700811 0.162504747 fv Gamma RP(P), Gamma FALSE #> 2035 128 0.8632368 0.161576650 fv Gamma RP(P), Gamma FALSE #> 2051 129 0.5996664 0.119267007 fv Gamma RP(P), Gamma FALSE #> 2067 130 0.6725998 0.129252647 fv Gamma RP(P), Gamma FALSE #> 2083 131 0.6140982 0.117746976 fv Gamma RP(P), Gamma FALSE #> 2099 132 0.7648175 0.148356745 fv Gamma RP(P), Gamma FALSE #> 2115 133 0.7689487 0.147279141 fv Gamma RP(P), Gamma FALSE #> 2131 134 0.7587084 0.143867770 fv Gamma RP(P), Gamma FALSE #> 2147 135 0.5861381 0.114200376 fv Gamma RP(P), Gamma FALSE #> 2163 136 0.8141926 0.154375749 fv Gamma RP(P), Gamma FALSE #> 2179 137 0.8289906 0.155615181 fv Gamma RP(P), Gamma FALSE #> 2195 138 0.9755553 0.183087173 fv Gamma RP(P), Gamma FALSE #> 2211 139 0.6394931 0.123231427 fv Gamma RP(P), Gamma FALSE #> 2227 140 0.7139152 0.135322499 fv Gamma RP(P), Gamma FALSE #> 2243 141 0.5553028 0.110080872 fv Gamma RP(P), Gamma FALSE #> 2259 142 0.6996978 0.133621865 fv Gamma RP(P), Gamma FALSE #> 2275 143 1.1445345 0.218513226 fv Gamma RP(P), Gamma TRUE #> 2291 144 0.8547572 0.159213535 fv Gamma RP(P), Gamma FALSE #> 2307 145 0.6957523 0.133145347 fv Gamma RP(P), Gamma FALSE #> 2323 146 0.6861047 0.131992921 fv Gamma RP(P), Gamma FALSE #> 2339 147 NA NA fv Gamma RP(P), Gamma NA #> 2355 148 0.5179757 0.102001564 fv Gamma RP(P), Gamma FALSE #> 2371 149 0.6846178 0.131810489 fv Gamma RP(P), Gamma FALSE #> 2387 150 NA NA fv Gamma RP(P), Gamma NA #> 2403 151 0.8349086 0.156790347 fv Gamma RP(P), Gamma FALSE #> 2419 152 0.7973294 0.152804025 fv Gamma RP(P), Gamma FALSE #> 2435 153 0.4923993 0.097955760 fv Gamma RP(P), Gamma FALSE #> 2451 154 0.8363995 0.156721844 fv Gamma RP(P), Gamma FALSE #> 2467 155 0.6940619 0.135793329 fv Gamma RP(P), Gamma FALSE #> 2483 156 0.7151754 0.135913072 fv Gamma RP(P), Gamma FALSE #> 2499 157 0.9592753 0.181238490 fv Gamma RP(P), Gamma FALSE #> 2515 158 0.9946384 0.187427777 fv Gamma RP(P), Gamma FALSE #> 2531 159 0.5061336 0.100702406 fv Gamma RP(P), Gamma FALSE #> 2547 160 0.5671472 0.110846444 fv Gamma RP(P), Gamma FALSE #> 2563 161 1.1633775 0.212438568 fv Gamma RP(P), Gamma TRUE #> 2579 162 0.6706864 0.130117295 fv Gamma RP(P), Gamma FALSE #> 2595 163 0.5941737 0.115420188 fv Gamma RP(P), Gamma FALSE #> 2611 164 NA NA fv Gamma RP(P), Gamma NA #> 2627 165 0.7721841 0.145456395 fv Gamma RP(P), Gamma FALSE #> 2643 166 0.7965391 0.153433961 fv Gamma RP(P), Gamma FALSE #> 2659 167 0.8767056 0.163672379 fv Gamma RP(P), Gamma FALSE #> 2675 168 0.9296400 0.172682823 fv Gamma RP(P), Gamma FALSE #> 2691 169 0.7003157 0.134657034 fv Gamma RP(P), Gamma FALSE #> 2707 170 0.6969487 0.133752385 fv Gamma RP(P), Gamma FALSE #> 2723 171 0.6804580 0.132041501 fv Gamma RP(P), Gamma FALSE #> 2739 172 0.8676534 0.162110574 fv Gamma RP(P), Gamma FALSE #> 2755 173 0.6007524 0.117520007 fv Gamma RP(P), Gamma FALSE #> 2771 174 0.8205264 0.155211088 fv Gamma RP(P), Gamma FALSE #> 2787 175 0.6411124 0.124482470 fv Gamma RP(P), Gamma FALSE #> 2803 176 0.6685131 0.127629256 fv Gamma RP(P), Gamma FALSE #> 2819 177 0.5612191 0.111324967 fv Gamma RP(P), Gamma FALSE #> 2835 178 0.8696153 0.161721652 fv Gamma RP(P), Gamma FALSE #> 2851 179 0.5719307 0.111038706 fv Gamma RP(P), Gamma FALSE #> 2867 180 0.7498661 0.145859719 fv Gamma RP(P), Gamma FALSE #> 2883 181 0.8342400 0.156449843 fv Gamma RP(P), Gamma FALSE #> 2899 182 0.7307317 0.138530913 fv Gamma RP(P), Gamma FALSE #> 2915 183 0.5660622 0.110296482 fv Gamma RP(P), Gamma FALSE #> 2931 184 0.6722313 0.130153600 fv Gamma RP(P), Gamma FALSE #> 2947 185 0.8576717 0.161343877 fv Gamma RP(P), Gamma FALSE #> 2963 186 0.9062698 0.173016643 fv Gamma RP(P), Gamma FALSE #> 2979 187 0.7414907 0.141220753 fv Gamma RP(P), Gamma FALSE #> 2995 188 0.5549364 0.108588007 fv Gamma RP(P), Gamma FALSE #> 3011 189 NA NA fv Gamma RP(P), Gamma NA #> 3027 190 0.7746357 0.145922206 fv Gamma RP(P), Gamma FALSE #> 3043 191 0.7551856 0.142985236 fv Gamma RP(P), Gamma FALSE #> 3059 192 0.7775915 0.150107716 fv Gamma RP(P), Gamma FALSE #> 3075 193 0.6430137 0.124203106 fv Gamma RP(P), Gamma FALSE #> 3091 194 0.5962792 0.115366357 fv Gamma RP(P), Gamma FALSE #> 3107 195 0.8757453 0.162926509 fv Gamma RP(P), Gamma FALSE #> 3123 196 0.8185691 0.154828956 fv Gamma RP(P), Gamma FALSE #> 3139 197 0.7523839 0.141992354 fv Gamma RP(P), Gamma FALSE #> 3155 198 0.7791112 0.146503900 fv Gamma RP(P), Gamma FALSE #> 3171 199 0.5594019 0.109474490 fv Gamma RP(P), Gamma FALSE #> 3187 200 0.8269718 0.154676067 fv Gamma RP(P), Gamma FALSE #> 3203 201 0.7421167 0.141738015 fv Gamma RP(P), Gamma FALSE #> 3219 202 0.7899331 0.148298132 fv Gamma RP(P), Gamma FALSE #> 3235 203 0.7402666 0.139639494 fv Gamma RP(P), Gamma FALSE #> 3251 204 0.7440994 0.145413762 fv Gamma RP(P), Gamma FALSE #> 3267 205 0.5970540 0.116504438 fv Gamma RP(P), Gamma FALSE #> 3283 206 0.7403789 0.140695149 fv Gamma RP(P), Gamma FALSE #> 3299 207 0.5683539 0.111182081 fv Gamma RP(P), Gamma FALSE #> 3315 208 0.7459009 0.142060451 fv Gamma RP(P), Gamma FALSE #> 3331 209 0.6797062 0.130454189 fv Gamma RP(P), Gamma FALSE #> 3347 210 0.6908023 0.133192700 fv Gamma RP(P), Gamma FALSE #> 3363 211 0.9814670 0.185180252 fv Gamma RP(P), Gamma FALSE #> 3379 212 0.7275717 0.141752091 fv Gamma RP(P), Gamma FALSE #> 3395 213 0.8195451 0.155112422 fv Gamma RP(P), Gamma FALSE #> 3411 214 0.6510424 0.125935368 fv Gamma RP(P), Gamma FALSE #> 3427 215 0.8809648 0.164847839 fv Gamma RP(P), Gamma FALSE #> 3443 216 0.9160453 0.170696980 fv Gamma RP(P), Gamma FALSE #> 3459 217 0.6786443 0.131436644 fv Gamma RP(P), Gamma FALSE #> 3475 218 0.6130170 0.119462464 fv Gamma RP(P), Gamma FALSE #> 3491 219 0.8587860 0.162940219 fv Gamma RP(P), Gamma FALSE #> 3507 220 0.5645745 0.110301667 fv Gamma RP(P), Gamma FALSE #> 3523 221 0.7121007 0.136949273 fv Gamma RP(P), Gamma FALSE #> 3539 222 0.7729783 0.147339017 fv Gamma RP(P), Gamma FALSE #> 3555 223 0.7974666 0.154576435 fv Gamma RP(P), Gamma FALSE #> 3571 224 0.7615940 0.144773736 fv Gamma RP(P), Gamma FALSE #> 3587 225 0.6728903 0.129293781 fv Gamma RP(P), Gamma FALSE #> 3603 226 0.8358787 0.160645352 fv Gamma RP(P), Gamma FALSE #> 3619 227 0.6563351 0.126951384 fv Gamma RP(P), Gamma FALSE #> 3635 228 0.8883501 0.165539138 fv Gamma RP(P), Gamma FALSE #> 3651 229 0.7794882 0.147653006 fv Gamma RP(P), Gamma FALSE #> 3667 230 0.7046264 0.134302636 fv Gamma RP(P), Gamma FALSE #> 3683 231 0.7995473 0.151758843 fv Gamma RP(P), Gamma FALSE #> 3699 232 0.7343045 0.142360273 fv Gamma RP(P), Gamma FALSE #> 3715 233 0.8751457 0.164490904 fv Gamma RP(P), Gamma FALSE #> 3731 234 0.6297026 0.121422242 fv Gamma RP(P), Gamma FALSE #> 3747 235 0.7447860 0.143473450 fv Gamma RP(P), Gamma FALSE #> 3763 236 0.4983589 0.099237135 fv Gamma RP(P), Gamma FALSE #> 3779 237 0.6746635 0.131114127 fv Gamma RP(P), Gamma FALSE #> 3795 238 0.5865575 0.115419368 fv Gamma RP(P), Gamma FALSE #> 3811 239 0.7115553 0.134845742 fv Gamma RP(P), Gamma FALSE #> 3827 240 0.8624671 0.164706486 fv Gamma RP(P), Gamma FALSE #> 3843 241 0.6575508 0.126415736 fv Gamma RP(P), Gamma FALSE #> 3859 242 0.5155896 0.101988080 fv Gamma RP(P), Gamma FALSE #> 3875 243 0.8672063 0.167331273 fv Gamma RP(P), Gamma FALSE #> 3891 244 0.5652190 0.110299698 fv Gamma RP(P), Gamma FALSE #> 3907 245 0.9099031 0.170615102 fv Gamma RP(P), Gamma FALSE #> 3923 246 0.6715121 0.128245541 fv Gamma RP(P), Gamma FALSE #> 3939 247 0.7666596 0.145481254 fv Gamma RP(P), Gamma FALSE #> 3955 248 0.9441329 0.174552266 fv Gamma RP(P), Gamma FALSE #> 3971 249 0.9565287 0.180161217 fv Gamma RP(P), Gamma FALSE #> 3987 250 0.7319608 0.140182669 fv Gamma RP(P), Gamma FALSE #> 4003 251 0.7972592 0.153143991 fv Gamma RP(P), Gamma FALSE #> 4019 252 0.8050622 0.154700370 fv Gamma RP(P), Gamma FALSE #> 4035 253 0.9078567 0.176560322 fv Gamma RP(P), Gamma FALSE #> 4051 254 0.5209792 0.102295614 fv Gamma RP(P), Gamma FALSE #> 4067 255 0.7747142 0.145325614 fv Gamma RP(P), Gamma FALSE #> 4083 256 0.7249451 0.138771215 fv Gamma RP(P), Gamma FALSE #> 4099 257 0.5361170 0.104550822 fv Gamma RP(P), Gamma FALSE #> 4115 258 0.7026252 0.139222844 fv Gamma RP(P), Gamma FALSE #> 4131 259 0.7429085 0.141357296 fv Gamma RP(P), Gamma FALSE #> 4147 260 NA NA fv Gamma RP(P), Gamma NA #> 4163 261 0.4996380 0.098593653 fv Gamma RP(P), Gamma FALSE #> 4179 262 0.7307282 0.140705499 fv Gamma RP(P), Gamma FALSE #> 4195 263 0.6060010 0.118004035 fv Gamma RP(P), Gamma FALSE #> 4211 264 0.5116451 0.100491965 fv Gamma RP(P), Gamma FALSE #> 4227 265 0.5946271 0.114842799 fv Gamma RP(P), Gamma FALSE #> 4243 266 0.6163830 0.118942533 fv Gamma RP(P), Gamma FALSE #> 4259 267 0.7102904 0.136036062 fv Gamma RP(P), Gamma FALSE #> 4275 268 0.7470312 0.141482234 fv Gamma RP(P), Gamma FALSE #> 4291 269 1.0631565 0.199380875 fv Gamma RP(P), Gamma FALSE #> 4307 270 0.9061584 0.174043080 fv Gamma RP(P), Gamma FALSE #> 4323 271 0.8927398 0.167378590 fv Gamma RP(P), Gamma FALSE #> 4339 272 0.5411831 0.106864266 fv Gamma RP(P), Gamma FALSE #> 4355 273 0.6638746 0.128232822 fv Gamma RP(P), Gamma FALSE #> 4371 274 0.7225398 0.137091182 fv Gamma RP(P), Gamma FALSE #> 4387 275 0.8562018 0.159672512 fv Gamma RP(P), Gamma FALSE #> 4403 276 0.8120395 0.156356817 fv Gamma RP(P), Gamma FALSE #> 4419 277 0.6780585 0.129342060 fv Gamma RP(P), Gamma FALSE #> 4435 278 0.7362699 0.139418618 fv Gamma RP(P), Gamma FALSE #> 4451 279 0.7312040 0.138791432 fv Gamma RP(P), Gamma FALSE #> 4467 280 0.7617472 0.144139706 fv Gamma RP(P), Gamma FALSE #> 4483 281 1.0239004 0.192140750 fv Gamma RP(P), Gamma FALSE #> 4499 282 0.6014472 0.116810971 fv Gamma RP(P), Gamma FALSE #> 4515 283 0.8070494 0.156406698 fv Gamma RP(P), Gamma FALSE #> 4531 284 0.6547454 0.125591638 fv Gamma RP(P), Gamma FALSE #> 4547 285 0.5017963 0.099125117 fv Gamma RP(P), Gamma FALSE #> 4563 286 0.7664404 0.145194703 fv Gamma RP(P), Gamma FALSE #> 4579 287 0.6417145 0.124295516 fv Gamma RP(P), Gamma FALSE #> 4595 288 1.2160035 0.222504503 fv Gamma RP(P), Gamma TRUE #> 4611 289 0.6310461 0.122257396 fv Gamma RP(P), Gamma FALSE #> 4627 290 0.5976140 0.116077104 fv Gamma RP(P), Gamma FALSE #> 4643 291 0.6144723 0.119062165 fv Gamma RP(P), Gamma FALSE #> 4659 292 0.6279208 0.121314205 fv Gamma RP(P), Gamma FALSE #> 4675 293 0.8865261 0.166337950 fv Gamma RP(P), Gamma FALSE #> 4691 294 0.6338803 0.122601043 fv Gamma RP(P), Gamma FALSE #> 4707 295 1.0653819 0.195613485 fv Gamma RP(P), Gamma FALSE #> 4723 296 0.7351061 0.140428978 fv Gamma RP(P), Gamma FALSE #> 4739 297 NA NA fv Gamma RP(P), Gamma NA #> 4755 298 0.5714635 0.111383939 fv Gamma RP(P), Gamma FALSE #> 4771 299 0.5687379 0.111502873 fv Gamma RP(P), Gamma FALSE #> 4787 300 0.8507623 0.158735467 fv Gamma RP(P), Gamma FALSE #> 4803 301 0.5324432 0.104591380 fv Gamma RP(P), Gamma FALSE #> 4819 302 0.7542968 0.142000299 fv Gamma RP(P), Gamma FALSE #> 4835 303 0.6702254 0.129544084 fv Gamma RP(P), Gamma FALSE #> 4851 304 0.7359526 0.140947337 fv Gamma RP(P), Gamma FALSE #> 4867 305 0.8686497 0.162388264 fv Gamma RP(P), Gamma FALSE #> 4883 306 0.7459705 0.141847704 fv Gamma RP(P), Gamma FALSE #> 4899 307 0.7645224 0.146818849 fv Gamma RP(P), Gamma FALSE #> 4915 308 0.6534080 0.125521136 fv Gamma RP(P), Gamma FALSE #> 4931 309 0.7355909 0.139210502 fv Gamma RP(P), Gamma FALSE #> 4947 310 NA NA fv Gamma RP(P), Gamma NA #> 4963 311 0.8223787 0.154504491 fv Gamma RP(P), Gamma FALSE #> 4979 312 1.1338355 0.215053067 fv Gamma RP(P), Gamma TRUE #> 4995 313 0.7878946 0.148828816 fv Gamma RP(P), Gamma FALSE #> 5011 314 0.6331384 0.122483624 fv Gamma RP(P), Gamma FALSE #> 5027 315 0.7590237 0.143303796 fv Gamma RP(P), Gamma FALSE #> 5043 316 1.0456069 0.192281909 fv Gamma RP(P), Gamma FALSE #> 5059 317 0.6438263 0.124298460 fv Gamma RP(P), Gamma FALSE #> 5075 318 0.8458746 0.163143415 fv Gamma RP(P), Gamma FALSE #> 5091 319 0.6167836 0.119519907 fv Gamma RP(P), Gamma FALSE #> 5107 320 0.6054894 0.117299351 fv Gamma RP(P), Gamma FALSE #> 5123 321 0.8581595 0.161575543 fv Gamma RP(P), Gamma FALSE #> 5139 322 0.5470126 0.107569123 fv Gamma RP(P), Gamma FALSE #> 5155 323 0.8521730 0.159824438 fv Gamma RP(P), Gamma FALSE #> 5171 324 0.6293737 0.123041276 fv Gamma RP(P), Gamma FALSE #> 5187 325 0.7351303 0.139660930 fv Gamma RP(P), Gamma FALSE #> 5203 326 0.7037406 0.134539252 fv Gamma RP(P), Gamma FALSE #> 5219 327 0.7573005 0.143468222 fv Gamma RP(P), Gamma FALSE #> 5235 328 1.0260740 0.191722687 fv Gamma RP(P), Gamma FALSE #> 5251 329 0.8785208 0.166167340 fv Gamma RP(P), Gamma FALSE #> 5267 330 0.6958925 0.133498433 fv Gamma RP(P), Gamma FALSE #> 5283 331 0.8444511 0.157981839 fv Gamma RP(P), Gamma FALSE #> 5299 332 0.5635456 0.111106954 fv Gamma RP(P), Gamma FALSE #> 5315 333 0.5430382 0.106020576 fv Gamma RP(P), Gamma FALSE #> 5331 334 0.9485748 0.174368602 fv Gamma RP(P), Gamma FALSE #> 5347 335 0.7668800 0.145970993 fv Gamma RP(P), Gamma FALSE #> 5363 336 0.4803202 0.096188584 fv Gamma RP(P), Gamma FALSE #> 5379 337 0.6414976 0.124756829 fv Gamma RP(P), Gamma FALSE #> 5395 338 0.6042093 0.116438825 fv Gamma RP(P), Gamma FALSE #> 5411 339 0.8270540 0.156836453 fv Gamma RP(P), Gamma FALSE #> 5427 340 0.7812948 0.153293387 fv Gamma RP(P), Gamma FALSE #> 5443 341 0.5615693 0.109395593 fv Gamma RP(P), Gamma FALSE #> 5459 342 0.4507156 0.089944670 fv Gamma RP(P), Gamma FALSE #> 5475 343 0.6379126 0.123551359 fv Gamma RP(P), Gamma FALSE #> 5491 344 0.9832700 0.184814008 fv Gamma RP(P), Gamma FALSE #> 5507 345 0.8700732 0.163382934 fv Gamma RP(P), Gamma FALSE #> 5523 346 0.7930586 0.148638590 fv Gamma RP(P), Gamma FALSE #> 5539 347 0.7362875 0.139653656 fv Gamma RP(P), Gamma FALSE #> 5555 348 0.9288355 0.172358490 fv Gamma RP(P), Gamma FALSE #> 5571 349 0.8545774 0.160193152 fv Gamma RP(P), Gamma FALSE #> 5587 350 0.8162435 0.153114319 fv Gamma RP(P), Gamma FALSE #> 5603 351 0.8768429 0.168170983 fv Gamma RP(P), Gamma FALSE #> 5619 352 0.7998651 0.154372925 fv Gamma RP(P), Gamma FALSE #> 5635 353 0.5789433 0.113105924 fv Gamma RP(P), Gamma FALSE #> 5651 354 0.7427434 0.141322244 fv Gamma RP(P), Gamma FALSE #> 5667 355 0.8022031 0.150273181 fv Gamma RP(P), Gamma FALSE #> 5683 356 0.8292656 0.158481791 fv Gamma RP(P), Gamma FALSE #> 5699 357 0.6949861 0.132957253 fv Gamma RP(P), Gamma FALSE #> 5715 358 0.6410077 0.122340318 fv Gamma RP(P), Gamma FALSE #> 5731 359 0.6758443 0.133342092 fv Gamma RP(P), Gamma FALSE #> 5747 360 0.6048735 0.117286870 fv Gamma RP(P), Gamma FALSE #> 5763 361 0.9452275 0.179410146 fv Gamma RP(P), Gamma FALSE #> 5779 362 0.4613285 0.091336265 fv Gamma RP(P), Gamma FALSE #> 5795 363 NA NA fv Gamma RP(P), Gamma NA #> 5811 364 0.5305074 0.104571551 fv Gamma RP(P), Gamma FALSE #> 5827 365 0.7692393 0.150826618 fv Gamma RP(P), Gamma FALSE #> 5843 366 0.8281260 0.157369897 fv Gamma RP(P), Gamma FALSE #> 5859 367 0.8879069 0.165562059 fv Gamma RP(P), Gamma FALSE #> 5875 368 0.8819495 0.172077745 fv Gamma RP(P), Gamma FALSE #> 5891 369 0.5571989 0.108663257 fv Gamma RP(P), Gamma FALSE #> 5907 370 0.5240141 0.103230461 fv Gamma RP(P), Gamma FALSE #> 5923 371 0.8850740 0.167914113 fv Gamma RP(P), Gamma FALSE #> 5939 372 0.6292203 0.125493047 fv Gamma RP(P), Gamma FALSE #> 5955 373 0.6711393 0.128355923 fv Gamma RP(P), Gamma FALSE #> 5971 374 0.6330126 0.122222933 fv Gamma RP(P), Gamma FALSE #> 5987 375 0.6232037 0.120619676 fv Gamma RP(P), Gamma FALSE #> 6003 376 0.6709763 0.129346165 fv Gamma RP(P), Gamma FALSE #> 6019 377 0.8081042 0.155740601 fv Gamma RP(P), Gamma FALSE #> 6035 378 0.7807703 0.146835814 fv Gamma RP(P), Gamma FALSE #> 6051 379 0.6489020 0.124780001 fv Gamma RP(P), Gamma FALSE #> 6067 380 0.7690472 0.145653760 fv Gamma RP(P), Gamma FALSE #> 6083 381 0.6655172 0.128470538 fv Gamma RP(P), Gamma FALSE #> 6099 382 0.6834100 0.131022145 fv Gamma RP(P), Gamma FALSE #> 6115 383 1.0199434 0.186627092 fv Gamma RP(P), Gamma FALSE #> 6131 384 0.8425240 0.158501752 fv Gamma RP(P), Gamma FALSE #> 6147 385 0.5435103 0.106298014 fv Gamma RP(P), Gamma FALSE #> 6163 386 0.3974050 0.081499042 fv Gamma RP(P), Gamma FALSE #> 6179 387 0.5426046 0.105687478 fv Gamma RP(P), Gamma FALSE #> 6195 388 0.6611317 0.126806617 fv Gamma RP(P), Gamma FALSE #> 6211 389 0.5349625 0.105162575 fv Gamma RP(P), Gamma FALSE #> 6227 390 0.6059506 0.117577612 fv Gamma RP(P), Gamma FALSE #> 6243 391 0.5031306 0.099223928 fv Gamma RP(P), Gamma FALSE #> 6259 392 0.9247264 0.171447639 fv Gamma RP(P), Gamma FALSE #> 6275 393 0.5799003 0.113309467 fv Gamma RP(P), Gamma FALSE #> 6291 394 0.8923633 0.167756406 fv Gamma RP(P), Gamma FALSE #> 6307 395 0.7025183 0.135296087 fv Gamma RP(P), Gamma FALSE #> 6323 396 0.7120067 0.139386238 fv Gamma RP(P), Gamma FALSE #> 6339 397 0.8245329 0.154169882 fv Gamma RP(P), Gamma FALSE #> 6355 398 0.7714605 0.146465081 fv Gamma RP(P), Gamma FALSE #> 6371 399 0.6201603 0.120225120 fv Gamma RP(P), Gamma FALSE #> 6387 400 0.6674704 0.128448157 fv Gamma RP(P), Gamma FALSE #> 6403 401 0.8591833 0.163558247 fv Gamma RP(P), Gamma FALSE #> 6419 402 0.7237335 0.141496085 fv Gamma RP(P), Gamma FALSE #> 6435 403 0.6842458 0.130528240 fv Gamma RP(P), Gamma FALSE #> 6451 404 0.8914124 0.170001726 fv Gamma RP(P), Gamma FALSE #> 6467 405 0.6372709 0.122209769 fv Gamma RP(P), Gamma FALSE #> 6483 406 0.6333429 0.122577106 fv Gamma RP(P), Gamma FALSE #> 6499 407 0.7540527 0.143640882 fv Gamma RP(P), Gamma FALSE #> 6515 408 0.4838950 0.100461103 fv Gamma RP(P), Gamma FALSE #> 6531 409 0.9146888 0.169439375 fv Gamma RP(P), Gamma FALSE #> 6547 410 0.9330222 0.176834198 fv Gamma RP(P), Gamma FALSE #> 6563 411 0.7883049 0.155697900 fv Gamma RP(P), Gamma FALSE #> 6579 412 0.6774845 0.129576379 fv Gamma RP(P), Gamma FALSE #> 6595 413 0.7116535 0.136948608 fv Gamma RP(P), Gamma FALSE #> 6611 414 0.7132797 0.136232402 fv Gamma RP(P), Gamma FALSE #> 6627 415 0.8286193 0.154693246 fv Gamma RP(P), Gamma FALSE #> 6643 416 0.6156083 0.119284639 fv Gamma RP(P), Gamma FALSE #> 6659 417 0.7087812 0.135096167 fv Gamma RP(P), Gamma FALSE #> 6675 418 0.7293437 0.138932311 fv Gamma RP(P), Gamma FALSE #> 6691 419 0.5997472 0.117475840 fv Gamma RP(P), Gamma FALSE #> 6707 420 0.7993144 0.153914851 fv Gamma RP(P), Gamma FALSE #> 6723 421 0.7797894 0.147239639 fv Gamma RP(P), Gamma FALSE #> 6739 422 0.7196492 0.137084047 fv Gamma RP(P), Gamma FALSE #> 6755 423 0.7782277 0.146884783 fv Gamma RP(P), Gamma FALSE #> 6771 424 0.6735367 0.130483600 fv Gamma RP(P), Gamma FALSE #> 6787 425 0.5438044 0.106872272 fv Gamma RP(P), Gamma FALSE #> 6803 426 0.9765959 0.180951859 fv Gamma RP(P), Gamma FALSE #> 6819 427 0.4342931 0.087816670 fv Gamma RP(P), Gamma FALSE #> 6835 428 NA NA fv Gamma RP(P), Gamma NA #> 6851 429 0.6326812 0.122272867 fv Gamma RP(P), Gamma FALSE #> 6867 430 0.5864832 0.114045582 fv Gamma RP(P), Gamma FALSE #> 6883 431 0.8330418 0.156297552 fv Gamma RP(P), Gamma FALSE #> 6899 432 0.5660420 0.111497263 fv Gamma RP(P), Gamma FALSE #> 6915 433 0.7633897 0.146680676 fv Gamma RP(P), Gamma FALSE #> 6931 434 0.9157854 0.169179334 fv Gamma RP(P), Gamma FALSE #> 6947 435 0.6436417 0.123386611 fv Gamma RP(P), Gamma FALSE #> 6963 436 0.8894330 0.168215631 fv Gamma RP(P), Gamma FALSE #> 6979 437 0.6466005 0.124257627 fv Gamma RP(P), Gamma FALSE #> 6995 438 0.4983309 0.099003740 fv Gamma RP(P), Gamma FALSE #> 7011 439 0.6788690 0.131122725 fv Gamma RP(P), Gamma FALSE #> 7027 440 0.6840970 0.130674970 fv Gamma RP(P), Gamma FALSE #> 7043 441 0.4509432 0.090190377 fv Gamma RP(P), Gamma FALSE #> 7059 442 0.8197896 0.153466848 fv Gamma RP(P), Gamma FALSE #> 7075 443 0.4883504 0.097806334 fv Gamma RP(P), Gamma FALSE #> 7091 444 0.6309643 0.121865041 fv Gamma RP(P), Gamma FALSE #> 7107 445 0.8964975 0.172918156 fv Gamma RP(P), Gamma FALSE #> 7123 446 0.7383350 0.140046750 fv Gamma RP(P), Gamma FALSE #> 7139 447 0.7068869 0.134798962 fv Gamma RP(P), Gamma FALSE #> 7155 448 0.7623019 0.144996154 fv Gamma RP(P), Gamma FALSE #> 7171 449 0.8202607 0.153262713 fv Gamma RP(P), Gamma FALSE #> 7187 450 0.6652518 0.127192030 fv Gamma RP(P), Gamma FALSE #> 7203 451 0.7929428 0.149414357 fv Gamma RP(P), Gamma FALSE #> 7219 452 0.5390468 0.106252035 fv Gamma RP(P), Gamma FALSE #> 7235 453 0.7983611 0.149574089 fv Gamma RP(P), Gamma FALSE #> 7251 454 0.6809155 0.133855974 fv Gamma RP(P), Gamma FALSE #> 7267 455 0.7867915 0.148808687 fv Gamma RP(P), Gamma FALSE #> 7283 456 0.8027674 0.151115965 fv Gamma RP(P), Gamma FALSE #> 7299 457 0.7599211 0.143934714 fv Gamma RP(P), Gamma FALSE #> 7315 458 0.8392784 0.158497506 fv Gamma RP(P), Gamma FALSE #> 7331 459 0.6859136 0.132185682 fv Gamma RP(P), Gamma FALSE #> 7347 460 0.5989569 0.116734400 fv Gamma RP(P), Gamma FALSE #> 7363 461 0.7104775 0.136171002 fv Gamma RP(P), Gamma FALSE #> 7379 462 0.9353550 0.176644991 fv Gamma RP(P), Gamma FALSE #> 7395 463 0.5917203 0.113971563 fv Gamma RP(P), Gamma FALSE #> 7411 464 0.5466129 0.108141319 fv Gamma RP(P), Gamma FALSE #> 7427 465 0.6924133 0.132057038 fv Gamma RP(P), Gamma FALSE #> 7443 466 0.8595890 0.164380309 fv Gamma RP(P), Gamma FALSE #> 7459 467 0.8621341 0.162880467 fv Gamma RP(P), Gamma FALSE #> 7475 468 0.5844938 0.113603790 fv Gamma RP(P), Gamma FALSE #> 7491 469 0.7748601 0.149549630 fv Gamma RP(P), Gamma FALSE #> 7507 470 0.7885976 0.148029828 fv Gamma RP(P), Gamma FALSE #> 7523 471 0.6020256 0.116789527 fv Gamma RP(P), Gamma FALSE #> 7539 472 0.7796100 0.146855855 fv Gamma RP(P), Gamma FALSE #> 7555 473 0.6785752 0.130008471 fv Gamma RP(P), Gamma FALSE #> 7571 474 0.6250698 0.122879162 fv Gamma RP(P), Gamma FALSE #> 7587 475 1.1078072 0.208724589 fv Gamma RP(P), Gamma TRUE #> 7603 476 0.5563729 0.109196239 fv Gamma RP(P), Gamma FALSE #> 7619 477 0.8587266 0.160352193 fv Gamma RP(P), Gamma FALSE #> 7635 478 0.6830960 0.131457533 fv Gamma RP(P), Gamma FALSE #> 7651 479 0.8681593 0.162333605 fv Gamma RP(P), Gamma FALSE #> 7667 480 0.7574428 0.144816517 fv Gamma RP(P), Gamma FALSE #> 7683 481 NA NA fv Gamma RP(P), Gamma NA #> 7699 482 0.6266013 0.124370257 fv Gamma RP(P), Gamma FALSE #> 7715 483 0.6528467 0.127306631 fv Gamma RP(P), Gamma FALSE #> 7731 484 0.7127943 0.134930802 fv Gamma RP(P), Gamma FALSE #> 7747 485 0.7125054 0.135276927 fv Gamma RP(P), Gamma FALSE #> 7763 486 0.5687850 0.111413020 fv Gamma RP(P), Gamma FALSE #> 7779 487 0.8243935 0.154600910 fv Gamma RP(P), Gamma FALSE #> 7795 488 0.6812360 0.132703870 fv Gamma RP(P), Gamma FALSE #> 7811 489 0.8845371 0.169323636 fv Gamma RP(P), Gamma FALSE #> 7827 490 1.0653722 0.194660353 fv Gamma RP(P), Gamma FALSE #> 7843 491 0.6826541 0.130776905 fv Gamma RP(P), Gamma FALSE #> 7859 492 0.8235202 0.155848858 fv Gamma RP(P), Gamma FALSE #> 7875 493 0.7768356 0.151524876 fv Gamma RP(P), Gamma FALSE #> 7891 494 0.7218053 0.137841570 fv Gamma RP(P), Gamma FALSE #> 7907 495 0.7695705 0.146521336 fv Gamma RP(P), Gamma FALSE #> 7923 496 0.5166882 0.102399021 fv Gamma RP(P), Gamma FALSE #> 7939 497 0.6627873 0.126766292 fv Gamma RP(P), Gamma FALSE #> 7955 498 0.6342445 0.122728374 fv Gamma RP(P), Gamma FALSE #> 7971 499 0.9374378 0.175338174 fv Gamma RP(P), Gamma FALSE #> 7987 500 0.9019653 0.170409658 fv Gamma RP(P), Gamma FALSE #> 8003 501 0.6962305 0.132980257 fv Gamma RP(P), Gamma FALSE #> 8019 502 0.7603688 0.144250280 fv Gamma RP(P), Gamma FALSE #> 8035 503 0.6803697 0.130734079 fv Gamma RP(P), Gamma FALSE #> 8051 504 0.8753725 0.162673418 fv Gamma RP(P), Gamma FALSE #> 8067 505 0.9260534 0.173473955 fv Gamma RP(P), Gamma FALSE #> 8083 506 0.6660089 0.127478067 fv Gamma RP(P), Gamma FALSE #> 8099 507 0.6217409 0.120696018 fv Gamma RP(P), Gamma FALSE #> 8115 508 0.6657625 0.127882730 fv Gamma RP(P), Gamma FALSE #> 8131 509 0.7035885 0.134122091 fv Gamma RP(P), Gamma FALSE #> 8147 510 0.9153649 0.169975579 fv Gamma RP(P), Gamma FALSE #> 8163 511 0.7435226 0.141999828 fv Gamma RP(P), Gamma FALSE #> 8179 512 0.8092206 0.152504675 fv Gamma RP(P), Gamma FALSE #> 8195 513 0.5970830 0.116342118 fv Gamma RP(P), Gamma FALSE #> 8211 514 0.6584162 0.127259558 fv Gamma RP(P), Gamma FALSE #> 8227 515 0.6218205 0.120288402 fv Gamma RP(P), Gamma FALSE #> 8243 516 0.7564849 0.144835314 fv Gamma RP(P), Gamma FALSE #> 8259 517 0.7866480 0.148609375 fv Gamma RP(P), Gamma FALSE #> 8275 518 0.8554770 0.159037294 fv Gamma RP(P), Gamma FALSE #> 8291 519 0.7052320 0.134728823 fv Gamma RP(P), Gamma FALSE #> 8307 520 0.6204574 0.120158025 fv Gamma RP(P), Gamma FALSE #> 8323 521 0.5621929 0.109422753 fv Gamma RP(P), Gamma FALSE #> 8339 522 0.5443101 0.106427943 fv Gamma RP(P), Gamma FALSE #> 8355 523 0.6711061 0.129798304 fv Gamma RP(P), Gamma FALSE #> 8371 524 0.6038576 0.117617477 fv Gamma RP(P), Gamma FALSE #> 8387 525 1.0537419 0.193004302 fv Gamma RP(P), Gamma FALSE #> 8403 526 0.7616132 0.144330441 fv Gamma RP(P), Gamma FALSE #> 8419 527 0.6897576 0.133491604 fv Gamma RP(P), Gamma FALSE #> 8435 528 0.6067378 0.118097165 fv Gamma RP(P), Gamma FALSE #> 8451 529 0.8534833 0.160118465 fv Gamma RP(P), Gamma FALSE #> 8467 530 0.8925411 0.166714870 fv Gamma RP(P), Gamma FALSE #> 8483 531 0.7934168 0.148589902 fv Gamma RP(P), Gamma FALSE #> 8499 532 0.7905062 0.149455790 fv Gamma RP(P), Gamma FALSE #> 8515 533 0.7295545 0.139010779 fv Gamma RP(P), Gamma FALSE #> 8531 534 0.7802222 0.146683135 fv Gamma RP(P), Gamma FALSE #> 8547 535 0.9550213 0.176657581 fv Gamma RP(P), Gamma FALSE #> 8563 536 0.8285902 0.154754825 fv Gamma RP(P), Gamma FALSE #> 8579 537 0.7142590 0.139710304 fv Gamma RP(P), Gamma FALSE #> 8595 538 0.6242860 0.121665242 fv Gamma RP(P), Gamma FALSE #> 8611 539 0.8641128 0.161545364 fv Gamma RP(P), Gamma FALSE #> 8627 540 0.7678492 0.149811233 fv Gamma RP(P), Gamma FALSE #> 8643 541 0.6289813 0.122609687 fv Gamma RP(P), Gamma FALSE #> 8659 542 0.8359050 0.157109048 fv Gamma RP(P), Gamma FALSE #> 8675 543 0.9027601 0.167995185 fv Gamma RP(P), Gamma FALSE #> 8691 544 0.8244925 0.154618216 fv Gamma RP(P), Gamma FALSE #> 8707 545 0.6980857 0.134268057 fv Gamma RP(P), Gamma FALSE #> 8723 546 0.6933300 0.133073387 fv Gamma RP(P), Gamma FALSE #> 8739 547 NA NA fv Gamma RP(P), Gamma NA #> 8755 548 0.6333770 0.125231052 fv Gamma RP(P), Gamma FALSE #> 8771 549 0.8023245 0.153987219 fv Gamma RP(P), Gamma FALSE #> 8787 550 0.8868958 0.173752332 fv Gamma RP(P), Gamma FALSE #> 8803 551 0.7222047 0.137638041 fv Gamma RP(P), Gamma FALSE #> 8819 552 0.5671938 0.111950384 fv Gamma RP(P), Gamma FALSE #> 8835 553 0.5909826 0.115431956 fv Gamma RP(P), Gamma FALSE #> 8851 554 0.6819668 0.131463459 fv Gamma RP(P), Gamma FALSE #> 8867 555 0.5949893 0.116327674 fv Gamma RP(P), Gamma FALSE #> 8883 556 0.5424623 0.106665952 fv Gamma RP(P), Gamma FALSE #> 8899 557 1.1345537 0.209862447 fv Gamma RP(P), Gamma TRUE #> 8915 558 0.8058485 0.152388030 fv Gamma RP(P), Gamma FALSE #> 8931 559 0.6173724 0.122782335 fv Gamma RP(P), Gamma FALSE #> 8947 560 0.7512495 0.143599104 fv Gamma RP(P), Gamma FALSE #> 8963 561 0.7585141 0.143155705 fv Gamma RP(P), Gamma FALSE #> 8979 562 0.4484573 0.089532416 fv Gamma RP(P), Gamma FALSE #> 8995 563 0.7698720 0.146396748 fv Gamma RP(P), Gamma FALSE #> 9011 564 0.7607873 0.143322348 fv Gamma RP(P), Gamma FALSE #> 9027 565 0.8222472 0.159236501 fv Gamma RP(P), Gamma FALSE #> 9043 566 0.8548495 0.160429756 fv Gamma RP(P), Gamma FALSE #> 9059 567 0.7245818 0.138376691 fv Gamma RP(P), Gamma FALSE #> 9075 568 0.7931173 0.152597975 fv Gamma RP(P), Gamma FALSE #> 9091 569 0.6850610 0.133116653 fv Gamma RP(P), Gamma FALSE #> 9107 570 NA NA fv Gamma RP(P), Gamma NA #> 9123 571 0.7549228 0.142914728 fv Gamma RP(P), Gamma FALSE #> 9139 572 0.8278657 0.154426950 fv Gamma RP(P), Gamma FALSE #> 9155 573 0.5344300 0.105884223 fv Gamma RP(P), Gamma FALSE #> 9171 574 0.8527038 0.162694626 fv Gamma RP(P), Gamma FALSE #> 9187 575 0.7057682 0.134947723 fv Gamma RP(P), Gamma FALSE #> 9203 576 0.7448504 0.142986350 fv Gamma RP(P), Gamma FALSE #> 9219 577 0.6324739 0.122708071 fv Gamma RP(P), Gamma FALSE #> 9235 578 0.6535771 0.125371078 fv Gamma RP(P), Gamma FALSE #> 9251 579 0.6463148 0.124602683 fv Gamma RP(P), Gamma FALSE #> 9267 580 0.6122098 0.118229398 fv Gamma RP(P), Gamma FALSE #> 9283 581 0.8581943 0.160096945 fv Gamma RP(P), Gamma FALSE #> 9299 582 0.4255333 0.084857238 fv Gamma RP(P), Gamma FALSE #> 9315 583 0.7830994 0.147615332 fv Gamma RP(P), Gamma FALSE #> 9331 584 0.6297757 0.122421778 fv Gamma RP(P), Gamma FALSE #> 9347 585 1.1118116 0.202600547 fv Gamma RP(P), Gamma TRUE #> 9363 586 NA NA fv Gamma RP(P), Gamma NA #> 9379 587 0.7835051 0.147939858 fv Gamma RP(P), Gamma FALSE #> 9395 588 0.7974640 0.152143429 fv Gamma RP(P), Gamma FALSE #> 9411 589 0.5862546 0.114190230 fv Gamma RP(P), Gamma FALSE #> 9427 590 0.6735269 0.129506738 fv Gamma RP(P), Gamma FALSE #> 9443 591 0.7163856 0.137360805 fv Gamma RP(P), Gamma FALSE #> 9459 592 0.8887836 0.165763416 fv Gamma RP(P), Gamma FALSE #> 9475 593 0.6961761 0.136894275 fv Gamma RP(P), Gamma FALSE #> 9491 594 0.7225011 0.139237787 fv Gamma RP(P), Gamma FALSE #> 9507 595 0.7110869 0.135311991 fv Gamma RP(P), Gamma FALSE #> 9523 596 0.8419027 0.157392494 fv Gamma RP(P), Gamma FALSE #> 9539 597 0.9726863 0.183877561 fv Gamma RP(P), Gamma FALSE #> 9555 598 0.7321676 0.138931246 fv Gamma RP(P), Gamma FALSE #> 9571 599 1.0933409 0.198947458 fv Gamma RP(P), Gamma FALSE #> 9587 600 0.9365142 0.172756965 fv Gamma RP(P), Gamma FALSE #> 9603 601 0.6900339 0.131971647 fv Gamma RP(P), Gamma FALSE #> 9619 602 0.8071034 0.154541397 fv Gamma RP(P), Gamma FALSE #> 9635 603 0.6864634 0.131149003 fv Gamma RP(P), Gamma FALSE #> 9651 604 0.8388411 0.164957900 fv Gamma RP(P), Gamma FALSE #> 9667 605 0.8991808 0.170856264 fv Gamma RP(P), Gamma FALSE #> 9683 606 0.7896722 0.149157106 fv Gamma RP(P), Gamma FALSE #> 9699 607 0.6483373 0.125688013 fv Gamma RP(P), Gamma FALSE #> 9715 608 0.8165667 0.153820340 fv Gamma RP(P), Gamma FALSE #> 9731 609 0.8902387 0.166429149 fv Gamma RP(P), Gamma FALSE #> 9747 610 0.7933518 0.149471334 fv Gamma RP(P), Gamma FALSE #> 9763 611 0.6512893 0.125696501 fv Gamma RP(P), Gamma FALSE #> 9779 612 0.8855873 0.165210328 fv Gamma RP(P), Gamma FALSE #> 9795 613 0.7551929 0.143131416 fv Gamma RP(P), Gamma FALSE #> 9811 614 0.7010086 0.134204870 fv Gamma RP(P), Gamma FALSE #> 9827 615 0.6334929 0.122282301 fv Gamma RP(P), Gamma FALSE #> 9843 616 NA NA fv Gamma RP(P), Gamma NA #> 9859 617 0.9807549 0.184785018 fv Gamma RP(P), Gamma FALSE #> 9875 618 0.5779344 0.112517396 fv Gamma RP(P), Gamma FALSE #> 9891 619 0.6355496 0.122741929 fv Gamma RP(P), Gamma FALSE #> 9907 620 0.6841379 0.131439881 fv Gamma RP(P), Gamma FALSE #> 9923 621 0.7994067 0.150798986 fv Gamma RP(P), Gamma FALSE #> 9939 622 1.1226630 0.204596360 fv Gamma RP(P), Gamma TRUE #> 9955 623 0.5592545 0.109014752 fv Gamma RP(P), Gamma FALSE #> 9971 624 0.7146248 0.135617788 fv Gamma RP(P), Gamma FALSE #> 9987 625 0.6678007 0.128544119 fv Gamma RP(P), Gamma FALSE #> 10003 626 0.5438265 0.107223540 fv Gamma RP(P), Gamma FALSE #> 10019 627 0.6402631 0.127929319 fv Gamma RP(P), Gamma FALSE #> 10035 628 0.7161136 0.135821754 fv Gamma RP(P), Gamma FALSE #> 10051 629 0.5761695 0.113413852 fv Gamma RP(P), Gamma FALSE #> 10067 630 0.9265988 0.172078476 fv Gamma RP(P), Gamma FALSE #> 10083 631 0.8463990 0.163840387 fv Gamma RP(P), Gamma FALSE #> 10099 632 0.5918212 0.115253393 fv Gamma RP(P), Gamma FALSE #> 10115 633 0.5392676 0.105659170 fv Gamma RP(P), Gamma FALSE #> 10131 634 0.5612710 0.109666236 fv Gamma RP(P), Gamma FALSE #> 10147 635 0.4758954 0.095277949 fv Gamma RP(P), Gamma FALSE #> 10163 636 0.6850059 0.132963753 fv Gamma RP(P), Gamma FALSE #> 10179 637 0.7534974 0.142630643 fv Gamma RP(P), Gamma FALSE #> 10195 638 0.6156667 0.122944131 fv Gamma RP(P), Gamma FALSE #> 10211 639 0.7024871 0.133973160 fv Gamma RP(P), Gamma FALSE #> 10227 640 0.6138612 0.120005152 fv Gamma RP(P), Gamma FALSE #> 10243 641 0.6687009 0.127792012 fv Gamma RP(P), Gamma FALSE #> 10259 642 0.6827599 0.131499855 fv Gamma RP(P), Gamma FALSE #> 10275 643 0.6416117 0.123916292 fv Gamma RP(P), Gamma FALSE #> 10291 644 0.9303135 0.178541883 fv Gamma RP(P), Gamma FALSE #> 10307 645 0.5072111 0.099892269 fv Gamma RP(P), Gamma FALSE #> 10323 646 0.5770236 0.112923822 fv Gamma RP(P), Gamma FALSE #> 10339 647 1.0987860 0.202063919 fv Gamma RP(P), Gamma TRUE #> 10355 648 0.7249466 0.137273492 fv Gamma RP(P), Gamma FALSE #> 10371 649 0.8361975 0.156905913 fv Gamma RP(P), Gamma FALSE #> 10387 650 0.9657631 0.179386120 fv Gamma RP(P), Gamma FALSE #> 10403 651 0.9480153 0.175508178 fv Gamma RP(P), Gamma FALSE #> 10419 652 0.7609753 0.144403263 fv Gamma RP(P), Gamma FALSE #> 10435 653 0.9390345 0.178175424 fv Gamma RP(P), Gamma FALSE #> 10451 654 0.6071795 0.117910755 fv Gamma RP(P), Gamma FALSE #> 10467 655 0.6768799 0.129452910 fv Gamma RP(P), Gamma FALSE #> 10483 656 0.7872342 0.148934201 fv Gamma RP(P), Gamma FALSE #> 10499 657 0.7155506 0.136779245 fv Gamma RP(P), Gamma FALSE #> 10515 658 0.8186467 0.154783223 fv Gamma RP(P), Gamma FALSE #> 10531 659 0.8561195 0.161384412 fv Gamma RP(P), Gamma FALSE #> 10547 660 0.7969361 0.153486464 fv Gamma RP(P), Gamma FALSE #> 10563 661 0.5847750 0.113459778 fv Gamma RP(P), Gamma FALSE #> 10579 662 0.4491533 0.089376759 fv Gamma RP(P), Gamma FALSE #> 10595 663 0.6583715 0.127150411 fv Gamma RP(P), Gamma FALSE #> 10611 664 0.7245792 0.137191115 fv Gamma RP(P), Gamma FALSE #> 10627 665 0.6935069 0.133446603 fv Gamma RP(P), Gamma FALSE #> 10643 666 0.6789625 0.133210260 fv Gamma RP(P), Gamma FALSE #> 10659 667 NA NA fv Gamma RP(P), Gamma NA #> 10675 668 0.8326042 0.159460222 fv Gamma RP(P), Gamma FALSE #> 10691 669 0.5423378 0.106498804 fv Gamma RP(P), Gamma FALSE #> 10707 670 0.8502685 0.162585636 fv Gamma RP(P), Gamma FALSE #> 10723 671 0.8776545 0.164067176 fv Gamma RP(P), Gamma FALSE #> 10739 672 0.6152927 0.119051797 fv Gamma RP(P), Gamma FALSE #> 10755 673 0.6122459 0.117726094 fv Gamma RP(P), Gamma FALSE #> 10771 674 0.9559380 0.181254051 fv Gamma RP(P), Gamma FALSE #> 10787 675 0.6980390 0.132753824 fv Gamma RP(P), Gamma FALSE #> 10803 676 0.5088804 0.102994006 fv Gamma RP(P), Gamma FALSE #> 10819 677 0.6339165 0.121646475 fv Gamma RP(P), Gamma FALSE #> 10835 678 0.8369559 0.157675553 fv Gamma RP(P), Gamma FALSE #> 10851 679 0.9492848 0.176109260 fv Gamma RP(P), Gamma FALSE #> 10867 680 0.6841460 0.135356905 fv Gamma RP(P), Gamma FALSE #> 10883 681 0.5654321 0.110524762 fv Gamma RP(P), Gamma FALSE #> 10899 682 0.7617394 0.144044913 fv Gamma RP(P), Gamma FALSE #> 10915 683 0.8624482 0.164333849 fv Gamma RP(P), Gamma FALSE #> 10931 684 0.9321014 0.172684748 fv Gamma RP(P), Gamma FALSE #> 10947 685 0.6441355 0.123847642 fv Gamma RP(P), Gamma FALSE #> 10963 686 0.5512106 0.108266248 fv Gamma RP(P), Gamma FALSE #> 10979 687 NA NA fv Gamma RP(P), Gamma NA #> 10995 688 0.7248728 0.137856421 fv Gamma RP(P), Gamma FALSE #> 11011 689 0.7052454 0.134429054 fv Gamma RP(P), Gamma FALSE #> 11027 690 NA NA fv Gamma RP(P), Gamma NA #> 11043 691 NA NA fv Gamma RP(P), Gamma NA #> 11059 692 0.7287757 0.137960478 fv Gamma RP(P), Gamma FALSE #> 11075 693 0.8591672 0.163147539 fv Gamma RP(P), Gamma FALSE #> 11091 694 0.8546217 0.161886212 fv Gamma RP(P), Gamma FALSE #> 11107 695 0.7359517 0.143204482 fv Gamma RP(P), Gamma FALSE #> 11123 696 0.7274184 0.140975651 fv Gamma RP(P), Gamma FALSE #> 11139 697 0.7343352 0.139432429 fv Gamma RP(P), Gamma FALSE #> 11155 698 0.7107206 0.135622115 fv Gamma RP(P), Gamma FALSE #> 11171 699 0.7219693 0.136624664 fv Gamma RP(P), Gamma FALSE #> 11187 700 NA NA fv Gamma RP(P), Gamma NA #> 11203 701 0.6390749 0.122901167 fv Gamma RP(P), Gamma FALSE #> 11219 702 0.7207084 0.141765393 fv Gamma RP(P), Gamma FALSE #> 11235 703 0.5731972 0.112301241 fv Gamma RP(P), Gamma FALSE #> 11251 704 0.9050465 0.167387536 fv Gamma RP(P), Gamma FALSE #> 11267 705 0.9729034 0.179704350 fv Gamma RP(P), Gamma FALSE #> 11283 706 0.7510740 0.142142712 fv Gamma RP(P), Gamma FALSE #> 11299 707 0.5762848 0.113425276 fv Gamma RP(P), Gamma FALSE #> 11315 708 0.8182433 0.157478515 fv Gamma RP(P), Gamma FALSE #> 11331 709 0.7488299 0.141777904 fv Gamma RP(P), Gamma FALSE #> 11347 710 0.7464753 0.140839219 fv Gamma RP(P), Gamma FALSE #> 11363 711 0.3895724 0.079456850 fv Gamma RP(P), Gamma FALSE #> 11379 712 0.7226782 0.137898089 fv Gamma RP(P), Gamma FALSE #> 11395 713 0.7579136 0.142711103 fv Gamma RP(P), Gamma FALSE #> 11411 714 0.8613708 0.165279895 fv Gamma RP(P), Gamma FALSE #> 11427 715 0.9499191 0.176494223 fv Gamma RP(P), Gamma FALSE #> 11443 716 0.8153731 0.154756057 fv Gamma RP(P), Gamma FALSE #> 11459 717 0.6266283 0.125506065 fv Gamma RP(P), Gamma FALSE #> 11475 718 NA NA fv Gamma RP(P), Gamma NA #> 11491 719 0.6487120 0.124374007 fv Gamma RP(P), Gamma FALSE #> 11507 720 0.6467946 0.124681595 fv Gamma RP(P), Gamma FALSE #> 11523 721 0.8677451 0.163658213 fv Gamma RP(P), Gamma FALSE #> 11539 722 0.8762603 0.164114507 fv Gamma RP(P), Gamma FALSE #> 11555 723 0.7702204 0.149232323 fv Gamma RP(P), Gamma FALSE #> 11571 724 NA NA fv Gamma RP(P), Gamma NA #> 11587 725 0.6452807 0.123798465 fv Gamma RP(P), Gamma FALSE #> 11603 726 0.6388286 0.124187802 fv Gamma RP(P), Gamma FALSE #> 11619 727 0.8294437 0.158131813 fv Gamma RP(P), Gamma FALSE #> 11635 728 0.5498798 0.110995415 fv Gamma RP(P), Gamma FALSE #> 11651 729 0.7956737 0.149669575 fv Gamma RP(P), Gamma FALSE #> 11667 730 0.9039416 0.172983881 fv Gamma RP(P), Gamma FALSE #> 11683 731 0.9129412 0.170480535 fv Gamma RP(P), Gamma FALSE #> 11699 732 0.8631376 0.160142721 fv Gamma RP(P), Gamma FALSE #> 11715 733 0.5700636 0.111318610 fv Gamma RP(P), Gamma FALSE #> 11731 734 0.5720887 0.111838652 fv Gamma RP(P), Gamma FALSE #> 11747 735 0.7865514 0.148067100 fv Gamma RP(P), Gamma FALSE #> 11763 736 0.8314412 0.159749066 fv Gamma RP(P), Gamma FALSE #> 11779 737 0.7051831 0.134332472 fv Gamma RP(P), Gamma FALSE #> 11795 738 0.6441563 0.129738565 fv Gamma RP(P), Gamma FALSE #> 11811 739 0.6962830 0.133154711 fv Gamma RP(P), Gamma FALSE #> 11827 740 0.6820458 0.130662984 fv Gamma RP(P), Gamma FALSE #> 11843 741 NA NA fv Gamma RP(P), Gamma NA #> 11859 742 0.6129049 0.118716275 fv Gamma RP(P), Gamma FALSE #> 11875 743 0.7773048 0.146924665 fv Gamma RP(P), Gamma FALSE #> 11891 744 1.0015653 0.188279252 fv Gamma RP(P), Gamma FALSE #> 11907 745 0.6374989 0.124833327 fv Gamma RP(P), Gamma FALSE #> 11923 746 0.4555035 0.091061162 fv Gamma RP(P), Gamma FALSE #> 11939 747 0.6241370 0.120584114 fv Gamma RP(P), Gamma FALSE #> 11955 748 0.8319601 0.155303605 fv Gamma RP(P), Gamma FALSE #> 11971 749 0.6239035 0.120784818 fv Gamma RP(P), Gamma FALSE #> 11987 750 0.5559165 0.108448974 fv Gamma RP(P), Gamma FALSE #> 12003 751 0.9025966 0.167345296 fv Gamma RP(P), Gamma FALSE #> 12019 752 0.8153572 0.153739062 fv Gamma RP(P), Gamma FALSE #> 12035 753 0.6272796 0.122999496 fv Gamma RP(P), Gamma FALSE #> 12051 754 0.7630634 0.144501360 fv Gamma RP(P), Gamma FALSE #> 12067 755 0.7765286 0.147048699 fv Gamma RP(P), Gamma FALSE #> 12083 756 1.1339230 0.205593685 fv Gamma RP(P), Gamma TRUE #> 12099 757 0.6148180 0.119394869 fv Gamma RP(P), Gamma FALSE #> 12115 758 0.5432530 0.106690499 fv Gamma RP(P), Gamma FALSE #> 12131 759 0.6139540 0.118795452 fv Gamma RP(P), Gamma FALSE #> 12147 760 0.6053061 0.117009343 fv Gamma RP(P), Gamma FALSE #> 12163 761 0.7687177 0.146506742 fv Gamma RP(P), Gamma FALSE #> 12179 762 0.6503456 0.125085698 fv Gamma RP(P), Gamma FALSE #> 12195 763 0.6147158 0.119201346 fv Gamma RP(P), Gamma FALSE #> 12211 764 0.7158499 0.137306674 fv Gamma RP(P), Gamma FALSE #> 12227 765 0.7002176 0.134930951 fv Gamma RP(P), Gamma FALSE #> 12243 766 0.5657031 0.110972938 fv Gamma RP(P), Gamma FALSE #> 12259 767 0.7776944 0.147857952 fv Gamma RP(P), Gamma FALSE #> 12275 768 0.7286661 0.138405976 fv Gamma RP(P), Gamma FALSE #> 12291 769 0.8013336 0.150430910 fv Gamma RP(P), Gamma FALSE #> 12307 770 0.5887824 0.116113997 fv Gamma RP(P), Gamma FALSE #> 12323 771 0.5586792 0.109343864 fv Gamma RP(P), Gamma FALSE #> 12339 772 0.8625072 0.165893739 fv Gamma RP(P), Gamma FALSE #> 12355 773 0.6841501 0.132154034 fv Gamma RP(P), Gamma FALSE #> 12371 774 0.7403145 0.140287332 fv Gamma RP(P), Gamma FALSE #> 12387 775 0.9725393 0.183070759 fv Gamma RP(P), Gamma FALSE #> 12403 776 0.7450303 0.140817496 fv Gamma RP(P), Gamma FALSE #> 12419 777 0.6343648 0.122711321 fv Gamma RP(P), Gamma FALSE #> 12435 778 0.7993270 0.151902110 fv Gamma RP(P), Gamma FALSE #> 12451 779 0.8088646 0.152875106 fv Gamma RP(P), Gamma FALSE #> 12467 780 NA NA fv Gamma RP(P), Gamma NA #> 12483 781 0.6087847 0.119407501 fv Gamma RP(P), Gamma FALSE #> 12499 782 0.6605803 0.131867548 fv Gamma RP(P), Gamma FALSE #> 12515 783 0.7750586 0.146132801 fv Gamma RP(P), Gamma FALSE #> 12531 784 0.6495380 0.124443981 fv Gamma RP(P), Gamma FALSE #> 12547 785 0.6407272 0.123198032 fv Gamma RP(P), Gamma FALSE #> 12563 786 0.9000376 0.168714826 fv Gamma RP(P), Gamma FALSE #> 12579 787 0.8111483 0.157542078 fv Gamma RP(P), Gamma FALSE #> 12595 788 0.7380264 0.140992473 fv Gamma RP(P), Gamma FALSE #> 12611 789 0.8476976 0.161406608 fv Gamma RP(P), Gamma FALSE #> 12627 790 0.9024427 0.172655911 fv Gamma RP(P), Gamma FALSE #> 12643 791 0.9430376 0.178166763 fv Gamma RP(P), Gamma FALSE #> 12659 792 0.9351843 0.174085705 fv Gamma RP(P), Gamma FALSE #> 12675 793 0.6732365 0.129192553 fv Gamma RP(P), Gamma FALSE #> 12691 794 0.3859247 0.078027842 fv Gamma RP(P), Gamma FALSE #> 12707 795 0.6998057 0.134561671 fv Gamma RP(P), Gamma FALSE #> 12723 796 0.7919689 0.150058245 fv Gamma RP(P), Gamma FALSE #> 12739 797 0.6275349 0.122051366 fv Gamma RP(P), Gamma FALSE #> 12755 798 0.5850261 0.114219338 fv Gamma RP(P), Gamma FALSE #> 12771 799 0.9191908 0.178128093 fv Gamma RP(P), Gamma FALSE #> 12787 800 0.8922223 0.166340459 fv Gamma RP(P), Gamma FALSE #> 12803 801 0.6043574 0.118347117 fv Gamma RP(P), Gamma FALSE #> 12819 802 0.6171306 0.118894255 fv Gamma RP(P), Gamma FALSE #> 12835 803 0.7658729 0.144480842 fv Gamma RP(P), Gamma FALSE #> 12851 804 0.7889772 0.149222466 fv Gamma RP(P), Gamma FALSE #> 12867 805 0.8005181 0.151346516 fv Gamma RP(P), Gamma FALSE #> 12883 806 0.5808515 0.112939967 fv Gamma RP(P), Gamma FALSE #> 12899 807 0.9661626 0.179076575 fv Gamma RP(P), Gamma FALSE #> 12915 808 0.7042314 0.138042522 fv Gamma RP(P), Gamma FALSE #> 12931 809 0.8734012 0.167819080 fv Gamma RP(P), Gamma FALSE #> 12947 810 0.7531191 0.142535233 fv Gamma RP(P), Gamma FALSE #> 12963 811 0.9776521 0.180079230 fv Gamma RP(P), Gamma FALSE #> 12979 812 0.6756066 0.130110250 fv Gamma RP(P), Gamma FALSE #> 12995 813 0.8547872 0.159923942 fv Gamma RP(P), Gamma FALSE #> 13011 814 0.8478379 0.160402232 fv Gamma RP(P), Gamma FALSE #> 13027 815 1.0381546 0.193586062 fv Gamma RP(P), Gamma FALSE #> 13043 816 0.6065386 0.119016822 fv Gamma RP(P), Gamma FALSE #> 13059 817 0.8312686 0.160699876 fv Gamma RP(P), Gamma FALSE #> 13075 818 0.6723233 0.130326892 fv Gamma RP(P), Gamma FALSE #> 13091 819 0.9040734 0.172206834 fv Gamma RP(P), Gamma FALSE #> 13107 820 0.6626870 0.126985479 fv Gamma RP(P), Gamma FALSE #> 13123 821 0.7749392 0.149228961 fv Gamma RP(P), Gamma FALSE #> 13139 822 0.5198505 0.102096349 fv Gamma RP(P), Gamma FALSE #> 13155 823 0.7135305 0.136903270 fv Gamma RP(P), Gamma FALSE #> 13171 824 0.7431181 0.141763121 fv Gamma RP(P), Gamma FALSE #> 13187 825 0.5631657 0.110129879 fv Gamma RP(P), Gamma FALSE #> 13203 826 0.7061344 0.133539029 fv Gamma RP(P), Gamma FALSE #> 13219 827 0.6528873 0.124927870 fv Gamma RP(P), Gamma FALSE #> 13235 828 0.9604082 0.181879005 fv Gamma RP(P), Gamma FALSE #> 13251 829 0.6024186 0.116726974 fv Gamma RP(P), Gamma FALSE #> 13267 830 0.8517937 0.160118257 fv Gamma RP(P), Gamma FALSE #> 13283 831 0.5413722 0.107776935 fv Gamma RP(P), Gamma FALSE #> 13299 832 0.7271789 0.138304720 fv Gamma RP(P), Gamma FALSE #> 13315 833 0.7249351 0.138256244 fv Gamma RP(P), Gamma FALSE #> 13331 834 0.5385471 0.106479275 fv Gamma RP(P), Gamma FALSE #> 13347 835 0.6823086 0.130247610 fv Gamma RP(P), Gamma FALSE #> 13363 836 0.7231375 0.138611031 fv Gamma RP(P), Gamma FALSE #> 13379 837 0.6984835 0.134825376 fv Gamma RP(P), Gamma FALSE #> 13395 838 0.9073089 0.168321113 fv Gamma RP(P), Gamma FALSE #> 13411 839 0.6372419 0.123018519 fv Gamma RP(P), Gamma FALSE #> 13427 840 0.7448403 0.141879837 fv Gamma RP(P), Gamma FALSE #> 13443 841 0.7244250 0.136804241 fv Gamma RP(P), Gamma FALSE #> 13459 842 0.7297928 0.140145685 fv Gamma RP(P), Gamma FALSE #> 13475 843 0.9415358 0.175690499 fv Gamma RP(P), Gamma FALSE #> 13491 844 0.7608448 0.146469678 fv Gamma RP(P), Gamma FALSE #> 13507 845 0.8961165 0.167892095 fv Gamma RP(P), Gamma FALSE #> 13523 846 0.6313314 0.123796847 fv Gamma RP(P), Gamma FALSE #> 13539 847 0.6408113 0.126385690 fv Gamma RP(P), Gamma FALSE #> 13555 848 0.5258133 0.103834384 fv Gamma RP(P), Gamma FALSE #> 13571 849 0.7230815 0.136689050 fv Gamma RP(P), Gamma FALSE #> 13587 850 0.6668834 0.127661821 fv Gamma RP(P), Gamma FALSE #> 13603 851 0.7700720 0.146643873 fv Gamma RP(P), Gamma FALSE #> 13619 852 0.4635693 0.092359411 fv Gamma RP(P), Gamma FALSE #> 13635 853 0.7474297 0.141513530 fv Gamma RP(P), Gamma FALSE #> 13651 854 0.5512805 0.108040252 fv Gamma RP(P), Gamma FALSE #> 13667 855 0.9322641 0.173321281 fv Gamma RP(P), Gamma FALSE #> 13683 856 0.8130425 0.152735715 fv Gamma RP(P), Gamma FALSE #> 13699 857 0.5913117 0.115856491 fv Gamma RP(P), Gamma FALSE #> 13715 858 0.6348206 0.123095885 fv Gamma RP(P), Gamma FALSE #> 13731 859 0.6829374 0.133973853 fv Gamma RP(P), Gamma FALSE #> 13747 860 0.6630881 0.127449186 fv Gamma RP(P), Gamma FALSE #> 13763 861 0.8296646 0.156284689 fv Gamma RP(P), Gamma FALSE #> 13779 862 0.6256559 0.120163322 fv Gamma RP(P), Gamma FALSE #> 13795 863 0.7547157 0.143508193 fv Gamma RP(P), Gamma FALSE #> 13811 864 0.7274700 0.139329512 fv Gamma RP(P), Gamma FALSE #> 13827 865 0.7915269 0.150148411 fv Gamma RP(P), Gamma FALSE #> 13843 866 0.6938166 0.132710273 fv Gamma RP(P), Gamma FALSE #> 13859 867 0.7270595 0.138558270 fv Gamma RP(P), Gamma FALSE #> 13875 868 0.7646349 0.145030386 fv Gamma RP(P), Gamma FALSE #> 13891 869 0.7412567 0.141031242 fv Gamma RP(P), Gamma FALSE #> 13907 870 0.6928811 0.135884346 fv Gamma RP(P), Gamma FALSE #> 13923 871 NA NA fv Gamma RP(P), Gamma NA #> 13939 872 0.8741667 0.164519963 fv Gamma RP(P), Gamma FALSE #> 13955 873 0.8141794 0.152418868 fv Gamma RP(P), Gamma FALSE #> 13971 874 1.0582781 0.201045860 fv Gamma RP(P), Gamma FALSE #> 13987 875 0.6152695 0.118843687 fv Gamma RP(P), Gamma FALSE #> 14003 876 0.6653659 0.127197470 fv Gamma RP(P), Gamma FALSE #> 14019 877 0.7482744 0.141869490 fv Gamma RP(P), Gamma FALSE #> 14035 878 0.7940041 0.152669508 fv Gamma RP(P), Gamma FALSE #> 14051 879 0.7056140 0.139457238 fv Gamma RP(P), Gamma FALSE #> 14067 880 0.9237356 0.171450639 fv Gamma RP(P), Gamma FALSE #> 14083 881 NA NA fv Gamma RP(P), Gamma NA #> 14099 882 0.9622642 0.177419442 fv Gamma RP(P), Gamma FALSE #> 14115 883 0.6122745 0.118943858 fv Gamma RP(P), Gamma FALSE #> 14131 884 0.6036147 0.116254204 fv Gamma RP(P), Gamma FALSE #> 14147 885 0.5917685 0.115023471 fv Gamma RP(P), Gamma FALSE #> 14163 886 0.5903262 0.115035223 fv Gamma RP(P), Gamma FALSE #> 14179 887 0.7178929 0.137358795 fv Gamma RP(P), Gamma FALSE #> 14195 888 0.9596692 0.177126009 fv Gamma RP(P), Gamma FALSE #> 14211 889 0.8047857 0.150574821 fv Gamma RP(P), Gamma FALSE #> 14227 890 0.6195377 0.120542563 fv Gamma RP(P), Gamma FALSE #> 14243 891 0.5142069 0.100991313 fv Gamma RP(P), Gamma FALSE #> 14259 892 0.6862121 0.131311434 fv Gamma RP(P), Gamma FALSE #> 14275 893 0.8301538 0.158225903 fv Gamma RP(P), Gamma FALSE #> 14291 894 0.5690579 0.111132288 fv Gamma RP(P), Gamma FALSE #> 14307 895 0.7646876 0.145255201 fv Gamma RP(P), Gamma FALSE #> 14323 896 0.8736150 0.162750200 fv Gamma RP(P), Gamma FALSE #> 14339 897 0.7174357 0.136603078 fv Gamma RP(P), Gamma FALSE #> 14355 898 0.9077453 0.168301401 fv Gamma RP(P), Gamma FALSE #> 14371 899 0.7703075 0.146578385 fv Gamma RP(P), Gamma FALSE #> 14387 900 0.7968261 0.152992830 fv Gamma RP(P), Gamma FALSE #> 14403 901 0.6041539 0.117492458 fv Gamma RP(P), Gamma FALSE #> 14419 902 0.5806196 0.112757680 fv Gamma RP(P), Gamma FALSE #> 14435 903 0.6449749 0.123830439 fv Gamma RP(P), Gamma FALSE #> 14451 904 1.0648896 0.202836264 fv Gamma RP(P), Gamma FALSE #> 14467 905 0.6172244 0.118612589 fv Gamma RP(P), Gamma FALSE #> 14483 906 0.9307485 0.171739678 fv Gamma RP(P), Gamma FALSE #> 14499 907 0.7212674 0.137324092 fv Gamma RP(P), Gamma FALSE #> 14515 908 0.6557254 0.129913240 fv Gamma RP(P), Gamma FALSE #> 14531 909 0.6191823 0.120399527 fv Gamma RP(P), Gamma FALSE #> 14547 910 0.5543950 0.108411251 fv Gamma RP(P), Gamma FALSE #> 14563 911 0.7093924 0.139027722 fv Gamma RP(P), Gamma FALSE #> 14579 912 0.5474285 0.106437830 fv Gamma RP(P), Gamma FALSE #> 14595 913 0.7027527 0.133771400 fv Gamma RP(P), Gamma FALSE #> 14611 914 0.6350090 0.123912603 fv Gamma RP(P), Gamma FALSE #> 14627 915 0.8877144 0.168402032 fv Gamma RP(P), Gamma FALSE #> 14643 916 0.5324769 0.103993777 fv Gamma RP(P), Gamma FALSE #> 14659 917 0.8257094 0.158306447 fv Gamma RP(P), Gamma FALSE #> 14675 918 0.7822604 0.147161994 fv Gamma RP(P), Gamma FALSE #> 14691 919 0.5649634 0.109871170 fv Gamma RP(P), Gamma FALSE #> 14707 920 0.7581416 0.142890003 fv Gamma RP(P), Gamma FALSE #> 14723 921 0.8239834 0.155853841 fv Gamma RP(P), Gamma FALSE #> 14739 922 1.0610788 0.198654926 fv Gamma RP(P), Gamma FALSE #> 14755 923 0.7195818 0.136933304 fv Gamma RP(P), Gamma FALSE #> 14771 924 0.7698761 0.144921933 fv Gamma RP(P), Gamma FALSE #> 14787 925 0.8687568 0.166258634 fv Gamma RP(P), Gamma FALSE #> 14803 926 0.7069269 0.133988760 fv Gamma RP(P), Gamma FALSE #> 14819 927 0.4598690 0.091786557 fv Gamma RP(P), Gamma FALSE #> 14835 928 0.6924455 0.131790224 fv Gamma RP(P), Gamma FALSE #> 14851 929 NA NA fv Gamma RP(P), Gamma NA #> 14867 930 0.8848479 0.169540478 fv Gamma RP(P), Gamma FALSE #> 14883 931 0.6753327 0.128916825 fv Gamma RP(P), Gamma FALSE #> 14899 932 0.8372623 0.156313520 fv Gamma RP(P), Gamma FALSE #> 14915 933 0.6307088 0.122091618 fv Gamma RP(P), Gamma FALSE #> 14931 934 0.6027997 0.116538645 fv Gamma RP(P), Gamma FALSE #> 14947 935 0.5052707 0.100596407 fv Gamma RP(P), Gamma FALSE #> 14963 936 0.5930017 0.114762813 fv Gamma RP(P), Gamma FALSE #> 14979 937 1.1060700 0.204812720 fv Gamma RP(P), Gamma TRUE #> 14995 938 0.7900036 0.149577687 fv Gamma RP(P), Gamma FALSE #> 15011 939 0.8269911 0.155312585 fv Gamma RP(P), Gamma FALSE #> 15027 940 0.7651135 0.144304466 fv Gamma RP(P), Gamma FALSE #> 15043 941 0.6356078 0.122487768 fv Gamma RP(P), Gamma FALSE #> 15059 942 0.6473050 0.124922562 fv Gamma RP(P), Gamma FALSE #> 15075 943 0.4807370 0.095724602 fv Gamma RP(P), Gamma FALSE #> 15091 944 0.6194064 0.119154705 fv Gamma RP(P), Gamma FALSE #> 15107 945 0.6175935 0.119838731 fv Gamma RP(P), Gamma FALSE #> 15123 946 0.7670644 0.149036648 fv Gamma RP(P), Gamma FALSE #> 15139 947 0.6811637 0.132119739 fv Gamma RP(P), Gamma FALSE #> 15155 948 0.5151351 0.102962455 fv Gamma RP(P), Gamma FALSE #> 15171 949 0.6194144 0.120993729 fv Gamma RP(P), Gamma FALSE #> 15187 950 0.6245088 0.122145644 fv Gamma RP(P), Gamma FALSE #> 15203 951 0.7155764 0.136307065 fv Gamma RP(P), Gamma FALSE #> 15219 952 0.6737609 0.129729678 fv Gamma RP(P), Gamma FALSE #> 15235 953 1.0941966 0.202309534 fv Gamma RP(P), Gamma FALSE #> 15251 954 0.6752267 0.129373036 fv Gamma RP(P), Gamma FALSE #> 15267 955 0.8191963 0.153734262 fv Gamma RP(P), Gamma FALSE #> 15283 956 0.6642468 0.128557962 fv Gamma RP(P), Gamma FALSE #> 15299 957 0.6334643 0.123008889 fv Gamma RP(P), Gamma FALSE #> 15315 958 0.5365145 0.105276009 fv Gamma RP(P), Gamma FALSE #> 15331 959 0.5981546 0.115741211 fv Gamma RP(P), Gamma FALSE #> 15347 960 0.7820444 0.148491202 fv Gamma RP(P), Gamma FALSE #> 15363 961 0.5120426 0.101261877 fv Gamma RP(P), Gamma FALSE #> 15379 962 0.9039760 0.168664395 fv Gamma RP(P), Gamma FALSE #> 15395 963 0.8351072 0.158257000 fv Gamma RP(P), Gamma FALSE #> 15411 964 0.6922496 0.132776055 fv Gamma RP(P), Gamma FALSE #> 15427 965 0.6365475 0.123530828 fv Gamma RP(P), Gamma FALSE #> 15443 966 0.7682227 0.146838969 fv Gamma RP(P), Gamma FALSE #> 15459 967 0.6676674 0.127821817 fv Gamma RP(P), Gamma FALSE #> 15475 968 0.5625265 0.109741850 fv Gamma RP(P), Gamma FALSE #> 15491 969 0.7509732 0.144589636 fv Gamma RP(P), Gamma FALSE #> 15507 970 0.7023211 0.138688899 fv Gamma RP(P), Gamma FALSE #> 15523 971 0.6365563 0.123319119 fv Gamma RP(P), Gamma FALSE #> 15539 972 0.6556819 0.129732139 fv Gamma RP(P), Gamma FALSE #> 15555 973 0.9647090 0.185057265 fv Gamma RP(P), Gamma FALSE #> 15571 974 0.5263112 0.103972669 fv Gamma RP(P), Gamma FALSE #> 15587 975 0.5028392 0.099877710 fv Gamma RP(P), Gamma FALSE #> 15603 976 0.7556945 0.143837742 fv Gamma RP(P), Gamma FALSE #> 15619 977 0.8499235 0.158553778 fv Gamma RP(P), Gamma FALSE #> 15635 978 0.8299769 0.159832741 fv Gamma RP(P), Gamma FALSE #> 15651 979 0.8153734 0.157312216 fv Gamma RP(P), Gamma FALSE #> 15667 980 0.5361506 0.105128657 fv Gamma RP(P), Gamma FALSE #> 15683 981 0.7147316 0.137951031 fv Gamma RP(P), Gamma FALSE #> 15699 982 0.9684844 0.181555375 fv Gamma RP(P), Gamma FALSE #> 15715 983 0.5330180 0.105260888 fv Gamma RP(P), Gamma FALSE #> 15731 984 0.7522072 0.143060278 fv Gamma RP(P), Gamma FALSE #> 15747 985 0.8205779 0.157882770 fv Gamma RP(P), Gamma FALSE #> 15763 986 0.6120942 0.117431990 fv Gamma RP(P), Gamma FALSE #> 15779 987 0.5490514 0.107616085 fv Gamma RP(P), Gamma FALSE #> 15795 988 0.6296822 0.121481511 fv Gamma RP(P), Gamma FALSE #> 15811 989 0.7954111 0.149703493 fv Gamma RP(P), Gamma FALSE #> 15827 990 0.7113507 0.134852556 fv Gamma RP(P), Gamma FALSE #> 15843 991 0.7586014 0.144688767 fv Gamma RP(P), Gamma FALSE #> 15859 992 0.7789712 0.148678906 fv Gamma RP(P), Gamma FALSE #> 15875 993 0.9452686 0.175283351 fv Gamma RP(P), Gamma FALSE #> 15891 994 0.6625835 0.127525541 fv Gamma RP(P), Gamma FALSE #> 15907 995 0.8179336 0.154628613 fv Gamma RP(P), Gamma FALSE #> 15923 996 0.6698410 0.128532500 fv Gamma RP(P), Gamma FALSE #> 15939 997 0.6029261 0.120579994 fv Gamma RP(P), Gamma FALSE #> 15955 998 0.6444980 0.124308172 fv Gamma RP(P), Gamma FALSE #> 15971 999 0.5097824 0.100070485 fv Gamma RP(P), Gamma FALSE #> 15987 1000 0.5002252 0.099547221 fv Gamma RP(P), Gamma FALSE #> 4 1 0.8410503 0.180489790 fv Gamma RP(P), Log-Normal FALSE #> 20 2 0.8678277 0.194181070 fv Gamma RP(P), Log-Normal FALSE #> 36 3 1.5656905 0.354448508 fv Gamma RP(P), Log-Normal FALSE #> 52 4 1.2089109 0.260522826 fv Gamma RP(P), Log-Normal FALSE #> 68 5 0.9105106 0.200479265 fv Gamma RP(P), Log-Normal FALSE #> 84 6 0.9727359 0.207142387 fv Gamma RP(P), Log-Normal FALSE #> 100 7 0.9091356 0.198318108 fv Gamma RP(P), Log-Normal FALSE #> 116 8 1.3377013 0.293288046 fv Gamma RP(P), Log-Normal FALSE #> 132 9 1.2350450 0.276016839 fv Gamma RP(P), Log-Normal FALSE #> 148 10 0.9974789 0.217294847 fv Gamma RP(P), Log-Normal FALSE #> 164 11 1.0414795 0.229502409 fv Gamma RP(P), Log-Normal FALSE #> 180 12 1.4499625 0.321000485 fv Gamma RP(P), Log-Normal FALSE #> 196 13 1.2289253 0.270499075 fv Gamma RP(P), Log-Normal FALSE #> 212 14 0.7903710 0.178471107 fv Gamma RP(P), Log-Normal FALSE #> 228 15 1.1996110 0.263087699 fv Gamma RP(P), Log-Normal FALSE #> 244 16 1.2290670 0.262683325 fv Gamma RP(P), Log-Normal FALSE #> 260 17 0.7668133 0.166707205 fv Gamma RP(P), Log-Normal FALSE #> 276 18 0.5614283 0.129201981 fv Gamma RP(P), Log-Normal FALSE #> 292 19 0.8973139 0.194570679 fv Gamma RP(P), Log-Normal FALSE #> 308 20 1.2979832 0.290290296 fv Gamma RP(P), Log-Normal FALSE #> 324 21 0.6887073 0.156427688 fv Gamma RP(P), Log-Normal FALSE #> 340 22 1.2170119 0.272426758 fv Gamma RP(P), Log-Normal FALSE #> 356 23 0.8168514 0.177990111 fv Gamma RP(P), Log-Normal FALSE #> 372 24 1.0319698 0.223783982 fv Gamma RP(P), Log-Normal FALSE #> 388 25 1.1205947 0.246445015 fv Gamma RP(P), Log-Normal FALSE #> 404 26 0.9638065 0.214741205 fv Gamma RP(P), Log-Normal FALSE #> 420 27 1.8077166 0.405187974 fv Gamma RP(P), Log-Normal TRUE #> 436 28 1.4582922 0.319696485 fv Gamma RP(P), Log-Normal FALSE #> 452 29 1.2743998 0.277048737 fv Gamma RP(P), Log-Normal FALSE #> 468 30 1.4103568 0.311798652 fv Gamma RP(P), Log-Normal FALSE #> 484 31 0.8138218 0.185276938 fv Gamma RP(P), Log-Normal FALSE #> 500 32 0.9982089 0.220955990 fv Gamma RP(P), Log-Normal FALSE #> 516 33 0.8061031 0.175345832 fv Gamma RP(P), Log-Normal FALSE #> 532 34 0.7039887 0.153529988 fv Gamma RP(P), Log-Normal FALSE #> 548 35 1.0346859 0.233365573 fv Gamma RP(P), Log-Normal FALSE #> 564 36 0.7549084 0.171089345 fv Gamma RP(P), Log-Normal FALSE #> 580 37 0.7130831 0.152936839 fv Gamma RP(P), Log-Normal FALSE #> 596 38 0.6323124 0.137321184 fv Gamma RP(P), Log-Normal FALSE #> 612 39 0.9223978 0.197745952 fv Gamma RP(P), Log-Normal FALSE #> 628 40 0.5917448 0.131429331 fv Gamma RP(P), Log-Normal FALSE #> 644 41 1.7030475 0.362512848 fv Gamma RP(P), Log-Normal TRUE #> 660 42 0.9836085 0.221167054 fv Gamma RP(P), Log-Normal FALSE #> 676 43 1.0892011 0.236781660 fv Gamma RP(P), Log-Normal FALSE #> 692 44 1.0691287 0.229946817 fv Gamma RP(P), Log-Normal FALSE #> 708 45 0.9125777 0.193490742 fv Gamma RP(P), Log-Normal FALSE #> 724 46 0.8640446 0.183399015 fv Gamma RP(P), Log-Normal FALSE #> 740 47 1.3812417 0.310356076 fv Gamma RP(P), Log-Normal FALSE #> 756 48 0.9461687 0.209437725 fv Gamma RP(P), Log-Normal FALSE #> 772 49 1.2123569 0.272535046 fv Gamma RP(P), Log-Normal FALSE #> 788 50 1.0157173 0.219640404 fv Gamma RP(P), Log-Normal FALSE #> 804 51 1.2240924 0.266048868 fv Gamma RP(P), Log-Normal FALSE #> 820 52 0.6314951 0.135520991 fv Gamma RP(P), Log-Normal FALSE #> 836 53 0.7902155 0.170518782 fv Gamma RP(P), Log-Normal FALSE #> 852 54 0.6234466 0.136430712 fv Gamma RP(P), Log-Normal FALSE #> 868 55 1.1077144 0.243206554 fv Gamma RP(P), Log-Normal FALSE #> 884 56 0.8032454 0.176040775 fv Gamma RP(P), Log-Normal FALSE #> 900 57 1.0879018 0.236307364 fv Gamma RP(P), Log-Normal FALSE #> 916 58 0.9079961 0.206563826 fv Gamma RP(P), Log-Normal FALSE #> 932 59 0.8521420 0.182802754 fv Gamma RP(P), Log-Normal FALSE #> 948 60 1.1246211 0.247632446 fv Gamma RP(P), Log-Normal FALSE #> 964 61 0.8496498 0.182406159 fv Gamma RP(P), Log-Normal FALSE #> 980 62 0.6798459 0.145192799 fv Gamma RP(P), Log-Normal FALSE #> 996 63 1.1786060 0.259638432 fv Gamma RP(P), Log-Normal FALSE #> 1012 64 0.8159884 0.175037739 fv Gamma RP(P), Log-Normal FALSE #> 1028 65 0.8800785 0.187329515 fv Gamma RP(P), Log-Normal FALSE #> 1044 66 0.6475174 0.141594919 fv Gamma RP(P), Log-Normal FALSE #> 1060 67 1.1346861 0.243224867 fv Gamma RP(P), Log-Normal FALSE #> 1076 68 0.9451782 0.204530548 fv Gamma RP(P), Log-Normal FALSE #> 1092 69 0.6591367 0.142421595 fv Gamma RP(P), Log-Normal FALSE #> 1108 70 0.8957225 0.201454630 fv Gamma RP(P), Log-Normal FALSE #> 1124 71 1.2425651 0.269862801 fv Gamma RP(P), Log-Normal FALSE #> 1140 72 0.7988484 0.172472083 fv Gamma RP(P), Log-Normal FALSE #> 1156 73 0.5992919 0.131137709 fv Gamma RP(P), Log-Normal FALSE #> 1172 74 0.8804460 0.189838649 fv Gamma RP(P), Log-Normal FALSE #> 1188 75 0.9777687 0.216420261 fv Gamma RP(P), Log-Normal FALSE #> 1204 76 0.9693736 0.219502318 fv Gamma RP(P), Log-Normal FALSE #> 1220 77 1.0165404 0.226139509 fv Gamma RP(P), Log-Normal FALSE #> 1236 78 1.4399271 0.315071555 fv Gamma RP(P), Log-Normal FALSE #> 1252 79 2.1221995 0.470009490 fv Gamma RP(P), Log-Normal TRUE #> 1268 80 0.7791535 0.174703739 fv Gamma RP(P), Log-Normal FALSE #> 1284 81 1.2547237 0.280827316 fv Gamma RP(P), Log-Normal FALSE #> 1300 82 0.9467868 0.204477217 fv Gamma RP(P), Log-Normal FALSE #> 1316 83 0.6230714 0.145922655 fv Gamma RP(P), Log-Normal FALSE #> 1332 84 0.9656183 0.208305949 fv Gamma RP(P), Log-Normal FALSE #> 1348 85 0.8409584 0.179338509 fv Gamma RP(P), Log-Normal FALSE #> 1364 86 0.8783902 0.188634107 fv Gamma RP(P), Log-Normal FALSE #> 1380 87 0.7891754 0.171683960 fv Gamma RP(P), Log-Normal FALSE #> 1396 88 0.8889765 0.189117565 fv Gamma RP(P), Log-Normal FALSE #> 1412 89 1.0136504 0.220546193 fv Gamma RP(P), Log-Normal FALSE #> 1428 90 1.1286349 0.241320253 fv Gamma RP(P), Log-Normal FALSE #> 1444 91 0.9312858 0.201825397 fv Gamma RP(P), Log-Normal FALSE #> 1460 92 0.8289786 0.178341610 fv Gamma RP(P), Log-Normal FALSE #> 1476 93 1.4146168 0.330757275 fv Gamma RP(P), Log-Normal FALSE #> 1492 94 1.1853824 0.265460198 fv Gamma RP(P), Log-Normal FALSE #> 1508 95 0.9465371 0.204446330 fv Gamma RP(P), Log-Normal FALSE #> 1524 96 0.5360025 0.117580795 fv Gamma RP(P), Log-Normal FALSE #> 1540 97 0.7049504 0.150930049 fv Gamma RP(P), Log-Normal FALSE #> 1556 98 1.0626450 0.230692215 fv Gamma RP(P), Log-Normal FALSE #> 1572 99 0.7236906 0.160439565 fv Gamma RP(P), Log-Normal FALSE #> 1588 100 1.2194488 0.261578712 fv Gamma RP(P), Log-Normal FALSE #> 1604 101 1.0668733 0.228523775 fv Gamma RP(P), Log-Normal FALSE #> 1620 102 0.9285004 0.200447554 fv Gamma RP(P), Log-Normal FALSE #> 1636 103 1.3458088 0.304378913 fv Gamma RP(P), Log-Normal FALSE #> 1652 104 1.0710874 0.231465125 fv Gamma RP(P), Log-Normal FALSE #> 1668 105 1.2613946 0.281394393 fv Gamma RP(P), Log-Normal FALSE #> 1684 106 0.8969644 0.193536579 fv Gamma RP(P), Log-Normal FALSE #> 1700 107 1.3073644 0.291540572 fv Gamma RP(P), Log-Normal FALSE #> 1716 108 1.2015396 0.273156263 fv Gamma RP(P), Log-Normal FALSE #> 1732 109 0.9608367 0.215133741 fv Gamma RP(P), Log-Normal FALSE #> 1748 110 1.0549760 0.230967027 fv Gamma RP(P), Log-Normal FALSE #> 1764 111 1.1546607 0.253379239 fv Gamma RP(P), Log-Normal FALSE #> 1780 112 0.5673895 0.125437515 fv Gamma RP(P), Log-Normal FALSE #> 1796 113 0.6343064 0.137652658 fv Gamma RP(P), Log-Normal FALSE #> 1812 114 1.6994774 0.372630539 fv Gamma RP(P), Log-Normal TRUE #> 1828 115 0.8096436 0.174316311 fv Gamma RP(P), Log-Normal FALSE #> 1844 116 0.5983113 0.130571723 fv Gamma RP(P), Log-Normal FALSE #> 1860 117 1.0752666 0.230788747 fv Gamma RP(P), Log-Normal FALSE #> 1876 118 0.6424306 0.138884328 fv Gamma RP(P), Log-Normal FALSE #> 1892 119 0.7987293 0.174838654 fv Gamma RP(P), Log-Normal FALSE #> 1908 120 0.9198102 0.199426585 fv Gamma RP(P), Log-Normal FALSE #> 1924 121 0.7655232 0.165876205 fv Gamma RP(P), Log-Normal FALSE #> 1940 122 0.8673380 0.192315723 fv Gamma RP(P), Log-Normal FALSE #> 1956 123 0.9257457 0.199557099 fv Gamma RP(P), Log-Normal FALSE #> 1972 124 0.9741059 0.208749126 fv Gamma RP(P), Log-Normal FALSE #> 1988 125 1.2460856 0.279458468 fv Gamma RP(P), Log-Normal FALSE #> 2004 126 1.5223418 0.348979386 fv Gamma RP(P), Log-Normal FALSE #> 2020 127 1.0897918 0.233748704 fv Gamma RP(P), Log-Normal FALSE #> 2036 128 1.0913695 0.235245203 fv Gamma RP(P), Log-Normal FALSE #> 2052 129 0.7759233 0.174810378 fv Gamma RP(P), Log-Normal FALSE #> 2068 130 0.8542536 0.185655091 fv Gamma RP(P), Log-Normal FALSE #> 2084 131 0.8677951 0.186392333 fv Gamma RP(P), Log-Normal FALSE #> 2100 132 1.0182273 0.229239447 fv Gamma RP(P), Log-Normal FALSE #> 2116 133 0.9314544 0.204039232 fv Gamma RP(P), Log-Normal FALSE #> 2132 134 1.0852088 0.238460386 fv Gamma RP(P), Log-Normal FALSE #> 2148 135 0.7909149 0.173975625 fv Gamma RP(P), Log-Normal FALSE #> 2164 136 0.9778860 0.214124322 fv Gamma RP(P), Log-Normal FALSE #> 2180 137 1.2598163 0.276133548 fv Gamma RP(P), Log-Normal FALSE #> 2196 138 1.2809055 0.281451627 fv Gamma RP(P), Log-Normal FALSE #> 2212 139 0.7995624 0.172343978 fv Gamma RP(P), Log-Normal FALSE #> 2228 140 1.0542020 0.228792828 fv Gamma RP(P), Log-Normal FALSE #> 2244 141 0.7478963 0.168448746 fv Gamma RP(P), Log-Normal FALSE #> 2260 142 0.9760714 0.213021566 fv Gamma RP(P), Log-Normal FALSE #> 2276 143 1.7801465 0.420367979 fv Gamma RP(P), Log-Normal TRUE #> 2292 144 1.1180069 0.240026858 fv Gamma RP(P), Log-Normal FALSE #> 2308 145 0.8550480 0.185257078 fv Gamma RP(P), Log-Normal FALSE #> 2324 146 0.8869459 0.194368374 fv Gamma RP(P), Log-Normal FALSE #> 2340 147 1.0416163 0.222624864 fv Gamma RP(P), Log-Normal FALSE #> 2356 148 0.6177941 0.133321319 fv Gamma RP(P), Log-Normal FALSE #> 2372 149 0.8384950 0.183594689 fv Gamma RP(P), Log-Normal FALSE #> 2388 150 1.1818709 0.256428027 fv Gamma RP(P), Log-Normal FALSE #> 2404 151 1.1336835 0.246106754 fv Gamma RP(P), Log-Normal FALSE #> 2420 152 1.2047244 0.274407174 fv Gamma RP(P), Log-Normal FALSE #> 2436 153 0.6319178 0.140024355 fv Gamma RP(P), Log-Normal FALSE #> 2452 154 1.1227542 0.243273981 fv Gamma RP(P), Log-Normal FALSE #> 2468 155 0.9472756 0.213435649 fv Gamma RP(P), Log-Normal FALSE #> 2484 156 0.9353948 0.201845857 fv Gamma RP(P), Log-Normal FALSE #> 2500 157 1.4443196 0.325027201 fv Gamma RP(P), Log-Normal FALSE #> 2516 158 1.4804150 0.332558943 fv Gamma RP(P), Log-Normal FALSE #> 2532 159 0.6630153 0.148287051 fv Gamma RP(P), Log-Normal FALSE #> 2548 160 0.6900087 0.149587077 fv Gamma RP(P), Log-Normal FALSE #> 2564 161 1.7387701 0.385887845 fv Gamma RP(P), Log-Normal TRUE #> 2580 162 0.9687233 0.217750869 fv Gamma RP(P), Log-Normal FALSE #> 2596 163 0.6827167 0.145583781 fv Gamma RP(P), Log-Normal FALSE #> 2612 164 1.2172745 0.262189900 fv Gamma RP(P), Log-Normal FALSE #> 2628 165 1.0784115 0.233084303 fv Gamma RP(P), Log-Normal FALSE #> 2644 166 1.1583751 0.261285259 fv Gamma RP(P), Log-Normal FALSE #> 2660 167 1.3212424 0.288994706 fv Gamma RP(P), Log-Normal FALSE #> 2676 168 1.0892162 0.232654723 fv Gamma RP(P), Log-Normal FALSE #> 2692 169 0.9488717 0.210488425 fv Gamma RP(P), Log-Normal FALSE #> 2708 170 0.9425105 0.207346315 fv Gamma RP(P), Log-Normal FALSE #> 2724 171 0.9648281 0.217152696 fv Gamma RP(P), Log-Normal FALSE #> 2740 172 1.1441352 0.247932693 fv Gamma RP(P), Log-Normal FALSE #> 2756 173 0.7910405 0.176024495 fv Gamma RP(P), Log-Normal FALSE #> 2772 174 1.1316952 0.249970141 fv Gamma RP(P), Log-Normal FALSE #> 2788 175 0.8198924 0.180989910 fv Gamma RP(P), Log-Normal FALSE #> 2804 176 0.8753872 0.188037677 fv Gamma RP(P), Log-Normal FALSE #> 2820 177 0.7720114 0.176313354 fv Gamma RP(P), Log-Normal FALSE #> 2836 178 1.1816336 0.253573112 fv Gamma RP(P), Log-Normal FALSE #> 2852 179 0.7570887 0.163987104 fv Gamma RP(P), Log-Normal FALSE #> 2868 180 1.0248482 0.231084001 fv Gamma RP(P), Log-Normal FALSE #> 2884 181 1.1758148 0.255526928 fv Gamma RP(P), Log-Normal FALSE #> 2900 182 0.9353048 0.200381412 fv Gamma RP(P), Log-Normal FALSE #> 2916 183 0.7649203 0.166913250 fv Gamma RP(P), Log-Normal FALSE #> 2932 184 0.9391842 0.210675866 fv Gamma RP(P), Log-Normal FALSE #> 2948 185 1.2001237 0.263877714 fv Gamma RP(P), Log-Normal FALSE #> 2964 186 1.3870806 0.315929817 fv Gamma RP(P), Log-Normal FALSE #> 2980 187 0.9699397 0.211577834 fv Gamma RP(P), Log-Normal FALSE #> 2996 188 0.6690904 0.144881941 fv Gamma RP(P), Log-Normal FALSE #> 3012 189 1.0329302 0.225123247 fv Gamma RP(P), Log-Normal FALSE #> 3028 190 0.9803038 0.208776860 fv Gamma RP(P), Log-Normal FALSE #> 3044 191 1.0084836 0.219927110 fv Gamma RP(P), Log-Normal FALSE #> 3060 192 1.0550664 0.236314960 fv Gamma RP(P), Log-Normal FALSE #> 3076 193 0.8630140 0.189691189 fv Gamma RP(P), Log-Normal FALSE #> 3092 194 0.8052466 0.175195362 fv Gamma RP(P), Log-Normal FALSE #> 3108 195 1.0968900 0.233922924 fv Gamma RP(P), Log-Normal FALSE #> 3124 196 1.1559404 0.256854876 fv Gamma RP(P), Log-Normal FALSE #> 3140 197 0.9197354 0.195423075 fv Gamma RP(P), Log-Normal FALSE #> 3156 198 0.9870597 0.210203075 fv Gamma RP(P), Log-Normal FALSE #> 3172 199 0.7693873 0.169248931 fv Gamma RP(P), Log-Normal FALSE #> 3188 200 1.0852385 0.232970650 fv Gamma RP(P), Log-Normal FALSE #> 3204 201 1.0582087 0.233919328 fv Gamma RP(P), Log-Normal FALSE #> 3220 202 1.1012224 0.237450055 fv Gamma RP(P), Log-Normal FALSE #> 3236 203 0.9917678 0.212158246 fv Gamma RP(P), Log-Normal FALSE #> 3252 204 1.0600987 0.242348250 fv Gamma RP(P), Log-Normal FALSE #> 3268 205 0.7573698 0.166925875 fv Gamma RP(P), Log-Normal FALSE #> 3284 206 1.0214815 0.222696133 fv Gamma RP(P), Log-Normal FALSE #> 3300 207 0.6835123 0.147794118 fv Gamma RP(P), Log-Normal FALSE #> 3316 208 0.9790364 0.214484170 fv Gamma RP(P), Log-Normal FALSE #> 3332 209 0.9284396 0.203537107 fv Gamma RP(P), Log-Normal FALSE #> 3348 210 0.9177248 0.203825830 fv Gamma RP(P), Log-Normal FALSE #> 3364 211 1.4985260 0.338006117 fv Gamma RP(P), Log-Normal FALSE #> 3380 212 0.9970864 0.223396310 fv Gamma RP(P), Log-Normal FALSE #> 3396 213 1.1144267 0.246404561 fv Gamma RP(P), Log-Normal FALSE #> 3412 214 1.0088299 0.226415030 fv Gamma RP(P), Log-Normal FALSE #> 3428 215 1.1291796 0.244563544 fv Gamma RP(P), Log-Normal FALSE #> 3444 216 1.2609631 0.275896977 fv Gamma RP(P), Log-Normal FALSE #> 3460 217 0.8389670 0.184949511 fv Gamma RP(P), Log-Normal FALSE #> 3476 218 0.8453860 0.188622069 fv Gamma RP(P), Log-Normal FALSE #> 3492 219 1.2183609 0.274303728 fv Gamma RP(P), Log-Normal FALSE #> 3508 220 0.7187300 0.156561885 fv Gamma RP(P), Log-Normal FALSE #> 3524 221 0.9388220 0.208447345 fv Gamma RP(P), Log-Normal FALSE #> 3540 222 1.1209367 0.250349485 fv Gamma RP(P), Log-Normal FALSE #> 3556 223 1.0480275 0.237133986 fv Gamma RP(P), Log-Normal FALSE #> 3572 224 1.0128154 0.221061644 fv Gamma RP(P), Log-Normal FALSE #> 3588 225 0.8044790 0.173788213 fv Gamma RP(P), Log-Normal FALSE #> 3604 226 1.3216154 0.300532131 fv Gamma RP(P), Log-Normal FALSE #> 3620 227 0.8680673 0.191662277 fv Gamma RP(P), Log-Normal FALSE #> 3636 228 1.1162978 0.238070849 fv Gamma RP(P), Log-Normal FALSE #> 3652 229 1.1133721 0.244781394 fv Gamma RP(P), Log-Normal FALSE #> 3668 230 0.8878602 0.190636787 fv Gamma RP(P), Log-Normal FALSE #> 3684 231 1.1544228 0.255759683 fv Gamma RP(P), Log-Normal FALSE #> 3700 232 1.0320456 0.230128037 fv Gamma RP(P), Log-Normal FALSE #> 3716 233 1.1888143 0.263237985 fv Gamma RP(P), Log-Normal FALSE #> 3732 234 0.9164521 0.201120134 fv Gamma RP(P), Log-Normal FALSE #> 3748 235 1.1327970 0.257687761 fv Gamma RP(P), Log-Normal FALSE #> 3764 236 0.6460332 0.144131419 fv Gamma RP(P), Log-Normal FALSE #> 3780 237 0.8430326 0.186855350 fv Gamma RP(P), Log-Normal FALSE #> 3796 238 0.8158895 0.183957007 fv Gamma RP(P), Log-Normal FALSE #> 3812 239 0.9394292 0.201459225 fv Gamma RP(P), Log-Normal FALSE #> 3828 240 1.1606621 0.257905170 fv Gamma RP(P), Log-Normal FALSE #> 3844 241 0.8538658 0.185111653 fv Gamma RP(P), Log-Normal FALSE #> 3860 242 0.6336259 0.138341079 fv Gamma RP(P), Log-Normal FALSE #> 3876 243 1.3611347 0.316943569 fv Gamma RP(P), Log-Normal FALSE #> 3892 244 0.6853487 0.148004398 fv Gamma RP(P), Log-Normal FALSE #> 3908 245 1.5239087 0.341431129 fv Gamma RP(P), Log-Normal FALSE #> 3924 246 0.8620671 0.184937320 fv Gamma RP(P), Log-Normal FALSE #> 3940 247 1.0483086 0.230069168 fv Gamma RP(P), Log-Normal FALSE #> 3956 248 1.3814399 0.299598493 fv Gamma RP(P), Log-Normal FALSE #> 3972 249 1.4587490 0.332527808 fv Gamma RP(P), Log-Normal FALSE #> 3988 250 0.9961178 0.219966795 fv Gamma RP(P), Log-Normal FALSE #> 4004 251 1.0802323 0.239577478 fv Gamma RP(P), Log-Normal FALSE #> 4020 252 1.1573802 0.260140925 fv Gamma RP(P), Log-Normal FALSE #> 4036 253 1.2435742 0.287752260 fv Gamma RP(P), Log-Normal FALSE #> 4052 254 0.6213066 0.133993890 fv Gamma RP(P), Log-Normal FALSE #> 4068 255 0.9306108 0.196210153 fv Gamma RP(P), Log-Normal FALSE #> 4084 256 0.9142294 0.199393458 fv Gamma RP(P), Log-Normal FALSE #> 4100 257 0.6756633 0.145660199 fv Gamma RP(P), Log-Normal FALSE #> 4116 258 1.0192314 0.236693687 fv Gamma RP(P), Log-Normal FALSE #> 4132 259 0.9446257 0.205216936 fv Gamma RP(P), Log-Normal FALSE #> 4148 260 1.1233469 0.244803377 fv Gamma RP(P), Log-Normal FALSE #> 4164 261 0.5981253 0.129981226 fv Gamma RP(P), Log-Normal FALSE #> 4180 262 0.8469669 0.185096728 fv Gamma RP(P), Log-Normal FALSE #> 4196 263 0.7899133 0.174604035 fv Gamma RP(P), Log-Normal FALSE #> 4212 264 0.6078800 0.131030433 fv Gamma RP(P), Log-Normal FALSE #> 4228 265 0.7793063 0.167770678 fv Gamma RP(P), Log-Normal FALSE #> 4244 266 0.8557823 0.187576892 fv Gamma RP(P), Log-Normal FALSE #> 4260 267 0.9221636 0.200920447 fv Gamma RP(P), Log-Normal FALSE #> 4276 268 0.9907061 0.213920651 fv Gamma RP(P), Log-Normal FALSE #> 4292 269 1.6707648 0.379565298 fv Gamma RP(P), Log-Normal TRUE #> 4308 270 1.2213651 0.278069743 fv Gamma RP(P), Log-Normal FALSE #> 4324 271 1.2134813 0.268186948 fv Gamma RP(P), Log-Normal FALSE #> 4340 272 0.7105029 0.158227375 fv Gamma RP(P), Log-Normal FALSE #> 4356 273 0.8171010 0.178367886 fv Gamma RP(P), Log-Normal FALSE #> 4372 274 0.9050407 0.193402733 fv Gamma RP(P), Log-Normal FALSE #> 4388 275 1.1353543 0.243983601 fv Gamma RP(P), Log-Normal FALSE #> 4404 276 1.0858343 0.244403762 fv Gamma RP(P), Log-Normal FALSE #> 4420 277 0.8684428 0.186238953 fv Gamma RP(P), Log-Normal FALSE #> 4436 278 1.0203287 0.220451182 fv Gamma RP(P), Log-Normal FALSE #> 4452 279 1.0011619 0.217423012 fv Gamma RP(P), Log-Normal FALSE #> 4468 280 0.9509821 0.203861367 fv Gamma RP(P), Log-Normal FALSE #> 4484 281 1.5506510 0.348875344 fv Gamma RP(P), Log-Normal FALSE #> 4500 282 0.7365934 0.158887674 fv Gamma RP(P), Log-Normal FALSE #> 4516 283 1.1427590 0.261767217 fv Gamma RP(P), Log-Normal FALSE #> 4532 284 0.7622570 0.162455472 fv Gamma RP(P), Log-Normal FALSE #> 4548 285 0.5961491 0.129287813 fv Gamma RP(P), Log-Normal FALSE #> 4564 286 1.0061213 0.217649530 fv Gamma RP(P), Log-Normal FALSE #> 4580 287 0.7806262 0.169733695 fv Gamma RP(P), Log-Normal FALSE #> 4596 288 1.8098902 0.399947941 fv Gamma RP(P), Log-Normal TRUE #> 4612 289 0.8393518 0.185200626 fv Gamma RP(P), Log-Normal FALSE #> 4628 290 0.7468449 0.162723595 fv Gamma RP(P), Log-Normal FALSE #> 4644 291 0.7601939 0.165843465 fv Gamma RP(P), Log-Normal FALSE #> 4660 292 0.7323268 0.156954458 fv Gamma RP(P), Log-Normal FALSE #> 4676 293 1.2258149 0.268151985 fv Gamma RP(P), Log-Normal FALSE #> 4692 294 0.8404157 0.183782801 fv Gamma RP(P), Log-Normal FALSE #> 4708 295 1.5766100 0.346101076 fv Gamma RP(P), Log-Normal FALSE #> 4724 296 1.0056320 0.220767234 fv Gamma RP(P), Log-Normal FALSE #> 4740 297 1.7157538 0.372587669 fv Gamma RP(P), Log-Normal TRUE #> 4756 298 0.6795482 0.146389054 fv Gamma RP(P), Log-Normal FALSE #> 4772 299 0.7207333 0.158465129 fv Gamma RP(P), Log-Normal FALSE #> 4788 300 1.1288850 0.241916357 fv Gamma RP(P), Log-Normal FALSE #> 4804 301 0.6731434 0.147303733 fv Gamma RP(P), Log-Normal FALSE #> 4820 302 1.0472072 0.224351808 fv Gamma RP(P), Log-Normal FALSE #> 4836 303 0.7717841 0.166341408 fv Gamma RP(P), Log-Normal FALSE #> 4852 304 0.8192309 0.175783833 fv Gamma RP(P), Log-Normal FALSE #> 4868 305 1.2026302 0.261708291 fv Gamma RP(P), Log-Normal FALSE #> 4884 306 0.9576788 0.208093071 fv Gamma RP(P), Log-Normal FALSE #> 4900 307 1.0605048 0.238865352 fv Gamma RP(P), Log-Normal FALSE #> 4916 308 0.8711031 0.189633570 fv Gamma RP(P), Log-Normal FALSE #> 4932 309 1.0053989 0.216562485 fv Gamma RP(P), Log-Normal FALSE #> 4948 310 1.6051705 0.357305337 fv Gamma RP(P), Log-Normal TRUE #> 4964 311 1.2178320 0.266118483 fv Gamma RP(P), Log-Normal FALSE #> 4980 312 1.8621584 0.430025773 fv Gamma RP(P), Log-Normal TRUE #> 4996 313 1.1324318 0.248100889 fv Gamma RP(P), Log-Normal FALSE #> 5012 314 0.9259319 0.204944464 fv Gamma RP(P), Log-Normal FALSE #> 5028 315 1.0717161 0.231194628 fv Gamma RP(P), Log-Normal FALSE #> 5044 316 1.5632161 0.343308715 fv Gamma RP(P), Log-Normal FALSE #> 5060 317 0.7911773 0.172163115 fv Gamma RP(P), Log-Normal FALSE #> 5076 318 1.0257467 0.229465201 fv Gamma RP(P), Log-Normal FALSE #> 5092 319 0.7560379 0.164851201 fv Gamma RP(P), Log-Normal FALSE #> 5108 320 0.7598209 0.164946075 fv Gamma RP(P), Log-Normal FALSE #> 5124 321 1.3366113 0.296232365 fv Gamma RP(P), Log-Normal FALSE #> 5140 322 0.6541514 0.142874097 fv Gamma RP(P), Log-Normal FALSE #> 5156 323 1.1888806 0.259384609 fv Gamma RP(P), Log-Normal FALSE #> 5172 324 0.7895205 0.174817665 fv Gamma RP(P), Log-Normal FALSE #> 5188 325 0.9089904 0.195887537 fv Gamma RP(P), Log-Normal FALSE #> 5204 326 0.8991867 0.194800348 fv Gamma RP(P), Log-Normal FALSE #> 5220 327 0.9354573 0.200972552 fv Gamma RP(P), Log-Normal FALSE #> 5236 328 1.4508772 0.321883010 fv Gamma RP(P), Log-Normal FALSE #> 5252 329 1.2389575 0.278410321 fv Gamma RP(P), Log-Normal FALSE #> 5268 330 0.9497564 0.208683102 fv Gamma RP(P), Log-Normal FALSE #> 5284 331 1.1348318 0.243830181 fv Gamma RP(P), Log-Normal FALSE #> 5300 332 0.7406454 0.165819274 fv Gamma RP(P), Log-Normal FALSE #> 5316 333 0.6882928 0.148784950 fv Gamma RP(P), Log-Normal FALSE #> 5332 334 1.3842558 0.296929851 fv Gamma RP(P), Log-Normal FALSE #> 5348 335 1.0741546 0.237337608 fv Gamma RP(P), Log-Normal FALSE #> 5364 336 0.6223286 0.139826644 fv Gamma RP(P), Log-Normal FALSE #> 5380 337 0.8436957 0.186307291 fv Gamma RP(P), Log-Normal FALSE #> 5396 338 0.7251021 0.154411004 fv Gamma RP(P), Log-Normal FALSE #> 5412 339 1.0911888 0.239706177 fv Gamma RP(P), Log-Normal FALSE #> 5428 340 1.1139385 0.259970148 fv Gamma RP(P), Log-Normal FALSE #> 5444 341 0.6722575 0.144746633 fv Gamma RP(P), Log-Normal FALSE #> 5460 342 0.5335198 0.115837477 fv Gamma RP(P), Log-Normal FALSE #> 5476 343 0.7759368 0.168497568 fv Gamma RP(P), Log-Normal FALSE #> 5492 344 1.3745439 0.304745479 fv Gamma RP(P), Log-Normal FALSE #> 5508 345 1.2019517 0.264238640 fv Gamma RP(P), Log-Normal FALSE #> 5524 346 1.0680673 0.228681184 fv Gamma RP(P), Log-Normal FALSE #> 5540 347 0.9424073 0.202173546 fv Gamma RP(P), Log-Normal FALSE #> 5556 348 1.4206305 0.311160176 fv Gamma RP(P), Log-Normal FALSE #> 5572 349 1.1631266 0.253819909 fv Gamma RP(P), Log-Normal FALSE #> 5588 350 1.0587565 0.227239061 fv Gamma RP(P), Log-Normal FALSE #> 5604 351 1.2314624 0.279628007 fv Gamma RP(P), Log-Normal FALSE #> 5620 352 1.1441911 0.257794647 fv Gamma RP(P), Log-Normal FALSE #> 5636 353 0.6759264 0.146595798 fv Gamma RP(P), Log-Normal FALSE #> 5652 354 0.9403395 0.204457172 fv Gamma RP(P), Log-Normal FALSE #> 5668 355 1.1145079 0.239429075 fv Gamma RP(P), Log-Normal FALSE #> 5684 356 1.0944187 0.241452823 fv Gamma RP(P), Log-Normal FALSE #> 5700 357 0.8472675 0.182834330 fv Gamma RP(P), Log-Normal FALSE #> 5716 358 0.8078994 0.171141015 fv Gamma RP(P), Log-Normal FALSE #> 5732 359 0.8715760 0.197056186 fv Gamma RP(P), Log-Normal FALSE #> 5748 360 0.7305572 0.157575039 fv Gamma RP(P), Log-Normal FALSE #> 5764 361 1.3093898 0.295995439 fv Gamma RP(P), Log-Normal FALSE #> 5780 362 0.5932042 0.128820637 fv Gamma RP(P), Log-Normal FALSE #> 5796 363 0.9537684 0.211563876 fv Gamma RP(P), Log-Normal FALSE #> 5812 364 0.6500835 0.143060235 fv Gamma RP(P), Log-Normal FALSE #> 5828 365 0.9988684 0.230090658 fv Gamma RP(P), Log-Normal FALSE #> 5844 366 1.2002573 0.268259798 fv Gamma RP(P), Log-Normal FALSE #> 5860 367 1.1732540 0.253572484 fv Gamma RP(P), Log-Normal FALSE #> 5876 368 1.1839640 0.274942607 fv Gamma RP(P), Log-Normal FALSE #> 5892 369 0.6725999 0.144571959 fv Gamma RP(P), Log-Normal FALSE #> 5908 370 0.6474614 0.141195590 fv Gamma RP(P), Log-Normal FALSE #> 5924 371 1.0778251 0.237098302 fv Gamma RP(P), Log-Normal FALSE #> 5940 372 0.7840598 0.178284497 fv Gamma RP(P), Log-Normal FALSE #> 5956 373 0.9240125 0.200650555 fv Gamma RP(P), Log-Normal FALSE #> 5972 374 0.7215876 0.154150935 fv Gamma RP(P), Log-Normal FALSE #> 5988 375 0.7472158 0.161834638 fv Gamma RP(P), Log-Normal FALSE #> 6004 376 0.7840256 0.168608101 fv Gamma RP(P), Log-Normal FALSE #> 6020 377 1.2063017 0.272271466 fv Gamma RP(P), Log-Normal FALSE #> 6036 378 1.0759738 0.232885696 fv Gamma RP(P), Log-Normal FALSE #> 6052 379 0.7991445 0.171767634 fv Gamma RP(P), Log-Normal FALSE #> 6068 380 0.9835843 0.213394452 fv Gamma RP(P), Log-Normal FALSE #> 6084 381 0.7117307 0.151443197 fv Gamma RP(P), Log-Normal FALSE #> 6100 382 0.9374011 0.204621752 fv Gamma RP(P), Log-Normal FALSE #> 6116 383 1.4564452 0.312580654 fv Gamma RP(P), Log-Normal FALSE #> 6132 384 1.1166026 0.243039524 fv Gamma RP(P), Log-Normal FALSE #> 6148 385 0.6950395 0.150883736 fv Gamma RP(P), Log-Normal FALSE #> 6164 386 0.4544464 0.102122826 fv Gamma RP(P), Log-Normal FALSE #> 6180 387 0.6941927 0.149352262 fv Gamma RP(P), Log-Normal FALSE #> 6196 388 0.8740749 0.189471295 fv Gamma RP(P), Log-Normal FALSE #> 6212 389 0.6379024 0.138928630 fv Gamma RP(P), Log-Normal FALSE #> 6228 390 0.7579377 0.165386684 fv Gamma RP(P), Log-Normal FALSE #> 6244 391 0.6208441 0.135164000 fv Gamma RP(P), Log-Normal FALSE #> 6260 392 1.1388947 0.243164287 fv Gamma RP(P), Log-Normal FALSE #> 6276 393 0.6777050 0.146669241 fv Gamma RP(P), Log-Normal FALSE #> 6292 394 1.2875572 0.285500045 fv Gamma RP(P), Log-Normal FALSE #> 6308 395 0.9594942 0.212902410 fv Gamma RP(P), Log-Normal FALSE #> 6324 396 0.9535688 0.214993979 fv Gamma RP(P), Log-Normal FALSE #> 6340 397 1.1170706 0.239961536 fv Gamma RP(P), Log-Normal FALSE #> 6356 398 0.9337227 0.201800746 fv Gamma RP(P), Log-Normal FALSE #> 6372 399 0.7611877 0.165402284 fv Gamma RP(P), Log-Normal FALSE #> 6388 400 0.8163529 0.177586051 fv Gamma RP(P), Log-Normal FALSE #> 6404 401 1.1755879 0.260480234 fv Gamma RP(P), Log-Normal FALSE #> 6420 402 0.8926168 0.200255305 fv Gamma RP(P), Log-Normal FALSE #> 6436 403 0.8545840 0.183751295 fv Gamma RP(P), Log-Normal FALSE #> 6452 404 1.1315518 0.257023968 fv Gamma RP(P), Log-Normal FALSE #> 6468 405 0.7711867 0.164072761 fv Gamma RP(P), Log-Normal FALSE #> 6484 406 0.7394725 0.158175027 fv Gamma RP(P), Log-Normal FALSE #> 6500 407 1.0465095 0.229942406 fv Gamma RP(P), Log-Normal FALSE #> 6516 408 0.6300849 0.149381842 fv Gamma RP(P), Log-Normal FALSE #> 6532 409 1.2759445 0.275964040 fv Gamma RP(P), Log-Normal FALSE #> 6548 410 1.4092819 0.317311958 fv Gamma RP(P), Log-Normal FALSE #> 6564 411 1.0991484 0.254405935 fv Gamma RP(P), Log-Normal FALSE #> 6580 412 0.8267034 0.177108154 fv Gamma RP(P), Log-Normal FALSE #> 6596 413 0.9031192 0.199459030 fv Gamma RP(P), Log-Normal FALSE #> 6612 414 0.8929692 0.192911734 fv Gamma RP(P), Log-Normal FALSE #> 6628 415 1.1226055 0.241604742 fv Gamma RP(P), Log-Normal FALSE #> 6644 416 0.7277533 0.157426254 fv Gamma RP(P), Log-Normal FALSE #> 6660 417 0.9685098 0.210134619 fv Gamma RP(P), Log-Normal FALSE #> 6676 418 0.9593147 0.209686673 fv Gamma RP(P), Log-Normal FALSE #> 6692 419 0.8180942 0.182657405 fv Gamma RP(P), Log-Normal FALSE #> 6708 420 1.1163400 0.250241104 fv Gamma RP(P), Log-Normal FALSE #> 6724 421 1.0662506 0.230681634 fv Gamma RP(P), Log-Normal FALSE #> 6740 422 0.9590765 0.208021402 fv Gamma RP(P), Log-Normal FALSE #> 6756 423 1.0631685 0.230888818 fv Gamma RP(P), Log-Normal FALSE #> 6772 424 0.9657118 0.217152814 fv Gamma RP(P), Log-Normal FALSE #> 6788 425 0.7349995 0.162179797 fv Gamma RP(P), Log-Normal FALSE #> 6804 426 1.2825616 0.279074728 fv Gamma RP(P), Log-Normal FALSE #> 6820 427 0.5095550 0.112703591 fv Gamma RP(P), Log-Normal FALSE #> 6836 428 1.4523732 0.327933855 fv Gamma RP(P), Log-Normal FALSE #> 6852 429 0.7978037 0.173408480 fv Gamma RP(P), Log-Normal FALSE #> 6868 430 0.6875011 0.147810346 fv Gamma RP(P), Log-Normal FALSE #> 6884 431 1.1006941 0.238750756 fv Gamma RP(P), Log-Normal FALSE #> 6900 432 0.6748862 0.147308411 fv Gamma RP(P), Log-Normal FALSE #> 6916 433 1.1282877 0.250568935 fv Gamma RP(P), Log-Normal FALSE #> 6932 434 1.2431724 0.265520208 fv Gamma RP(P), Log-Normal FALSE #> 6948 435 0.8078352 0.172249398 fv Gamma RP(P), Log-Normal FALSE #> 6964 436 1.2539909 0.282120990 fv Gamma RP(P), Log-Normal FALSE #> 6980 437 0.8230815 0.177122345 fv Gamma RP(P), Log-Normal FALSE #> 6996 438 0.6367504 0.141576527 fv Gamma RP(P), Log-Normal FALSE #> 7012 439 0.9345544 0.208661903 fv Gamma RP(P), Log-Normal FALSE #> 7028 440 0.8145396 0.174404632 fv Gamma RP(P), Log-Normal FALSE #> 7044 441 0.4963037 0.107331468 fv Gamma RP(P), Log-Normal FALSE #> 7060 442 0.9945112 0.210487712 fv Gamma RP(P), Log-Normal FALSE #> 7076 443 0.6687881 0.151032821 fv Gamma RP(P), Log-Normal FALSE #> 7092 444 0.8057132 0.174622153 fv Gamma RP(P), Log-Normal FALSE #> 7108 445 1.2113594 0.278671053 fv Gamma RP(P), Log-Normal FALSE #> 7124 446 1.0112616 0.219825528 fv Gamma RP(P), Log-Normal FALSE #> 7140 447 0.9580334 0.208122592 fv Gamma RP(P), Log-Normal FALSE #> 7156 448 1.0480268 0.231358840 fv Gamma RP(P), Log-Normal FALSE #> 7172 449 1.1654833 0.250305711 fv Gamma RP(P), Log-Normal FALSE #> 7188 450 0.7747101 0.164631434 fv Gamma RP(P), Log-Normal FALSE #> 7204 451 1.0778703 0.233850216 fv Gamma RP(P), Log-Normal FALSE #> 7220 452 0.6532856 0.142936025 fv Gamma RP(P), Log-Normal FALSE #> 7236 453 1.0354556 0.220201966 fv Gamma RP(P), Log-Normal FALSE #> 7252 454 0.8410267 0.188393838 fv Gamma RP(P), Log-Normal FALSE #> 7268 455 1.0590126 0.231017540 fv Gamma RP(P), Log-Normal FALSE #> 7284 456 1.1002554 0.239040113 fv Gamma RP(P), Log-Normal FALSE #> 7300 457 1.1113213 0.242020836 fv Gamma RP(P), Log-Normal FALSE #> 7316 458 1.2737451 0.283902711 fv Gamma RP(P), Log-Normal FALSE #> 7332 459 0.8741005 0.192529765 fv Gamma RP(P), Log-Normal FALSE #> 7348 460 0.8343565 0.185513409 fv Gamma RP(P), Log-Normal FALSE #> 7364 461 1.0413598 0.229681208 fv Gamma RP(P), Log-Normal FALSE #> 7380 462 1.4058311 0.313874121 fv Gamma RP(P), Log-Normal FALSE #> 7396 463 0.7385880 0.157268096 fv Gamma RP(P), Log-Normal FALSE #> 7412 464 0.6749140 0.150334899 fv Gamma RP(P), Log-Normal FALSE #> 7428 465 0.9372626 0.202416087 fv Gamma RP(P), Log-Normal FALSE #> 7444 466 1.0819470 0.240560277 fv Gamma RP(P), Log-Normal FALSE #> 7460 467 1.2583393 0.280960356 fv Gamma RP(P), Log-Normal FALSE #> 7476 468 0.6603316 0.141287880 fv Gamma RP(P), Log-Normal FALSE #> 7492 469 1.0850180 0.243295647 fv Gamma RP(P), Log-Normal FALSE #> 7508 470 0.9881027 0.210406927 fv Gamma RP(P), Log-Normal FALSE #> 7524 471 0.7454241 0.160990011 fv Gamma RP(P), Log-Normal FALSE #> 7540 472 1.1745015 0.256706796 fv Gamma RP(P), Log-Normal FALSE #> 7556 473 0.7959574 0.170031541 fv Gamma RP(P), Log-Normal FALSE #> 7572 474 0.7918319 0.177803843 fv Gamma RP(P), Log-Normal FALSE #> 7588 475 1.6522706 0.375398426 fv Gamma RP(P), Log-Normal TRUE #> 7604 476 0.6916373 0.152453433 fv Gamma RP(P), Log-Normal FALSE #> 7620 477 1.2375353 0.268085782 fv Gamma RP(P), Log-Normal FALSE #> 7636 478 0.9740985 0.216425920 fv Gamma RP(P), Log-Normal FALSE #> 7652 479 1.2632676 0.276699164 fv Gamma RP(P), Log-Normal FALSE #> 7668 480 1.0387783 0.230531068 fv Gamma RP(P), Log-Normal FALSE #> 7684 481 0.9091348 0.201095913 fv Gamma RP(P), Log-Normal FALSE #> 7700 482 0.8691584 0.198334797 fv Gamma RP(P), Log-Normal FALSE #> 7716 483 0.9225715 0.209461889 fv Gamma RP(P), Log-Normal FALSE #> 7732 484 0.9439964 0.201865531 fv Gamma RP(P), Log-Normal FALSE #> 7748 485 1.0052738 0.218556409 fv Gamma RP(P), Log-Normal FALSE #> 7764 486 0.7260035 0.159970767 fv Gamma RP(P), Log-Normal FALSE #> 7780 487 1.1001328 0.238315614 fv Gamma RP(P), Log-Normal FALSE #> 7796 488 0.9538392 0.216822184 fv Gamma RP(P), Log-Normal FALSE #> 7812 489 1.2501391 0.282675830 fv Gamma RP(P), Log-Normal FALSE #> 7828 490 1.6236317 0.352529801 fv Gamma RP(P), Log-Normal TRUE #> 7844 491 0.8316296 0.178919604 fv Gamma RP(P), Log-Normal FALSE #> 7860 492 1.2586735 0.281277951 fv Gamma RP(P), Log-Normal FALSE #> 7876 493 1.1213778 0.258755786 fv Gamma RP(P), Log-Normal FALSE #> 7892 494 0.8594317 0.184538921 fv Gamma RP(P), Log-Normal FALSE #> 7908 495 0.9649592 0.211567053 fv Gamma RP(P), Log-Normal FALSE #> 7924 496 0.6773521 0.150596337 fv Gamma RP(P), Log-Normal FALSE #> 7940 497 0.9052519 0.196094400 fv Gamma RP(P), Log-Normal FALSE #> 7956 498 0.8116850 0.178283650 fv Gamma RP(P), Log-Normal FALSE #> 7972 499 1.1086720 0.241326577 fv Gamma RP(P), Log-Normal FALSE #> 7988 500 1.2773651 0.281428323 fv Gamma RP(P), Log-Normal FALSE #> 8004 501 0.8676161 0.186252713 fv Gamma RP(P), Log-Normal FALSE #> 8020 502 1.0407176 0.226742031 fv Gamma RP(P), Log-Normal FALSE #> 8036 503 0.7548621 0.161416065 fv Gamma RP(P), Log-Normal FALSE #> 8052 504 1.2077979 0.258824089 fv Gamma RP(P), Log-Normal FALSE #> 8068 505 1.4398156 0.321294471 fv Gamma RP(P), Log-Normal FALSE #> 8084 506 0.8624584 0.186157457 fv Gamma RP(P), Log-Normal FALSE #> 8100 507 0.6802796 0.145481059 fv Gamma RP(P), Log-Normal FALSE #> 8116 508 0.8342436 0.181087868 fv Gamma RP(P), Log-Normal FALSE #> 8132 509 0.8612357 0.185773025 fv Gamma RP(P), Log-Normal FALSE #> 8148 510 1.0875058 0.231453325 fv Gamma RP(P), Log-Normal FALSE #> 8164 511 0.9780855 0.214288070 fv Gamma RP(P), Log-Normal FALSE #> 8180 512 0.9185424 0.195605141 fv Gamma RP(P), Log-Normal FALSE #> 8196 513 0.7742017 0.169231006 fv Gamma RP(P), Log-Normal FALSE #> 8212 514 0.9812394 0.218050507 fv Gamma RP(P), Log-Normal FALSE #> 8228 515 0.8492711 0.186072576 fv Gamma RP(P), Log-Normal FALSE #> 8244 516 1.0440155 0.231448528 fv Gamma RP(P), Log-Normal FALSE #> 8260 517 1.1390878 0.249921695 fv Gamma RP(P), Log-Normal FALSE #> 8276 518 1.2314535 0.263976453 fv Gamma RP(P), Log-Normal FALSE #> 8292 519 0.8741643 0.188132491 fv Gamma RP(P), Log-Normal FALSE #> 8308 520 0.7946016 0.172820195 fv Gamma RP(P), Log-Normal FALSE #> 8324 521 0.7155341 0.154658107 fv Gamma RP(P), Log-Normal FALSE #> 8340 522 0.6586910 0.142144906 fv Gamma RP(P), Log-Normal FALSE #> 8356 523 0.9070928 0.201961629 fv Gamma RP(P), Log-Normal FALSE #> 8372 524 0.7949849 0.175434365 fv Gamma RP(P), Log-Normal FALSE #> 8388 525 1.3355748 0.288021411 fv Gamma RP(P), Log-Normal FALSE #> 8404 526 1.1111854 0.243883438 fv Gamma RP(P), Log-Normal FALSE #> 8420 527 0.9980110 0.225250690 fv Gamma RP(P), Log-Normal FALSE #> 8436 528 0.7536701 0.165035815 fv Gamma RP(P), Log-Normal FALSE #> 8452 529 1.2088138 0.264226878 fv Gamma RP(P), Log-Normal FALSE #> 8468 530 1.3388039 0.295083388 fv Gamma RP(P), Log-Normal FALSE #> 8484 531 1.0765928 0.230423607 fv Gamma RP(P), Log-Normal FALSE #> 8500 532 1.1797360 0.260368744 fv Gamma RP(P), Log-Normal FALSE #> 8516 533 0.9477534 0.207558206 fv Gamma RP(P), Log-Normal FALSE #> 8532 534 1.0563309 0.227002868 fv Gamma RP(P), Log-Normal FALSE #> 8548 535 1.4357549 0.313963101 fv Gamma RP(P), Log-Normal FALSE #> 8564 536 1.0051141 0.212301508 fv Gamma RP(P), Log-Normal FALSE #> 8580 537 0.9940413 0.229846666 fv Gamma RP(P), Log-Normal FALSE #> 8596 538 0.7485919 0.163118834 fv Gamma RP(P), Log-Normal FALSE #> 8612 539 1.2009352 0.262424788 fv Gamma RP(P), Log-Normal FALSE #> 8628 540 1.0656493 0.243252483 fv Gamma RP(P), Log-Normal FALSE #> 8644 541 0.7818527 0.171862648 fv Gamma RP(P), Log-Normal FALSE #> 8660 542 1.0476007 0.225722387 fv Gamma RP(P), Log-Normal FALSE #> 8676 543 1.1371033 0.243339241 fv Gamma RP(P), Log-Normal FALSE #> 8692 544 1.0773876 0.231123459 fv Gamma RP(P), Log-Normal FALSE #> 8708 545 0.9565211 0.212700204 fv Gamma RP(P), Log-Normal FALSE #> 8724 546 0.7647347 0.163566244 fv Gamma RP(P), Log-Normal FALSE #> 8740 547 0.8206825 0.176359832 fv Gamma RP(P), Log-Normal FALSE #> 8756 548 0.8505963 0.192550911 fv Gamma RP(P), Log-Normal FALSE #> 8772 549 1.0358106 0.229635225 fv Gamma RP(P), Log-Normal FALSE #> 8788 550 1.3523884 0.318258072 fv Gamma RP(P), Log-Normal FALSE #> 8804 551 0.9140688 0.197916220 fv Gamma RP(P), Log-Normal FALSE #> 8820 552 0.7505092 0.167863310 fv Gamma RP(P), Log-Normal FALSE #> 8836 553 0.7462582 0.163755065 fv Gamma RP(P), Log-Normal FALSE #> 8852 554 0.9503633 0.210343956 fv Gamma RP(P), Log-Normal FALSE #> 8868 555 0.6745831 0.145777323 fv Gamma RP(P), Log-Normal FALSE #> 8884 556 0.6796815 0.149173569 fv Gamma RP(P), Log-Normal FALSE #> 8900 557 1.7294668 0.385290497 fv Gamma RP(P), Log-Normal TRUE #> 8916 558 1.0353587 0.226097195 fv Gamma RP(P), Log-Normal FALSE #> 8932 559 0.8016693 0.181657786 fv Gamma RP(P), Log-Normal FALSE #> 8948 560 0.9729378 0.214345554 fv Gamma RP(P), Log-Normal FALSE #> 8964 561 1.0321929 0.223653751 fv Gamma RP(P), Log-Normal FALSE #> 8980 562 0.5768487 0.127198483 fv Gamma RP(P), Log-Normal FALSE #> 8996 563 1.0433632 0.228621090 fv Gamma RP(P), Log-Normal FALSE #> 9012 564 1.0641236 0.228678050 fv Gamma RP(P), Log-Normal FALSE #> 9028 565 1.1732304 0.270298444 fv Gamma RP(P), Log-Normal FALSE #> 9044 566 1.2237949 0.268476490 fv Gamma RP(P), Log-Normal FALSE #> 9060 567 0.9843680 0.216254289 fv Gamma RP(P), Log-Normal FALSE #> 9076 568 1.0225418 0.226931553 fv Gamma RP(P), Log-Normal FALSE #> 9092 569 0.9425398 0.212381043 fv Gamma RP(P), Log-Normal FALSE #> 9108 570 0.9305842 0.201175459 fv Gamma RP(P), Log-Normal FALSE #> 9124 571 0.9345155 0.201116344 fv Gamma RP(P), Log-Normal FALSE #> 9140 572 1.1021244 0.234409464 fv Gamma RP(P), Log-Normal FALSE #> 9156 573 0.6234484 0.137000395 fv Gamma RP(P), Log-Normal FALSE #> 9172 574 1.1480059 0.255124057 fv Gamma RP(P), Log-Normal FALSE #> 9188 575 0.9620612 0.211148150 fv Gamma RP(P), Log-Normal FALSE #> 9204 576 1.0678341 0.238868687 fv Gamma RP(P), Log-Normal FALSE #> 9220 577 0.9150045 0.204456329 fv Gamma RP(P), Log-Normal FALSE #> 9236 578 0.9233870 0.200603592 fv Gamma RP(P), Log-Normal FALSE #> 9252 579 0.7994219 0.174027563 fv Gamma RP(P), Log-Normal FALSE #> 9268 580 0.8585172 0.187898896 fv Gamma RP(P), Log-Normal FALSE #> 9284 581 1.1376346 0.243722038 fv Gamma RP(P), Log-Normal FALSE #> 9300 582 0.5331588 0.116180181 fv Gamma RP(P), Log-Normal FALSE #> 9316 583 1.2227234 0.266819438 fv Gamma RP(P), Log-Normal FALSE #> 9332 584 0.7424917 0.162892931 fv Gamma RP(P), Log-Normal FALSE #> 9348 585 1.4718067 0.317670941 fv Gamma RP(P), Log-Normal FALSE #> 9364 586 1.3376029 0.285083541 fv Gamma RP(P), Log-Normal FALSE #> 9380 587 1.0466999 0.227298927 fv Gamma RP(P), Log-Normal FALSE #> 9396 588 1.0628152 0.236226350 fv Gamma RP(P), Log-Normal FALSE #> 9412 589 0.7456047 0.162916840 fv Gamma RP(P), Log-Normal FALSE #> 9428 590 0.8908216 0.194809140 fv Gamma RP(P), Log-Normal FALSE #> 9444 591 0.9844521 0.217603161 fv Gamma RP(P), Log-Normal FALSE #> 9460 592 1.2872132 0.280054795 fv Gamma RP(P), Log-Normal FALSE #> 9476 593 0.9145775 0.207193045 fv Gamma RP(P), Log-Normal FALSE #> 9492 594 0.9446292 0.210280528 fv Gamma RP(P), Log-Normal FALSE #> 9508 595 0.8683941 0.185769779 fv Gamma RP(P), Log-Normal FALSE #> 9524 596 1.2043136 0.260901489 fv Gamma RP(P), Log-Normal FALSE #> 9540 597 1.2713689 0.283428607 fv Gamma RP(P), Log-Normal FALSE #> 9556 598 1.0191519 0.221381269 fv Gamma RP(P), Log-Normal FALSE #> 9572 599 1.5192954 0.325918384 fv Gamma RP(P), Log-Normal FALSE #> 9588 600 1.3131604 0.281586578 fv Gamma RP(P), Log-Normal FALSE #> 9604 601 0.9717941 0.212607335 fv Gamma RP(P), Log-Normal FALSE #> 9620 602 1.1056106 0.248359854 fv Gamma RP(P), Log-Normal FALSE #> 9636 603 0.9020656 0.196090741 fv Gamma RP(P), Log-Normal FALSE #> 9652 604 1.2529459 0.293640836 fv Gamma RP(P), Log-Normal FALSE #> 9668 605 1.2259883 0.274240763 fv Gamma RP(P), Log-Normal FALSE #> 9684 606 1.0511216 0.228404129 fv Gamma RP(P), Log-Normal FALSE #> 9700 607 0.8190508 0.180281936 fv Gamma RP(P), Log-Normal FALSE #> 9716 608 1.0311424 0.221802458 fv Gamma RP(P), Log-Normal FALSE #> 9732 609 1.3455592 0.295910286 fv Gamma RP(P), Log-Normal FALSE #> 9748 610 1.1642916 0.254371166 fv Gamma RP(P), Log-Normal FALSE #> 9764 611 0.8758176 0.192522572 fv Gamma RP(P), Log-Normal FALSE #> 9780 612 1.2516100 0.272167401 fv Gamma RP(P), Log-Normal FALSE #> 9796 613 0.9097464 0.194713999 fv Gamma RP(P), Log-Normal FALSE #> 9812 614 0.8241780 0.176682356 fv Gamma RP(P), Log-Normal FALSE #> 9828 615 0.7807667 0.169402047 fv Gamma RP(P), Log-Normal FALSE #> 9844 616 1.3256338 0.290042297 fv Gamma RP(P), Log-Normal FALSE #> 9860 617 1.3554468 0.302421137 fv Gamma RP(P), Log-Normal FALSE #> 9876 618 0.7059805 0.153032728 fv Gamma RP(P), Log-Normal FALSE #> 9892 619 0.7640548 0.164327342 fv Gamma RP(P), Log-Normal FALSE #> 9908 620 0.9324604 0.205897957 fv Gamma RP(P), Log-Normal FALSE #> 9924 621 1.0897527 0.237414370 fv Gamma RP(P), Log-Normal FALSE #> 9940 622 1.6936806 0.371698035 fv Gamma RP(P), Log-Normal TRUE #> 9956 623 0.6527658 0.139972359 fv Gamma RP(P), Log-Normal FALSE #> 9972 624 0.9466176 0.203085311 fv Gamma RP(P), Log-Normal FALSE #> 9988 625 0.9681196 0.214775219 fv Gamma RP(P), Log-Normal FALSE #> 10004 626 0.6523744 0.142834891 fv Gamma RP(P), Log-Normal FALSE #> 10020 627 0.8021879 0.184418783 fv Gamma RP(P), Log-Normal FALSE #> 10036 628 0.9225400 0.197465937 fv Gamma RP(P), Log-Normal FALSE #> 10052 629 0.7501559 0.167348318 fv Gamma RP(P), Log-Normal FALSE #> 10068 630 1.0706745 0.227798971 fv Gamma RP(P), Log-Normal FALSE #> 10084 631 1.2827158 0.297285469 fv Gamma RP(P), Log-Normal FALSE #> 10100 632 0.6876342 0.149439809 fv Gamma RP(P), Log-Normal FALSE #> 10116 633 0.7028224 0.154619674 fv Gamma RP(P), Log-Normal FALSE #> 10132 634 0.7042120 0.153299268 fv Gamma RP(P), Log-Normal FALSE #> 10148 635 0.5541380 0.122244773 fv Gamma RP(P), Log-Normal FALSE #> 10164 636 0.8544896 0.190728571 fv Gamma RP(P), Log-Normal FALSE #> 10180 637 0.9603207 0.207191756 fv Gamma RP(P), Log-Normal FALSE #> 10196 638 0.7983102 0.182031114 fv Gamma RP(P), Log-Normal FALSE #> 10212 639 0.8838410 0.190983119 fv Gamma RP(P), Log-Normal FALSE #> 10228 640 0.6961483 0.152110407 fv Gamma RP(P), Log-Normal FALSE #> 10244 641 0.8369696 0.179150999 fv Gamma RP(P), Log-Normal FALSE #> 10260 642 0.9306106 0.205637032 fv Gamma RP(P), Log-Normal FALSE #> 10276 643 0.8113072 0.177171734 fv Gamma RP(P), Log-Normal FALSE #> 10292 644 1.3693170 0.317286312 fv Gamma RP(P), Log-Normal FALSE #> 10308 645 0.6575557 0.143623229 fv Gamma RP(P), Log-Normal FALSE #> 10324 646 0.7264648 0.160017681 fv Gamma RP(P), Log-Normal FALSE #> 10340 647 1.8140427 0.405472844 fv Gamma RP(P), Log-Normal TRUE #> 10356 648 0.9039734 0.192803400 fv Gamma RP(P), Log-Normal FALSE #> 10372 649 1.1307165 0.245793699 fv Gamma RP(P), Log-Normal FALSE #> 10388 650 1.3697853 0.300532613 fv Gamma RP(P), Log-Normal FALSE #> 10404 651 1.3913723 0.303438110 fv Gamma RP(P), Log-Normal FALSE #> 10420 652 0.9976010 0.218156662 fv Gamma RP(P), Log-Normal FALSE #> 10436 653 1.3997037 0.316519464 fv Gamma RP(P), Log-Normal FALSE #> 10452 654 0.7512885 0.164131512 fv Gamma RP(P), Log-Normal FALSE #> 10468 655 0.8184646 0.175458083 fv Gamma RP(P), Log-Normal FALSE #> 10484 656 0.9856965 0.213573425 fv Gamma RP(P), Log-Normal FALSE #> 10500 657 0.9542220 0.209937231 fv Gamma RP(P), Log-Normal FALSE #> 10516 658 1.0526322 0.230309237 fv Gamma RP(P), Log-Normal FALSE #> 10532 659 1.1040578 0.242269392 fv Gamma RP(P), Log-Normal FALSE #> 10548 660 1.1274148 0.257234161 fv Gamma RP(P), Log-Normal FALSE #> 10564 661 0.8272565 0.181590492 fv Gamma RP(P), Log-Normal FALSE #> 10580 662 0.5442579 0.118095785 fv Gamma RP(P), Log-Normal FALSE #> 10596 663 0.7790189 0.168677889 fv Gamma RP(P), Log-Normal FALSE #> 10612 664 0.9338401 0.199297546 fv Gamma RP(P), Log-Normal FALSE #> 10628 665 0.9666500 0.213744208 fv Gamma RP(P), Log-Normal FALSE #> 10644 666 0.9744446 0.220001257 fv Gamma RP(P), Log-Normal FALSE #> 10660 667 1.1828443 0.261467314 fv Gamma RP(P), Log-Normal FALSE #> 10676 668 1.2192520 0.274526839 fv Gamma RP(P), Log-Normal FALSE #> 10692 669 0.7113574 0.156924713 fv Gamma RP(P), Log-Normal FALSE #> 10708 670 1.1756310 0.262566467 fv Gamma RP(P), Log-Normal FALSE #> 10724 671 1.2383003 0.270216646 fv Gamma RP(P), Log-Normal FALSE #> 10740 672 0.7815664 0.169986858 fv Gamma RP(P), Log-Normal FALSE #> 10756 673 0.8229793 0.176870677 fv Gamma RP(P), Log-Normal FALSE #> 10772 674 1.3774475 0.311832718 fv Gamma RP(P), Log-Normal FALSE #> 10788 675 0.9621601 0.207902235 fv Gamma RP(P), Log-Normal FALSE #> 10804 676 0.6528028 0.150614959 fv Gamma RP(P), Log-Normal FALSE #> 10820 677 0.8233554 0.177246238 fv Gamma RP(P), Log-Normal FALSE #> 10836 678 1.1489514 0.253442670 fv Gamma RP(P), Log-Normal FALSE #> 10852 679 1.4208344 0.311543201 fv Gamma RP(P), Log-Normal FALSE #> 10868 680 1.0054416 0.232372166 fv Gamma RP(P), Log-Normal FALSE #> 10884 681 0.7391488 0.162759723 fv Gamma RP(P), Log-Normal FALSE #> 10900 682 0.9652976 0.207135311 fv Gamma RP(P), Log-Normal FALSE #> 10916 683 1.1870484 0.264442808 fv Gamma RP(P), Log-Normal FALSE #> 10932 684 1.2401849 0.268198690 fv Gamma RP(P), Log-Normal FALSE #> 10948 685 0.8596652 0.187197015 fv Gamma RP(P), Log-Normal FALSE #> 10964 686 0.6571789 0.143054753 fv Gamma RP(P), Log-Normal FALSE #> 10980 687 1.3996390 0.301433070 fv Gamma RP(P), Log-Normal FALSE #> 10996 688 0.9489165 0.205546007 fv Gamma RP(P), Log-Normal FALSE #> 11012 689 0.8114256 0.172547414 fv Gamma RP(P), Log-Normal FALSE #> 11028 690 1.2437062 0.265491213 fv Gamma RP(P), Log-Normal FALSE #> 11044 691 1.0092470 0.219771733 fv Gamma RP(P), Log-Normal FALSE #> 11060 692 0.9598097 0.205613691 fv Gamma RP(P), Log-Normal FALSE #> 11076 693 1.3113167 0.296323950 fv Gamma RP(P), Log-Normal FALSE #> 11092 694 1.0933889 0.242376514 fv Gamma RP(P), Log-Normal FALSE #> 11108 695 1.0333338 0.234007271 fv Gamma RP(P), Log-Normal FALSE #> 11124 696 1.0102497 0.229737838 fv Gamma RP(P), Log-Normal FALSE #> 11140 697 1.0358479 0.225442770 fv Gamma RP(P), Log-Normal FALSE #> 11156 698 1.0073535 0.220756703 fv Gamma RP(P), Log-Normal FALSE #> 11172 699 0.9466231 0.201809941 fv Gamma RP(P), Log-Normal FALSE #> 11188 700 1.6203374 0.346406720 fv Gamma RP(P), Log-Normal TRUE #> 11204 701 0.8178477 0.176518370 fv Gamma RP(P), Log-Normal FALSE #> 11220 702 0.8281316 0.185009839 fv Gamma RP(P), Log-Normal FALSE #> 11236 703 0.7131766 0.156512821 fv Gamma RP(P), Log-Normal FALSE #> 11252 704 1.2908383 0.275089666 fv Gamma RP(P), Log-Normal FALSE #> 11268 705 1.4435519 0.314942107 fv Gamma RP(P), Log-Normal FALSE #> 11284 706 1.0319566 0.223149598 fv Gamma RP(P), Log-Normal FALSE #> 11300 707 0.7611768 0.169895358 fv Gamma RP(P), Log-Normal FALSE #> 11316 708 1.1576638 0.261635419 fv Gamma RP(P), Log-Normal FALSE #> 11332 709 0.9334649 0.200133791 fv Gamma RP(P), Log-Normal FALSE #> 11348 710 0.9774021 0.208540201 fv Gamma RP(P), Log-Normal FALSE #> 11364 711 0.4418561 0.097246388 fv Gamma RP(P), Log-Normal FALSE #> 11380 712 0.9598169 0.208774489 fv Gamma RP(P), Log-Normal FALSE #> 11396 713 1.0013023 0.213927288 fv Gamma RP(P), Log-Normal FALSE #> 11412 714 1.2931185 0.294648103 fv Gamma RP(P), Log-Normal FALSE #> 11428 715 1.3871912 0.304898248 fv Gamma RP(P), Log-Normal FALSE #> 11444 716 1.0762644 0.237239678 fv Gamma RP(P), Log-Normal FALSE #> 11460 717 0.8472068 0.196043062 fv Gamma RP(P), Log-Normal FALSE #> 11476 718 1.0140154 0.225564166 fv Gamma RP(P), Log-Normal FALSE #> 11492 719 0.7918815 0.168968345 fv Gamma RP(P), Log-Normal FALSE #> 11508 720 0.8275318 0.180171933 fv Gamma RP(P), Log-Normal FALSE #> 11524 721 1.0706093 0.233121948 fv Gamma RP(P), Log-Normal FALSE #> 11540 722 1.2852624 0.283010838 fv Gamma RP(P), Log-Normal FALSE #> 11556 723 1.0671711 0.239730437 fv Gamma RP(P), Log-Normal FALSE #> 11572 724 0.7945824 0.172668400 fv Gamma RP(P), Log-Normal FALSE #> 11588 725 0.8761793 0.190162437 fv Gamma RP(P), Log-Normal FALSE #> 11604 726 0.7683224 0.169454349 fv Gamma RP(P), Log-Normal FALSE #> 11620 727 1.1401463 0.252371583 fv Gamma RP(P), Log-Normal FALSE #> 11636 728 0.6869455 0.156140309 fv Gamma RP(P), Log-Normal FALSE #> 11652 729 1.0045609 0.214384308 fv Gamma RP(P), Log-Normal FALSE #> 11668 730 1.3739350 0.314933136 fv Gamma RP(P), Log-Normal FALSE #> 11684 731 1.4105734 0.312439279 fv Gamma RP(P), Log-Normal FALSE #> 11700 732 1.2408039 0.265123430 fv Gamma RP(P), Log-Normal FALSE #> 11716 733 0.7434313 0.162871630 fv Gamma RP(P), Log-Normal FALSE #> 11732 734 0.7670277 0.169974871 fv Gamma RP(P), Log-Normal FALSE #> 11748 735 1.1391446 0.249095776 fv Gamma RP(P), Log-Normal FALSE #> 11764 736 1.0869389 0.241739791 fv Gamma RP(P), Log-Normal FALSE #> 11780 737 0.9900843 0.215836490 fv Gamma RP(P), Log-Normal FALSE #> 11796 738 0.8400574 0.198380530 fv Gamma RP(P), Log-Normal FALSE #> 11812 739 0.9098679 0.198083628 fv Gamma RP(P), Log-Normal FALSE #> 11828 740 0.8715673 0.188184780 fv Gamma RP(P), Log-Normal FALSE #> 11844 741 1.0522008 0.231884466 fv Gamma RP(P), Log-Normal FALSE #> 11860 742 0.7308650 0.157131775 fv Gamma RP(P), Log-Normal FALSE #> 11876 743 1.0840980 0.236451512 fv Gamma RP(P), Log-Normal FALSE #> 11892 744 1.4346874 0.319759809 fv Gamma RP(P), Log-Normal FALSE #> 11908 745 0.8684263 0.196492889 fv Gamma RP(P), Log-Normal FALSE #> 11924 746 0.5042351 0.108711465 fv Gamma RP(P), Log-Normal FALSE #> 11940 747 0.8521053 0.186267508 fv Gamma RP(P), Log-Normal FALSE #> 11956 748 1.0776501 0.229694112 fv Gamma RP(P), Log-Normal FALSE #> 11972 749 0.8956342 0.198659923 fv Gamma RP(P), Log-Normal FALSE #> 11988 750 0.6991894 0.151825792 fv Gamma RP(P), Log-Normal FALSE #> 12004 751 1.1707087 0.250296870 fv Gamma RP(P), Log-Normal FALSE #> 12020 752 1.0602200 0.230669899 fv Gamma RP(P), Log-Normal FALSE #> 12036 753 0.7372900 0.163529975 fv Gamma RP(P), Log-Normal FALSE #> 12052 754 1.0951085 0.238851460 fv Gamma RP(P), Log-Normal FALSE #> 12068 755 0.9993447 0.215552225 fv Gamma RP(P), Log-Normal FALSE #> 12084 756 1.5740582 0.337943971 fv Gamma RP(P), Log-Normal FALSE #> 12100 757 0.7728525 0.169474840 fv Gamma RP(P), Log-Normal FALSE #> 12116 758 0.6452476 0.140301410 fv Gamma RP(P), Log-Normal FALSE #> 12132 759 0.7901227 0.171488061 fv Gamma RP(P), Log-Normal FALSE #> 12148 760 0.7639433 0.164920427 fv Gamma RP(P), Log-Normal FALSE #> 12164 761 1.0515490 0.232290105 fv Gamma RP(P), Log-Normal FALSE #> 12180 762 0.8354865 0.180633162 fv Gamma RP(P), Log-Normal FALSE #> 12196 763 0.7587626 0.164916919 fv Gamma RP(P), Log-Normal FALSE #> 12212 764 0.9886533 0.219427415 fv Gamma RP(P), Log-Normal FALSE #> 12228 765 0.7802736 0.170307432 fv Gamma RP(P), Log-Normal FALSE #> 12244 766 0.6561777 0.142009060 fv Gamma RP(P), Log-Normal FALSE #> 12260 767 0.9769743 0.213573667 fv Gamma RP(P), Log-Normal FALSE #> 12276 768 1.0293469 0.224440289 fv Gamma RP(P), Log-Normal FALSE #> 12292 769 1.0177818 0.217646319 fv Gamma RP(P), Log-Normal FALSE #> 12308 770 0.7562416 0.168946252 fv Gamma RP(P), Log-Normal FALSE #> 12324 771 0.6463465 0.139187794 fv Gamma RP(P), Log-Normal FALSE #> 12340 772 1.1961842 0.271932662 fv Gamma RP(P), Log-Normal FALSE #> 12356 773 0.8067420 0.176962096 fv Gamma RP(P), Log-Normal FALSE #> 12372 774 0.9520088 0.205128560 fv Gamma RP(P), Log-Normal FALSE #> 12388 775 1.4347408 0.319703347 fv Gamma RP(P), Log-Normal FALSE #> 12404 776 0.9481417 0.202311942 fv Gamma RP(P), Log-Normal FALSE #> 12420 777 0.8016802 0.175031737 fv Gamma RP(P), Log-Normal FALSE #> 12436 778 1.1275293 0.249908367 fv Gamma RP(P), Log-Normal FALSE #> 12452 779 1.1870282 0.261537316 fv Gamma RP(P), Log-Normal FALSE #> 12468 780 1.1268945 0.249877221 fv Gamma RP(P), Log-Normal FALSE #> 12484 781 0.8099723 0.181662555 fv Gamma RP(P), Log-Normal FALSE #> 12500 782 0.9387734 0.218754552 fv Gamma RP(P), Log-Normal FALSE #> 12516 783 0.9578883 0.204613312 fv Gamma RP(P), Log-Normal FALSE #> 12532 784 0.8156845 0.174404492 fv Gamma RP(P), Log-Normal FALSE #> 12548 785 0.8247289 0.177841946 fv Gamma RP(P), Log-Normal FALSE #> 12564 786 1.0226574 0.217558799 fv Gamma RP(P), Log-Normal FALSE #> 12580 787 1.2335064 0.284150031 fv Gamma RP(P), Log-Normal FALSE #> 12596 788 1.0013196 0.221958849 fv Gamma RP(P), Log-Normal FALSE #> 12612 789 1.0288684 0.227267275 fv Gamma RP(P), Log-Normal FALSE #> 12628 790 1.3948807 0.318147375 fv Gamma RP(P), Log-Normal FALSE #> 12644 791 1.2962548 0.289253927 fv Gamma RP(P), Log-Normal FALSE #> 12660 792 1.3337738 0.290805393 fv Gamma RP(P), Log-Normal FALSE #> 12676 793 0.8720682 0.188928270 fv Gamma RP(P), Log-Normal FALSE #> 12692 794 0.4682845 0.102407124 fv Gamma RP(P), Log-Normal FALSE #> 12708 795 0.9519556 0.210182873 fv Gamma RP(P), Log-Normal FALSE #> 12724 796 1.0864968 0.238092719 fv Gamma RP(P), Log-Normal FALSE #> 12740 797 0.7159644 0.155862128 fv Gamma RP(P), Log-Normal FALSE #> 12756 798 0.7497156 0.165610200 fv Gamma RP(P), Log-Normal FALSE #> 12772 799 1.4945789 0.345846891 fv Gamma RP(P), Log-Normal FALSE #> 12788 800 1.2630625 0.274880885 fv Gamma RP(P), Log-Normal FALSE #> 12804 801 0.7800030 0.172871017 fv Gamma RP(P), Log-Normal FALSE #> 12820 802 0.8108326 0.174897662 fv Gamma RP(P), Log-Normal FALSE #> 12836 803 0.9512588 0.202956493 fv Gamma RP(P), Log-Normal FALSE #> 12852 804 1.0362523 0.225794955 fv Gamma RP(P), Log-Normal FALSE #> 12868 805 0.9811922 0.212636632 fv Gamma RP(P), Log-Normal FALSE #> 12884 806 0.7326683 0.158761559 fv Gamma RP(P), Log-Normal FALSE #> 12900 807 1.2740750 0.276544259 fv Gamma RP(P), Log-Normal FALSE #> 12916 808 0.9781884 0.222359075 fv Gamma RP(P), Log-Normal FALSE #> 12932 809 1.3453651 0.309478390 fv Gamma RP(P), Log-Normal FALSE #> 12948 810 0.9232016 0.196664367 fv Gamma RP(P), Log-Normal FALSE #> 12964 811 1.3197955 0.283396132 fv Gamma RP(P), Log-Normal FALSE #> 12980 812 0.8368495 0.182262628 fv Gamma RP(P), Log-Normal FALSE #> 12996 813 1.1692435 0.253391788 fv Gamma RP(P), Log-Normal FALSE #> 13012 814 0.9869950 0.215275425 fv Gamma RP(P), Log-Normal FALSE #> 13028 815 1.4267797 0.314102008 fv Gamma RP(P), Log-Normal FALSE #> 13044 816 0.7096351 0.156897106 fv Gamma RP(P), Log-Normal FALSE #> 13060 817 1.2207826 0.279563602 fv Gamma RP(P), Log-Normal FALSE #> 13076 818 0.8781833 0.195168438 fv Gamma RP(P), Log-Normal FALSE #> 13092 819 1.3528171 0.307115701 fv Gamma RP(P), Log-Normal FALSE #> 13108 820 0.8750937 0.190140123 fv Gamma RP(P), Log-Normal FALSE #> 13124 821 1.0024784 0.225742050 fv Gamma RP(P), Log-Normal FALSE #> 13140 822 0.6059361 0.130452065 fv Gamma RP(P), Log-Normal FALSE #> 13156 823 1.0219096 0.227328071 fv Gamma RP(P), Log-Normal FALSE #> 13172 824 0.9918559 0.217538890 fv Gamma RP(P), Log-Normal FALSE #> 13188 825 0.6366212 0.136266805 fv Gamma RP(P), Log-Normal FALSE #> 13204 826 0.9444450 0.201370921 fv Gamma RP(P), Log-Normal FALSE #> 13220 827 0.9275230 0.201228122 fv Gamma RP(P), Log-Normal FALSE #> 13236 828 1.4648905 0.331911086 fv Gamma RP(P), Log-Normal FALSE #> 13252 829 0.7088462 0.152408167 fv Gamma RP(P), Log-Normal FALSE #> 13268 830 1.2836749 0.282634446 fv Gamma RP(P), Log-Normal FALSE #> 13284 831 0.7178710 0.163143070 fv Gamma RP(P), Log-Normal FALSE #> 13300 832 0.8691501 0.185987043 fv Gamma RP(P), Log-Normal FALSE #> 13316 833 0.9918025 0.216794384 fv Gamma RP(P), Log-Normal FALSE #> 13332 834 0.6561897 0.145029001 fv Gamma RP(P), Log-Normal FALSE #> 13348 835 0.9531690 0.206507185 fv Gamma RP(P), Log-Normal FALSE #> 13364 836 0.9457929 0.208627065 fv Gamma RP(P), Log-Normal FALSE #> 13380 837 0.9604259 0.214827897 fv Gamma RP(P), Log-Normal FALSE #> 13396 838 1.2231002 0.262948896 fv Gamma RP(P), Log-Normal FALSE #> 13412 839 0.7639873 0.164814888 fv Gamma RP(P), Log-Normal FALSE #> 13428 840 1.0584085 0.233394444 fv Gamma RP(P), Log-Normal FALSE #> 13444 841 0.9060566 0.191644127 fv Gamma RP(P), Log-Normal FALSE #> 13460 842 0.9981854 0.222833868 fv Gamma RP(P), Log-Normal FALSE #> 13476 843 1.3271882 0.294385787 fv Gamma RP(P), Log-Normal FALSE #> 13492 844 1.0083776 0.222785765 fv Gamma RP(P), Log-Normal FALSE #> 13508 845 1.4067028 0.311118514 fv Gamma RP(P), Log-Normal FALSE #> 13524 846 0.8457063 0.189664761 fv Gamma RP(P), Log-Normal FALSE #> 13540 847 0.8266072 0.185765621 fv Gamma RP(P), Log-Normal FALSE #> 13556 848 0.5911078 0.127933794 fv Gamma RP(P), Log-Normal FALSE #> 13572 849 0.9435684 0.200827455 fv Gamma RP(P), Log-Normal FALSE #> 13588 850 0.8421106 0.180835192 fv Gamma RP(P), Log-Normal FALSE #> 13604 851 0.9838631 0.215975837 fv Gamma RP(P), Log-Normal FALSE #> 13620 852 0.5626470 0.122791446 fv Gamma RP(P), Log-Normal FALSE #> 13636 853 0.9664855 0.207250226 fv Gamma RP(P), Log-Normal FALSE #> 13652 854 0.7210802 0.158669568 fv Gamma RP(P), Log-Normal FALSE #> 13668 855 1.2549558 0.273909144 fv Gamma RP(P), Log-Normal FALSE #> 13684 856 1.0890084 0.235216876 fv Gamma RP(P), Log-Normal FALSE #> 13700 857 0.7349918 0.162187111 fv Gamma RP(P), Log-Normal FALSE #> 13716 858 0.8738882 0.193200988 fv Gamma RP(P), Log-Normal FALSE #> 13732 859 0.8725583 0.195344571 fv Gamma RP(P), Log-Normal FALSE #> 13748 860 0.7565733 0.161739089 fv Gamma RP(P), Log-Normal FALSE #> 13764 861 1.1321227 0.246524283 fv Gamma RP(P), Log-Normal FALSE #> 13780 862 0.8393021 0.180926336 fv Gamma RP(P), Log-Normal FALSE #> 13796 863 1.0161557 0.222141368 fv Gamma RP(P), Log-Normal FALSE #> 13812 864 0.9572296 0.210418635 fv Gamma RP(P), Log-Normal FALSE #> 13828 865 1.0152870 0.222102537 fv Gamma RP(P), Log-Normal FALSE #> 13844 866 0.7984746 0.170205293 fv Gamma RP(P), Log-Normal FALSE #> 13860 867 0.9096029 0.196759398 fv Gamma RP(P), Log-Normal FALSE #> 13876 868 0.9705552 0.210115673 fv Gamma RP(P), Log-Normal FALSE #> 13892 869 1.0294965 0.226495818 fv Gamma RP(P), Log-Normal FALSE #> 13908 870 0.9585866 0.217548683 fv Gamma RP(P), Log-Normal FALSE #> 13924 871 1.2540751 0.273750013 fv Gamma RP(P), Log-Normal FALSE #> 13940 872 1.3178539 0.292907644 fv Gamma RP(P), Log-Normal FALSE #> 13956 873 1.1780594 0.254082562 fv Gamma RP(P), Log-Normal FALSE #> 13972 874 1.5369549 0.349989569 fv Gamma RP(P), Log-Normal FALSE #> 13988 875 0.7606339 0.164512020 fv Gamma RP(P), Log-Normal FALSE #> 14004 876 0.8818046 0.191259261 fv Gamma RP(P), Log-Normal FALSE #> 14020 877 1.0016215 0.217910809 fv Gamma RP(P), Log-Normal FALSE #> 14036 878 1.0960247 0.243448439 fv Gamma RP(P), Log-Normal FALSE #> 14052 879 0.9010159 0.208415640 fv Gamma RP(P), Log-Normal FALSE #> 14068 880 1.4167836 0.309960875 fv Gamma RP(P), Log-Normal FALSE #> 14084 881 1.1367712 0.251722155 fv Gamma RP(P), Log-Normal FALSE #> 14100 882 1.2721470 0.272715293 fv Gamma RP(P), Log-Normal FALSE #> 14116 883 0.7534025 0.164687938 fv Gamma RP(P), Log-Normal FALSE #> 14132 884 0.7895471 0.169947985 fv Gamma RP(P), Log-Normal FALSE #> 14148 885 0.7598150 0.165598184 fv Gamma RP(P), Log-Normal FALSE #> 14164 886 0.7546992 0.165577188 fv Gamma RP(P), Log-Normal FALSE #> 14180 887 0.9464325 0.207391951 fv Gamma RP(P), Log-Normal FALSE #> 14196 888 1.3249936 0.285528452 fv Gamma RP(P), Log-Normal FALSE #> 14212 889 1.0483529 0.223855961 fv Gamma RP(P), Log-Normal FALSE #> 14228 890 0.7960197 0.175686722 fv Gamma RP(P), Log-Normal FALSE #> 14244 891 0.6057941 0.129842155 fv Gamma RP(P), Log-Normal FALSE #> 14260 892 0.9117945 0.197815689 fv Gamma RP(P), Log-Normal FALSE #> 14276 893 1.1931191 0.269494148 fv Gamma RP(P), Log-Normal FALSE #> 14292 894 0.7163861 0.156284310 fv Gamma RP(P), Log-Normal FALSE #> 14308 895 0.8521234 0.181727642 fv Gamma RP(P), Log-Normal FALSE #> 14324 896 1.1969657 0.257466332 fv Gamma RP(P), Log-Normal FALSE #> 14340 897 0.8738869 0.187008230 fv Gamma RP(P), Log-Normal FALSE #> 14356 898 1.1901902 0.254087597 fv Gamma RP(P), Log-Normal FALSE #> 14372 899 1.0493014 0.231872092 fv Gamma RP(P), Log-Normal FALSE #> 14388 900 1.1641367 0.259296079 fv Gamma RP(P), Log-Normal FALSE #> 14404 901 0.7441833 0.162379902 fv Gamma RP(P), Log-Normal FALSE #> 14420 902 0.7006841 0.150598713 fv Gamma RP(P), Log-Normal FALSE #> 14436 903 0.7852252 0.167720028 fv Gamma RP(P), Log-Normal FALSE #> 14452 904 1.5979510 0.368445748 fv Gamma RP(P), Log-Normal TRUE #> 14468 905 0.7930490 0.170065240 fv Gamma RP(P), Log-Normal FALSE #> 14484 906 1.3977134 0.301200536 fv Gamma RP(P), Log-Normal FALSE #> 14500 907 1.0303398 0.225804461 fv Gamma RP(P), Log-Normal FALSE #> 14516 908 0.8813457 0.201251276 fv Gamma RP(P), Log-Normal FALSE #> 14532 909 0.7644669 0.167107442 fv Gamma RP(P), Log-Normal FALSE #> 14548 910 0.6744757 0.145971855 fv Gamma RP(P), Log-Normal FALSE #> 14564 911 0.9481477 0.214870715 fv Gamma RP(P), Log-Normal FALSE #> 14580 912 0.6898847 0.148216456 fv Gamma RP(P), Log-Normal FALSE #> 14596 913 0.9740810 0.210880647 fv Gamma RP(P), Log-Normal FALSE #> 14612 914 0.8619948 0.192708186 fv Gamma RP(P), Log-Normal FALSE #> 14628 915 1.1804584 0.260025660 fv Gamma RP(P), Log-Normal FALSE #> 14644 916 0.6691827 0.144375958 fv Gamma RP(P), Log-Normal FALSE #> 14660 917 1.0113326 0.222850102 fv Gamma RP(P), Log-Normal FALSE #> 14676 918 1.0209571 0.217855650 fv Gamma RP(P), Log-Normal FALSE #> 14692 919 0.6796905 0.145360386 fv Gamma RP(P), Log-Normal FALSE #> 14708 920 0.9871577 0.211586286 fv Gamma RP(P), Log-Normal FALSE #> 14724 921 1.1250715 0.248801866 fv Gamma RP(P), Log-Normal FALSE #> 14740 922 1.6097787 0.362204329 fv Gamma RP(P), Log-Normal TRUE #> 14756 923 0.9436780 0.203595015 fv Gamma RP(P), Log-Normal FALSE #> 14772 924 0.9564219 0.203337756 fv Gamma RP(P), Log-Normal FALSE #> 14788 925 1.2119817 0.273392844 fv Gamma RP(P), Log-Normal FALSE #> 14804 926 0.9400838 0.200647180 fv Gamma RP(P), Log-Normal FALSE #> 14820 927 0.5509122 0.120006203 fv Gamma RP(P), Log-Normal FALSE #> 14836 928 0.9335398 0.201024284 fv Gamma RP(P), Log-Normal FALSE #> 14852 929 1.0175155 0.223295340 fv Gamma RP(P), Log-Normal FALSE #> 14868 930 1.4778512 0.339083118 fv Gamma RP(P), Log-Normal FALSE #> 14884 931 0.9049402 0.195294270 fv Gamma RP(P), Log-Normal FALSE #> 14900 932 1.2187532 0.262280942 fv Gamma RP(P), Log-Normal FALSE #> 14916 933 0.7691144 0.167095118 fv Gamma RP(P), Log-Normal FALSE #> 14932 934 0.7255674 0.155278746 fv Gamma RP(P), Log-Normal FALSE #> 14948 935 0.5660748 0.122968010 fv Gamma RP(P), Log-Normal FALSE #> 14964 936 0.7769992 0.168390284 fv Gamma RP(P), Log-Normal FALSE #> 14980 937 1.4918244 0.328500321 fv Gamma RP(P), Log-Normal FALSE #> 14996 938 1.0659751 0.233315986 fv Gamma RP(P), Log-Normal FALSE #> 15012 939 1.0236145 0.218522667 fv Gamma RP(P), Log-Normal FALSE #> 15028 940 1.0295400 0.221691720 fv Gamma RP(P), Log-Normal FALSE #> 15044 941 0.8047617 0.173567485 fv Gamma RP(P), Log-Normal FALSE #> 15060 942 0.8464834 0.185539126 fv Gamma RP(P), Log-Normal FALSE #> 15076 943 0.5599465 0.122123725 fv Gamma RP(P), Log-Normal FALSE #> 15092 944 0.7749006 0.165689234 fv Gamma RP(P), Log-Normal FALSE #> 15108 945 0.7455152 0.160417654 fv Gamma RP(P), Log-Normal FALSE #> 15124 946 1.1738343 0.268801235 fv Gamma RP(P), Log-Normal FALSE #> 15140 947 0.8388128 0.185803625 fv Gamma RP(P), Log-Normal FALSE #> 15156 948 0.6952556 0.158342180 fv Gamma RP(P), Log-Normal FALSE #> 15172 949 0.8177120 0.182041579 fv Gamma RP(P), Log-Normal FALSE #> 15188 950 0.7743235 0.171749308 fv Gamma RP(P), Log-Normal FALSE #> 15204 951 1.0063523 0.219655118 fv Gamma RP(P), Log-Normal FALSE #> 15220 952 0.8235324 0.177580617 fv Gamma RP(P), Log-Normal FALSE #> 15236 953 1.6557073 0.364829706 fv Gamma RP(P), Log-Normal TRUE #> 15252 954 0.8653755 0.187285027 fv Gamma RP(P), Log-Normal FALSE #> 15268 955 1.0301056 0.220205471 fv Gamma RP(P), Log-Normal FALSE #> 15284 956 0.7894323 0.172205969 fv Gamma RP(P), Log-Normal FALSE #> 15300 957 0.7333930 0.159610119 fv Gamma RP(P), Log-Normal FALSE #> 15316 958 0.6756133 0.147379474 fv Gamma RP(P), Log-Normal FALSE #> 15332 959 0.8148421 0.177271917 fv Gamma RP(P), Log-Normal FALSE #> 15348 960 1.0392486 0.227370460 fv Gamma RP(P), Log-Normal FALSE #> 15364 961 0.6272968 0.137352074 fv Gamma RP(P), Log-Normal FALSE #> 15380 962 1.2355976 0.269890470 fv Gamma RP(P), Log-Normal FALSE #> 15396 963 1.3179458 0.295990708 fv Gamma RP(P), Log-Normal FALSE #> 15412 964 0.9410797 0.206058732 fv Gamma RP(P), Log-Normal FALSE #> 15428 965 0.7249062 0.156451201 fv Gamma RP(P), Log-Normal FALSE #> 15444 966 1.0797601 0.240333361 fv Gamma RP(P), Log-Normal FALSE #> 15460 967 0.8711198 0.188877816 fv Gamma RP(P), Log-Normal FALSE #> 15476 968 0.7484915 0.163756006 fv Gamma RP(P), Log-Normal FALSE #> 15492 969 1.0608001 0.239446947 fv Gamma RP(P), Log-Normal FALSE #> 15508 970 1.0392551 0.242127789 fv Gamma RP(P), Log-Normal FALSE #> 15524 971 0.8947299 0.198047800 fv Gamma RP(P), Log-Normal FALSE #> 15540 972 0.8458660 0.191087294 fv Gamma RP(P), Log-Normal FALSE #> 15556 973 1.4370855 0.329114189 fv Gamma RP(P), Log-Normal FALSE #> 15572 974 0.6426835 0.141462608 fv Gamma RP(P), Log-Normal FALSE #> 15588 975 0.5829796 0.126731490 fv Gamma RP(P), Log-Normal FALSE #> 15604 976 0.9819053 0.214952765 fv Gamma RP(P), Log-Normal FALSE #> 15620 977 1.2025767 0.259993700 fv Gamma RP(P), Log-Normal FALSE #> 15636 978 1.1207741 0.253448839 fv Gamma RP(P), Log-Normal FALSE #> 15652 979 1.2212617 0.277004405 fv Gamma RP(P), Log-Normal FALSE #> 15668 980 0.6660679 0.144904550 fv Gamma RP(P), Log-Normal FALSE #> 15684 981 0.9800822 0.220568363 fv Gamma RP(P), Log-Normal FALSE #> 15700 982 1.2715142 0.278377255 fv Gamma RP(P), Log-Normal FALSE #> 15716 983 0.6362243 0.139600397 fv Gamma RP(P), Log-Normal FALSE #> 15732 984 0.9930194 0.216807089 fv Gamma RP(P), Log-Normal FALSE #> 15748 985 1.1721930 0.263401263 fv Gamma RP(P), Log-Normal FALSE #> 15764 986 0.8120336 0.173385919 fv Gamma RP(P), Log-Normal FALSE #> 15780 987 0.6828491 0.148950787 fv Gamma RP(P), Log-Normal FALSE #> 15796 988 0.8144041 0.176435041 fv Gamma RP(P), Log-Normal FALSE #> 15812 989 1.1247055 0.243500492 fv Gamma RP(P), Log-Normal FALSE #> 15828 990 0.8947567 0.191212448 fv Gamma RP(P), Log-Normal FALSE #> 15844 991 1.0661028 0.236299935 fv Gamma RP(P), Log-Normal FALSE #> 15860 992 1.1284313 0.252598990 fv Gamma RP(P), Log-Normal FALSE #> 15876 993 1.4178796 0.311252553 fv Gamma RP(P), Log-Normal FALSE #> 15892 994 0.9354356 0.205470856 fv Gamma RP(P), Log-Normal FALSE #> 15908 995 0.9748574 0.210421807 fv Gamma RP(P), Log-Normal FALSE #> 15924 996 0.8126153 0.174760175 fv Gamma RP(P), Log-Normal FALSE #> 15940 997 0.7325642 0.165565100 fv Gamma RP(P), Log-Normal FALSE #> 15956 998 0.8758146 0.191746972 fv Gamma RP(P), Log-Normal FALSE #> 15972 999 0.6360544 0.137587237 fv Gamma RP(P), Log-Normal FALSE #> 15988 1000 0.6592714 0.146375303 fv Gamma RP(P), Log-Normal FALSE #> 5 1 0.6394722 0.122380809 fv Log-Normal Cox, Gamma FALSE #> 21 2 0.6045856 NA fv Log-Normal Cox, Gamma NA #> 37 3 0.8010657 0.151976580 fv Log-Normal Cox, Gamma FALSE #> 53 4 0.5251708 0.102995382 fv Log-Normal Cox, Gamma FALSE #> 69 5 0.7983593 0.148846197 fv Log-Normal Cox, Gamma FALSE #> 85 6 0.6885611 0.130409358 fv Log-Normal Cox, Gamma FALSE #> 101 7 0.5151179 0.100941935 fv Log-Normal Cox, Gamma FALSE #> 117 8 0.7621628 0.144318000 fv Log-Normal Cox, Gamma FALSE #> 133 9 0.6643665 0.127376922 fv Log-Normal Cox, Gamma FALSE #> 149 10 0.8283729 0.155318927 fv Log-Normal Cox, Gamma FALSE #> 165 11 0.7869555 0.147558877 fv Log-Normal Cox, Gamma FALSE #> 181 12 0.5133479 0.101148388 fv Log-Normal Cox, Gamma FALSE #> 197 13 0.7532925 0.143254004 fv Log-Normal Cox, Gamma FALSE #> 213 14 0.6319419 0.120525268 fv Log-Normal Cox, Gamma FALSE #> 229 15 0.6431606 NA fv Log-Normal Cox, Gamma NA #> 245 16 0.5317893 0.104988331 fv Log-Normal Cox, Gamma FALSE #> 261 17 0.6485239 NA fv Log-Normal Cox, Gamma NA #> 277 18 0.6937009 0.131641157 fv Log-Normal Cox, Gamma FALSE #> 293 19 0.7893061 0.147649710 fv Log-Normal Cox, Gamma FALSE #> 309 20 0.5473277 0.107505962 fv Log-Normal Cox, Gamma FALSE #> 325 21 0.6159281 0.119712689 fv Log-Normal Cox, Gamma FALSE #> 341 22 0.5034632 0.098706022 fv Log-Normal Cox, Gamma FALSE #> 357 23 0.8872145 0.167318484 fv Log-Normal Cox, Gamma FALSE #> 373 24 0.6747845 0.128587018 fv Log-Normal Cox, Gamma FALSE #> 389 25 0.5306071 0.103635336 fv Log-Normal Cox, Gamma FALSE #> 405 26 0.6424292 0.123098114 fv Log-Normal Cox, Gamma FALSE #> 421 27 0.4616309 0.092627917 fv Log-Normal Cox, Gamma FALSE #> 437 28 0.6455285 0.124584641 fv Log-Normal Cox, Gamma FALSE #> 453 29 0.9355245 0.171887190 fv Log-Normal Cox, Gamma FALSE #> 469 30 0.5683618 NA fv Log-Normal Cox, Gamma NA #> 485 31 0.5122115 0.101457499 fv Log-Normal Cox, Gamma FALSE #> 501 32 0.5137421 0.101410278 fv Log-Normal Cox, Gamma FALSE #> 517 33 0.6617973 0.126758113 fv Log-Normal Cox, Gamma FALSE #> 533 34 0.8792537 0.165007321 fv Log-Normal Cox, Gamma FALSE #> 549 35 0.5056708 0.102050813 fv Log-Normal Cox, Gamma FALSE #> 565 36 0.4631456 0.092364702 fv Log-Normal Cox, Gamma FALSE #> 581 37 0.6402471 0.123639086 fv Log-Normal Cox, Gamma FALSE #> 597 38 0.6072469 0.118505183 fv Log-Normal Cox, Gamma FALSE #> 613 39 0.7170843 0.136908818 fv Log-Normal Cox, Gamma FALSE #> 629 40 0.5771348 0.115752065 fv Log-Normal Cox, Gamma FALSE #> 645 41 0.6529139 0.124393480 fv Log-Normal Cox, Gamma FALSE #> 661 42 0.5148011 0.101711999 fv Log-Normal Cox, Gamma FALSE #> 677 43 0.4666952 0.004937570 fv Log-Normal Cox, Gamma TRUE #> 693 44 0.6189380 0.118445497 fv Log-Normal Cox, Gamma FALSE #> 709 45 0.5376220 0.104802034 fv Log-Normal Cox, Gamma FALSE #> 725 46 0.3144607 0.065053567 fv Log-Normal Cox, Gamma FALSE #> 741 47 0.7584395 0.142672550 fv Log-Normal Cox, Gamma FALSE #> 757 48 0.8275518 0.156556744 fv Log-Normal Cox, Gamma FALSE #> 773 49 0.8489886 0.158293529 fv Log-Normal Cox, Gamma FALSE #> 789 50 0.5482973 0.107386748 fv Log-Normal Cox, Gamma FALSE #> 805 51 0.6839991 0.129492956 fv Log-Normal Cox, Gamma FALSE #> 821 52 0.4843987 0.096408435 fv Log-Normal Cox, Gamma FALSE #> 837 53 0.8510057 0.158864620 fv Log-Normal Cox, Gamma FALSE #> 853 54 0.6256909 0.120555710 fv Log-Normal Cox, Gamma FALSE #> 869 55 0.8346268 0.156087294 fv Log-Normal Cox, Gamma FALSE #> 885 56 0.7882049 0.150416666 fv Log-Normal Cox, Gamma FALSE #> 901 57 0.8201443 0.154000281 fv Log-Normal Cox, Gamma FALSE #> 917 58 0.7040050 0.135316400 fv Log-Normal Cox, Gamma FALSE #> 933 59 0.6359651 0.121923449 fv Log-Normal Cox, Gamma FALSE #> 949 60 0.8198970 0.153870480 fv Log-Normal Cox, Gamma FALSE #> 965 61 0.7175756 0.137152304 fv Log-Normal Cox, Gamma FALSE #> 981 62 0.6076507 0.118508879 fv Log-Normal Cox, Gamma FALSE #> 997 63 0.7819970 0.147791047 fv Log-Normal Cox, Gamma FALSE #> 1013 64 0.6957054 0.132639426 fv Log-Normal Cox, Gamma FALSE #> 1029 65 0.9526125 0.009775405 fv Log-Normal Cox, Gamma TRUE #> 1045 66 0.5441474 0.106172085 fv Log-Normal Cox, Gamma FALSE #> 1061 67 0.5523208 0.108353716 fv Log-Normal Cox, Gamma FALSE #> 1077 68 0.4929681 0.098414398 fv Log-Normal Cox, Gamma FALSE #> 1093 69 0.7299153 0.138530230 fv Log-Normal Cox, Gamma FALSE #> 1109 70 0.6423527 0.122802482 fv Log-Normal Cox, Gamma FALSE #> 1125 71 0.8632862 0.161486059 fv Log-Normal Cox, Gamma FALSE #> 1141 72 0.5591545 0.109417396 fv Log-Normal Cox, Gamma FALSE #> 1157 73 0.6075278 0.117438980 fv Log-Normal Cox, Gamma FALSE #> 1173 74 0.4193468 0.085150618 fv Log-Normal Cox, Gamma FALSE #> 1189 75 0.6458334 0.123807889 fv Log-Normal Cox, Gamma FALSE #> 1205 76 0.5319590 0.103524013 fv Log-Normal Cox, Gamma FALSE #> 1221 77 0.8210381 0.156007454 fv Log-Normal Cox, Gamma FALSE #> 1237 78 0.7326486 0.139950963 fv Log-Normal Cox, Gamma FALSE #> 1253 79 0.9943199 0.182305762 fv Log-Normal Cox, Gamma TRUE #> 1269 80 0.5401692 0.105772312 fv Log-Normal Cox, Gamma FALSE #> 1285 81 0.8195515 0.152333242 fv Log-Normal Cox, Gamma FALSE #> 1301 82 0.5996208 0.115639258 fv Log-Normal Cox, Gamma FALSE #> 1317 83 0.6878985 0.131159675 fv Log-Normal Cox, Gamma FALSE #> 1333 84 0.5677818 0.110729113 fv Log-Normal Cox, Gamma FALSE #> 1349 85 0.6777671 0.132744504 fv Log-Normal Cox, Gamma FALSE #> 1365 86 0.5697309 0.113283344 fv Log-Normal Cox, Gamma FALSE #> 1381 87 0.6515879 0.125557308 fv Log-Normal Cox, Gamma FALSE #> 1397 88 0.6589741 0.126940719 fv Log-Normal Cox, Gamma FALSE #> 1413 89 0.9088941 0.169266584 fv Log-Normal Cox, Gamma FALSE #> 1429 90 0.7931475 0.150240420 fv Log-Normal Cox, Gamma FALSE #> 1445 91 0.7963163 0.149402965 fv Log-Normal Cox, Gamma FALSE #> 1461 92 0.7857943 0.149847987 fv Log-Normal Cox, Gamma FALSE #> 1477 93 0.5504720 0.107382694 fv Log-Normal Cox, Gamma FALSE #> 1493 94 0.6884429 0.131346884 fv Log-Normal Cox, Gamma FALSE #> 1509 95 0.6380857 0.123419439 fv Log-Normal Cox, Gamma FALSE #> 1525 96 0.5041330 0.099649898 fv Log-Normal Cox, Gamma FALSE #> 1541 97 0.7322696 0.139902706 fv Log-Normal Cox, Gamma FALSE #> 1557 98 0.4127046 0.082919455 fv Log-Normal Cox, Gamma FALSE #> 1573 99 0.6763370 0.128560573 fv Log-Normal Cox, Gamma FALSE #> 1589 100 0.5878556 0.114387018 fv Log-Normal Cox, Gamma FALSE #> 1605 101 0.5514084 0.106995494 fv Log-Normal Cox, Gamma FALSE #> 1621 102 0.4762293 0.094742579 fv Log-Normal Cox, Gamma FALSE #> 1637 103 0.7020256 0.133873178 fv Log-Normal Cox, Gamma FALSE #> 1653 104 0.7099326 0.137457024 fv Log-Normal Cox, Gamma FALSE #> 1669 105 0.5077478 0.103091644 fv Log-Normal Cox, Gamma FALSE #> 1685 106 0.5839560 NA fv Log-Normal Cox, Gamma NA #> 1701 107 0.6986634 0.132088893 fv Log-Normal Cox, Gamma FALSE #> 1717 108 0.6167183 0.119245954 fv Log-Normal Cox, Gamma FALSE #> 1733 109 0.8992052 0.168845162 fv Log-Normal Cox, Gamma FALSE #> 1749 110 0.7958962 0.150043027 fv Log-Normal Cox, Gamma FALSE #> 1765 111 0.6292353 0.123510171 fv Log-Normal Cox, Gamma FALSE #> 1781 112 0.6629978 0.127077109 fv Log-Normal Cox, Gamma FALSE #> 1797 113 0.7261570 0.136779956 fv Log-Normal Cox, Gamma FALSE #> 1813 114 0.6276345 0.122291276 fv Log-Normal Cox, Gamma FALSE #> 1829 115 0.6639073 0.126950626 fv Log-Normal Cox, Gamma FALSE #> 1845 116 0.6771155 0.129017151 fv Log-Normal Cox, Gamma FALSE #> 1861 117 0.7574856 0.142852173 fv Log-Normal Cox, Gamma FALSE #> 1877 118 0.5400931 0.105299387 fv Log-Normal Cox, Gamma FALSE #> 1893 119 0.5348068 0.104913423 fv Log-Normal Cox, Gamma FALSE #> 1909 120 0.7474894 0.142057002 fv Log-Normal Cox, Gamma FALSE #> 1925 121 0.6748811 0.129647969 fv Log-Normal Cox, Gamma FALSE #> 1941 122 0.5375076 0.108052856 fv Log-Normal Cox, Gamma FALSE #> 1957 123 0.4856003 0.096121275 fv Log-Normal Cox, Gamma FALSE #> 1973 124 0.5246200 0.103885319 fv Log-Normal Cox, Gamma FALSE #> 1989 125 0.4720605 NA fv Log-Normal Cox, Gamma NA #> 2005 126 0.9482783 0.174156199 fv Log-Normal Cox, Gamma FALSE #> 2021 127 0.4306473 0.085975068 fv Log-Normal Cox, Gamma FALSE #> 2037 128 0.4410806 0.087616373 fv Log-Normal Cox, Gamma FALSE #> 2053 129 0.5998340 0.116337857 fv Log-Normal Cox, Gamma FALSE #> 2069 130 0.5329207 0.106038502 fv Log-Normal Cox, Gamma FALSE #> 2085 131 0.5852483 0.113419735 fv Log-Normal Cox, Gamma FALSE #> 2101 132 0.6742929 0.128681326 fv Log-Normal Cox, Gamma FALSE #> 2117 133 0.8438814 0.157495241 fv Log-Normal Cox, Gamma FALSE #> 2133 134 0.8725599 0.161209909 fv Log-Normal Cox, Gamma FALSE #> 2149 135 0.6599414 0.127969864 fv Log-Normal Cox, Gamma FALSE #> 2165 136 0.5626806 0.112982953 fv Log-Normal Cox, Gamma FALSE #> 2181 137 0.4613542 0.092148877 fv Log-Normal Cox, Gamma FALSE #> 2197 138 0.4897440 0.096970193 fv Log-Normal Cox, Gamma FALSE #> 2213 139 0.6186832 0.118880800 fv Log-Normal Cox, Gamma FALSE #> 2229 140 0.6882313 0.130677278 fv Log-Normal Cox, Gamma FALSE #> 2245 141 0.4057784 0.082456100 fv Log-Normal Cox, Gamma FALSE #> 2261 142 0.4533127 0.090505938 fv Log-Normal Cox, Gamma FALSE #> 2277 143 0.5205757 0.101899405 fv Log-Normal Cox, Gamma FALSE #> 2293 144 0.6642470 0.129879650 fv Log-Normal Cox, Gamma FALSE #> 2309 145 0.4846138 0.095680840 fv Log-Normal Cox, Gamma FALSE #> 2325 146 0.6727758 0.128705520 fv Log-Normal Cox, Gamma FALSE #> 2341 147 0.6505837 0.128350311 fv Log-Normal Cox, Gamma FALSE #> 2357 148 0.5095640 0.100748115 fv Log-Normal Cox, Gamma FALSE #> 2373 149 0.3838389 0.078579334 fv Log-Normal Cox, Gamma FALSE #> 2389 150 0.5015661 0.098921642 fv Log-Normal Cox, Gamma FALSE #> 2405 151 0.8316167 0.156175999 fv Log-Normal Cox, Gamma FALSE #> 2421 152 0.6107663 0.117805851 fv Log-Normal Cox, Gamma FALSE #> 2437 153 0.7774550 0.147567258 fv Log-Normal Cox, Gamma FALSE #> 2453 154 0.6456305 0.123420490 fv Log-Normal Cox, Gamma FALSE #> 2469 155 0.9161229 0.170688228 fv Log-Normal Cox, Gamma FALSE #> 2485 156 0.5364627 0.104848903 fv Log-Normal Cox, Gamma FALSE #> 2501 157 0.5613152 0.109806565 fv Log-Normal Cox, Gamma FALSE #> 2517 158 0.6129741 NA fv Log-Normal Cox, Gamma NA #> 2533 159 0.6589814 0.126591843 fv Log-Normal Cox, Gamma FALSE #> 2549 160 0.6071451 0.116592113 fv Log-Normal Cox, Gamma FALSE #> 2565 161 0.8464096 0.158851699 fv Log-Normal Cox, Gamma FALSE #> 2581 162 0.8600343 0.160292687 fv Log-Normal Cox, Gamma FALSE #> 2597 163 0.5244066 0.102558542 fv Log-Normal Cox, Gamma FALSE #> 2613 164 0.6350957 0.122832752 fv Log-Normal Cox, Gamma FALSE #> 2629 165 0.4845964 0.095537265 fv Log-Normal Cox, Gamma FALSE #> 2645 166 0.4272914 0.086071366 fv Log-Normal Cox, Gamma FALSE #> 2661 167 0.6479949 0.124144693 fv Log-Normal Cox, Gamma FALSE #> 2677 168 0.7462762 0.140607751 fv Log-Normal Cox, Gamma FALSE #> 2693 169 0.6323112 0.122436745 fv Log-Normal Cox, Gamma FALSE #> 2709 170 0.6601451 0.125902988 fv Log-Normal Cox, Gamma FALSE #> 2725 171 0.7032168 0.133018961 fv Log-Normal Cox, Gamma FALSE #> 2741 172 0.6390154 0.122082524 fv Log-Normal Cox, Gamma FALSE #> 2757 173 0.7009973 0.134209465 fv Log-Normal Cox, Gamma FALSE #> 2773 174 0.5290113 0.103348766 fv Log-Normal Cox, Gamma FALSE #> 2789 175 0.7105678 0.135604428 fv Log-Normal Cox, Gamma FALSE #> 2805 176 0.8662738 0.161421953 fv Log-Normal Cox, Gamma FALSE #> 2821 177 0.6637685 0.126258249 fv Log-Normal Cox, Gamma FALSE #> 2837 178 0.4790982 0.094932397 fv Log-Normal Cox, Gamma FALSE #> 2853 179 0.7824449 0.146344350 fv Log-Normal Cox, Gamma FALSE #> 2869 180 0.4960902 0.097942874 fv Log-Normal Cox, Gamma FALSE #> 2885 181 0.6319581 NA fv Log-Normal Cox, Gamma NA #> 2901 182 1.0215608 0.186181702 fv Log-Normal Cox, Gamma TRUE #> 2917 183 0.6556942 0.127650618 fv Log-Normal Cox, Gamma FALSE #> 2933 184 0.8197292 0.152798041 fv Log-Normal Cox, Gamma FALSE #> 2949 185 0.7209598 0.136991783 fv Log-Normal Cox, Gamma FALSE #> 2965 186 0.6961555 0.132783636 fv Log-Normal Cox, Gamma FALSE #> 2981 187 0.6427010 0.124017514 fv Log-Normal Cox, Gamma FALSE #> 2997 188 0.8413523 0.159781367 fv Log-Normal Cox, Gamma FALSE #> 3013 189 0.6291343 0.120949937 fv Log-Normal Cox, Gamma FALSE #> 3029 190 0.6312602 0.120553681 fv Log-Normal Cox, Gamma FALSE #> 3045 191 0.6229767 0.120163049 fv Log-Normal Cox, Gamma FALSE #> 3061 192 0.6625294 0.128824188 fv Log-Normal Cox, Gamma FALSE #> 3077 193 0.6095303 0.117152349 fv Log-Normal Cox, Gamma FALSE #> 3093 194 0.8906886 0.165363633 fv Log-Normal Cox, Gamma FALSE #> 3109 195 0.5763599 0.113600171 fv Log-Normal Cox, Gamma FALSE #> 3125 196 0.5388661 0.105243328 fv Log-Normal Cox, Gamma FALSE #> 3141 197 0.6062427 0.117145578 fv Log-Normal Cox, Gamma FALSE #> 3157 198 0.6999424 0.133524072 fv Log-Normal Cox, Gamma FALSE #> 3173 199 0.4751412 0.094093909 fv Log-Normal Cox, Gamma FALSE #> 3189 200 0.5362176 0.105172510 fv Log-Normal Cox, Gamma FALSE #> 3205 201 0.7915355 0.148896926 fv Log-Normal Cox, Gamma FALSE #> 3221 202 0.6256725 0.120094411 fv Log-Normal Cox, Gamma FALSE #> 3237 203 0.5558678 0.108296694 fv Log-Normal Cox, Gamma FALSE #> 3253 204 0.5876585 0.113892273 fv Log-Normal Cox, Gamma FALSE #> 3269 205 0.5468949 0.106525018 fv Log-Normal Cox, Gamma FALSE #> 3285 206 0.6698007 0.128281193 fv Log-Normal Cox, Gamma FALSE #> 3301 207 0.8537181 0.163478068 fv Log-Normal Cox, Gamma FALSE #> 3317 208 0.8151591 0.151573969 fv Log-Normal Cox, Gamma FALSE #> 3333 209 0.5738887 0.112038746 fv Log-Normal Cox, Gamma FALSE #> 3349 210 0.5948765 0.115005913 fv Log-Normal Cox, Gamma FALSE #> 3365 211 0.7051577 0.134016025 fv Log-Normal Cox, Gamma FALSE #> 3381 212 0.6688139 0.127473682 fv Log-Normal Cox, Gamma FALSE #> 3397 213 0.5682107 0.111343598 fv Log-Normal Cox, Gamma FALSE #> 3413 214 0.5596977 0.108622186 fv Log-Normal Cox, Gamma FALSE #> 3429 215 0.6736498 0.131769952 fv Log-Normal Cox, Gamma FALSE #> 3445 216 0.8402526 0.156811031 fv Log-Normal Cox, Gamma FALSE #> 3461 217 0.6569014 0.126067931 fv Log-Normal Cox, Gamma FALSE #> 3477 218 0.6265203 NA fv Log-Normal Cox, Gamma NA #> 3493 219 0.8265282 0.156692936 fv Log-Normal Cox, Gamma FALSE #> 3509 220 0.7025852 0.132963964 fv Log-Normal Cox, Gamma FALSE #> 3525 221 0.5591480 0.109170032 fv Log-Normal Cox, Gamma FALSE #> 3541 222 0.3308424 0.068028520 fv Log-Normal Cox, Gamma FALSE #> 3557 223 0.4912096 0.096931558 fv Log-Normal Cox, Gamma FALSE #> 3573 224 0.4900371 0.096260044 fv Log-Normal Cox, Gamma FALSE #> 3589 225 0.7671184 0.144972525 fv Log-Normal Cox, Gamma FALSE #> 3605 226 0.8535113 0.158140918 fv Log-Normal Cox, Gamma FALSE #> 3621 227 0.6378454 0.121921746 fv Log-Normal Cox, Gamma FALSE #> 3637 228 0.7197385 0.135876027 fv Log-Normal Cox, Gamma FALSE #> 3653 229 0.3791053 0.077674263 fv Log-Normal Cox, Gamma FALSE #> 3669 230 0.5811553 0.113632012 fv Log-Normal Cox, Gamma FALSE #> 3685 231 0.5860880 0.113549906 fv Log-Normal Cox, Gamma FALSE #> 3701 232 0.8037955 0.151262566 fv Log-Normal Cox, Gamma FALSE #> 3717 233 0.8533986 0.160021433 fv Log-Normal Cox, Gamma FALSE #> 3733 234 0.8484815 0.159241562 fv Log-Normal Cox, Gamma FALSE #> 3749 235 0.4897224 0.096400413 fv Log-Normal Cox, Gamma FALSE #> 3765 236 0.5762535 0.112239275 fv Log-Normal Cox, Gamma FALSE #> 3781 237 0.5269204 0.103993561 fv Log-Normal Cox, Gamma FALSE #> 3797 238 0.7820117 0.148029154 fv Log-Normal Cox, Gamma FALSE #> 3813 239 0.8192601 0.155041621 fv Log-Normal Cox, Gamma FALSE #> 3829 240 0.5402785 0.105436912 fv Log-Normal Cox, Gamma FALSE #> 3845 241 0.6507911 0.125139921 fv Log-Normal Cox, Gamma FALSE #> 3861 242 0.4837204 0.095399989 fv Log-Normal Cox, Gamma FALSE #> 3877 243 0.6195218 0.119990163 fv Log-Normal Cox, Gamma FALSE #> 3893 244 0.5100376 0.100590658 fv Log-Normal Cox, Gamma FALSE #> 3909 245 0.4265852 0.085555768 fv Log-Normal Cox, Gamma FALSE #> 3925 246 0.7625282 0.147743867 fv Log-Normal Cox, Gamma FALSE #> 3941 247 0.6393146 0.124452824 fv Log-Normal Cox, Gamma FALSE #> 3957 248 0.8878569 0.164863233 fv Log-Normal Cox, Gamma FALSE #> 3973 249 0.5104467 0.100139240 fv Log-Normal Cox, Gamma FALSE #> 3989 250 0.7090348 0.135416883 fv Log-Normal Cox, Gamma FALSE #> 4005 251 0.5665994 0.110662478 fv Log-Normal Cox, Gamma FALSE #> 4021 252 0.4789176 0.096840906 fv Log-Normal Cox, Gamma FALSE #> 4037 253 0.7726023 0.145748257 fv Log-Normal Cox, Gamma FALSE #> 4053 254 0.6799045 0.131222201 fv Log-Normal Cox, Gamma FALSE #> 4069 255 0.8679381 0.163075058 fv Log-Normal Cox, Gamma FALSE #> 4085 256 0.7877915 0.149581667 fv Log-Normal Cox, Gamma FALSE #> 4101 257 0.7172398 0.135506691 fv Log-Normal Cox, Gamma FALSE #> 4117 258 0.4064345 0.082947195 fv Log-Normal Cox, Gamma FALSE #> 4133 259 0.5807491 0.112471382 fv Log-Normal Cox, Gamma FALSE #> 4149 260 0.5464734 0.106275466 fv Log-Normal Cox, Gamma FALSE #> 4165 261 0.7065837 0.133504731 fv Log-Normal Cox, Gamma FALSE #> 4181 262 0.5931230 0.114792244 fv Log-Normal Cox, Gamma FALSE #> 4197 263 0.7014259 0.133353663 fv Log-Normal Cox, Gamma FALSE #> 4213 264 0.7179491 0.137495764 fv Log-Normal Cox, Gamma FALSE #> 4229 265 0.5649677 0.109814735 fv Log-Normal Cox, Gamma FALSE #> 4245 266 0.5471308 0.106789710 fv Log-Normal Cox, Gamma FALSE #> 4261 267 0.5878749 0.115444716 fv Log-Normal Cox, Gamma FALSE #> 4277 268 0.8704538 0.161935150 fv Log-Normal Cox, Gamma FALSE #> 4293 269 0.5588668 0.109315818 fv Log-Normal Cox, Gamma FALSE #> 4309 270 0.5682294 0.110657678 fv Log-Normal Cox, Gamma FALSE #> 4325 271 0.7742804 0.148840997 fv Log-Normal Cox, Gamma FALSE #> 4341 272 0.5158531 0.101581050 fv Log-Normal Cox, Gamma FALSE #> 4357 273 0.6160109 NA fv Log-Normal Cox, Gamma NA #> 4373 274 0.7917479 0.153086307 fv Log-Normal Cox, Gamma FALSE #> 4389 275 0.6364515 0.126896193 fv Log-Normal Cox, Gamma FALSE #> 4405 276 0.6699600 0.127579619 fv Log-Normal Cox, Gamma FALSE #> 4421 277 0.6950828 0.007187089 fv Log-Normal Cox, Gamma TRUE #> 4437 278 0.5145957 0.101023595 fv Log-Normal Cox, Gamma FALSE #> 4453 279 0.8117977 0.153216708 fv Log-Normal Cox, Gamma FALSE #> 4469 280 0.6997337 0.133181330 fv Log-Normal Cox, Gamma FALSE #> 4485 281 0.6982049 0.133445042 fv Log-Normal Cox, Gamma FALSE #> 4501 282 0.5416213 0.105440717 fv Log-Normal Cox, Gamma FALSE #> 4517 283 0.6857669 0.130142790 fv Log-Normal Cox, Gamma FALSE #> 4533 284 0.5399607 0.105818606 fv Log-Normal Cox, Gamma FALSE #> 4549 285 0.5893622 0.113916611 fv Log-Normal Cox, Gamma FALSE #> 4565 286 0.6293867 0.121852607 fv Log-Normal Cox, Gamma FALSE #> 4581 287 0.5320429 0.104084556 fv Log-Normal Cox, Gamma FALSE #> 4597 288 0.5385214 NA fv Log-Normal Cox, Gamma NA #> 4613 289 0.6079604 0.117589769 fv Log-Normal Cox, Gamma FALSE #> 4629 290 0.6198681 0.119709759 fv Log-Normal Cox, Gamma FALSE #> 4645 291 0.6348176 0.121448764 fv Log-Normal Cox, Gamma FALSE #> 4661 292 0.5566394 0.109253711 fv Log-Normal Cox, Gamma FALSE #> 4677 293 0.5642341 0.108813689 fv Log-Normal Cox, Gamma FALSE #> 4693 294 0.6430886 0.123339440 fv Log-Normal Cox, Gamma FALSE #> 4709 295 0.5805056 0.113140088 fv Log-Normal Cox, Gamma FALSE #> 4725 296 0.7567236 0.143584763 fv Log-Normal Cox, Gamma FALSE #> 4741 297 0.3855174 0.078215125 fv Log-Normal Cox, Gamma FALSE #> 4757 298 0.5794998 0.112104842 fv Log-Normal Cox, Gamma FALSE #> 4773 299 0.7028882 0.133589533 fv Log-Normal Cox, Gamma FALSE #> 4789 300 0.5797419 0.112542288 fv Log-Normal Cox, Gamma FALSE #> 4805 301 0.9211398 0.170258250 fv Log-Normal Cox, Gamma FALSE #> 4821 302 0.7451349 0.144010919 fv Log-Normal Cox, Gamma FALSE #> 4837 303 0.5897070 0.114105453 fv Log-Normal Cox, Gamma FALSE #> 4853 304 0.5902198 0.114066882 fv Log-Normal Cox, Gamma FALSE #> 4869 305 0.6998113 0.132962809 fv Log-Normal Cox, Gamma FALSE #> 4885 306 0.5558410 0.108825873 fv Log-Normal Cox, Gamma FALSE #> 4901 307 0.5096845 0.099400324 fv Log-Normal Cox, Gamma FALSE #> 4917 308 0.6120856 0.118043549 fv Log-Normal Cox, Gamma FALSE #> 4933 309 0.5238446 0.102522839 fv Log-Normal Cox, Gamma FALSE #> 4949 310 0.5755179 0.112344745 fv Log-Normal Cox, Gamma FALSE #> 4965 311 0.7940267 0.148985319 fv Log-Normal Cox, Gamma FALSE #> 4981 312 0.5853714 0.006099306 fv Log-Normal Cox, Gamma TRUE #> 4997 313 0.4366253 0.087746151 fv Log-Normal Cox, Gamma FALSE #> 5013 314 0.6141543 0.119168693 fv Log-Normal Cox, Gamma FALSE #> 5029 315 0.5634745 0.109117311 fv Log-Normal Cox, Gamma FALSE #> 5045 316 0.5563368 0.109703245 fv Log-Normal Cox, Gamma FALSE #> 5061 317 0.7188303 0.135419985 fv Log-Normal Cox, Gamma FALSE #> 5077 318 0.5950034 0.119644402 fv Log-Normal Cox, Gamma FALSE #> 5093 319 0.6531083 0.125747127 fv Log-Normal Cox, Gamma FALSE #> 5109 320 0.7196713 0.136030114 fv Log-Normal Cox, Gamma FALSE #> 5125 321 0.8308015 0.156780085 fv Log-Normal Cox, Gamma FALSE #> 5141 322 0.4956023 0.097888214 fv Log-Normal Cox, Gamma FALSE #> 5157 323 0.6546792 0.124835750 fv Log-Normal Cox, Gamma FALSE #> 5173 324 0.4840185 0.095889192 fv Log-Normal Cox, Gamma FALSE #> 5189 325 0.5702055 0.111852128 fv Log-Normal Cox, Gamma FALSE #> 5205 326 0.7875548 0.148425894 fv Log-Normal Cox, Gamma FALSE #> 5221 327 0.4456639 0.088551255 fv Log-Normal Cox, Gamma FALSE #> 5237 328 0.6199910 0.118511296 fv Log-Normal Cox, Gamma FALSE #> 5253 329 0.6070999 0.118226137 fv Log-Normal Cox, Gamma FALSE #> 5269 330 0.4693525 0.092970101 fv Log-Normal Cox, Gamma FALSE #> 5285 331 0.7782761 0.145952440 fv Log-Normal Cox, Gamma FALSE #> 5301 332 0.6147740 0.118149084 fv Log-Normal Cox, Gamma FALSE #> 5317 333 0.4880236 0.097261035 fv Log-Normal Cox, Gamma FALSE #> 5333 334 0.4884141 0.096379233 fv Log-Normal Cox, Gamma FALSE #> 5349 335 0.5032586 0.099171283 fv Log-Normal Cox, Gamma FALSE #> 5365 336 0.7805535 0.148128686 fv Log-Normal Cox, Gamma FALSE #> 5381 337 0.6032561 0.116743833 fv Log-Normal Cox, Gamma FALSE #> 5397 338 0.6551628 0.125118867 fv Log-Normal Cox, Gamma FALSE #> 5413 339 0.5169801 0.101821996 fv Log-Normal Cox, Gamma FALSE #> 5429 340 0.8196064 0.154398664 fv Log-Normal Cox, Gamma FALSE #> 5445 341 0.5937845 0.117321745 fv Log-Normal Cox, Gamma FALSE #> 5461 342 0.5195210 0.101714573 fv Log-Normal Cox, Gamma FALSE #> 5477 343 0.5449285 0.106821634 fv Log-Normal Cox, Gamma FALSE #> 5493 344 0.6178628 0.119729312 fv Log-Normal Cox, Gamma FALSE #> 5509 345 0.5748172 0.111195189 fv Log-Normal Cox, Gamma FALSE #> 5525 346 0.4467481 0.089775532 fv Log-Normal Cox, Gamma FALSE #> 5541 347 0.5922002 0.115336519 fv Log-Normal Cox, Gamma FALSE #> 5557 348 0.5431553 0.107023045 fv Log-Normal Cox, Gamma FALSE #> 5573 349 0.5963678 0.115282859 fv Log-Normal Cox, Gamma FALSE #> 5589 350 0.7126978 0.135785768 fv Log-Normal Cox, Gamma FALSE #> 5605 351 0.5000000 0.098314792 fv Log-Normal Cox, Gamma FALSE #> 5621 352 0.7598097 0.144565206 fv Log-Normal Cox, Gamma FALSE #> 5637 353 0.6849065 0.131859665 fv Log-Normal Cox, Gamma FALSE #> 5653 354 0.5847636 0.113209083 fv Log-Normal Cox, Gamma FALSE #> 5669 355 0.6647230 0.126982092 fv Log-Normal Cox, Gamma FALSE #> 5685 356 0.6167743 NA fv Log-Normal Cox, Gamma NA #> 5701 357 0.9010051 0.172186528 fv Log-Normal Cox, Gamma FALSE #> 5717 358 0.6069449 0.117219188 fv Log-Normal Cox, Gamma FALSE #> 5733 359 0.4821542 0.096106206 fv Log-Normal Cox, Gamma FALSE #> 5749 360 0.5664989 0.109859357 fv Log-Normal Cox, Gamma FALSE #> 5765 361 0.5678027 0.110631454 fv Log-Normal Cox, Gamma FALSE #> 5781 362 0.6276318 NA fv Log-Normal Cox, Gamma NA #> 5797 363 0.5816629 0.114016656 fv Log-Normal Cox, Gamma FALSE #> 5813 364 0.6859902 0.129879220 fv Log-Normal Cox, Gamma FALSE #> 5829 365 0.6491866 0.124319049 fv Log-Normal Cox, Gamma FALSE #> 5845 366 0.5865690 0.113684228 fv Log-Normal Cox, Gamma FALSE #> 5861 367 0.7319157 0.139897352 fv Log-Normal Cox, Gamma FALSE #> 5877 368 0.8046332 0.150989946 fv Log-Normal Cox, Gamma FALSE #> 5893 369 0.5082926 0.099866024 fv Log-Normal Cox, Gamma FALSE #> 5909 370 0.6604881 0.126498901 fv Log-Normal Cox, Gamma FALSE #> 5925 371 0.6356362 0.124258194 fv Log-Normal Cox, Gamma FALSE #> 5941 372 0.4589990 0.091576188 fv Log-Normal Cox, Gamma FALSE #> 5957 373 0.8629317 0.160738289 fv Log-Normal Cox, Gamma FALSE #> 5973 374 0.5057169 0.100061515 fv Log-Normal Cox, Gamma FALSE #> 5989 375 0.6330062 0.123040876 fv Log-Normal Cox, Gamma FALSE #> 6005 376 0.6046560 0.116978108 fv Log-Normal Cox, Gamma FALSE #> 6021 377 0.4747655 0.005013608 fv Log-Normal Cox, Gamma TRUE #> 6037 378 0.5334781 0.005584094 fv Log-Normal Cox, Gamma TRUE #> 6053 379 0.4830196 0.095784689 fv Log-Normal Cox, Gamma FALSE #> 6069 380 0.5694002 0.110358969 fv Log-Normal Cox, Gamma FALSE #> 6085 381 0.6863816 0.130635692 fv Log-Normal Cox, Gamma FALSE #> 6101 382 0.6287443 0.121561327 fv Log-Normal Cox, Gamma FALSE #> 6117 383 0.6705983 0.128564833 fv Log-Normal Cox, Gamma FALSE #> 6133 384 0.5832236 NA fv Log-Normal Cox, Gamma NA #> 6149 385 0.5054799 0.100036351 fv Log-Normal Cox, Gamma FALSE #> 6165 386 0.7721235 0.146738604 fv Log-Normal Cox, Gamma FALSE #> 6181 387 0.5792390 0.113921561 fv Log-Normal Cox, Gamma FALSE #> 6197 388 0.6998366 0.131999951 fv Log-Normal Cox, Gamma FALSE #> 6213 389 0.6587321 0.125619377 fv Log-Normal Cox, Gamma FALSE #> 6229 390 0.5746738 0.111840939 fv Log-Normal Cox, Gamma FALSE #> 6245 391 0.7150477 0.135480569 fv Log-Normal Cox, Gamma FALSE #> 6261 392 0.5580029 0.109198136 fv Log-Normal Cox, Gamma FALSE #> 6277 393 0.5189269 0.101936787 fv Log-Normal Cox, Gamma FALSE #> 6293 394 0.8337900 0.157631224 fv Log-Normal Cox, Gamma FALSE #> 6309 395 0.6557804 0.125496415 fv Log-Normal Cox, Gamma FALSE #> 6325 396 0.8542463 0.159311110 fv Log-Normal Cox, Gamma FALSE #> 6341 397 0.5753214 0.111380720 fv Log-Normal Cox, Gamma FALSE #> 6357 398 0.5763301 NA fv Log-Normal Cox, Gamma NA #> 6373 399 0.7343354 0.139561737 fv Log-Normal Cox, Gamma FALSE #> 6389 400 0.4829329 0.095986778 fv Log-Normal Cox, Gamma FALSE #> 6405 401 0.5236326 0.102648828 fv Log-Normal Cox, Gamma FALSE #> 6421 402 0.4724927 0.094782726 fv Log-Normal Cox, Gamma FALSE #> 6437 403 0.4746930 0.093432378 fv Log-Normal Cox, Gamma FALSE #> 6453 404 0.5498989 0.108729092 fv Log-Normal Cox, Gamma FALSE #> 6469 405 0.4680169 0.093560491 fv Log-Normal Cox, Gamma FALSE #> 6485 406 0.5976504 0.115198092 fv Log-Normal Cox, Gamma FALSE #> 6501 407 0.7073151 0.135807607 fv Log-Normal Cox, Gamma FALSE #> 6517 408 0.4534840 0.092196184 fv Log-Normal Cox, Gamma FALSE #> 6533 409 0.5996849 0.115802131 fv Log-Normal Cox, Gamma FALSE #> 6549 410 0.7350483 0.141098444 fv Log-Normal Cox, Gamma FALSE #> 6565 411 0.5844294 0.114213027 fv Log-Normal Cox, Gamma FALSE #> 6581 412 0.6355002 0.123732471 fv Log-Normal Cox, Gamma FALSE #> 6597 413 0.4795980 0.095797688 fv Log-Normal Cox, Gamma FALSE #> 6613 414 0.8214290 0.154482941 fv Log-Normal Cox, Gamma FALSE #> 6629 415 1.0474272 0.190204210 fv Log-Normal Cox, Gamma TRUE #> 6645 416 0.5058717 0.100738059 fv Log-Normal Cox, Gamma FALSE #> 6661 417 0.5077597 0.099999290 fv Log-Normal Cox, Gamma FALSE #> 6677 418 0.7561877 0.141887306 fv Log-Normal Cox, Gamma FALSE #> 6693 419 0.4072063 0.081901396 fv Log-Normal Cox, Gamma FALSE #> 6709 420 0.6455902 0.124271550 fv Log-Normal Cox, Gamma FALSE #> 6725 421 0.7228223 0.137917495 fv Log-Normal Cox, Gamma FALSE #> 6741 422 0.5497526 0.108664623 fv Log-Normal Cox, Gamma FALSE #> 6757 423 0.5299681 0.103771903 fv Log-Normal Cox, Gamma FALSE #> 6773 424 0.5967779 0.115501171 fv Log-Normal Cox, Gamma FALSE #> 6789 425 0.7086593 0.136018726 fv Log-Normal Cox, Gamma FALSE #> 6805 426 0.7463880 0.141871924 fv Log-Normal Cox, Gamma FALSE #> 6821 427 0.9312417 0.173523729 fv Log-Normal Cox, Gamma FALSE #> 6837 428 0.7297720 0.139335836 fv Log-Normal Cox, Gamma FALSE #> 6853 429 0.6423904 0.123215428 fv Log-Normal Cox, Gamma FALSE #> 6869 430 0.7904786 0.149398357 fv Log-Normal Cox, Gamma FALSE #> 6885 431 0.5748521 0.111859450 fv Log-Normal Cox, Gamma FALSE #> 6901 432 0.7837588 0.147930476 fv Log-Normal Cox, Gamma FALSE #> 6917 433 0.5077611 0.099539593 fv Log-Normal Cox, Gamma FALSE #> 6933 434 0.5698565 0.111750053 fv Log-Normal Cox, Gamma FALSE #> 6949 435 0.4345445 0.087168355 fv Log-Normal Cox, Gamma FALSE #> 6965 436 0.6488462 0.124059132 fv Log-Normal Cox, Gamma FALSE #> 6981 437 0.4985519 0.098328201 fv Log-Normal Cox, Gamma FALSE #> 6997 438 0.7555537 0.142820397 fv Log-Normal Cox, Gamma FALSE #> 7013 439 0.5195431 0.102728067 fv Log-Normal Cox, Gamma FALSE #> 7029 440 0.4001901 0.081978639 fv Log-Normal Cox, Gamma FALSE #> 7045 441 0.5221735 0.103055594 fv Log-Normal Cox, Gamma FALSE #> 7061 442 0.6261760 0.120790762 fv Log-Normal Cox, Gamma FALSE #> 7077 443 0.7115103 0.135894182 fv Log-Normal Cox, Gamma FALSE #> 7093 444 0.8105371 0.154148350 fv Log-Normal Cox, Gamma FALSE #> 7109 445 0.7507591 0.141487559 fv Log-Normal Cox, Gamma FALSE #> 7125 446 0.5493869 0.107028499 fv Log-Normal Cox, Gamma FALSE #> 7141 447 0.7140244 0.135131039 fv Log-Normal Cox, Gamma FALSE #> 7157 448 0.7267933 0.007501018 fv Log-Normal Cox, Gamma TRUE #> 7173 449 0.8146904 0.153718357 fv Log-Normal Cox, Gamma FALSE #> 7189 450 0.5712926 0.005956948 fv Log-Normal Cox, Gamma TRUE #> 7205 451 0.6845371 0.007089436 fv Log-Normal Cox, Gamma TRUE #> 7221 452 0.6853901 0.130472792 fv Log-Normal Cox, Gamma FALSE #> 7237 453 0.6417479 0.123250237 fv Log-Normal Cox, Gamma FALSE #> 7253 454 0.5911276 0.114601422 fv Log-Normal Cox, Gamma FALSE #> 7269 455 0.5984098 0.116590552 fv Log-Normal Cox, Gamma FALSE #> 7285 456 0.4505173 0.090165786 fv Log-Normal Cox, Gamma FALSE #> 7301 457 0.7620831 0.143403670 fv Log-Normal Cox, Gamma FALSE #> 7317 458 0.6686242 0.128940301 fv Log-Normal Cox, Gamma FALSE #> 7333 459 0.7889405 0.148922011 fv Log-Normal Cox, Gamma FALSE #> 7349 460 0.5358846 0.103974358 fv Log-Normal Cox, Gamma FALSE #> 7365 461 0.6733711 0.128134140 fv Log-Normal Cox, Gamma FALSE #> 7381 462 0.5991040 0.115019026 fv Log-Normal Cox, Gamma FALSE #> 7397 463 0.8014668 0.152431379 fv Log-Normal Cox, Gamma FALSE #> 7413 464 0.6531009 0.124232793 fv Log-Normal Cox, Gamma FALSE #> 7429 465 0.7414829 0.140694298 fv Log-Normal Cox, Gamma FALSE #> 7445 466 0.7425237 0.140996639 fv Log-Normal Cox, Gamma FALSE #> 7461 467 0.6586817 0.127143401 fv Log-Normal Cox, Gamma FALSE #> 7477 468 0.7449020 0.139983687 fv Log-Normal Cox, Gamma FALSE #> 7493 469 0.7953894 0.151211847 fv Log-Normal Cox, Gamma FALSE #> 7509 470 0.6709136 0.129021836 fv Log-Normal Cox, Gamma FALSE #> 7525 471 0.5187494 0.101602830 fv Log-Normal Cox, Gamma FALSE #> 7541 472 0.7762352 0.146346463 fv Log-Normal Cox, Gamma FALSE #> 7557 473 0.6079842 0.117712573 fv Log-Normal Cox, Gamma FALSE #> 7573 474 0.8214972 0.153722361 fv Log-Normal Cox, Gamma FALSE #> 7589 475 0.5320746 0.103794209 fv Log-Normal Cox, Gamma FALSE #> 7605 476 0.4423624 0.088897145 fv Log-Normal Cox, Gamma FALSE #> 7621 477 0.4959494 0.099039376 fv Log-Normal Cox, Gamma FALSE #> 7637 478 0.6609360 0.125421024 fv Log-Normal Cox, Gamma FALSE #> 7653 479 0.6794332 0.129846506 fv Log-Normal Cox, Gamma FALSE #> 7669 480 0.9217237 0.171612582 fv Log-Normal Cox, Gamma FALSE #> 7685 481 0.8691868 0.161785535 fv Log-Normal Cox, Gamma FALSE #> 7701 482 0.6070555 0.116947739 fv Log-Normal Cox, Gamma FALSE #> 7717 483 0.7383561 0.139682652 fv Log-Normal Cox, Gamma FALSE #> 7733 484 0.7324532 0.138770244 fv Log-Normal Cox, Gamma FALSE #> 7749 485 0.5259924 0.102916295 fv Log-Normal Cox, Gamma FALSE #> 7765 486 0.3905568 0.078816713 fv Log-Normal Cox, Gamma FALSE #> 7781 487 0.7444582 0.140331842 fv Log-Normal Cox, Gamma FALSE #> 7797 488 0.3979924 0.080542514 fv Log-Normal Cox, Gamma FALSE #> 7813 489 0.6556261 0.126188084 fv Log-Normal Cox, Gamma FALSE #> 7829 490 0.6030237 NA fv Log-Normal Cox, Gamma NA #> 7845 491 0.6246608 0.120905487 fv Log-Normal Cox, Gamma FALSE #> 7861 492 0.4825731 0.094903496 fv Log-Normal Cox, Gamma FALSE #> 7877 493 0.9584215 0.177094162 fv Log-Normal Cox, Gamma FALSE #> 7893 494 0.6014177 NA fv Log-Normal Cox, Gamma NA #> 7909 495 0.7160493 0.135345935 fv Log-Normal Cox, Gamma FALSE #> 7925 496 0.8782739 0.009032245 fv Log-Normal Cox, Gamma TRUE #> 7941 497 0.5213246 0.102227484 fv Log-Normal Cox, Gamma FALSE #> 7957 498 0.6085879 NA fv Log-Normal Cox, Gamma NA #> 7973 499 0.7577549 0.144119208 fv Log-Normal Cox, Gamma FALSE #> 7989 500 0.6578232 NA fv Log-Normal Cox, Gamma NA #> 8005 501 1.1931654 0.214830369 fv Log-Normal Cox, Gamma TRUE #> 8021 502 0.7043797 0.134622077 fv Log-Normal Cox, Gamma FALSE #> 8037 503 0.6449373 0.123467432 fv Log-Normal Cox, Gamma FALSE #> 8053 504 0.7763836 0.146112050 fv Log-Normal Cox, Gamma FALSE #> 8069 505 0.6039837 0.115828958 fv Log-Normal Cox, Gamma FALSE #> 8085 506 0.8130845 0.152643800 fv Log-Normal Cox, Gamma FALSE #> 8101 507 0.5864967 0.112727930 fv Log-Normal Cox, Gamma FALSE #> 8117 508 0.5052933 0.100823068 fv Log-Normal Cox, Gamma FALSE #> 8133 509 0.5737083 0.111195098 fv Log-Normal Cox, Gamma FALSE #> 8149 510 0.5598720 0.108532643 fv Log-Normal Cox, Gamma FALSE #> 8165 511 0.4042964 0.081176179 fv Log-Normal Cox, Gamma FALSE #> 8181 512 0.5921053 0.114606976 fv Log-Normal Cox, Gamma FALSE #> 8197 513 0.6463252 0.123735617 fv Log-Normal Cox, Gamma FALSE #> 8213 514 0.6396754 0.123749665 fv Log-Normal Cox, Gamma FALSE #> 8229 515 0.5031870 0.099629425 fv Log-Normal Cox, Gamma FALSE #> 8245 516 0.6478424 0.124667693 fv Log-Normal Cox, Gamma FALSE #> 8261 517 0.3317136 0.068474900 fv Log-Normal Cox, Gamma FALSE #> 8277 518 0.6553708 0.125632038 fv Log-Normal Cox, Gamma FALSE #> 8293 519 0.6725635 0.128430012 fv Log-Normal Cox, Gamma FALSE #> 8309 520 0.6841932 0.129888821 fv Log-Normal Cox, Gamma FALSE #> 8325 521 0.6377897 NA fv Log-Normal Cox, Gamma NA #> 8341 522 0.4878991 0.096317522 fv Log-Normal Cox, Gamma FALSE #> 8357 523 0.6491452 0.123990211 fv Log-Normal Cox, Gamma FALSE #> 8373 524 0.5224167 0.104004647 fv Log-Normal Cox, Gamma FALSE #> 8389 525 0.6777538 0.130516488 fv Log-Normal Cox, Gamma FALSE #> 8405 526 0.5584814 0.109562292 fv Log-Normal Cox, Gamma FALSE #> 8421 527 0.6843104 0.132090449 fv Log-Normal Cox, Gamma FALSE #> 8437 528 0.7413526 0.140137362 fv Log-Normal Cox, Gamma FALSE #> 8453 529 0.7941552 0.148738686 fv Log-Normal Cox, Gamma FALSE #> 8469 530 0.3946714 0.079959532 fv Log-Normal Cox, Gamma FALSE #> 8485 531 0.7861082 0.147135826 fv Log-Normal Cox, Gamma FALSE #> 8501 532 0.6150512 NA fv Log-Normal Cox, Gamma NA #> 8517 533 0.6126927 0.118046878 fv Log-Normal Cox, Gamma FALSE #> 8533 534 0.6733886 0.129512171 fv Log-Normal Cox, Gamma FALSE #> 8549 535 0.7332816 0.138322504 fv Log-Normal Cox, Gamma FALSE #> 8565 536 0.5205081 0.102413941 fv Log-Normal Cox, Gamma FALSE #> 8581 537 1.0384914 0.188738973 fv Log-Normal Cox, Gamma TRUE #> 8597 538 0.4543334 0.090536911 fv Log-Normal Cox, Gamma FALSE #> 8613 539 0.6715901 NA fv Log-Normal Cox, Gamma NA #> 8629 540 0.5523389 0.107900473 fv Log-Normal Cox, Gamma FALSE #> 8645 541 0.8043327 0.150755997 fv Log-Normal Cox, Gamma FALSE #> 8661 542 0.6934063 0.132246580 fv Log-Normal Cox, Gamma FALSE #> 8677 543 0.7469130 0.142208358 fv Log-Normal Cox, Gamma FALSE #> 8693 544 0.6771137 0.129576795 fv Log-Normal Cox, Gamma FALSE #> 8709 545 0.5138754 0.100742098 fv Log-Normal Cox, Gamma FALSE #> 8725 546 0.8303685 0.156135534 fv Log-Normal Cox, Gamma FALSE #> 8741 547 0.6111091 0.118380971 fv Log-Normal Cox, Gamma FALSE #> 8757 548 0.5141719 0.102038969 fv Log-Normal Cox, Gamma FALSE #> 8773 549 0.7349328 0.138690104 fv Log-Normal Cox, Gamma FALSE #> 8789 550 0.5083307 0.101829261 fv Log-Normal Cox, Gamma FALSE #> 8805 551 0.6683084 0.127523621 fv Log-Normal Cox, Gamma FALSE #> 8821 552 0.6281157 NA fv Log-Normal Cox, Gamma NA #> 8837 553 0.7055114 0.132958925 fv Log-Normal Cox, Gamma FALSE #> 8853 554 0.8280844 0.156933583 fv Log-Normal Cox, Gamma FALSE #> 8869 555 0.6843468 0.130041654 fv Log-Normal Cox, Gamma FALSE #> 8885 556 0.7533713 0.142048697 fv Log-Normal Cox, Gamma FALSE #> 8901 557 0.6250902 0.120157525 fv Log-Normal Cox, Gamma FALSE #> 8917 558 0.6066749 0.117016286 fv Log-Normal Cox, Gamma FALSE #> 8933 559 0.5426162 0.106388816 fv Log-Normal Cox, Gamma FALSE #> 8949 560 0.7141690 0.135766994 fv Log-Normal Cox, Gamma FALSE #> 8965 561 1.0274772 0.187741551 fv Log-Normal Cox, Gamma TRUE #> 8981 562 0.7421217 0.140796140 fv Log-Normal Cox, Gamma FALSE #> 8997 563 0.6799533 0.129434410 fv Log-Normal Cox, Gamma FALSE #> 9013 564 0.5069500 0.099182157 fv Log-Normal Cox, Gamma FALSE #> 9029 565 0.5192371 0.102478262 fv Log-Normal Cox, Gamma FALSE #> 9045 566 0.6242465 0.120118523 fv Log-Normal Cox, Gamma FALSE #> 9061 567 0.5965461 0.115018660 fv Log-Normal Cox, Gamma FALSE #> 9077 568 0.4716597 0.093558081 fv Log-Normal Cox, Gamma FALSE #> 9093 569 0.7968988 0.150002405 fv Log-Normal Cox, Gamma FALSE #> 9109 570 0.4621690 0.091289543 fv Log-Normal Cox, Gamma FALSE #> 9125 571 0.5841130 0.112584938 fv Log-Normal Cox, Gamma FALSE #> 9141 572 0.5706712 0.111580535 fv Log-Normal Cox, Gamma FALSE #> 9157 573 0.5738192 0.111598149 fv Log-Normal Cox, Gamma FALSE #> 9173 574 0.6448252 0.123758649 fv Log-Normal Cox, Gamma FALSE #> 9189 575 0.5479147 0.107160503 fv Log-Normal Cox, Gamma FALSE #> 9205 576 0.5551117 0.108212537 fv Log-Normal Cox, Gamma FALSE #> 9221 577 0.9281460 0.174612909 fv Log-Normal Cox, Gamma FALSE #> 9237 578 0.5259939 0.103027487 fv Log-Normal Cox, Gamma FALSE #> 9253 579 0.5383092 0.106116519 fv Log-Normal Cox, Gamma FALSE #> 9269 580 0.4711285 0.094424105 fv Log-Normal Cox, Gamma FALSE #> 9285 581 0.6494811 0.124008306 fv Log-Normal Cox, Gamma FALSE #> 9301 582 0.6771744 0.129385168 fv Log-Normal Cox, Gamma FALSE #> 9317 583 0.8865092 0.163523339 fv Log-Normal Cox, Gamma FALSE #> 9333 584 0.5000000 0.098868076 fv Log-Normal Cox, Gamma FALSE #> 9349 585 0.6156845 0.118126235 fv Log-Normal Cox, Gamma FALSE #> 9365 586 0.6909358 0.132262861 fv Log-Normal Cox, Gamma FALSE #> 9381 587 0.8254731 0.156164504 fv Log-Normal Cox, Gamma FALSE #> 9397 588 0.4985840 0.098185971 fv Log-Normal Cox, Gamma FALSE #> 9413 589 0.5667331 0.110590810 fv Log-Normal Cox, Gamma FALSE #> 9429 590 0.6755327 0.128974744 fv Log-Normal Cox, Gamma FALSE #> 9445 591 0.7100735 0.134783444 fv Log-Normal Cox, Gamma FALSE #> 9461 592 0.6398759 0.122043702 fv Log-Normal Cox, Gamma FALSE #> 9477 593 0.8497606 0.159346921 fv Log-Normal Cox, Gamma FALSE #> 9493 594 0.5974971 0.114783658 fv Log-Normal Cox, Gamma FALSE #> 9509 595 0.4889633 0.096514942 fv Log-Normal Cox, Gamma FALSE #> 9525 596 0.7551888 0.146743300 fv Log-Normal Cox, Gamma FALSE #> 9541 597 0.5546966 0.108577585 fv Log-Normal Cox, Gamma FALSE #> 9557 598 0.8867973 0.164441792 fv Log-Normal Cox, Gamma FALSE #> 9573 599 0.7171896 0.139493732 fv Log-Normal Cox, Gamma FALSE #> 9589 600 0.4879105 0.096772910 fv Log-Normal Cox, Gamma FALSE #> 9605 601 1.0026921 NA fv Log-Normal Cox, Gamma TRUE #> 9621 602 0.9325088 0.173557163 fv Log-Normal Cox, Gamma FALSE #> 9637 603 0.3888751 0.079033438 fv Log-Normal Cox, Gamma FALSE #> 9653 604 0.6842209 0.130715889 fv Log-Normal Cox, Gamma FALSE #> 9669 605 1.2003127 0.217054265 fv Log-Normal Cox, Gamma TRUE #> 9685 606 0.6547442 NA fv Log-Normal Cox, Gamma NA #> 9701 607 0.5317105 0.105097289 fv Log-Normal Cox, Gamma FALSE #> 9717 608 0.3897320 0.078854986 fv Log-Normal Cox, Gamma FALSE #> 9733 609 0.7396654 0.139623911 fv Log-Normal Cox, Gamma FALSE #> 9749 610 0.5778586 0.112592700 fv Log-Normal Cox, Gamma FALSE #> 9765 611 0.7311360 0.139959143 fv Log-Normal Cox, Gamma FALSE #> 9781 612 0.4822317 0.094986841 fv Log-Normal Cox, Gamma FALSE #> 9797 613 0.6700561 0.127315233 fv Log-Normal Cox, Gamma FALSE #> 9813 614 0.6139652 0.117963537 fv Log-Normal Cox, Gamma FALSE #> 9829 615 0.7041258 0.133147573 fv Log-Normal Cox, Gamma FALSE #> 9845 616 0.6486597 0.123698992 fv Log-Normal Cox, Gamma FALSE #> 9861 617 0.6631049 0.126776116 fv Log-Normal Cox, Gamma FALSE #> 9877 618 0.6326642 0.122967228 fv Log-Normal Cox, Gamma FALSE #> 9893 619 0.7031687 0.133526200 fv Log-Normal Cox, Gamma FALSE #> 9909 620 0.7016931 0.134030260 fv Log-Normal Cox, Gamma FALSE #> 9925 621 0.4804179 0.094630231 fv Log-Normal Cox, Gamma FALSE #> 9941 622 0.5398830 0.105518836 fv Log-Normal Cox, Gamma FALSE #> 9957 623 0.7882768 NA fv Log-Normal Cox, Gamma NA #> 9973 624 0.5199565 0.102594438 fv Log-Normal Cox, Gamma FALSE #> 9989 625 0.6821884 0.131007762 fv Log-Normal Cox, Gamma FALSE #> 10005 626 0.5553299 0.108156062 fv Log-Normal Cox, Gamma FALSE #> 10021 627 0.5171324 0.100946474 fv Log-Normal Cox, Gamma FALSE #> 10037 628 0.6021959 0.117996583 fv Log-Normal Cox, Gamma FALSE #> 10053 629 0.5988361 0.116317156 fv Log-Normal Cox, Gamma FALSE #> 10069 630 0.7275214 0.137648611 fv Log-Normal Cox, Gamma FALSE #> 10085 631 0.6014324 0.116267022 fv Log-Normal Cox, Gamma FALSE #> 10101 632 0.6539662 0.125735227 fv Log-Normal Cox, Gamma FALSE #> 10117 633 0.4515294 0.090140744 fv Log-Normal Cox, Gamma FALSE #> 10133 634 0.5366501 0.104960671 fv Log-Normal Cox, Gamma FALSE #> 10149 635 0.7992162 0.151686284 fv Log-Normal Cox, Gamma FALSE #> 10165 636 0.3679142 0.074745635 fv Log-Normal Cox, Gamma FALSE #> 10181 637 0.8172567 0.153430015 fv Log-Normal Cox, Gamma FALSE #> 10197 638 0.6188470 0.119900789 fv Log-Normal Cox, Gamma FALSE #> 10213 639 0.4075475 0.082636108 fv Log-Normal Cox, Gamma FALSE #> 10229 640 0.6079813 0.117311944 fv Log-Normal Cox, Gamma FALSE #> 10245 641 0.5327991 0.105035147 fv Log-Normal Cox, Gamma FALSE #> 10261 642 0.5597292 0.109129262 fv Log-Normal Cox, Gamma FALSE #> 10277 643 0.6139384 0.118367241 fv Log-Normal Cox, Gamma FALSE #> 10293 644 0.5866635 NA fv Log-Normal Cox, Gamma NA #> 10309 645 0.7208784 0.137431969 fv Log-Normal Cox, Gamma FALSE #> 10325 646 0.6933400 0.131413088 fv Log-Normal Cox, Gamma FALSE #> 10341 647 0.5671578 0.109870687 fv Log-Normal Cox, Gamma FALSE #> 10357 648 0.9313582 0.172295847 fv Log-Normal Cox, Gamma FALSE #> 10373 649 0.5481963 0.107649002 fv Log-Normal Cox, Gamma FALSE #> 10389 650 0.7605507 0.143662754 fv Log-Normal Cox, Gamma FALSE #> 10405 651 0.6464110 0.123572571 fv Log-Normal Cox, Gamma FALSE #> 10421 652 1.0094659 NA fv Log-Normal Cox, Gamma TRUE #> 10437 653 0.4670246 0.092824199 fv Log-Normal Cox, Gamma FALSE #> 10453 654 0.5010104 0.099183261 fv Log-Normal Cox, Gamma FALSE #> 10469 655 0.6150549 NA fv Log-Normal Cox, Gamma NA #> 10485 656 0.5876953 0.113979268 fv Log-Normal Cox, Gamma FALSE #> 10501 657 0.4694330 0.093140718 fv Log-Normal Cox, Gamma FALSE #> 10517 658 0.9549667 0.176185188 fv Log-Normal Cox, Gamma FALSE #> 10533 659 0.9190884 0.171500306 fv Log-Normal Cox, Gamma FALSE #> 10549 660 0.6910145 0.131000152 fv Log-Normal Cox, Gamma FALSE #> 10565 661 0.4568377 0.090509242 fv Log-Normal Cox, Gamma FALSE #> 10581 662 0.5172112 0.101535270 fv Log-Normal Cox, Gamma FALSE #> 10597 663 0.5894338 0.114077847 fv Log-Normal Cox, Gamma FALSE #> 10613 664 0.6056533 0.116455334 fv Log-Normal Cox, Gamma FALSE #> 10629 665 0.7852957 0.148553995 fv Log-Normal Cox, Gamma FALSE #> 10645 666 0.9859896 0.180554439 fv Log-Normal Cox, Gamma TRUE #> 10661 667 0.5862766 0.113642712 fv Log-Normal Cox, Gamma FALSE #> 10677 668 0.5949446 0.115866220 fv Log-Normal Cox, Gamma FALSE #> 10693 669 0.7850263 0.147802853 fv Log-Normal Cox, Gamma FALSE #> 10709 670 0.5635746 NA fv Log-Normal Cox, Gamma NA #> 10725 671 0.7259235 0.138202958 fv Log-Normal Cox, Gamma FALSE #> 10741 672 0.8718181 0.163010978 fv Log-Normal Cox, Gamma FALSE #> 10757 673 0.6408388 0.123876096 fv Log-Normal Cox, Gamma FALSE #> 10773 674 0.7466389 0.142055048 fv Log-Normal Cox, Gamma FALSE #> 10789 675 0.5421365 0.106966298 fv Log-Normal Cox, Gamma FALSE #> 10805 676 0.8391278 0.157251504 fv Log-Normal Cox, Gamma FALSE #> 10821 677 0.6225082 0.120465864 fv Log-Normal Cox, Gamma FALSE #> 10837 678 0.5245500 0.103447698 fv Log-Normal Cox, Gamma FALSE #> 10853 679 0.5851618 NA fv Log-Normal Cox, Gamma NA #> 10869 680 0.6683333 0.127906739 fv Log-Normal Cox, Gamma FALSE #> 10885 681 0.8702246 0.162150474 fv Log-Normal Cox, Gamma FALSE #> 10901 682 0.5397913 0.104974509 fv Log-Normal Cox, Gamma FALSE #> 10917 683 0.7569255 0.145064290 fv Log-Normal Cox, Gamma FALSE #> 10933 684 0.9591995 0.177344786 fv Log-Normal Cox, Gamma FALSE #> 10949 685 0.5623235 0.109076488 fv Log-Normal Cox, Gamma FALSE #> 10965 686 0.8192108 0.153746623 fv Log-Normal Cox, Gamma FALSE #> 10981 687 0.5286876 0.103347965 fv Log-Normal Cox, Gamma FALSE #> 10997 688 0.5358129 0.105056766 fv Log-Normal Cox, Gamma FALSE #> 11013 689 0.5913183 0.115293694 fv Log-Normal Cox, Gamma FALSE #> 11029 690 0.7268248 0.137887225 fv Log-Normal Cox, Gamma FALSE #> 11045 691 0.7463031 0.145380092 fv Log-Normal Cox, Gamma FALSE #> 11061 692 0.5489217 0.106600253 fv Log-Normal Cox, Gamma FALSE #> 11077 693 0.4519482 0.090149874 fv Log-Normal Cox, Gamma FALSE #> 11093 694 0.6822745 0.130763160 fv Log-Normal Cox, Gamma FALSE #> 11109 695 0.5559127 0.108383281 fv Log-Normal Cox, Gamma FALSE #> 11125 696 0.6691356 0.127526992 fv Log-Normal Cox, Gamma FALSE #> 11141 697 0.8042098 0.152144346 fv Log-Normal Cox, Gamma FALSE #> 11157 698 0.4023952 0.081060891 fv Log-Normal Cox, Gamma FALSE #> 11173 699 0.6212888 0.120567498 fv Log-Normal Cox, Gamma FALSE #> 11189 700 0.4839348 0.095596275 fv Log-Normal Cox, Gamma FALSE #> 11205 701 0.7137080 0.135569766 fv Log-Normal Cox, Gamma FALSE #> 11221 702 0.7879064 0.150369164 fv Log-Normal Cox, Gamma FALSE #> 11237 703 0.6841934 0.131021982 fv Log-Normal Cox, Gamma FALSE #> 11253 704 0.5994003 0.116696139 fv Log-Normal Cox, Gamma FALSE #> 11269 705 0.5822209 0.112386316 fv Log-Normal Cox, Gamma FALSE #> 11285 706 0.6451694 0.123668202 fv Log-Normal Cox, Gamma FALSE #> 11301 707 0.7728336 0.144921118 fv Log-Normal Cox, Gamma FALSE #> 11317 708 0.7578368 0.142268276 fv Log-Normal Cox, Gamma FALSE #> 11333 709 0.7044466 0.137535324 fv Log-Normal Cox, Gamma FALSE #> 11349 710 0.4848854 0.096366538 fv Log-Normal Cox, Gamma FALSE #> 11365 711 0.6696038 0.131629200 fv Log-Normal Cox, Gamma FALSE #> 11381 712 0.6364269 NA fv Log-Normal Cox, Gamma NA #> 11397 713 0.8785677 0.164027544 fv Log-Normal Cox, Gamma FALSE #> 11413 714 0.7289698 0.139114880 fv Log-Normal Cox, Gamma FALSE #> 11429 715 0.6760923 0.128597343 fv Log-Normal Cox, Gamma FALSE #> 11445 716 0.6206559 0.118841559 fv Log-Normal Cox, Gamma FALSE #> 11461 717 0.6715545 0.128487711 fv Log-Normal Cox, Gamma FALSE #> 11477 718 0.7875216 0.148889321 fv Log-Normal Cox, Gamma FALSE #> 11493 719 0.9351608 0.174706425 fv Log-Normal Cox, Gamma FALSE #> 11509 720 0.6329848 0.120820543 fv Log-Normal Cox, Gamma FALSE #> 11525 721 0.5076976 0.099834680 fv Log-Normal Cox, Gamma FALSE #> 11541 722 0.7036759 0.133565138 fv Log-Normal Cox, Gamma FALSE #> 11557 723 0.5811768 0.113354759 fv Log-Normal Cox, Gamma FALSE #> 11573 724 0.6810073 0.131625143 fv Log-Normal Cox, Gamma FALSE #> 11589 725 0.6749253 0.128842134 fv Log-Normal Cox, Gamma FALSE #> 11605 726 0.5682980 0.110789939 fv Log-Normal Cox, Gamma FALSE #> 11621 727 0.6973867 0.132403499 fv Log-Normal Cox, Gamma FALSE #> 11637 728 0.9034403 0.167176467 fv Log-Normal Cox, Gamma FALSE #> 11653 729 0.6618256 0.126659612 fv Log-Normal Cox, Gamma FALSE #> 11669 730 0.7355975 0.139569325 fv Log-Normal Cox, Gamma FALSE #> 11685 731 0.4578597 0.091222814 fv Log-Normal Cox, Gamma FALSE #> 11701 732 0.3962879 0.079619289 fv Log-Normal Cox, Gamma FALSE #> 11717 733 0.7799217 0.146397355 fv Log-Normal Cox, Gamma FALSE #> 11733 734 0.7250782 0.136961355 fv Log-Normal Cox, Gamma FALSE #> 11749 735 0.8080674 0.150410061 fv Log-Normal Cox, Gamma FALSE #> 11765 736 0.7302051 0.138445599 fv Log-Normal Cox, Gamma FALSE #> 11781 737 0.6501185 0.124084760 fv Log-Normal Cox, Gamma FALSE #> 11797 738 0.5133997 0.101780781 fv Log-Normal Cox, Gamma FALSE #> 11813 739 0.5361525 0.104999322 fv Log-Normal Cox, Gamma FALSE #> 11829 740 0.7272712 0.138201013 fv Log-Normal Cox, Gamma FALSE #> 11845 741 0.7920042 0.148046562 fv Log-Normal Cox, Gamma FALSE #> 11861 742 0.5971878 0.115515589 fv Log-Normal Cox, Gamma FALSE #> 11877 743 0.6372487 0.122156878 fv Log-Normal Cox, Gamma FALSE #> 11893 744 0.6076604 0.117080863 fv Log-Normal Cox, Gamma FALSE #> 11909 745 0.6258474 0.120185601 fv Log-Normal Cox, Gamma FALSE #> 11925 746 0.6137741 0.122398199 fv Log-Normal Cox, Gamma FALSE #> 11941 747 0.5661390 0.109952145 fv Log-Normal Cox, Gamma FALSE #> 11957 748 0.8181814 0.154842528 fv Log-Normal Cox, Gamma FALSE #> 11973 749 0.8883396 0.166043136 fv Log-Normal Cox, Gamma FALSE #> 11989 750 0.6714251 0.128300301 fv Log-Normal Cox, Gamma FALSE #> 12005 751 0.7715463 0.145206839 fv Log-Normal Cox, Gamma FALSE #> 12021 752 0.6441060 0.126152659 fv Log-Normal Cox, Gamma FALSE #> 12037 753 0.4018435 0.081668489 fv Log-Normal Cox, Gamma FALSE #> 12053 754 0.6463386 0.123715910 fv Log-Normal Cox, Gamma FALSE #> 12069 755 0.5965575 0.115533717 fv Log-Normal Cox, Gamma FALSE #> 12085 756 0.3440358 0.070858933 fv Log-Normal Cox, Gamma FALSE #> 12101 757 0.6413942 0.123412706 fv Log-Normal Cox, Gamma FALSE #> 12117 758 0.6787276 0.129764259 fv Log-Normal Cox, Gamma FALSE #> 12133 759 0.5787070 0.112332541 fv Log-Normal Cox, Gamma FALSE #> 12149 760 0.8563906 0.161448535 fv Log-Normal Cox, Gamma FALSE #> 12165 761 0.5460240 0.107074937 fv Log-Normal Cox, Gamma FALSE #> 12181 762 0.7127921 0.136154341 fv Log-Normal Cox, Gamma FALSE #> 12197 763 0.5129074 0.101292545 fv Log-Normal Cox, Gamma FALSE #> 12213 764 0.5763837 0.111781244 fv Log-Normal Cox, Gamma FALSE #> 12229 765 0.7664589 0.143748738 fv Log-Normal Cox, Gamma FALSE #> 12245 766 0.5600605 0.108454352 fv Log-Normal Cox, Gamma FALSE #> 12261 767 0.7366908 0.139359440 fv Log-Normal Cox, Gamma FALSE #> 12277 768 0.4817040 0.094934157 fv Log-Normal Cox, Gamma FALSE #> 12293 769 0.8405919 0.157104432 fv Log-Normal Cox, Gamma FALSE #> 12309 770 0.5195843 0.102208060 fv Log-Normal Cox, Gamma FALSE #> 12325 771 0.5317918 0.106680566 fv Log-Normal Cox, Gamma FALSE #> 12341 772 0.5016173 0.098605760 fv Log-Normal Cox, Gamma FALSE #> 12357 773 0.5638723 0.111342842 fv Log-Normal Cox, Gamma FALSE #> 12373 774 0.6730202 0.129443064 fv Log-Normal Cox, Gamma FALSE #> 12389 775 0.6121184 NA fv Log-Normal Cox, Gamma NA #> 12405 776 0.5603536 0.108454516 fv Log-Normal Cox, Gamma FALSE #> 12421 777 0.5635692 0.109901110 fv Log-Normal Cox, Gamma FALSE #> 12437 778 0.5287791 0.103608108 fv Log-Normal Cox, Gamma FALSE #> 12453 779 0.5459400 0.106667094 fv Log-Normal Cox, Gamma FALSE #> 12469 780 0.5454313 0.106487875 fv Log-Normal Cox, Gamma FALSE #> 12485 781 0.6435394 0.123723033 fv Log-Normal Cox, Gamma FALSE #> 12501 782 0.5440785 0.106183644 fv Log-Normal Cox, Gamma FALSE #> 12517 783 0.5646684 0.110072451 fv Log-Normal Cox, Gamma FALSE #> 12533 784 0.7140410 0.135997697 fv Log-Normal Cox, Gamma FALSE #> 12549 785 0.4320567 0.086209585 fv Log-Normal Cox, Gamma FALSE #> 12565 786 0.5871582 0.114417704 fv Log-Normal Cox, Gamma FALSE #> 12581 787 0.8307302 0.154887306 fv Log-Normal Cox, Gamma FALSE #> 12597 788 0.6235801 NA fv Log-Normal Cox, Gamma NA #> 12613 789 0.7648412 0.144381392 fv Log-Normal Cox, Gamma FALSE #> 12629 790 0.6109958 0.117593356 fv Log-Normal Cox, Gamma FALSE #> 12645 791 0.3740806 0.075608302 fv Log-Normal Cox, Gamma FALSE #> 12661 792 0.5561341 0.110068462 fv Log-Normal Cox, Gamma FALSE #> 12677 793 0.7406961 0.139600573 fv Log-Normal Cox, Gamma FALSE #> 12693 794 0.6753768 0.133145979 fv Log-Normal Cox, Gamma FALSE #> 12709 795 0.5773739 0.112448186 fv Log-Normal Cox, Gamma FALSE #> 12725 796 0.5102600 0.100449198 fv Log-Normal Cox, Gamma FALSE #> 12741 797 0.5152045 0.100934224 fv Log-Normal Cox, Gamma FALSE #> 12757 798 0.4019849 0.081496314 fv Log-Normal Cox, Gamma FALSE #> 12773 799 0.6295888 0.120381526 fv Log-Normal Cox, Gamma FALSE #> 12789 800 0.6506860 0.125151707 fv Log-Normal Cox, Gamma FALSE #> 12805 801 0.9235044 0.172121125 fv Log-Normal Cox, Gamma FALSE #> 12821 802 0.6243786 0.119285799 fv Log-Normal Cox, Gamma FALSE #> 12837 803 0.6127131 0.118494093 fv Log-Normal Cox, Gamma FALSE #> 12853 804 0.6683181 0.127845508 fv Log-Normal Cox, Gamma FALSE #> 12869 805 0.8655709 0.164958554 fv Log-Normal Cox, Gamma FALSE #> 12885 806 0.8307338 0.158511657 fv Log-Normal Cox, Gamma FALSE #> 12901 807 0.6847624 0.007098338 fv Log-Normal Cox, Gamma TRUE #> 12917 808 0.4608903 0.091363357 fv Log-Normal Cox, Gamma FALSE #> 12933 809 0.5746463 0.111581806 fv Log-Normal Cox, Gamma FALSE #> 12949 810 0.6261066 0.120222463 fv Log-Normal Cox, Gamma FALSE #> 12965 811 0.4101906 0.082327643 fv Log-Normal Cox, Gamma FALSE #> 12981 812 0.6375601 0.122977631 fv Log-Normal Cox, Gamma FALSE #> 12997 813 0.7067174 0.133583771 fv Log-Normal Cox, Gamma FALSE #> 13013 814 0.6125992 0.118493837 fv Log-Normal Cox, Gamma FALSE #> 13029 815 0.5418829 0.107600002 fv Log-Normal Cox, Gamma FALSE #> 13045 816 0.5858533 NA fv Log-Normal Cox, Gamma NA #> 13061 817 0.4076984 0.081983169 fv Log-Normal Cox, Gamma FALSE #> 13077 818 0.6378915 0.124745913 fv Log-Normal Cox, Gamma FALSE #> 13093 819 0.7019073 0.132946154 fv Log-Normal Cox, Gamma FALSE #> 13109 820 0.8104918 0.153613082 fv Log-Normal Cox, Gamma FALSE #> 13125 821 0.4928717 0.096887270 fv Log-Normal Cox, Gamma FALSE #> 13141 822 0.8106514 0.152692972 fv Log-Normal Cox, Gamma FALSE #> 13157 823 0.9414082 0.176020573 fv Log-Normal Cox, Gamma FALSE #> 13173 824 0.7807771 0.147247985 fv Log-Normal Cox, Gamma FALSE #> 13189 825 0.7034024 0.134541272 fv Log-Normal Cox, Gamma FALSE #> 13205 826 0.7094238 0.135741788 fv Log-Normal Cox, Gamma FALSE #> 13221 827 0.8135921 0.154539346 fv Log-Normal Cox, Gamma FALSE #> 13237 828 0.5962366 0.116746571 fv Log-Normal Cox, Gamma FALSE #> 13253 829 0.6516192 0.125243568 fv Log-Normal Cox, Gamma FALSE #> 13269 830 0.7515323 0.142232279 fv Log-Normal Cox, Gamma FALSE #> 13285 831 0.6930557 0.131294024 fv Log-Normal Cox, Gamma FALSE #> 13301 832 0.4914554 0.097267429 fv Log-Normal Cox, Gamma FALSE #> 13317 833 0.7539417 0.142658069 fv Log-Normal Cox, Gamma FALSE #> 13333 834 0.5800657 0.113033660 fv Log-Normal Cox, Gamma FALSE #> 13349 835 0.6207208 0.120104030 fv Log-Normal Cox, Gamma FALSE #> 13365 836 0.6793893 0.129865727 fv Log-Normal Cox, Gamma FALSE #> 13381 837 0.7548904 0.143482390 fv Log-Normal Cox, Gamma FALSE #> 13397 838 0.6016750 0.116332111 fv Log-Normal Cox, Gamma FALSE #> 13413 839 0.5676191 0.111629149 fv Log-Normal Cox, Gamma FALSE #> 13429 840 0.5784233 0.006032357 fv Log-Normal Cox, Gamma TRUE #> 13445 841 0.9024294 0.169028872 fv Log-Normal Cox, Gamma FALSE #> 13461 842 0.4944220 0.097387303 fv Log-Normal Cox, Gamma FALSE #> 13477 843 0.6174343 NA fv Log-Normal Cox, Gamma NA #> 13493 844 0.7765827 0.145469783 fv Log-Normal Cox, Gamma FALSE #> 13509 845 0.8061865 0.151157541 fv Log-Normal Cox, Gamma FALSE #> 13525 846 0.4946398 0.097713008 fv Log-Normal Cox, Gamma FALSE #> 13541 847 0.8872828 0.164244428 fv Log-Normal Cox, Gamma FALSE #> 13557 848 0.6722396 0.128137186 fv Log-Normal Cox, Gamma FALSE #> 13573 849 0.5499169 0.107476581 fv Log-Normal Cox, Gamma FALSE #> 13589 850 0.7639498 0.144795253 fv Log-Normal Cox, Gamma FALSE #> 13605 851 0.5845154 0.112833034 fv Log-Normal Cox, Gamma FALSE #> 13621 852 0.6056401 0.116696724 fv Log-Normal Cox, Gamma FALSE #> 13637 853 0.8570990 0.158665026 fv Log-Normal Cox, Gamma FALSE #> 13653 854 0.6183688 NA fv Log-Normal Cox, Gamma NA #> 13669 855 0.5442098 0.106470731 fv Log-Normal Cox, Gamma FALSE #> 13685 856 0.7602114 0.143711564 fv Log-Normal Cox, Gamma FALSE #> 13701 857 0.7054449 0.134533671 fv Log-Normal Cox, Gamma FALSE #> 13717 858 0.8738845 0.162323725 fv Log-Normal Cox, Gamma FALSE #> 13733 859 0.8433205 0.158129658 fv Log-Normal Cox, Gamma FALSE #> 13749 860 0.6194807 0.120192334 fv Log-Normal Cox, Gamma FALSE #> 13765 861 0.4240218 0.085035129 fv Log-Normal Cox, Gamma FALSE #> 13781 862 0.5727095 0.111056530 fv Log-Normal Cox, Gamma FALSE #> 13797 863 0.5931713 0.114924197 fv Log-Normal Cox, Gamma FALSE #> 13813 864 0.7886915 0.148632446 fv Log-Normal Cox, Gamma FALSE #> 13829 865 0.8417216 0.157705339 fv Log-Normal Cox, Gamma FALSE #> 13845 866 0.7324513 0.140415114 fv Log-Normal Cox, Gamma FALSE #> 13861 867 0.5336145 0.105020826 fv Log-Normal Cox, Gamma FALSE #> 13877 868 0.8326129 0.157190658 fv Log-Normal Cox, Gamma FALSE #> 13893 869 0.4553176 0.090454476 fv Log-Normal Cox, Gamma FALSE #> 13909 870 0.7275115 0.139000119 fv Log-Normal Cox, Gamma FALSE #> 13925 871 0.4562028 0.090945564 fv Log-Normal Cox, Gamma FALSE #> 13941 872 0.4282411 0.086039728 fv Log-Normal Cox, Gamma FALSE #> 13957 873 0.7410010 0.139529175 fv Log-Normal Cox, Gamma FALSE #> 13973 874 0.6406572 0.123512358 fv Log-Normal Cox, Gamma FALSE #> 13989 875 0.5379126 0.104728825 fv Log-Normal Cox, Gamma FALSE #> 14005 876 0.5522451 0.108150503 fv Log-Normal Cox, Gamma FALSE #> 14021 877 0.5176314 0.102540214 fv Log-Normal Cox, Gamma FALSE #> 14037 878 0.6117499 0.118653415 fv Log-Normal Cox, Gamma FALSE #> 14053 879 0.6092139 0.117915292 fv Log-Normal Cox, Gamma FALSE #> 14069 880 0.7281917 0.137629429 fv Log-Normal Cox, Gamma FALSE #> 14085 881 0.4806627 0.094979574 fv Log-Normal Cox, Gamma FALSE #> 14101 882 0.6538869 0.126627474 fv Log-Normal Cox, Gamma FALSE #> 14117 883 0.5610964 0.109264809 fv Log-Normal Cox, Gamma FALSE #> 14133 884 0.4925104 0.097240268 fv Log-Normal Cox, Gamma FALSE #> 14149 885 0.6589978 0.126130195 fv Log-Normal Cox, Gamma FALSE #> 14165 886 0.5726060 0.111766627 fv Log-Normal Cox, Gamma FALSE #> 14181 887 0.3455108 0.071029692 fv Log-Normal Cox, Gamma FALSE #> 14197 888 0.5385587 0.104973741 fv Log-Normal Cox, Gamma FALSE #> 14213 889 0.6028528 0.116696393 fv Log-Normal Cox, Gamma FALSE #> 14229 890 0.6115686 0.117674263 fv Log-Normal Cox, Gamma FALSE #> 14245 891 0.6530045 0.124860018 fv Log-Normal Cox, Gamma FALSE #> 14261 892 0.9512529 0.177813247 fv Log-Normal Cox, Gamma FALSE #> 14277 893 0.4324512 0.086825693 fv Log-Normal Cox, Gamma FALSE #> 14293 894 0.5597415 0.110075287 fv Log-Normal Cox, Gamma FALSE #> 14309 895 0.7000887 0.134095874 fv Log-Normal Cox, Gamma FALSE #> 14325 896 0.4728721 0.093547165 fv Log-Normal Cox, Gamma FALSE #> 14341 897 0.5701801 0.110691422 fv Log-Normal Cox, Gamma FALSE #> 14357 898 0.6771217 0.129572295 fv Log-Normal Cox, Gamma FALSE #> 14373 899 0.7731560 0.148972225 fv Log-Normal Cox, Gamma FALSE #> 14389 900 0.6242420 0.120427482 fv Log-Normal Cox, Gamma FALSE #> 14405 901 0.6907226 0.131189457 fv Log-Normal Cox, Gamma FALSE #> 14421 902 0.7152259 0.135339899 fv Log-Normal Cox, Gamma FALSE #> 14437 903 0.5105152 0.100732976 fv Log-Normal Cox, Gamma FALSE #> 14453 904 0.5856935 0.113481600 fv Log-Normal Cox, Gamma FALSE #> 14469 905 0.5997602 NA fv Log-Normal Cox, Gamma NA #> 14485 906 0.6365419 0.122578578 fv Log-Normal Cox, Gamma FALSE #> 14501 907 0.5898802 0.115521684 fv Log-Normal Cox, Gamma FALSE #> 14517 908 0.4531988 0.090312108 fv Log-Normal Cox, Gamma FALSE #> 14533 909 0.7511674 0.141395630 fv Log-Normal Cox, Gamma FALSE #> 14549 910 0.5647211 0.109999123 fv Log-Normal Cox, Gamma FALSE #> 14565 911 0.6067530 0.117194452 fv Log-Normal Cox, Gamma FALSE #> 14581 912 0.3617871 0.073947377 fv Log-Normal Cox, Gamma FALSE #> 14597 913 0.5505871 0.107420031 fv Log-Normal Cox, Gamma FALSE #> 14613 914 0.7699292 0.145248215 fv Log-Normal Cox, Gamma FALSE #> 14629 915 0.5864275 0.113192932 fv Log-Normal Cox, Gamma FALSE #> 14645 916 0.6235821 NA fv Log-Normal Cox, Gamma NA #> 14661 917 0.4809311 0.095930729 fv Log-Normal Cox, Gamma FALSE #> 14677 918 0.5527238 0.108983870 fv Log-Normal Cox, Gamma FALSE #> 14693 919 0.6191935 0.119875457 fv Log-Normal Cox, Gamma FALSE #> 14709 920 0.5966615 NA fv Log-Normal Cox, Gamma NA #> 14725 921 0.9739077 0.178572509 fv Log-Normal Cox, Gamma FALSE #> 14741 922 0.5740252 0.111843075 fv Log-Normal Cox, Gamma FALSE #> 14757 923 0.8611072 0.160092580 fv Log-Normal Cox, Gamma FALSE #> 14773 924 0.6116145 0.118190811 fv Log-Normal Cox, Gamma FALSE #> 14789 925 0.6970632 0.133922744 fv Log-Normal Cox, Gamma FALSE #> 14805 926 0.7548431 0.141797187 fv Log-Normal Cox, Gamma FALSE #> 14821 927 0.7246747 0.137313580 fv Log-Normal Cox, Gamma FALSE #> 14837 928 0.6419417 NA fv Log-Normal Cox, Gamma NA #> 14853 929 0.6743449 0.128440051 fv Log-Normal Cox, Gamma FALSE #> 14869 930 0.5122725 0.101372331 fv Log-Normal Cox, Gamma FALSE #> 14885 931 0.7130454 0.135971450 fv Log-Normal Cox, Gamma FALSE #> 14901 932 0.5066433 0.100500273 fv Log-Normal Cox, Gamma FALSE #> 14917 933 0.4945458 0.097082695 fv Log-Normal Cox, Gamma FALSE #> 14933 934 0.6492706 NA fv Log-Normal Cox, Gamma NA #> 14949 935 0.7595802 0.142781942 fv Log-Normal Cox, Gamma FALSE #> 14965 936 0.6649180 0.127703570 fv Log-Normal Cox, Gamma FALSE #> 14981 937 0.6533127 0.124319736 fv Log-Normal Cox, Gamma FALSE #> 14997 938 0.6926645 0.131356315 fv Log-Normal Cox, Gamma FALSE #> 15013 939 0.5077710 0.099590277 fv Log-Normal Cox, Gamma FALSE #> 15029 940 0.6933669 0.133191128 fv Log-Normal Cox, Gamma FALSE #> 15045 941 0.4268047 0.085815756 fv Log-Normal Cox, Gamma FALSE #> 15061 942 0.7084437 0.133839212 fv Log-Normal Cox, Gamma FALSE #> 15077 943 0.4584328 0.090854771 fv Log-Normal Cox, Gamma FALSE #> 15093 944 0.5666850 0.110036299 fv Log-Normal Cox, Gamma FALSE #> 15109 945 0.9440737 0.175421907 fv Log-Normal Cox, Gamma FALSE #> 15125 946 0.7158152 0.136016918 fv Log-Normal Cox, Gamma FALSE #> 15141 947 0.7167894 0.135529442 fv Log-Normal Cox, Gamma FALSE #> 15157 948 0.4493495 0.091216146 fv Log-Normal Cox, Gamma FALSE #> 15173 949 0.5803668 0.112156181 fv Log-Normal Cox, Gamma FALSE #> 15189 950 0.6935612 0.132417693 fv Log-Normal Cox, Gamma FALSE #> 15205 951 0.4651010 0.092037357 fv Log-Normal Cox, Gamma FALSE #> 15221 952 0.5304067 0.103569265 fv Log-Normal Cox, Gamma FALSE #> 15237 953 0.5574506 NA fv Log-Normal Cox, Gamma NA #> 15253 954 0.7829632 0.149765497 fv Log-Normal Cox, Gamma FALSE #> 15269 955 0.6315200 0.121635710 fv Log-Normal Cox, Gamma FALSE #> 15285 956 0.7256935 0.136559638 fv Log-Normal Cox, Gamma FALSE #> 15301 957 0.5255019 0.102668152 fv Log-Normal Cox, Gamma FALSE #> 15317 958 0.5515319 0.108203497 fv Log-Normal Cox, Gamma FALSE #> 15333 959 0.6365335 0.006618674 fv Log-Normal Cox, Gamma TRUE #> 15349 960 0.4975672 0.097788653 fv Log-Normal Cox, Gamma FALSE #> 15365 961 0.7256961 0.136960775 fv Log-Normal Cox, Gamma FALSE #> 15381 962 0.6723918 0.128074823 fv Log-Normal Cox, Gamma FALSE #> 15397 963 0.8582505 0.161076038 fv Log-Normal Cox, Gamma FALSE #> 15413 964 0.6765533 0.131222054 fv Log-Normal Cox, Gamma FALSE #> 15429 965 0.4969462 0.098034066 fv Log-Normal Cox, Gamma FALSE #> 15445 966 0.8281505 0.153884185 fv Log-Normal Cox, Gamma FALSE #> 15461 967 0.8024846 0.151662537 fv Log-Normal Cox, Gamma FALSE #> 15477 968 0.7562529 0.144638541 fv Log-Normal Cox, Gamma FALSE #> 15493 969 0.9270354 0.171035756 fv Log-Normal Cox, Gamma FALSE #> 15509 970 0.7075527 0.135390065 fv Log-Normal Cox, Gamma FALSE #> 15525 971 0.7638483 0.143021387 fv Log-Normal Cox, Gamma FALSE #> 15541 972 0.5393256 0.105657239 fv Log-Normal Cox, Gamma FALSE #> 15557 973 0.7927163 0.148657584 fv Log-Normal Cox, Gamma FALSE #> 15573 974 0.8194812 0.153583984 fv Log-Normal Cox, Gamma FALSE #> 15589 975 0.8901438 0.164621225 fv Log-Normal Cox, Gamma FALSE #> 15605 976 0.7033173 0.135752844 fv Log-Normal Cox, Gamma FALSE #> 15621 977 0.9184243 0.169985183 fv Log-Normal Cox, Gamma FALSE #> 15637 978 0.7000262 0.133687476 fv Log-Normal Cox, Gamma FALSE #> 15653 979 0.5554882 0.108354847 fv Log-Normal Cox, Gamma FALSE #> 15669 980 0.6736097 0.129146495 fv Log-Normal Cox, Gamma FALSE #> 15685 981 0.5661670 0.109523726 fv Log-Normal Cox, Gamma FALSE #> 15701 982 0.5354088 0.104414629 fv Log-Normal Cox, Gamma FALSE #> 15717 983 0.6487939 0.124135434 fv Log-Normal Cox, Gamma FALSE #> 15733 984 0.6188661 0.120173122 fv Log-Normal Cox, Gamma FALSE #> 15749 985 0.7714019 0.145426296 fv Log-Normal Cox, Gamma FALSE #> 15765 986 0.6954945 0.133563065 fv Log-Normal Cox, Gamma FALSE #> 15781 987 0.6624646 0.129133922 fv Log-Normal Cox, Gamma FALSE #> 15797 988 0.7075265 0.133801077 fv Log-Normal Cox, Gamma FALSE #> 15813 989 0.7489396 0.140608370 fv Log-Normal Cox, Gamma FALSE #> 15829 990 0.6790675 0.130260397 fv Log-Normal Cox, Gamma FALSE #> 15845 991 0.7490903 0.141714729 fv Log-Normal Cox, Gamma FALSE #> 15861 992 0.6467935 0.124231773 fv Log-Normal Cox, Gamma FALSE #> 15877 993 0.6374168 0.121764982 fv Log-Normal Cox, Gamma FALSE #> 15893 994 0.6287016 0.122781015 fv Log-Normal Cox, Gamma FALSE #> 15909 995 0.5297770 0.103847152 fv Log-Normal Cox, Gamma FALSE #> 15925 996 0.6734033 0.130429589 fv Log-Normal Cox, Gamma FALSE #> 15941 997 0.5717180 0.110420307 fv Log-Normal Cox, Gamma FALSE #> 15957 998 0.5513744 0.107819150 fv Log-Normal Cox, Gamma FALSE #> 15973 999 0.6754048 0.129106649 fv Log-Normal Cox, Gamma FALSE #> 15989 1000 0.5817786 0.112687286 fv Log-Normal Cox, Gamma FALSE #> 6 1 0.7573628 0.123506225 fv Log-Normal Cox, Log-Normal FALSE #> 22 2 0.6405703 0.151148609 fv Log-Normal Cox, Log-Normal FALSE #> 38 3 0.8261367 0.185927234 fv Log-Normal Cox, Log-Normal FALSE #> 54 4 0.6143026 0.132920004 fv Log-Normal Cox, Log-Normal FALSE #> 70 5 1.0036278 0.198158194 fv Log-Normal Cox, Log-Normal FALSE #> 86 6 0.8832715 0.168543121 fv Log-Normal Cox, Log-Normal FALSE #> 102 7 0.5928196 0.100287978 fv Log-Normal Cox, Log-Normal FALSE #> 118 8 0.8252806 0.180131613 fv Log-Normal Cox, Log-Normal FALSE #> 134 9 0.7244461 0.143635393 fv Log-Normal Cox, Log-Normal FALSE #> 150 10 1.0102669 0.202207973 fv Log-Normal Cox, Log-Normal FALSE #> 166 11 0.9143155 0.184227624 fv Log-Normal Cox, Log-Normal FALSE #> 182 12 0.5534246 0.104169695 fv Log-Normal Cox, Log-Normal FALSE #> 198 13 0.8283860 0.166449749 fv Log-Normal Cox, Log-Normal FALSE #> 214 14 0.8115641 0.147107977 fv Log-Normal Cox, Log-Normal FALSE #> 230 15 0.7390334 0.149549271 fv Log-Normal Cox, Log-Normal FALSE #> 246 16 0.5808222 0.137956200 fv Log-Normal Cox, Log-Normal FALSE #> 262 17 0.6452196 0.146194236 fv Log-Normal Cox, Log-Normal FALSE #> 278 18 0.8714554 0.169853265 fv Log-Normal Cox, Log-Normal FALSE #> 294 19 0.9410003 0.159312483 fv Log-Normal Cox, Log-Normal FALSE #> 310 20 0.6101011 0.120280145 fv Log-Normal Cox, Log-Normal FALSE #> 326 21 0.7051458 0.143022121 fv Log-Normal Cox, Log-Normal FALSE #> 342 22 0.5999060 0.090970833 fv Log-Normal Cox, Log-Normal FALSE #> 358 23 0.8708236 0.203636912 fv Log-Normal Cox, Log-Normal FALSE #> 374 24 0.8089626 0.168542382 fv Log-Normal Cox, Log-Normal FALSE #> 390 25 0.6228305 0.119304963 fv Log-Normal Cox, Log-Normal FALSE #> 406 26 0.7537106 0.142965921 fv Log-Normal Cox, Log-Normal FALSE #> 422 27 0.5366948 0.165486396 fv Log-Normal Cox, Log-Normal FALSE #> 438 28 0.7237506 0.149495788 fv Log-Normal Cox, Log-Normal FALSE #> 454 29 1.0748691 0.171233165 fv Log-Normal Cox, Log-Normal FALSE #> 470 30 0.7213200 0.196299621 fv Log-Normal Cox, Log-Normal FALSE #> 486 31 0.5593267 0.126828054 fv Log-Normal Cox, Log-Normal FALSE #> 502 32 0.5324768 0.090967716 fv Log-Normal Cox, Log-Normal FALSE #> 518 33 0.7693620 0.147380984 fv Log-Normal Cox, Log-Normal FALSE #> 534 34 0.9152415 0.206375212 fv Log-Normal Cox, Log-Normal FALSE #> 550 35 0.5246976 0.132009450 fv Log-Normal Cox, Log-Normal FALSE #> 566 36 0.5188294 0.102537117 fv Log-Normal Cox, Log-Normal FALSE #> 582 37 0.7011186 0.157272513 fv Log-Normal Cox, Log-Normal FALSE #> 598 38 0.6353909 0.145388120 fv Log-Normal Cox, Log-Normal FALSE #> 614 39 0.8001182 0.162578217 fv Log-Normal Cox, Log-Normal FALSE #> 630 40 0.5711178 0.160784364 fv Log-Normal Cox, Log-Normal FALSE #> 646 41 0.8319567 0.168130783 fv Log-Normal Cox, Log-Normal FALSE #> 662 42 0.5614636 0.119677372 fv Log-Normal Cox, Log-Normal FALSE #> 678 43 0.5634340 0.106012887 fv Log-Normal Cox, Log-Normal FALSE #> 694 44 0.7924587 0.144458133 fv Log-Normal Cox, Log-Normal FALSE #> 710 45 0.6313241 0.120340182 fv Log-Normal Cox, Log-Normal FALSE #> 726 46 0.3400322 0.055945672 fv Log-Normal Cox, Log-Normal FALSE #> 742 47 0.9526428 0.199570335 fv Log-Normal Cox, Log-Normal FALSE #> 758 48 0.8841695 0.209442515 fv Log-Normal Cox, Log-Normal FALSE #> 774 49 0.9679034 0.166504814 fv Log-Normal Cox, Log-Normal FALSE #> 790 50 0.6036607 0.119569376 fv Log-Normal Cox, Log-Normal FALSE #> 806 51 0.8862827 0.155150877 fv Log-Normal Cox, Log-Normal FALSE #> 822 52 0.5297618 0.099447197 fv Log-Normal Cox, Log-Normal FALSE #> 838 53 0.9292767 0.157610779 fv Log-Normal Cox, Log-Normal FALSE #> 854 54 0.7239010 0.141347724 fv Log-Normal Cox, Log-Normal FALSE #> 870 55 0.9331984 0.171379276 fv Log-Normal Cox, Log-Normal FALSE #> 886 56 0.7706847 0.175186290 fv Log-Normal Cox, Log-Normal FALSE #> 902 57 0.9189265 0.207804687 fv Log-Normal Cox, Log-Normal FALSE #> 918 58 0.7658154 0.166165565 fv Log-Normal Cox, Log-Normal FALSE #> 934 59 0.7182062 0.124324102 fv Log-Normal Cox, Log-Normal FALSE #> 950 60 1.0041047 0.255917467 fv Log-Normal Cox, Log-Normal TRUE #> 966 61 0.7553592 0.164985154 fv Log-Normal Cox, Log-Normal FALSE #> 982 62 0.6225567 0.137396308 fv Log-Normal Cox, Log-Normal FALSE #> 998 63 0.8218612 0.151697592 fv Log-Normal Cox, Log-Normal FALSE #> 1014 64 0.7358860 0.131559640 fv Log-Normal Cox, Log-Normal FALSE #> 1030 65 0.9223297 0.240231970 fv Log-Normal Cox, Log-Normal TRUE #> 1046 66 0.6545818 0.131376390 fv Log-Normal Cox, Log-Normal FALSE #> 1062 67 0.6277202 0.131711521 fv Log-Normal Cox, Log-Normal FALSE #> 1078 68 0.5256708 0.115778396 fv Log-Normal Cox, Log-Normal FALSE #> 1094 69 0.8150341 0.153682813 fv Log-Normal Cox, Log-Normal FALSE #> 1110 70 0.7740717 0.131663013 fv Log-Normal Cox, Log-Normal FALSE #> 1126 71 1.0082462 0.227978478 fv Log-Normal Cox, Log-Normal FALSE #> 1142 72 0.6084139 0.122907751 fv Log-Normal Cox, Log-Normal FALSE #> 1158 73 0.7363271 0.136694735 fv Log-Normal Cox, Log-Normal FALSE #> 1174 74 0.4269599 0.099018016 fv Log-Normal Cox, Log-Normal FALSE #> 1190 75 0.7249021 0.145933489 fv Log-Normal Cox, Log-Normal FALSE #> 1206 76 0.6560751 0.124898132 fv Log-Normal Cox, Log-Normal FALSE #> 1222 77 0.8511698 0.197171406 fv Log-Normal Cox, Log-Normal FALSE #> 1238 78 0.7871053 0.166915910 fv Log-Normal Cox, Log-Normal FALSE #> 1254 79 1.0822921 0.209965236 fv Log-Normal Cox, Log-Normal FALSE #> 1270 80 0.5922208 0.101102935 fv Log-Normal Cox, Log-Normal FALSE #> 1286 81 1.0111710 0.155662408 fv Log-Normal Cox, Log-Normal FALSE #> 1302 82 0.6914727 0.112813615 fv Log-Normal Cox, Log-Normal FALSE #> 1318 83 0.8092839 0.153960210 fv Log-Normal Cox, Log-Normal FALSE #> 1334 84 0.6559520 0.132512452 fv Log-Normal Cox, Log-Normal FALSE #> 1350 85 0.6577962 0.171457580 fv Log-Normal Cox, Log-Normal FALSE #> 1366 86 0.5651294 0.146528647 fv Log-Normal Cox, Log-Normal FALSE #> 1382 87 0.7661226 0.160460673 fv Log-Normal Cox, Log-Normal FALSE #> 1398 88 0.7721346 0.178271337 fv Log-Normal Cox, Log-Normal FALSE #> 1414 89 1.0368109 0.213632342 fv Log-Normal Cox, Log-Normal FALSE #> 1430 90 0.8168601 0.156924329 fv Log-Normal Cox, Log-Normal FALSE #> 1446 91 0.9053362 0.158323513 fv Log-Normal Cox, Log-Normal FALSE #> 1462 92 0.8835783 0.208147013 fv Log-Normal Cox, Log-Normal FALSE #> 1478 93 0.6132071 0.113008294 fv Log-Normal Cox, Log-Normal FALSE #> 1494 94 0.8483006 0.176707967 fv Log-Normal Cox, Log-Normal FALSE #> 1510 95 0.6763772 0.139840226 fv Log-Normal Cox, Log-Normal FALSE #> 1526 96 0.5777829 0.104392446 fv Log-Normal Cox, Log-Normal FALSE #> 1542 97 0.8161674 0.168581778 fv Log-Normal Cox, Log-Normal FALSE #> 1558 98 0.4622867 0.077274220 fv Log-Normal Cox, Log-Normal FALSE #> 1574 99 0.9279581 0.217300732 fv Log-Normal Cox, Log-Normal FALSE #> 1590 100 0.6855048 0.169304914 fv Log-Normal Cox, Log-Normal FALSE #> 1606 101 0.6455828 0.111943749 fv Log-Normal Cox, Log-Normal FALSE #> 1622 102 0.4964866 0.090284117 fv Log-Normal Cox, Log-Normal FALSE #> 1638 103 0.7884297 0.140191610 fv Log-Normal Cox, Log-Normal FALSE #> 1654 104 0.7372374 0.160504976 fv Log-Normal Cox, Log-Normal FALSE #> 1670 105 0.4689447 0.130167559 fv Log-Normal Cox, Log-Normal FALSE #> 1686 106 0.6774750 0.142381935 fv Log-Normal Cox, Log-Normal FALSE #> 1702 107 0.8642295 0.176000808 fv Log-Normal Cox, Log-Normal FALSE #> 1718 108 0.7159932 0.164105206 fv Log-Normal Cox, Log-Normal FALSE #> 1734 109 0.9263322 0.205073657 fv Log-Normal Cox, Log-Normal FALSE #> 1750 110 0.9255388 0.203254399 fv Log-Normal Cox, Log-Normal FALSE #> 1766 111 0.6391791 0.151025676 fv Log-Normal Cox, Log-Normal FALSE #> 1782 112 0.7006322 0.121622711 fv Log-Normal Cox, Log-Normal FALSE #> 1798 113 0.8573833 0.120517037 fv Log-Normal Cox, Log-Normal FALSE #> 1814 114 0.6713922 0.143109099 fv Log-Normal Cox, Log-Normal FALSE #> 1830 115 0.7800116 0.158241038 fv Log-Normal Cox, Log-Normal FALSE #> 1846 116 0.7935211 0.143635068 fv Log-Normal Cox, Log-Normal FALSE #> 1862 117 0.8402853 0.144118761 fv Log-Normal Cox, Log-Normal FALSE #> 1878 118 0.6211441 0.115222597 fv Log-Normal Cox, Log-Normal FALSE #> 1894 119 0.5731702 0.104678548 fv Log-Normal Cox, Log-Normal FALSE #> 1910 120 0.8207332 0.162722934 fv Log-Normal Cox, Log-Normal FALSE #> 1926 121 0.7191754 0.144618775 fv Log-Normal Cox, Log-Normal FALSE #> 1942 122 0.5527592 0.153698623 fv Log-Normal Cox, Log-Normal FALSE #> 1958 123 0.5289509 0.095546347 fv Log-Normal Cox, Log-Normal FALSE #> 1974 124 0.5600358 0.120518423 fv Log-Normal Cox, Log-Normal FALSE #> 1990 125 0.5451336 0.088492549 fv Log-Normal Cox, Log-Normal FALSE #> 2006 126 1.2150397 0.221438937 fv Log-Normal Cox, Log-Normal TRUE #> 2022 127 0.5215282 0.106426631 fv Log-Normal Cox, Log-Normal FALSE #> 2038 128 0.5208087 0.101330616 fv Log-Normal Cox, Log-Normal FALSE #> 2054 129 0.7158500 0.146716475 fv Log-Normal Cox, Log-Normal FALSE #> 2070 130 0.5736312 0.140201893 fv Log-Normal Cox, Log-Normal FALSE #> 2086 131 0.6678274 0.113502192 fv Log-Normal Cox, Log-Normal FALSE #> 2102 132 0.7954489 0.169093243 fv Log-Normal Cox, Log-Normal FALSE #> 2118 133 0.9256333 0.173618373 fv Log-Normal Cox, Log-Normal FALSE #> 2134 134 1.0816300 0.168628629 fv Log-Normal Cox, Log-Normal FALSE #> 2150 135 0.6646850 0.165230055 fv Log-Normal Cox, Log-Normal FALSE #> 2166 136 0.5493449 0.148696582 fv Log-Normal Cox, Log-Normal FALSE #> 2182 137 0.5273812 0.117786553 fv Log-Normal Cox, Log-Normal FALSE #> 2198 138 0.5253386 0.088599027 fv Log-Normal Cox, Log-Normal FALSE #> 2214 139 0.7508027 0.135122381 fv Log-Normal Cox, Log-Normal FALSE #> 2230 140 0.8098031 0.141963269 fv Log-Normal Cox, Log-Normal FALSE #> 2246 141 0.4369386 0.083891814 fv Log-Normal Cox, Log-Normal FALSE #> 2262 142 0.4940935 0.087599059 fv Log-Normal Cox, Log-Normal FALSE #> 2278 143 0.5792783 0.101315528 fv Log-Normal Cox, Log-Normal FALSE #> 2294 144 0.6762864 0.155722587 fv Log-Normal Cox, Log-Normal FALSE #> 2310 145 0.5822286 0.120935529 fv Log-Normal Cox, Log-Normal FALSE #> 2326 146 0.7312281 0.136443900 fv Log-Normal Cox, Log-Normal FALSE #> 2342 147 0.6361521 0.169644112 fv Log-Normal Cox, Log-Normal FALSE #> 2358 148 0.5484598 0.111863218 fv Log-Normal Cox, Log-Normal FALSE #> 2374 149 0.4096536 0.100250733 fv Log-Normal Cox, Log-Normal FALSE #> 2390 150 0.5619967 0.105650453 fv Log-Normal Cox, Log-Normal FALSE #> 2406 151 0.9789970 0.195216476 fv Log-Normal Cox, Log-Normal FALSE #> 2422 152 0.7259292 0.151900672 fv Log-Normal Cox, Log-Normal FALSE #> 2438 153 0.7965834 0.152245452 fv Log-Normal Cox, Log-Normal FALSE #> 2454 154 0.7530393 0.132140632 fv Log-Normal Cox, Log-Normal FALSE #> 2470 155 1.0025250 0.232384531 fv Log-Normal Cox, Log-Normal FALSE #> 2486 156 0.6533424 0.120684343 fv Log-Normal Cox, Log-Normal FALSE #> 2502 157 0.6428468 0.167081803 fv Log-Normal Cox, Log-Normal FALSE #> 2518 158 0.6380194 0.127185912 fv Log-Normal Cox, Log-Normal FALSE #> 2534 159 0.8212363 0.203723673 fv Log-Normal Cox, Log-Normal FALSE #> 2550 160 0.8091504 0.165469968 fv Log-Normal Cox, Log-Normal FALSE #> 2566 161 0.9019637 0.169031267 fv Log-Normal Cox, Log-Normal FALSE #> 2582 162 1.0323230 0.200155147 fv Log-Normal Cox, Log-Normal FALSE #> 2598 163 0.6359122 0.120933159 fv Log-Normal Cox, Log-Normal FALSE #> 2614 164 0.6830636 0.149902066 fv Log-Normal Cox, Log-Normal FALSE #> 2630 165 0.5514472 0.106974805 fv Log-Normal Cox, Log-Normal FALSE #> 2646 166 0.4478951 0.089446434 fv Log-Normal Cox, Log-Normal FALSE #> 2662 167 0.7607050 0.130475089 fv Log-Normal Cox, Log-Normal FALSE #> 2678 168 0.8939775 0.171724578 fv Log-Normal Cox, Log-Normal FALSE #> 2694 169 0.6535068 0.134031000 fv Log-Normal Cox, Log-Normal FALSE #> 2710 170 0.7646505 0.136587486 fv Log-Normal Cox, Log-Normal FALSE #> 2726 171 0.8427968 0.138307896 fv Log-Normal Cox, Log-Normal FALSE #> 2742 172 0.7751922 0.140039170 fv Log-Normal Cox, Log-Normal FALSE #> 2758 173 0.7330887 0.134029421 fv Log-Normal Cox, Log-Normal FALSE #> 2774 174 0.6091521 0.106460561 fv Log-Normal Cox, Log-Normal FALSE #> 2790 175 0.8038532 0.153669430 fv Log-Normal Cox, Log-Normal FALSE #> 2806 176 1.0095644 0.198360609 fv Log-Normal Cox, Log-Normal FALSE #> 2822 177 0.8252955 0.152377027 fv Log-Normal Cox, Log-Normal FALSE #> 2838 178 0.5408288 0.097128672 fv Log-Normal Cox, Log-Normal FALSE #> 2854 179 0.9621040 0.157483433 fv Log-Normal Cox, Log-Normal FALSE #> 2870 180 0.5787665 0.115056496 fv Log-Normal Cox, Log-Normal FALSE #> 2886 181 0.7536706 0.134534082 fv Log-Normal Cox, Log-Normal FALSE #> 2902 182 1.2239585 0.231054881 fv Log-Normal Cox, Log-Normal TRUE #> 2918 183 0.7538198 0.198686043 fv Log-Normal Cox, Log-Normal FALSE #> 2934 184 0.9676200 0.162661310 fv Log-Normal Cox, Log-Normal FALSE #> 2950 185 0.8095095 0.154239320 fv Log-Normal Cox, Log-Normal FALSE #> 2966 186 0.7963401 0.151409478 fv Log-Normal Cox, Log-Normal FALSE #> 2982 187 0.6878139 0.128133229 fv Log-Normal Cox, Log-Normal FALSE #> 2998 188 0.8316980 0.199665691 fv Log-Normal Cox, Log-Normal FALSE #> 3014 189 0.6992176 0.115061086 fv Log-Normal Cox, Log-Normal FALSE #> 3030 190 0.8038076 0.144511600 fv Log-Normal Cox, Log-Normal FALSE #> 3046 191 0.7962095 0.180472090 fv Log-Normal Cox, Log-Normal FALSE #> 3062 192 0.6544469 0.152934636 fv Log-Normal Cox, Log-Normal FALSE #> 3078 193 0.7893740 0.183862164 fv Log-Normal Cox, Log-Normal FALSE #> 3094 194 0.9888659 0.175645880 fv Log-Normal Cox, Log-Normal FALSE #> 3110 195 0.5870695 0.128305897 fv Log-Normal Cox, Log-Normal FALSE #> 3126 196 0.6371292 0.130232476 fv Log-Normal Cox, Log-Normal FALSE #> 3142 197 0.6610005 0.111740926 fv Log-Normal Cox, Log-Normal FALSE #> 3158 198 0.7978277 0.140662110 fv Log-Normal Cox, Log-Normal FALSE #> 3174 199 0.5343989 0.094741806 fv Log-Normal Cox, Log-Normal FALSE #> 3190 200 0.6102206 0.130221390 fv Log-Normal Cox, Log-Normal FALSE #> 3206 201 0.8895148 0.164670932 fv Log-Normal Cox, Log-Normal FALSE #> 3222 202 0.7229980 0.120155652 fv Log-Normal Cox, Log-Normal FALSE #> 3238 203 0.6368252 0.115279152 fv Log-Normal Cox, Log-Normal FALSE #> 3254 204 0.6809315 0.138454115 fv Log-Normal Cox, Log-Normal FALSE #> 3270 205 0.6617769 0.130662589 fv Log-Normal Cox, Log-Normal FALSE #> 3286 206 0.7916678 0.146803021 fv Log-Normal Cox, Log-Normal FALSE #> 3302 207 0.8047997 0.205254562 fv Log-Normal Cox, Log-Normal FALSE #> 3318 208 1.0690480 0.176315972 fv Log-Normal Cox, Log-Normal FALSE #> 3334 209 0.6734025 0.157675845 fv Log-Normal Cox, Log-Normal FALSE #> 3350 210 0.7235119 0.168335407 fv Log-Normal Cox, Log-Normal FALSE #> 3366 211 0.8209679 0.150541551 fv Log-Normal Cox, Log-Normal FALSE #> 3382 212 0.8093963 0.164234906 fv Log-Normal Cox, Log-Normal FALSE #> 3398 213 0.6197138 0.117369296 fv Log-Normal Cox, Log-Normal FALSE #> 3414 214 0.6649361 0.120661018 fv Log-Normal Cox, Log-Normal FALSE #> 3430 215 0.6650857 0.179625366 fv Log-Normal Cox, Log-Normal FALSE #> 3446 216 0.9689108 0.174717968 fv Log-Normal Cox, Log-Normal FALSE #> 3462 217 0.7612506 0.147631973 fv Log-Normal Cox, Log-Normal FALSE #> 3478 218 0.5926323 0.153430759 fv Log-Normal Cox, Log-Normal FALSE #> 3494 219 0.8441365 0.191720259 fv Log-Normal Cox, Log-Normal FALSE #> 3510 220 0.9102425 0.169208023 fv Log-Normal Cox, Log-Normal FALSE #> 3526 221 0.6440419 0.169991151 fv Log-Normal Cox, Log-Normal FALSE #> 3542 222 0.3699244 0.073773612 fv Log-Normal Cox, Log-Normal FALSE #> 3558 223 0.5477821 0.112031749 fv Log-Normal Cox, Log-Normal FALSE #> 3574 224 0.5942285 0.107253851 fv Log-Normal Cox, Log-Normal FALSE #> 3590 225 0.8208106 0.157270676 fv Log-Normal Cox, Log-Normal FALSE #> 3606 226 1.0721837 0.179757807 fv Log-Normal Cox, Log-Normal FALSE #> 3622 227 0.7651791 0.135412199 fv Log-Normal Cox, Log-Normal FALSE #> 3638 228 0.8680490 0.143223630 fv Log-Normal Cox, Log-Normal FALSE #> 3654 229 0.4073158 0.083161888 fv Log-Normal Cox, Log-Normal FALSE #> 3670 230 0.6139439 0.120049198 fv Log-Normal Cox, Log-Normal FALSE #> 3686 231 0.6567719 0.124099366 fv Log-Normal Cox, Log-Normal FALSE #> 3702 232 0.9446119 0.189529640 fv Log-Normal Cox, Log-Normal FALSE #> 3718 233 0.9526530 0.209694354 fv Log-Normal Cox, Log-Normal FALSE #> 3734 234 0.9358169 0.188575345 fv Log-Normal Cox, Log-Normal FALSE #> 3750 235 0.5533697 0.097841887 fv Log-Normal Cox, Log-Normal FALSE #> 3766 236 0.6345935 0.120180217 fv Log-Normal Cox, Log-Normal FALSE #> 3782 237 0.5440302 0.109896985 fv Log-Normal Cox, Log-Normal FALSE #> 3798 238 0.8898235 0.229632108 fv Log-Normal Cox, Log-Normal FALSE #> 3814 239 0.9262859 0.200846435 fv Log-Normal Cox, Log-Normal FALSE #> 3830 240 0.6338872 0.129524301 fv Log-Normal Cox, Log-Normal FALSE #> 3846 241 0.7667705 0.153378360 fv Log-Normal Cox, Log-Normal FALSE #> 3862 242 0.5466475 0.100527491 fv Log-Normal Cox, Log-Normal FALSE #> 3878 243 0.6728653 0.123466796 fv Log-Normal Cox, Log-Normal FALSE #> 3894 244 0.6107308 0.139143285 fv Log-Normal Cox, Log-Normal FALSE #> 3910 245 0.4997340 0.111627420 fv Log-Normal Cox, Log-Normal FALSE #> 3926 246 0.7877534 0.194794439 fv Log-Normal Cox, Log-Normal FALSE #> 3942 247 0.6585011 0.152234917 fv Log-Normal Cox, Log-Normal FALSE #> 3958 248 1.1751511 0.286449350 fv Log-Normal Cox, Log-Normal TRUE #> 3974 249 0.5939856 0.117058074 fv Log-Normal Cox, Log-Normal FALSE #> 3990 250 0.7479317 0.166505164 fv Log-Normal Cox, Log-Normal FALSE #> 4006 251 0.6258817 0.112068474 fv Log-Normal Cox, Log-Normal FALSE #> 4022 252 0.4768019 0.119359450 fv Log-Normal Cox, Log-Normal FALSE #> 4038 253 0.8642953 0.190101155 fv Log-Normal Cox, Log-Normal FALSE #> 4054 254 0.7457473 0.159020740 fv Log-Normal Cox, Log-Normal FALSE #> 4070 255 0.9277065 0.230633805 fv Log-Normal Cox, Log-Normal FALSE #> 4086 256 0.8557776 0.195869085 fv Log-Normal Cox, Log-Normal FALSE #> 4102 257 0.8342419 0.124293996 fv Log-Normal Cox, Log-Normal FALSE #> 4118 258 0.4166917 0.091790350 fv Log-Normal Cox, Log-Normal FALSE #> 4134 259 0.6658868 0.122476181 fv Log-Normal Cox, Log-Normal FALSE #> 4150 260 0.6874868 0.138634719 fv Log-Normal Cox, Log-Normal FALSE #> 4166 261 0.8838488 0.152030166 fv Log-Normal Cox, Log-Normal FALSE #> 4182 262 0.6874792 0.132166589 fv Log-Normal Cox, Log-Normal FALSE #> 4198 263 0.8748474 0.168551544 fv Log-Normal Cox, Log-Normal FALSE #> 4214 264 0.7949965 0.167523004 fv Log-Normal Cox, Log-Normal FALSE #> 4230 265 0.6229840 0.104494211 fv Log-Normal Cox, Log-Normal FALSE #> 4246 266 0.6632234 0.135646780 fv Log-Normal Cox, Log-Normal FALSE #> 4262 267 0.6158842 0.130400568 fv Log-Normal Cox, Log-Normal FALSE #> 4278 268 0.9506333 0.175878947 fv Log-Normal Cox, Log-Normal FALSE #> 4294 269 0.6188439 0.130825645 fv Log-Normal Cox, Log-Normal FALSE #> 4310 270 0.6262115 0.114392203 fv Log-Normal Cox, Log-Normal FALSE #> 4326 271 0.7801412 0.198342003 fv Log-Normal Cox, Log-Normal FALSE #> 4342 272 0.5658894 0.105200138 fv Log-Normal Cox, Log-Normal FALSE #> 4358 273 0.7581958 0.155271956 fv Log-Normal Cox, Log-Normal FALSE #> 4374 274 0.7608956 0.184496710 fv Log-Normal Cox, Log-Normal FALSE #> 4390 275 0.6392780 0.170823574 fv Log-Normal Cox, Log-Normal FALSE #> 4406 276 0.7882949 0.154743052 fv Log-Normal Cox, Log-Normal FALSE #> 4422 277 0.7194733 0.150653839 fv Log-Normal Cox, Log-Normal FALSE #> 4438 278 0.6262877 0.146135300 fv Log-Normal Cox, Log-Normal FALSE #> 4454 279 0.8160827 0.161699463 fv Log-Normal Cox, Log-Normal FALSE #> 4470 280 0.8380508 0.165760210 fv Log-Normal Cox, Log-Normal FALSE #> 4486 281 0.7250819 0.136678134 fv Log-Normal Cox, Log-Normal FALSE #> 4502 282 0.6543630 0.124834778 fv Log-Normal Cox, Log-Normal FALSE #> 4518 283 0.8861316 0.181607406 fv Log-Normal Cox, Log-Normal FALSE #> 4534 284 0.6234693 0.121773534 fv Log-Normal Cox, Log-Normal FALSE #> 4550 285 0.7075084 0.140506363 fv Log-Normal Cox, Log-Normal FALSE #> 4566 286 0.6991377 0.141637828 fv Log-Normal Cox, Log-Normal FALSE #> 4582 287 0.5969511 0.095232884 fv Log-Normal Cox, Log-Normal FALSE #> 4598 288 0.6185630 0.128807253 fv Log-Normal Cox, Log-Normal FALSE #> 4614 289 0.6932102 0.126244042 fv Log-Normal Cox, Log-Normal FALSE #> 4630 290 0.6795473 0.133309208 fv Log-Normal Cox, Log-Normal FALSE #> 4646 291 0.7658600 0.125787549 fv Log-Normal Cox, Log-Normal FALSE #> 4662 292 0.6655638 0.182337657 fv Log-Normal Cox, Log-Normal FALSE #> 4678 293 0.6811121 0.097619440 fv Log-Normal Cox, Log-Normal FALSE #> 4694 294 0.7341433 0.126424230 fv Log-Normal Cox, Log-Normal FALSE #> 4710 295 0.6397064 0.131345588 fv Log-Normal Cox, Log-Normal FALSE #> 4726 296 0.8036840 0.153632947 fv Log-Normal Cox, Log-Normal FALSE #> 4742 297 0.4156726 0.078965945 fv Log-Normal Cox, Log-Normal FALSE #> 4758 298 0.6992210 0.122399735 fv Log-Normal Cox, Log-Normal FALSE #> 4774 299 0.7895367 0.126931179 fv Log-Normal Cox, Log-Normal FALSE #> 4790 300 0.6389342 0.119908849 fv Log-Normal Cox, Log-Normal FALSE #> 4806 301 1.0721887 0.198275473 fv Log-Normal Cox, Log-Normal FALSE #> 4822 302 0.7313978 0.168882249 fv Log-Normal Cox, Log-Normal FALSE #> 4838 303 0.6443221 0.103189570 fv Log-Normal Cox, Log-Normal FALSE #> 4854 304 0.6883138 0.109793240 fv Log-Normal Cox, Log-Normal FALSE #> 4870 305 0.8457392 0.150880524 fv Log-Normal Cox, Log-Normal FALSE #> 4886 306 0.5848402 0.114151600 fv Log-Normal Cox, Log-Normal FALSE #> 4902 307 0.6233021 0.109508346 fv Log-Normal Cox, Log-Normal FALSE #> 4918 308 0.7261324 0.145349003 fv Log-Normal Cox, Log-Normal FALSE #> 4934 309 0.6156243 0.121821259 fv Log-Normal Cox, Log-Normal FALSE #> 4950 310 0.6653635 0.156392201 fv Log-Normal Cox, Log-Normal FALSE #> 4966 311 0.8914660 0.154933778 fv Log-Normal Cox, Log-Normal FALSE #> 4982 312 0.7331430 0.136281844 fv Log-Normal Cox, Log-Normal FALSE #> 4998 313 0.5088109 0.113177945 fv Log-Normal Cox, Log-Normal FALSE #> 5014 314 0.6998085 0.147494090 fv Log-Normal Cox, Log-Normal FALSE #> 5030 315 0.6788598 0.118669605 fv Log-Normal Cox, Log-Normal FALSE #> 5046 316 0.5935425 0.134907825 fv Log-Normal Cox, Log-Normal FALSE #> 5062 317 0.8622104 0.132961863 fv Log-Normal Cox, Log-Normal FALSE #> 5078 318 0.5477029 0.159243237 fv Log-Normal Cox, Log-Normal FALSE #> 5094 319 0.7504793 0.175775213 fv Log-Normal Cox, Log-Normal FALSE #> 5110 320 0.8374628 0.142534760 fv Log-Normal Cox, Log-Normal FALSE #> 5126 321 0.9088461 0.199125271 fv Log-Normal Cox, Log-Normal FALSE #> 5142 322 0.5883454 0.138882190 fv Log-Normal Cox, Log-Normal FALSE #> 5158 323 0.8097169 0.145185115 fv Log-Normal Cox, Log-Normal FALSE #> 5174 324 0.5327484 0.097126455 fv Log-Normal Cox, Log-Normal FALSE #> 5190 325 0.6209278 0.123937040 fv Log-Normal Cox, Log-Normal FALSE #> 5206 326 1.0813592 0.260419864 fv Log-Normal Cox, Log-Normal TRUE #> 5222 327 0.5318052 0.101090195 fv Log-Normal Cox, Log-Normal FALSE #> 5238 328 0.7967825 0.152965020 fv Log-Normal Cox, Log-Normal FALSE #> 5254 329 0.6356635 0.133230934 fv Log-Normal Cox, Log-Normal FALSE #> 5270 330 0.5814746 0.143686266 fv Log-Normal Cox, Log-Normal FALSE #> 5286 331 0.9345516 0.181733555 fv Log-Normal Cox, Log-Normal FALSE #> 5302 332 0.6891797 0.105822208 fv Log-Normal Cox, Log-Normal FALSE #> 5318 333 0.5057585 0.107033611 fv Log-Normal Cox, Log-Normal FALSE #> 5334 334 0.5523392 0.103592158 fv Log-Normal Cox, Log-Normal FALSE #> 5350 335 0.5487718 0.096238261 fv Log-Normal Cox, Log-Normal FALSE #> 5366 336 0.7938662 0.153381827 fv Log-Normal Cox, Log-Normal FALSE #> 5382 337 0.6558362 0.122412197 fv Log-Normal Cox, Log-Normal FALSE #> 5398 338 0.7716627 0.133216328 fv Log-Normal Cox, Log-Normal FALSE #> 5414 339 0.5946563 0.112089158 fv Log-Normal Cox, Log-Normal FALSE #> 5430 340 0.9258154 0.173020079 fv Log-Normal Cox, Log-Normal FALSE #> 5446 341 0.6554285 0.188998496 fv Log-Normal Cox, Log-Normal FALSE #> 5462 342 0.5903363 0.103543007 fv Log-Normal Cox, Log-Normal FALSE #> 5478 343 0.5801205 0.105220570 fv Log-Normal Cox, Log-Normal FALSE #> 5494 344 0.6781217 0.139143373 fv Log-Normal Cox, Log-Normal FALSE #> 5510 345 0.6961196 0.128199872 fv Log-Normal Cox, Log-Normal FALSE #> 5526 346 0.5227107 0.129366265 fv Log-Normal Cox, Log-Normal FALSE #> 5542 347 0.6271774 0.116481432 fv Log-Normal Cox, Log-Normal FALSE #> 5558 348 0.6129095 0.127848791 fv Log-Normal Cox, Log-Normal FALSE #> 5574 349 0.7061869 0.130911383 fv Log-Normal Cox, Log-Normal FALSE #> 5590 350 0.7924372 0.140354741 fv Log-Normal Cox, Log-Normal FALSE #> 5606 351 0.6081129 0.110915071 fv Log-Normal Cox, Log-Normal FALSE #> 5622 352 0.8113829 0.207987891 fv Log-Normal Cox, Log-Normal FALSE #> 5638 353 0.7123554 0.148029613 fv Log-Normal Cox, Log-Normal FALSE #> 5654 354 0.6733492 0.120250828 fv Log-Normal Cox, Log-Normal FALSE #> 5670 355 0.7413575 0.117491541 fv Log-Normal Cox, Log-Normal FALSE #> 5686 356 0.6356097 0.136723847 fv Log-Normal Cox, Log-Normal FALSE #> 5702 357 0.9077288 0.201687015 fv Log-Normal Cox, Log-Normal FALSE #> 5718 358 0.6760533 0.114786462 fv Log-Normal Cox, Log-Normal FALSE #> 5734 359 0.5219090 0.108201573 fv Log-Normal Cox, Log-Normal FALSE #> 5750 360 0.6815372 0.124079334 fv Log-Normal Cox, Log-Normal FALSE #> 5766 361 0.6430326 0.131155722 fv Log-Normal Cox, Log-Normal FALSE #> 5782 362 0.6311695 0.139240974 fv Log-Normal Cox, Log-Normal FALSE #> 5798 363 0.6177379 0.136118552 fv Log-Normal Cox, Log-Normal FALSE #> 5814 364 0.8976105 0.177776665 fv Log-Normal Cox, Log-Normal FALSE #> 5830 365 0.8077777 0.181160990 fv Log-Normal Cox, Log-Normal FALSE #> 5846 366 0.6859270 0.163243165 fv Log-Normal Cox, Log-Normal FALSE #> 5862 367 0.8039909 0.173052304 fv Log-Normal Cox, Log-Normal FALSE #> 5878 368 0.9904820 0.206693114 fv Log-Normal Cox, Log-Normal FALSE #> 5894 369 0.6043360 0.105582542 fv Log-Normal Cox, Log-Normal FALSE #> 5910 370 0.7742858 0.160759545 fv Log-Normal Cox, Log-Normal FALSE #> 5926 371 0.6578030 0.151843773 fv Log-Normal Cox, Log-Normal FALSE #> 5942 372 0.5007659 0.102818471 fv Log-Normal Cox, Log-Normal FALSE #> 5958 373 1.1151799 0.262411215 fv Log-Normal Cox, Log-Normal TRUE #> 5974 374 0.5438101 0.110074187 fv Log-Normal Cox, Log-Normal FALSE #> 5990 375 0.6580755 0.148102054 fv Log-Normal Cox, Log-Normal FALSE #> 6006 376 0.7039508 0.155302979 fv Log-Normal Cox, Log-Normal FALSE #> 6022 377 0.5414599 0.090535372 fv Log-Normal Cox, Log-Normal FALSE #> 6038 378 0.6197608 0.130994750 fv Log-Normal Cox, Log-Normal FALSE #> 6054 379 0.5067599 0.084260679 fv Log-Normal Cox, Log-Normal FALSE #> 6070 380 0.6564966 0.109664243 fv Log-Normal Cox, Log-Normal FALSE #> 6086 381 0.8540702 0.184255358 fv Log-Normal Cox, Log-Normal FALSE #> 6102 382 0.7318377 0.153279580 fv Log-Normal Cox, Log-Normal FALSE #> 6118 383 0.7133871 0.142053344 fv Log-Normal Cox, Log-Normal FALSE #> 6134 384 0.7092118 0.136370965 fv Log-Normal Cox, Log-Normal FALSE #> 6150 385 0.5917005 0.147258323 fv Log-Normal Cox, Log-Normal FALSE #> 6166 386 0.9153763 0.229498321 fv Log-Normal Cox, Log-Normal FALSE #> 6182 387 0.5871767 0.123612345 fv Log-Normal Cox, Log-Normal FALSE #> 6198 388 0.9291695 0.122982818 fv Log-Normal Cox, Log-Normal FALSE #> 6214 389 0.8058096 0.150461962 fv Log-Normal Cox, Log-Normal FALSE #> 6230 390 0.6773542 0.151801071 fv Log-Normal Cox, Log-Normal FALSE #> 6246 391 0.8182120 0.134244623 fv Log-Normal Cox, Log-Normal FALSE #> 6262 392 0.6261693 0.144322919 fv Log-Normal Cox, Log-Normal FALSE #> 6278 393 0.5608767 0.087397909 fv Log-Normal Cox, Log-Normal FALSE #> 6294 394 0.8782935 0.189730141 fv Log-Normal Cox, Log-Normal FALSE #> 6310 395 0.7611073 0.155530156 fv Log-Normal Cox, Log-Normal FALSE #> 6326 396 1.0179662 0.186941257 fv Log-Normal Cox, Log-Normal FALSE #> 6342 397 0.7116466 0.138074147 fv Log-Normal Cox, Log-Normal FALSE #> 6358 398 0.6727192 0.112933246 fv Log-Normal Cox, Log-Normal FALSE #> 6374 399 0.8183800 0.153200171 fv Log-Normal Cox, Log-Normal FALSE #> 6390 400 0.5367667 0.115885505 fv Log-Normal Cox, Log-Normal FALSE #> 6406 401 0.6126184 0.116844582 fv Log-Normal Cox, Log-Normal FALSE #> 6422 402 0.5449950 0.165808259 fv Log-Normal Cox, Log-Normal FALSE #> 6438 403 0.6208233 0.124821022 fv Log-Normal Cox, Log-Normal FALSE #> 6454 404 0.5770424 0.151038157 fv Log-Normal Cox, Log-Normal FALSE #> 6470 405 0.4747106 0.100298660 fv Log-Normal Cox, Log-Normal FALSE #> 6486 406 0.7328698 0.142571527 fv Log-Normal Cox, Log-Normal FALSE #> 6502 407 0.7521805 0.168896665 fv Log-Normal Cox, Log-Normal FALSE #> 6518 408 0.4939505 0.126659415 fv Log-Normal Cox, Log-Normal FALSE #> 6534 409 0.7342496 0.137209818 fv Log-Normal Cox, Log-Normal FALSE #> 6550 410 0.7711058 0.166901809 fv Log-Normal Cox, Log-Normal FALSE #> 6566 411 0.6537021 0.158644072 fv Log-Normal Cox, Log-Normal FALSE #> 6582 412 0.6641258 0.185779173 fv Log-Normal Cox, Log-Normal FALSE #> 6598 413 0.5336693 0.120967307 fv Log-Normal Cox, Log-Normal FALSE #> 6614 414 0.8645269 0.156417045 fv Log-Normal Cox, Log-Normal FALSE #> 6630 415 1.2669904 0.221355780 fv Log-Normal Cox, Log-Normal TRUE #> 6646 416 0.5679880 0.136164326 fv Log-Normal Cox, Log-Normal FALSE #> 6662 417 0.5518002 0.097475326 fv Log-Normal Cox, Log-Normal FALSE #> 6678 418 0.8899199 0.126041947 fv Log-Normal Cox, Log-Normal FALSE #> 6694 419 0.4910310 0.096522319 fv Log-Normal Cox, Log-Normal FALSE #> 6710 420 0.7613114 0.168472044 fv Log-Normal Cox, Log-Normal FALSE #> 6726 421 0.7927672 0.149403972 fv Log-Normal Cox, Log-Normal FALSE #> 6742 422 0.5762327 0.132336946 fv Log-Normal Cox, Log-Normal FALSE #> 6758 423 0.5858586 0.109042212 fv Log-Normal Cox, Log-Normal FALSE #> 6774 424 0.6812210 0.135407029 fv Log-Normal Cox, Log-Normal FALSE #> 6790 425 0.7494056 0.158380464 fv Log-Normal Cox, Log-Normal FALSE #> 6806 426 0.8255828 0.167092229 fv Log-Normal Cox, Log-Normal FALSE #> 6822 427 0.9580083 0.193525749 fv Log-Normal Cox, Log-Normal FALSE #> 6838 428 0.8200189 0.174800466 fv Log-Normal Cox, Log-Normal FALSE #> 6854 429 0.7253120 0.138989939 fv Log-Normal Cox, Log-Normal FALSE #> 6870 430 0.8015608 0.159246665 fv Log-Normal Cox, Log-Normal FALSE #> 6886 431 0.6839649 0.163805863 fv Log-Normal Cox, Log-Normal FALSE #> 6902 432 0.8651093 0.182008216 fv Log-Normal Cox, Log-Normal FALSE #> 6918 433 0.5920234 0.102567571 fv Log-Normal Cox, Log-Normal FALSE #> 6934 434 0.5880071 0.117101961 fv Log-Normal Cox, Log-Normal FALSE #> 6950 435 0.4973641 0.107090021 fv Log-Normal Cox, Log-Normal FALSE #> 6966 436 0.7631187 0.131617867 fv Log-Normal Cox, Log-Normal FALSE #> 6982 437 0.5823778 0.125462900 fv Log-Normal Cox, Log-Normal FALSE #> 6998 438 0.8514556 0.152749346 fv Log-Normal Cox, Log-Normal FALSE #> 7014 439 0.5976061 0.142466128 fv Log-Normal Cox, Log-Normal FALSE #> 7030 440 0.4167886 0.097617508 fv Log-Normal Cox, Log-Normal FALSE #> 7046 441 0.5600775 0.113085806 fv Log-Normal Cox, Log-Normal FALSE #> 7062 442 0.7506161 0.147798952 fv Log-Normal Cox, Log-Normal FALSE #> 7078 443 0.8033583 0.166071013 fv Log-Normal Cox, Log-Normal FALSE #> 7094 444 0.8324845 0.192734911 fv Log-Normal Cox, Log-Normal FALSE #> 7110 445 0.9003486 0.176256265 fv Log-Normal Cox, Log-Normal FALSE #> 7126 446 0.6375473 0.120152949 fv Log-Normal Cox, Log-Normal FALSE #> 7142 447 0.8891201 0.168609893 fv Log-Normal Cox, Log-Normal FALSE #> 7158 448 0.9157472 0.197688993 fv Log-Normal Cox, Log-Normal FALSE #> 7174 449 0.9081860 0.189349612 fv Log-Normal Cox, Log-Normal FALSE #> 7190 450 0.7032306 0.140992126 fv Log-Normal Cox, Log-Normal FALSE #> 7206 451 0.7939868 0.149065953 fv Log-Normal Cox, Log-Normal FALSE #> 7222 452 0.7822568 0.149666090 fv Log-Normal Cox, Log-Normal FALSE #> 7238 453 0.6987296 0.135190518 fv Log-Normal Cox, Log-Normal FALSE #> 7254 454 0.6802980 0.149217852 fv Log-Normal Cox, Log-Normal FALSE #> 7270 455 0.6300706 0.117145542 fv Log-Normal Cox, Log-Normal FALSE #> 7286 456 0.4853340 0.098943448 fv Log-Normal Cox, Log-Normal FALSE #> 7302 457 0.9159317 0.166991448 fv Log-Normal Cox, Log-Normal FALSE #> 7318 458 0.7926127 0.218179833 fv Log-Normal Cox, Log-Normal FALSE #> 7334 459 0.9673546 0.239194160 fv Log-Normal Cox, Log-Normal TRUE #> 7350 460 0.6824635 0.114496923 fv Log-Normal Cox, Log-Normal FALSE #> 7366 461 0.7838993 0.123060287 fv Log-Normal Cox, Log-Normal FALSE #> 7382 462 0.7263722 0.136940630 fv Log-Normal Cox, Log-Normal FALSE #> 7398 463 0.8725465 0.208727400 fv Log-Normal Cox, Log-Normal FALSE #> 7414 464 0.8133746 0.125786465 fv Log-Normal Cox, Log-Normal FALSE #> 7430 465 0.8180210 0.162596932 fv Log-Normal Cox, Log-Normal FALSE #> 7446 466 0.8447400 0.174373325 fv Log-Normal Cox, Log-Normal FALSE #> 7462 467 0.7417616 0.156331232 fv Log-Normal Cox, Log-Normal FALSE #> 7478 468 0.9181124 0.152344493 fv Log-Normal Cox, Log-Normal FALSE #> 7494 469 0.8086114 0.162584399 fv Log-Normal Cox, Log-Normal FALSE #> 7510 470 0.7530716 0.158528182 fv Log-Normal Cox, Log-Normal FALSE #> 7526 471 0.6314900 0.146336756 fv Log-Normal Cox, Log-Normal FALSE #> 7542 472 0.8683746 0.156186168 fv Log-Normal Cox, Log-Normal FALSE #> 7558 473 0.6937239 0.141938343 fv Log-Normal Cox, Log-Normal FALSE #> 7574 474 1.0218309 0.201167398 fv Log-Normal Cox, Log-Normal FALSE #> 7590 475 0.6337743 0.116592408 fv Log-Normal Cox, Log-Normal FALSE #> 7606 476 0.4770815 0.107961700 fv Log-Normal Cox, Log-Normal FALSE #> 7622 477 0.5086332 0.109130539 fv Log-Normal Cox, Log-Normal FALSE #> 7638 478 0.8075402 0.117965092 fv Log-Normal Cox, Log-Normal FALSE #> 7654 479 0.7389806 0.136893016 fv Log-Normal Cox, Log-Normal FALSE #> 7670 480 1.0175151 0.199915585 fv Log-Normal Cox, Log-Normal FALSE #> 7686 481 1.0192289 0.206087507 fv Log-Normal Cox, Log-Normal FALSE #> 7702 482 0.7832508 0.159491148 fv Log-Normal Cox, Log-Normal FALSE #> 7718 483 0.9418885 0.220672055 fv Log-Normal Cox, Log-Normal FALSE #> 7734 484 0.8962617 0.202093121 fv Log-Normal Cox, Log-Normal FALSE #> 7750 485 0.5958992 0.105063175 fv Log-Normal Cox, Log-Normal FALSE #> 7766 486 0.4667542 0.102867880 fv Log-Normal Cox, Log-Normal FALSE #> 7782 487 0.8900147 0.175007983 fv Log-Normal Cox, Log-Normal FALSE #> 7798 488 0.4449524 0.087682549 fv Log-Normal Cox, Log-Normal FALSE #> 7814 489 0.8004214 0.186144327 fv Log-Normal Cox, Log-Normal FALSE #> 7830 490 0.7127792 0.119173213 fv Log-Normal Cox, Log-Normal FALSE #> 7846 491 0.6889070 0.133673254 fv Log-Normal Cox, Log-Normal FALSE #> 7862 492 0.5582058 0.086242399 fv Log-Normal Cox, Log-Normal FALSE #> 7878 493 1.0663941 0.245806620 fv Log-Normal Cox, Log-Normal TRUE #> 7894 494 0.6613066 0.106604021 fv Log-Normal Cox, Log-Normal FALSE #> 7910 495 0.8228011 0.118045197 fv Log-Normal Cox, Log-Normal FALSE #> 7926 496 1.0887179 0.237339281 fv Log-Normal Cox, Log-Normal TRUE #> 7942 497 0.5916038 0.114587057 fv Log-Normal Cox, Log-Normal FALSE #> 7958 498 0.6348066 0.135633761 fv Log-Normal Cox, Log-Normal FALSE #> 7974 499 0.8889109 0.216181001 fv Log-Normal Cox, Log-Normal FALSE #> 7990 500 0.6773264 0.138954096 fv Log-Normal Cox, Log-Normal FALSE #> 8006 501 1.3435254 0.291530812 fv Log-Normal Cox, Log-Normal TRUE #> 8022 502 0.7736005 0.146718156 fv Log-Normal Cox, Log-Normal FALSE #> 8038 503 0.7460948 0.134956945 fv Log-Normal Cox, Log-Normal FALSE #> 8054 504 0.8756279 0.159497799 fv Log-Normal Cox, Log-Normal FALSE #> 8070 505 0.7539893 0.111108625 fv Log-Normal Cox, Log-Normal FALSE #> 8086 506 1.0221922 0.240938697 fv Log-Normal Cox, Log-Normal TRUE #> 8102 507 0.7310864 0.114690626 fv Log-Normal Cox, Log-Normal FALSE #> 8118 508 0.5378310 0.123741319 fv Log-Normal Cox, Log-Normal FALSE #> 8134 509 0.6777937 0.130389895 fv Log-Normal Cox, Log-Normal FALSE #> 8150 510 0.6842877 0.138741429 fv Log-Normal Cox, Log-Normal FALSE #> 8166 511 0.4603930 0.088394301 fv Log-Normal Cox, Log-Normal FALSE #> 8182 512 0.7229525 0.147506273 fv Log-Normal Cox, Log-Normal FALSE #> 8198 513 0.8035298 0.149275045 fv Log-Normal Cox, Log-Normal FALSE #> 8214 514 0.7179322 0.136809080 fv Log-Normal Cox, Log-Normal FALSE #> 8230 515 0.5586526 0.122315382 fv Log-Normal Cox, Log-Normal FALSE #> 8246 516 0.7377219 0.143754572 fv Log-Normal Cox, Log-Normal FALSE #> 8262 517 0.3667741 0.085169579 fv Log-Normal Cox, Log-Normal FALSE #> 8278 518 0.7435838 0.138029022 fv Log-Normal Cox, Log-Normal FALSE #> 8294 519 0.7674745 0.150261965 fv Log-Normal Cox, Log-Normal FALSE #> 8310 520 0.8003345 0.122407092 fv Log-Normal Cox, Log-Normal FALSE #> 8326 521 0.7988626 0.169064785 fv Log-Normal Cox, Log-Normal FALSE #> 8342 522 0.5375144 0.095228819 fv Log-Normal Cox, Log-Normal FALSE #> 8358 523 0.7667009 0.131558815 fv Log-Normal Cox, Log-Normal FALSE #> 8374 524 0.5269024 0.120077784 fv Log-Normal Cox, Log-Normal FALSE #> 8390 525 0.7031804 0.154586399 fv Log-Normal Cox, Log-Normal FALSE #> 8406 526 0.6061274 0.117091908 fv Log-Normal Cox, Log-Normal FALSE #> 8422 527 0.7137822 0.163596077 fv Log-Normal Cox, Log-Normal FALSE #> 8438 528 0.9252247 0.189829300 fv Log-Normal Cox, Log-Normal FALSE #> 8454 529 0.9342341 0.181406052 fv Log-Normal Cox, Log-Normal FALSE #> 8470 530 0.4498170 0.111087235 fv Log-Normal Cox, Log-Normal FALSE #> 8486 531 0.9979562 0.213629379 fv Log-Normal Cox, Log-Normal FALSE #> 8502 532 0.7223377 0.116231722 fv Log-Normal Cox, Log-Normal FALSE #> 8518 533 0.6906718 0.122960600 fv Log-Normal Cox, Log-Normal FALSE #> 8534 534 0.7416424 0.148941672 fv Log-Normal Cox, Log-Normal FALSE #> 8550 535 0.8626834 0.157323432 fv Log-Normal Cox, Log-Normal FALSE #> 8566 536 0.5963041 0.116089213 fv Log-Normal Cox, Log-Normal FALSE #> 8582 537 1.2345153 0.237582349 fv Log-Normal Cox, Log-Normal TRUE #> 8598 538 0.5063558 0.092401072 fv Log-Normal Cox, Log-Normal FALSE #> 8614 539 0.6862567 0.149536685 fv Log-Normal Cox, Log-Normal FALSE #> 8630 540 0.6141186 0.114391863 fv Log-Normal Cox, Log-Normal FALSE #> 8646 541 0.8968782 0.167673684 fv Log-Normal Cox, Log-Normal FALSE #> 8662 542 0.8198767 0.169342183 fv Log-Normal Cox, Log-Normal FALSE #> 8678 543 0.7575504 0.148707340 fv Log-Normal Cox, Log-Normal FALSE #> 8694 544 0.7617908 0.155859277 fv Log-Normal Cox, Log-Normal FALSE #> 8710 545 0.5717824 0.084305835 fv Log-Normal Cox, Log-Normal FALSE #> 8726 546 0.9040874 0.167410002 fv Log-Normal Cox, Log-Normal FALSE #> 8742 547 0.6870910 0.129415648 fv Log-Normal Cox, Log-Normal FALSE #> 8758 548 0.5381865 0.117060922 fv Log-Normal Cox, Log-Normal FALSE #> 8774 549 0.8835431 0.179113769 fv Log-Normal Cox, Log-Normal FALSE #> 8790 550 0.5208702 0.124333872 fv Log-Normal Cox, Log-Normal FALSE #> 8806 551 0.7964585 0.156422129 fv Log-Normal Cox, Log-Normal FALSE #> 8822 552 0.7041652 0.128276679 fv Log-Normal Cox, Log-Normal FALSE #> 8838 553 0.8459051 0.122339846 fv Log-Normal Cox, Log-Normal FALSE #> 8854 554 0.8977503 0.179088453 fv Log-Normal Cox, Log-Normal FALSE #> 8870 555 0.8326376 0.128746242 fv Log-Normal Cox, Log-Normal FALSE #> 8886 556 0.8753515 0.143451520 fv Log-Normal Cox, Log-Normal FALSE #> 8902 557 0.6984218 0.127912102 fv Log-Normal Cox, Log-Normal FALSE #> 8918 558 0.6669430 0.112161043 fv Log-Normal Cox, Log-Normal FALSE #> 8934 559 0.6132347 0.122896494 fv Log-Normal Cox, Log-Normal FALSE #> 8950 560 0.7760753 0.145292156 fv Log-Normal Cox, Log-Normal FALSE #> 8966 561 1.2406263 0.221751865 fv Log-Normal Cox, Log-Normal TRUE #> 8982 562 0.8951923 0.192853014 fv Log-Normal Cox, Log-Normal FALSE #> 8998 563 0.7936453 0.148256364 fv Log-Normal Cox, Log-Normal FALSE #> 9014 564 0.6496611 0.154999773 fv Log-Normal Cox, Log-Normal FALSE #> 9030 565 0.5558608 0.112968507 fv Log-Normal Cox, Log-Normal FALSE #> 9046 566 0.7784225 0.197678997 fv Log-Normal Cox, Log-Normal FALSE #> 9062 567 0.7390722 0.134151819 fv Log-Normal Cox, Log-Normal FALSE #> 9078 568 0.5370427 0.106409861 fv Log-Normal Cox, Log-Normal FALSE #> 9094 569 0.8446977 0.151362680 fv Log-Normal Cox, Log-Normal FALSE #> 9110 570 0.5783874 0.154235730 fv Log-Normal Cox, Log-Normal FALSE #> 9126 571 0.6980819 0.132611887 fv Log-Normal Cox, Log-Normal FALSE #> 9142 572 0.6078955 0.113509666 fv Log-Normal Cox, Log-Normal FALSE #> 9158 573 0.6531702 0.123193776 fv Log-Normal Cox, Log-Normal FALSE #> 9174 574 0.7369219 0.133697888 fv Log-Normal Cox, Log-Normal FALSE #> 9190 575 0.6652456 0.174809549 fv Log-Normal Cox, Log-Normal FALSE #> 9206 576 0.7042127 0.184240750 fv Log-Normal Cox, Log-Normal FALSE #> 9222 577 0.9058959 0.206369728 fv Log-Normal Cox, Log-Normal FALSE #> 9238 578 0.5871046 0.099243005 fv Log-Normal Cox, Log-Normal FALSE #> 9254 579 0.6010841 0.132716062 fv Log-Normal Cox, Log-Normal FALSE #> 9270 580 0.4971421 0.107766896 fv Log-Normal Cox, Log-Normal FALSE #> 9286 581 0.7923715 0.151082100 fv Log-Normal Cox, Log-Normal FALSE #> 9302 582 0.7728312 0.153502508 fv Log-Normal Cox, Log-Normal FALSE #> 9318 583 1.0323624 0.163822527 fv Log-Normal Cox, Log-Normal FALSE #> 9334 584 0.5414420 0.108025677 fv Log-Normal Cox, Log-Normal FALSE #> 9350 585 0.7190622 0.114529054 fv Log-Normal Cox, Log-Normal FALSE #> 9366 586 0.7455106 0.124365353 fv Log-Normal Cox, Log-Normal FALSE #> 9382 587 0.9302355 0.214573938 fv Log-Normal Cox, Log-Normal FALSE #> 9398 588 0.5806374 0.109803503 fv Log-Normal Cox, Log-Normal FALSE #> 9414 589 0.6039216 0.119344261 fv Log-Normal Cox, Log-Normal FALSE #> 9430 590 0.8219766 0.176507665 fv Log-Normal Cox, Log-Normal FALSE #> 9446 591 0.8456887 0.166784984 fv Log-Normal Cox, Log-Normal FALSE #> 9462 592 0.8298067 0.163691115 fv Log-Normal Cox, Log-Normal FALSE #> 9478 593 0.9301881 0.184785185 fv Log-Normal Cox, Log-Normal FALSE #> 9494 594 0.7212752 0.124340342 fv Log-Normal Cox, Log-Normal FALSE #> 9510 595 0.5431571 0.090258789 fv Log-Normal Cox, Log-Normal FALSE #> 9526 596 0.7293813 0.174344234 fv Log-Normal Cox, Log-Normal FALSE #> 9542 597 0.6050940 0.111506243 fv Log-Normal Cox, Log-Normal FALSE #> 9558 598 1.0673488 0.205896016 fv Log-Normal Cox, Log-Normal FALSE #> 9574 599 0.7497517 0.183646091 fv Log-Normal Cox, Log-Normal FALSE #> 9590 600 0.5310092 0.109738635 fv Log-Normal Cox, Log-Normal FALSE #> 9606 601 1.1622807 0.252214764 fv Log-Normal Cox, Log-Normal TRUE #> 9622 602 0.9860745 0.203449964 fv Log-Normal Cox, Log-Normal FALSE #> 9638 603 0.4156386 0.069227727 fv Log-Normal Cox, Log-Normal FALSE #> 9654 604 0.7547442 0.131357593 fv Log-Normal Cox, Log-Normal FALSE #> 9670 605 1.2270888 0.254788035 fv Log-Normal Cox, Log-Normal TRUE #> 9686 606 0.6744288 0.140766466 fv Log-Normal Cox, Log-Normal FALSE #> 9702 607 0.6089607 0.135399445 fv Log-Normal Cox, Log-Normal FALSE #> 9718 608 0.4385750 0.078430090 fv Log-Normal Cox, Log-Normal FALSE #> 9734 609 0.8290773 0.146094145 fv Log-Normal Cox, Log-Normal FALSE #> 9750 610 0.6340374 0.128702321 fv Log-Normal Cox, Log-Normal FALSE #> 9766 611 0.8007515 0.201200477 fv Log-Normal Cox, Log-Normal FALSE #> 9782 612 0.5875066 0.117282979 fv Log-Normal Cox, Log-Normal FALSE #> 9798 613 0.8175702 0.130135551 fv Log-Normal Cox, Log-Normal FALSE #> 9814 614 0.7773840 0.134334791 fv Log-Normal Cox, Log-Normal FALSE #> 9830 615 0.8689451 0.145406422 fv Log-Normal Cox, Log-Normal FALSE #> 9846 616 0.7820989 0.151533700 fv Log-Normal Cox, Log-Normal FALSE #> 9862 617 0.7837638 0.136211673 fv Log-Normal Cox, Log-Normal FALSE #> 9878 618 0.6788178 0.142475685 fv Log-Normal Cox, Log-Normal FALSE #> 9894 619 0.8183659 0.154788400 fv Log-Normal Cox, Log-Normal FALSE #> 9910 620 0.8171046 0.180268515 fv Log-Normal Cox, Log-Normal FALSE #> 9926 621 0.5639292 0.107073034 fv Log-Normal Cox, Log-Normal FALSE #> 9942 622 0.6314516 0.125356048 fv Log-Normal Cox, Log-Normal FALSE #> 9958 623 0.8785102 0.184572000 fv Log-Normal Cox, Log-Normal FALSE #> 9974 624 0.5825642 0.140201227 fv Log-Normal Cox, Log-Normal FALSE #> 9990 625 0.7614824 0.157638018 fv Log-Normal Cox, Log-Normal FALSE #> 10006 626 0.6383478 0.128329406 fv Log-Normal Cox, Log-Normal FALSE #> 10022 627 0.6242897 0.114015728 fv Log-Normal Cox, Log-Normal FALSE #> 10038 628 0.6642862 0.172314284 fv Log-Normal Cox, Log-Normal FALSE #> 10054 629 0.6375845 0.122839399 fv Log-Normal Cox, Log-Normal FALSE #> 10070 630 0.8324783 0.130755118 fv Log-Normal Cox, Log-Normal FALSE #> 10086 631 0.6702640 0.108227424 fv Log-Normal Cox, Log-Normal FALSE #> 10102 632 0.7767630 0.177729336 fv Log-Normal Cox, Log-Normal FALSE #> 10118 633 0.4914987 0.093416187 fv Log-Normal Cox, Log-Normal FALSE #> 10134 634 0.6746632 0.175170229 fv Log-Normal Cox, Log-Normal FALSE #> 10150 635 0.9036130 0.202423279 fv Log-Normal Cox, Log-Normal FALSE #> 10166 636 0.4183601 0.083783931 fv Log-Normal Cox, Log-Normal FALSE #> 10182 637 0.8719040 0.157295311 fv Log-Normal Cox, Log-Normal FALSE #> 10198 638 0.6832427 0.161228334 fv Log-Normal Cox, Log-Normal FALSE #> 10214 639 0.4325527 0.097111445 fv Log-Normal Cox, Log-Normal FALSE #> 10230 640 0.7229937 0.154618672 fv Log-Normal Cox, Log-Normal FALSE #> 10246 641 0.5857330 0.122395333 fv Log-Normal Cox, Log-Normal FALSE #> 10262 642 0.6360379 0.117279907 fv Log-Normal Cox, Log-Normal FALSE #> 10278 643 0.6645645 0.116264569 fv Log-Normal Cox, Log-Normal FALSE #> 10294 644 0.6190932 0.107311160 fv Log-Normal Cox, Log-Normal FALSE #> 10310 645 0.7533956 0.134819768 fv Log-Normal Cox, Log-Normal FALSE #> 10326 646 0.8375410 0.134833528 fv Log-Normal Cox, Log-Normal FALSE #> 10342 647 0.6563751 0.098262571 fv Log-Normal Cox, Log-Normal FALSE #> 10358 648 1.0706016 0.216998183 fv Log-Normal Cox, Log-Normal FALSE #> 10374 649 0.6314217 0.139306982 fv Log-Normal Cox, Log-Normal FALSE #> 10390 650 0.8102765 0.157581814 fv Log-Normal Cox, Log-Normal FALSE #> 10406 651 0.7925761 0.156304582 fv Log-Normal Cox, Log-Normal FALSE #> 10422 652 1.2665462 0.209947407 fv Log-Normal Cox, Log-Normal TRUE #> 10438 653 0.5434712 0.103592893 fv Log-Normal Cox, Log-Normal FALSE #> 10454 654 0.5856523 0.164414521 fv Log-Normal Cox, Log-Normal FALSE #> 10470 655 0.7001387 0.134566498 fv Log-Normal Cox, Log-Normal FALSE #> 10486 656 0.7099659 0.150674082 fv Log-Normal Cox, Log-Normal FALSE #> 10502 657 0.5343694 0.110794639 fv Log-Normal Cox, Log-Normal FALSE #> 10518 658 1.1477870 0.241951186 fv Log-Normal Cox, Log-Normal TRUE #> 10534 659 1.0433141 0.268908122 fv Log-Normal Cox, Log-Normal TRUE #> 10550 660 0.8574517 0.160474979 fv Log-Normal Cox, Log-Normal FALSE #> 10566 661 0.5656016 0.115462157 fv Log-Normal Cox, Log-Normal FALSE #> 10582 662 0.5913374 0.112065321 fv Log-Normal Cox, Log-Normal FALSE #> 10598 663 0.7014024 0.115616243 fv Log-Normal Cox, Log-Normal FALSE #> 10614 664 0.7024798 0.117240169 fv Log-Normal Cox, Log-Normal FALSE #> 10630 665 0.8771094 0.169469126 fv Log-Normal Cox, Log-Normal FALSE #> 10646 666 1.1630685 0.201255082 fv Log-Normal Cox, Log-Normal TRUE #> 10662 667 0.6484067 0.117314626 fv Log-Normal Cox, Log-Normal FALSE #> 10678 668 0.6308263 0.131132730 fv Log-Normal Cox, Log-Normal FALSE #> 10694 669 0.9142532 0.187111491 fv Log-Normal Cox, Log-Normal FALSE #> 10710 670 0.6192754 0.147049588 fv Log-Normal Cox, Log-Normal FALSE #> 10726 671 0.7969559 0.146088966 fv Log-Normal Cox, Log-Normal FALSE #> 10742 672 0.9573071 0.193663466 fv Log-Normal Cox, Log-Normal FALSE #> 10758 673 0.6501472 0.117106072 fv Log-Normal Cox, Log-Normal FALSE #> 10774 674 0.8224194 0.160584426 fv Log-Normal Cox, Log-Normal FALSE #> 10790 675 0.6495018 0.188477878 fv Log-Normal Cox, Log-Normal FALSE #> 10806 676 0.8711933 0.164562370 fv Log-Normal Cox, Log-Normal FALSE #> 10822 677 0.6800675 0.117054835 fv Log-Normal Cox, Log-Normal FALSE #> 10838 678 0.5713441 0.107816673 fv Log-Normal Cox, Log-Normal FALSE #> 10854 679 0.6112346 0.133477913 fv Log-Normal Cox, Log-Normal FALSE #> 10870 680 0.7496116 0.136062520 fv Log-Normal Cox, Log-Normal FALSE #> 10886 681 1.0147299 0.200149345 fv Log-Normal Cox, Log-Normal FALSE #> 10902 682 0.6897060 0.140083930 fv Log-Normal Cox, Log-Normal FALSE #> 10918 683 0.8143957 0.185740341 fv Log-Normal Cox, Log-Normal FALSE #> 10934 684 1.0560264 0.219153739 fv Log-Normal Cox, Log-Normal FALSE #> 10950 685 0.6654488 0.115993957 fv Log-Normal Cox, Log-Normal FALSE #> 10966 686 0.8930725 0.173037645 fv Log-Normal Cox, Log-Normal FALSE #> 10982 687 0.5843867 0.083530258 fv Log-Normal Cox, Log-Normal FALSE #> 10998 688 0.6143148 0.131684418 fv Log-Normal Cox, Log-Normal FALSE #> 11014 689 0.6573937 0.127658438 fv Log-Normal Cox, Log-Normal FALSE #> 11030 690 0.8718297 0.179672033 fv Log-Normal Cox, Log-Normal FALSE #> 11046 691 0.7069982 0.288250138 fv Log-Normal Cox, Log-Normal TRUE #> 11062 692 0.6778167 0.148233924 fv Log-Normal Cox, Log-Normal FALSE #> 11078 693 0.5430129 0.135999915 fv Log-Normal Cox, Log-Normal FALSE #> 11094 694 0.7297001 0.140998825 fv Log-Normal Cox, Log-Normal FALSE #> 11110 695 0.6424014 0.105666649 fv Log-Normal Cox, Log-Normal FALSE #> 11126 696 0.7792619 0.119330409 fv Log-Normal Cox, Log-Normal FALSE #> 11142 697 0.8896887 0.198744409 fv Log-Normal Cox, Log-Normal FALSE #> 11158 698 0.4671205 0.106620840 fv Log-Normal Cox, Log-Normal FALSE #> 11174 699 0.7181789 0.160616129 fv Log-Normal Cox, Log-Normal FALSE #> 11190 700 0.5477280 0.108273968 fv Log-Normal Cox, Log-Normal FALSE #> 11206 701 0.8589172 0.180922288 fv Log-Normal Cox, Log-Normal FALSE #> 11222 702 0.8686646 0.196511490 fv Log-Normal Cox, Log-Normal FALSE #> 11238 703 0.7410847 0.159178375 fv Log-Normal Cox, Log-Normal FALSE #> 11254 704 0.6408199 0.125427367 fv Log-Normal Cox, Log-Normal FALSE #> 11270 705 0.7057959 0.146779535 fv Log-Normal Cox, Log-Normal FALSE #> 11286 706 0.7643511 0.148323471 fv Log-Normal Cox, Log-Normal FALSE #> 11302 707 0.9700524 0.160443888 fv Log-Normal Cox, Log-Normal FALSE #> 11318 708 0.9265933 0.149354147 fv Log-Normal Cox, Log-Normal FALSE #> 11334 709 0.6749683 0.172123684 fv Log-Normal Cox, Log-Normal FALSE #> 11350 710 0.5117771 0.091200765 fv Log-Normal Cox, Log-Normal FALSE #> 11366 711 0.6439905 0.167360644 fv Log-Normal Cox, Log-Normal FALSE #> 11382 712 0.6767084 0.108127089 fv Log-Normal Cox, Log-Normal FALSE #> 11398 713 1.0129778 0.274729370 fv Log-Normal Cox, Log-Normal TRUE #> 11414 714 0.8089406 0.174250652 fv Log-Normal Cox, Log-Normal FALSE #> 11430 715 0.8597580 0.165342420 fv Log-Normal Cox, Log-Normal FALSE #> 11446 716 0.7624100 0.134839371 fv Log-Normal Cox, Log-Normal FALSE #> 11462 717 0.8249533 0.167079927 fv Log-Normal Cox, Log-Normal FALSE #> 11478 718 0.8576847 0.162024555 fv Log-Normal Cox, Log-Normal FALSE #> 11494 719 0.9824621 0.237930201 fv Log-Normal Cox, Log-Normal TRUE #> 11510 720 0.7869505 0.125298604 fv Log-Normal Cox, Log-Normal FALSE #> 11526 721 0.6114592 0.138309040 fv Log-Normal Cox, Log-Normal FALSE #> 11542 722 0.8040976 0.146430602 fv Log-Normal Cox, Log-Normal FALSE #> 11558 723 0.6317170 0.117974648 fv Log-Normal Cox, Log-Normal FALSE #> 11574 724 0.7495479 0.173784769 fv Log-Normal Cox, Log-Normal FALSE #> 11590 725 0.7586515 0.141571771 fv Log-Normal Cox, Log-Normal FALSE #> 11606 726 0.6758165 0.142506550 fv Log-Normal Cox, Log-Normal FALSE #> 11622 727 0.7878067 0.116750587 fv Log-Normal Cox, Log-Normal FALSE #> 11638 728 1.0293747 0.182526831 fv Log-Normal Cox, Log-Normal FALSE #> 11654 729 0.7858074 0.152231699 fv Log-Normal Cox, Log-Normal FALSE #> 11670 730 0.8523065 0.177705684 fv Log-Normal Cox, Log-Normal FALSE #> 11686 731 0.5676312 0.154710463 fv Log-Normal Cox, Log-Normal FALSE #> 11702 732 0.4997332 0.136812917 fv Log-Normal Cox, Log-Normal FALSE #> 11718 733 0.9890456 0.207143362 fv Log-Normal Cox, Log-Normal FALSE #> 11734 734 0.8982896 0.180036540 fv Log-Normal Cox, Log-Normal FALSE #> 11750 735 1.0022962 0.154539597 fv Log-Normal Cox, Log-Normal FALSE #> 11766 736 0.8541157 0.183590550 fv Log-Normal Cox, Log-Normal FALSE #> 11782 737 0.7416449 0.113810433 fv Log-Normal Cox, Log-Normal FALSE #> 11798 738 0.5320803 0.105301645 fv Log-Normal Cox, Log-Normal FALSE #> 11814 739 0.6012800 0.128194651 fv Log-Normal Cox, Log-Normal FALSE #> 11830 740 0.8138247 0.152345638 fv Log-Normal Cox, Log-Normal FALSE #> 11846 741 1.0145235 0.181258293 fv Log-Normal Cox, Log-Normal FALSE #> 11862 742 0.6611129 0.120578274 fv Log-Normal Cox, Log-Normal FALSE #> 11878 743 0.7645426 0.114386181 fv Log-Normal Cox, Log-Normal FALSE #> 11894 744 0.7905449 0.201901154 fv Log-Normal Cox, Log-Normal FALSE #> 11910 745 0.7800280 0.154382410 fv Log-Normal Cox, Log-Normal FALSE #> 11926 746 0.5983568 0.171488391 fv Log-Normal Cox, Log-Normal FALSE #> 11942 747 0.6553279 0.126681997 fv Log-Normal Cox, Log-Normal FALSE #> 11958 748 0.8596291 0.190755108 fv Log-Normal Cox, Log-Normal FALSE #> 11974 749 0.9163101 0.186289412 fv Log-Normal Cox, Log-Normal FALSE #> 11990 750 0.7524690 0.142892311 fv Log-Normal Cox, Log-Normal FALSE #> 12006 751 0.8953943 0.163271302 fv Log-Normal Cox, Log-Normal FALSE #> 12022 752 0.6902168 0.167689577 fv Log-Normal Cox, Log-Normal FALSE #> 12038 753 0.4443201 0.114075408 fv Log-Normal Cox, Log-Normal FALSE #> 12054 754 0.7877421 0.145197625 fv Log-Normal Cox, Log-Normal FALSE #> 12070 755 0.6689381 0.126865509 fv Log-Normal Cox, Log-Normal FALSE #> 12086 756 0.3785131 0.082873155 fv Log-Normal Cox, Log-Normal FALSE #> 12102 757 0.6779404 0.130786163 fv Log-Normal Cox, Log-Normal FALSE #> 12118 758 0.7746253 0.163500811 fv Log-Normal Cox, Log-Normal FALSE #> 12134 759 0.6781740 0.122448396 fv Log-Normal Cox, Log-Normal FALSE #> 12150 760 0.8695697 0.184253732 fv Log-Normal Cox, Log-Normal FALSE #> 12166 761 0.6318074 0.126609451 fv Log-Normal Cox, Log-Normal FALSE #> 12182 762 0.7612468 0.155081467 fv Log-Normal Cox, Log-Normal FALSE #> 12198 763 0.5637018 0.111824322 fv Log-Normal Cox, Log-Normal FALSE #> 12214 764 0.6553212 0.114285817 fv Log-Normal Cox, Log-Normal FALSE #> 12230 765 0.9462467 0.163155624 fv Log-Normal Cox, Log-Normal FALSE #> 12246 766 0.6537097 0.106200814 fv Log-Normal Cox, Log-Normal FALSE #> 12262 767 0.8747035 0.162635548 fv Log-Normal Cox, Log-Normal FALSE #> 12278 768 0.5877160 0.115237900 fv Log-Normal Cox, Log-Normal FALSE #> 12294 769 1.0167998 0.184375254 fv Log-Normal Cox, Log-Normal FALSE #> 12310 770 0.6130030 0.145352310 fv Log-Normal Cox, Log-Normal FALSE #> 12326 771 0.5745927 0.203706310 fv Log-Normal Cox, Log-Normal FALSE #> 12342 772 0.5853131 0.110646970 fv Log-Normal Cox, Log-Normal FALSE #> 12358 773 0.5687756 0.134007492 fv Log-Normal Cox, Log-Normal FALSE #> 12374 774 0.7226932 0.149336319 fv Log-Normal Cox, Log-Normal FALSE #> 12390 775 0.6797903 0.122447722 fv Log-Normal Cox, Log-Normal FALSE #> 12406 776 0.6853206 0.109785022 fv Log-Normal Cox, Log-Normal FALSE #> 12422 777 0.6212015 0.129042772 fv Log-Normal Cox, Log-Normal FALSE #> 12438 778 0.7164382 0.234844057 fv Log-Normal Cox, Log-Normal FALSE #> 12454 779 0.6742564 0.143043418 fv Log-Normal Cox, Log-Normal FALSE #> 12470 780 0.6170242 0.105097932 fv Log-Normal Cox, Log-Normal FALSE #> 12486 781 0.7318112 0.142735071 fv Log-Normal Cox, Log-Normal FALSE #> 12502 782 0.6610061 0.135449920 fv Log-Normal Cox, Log-Normal FALSE #> 12518 783 0.6278950 0.104305213 fv Log-Normal Cox, Log-Normal FALSE #> 12534 784 0.8094113 0.169945752 fv Log-Normal Cox, Log-Normal FALSE #> 12550 785 0.4946073 0.092835822 fv Log-Normal Cox, Log-Normal FALSE #> 12566 786 0.6267274 0.128041392 fv Log-Normal Cox, Log-Normal FALSE #> 12582 787 1.0178487 0.161660428 fv Log-Normal Cox, Log-Normal FALSE #> 12598 788 0.7008192 0.129005706 fv Log-Normal Cox, Log-Normal FALSE #> 12614 789 0.9344409 0.209106923 fv Log-Normal Cox, Log-Normal FALSE #> 12630 790 0.7454167 0.158623779 fv Log-Normal Cox, Log-Normal FALSE #> 12646 791 0.4161568 0.067941163 fv Log-Normal Cox, Log-Normal FALSE #> 12662 792 0.5456873 0.127448237 fv Log-Normal Cox, Log-Normal FALSE #> 12678 793 0.8498802 0.152802063 fv Log-Normal Cox, Log-Normal FALSE #> 12694 794 0.6776564 0.170730758 fv Log-Normal Cox, Log-Normal FALSE #> 12710 795 0.6364088 0.114399391 fv Log-Normal Cox, Log-Normal FALSE #> 12726 796 0.6120280 0.123040994 fv Log-Normal Cox, Log-Normal FALSE #> 12742 797 0.6868664 0.174130114 fv Log-Normal Cox, Log-Normal FALSE #> 12758 798 0.4111110 0.073952807 fv Log-Normal Cox, Log-Normal FALSE #> 12774 799 0.7667146 0.131502219 fv Log-Normal Cox, Log-Normal FALSE #> 12790 800 0.7651482 0.172314768 fv Log-Normal Cox, Log-Normal FALSE #> 12806 801 0.9872713 0.175396964 fv Log-Normal Cox, Log-Normal FALSE #> 12822 802 0.7981148 0.154386226 fv Log-Normal Cox, Log-Normal FALSE #> 12838 803 0.6583993 0.114725176 fv Log-Normal Cox, Log-Normal FALSE #> 12854 804 0.7555532 0.134524463 fv Log-Normal Cox, Log-Normal FALSE #> 12870 805 0.8249342 0.224337487 fv Log-Normal Cox, Log-Normal FALSE #> 12886 806 0.7903732 0.194773703 fv Log-Normal Cox, Log-Normal FALSE #> 12902 807 0.6441408 0.165412856 fv Log-Normal Cox, Log-Normal FALSE #> 12918 808 0.5046575 0.080358900 fv Log-Normal Cox, Log-Normal FALSE #> 12934 809 0.6864933 0.146661840 fv Log-Normal Cox, Log-Normal FALSE #> 12950 810 0.8124512 0.154133092 fv Log-Normal Cox, Log-Normal FALSE #> 12966 811 0.4692017 0.082645886 fv Log-Normal Cox, Log-Normal FALSE #> 12982 812 0.7250259 0.147300631 fv Log-Normal Cox, Log-Normal FALSE #> 12998 813 0.8814457 0.152466669 fv Log-Normal Cox, Log-Normal FALSE #> 13014 814 0.6852626 0.133497265 fv Log-Normal Cox, Log-Normal FALSE #> 13030 815 0.5973459 0.152294373 fv Log-Normal Cox, Log-Normal FALSE #> 13046 816 0.6997353 0.136317443 fv Log-Normal Cox, Log-Normal FALSE #> 13062 817 0.4710155 0.088285645 fv Log-Normal Cox, Log-Normal FALSE #> 13078 818 0.6451949 0.153857802 fv Log-Normal Cox, Log-Normal FALSE #> 13094 819 0.8337783 0.122400350 fv Log-Normal Cox, Log-Normal FALSE #> 13110 820 0.8563875 0.184562604 fv Log-Normal Cox, Log-Normal FALSE #> 13126 821 0.5642452 0.099701124 fv Log-Normal Cox, Log-Normal FALSE #> 13142 822 0.8848165 0.173698620 fv Log-Normal Cox, Log-Normal FALSE #> 13158 823 0.9679673 0.224333994 fv Log-Normal Cox, Log-Normal FALSE #> 13174 824 0.9169811 0.190827566 fv Log-Normal Cox, Log-Normal FALSE #> 13190 825 0.7620785 0.143634398 fv Log-Normal Cox, Log-Normal FALSE #> 13206 826 0.8129126 0.187223856 fv Log-Normal Cox, Log-Normal FALSE #> 13222 827 0.8913960 0.200847045 fv Log-Normal Cox, Log-Normal FALSE #> 13238 828 0.7526682 0.217873031 fv Log-Normal Cox, Log-Normal FALSE #> 13254 829 0.7129035 0.141271513 fv Log-Normal Cox, Log-Normal FALSE #> 13270 830 0.8093686 0.161447055 fv Log-Normal Cox, Log-Normal FALSE #> 13286 831 0.8728235 0.152899961 fv Log-Normal Cox, Log-Normal FALSE #> 13302 832 0.5911143 0.140956737 fv Log-Normal Cox, Log-Normal FALSE #> 13318 833 0.8823798 0.182578061 fv Log-Normal Cox, Log-Normal FALSE #> 13334 834 0.6489802 0.138432704 fv Log-Normal Cox, Log-Normal FALSE #> 13350 835 0.6823934 0.138367545 fv Log-Normal Cox, Log-Normal FALSE #> 13366 836 0.7826148 0.163460070 fv Log-Normal Cox, Log-Normal FALSE #> 13382 837 0.7736597 0.176327722 fv Log-Normal Cox, Log-Normal FALSE #> 13398 838 0.7054494 0.122169599 fv Log-Normal Cox, Log-Normal FALSE #> 13414 839 0.5919390 0.130336343 fv Log-Normal Cox, Log-Normal FALSE #> 13430 840 0.6180481 0.108543993 fv Log-Normal Cox, Log-Normal FALSE #> 13446 841 0.9302992 0.196914198 fv Log-Normal Cox, Log-Normal FALSE #> 13462 842 0.5602323 0.109237597 fv Log-Normal Cox, Log-Normal FALSE #> 13478 843 0.6748513 0.144994565 fv Log-Normal Cox, Log-Normal FALSE #> 13494 844 0.9129811 0.159326671 fv Log-Normal Cox, Log-Normal FALSE #> 13510 845 0.9877512 0.201813260 fv Log-Normal Cox, Log-Normal FALSE #> 13526 846 0.5533760 0.112530844 fv Log-Normal Cox, Log-Normal FALSE #> 13542 847 1.0264997 0.158287594 fv Log-Normal Cox, Log-Normal FALSE #> 13558 848 0.8399707 0.148734031 fv Log-Normal Cox, Log-Normal FALSE #> 13574 849 0.6201535 0.111310526 fv Log-Normal Cox, Log-Normal FALSE #> 13590 850 0.8142559 0.145644218 fv Log-Normal Cox, Log-Normal FALSE #> 13606 851 0.7006251 0.122041091 fv Log-Normal Cox, Log-Normal FALSE #> 13622 852 0.7511030 0.133087367 fv Log-Normal Cox, Log-Normal FALSE #> 13638 853 1.0390655 0.145203301 fv Log-Normal Cox, Log-Normal FALSE #> 13654 854 0.7097626 0.174226283 fv Log-Normal Cox, Log-Normal FALSE #> 13670 855 0.6546727 0.164479144 fv Log-Normal Cox, Log-Normal FALSE #> 13686 856 0.8742938 0.176632638 fv Log-Normal Cox, Log-Normal FALSE #> 13702 857 0.8235076 0.201058874 fv Log-Normal Cox, Log-Normal FALSE #> 13718 858 1.0655379 0.200597120 fv Log-Normal Cox, Log-Normal FALSE #> 13734 859 0.9019343 0.175412623 fv Log-Normal Cox, Log-Normal FALSE #> 13750 860 0.6622603 0.126053239 fv Log-Normal Cox, Log-Normal FALSE #> 13766 861 0.4665198 0.077897819 fv Log-Normal Cox, Log-Normal FALSE #> 13782 862 0.6543993 0.124272472 fv Log-Normal Cox, Log-Normal FALSE #> 13798 863 0.6978115 0.134982065 fv Log-Normal Cox, Log-Normal FALSE #> 13814 864 0.9283803 0.173095332 fv Log-Normal Cox, Log-Normal FALSE #> 13830 865 0.9136195 0.174912207 fv Log-Normal Cox, Log-Normal FALSE #> 13846 866 0.7371495 0.158525534 fv Log-Normal Cox, Log-Normal FALSE #> 13862 867 0.6008699 0.124295016 fv Log-Normal Cox, Log-Normal FALSE #> 13878 868 0.8928902 0.189023552 fv Log-Normal Cox, Log-Normal FALSE #> 13894 869 0.5323448 0.094885987 fv Log-Normal Cox, Log-Normal FALSE #> 13910 870 0.7740212 0.153614509 fv Log-Normal Cox, Log-Normal FALSE #> 13926 871 0.5040690 0.094185702 fv Log-Normal Cox, Log-Normal FALSE #> 13942 872 0.4682306 0.082330866 fv Log-Normal Cox, Log-Normal FALSE #> 13958 873 0.8744887 0.139709149 fv Log-Normal Cox, Log-Normal FALSE #> 13974 874 0.7783567 0.192580753 fv Log-Normal Cox, Log-Normal FALSE #> 13990 875 0.6773657 0.139640942 fv Log-Normal Cox, Log-Normal FALSE #> 14006 876 0.6165045 0.121485821 fv Log-Normal Cox, Log-Normal FALSE #> 14022 877 0.5859028 0.131899842 fv Log-Normal Cox, Log-Normal FALSE #> 14038 878 0.6917847 0.157165569 fv Log-Normal Cox, Log-Normal FALSE #> 14054 879 0.6977268 0.137740612 fv Log-Normal Cox, Log-Normal FALSE #> 14070 880 0.8483322 0.141854241 fv Log-Normal Cox, Log-Normal FALSE #> 14086 881 0.5661982 0.102733370 fv Log-Normal Cox, Log-Normal FALSE #> 14102 882 0.7169868 0.152447981 fv Log-Normal Cox, Log-Normal FALSE #> 14118 883 0.6447592 0.153543953 fv Log-Normal Cox, Log-Normal FALSE #> 14134 884 0.5975498 0.128517356 fv Log-Normal Cox, Log-Normal FALSE #> 14150 885 0.7782512 0.162836252 fv Log-Normal Cox, Log-Normal FALSE #> 14166 886 0.6628296 0.148932066 fv Log-Normal Cox, Log-Normal FALSE #> 14182 887 0.3830570 0.087415331 fv Log-Normal Cox, Log-Normal FALSE #> 14198 888 0.6791310 0.150167427 fv Log-Normal Cox, Log-Normal FALSE #> 14214 889 0.7780627 0.203727025 fv Log-Normal Cox, Log-Normal FALSE #> 14230 890 0.7108866 0.125667784 fv Log-Normal Cox, Log-Normal FALSE #> 14246 891 0.7540428 0.144451491 fv Log-Normal Cox, Log-Normal FALSE #> 14262 892 1.0121293 0.224929443 fv Log-Normal Cox, Log-Normal FALSE #> 14278 893 0.4956099 0.115792086 fv Log-Normal Cox, Log-Normal FALSE #> 14294 894 0.5889320 0.111970124 fv Log-Normal Cox, Log-Normal FALSE #> 14310 895 0.8335347 0.185574046 fv Log-Normal Cox, Log-Normal FALSE #> 14326 896 0.6037923 0.156766168 fv Log-Normal Cox, Log-Normal FALSE #> 14342 897 0.6843269 0.122402774 fv Log-Normal Cox, Log-Normal FALSE #> 14358 898 0.9409321 0.285299319 fv Log-Normal Cox, Log-Normal TRUE #> 14374 899 0.9418146 0.342156384 fv Log-Normal Cox, Log-Normal TRUE #> 14390 900 0.7374075 0.157498955 fv Log-Normal Cox, Log-Normal FALSE #> 14406 901 0.7858528 0.120999175 fv Log-Normal Cox, Log-Normal FALSE #> 14422 902 0.8540252 0.162479893 fv Log-Normal Cox, Log-Normal FALSE #> 14438 903 0.5849627 0.125627421 fv Log-Normal Cox, Log-Normal FALSE #> 14454 904 0.7057806 0.149798576 fv Log-Normal Cox, Log-Normal FALSE #> 14470 905 0.7357375 0.126263556 fv Log-Normal Cox, Log-Normal FALSE #> 14486 906 0.7226696 0.143793789 fv Log-Normal Cox, Log-Normal FALSE #> 14502 907 0.6382255 0.144489887 fv Log-Normal Cox, Log-Normal FALSE #> 14518 908 0.5633960 0.116541748 fv Log-Normal Cox, Log-Normal FALSE #> 14534 909 0.9533251 0.171236085 fv Log-Normal Cox, Log-Normal FALSE #> 14550 910 0.6853516 0.148763485 fv Log-Normal Cox, Log-Normal FALSE #> 14566 911 0.6876648 0.117291524 fv Log-Normal Cox, Log-Normal FALSE #> 14582 912 0.3920258 0.067947080 fv Log-Normal Cox, Log-Normal FALSE #> 14598 913 0.6137430 0.109088353 fv Log-Normal Cox, Log-Normal FALSE #> 14614 914 0.8636100 0.164033956 fv Log-Normal Cox, Log-Normal FALSE #> 14630 915 0.6906558 0.126734273 fv Log-Normal Cox, Log-Normal FALSE #> 14646 916 0.7289457 0.129897014 fv Log-Normal Cox, Log-Normal FALSE #> 14662 917 0.5314274 0.129139130 fv Log-Normal Cox, Log-Normal FALSE #> 14678 918 0.5742138 0.121553839 fv Log-Normal Cox, Log-Normal FALSE #> 14694 919 0.6544943 0.119380355 fv Log-Normal Cox, Log-Normal FALSE #> 14710 920 0.6868399 0.113637131 fv Log-Normal Cox, Log-Normal FALSE #> 14726 921 1.1773278 0.226105941 fv Log-Normal Cox, Log-Normal TRUE #> 14742 922 0.6144325 0.114228710 fv Log-Normal Cox, Log-Normal FALSE #> 14758 923 1.0843000 0.228582600 fv Log-Normal Cox, Log-Normal FALSE #> 14774 924 0.6749561 0.128183794 fv Log-Normal Cox, Log-Normal FALSE #> 14790 925 0.7478889 0.156179177 fv Log-Normal Cox, Log-Normal FALSE #> 14806 926 0.9518760 0.174183082 fv Log-Normal Cox, Log-Normal FALSE #> 14822 927 0.8086761 0.157608442 fv Log-Normal Cox, Log-Normal FALSE #> 14838 928 0.6843932 0.138396866 fv Log-Normal Cox, Log-Normal FALSE #> 14854 929 0.7647168 0.139036563 fv Log-Normal Cox, Log-Normal FALSE #> 14870 930 0.5777332 0.125461849 fv Log-Normal Cox, Log-Normal FALSE #> 14886 931 0.8122488 0.151665716 fv Log-Normal Cox, Log-Normal FALSE #> 14902 932 0.5420925 0.116762834 fv Log-Normal Cox, Log-Normal FALSE #> 14918 933 0.5739756 0.094085379 fv Log-Normal Cox, Log-Normal FALSE #> 14934 934 0.6826506 0.151986119 fv Log-Normal Cox, Log-Normal FALSE #> 14950 935 0.8998188 0.151748807 fv Log-Normal Cox, Log-Normal FALSE #> 14966 936 0.6997538 0.130621651 fv Log-Normal Cox, Log-Normal FALSE #> 14982 937 0.8472782 0.151815981 fv Log-Normal Cox, Log-Normal FALSE #> 14998 938 0.9004974 0.178529342 fv Log-Normal Cox, Log-Normal FALSE #> 15014 939 0.5682556 0.086970214 fv Log-Normal Cox, Log-Normal FALSE #> 15030 940 0.8662010 0.228227941 fv Log-Normal Cox, Log-Normal FALSE #> 15046 941 0.4726126 0.093706557 fv Log-Normal Cox, Log-Normal FALSE #> 15062 942 0.8714100 0.165388066 fv Log-Normal Cox, Log-Normal FALSE #> 15078 943 0.5203635 0.076183783 fv Log-Normal Cox, Log-Normal FALSE #> 15094 944 0.6583700 0.114715236 fv Log-Normal Cox, Log-Normal FALSE #> 15110 945 1.0014192 0.198006785 fv Log-Normal Cox, Log-Normal FALSE #> 15126 946 0.8283976 0.138699106 fv Log-Normal Cox, Log-Normal FALSE #> 15142 947 0.8336294 0.130080513 fv Log-Normal Cox, Log-Normal FALSE #> 15158 948 0.4624278 0.106368903 fv Log-Normal Cox, Log-Normal FALSE #> 15174 949 0.7755816 0.201619990 fv Log-Normal Cox, Log-Normal FALSE #> 15190 950 0.7749094 0.131061734 fv Log-Normal Cox, Log-Normal FALSE #> 15206 951 0.5867880 0.126974333 fv Log-Normal Cox, Log-Normal FALSE #> 15222 952 0.6279933 0.113401628 fv Log-Normal Cox, Log-Normal FALSE #> 15238 953 0.6028978 0.127851761 fv Log-Normal Cox, Log-Normal FALSE #> 15254 954 0.8198247 0.196525947 fv Log-Normal Cox, Log-Normal FALSE #> 15270 955 0.7011257 0.118020695 fv Log-Normal Cox, Log-Normal FALSE #> 15286 956 0.8909384 0.147092482 fv Log-Normal Cox, Log-Normal FALSE #> 15302 957 0.6256487 0.123780844 fv Log-Normal Cox, Log-Normal FALSE #> 15318 958 0.6012760 0.127411782 fv Log-Normal Cox, Log-Normal FALSE #> 15334 959 0.6842127 0.110349251 fv Log-Normal Cox, Log-Normal FALSE #> 15350 960 0.5962401 0.132639556 fv Log-Normal Cox, Log-Normal FALSE #> 15366 961 0.8256761 0.134731038 fv Log-Normal Cox, Log-Normal FALSE #> 15382 962 0.8480599 0.146238080 fv Log-Normal Cox, Log-Normal FALSE #> 15398 963 0.8964273 0.190800209 fv Log-Normal Cox, Log-Normal FALSE #> 15414 964 0.6844403 0.155462521 fv Log-Normal Cox, Log-Normal FALSE #> 15430 965 0.5646155 0.099615793 fv Log-Normal Cox, Log-Normal FALSE #> 15446 966 1.0564302 0.173266059 fv Log-Normal Cox, Log-Normal FALSE #> 15462 967 0.8965299 0.184549026 fv Log-Normal Cox, Log-Normal FALSE #> 15478 968 0.8387679 0.191014624 fv Log-Normal Cox, Log-Normal FALSE #> 15494 969 1.0086294 0.181030289 fv Log-Normal Cox, Log-Normal FALSE #> 15510 970 0.7743469 0.160146415 fv Log-Normal Cox, Log-Normal FALSE #> 15526 971 0.9588093 0.163447254 fv Log-Normal Cox, Log-Normal FALSE #> 15542 972 0.6142044 0.129972343 fv Log-Normal Cox, Log-Normal FALSE #> 15558 973 0.9177821 0.145918328 fv Log-Normal Cox, Log-Normal FALSE #> 15574 974 0.9095060 0.166708944 fv Log-Normal Cox, Log-Normal FALSE #> 15590 975 1.0452709 0.179306204 fv Log-Normal Cox, Log-Normal FALSE #> 15606 976 0.8166536 0.248030345 fv Log-Normal Cox, Log-Normal TRUE #> 15622 977 1.1346207 0.218925064 fv Log-Normal Cox, Log-Normal TRUE #> 15638 978 0.8376048 0.216970640 fv Log-Normal Cox, Log-Normal FALSE #> 15654 979 0.6250216 0.119316195 fv Log-Normal Cox, Log-Normal FALSE #> 15670 980 0.8403925 0.203135178 fv Log-Normal Cox, Log-Normal FALSE #> 15686 981 0.6682226 0.111181799 fv Log-Normal Cox, Log-Normal FALSE #> 15702 982 0.7057857 0.165757380 fv Log-Normal Cox, Log-Normal FALSE #> 15718 983 0.7389994 0.128759268 fv Log-Normal Cox, Log-Normal FALSE #> 15734 984 0.6410471 0.118385691 fv Log-Normal Cox, Log-Normal FALSE #> 15750 985 0.8274032 0.154219628 fv Log-Normal Cox, Log-Normal FALSE #> 15766 986 0.7677255 0.160069092 fv Log-Normal Cox, Log-Normal FALSE #> 15782 987 0.6687190 0.167108475 fv Log-Normal Cox, Log-Normal FALSE #> 15798 988 0.8994325 0.141177294 fv Log-Normal Cox, Log-Normal FALSE #> 15814 989 0.9739533 0.164384471 fv Log-Normal Cox, Log-Normal FALSE #> 15830 990 0.7007834 0.125967616 fv Log-Normal Cox, Log-Normal FALSE #> 15846 991 0.7971769 0.144583688 fv Log-Normal Cox, Log-Normal FALSE #> 15862 992 0.7144825 0.127981863 fv Log-Normal Cox, Log-Normal FALSE #> 15878 993 0.7552077 0.121304392 fv Log-Normal Cox, Log-Normal FALSE #> 15894 994 0.6920912 0.164611440 fv Log-Normal Cox, Log-Normal FALSE #> 15910 995 0.6370552 0.159854672 fv Log-Normal Cox, Log-Normal FALSE #> 15926 996 0.7158013 0.157550693 fv Log-Normal Cox, Log-Normal FALSE #> 15942 997 0.7112983 0.119441114 fv Log-Normal Cox, Log-Normal FALSE #> 15958 998 0.6493443 0.159161298 fv Log-Normal Cox, Log-Normal FALSE #> 15974 999 0.8004319 0.155806429 fv Log-Normal Cox, Log-Normal FALSE #> 15990 1000 0.7192738 0.144032838 fv Log-Normal Cox, Log-Normal FALSE #> 7 1 0.6405455 0.122690524 fv Log-Normal RP(P), Gamma FALSE #> 23 2 0.6040462 0.117656180 fv Log-Normal RP(P), Gamma FALSE #> 39 3 0.8022026 0.152352601 fv Log-Normal RP(P), Gamma FALSE #> 55 4 0.5259592 0.103211324 fv Log-Normal RP(P), Gamma FALSE #> 71 5 0.7983299 0.149019874 fv Log-Normal RP(P), Gamma FALSE #> 87 6 0.6887647 0.130581125 fv Log-Normal RP(P), Gamma FALSE #> 103 7 0.5143373 0.100826891 fv Log-Normal RP(P), Gamma FALSE #> 119 8 0.7636843 0.144723641 fv Log-Normal RP(P), Gamma FALSE #> 135 9 0.6642983 0.127490449 fv Log-Normal RP(P), Gamma FALSE #> 151 10 0.8292666 0.155612348 fv Log-Normal RP(P), Gamma FALSE #> 167 11 0.7870963 0.147766260 fv Log-Normal RP(P), Gamma FALSE #> 183 12 0.5128538 0.101130755 fv Log-Normal RP(P), Gamma FALSE #> 199 13 0.7531485 0.143377407 fv Log-Normal RP(P), Gamma FALSE #> 215 14 0.6331756 0.120852213 fv Log-Normal RP(P), Gamma FALSE #> 231 15 0.6426603 0.123809994 fv Log-Normal RP(P), Gamma FALSE #> 247 16 0.5322474 0.105162595 fv Log-Normal RP(P), Gamma FALSE #> 263 17 0.6467134 0.126503719 fv Log-Normal RP(P), Gamma FALSE #> 279 18 0.6943998 0.131886091 fv Log-Normal RP(P), Gamma FALSE #> 295 19 0.7899824 0.147933146 fv Log-Normal RP(P), Gamma FALSE #> 311 20 0.5484487 0.107786986 fv Log-Normal RP(P), Gamma FALSE #> 327 21 0.6161933 0.119855712 fv Log-Normal RP(P), Gamma FALSE #> 343 22 0.5040710 0.098879998 fv Log-Normal RP(P), Gamma FALSE #> 359 23 0.8877674 0.167618206 fv Log-Normal RP(P), Gamma FALSE #> 375 24 0.6757630 0.128886073 fv Log-Normal RP(P), Gamma FALSE #> 391 25 0.5307117 0.103738093 fv Log-Normal RP(P), Gamma FALSE #> 407 26 0.6429191 0.123298527 fv Log-Normal RP(P), Gamma FALSE #> 423 27 0.4611677 0.092589138 fv Log-Normal RP(P), Gamma FALSE #> 439 28 0.6456617 0.124703184 fv Log-Normal RP(P), Gamma FALSE #> 455 29 0.9326416 0.171576792 fv Log-Normal RP(P), Gamma FALSE #> 471 30 0.5693105 0.110689741 fv Log-Normal RP(P), Gamma FALSE #> 487 31 0.5125629 0.101588852 fv Log-Normal RP(P), Gamma FALSE #> 503 32 0.5118841 0.101147723 fv Log-Normal RP(P), Gamma FALSE #> 519 33 0.6618378 0.126871990 fv Log-Normal RP(P), Gamma FALSE #> 535 34 0.8797795 0.165259342 fv Log-Normal RP(P), Gamma FALSE #> 551 35 0.5063559 0.102207355 fv Log-Normal RP(P), Gamma FALSE #> 567 36 0.4635876 0.092513305 fv Log-Normal RP(P), Gamma FALSE #> 583 37 0.6395122 0.123631418 fv Log-Normal RP(P), Gamma FALSE #> 599 38 0.6075237 0.118657265 fv Log-Normal RP(P), Gamma FALSE #> 615 39 0.7176400 0.137133349 fv Log-Normal RP(P), Gamma FALSE #> 631 40 0.5781112 0.116042341 fv Log-Normal RP(P), Gamma FALSE #> 647 41 0.6542709 0.124754965 fv Log-Normal RP(P), Gamma FALSE #> 663 42 0.5154684 0.101882146 fv Log-Normal RP(P), Gamma FALSE #> 679 43 0.4670205 0.092725837 fv Log-Normal RP(P), Gamma FALSE #> 695 44 0.6203867 0.118800155 fv Log-Normal RP(P), Gamma FALSE #> 711 45 0.5393777 0.105195798 fv Log-Normal RP(P), Gamma FALSE #> 727 46 0.3151313 0.065214531 fv Log-Normal RP(P), Gamma FALSE #> 743 47 0.7594989 0.142998177 fv Log-Normal RP(P), Gamma FALSE #> 759 48 0.8276292 0.156727119 fv Log-Normal RP(P), Gamma FALSE #> 775 49 0.8478641 0.158244438 fv Log-Normal RP(P), Gamma FALSE #> 791 50 0.5475928 0.107331065 fv Log-Normal RP(P), Gamma FALSE #> 807 51 0.6844050 0.129691061 fv Log-Normal RP(P), Gamma FALSE #> 823 52 0.4849833 0.096565419 fv Log-Normal RP(P), Gamma FALSE #> 839 53 0.8506738 0.158927483 fv Log-Normal RP(P), Gamma FALSE #> 855 54 0.6258808 0.120694285 fv Log-Normal RP(P), Gamma FALSE #> 871 55 0.8334571 0.156035069 fv Log-Normal RP(P), Gamma FALSE #> 887 56 0.7883870 0.150629653 fv Log-Normal RP(P), Gamma FALSE #> 903 57 0.8198680 0.154099203 fv Log-Normal RP(P), Gamma FALSE #> 919 58 0.7046033 0.135489320 fv Log-Normal RP(P), Gamma FALSE #> 935 59 0.6362143 0.122087484 fv Log-Normal RP(P), Gamma FALSE #> 951 60 0.8194371 0.153940246 fv Log-Normal RP(P), Gamma FALSE #> 967 61 0.7165910 0.137115513 fv Log-Normal RP(P), Gamma FALSE #> 983 62 0.6072289 0.118534620 fv Log-Normal RP(P), Gamma FALSE #> 999 63 0.7813425 0.147824198 fv Log-Normal RP(P), Gamma FALSE #> 1015 64 0.6962526 0.132885352 fv Log-Normal RP(P), Gamma FALSE #> 1031 65 0.9532066 0.179257953 fv Log-Normal RP(P), Gamma FALSE #> 1047 66 0.5446300 0.106323243 fv Log-Normal RP(P), Gamma FALSE #> 1063 67 0.5523958 0.108439867 fv Log-Normal RP(P), Gamma FALSE #> 1079 68 0.4935455 0.098591049 fv Log-Normal RP(P), Gamma FALSE #> 1095 69 0.7293272 0.138575438 fv Log-Normal RP(P), Gamma FALSE #> 1111 70 0.6433089 0.123090851 fv Log-Normal RP(P), Gamma FALSE #> 1127 71 0.8654650 0.161985674 fv Log-Normal RP(P), Gamma FALSE #> 1143 72 0.5596582 0.109600090 fv Log-Normal RP(P), Gamma FALSE #> 1159 73 0.6080334 0.117616590 fv Log-Normal RP(P), Gamma FALSE #> 1175 74 0.4192212 0.085190539 fv Log-Normal RP(P), Gamma FALSE #> 1191 75 0.6459502 0.123937508 fv Log-Normal RP(P), Gamma FALSE #> 1207 76 0.5317111 0.103568281 fv Log-Normal RP(P), Gamma FALSE #> 1223 77 0.8201123 0.155989547 fv Log-Normal RP(P), Gamma FALSE #> 1239 78 0.7324703 0.140075929 fv Log-Normal RP(P), Gamma FALSE #> 1255 79 0.9938648 0.182439175 fv Log-Normal RP(P), Gamma TRUE #> 1271 80 0.5406339 0.105944290 fv Log-Normal RP(P), Gamma FALSE #> 1287 81 0.8194269 0.152455464 fv Log-Normal RP(P), Gamma FALSE #> 1303 82 0.6005756 0.115909588 fv Log-Normal RP(P), Gamma FALSE #> 1319 83 0.6898550 0.131609094 fv Log-Normal RP(P), Gamma FALSE #> 1335 84 0.5667630 0.110642783 fv Log-Normal RP(P), Gamma FALSE #> 1351 85 0.6773712 0.132784297 fv Log-Normal RP(P), Gamma FALSE #> 1367 86 0.5699243 0.113421403 fv Log-Normal RP(P), Gamma FALSE #> 1383 87 0.6537014 0.126044444 fv Log-Normal RP(P), Gamma FALSE #> 1399 88 0.6600437 0.127234347 fv Log-Normal RP(P), Gamma FALSE #> 1415 89 0.9099395 0.169648022 fv Log-Normal RP(P), Gamma FALSE #> 1431 90 0.7941829 0.150612563 fv Log-Normal RP(P), Gamma FALSE #> 1447 91 0.7956442 0.149468843 fv Log-Normal RP(P), Gamma FALSE #> 1463 92 0.7891605 0.150545862 fv Log-Normal RP(P), Gamma FALSE #> 1479 93 0.5507555 0.107524863 fv Log-Normal RP(P), Gamma FALSE #> 1495 94 0.6893063 0.131615461 fv Log-Normal RP(P), Gamma FALSE #> 1511 95 0.6382982 0.123572285 fv Log-Normal RP(P), Gamma FALSE #> 1527 96 0.5046216 0.099786695 fv Log-Normal RP(P), Gamma FALSE #> 1543 97 0.7335341 0.140274698 fv Log-Normal RP(P), Gamma FALSE #> 1559 98 0.4142127 0.083239347 fv Log-Normal RP(P), Gamma FALSE #> 1575 99 0.6777154 0.128918607 fv Log-Normal RP(P), Gamma FALSE #> 1591 100 0.5891772 0.114720160 fv Log-Normal RP(P), Gamma FALSE #> 1607 101 0.5518648 0.107174335 fv Log-Normal RP(P), Gamma FALSE #> 1623 102 0.4756834 0.094711857 fv Log-Normal RP(P), Gamma FALSE #> 1639 103 0.7016967 0.133963829 fv Log-Normal RP(P), Gamma FALSE #> 1655 104 0.7084303 0.137263107 fv Log-Normal RP(P), Gamma FALSE #> 1671 105 0.5064685 0.102906578 fv Log-Normal RP(P), Gamma FALSE #> 1687 106 0.5857525 0.114320345 fv Log-Normal RP(P), Gamma FALSE #> 1703 107 0.6995063 0.132392724 fv Log-Normal RP(P), Gamma FALSE #> 1719 108 0.6165509 0.119326267 fv Log-Normal RP(P), Gamma FALSE #> 1735 109 0.8984590 0.168924157 fv Log-Normal RP(P), Gamma FALSE #> 1751 110 0.7971634 0.150429620 fv Log-Normal RP(P), Gamma FALSE #> 1767 111 0.6308884 0.123949462 fv Log-Normal RP(P), Gamma FALSE #> 1783 112 0.6636078 0.127316904 fv Log-Normal RP(P), Gamma FALSE #> 1799 113 0.7259975 0.136892504 fv Log-Normal RP(P), Gamma FALSE #> 1815 114 0.6262837 0.122125778 fv Log-Normal RP(P), Gamma FALSE #> 1831 115 0.6652682 0.127308897 fv Log-Normal RP(P), Gamma FALSE #> 1847 116 0.6770393 0.129129051 fv Log-Normal RP(P), Gamma FALSE #> 1863 117 0.7575098 0.143016176 fv Log-Normal RP(P), Gamma FALSE #> 1879 118 0.5399997 0.105372939 fv Log-Normal RP(P), Gamma FALSE #> 1895 119 0.5340591 0.104867540 fv Log-Normal RP(P), Gamma FALSE #> 1911 120 0.7487613 0.142422272 fv Log-Normal RP(P), Gamma FALSE #> 1927 121 0.6742231 0.129655167 fv Log-Normal RP(P), Gamma FALSE #> 1943 122 0.5368862 0.108010594 fv Log-Normal RP(P), Gamma FALSE #> 1959 123 0.4854876 0.096157026 fv Log-Normal RP(P), Gamma FALSE #> 1975 124 0.5249067 0.104010179 fv Log-Normal RP(P), Gamma FALSE #> 1991 125 0.4728895 0.093518687 fv Log-Normal RP(P), Gamma FALSE #> 2007 126 0.9488240 0.174441002 fv Log-Normal RP(P), Gamma FALSE #> 2023 127 0.4311185 0.086119704 fv Log-Normal RP(P), Gamma FALSE #> 2039 128 0.4413847 0.087730859 fv Log-Normal RP(P), Gamma FALSE #> 2055 129 NA NA fv Log-Normal RP(P), Gamma NA #> 2071 130 0.5336320 0.106231024 fv Log-Normal RP(P), Gamma FALSE #> 2087 131 0.5858983 0.113618046 fv Log-Normal RP(P), Gamma FALSE #> 2103 132 0.6742043 0.128792567 fv Log-Normal RP(P), Gamma FALSE #> 2119 133 0.8441107 0.157692189 fv Log-Normal RP(P), Gamma FALSE #> 2135 134 0.8722116 0.161293518 fv Log-Normal RP(P), Gamma FALSE #> 2151 135 0.6602743 0.128176844 fv Log-Normal RP(P), Gamma FALSE #> 2167 136 0.5612475 0.112751238 fv Log-Normal RP(P), Gamma FALSE #> 2183 137 0.4623204 0.092357534 fv Log-Normal RP(P), Gamma FALSE #> 2199 138 0.4908476 0.097235287 fv Log-Normal RP(P), Gamma FALSE #> 2215 139 0.6199716 0.119201745 fv Log-Normal RP(P), Gamma FALSE #> 2231 140 0.6891782 0.130965978 fv Log-Normal RP(P), Gamma FALSE #> 2247 141 0.4059617 0.082546224 fv Log-Normal RP(P), Gamma FALSE #> 2263 142 0.4534912 0.090599077 fv Log-Normal RP(P), Gamma FALSE #> 2279 143 0.5205738 0.101978989 fv Log-Normal RP(P), Gamma FALSE #> 2295 144 0.6658738 0.130280150 fv Log-Normal RP(P), Gamma FALSE #> 2311 145 0.4853461 0.095873172 fv Log-Normal RP(P), Gamma FALSE #> 2327 146 0.6720809 0.128706896 fv Log-Normal RP(P), Gamma FALSE #> 2343 147 0.6507118 0.128489909 fv Log-Normal RP(P), Gamma FALSE #> 2359 148 0.5095945 0.100822955 fv Log-Normal RP(P), Gamma FALSE #> 2375 149 0.3835714 0.078576851 fv Log-Normal RP(P), Gamma FALSE #> 2391 150 0.5016718 0.099016609 fv Log-Normal RP(P), Gamma FALSE #> 2407 151 0.8315877 0.156138668 fv Log-Normal RP(P), Gamma FALSE #> 2423 152 0.6110434 0.117965209 fv Log-Normal RP(P), Gamma FALSE #> 2439 153 0.7767963 0.147635467 fv Log-Normal RP(P), Gamma FALSE #> 2455 154 0.6464367 0.123675217 fv Log-Normal RP(P), Gamma FALSE #> 2471 155 0.9166992 0.171012178 fv Log-Normal RP(P), Gamma FALSE #> 2487 156 0.5371060 0.105038383 fv Log-Normal RP(P), Gamma FALSE #> 2503 157 0.5603420 0.109709264 fv Log-Normal RP(P), Gamma FALSE #> 2519 158 0.6131854 0.119373111 fv Log-Normal RP(P), Gamma FALSE #> 2535 159 0.6606685 0.127011784 fv Log-Normal RP(P), Gamma FALSE #> 2551 160 0.6082429 0.116880821 fv Log-Normal RP(P), Gamma FALSE #> 2567 161 0.8477261 0.159265826 fv Log-Normal RP(P), Gamma FALSE #> 2583 162 0.8610655 0.160638530 fv Log-Normal RP(P), Gamma FALSE #> 2599 163 0.5255327 0.102820821 fv Log-Normal RP(P), Gamma FALSE #> 2615 164 0.6363234 0.123177257 fv Log-Normal RP(P), Gamma FALSE #> 2631 165 0.4847113 0.095621852 fv Log-Normal RP(P), Gamma FALSE #> 2647 166 0.4273386 0.086136647 fv Log-Normal RP(P), Gamma FALSE #> 2663 167 0.6483222 0.124315665 fv Log-Normal RP(P), Gamma FALSE #> 2679 168 0.7464834 0.140802165 fv Log-Normal RP(P), Gamma FALSE #> 2695 169 0.6310328 0.122313242 fv Log-Normal RP(P), Gamma FALSE #> 2711 170 0.6614880 0.126258548 fv Log-Normal RP(P), Gamma FALSE #> 2727 171 0.7041851 0.133318185 fv Log-Normal RP(P), Gamma FALSE #> 2743 172 0.6398290 0.122342065 fv Log-Normal RP(P), Gamma FALSE #> 2759 173 0.7006805 0.134276835 fv Log-Normal RP(P), Gamma FALSE #> 2775 174 0.5291788 0.103456703 fv Log-Normal RP(P), Gamma FALSE #> 2791 175 0.7108273 0.135795471 fv Log-Normal RP(P), Gamma FALSE #> 2807 176 0.8661291 0.161557935 fv Log-Normal RP(P), Gamma FALSE #> 2823 177 0.6642310 0.126471594 fv Log-Normal RP(P), Gamma FALSE #> 2839 178 0.4796659 0.095097392 fv Log-Normal RP(P), Gamma FALSE #> 2855 179 0.7824077 0.146493201 fv Log-Normal RP(P), Gamma FALSE #> 2871 180 0.4968833 0.098150177 fv Log-Normal RP(P), Gamma FALSE #> 2887 181 0.6323696 0.121435745 fv Log-Normal RP(P), Gamma FALSE #> 2903 182 1.0216845 0.186453940 fv Log-Normal RP(P), Gamma TRUE #> 2919 183 0.6566254 0.127917698 fv Log-Normal RP(P), Gamma FALSE #> 2935 184 0.8214407 0.153256632 fv Log-Normal RP(P), Gamma FALSE #> 2951 185 0.7216302 0.137253976 fv Log-Normal RP(P), Gamma FALSE #> 2967 186 0.6969526 0.133055560 fv Log-Normal RP(P), Gamma FALSE #> 2983 187 0.6428409 0.124161801 fv Log-Normal RP(P), Gamma FALSE #> 2999 188 0.8407790 0.159841769 fv Log-Normal RP(P), Gamma FALSE #> 3015 189 0.6289527 0.121021866 fv Log-Normal RP(P), Gamma FALSE #> 3031 190 0.6326976 0.120915735 fv Log-Normal RP(P), Gamma FALSE #> 3047 191 0.6249393 0.120592489 fv Log-Normal RP(P), Gamma FALSE #> 3063 192 0.6598537 0.128466551 fv Log-Normal RP(P), Gamma FALSE #> 3079 193 0.6102061 0.117379674 fv Log-Normal RP(P), Gamma FALSE #> 3095 194 0.8914916 0.165672989 fv Log-Normal RP(P), Gamma FALSE #> 3111 195 0.5772301 0.113864924 fv Log-Normal RP(P), Gamma FALSE #> 3127 196 0.5383756 0.105235105 fv Log-Normal RP(P), Gamma FALSE #> 3143 197 0.6041119 0.116883514 fv Log-Normal RP(P), Gamma FALSE #> 3159 198 0.7005811 0.133773352 fv Log-Normal RP(P), Gamma FALSE #> 3175 199 0.4750485 0.094149962 fv Log-Normal RP(P), Gamma FALSE #> 3191 200 0.5370248 0.105409839 fv Log-Normal RP(P), Gamma FALSE #> 3207 201 0.7905997 0.148883784 fv Log-Normal RP(P), Gamma FALSE #> 3223 202 0.6263271 0.120314826 fv Log-Normal RP(P), Gamma FALSE #> 3239 203 0.5566798 0.108533443 fv Log-Normal RP(P), Gamma FALSE #> 3255 204 0.5878622 0.114038141 fv Log-Normal RP(P), Gamma FALSE #> 3271 205 0.5479470 0.106767841 fv Log-Normal RP(P), Gamma FALSE #> 3287 206 0.6715801 0.128670374 fv Log-Normal RP(P), Gamma FALSE #> 3303 207 0.8542152 0.163744329 fv Log-Normal RP(P), Gamma FALSE #> 3319 208 0.8157609 0.151809241 fv Log-Normal RP(P), Gamma FALSE #> 3335 209 0.5728611 0.111944591 fv Log-Normal RP(P), Gamma FALSE #> 3351 210 0.5943906 0.115022190 fv Log-Normal RP(P), Gamma FALSE #> 3367 211 0.7064552 0.134382106 fv Log-Normal RP(P), Gamma FALSE #> 3383 212 0.6689386 0.127628218 fv Log-Normal RP(P), Gamma FALSE #> 3399 213 0.5688727 0.111551542 fv Log-Normal RP(P), Gamma FALSE #> 3415 214 0.5600375 0.108774437 fv Log-Normal RP(P), Gamma FALSE #> 3431 215 0.6737893 0.131910998 fv Log-Normal RP(P), Gamma FALSE #> 3447 216 0.8405789 0.157041468 fv Log-Normal RP(P), Gamma FALSE #> 3463 217 0.6564690 0.126109444 fv Log-Normal RP(P), Gamma FALSE #> 3479 218 0.6246779 0.123646184 fv Log-Normal RP(P), Gamma FALSE #> 3495 219 0.8259887 0.156771669 fv Log-Normal RP(P), Gamma FALSE #> 3511 220 0.7024489 0.133066264 fv Log-Normal RP(P), Gamma FALSE #> 3527 221 0.5596475 0.109357114 fv Log-Normal RP(P), Gamma FALSE #> 3543 222 0.3319187 0.068263082 fv Log-Normal RP(P), Gamma FALSE #> 3559 223 0.4898847 0.096767377 fv Log-Normal RP(P), Gamma FALSE #> 3575 224 0.4907177 0.096440093 fv Log-Normal RP(P), Gamma FALSE #> 3591 225 0.7652595 0.144819052 fv Log-Normal RP(P), Gamma FALSE #> 3607 226 0.8552764 0.158589758 fv Log-Normal RP(P), Gamma FALSE #> 3623 227 0.6388617 0.122214127 fv Log-Normal RP(P), Gamma FALSE #> 3639 228 0.7198722 0.136042538 fv Log-Normal RP(P), Gamma FALSE #> 3655 229 0.3795975 0.077804857 fv Log-Normal RP(P), Gamma FALSE #> 3671 230 0.5809617 0.113716968 fv Log-Normal RP(P), Gamma FALSE #> 3687 231 0.5863665 0.113707295 fv Log-Normal RP(P), Gamma FALSE #> 3703 232 0.8032751 0.151280169 fv Log-Normal RP(P), Gamma FALSE #> 3719 233 0.8531541 0.160153943 fv Log-Normal RP(P), Gamma FALSE #> 3735 234 0.8495275 0.159594009 fv Log-Normal RP(P), Gamma FALSE #> 3751 235 0.4897131 0.096464651 fv Log-Normal RP(P), Gamma FALSE #> 3767 236 0.5762813 0.112345236 fv Log-Normal RP(P), Gamma FALSE #> 3783 237 0.5286123 0.104396860 fv Log-Normal RP(P), Gamma FALSE #> 3799 238 0.7811056 0.148031077 fv Log-Normal RP(P), Gamma FALSE #> 3815 239 0.8198879 0.155297026 fv Log-Normal RP(P), Gamma FALSE #> 3831 240 0.5414650 0.105722595 fv Log-Normal RP(P), Gamma FALSE #> 3847 241 0.6511463 0.125298011 fv Log-Normal RP(P), Gamma FALSE #> 3863 242 0.4836988 0.095465475 fv Log-Normal RP(P), Gamma FALSE #> 3879 243 0.6196244 0.120104981 fv Log-Normal RP(P), Gamma FALSE #> 3895 244 0.5113606 0.100849696 fv Log-Normal RP(P), Gamma FALSE #> 3911 245 0.4278909 0.085833193 fv Log-Normal RP(P), Gamma FALSE #> 3927 246 0.7643256 0.148247377 fv Log-Normal RP(P), Gamma FALSE #> 3943 247 0.6396835 0.124646729 fv Log-Normal RP(P), Gamma FALSE #> 3959 248 0.8887262 0.165189703 fv Log-Normal RP(P), Gamma FALSE #> 3975 249 0.5107049 0.100257685 fv Log-Normal RP(P), Gamma FALSE #> 3991 250 0.7077054 0.135338727 fv Log-Normal RP(P), Gamma FALSE #> 4007 251 0.5668351 0.110779312 fv Log-Normal RP(P), Gamma FALSE #> 4023 252 0.4787966 0.096884322 fv Log-Normal RP(P), Gamma FALSE #> 4039 253 0.7726230 0.145916040 fv Log-Normal RP(P), Gamma FALSE #> 4055 254 0.6804182 0.131478555 fv Log-Normal RP(P), Gamma FALSE #> 4071 255 0.8644481 0.162650447 fv Log-Normal RP(P), Gamma FALSE #> 4087 256 0.7870450 0.149599723 fv Log-Normal RP(P), Gamma FALSE #> 4103 257 0.7192110 0.135991127 fv Log-Normal RP(P), Gamma FALSE #> 4119 258 0.4068613 0.083073788 fv Log-Normal RP(P), Gamma FALSE #> 4135 259 0.5817998 0.112751709 fv Log-Normal RP(P), Gamma FALSE #> 4151 260 0.5469431 0.106420507 fv Log-Normal RP(P), Gamma FALSE #> 4167 261 0.7080536 0.133881161 fv Log-Normal RP(P), Gamma FALSE #> 4183 262 0.5942497 0.115095777 fv Log-Normal RP(P), Gamma FALSE #> 4199 263 0.7020528 0.133587665 fv Log-Normal RP(P), Gamma FALSE #> 4215 264 0.7159177 0.137273577 fv Log-Normal RP(P), Gamma FALSE #> 4231 265 0.5643244 0.109794624 fv Log-Normal RP(P), Gamma FALSE #> 4247 266 0.5478052 0.106965318 fv Log-Normal RP(P), Gamma FALSE #> 4263 267 0.5885489 0.115653369 fv Log-Normal RP(P), Gamma FALSE #> 4279 268 0.8693749 0.161917429 fv Log-Normal RP(P), Gamma FALSE #> 4295 269 0.5582825 0.109290397 fv Log-Normal RP(P), Gamma FALSE #> 4311 270 0.5684455 0.110779055 fv Log-Normal RP(P), Gamma FALSE #> 4327 271 0.7749650 0.149141098 fv Log-Normal RP(P), Gamma FALSE #> 4343 272 0.5156209 0.101591602 fv Log-Normal RP(P), Gamma FALSE #> 4359 273 0.6159012 0.118371233 fv Log-Normal RP(P), Gamma FALSE #> 4375 274 0.7947242 0.153820357 fv Log-Normal RP(P), Gamma FALSE #> 4391 275 0.6368109 0.127096784 fv Log-Normal RP(P), Gamma FALSE #> 4407 276 0.6711689 0.127922100 fv Log-Normal RP(P), Gamma FALSE #> 4423 277 0.6940475 0.133116364 fv Log-Normal RP(P), Gamma FALSE #> 4439 278 0.5152790 0.101199568 fv Log-Normal RP(P), Gamma FALSE #> 4455 279 0.8113280 0.153290256 fv Log-Normal RP(P), Gamma FALSE #> 4471 280 0.7000853 0.133350179 fv Log-Normal RP(P), Gamma FALSE #> 4487 281 0.6962477 0.133227021 fv Log-Normal RP(P), Gamma FALSE #> 4503 282 0.5426193 0.105700649 fv Log-Normal RP(P), Gamma FALSE #> 4519 283 0.6864975 0.130397237 fv Log-Normal RP(P), Gamma FALSE #> 4535 284 0.5396176 0.105832850 fv Log-Normal RP(P), Gamma FALSE #> 4551 285 0.5913837 0.114382562 fv Log-Normal RP(P), Gamma FALSE #> 4567 286 0.6302251 0.122112449 fv Log-Normal RP(P), Gamma FALSE #> 4583 287 0.5331961 0.104369454 fv Log-Normal RP(P), Gamma FALSE #> 4599 288 0.5392503 0.105693369 fv Log-Normal RP(P), Gamma FALSE #> 4615 289 0.6092166 0.117897281 fv Log-Normal RP(P), Gamma FALSE #> 4631 290 0.6196235 0.119781773 fv Log-Normal RP(P), Gamma FALSE #> 4647 291 0.6359919 0.121775820 fv Log-Normal RP(P), Gamma FALSE #> 4663 292 0.5575946 0.109509524 fv Log-Normal RP(P), Gamma FALSE #> 4679 293 0.5651291 0.109070835 fv Log-Normal RP(P), Gamma FALSE #> 4695 294 0.6422035 0.123311702 fv Log-Normal RP(P), Gamma FALSE #> 4711 295 0.5802791 0.113172050 fv Log-Normal RP(P), Gamma FALSE #> 4727 296 0.7555790 0.143540463 fv Log-Normal RP(P), Gamma FALSE #> 4743 297 0.3852702 0.078217517 fv Log-Normal RP(P), Gamma FALSE #> 4759 298 0.5804362 0.112370909 fv Log-Normal RP(P), Gamma FALSE #> 4775 299 0.7034566 0.133837283 fv Log-Normal RP(P), Gamma FALSE #> 4791 300 0.5792017 0.112548997 fv Log-Normal RP(P), Gamma FALSE #> 4807 301 0.9200582 0.170247237 fv Log-Normal RP(P), Gamma FALSE #> 4823 302 0.7453558 0.144203963 fv Log-Normal RP(P), Gamma FALSE #> 4839 303 0.5897325 0.114210118 fv Log-Normal RP(P), Gamma FALSE #> 4855 304 0.5895917 0.114060297 fv Log-Normal RP(P), Gamma FALSE #> 4871 305 0.7011073 0.133304181 fv Log-Normal RP(P), Gamma FALSE #> 4887 306 0.5567072 0.109075590 fv Log-Normal RP(P), Gamma FALSE #> 4903 307 0.5115247 0.099800267 fv Log-Normal RP(P), Gamma FALSE #> 4919 308 0.6127341 0.118267081 fv Log-Normal RP(P), Gamma FALSE #> 4935 309 0.5241423 0.102639868 fv Log-Normal RP(P), Gamma FALSE #> 4951 310 0.5755538 0.112432453 fv Log-Normal RP(P), Gamma FALSE #> 4967 311 0.7951455 0.149340322 fv Log-Normal RP(P), Gamma FALSE #> 4983 312 0.5859886 0.113064816 fv Log-Normal RP(P), Gamma FALSE #> 4999 313 0.4372528 0.087909712 fv Log-Normal RP(P), Gamma FALSE #> 5015 314 0.6147684 0.119382806 fv Log-Normal RP(P), Gamma FALSE #> 5031 315 0.5645028 0.109393669 fv Log-Normal RP(P), Gamma FALSE #> 5047 316 0.5565989 0.109845464 fv Log-Normal RP(P), Gamma FALSE #> 5063 317 0.7191520 0.135613702 fv Log-Normal RP(P), Gamma FALSE #> 5079 318 0.5965863 0.120080385 fv Log-Normal RP(P), Gamma FALSE #> 5095 319 0.6537813 0.125979738 fv Log-Normal RP(P), Gamma FALSE #> 5111 320 0.7201799 0.136255734 fv Log-Normal RP(P), Gamma FALSE #> 5127 321 0.8328070 0.157289651 fv Log-Normal RP(P), Gamma FALSE #> 5143 322 0.4960487 0.098036056 fv Log-Normal RP(P), Gamma FALSE #> 5159 323 0.6557055 0.125129845 fv Log-Normal RP(P), Gamma FALSE #> 5175 324 0.4850376 0.096139606 fv Log-Normal RP(P), Gamma FALSE #> 5191 325 0.5705067 0.111972275 fv Log-Normal RP(P), Gamma FALSE #> 5207 326 0.7884406 0.148717603 fv Log-Normal RP(P), Gamma FALSE #> 5223 327 0.4470598 0.088883562 fv Log-Normal RP(P), Gamma FALSE #> 5239 328 0.6211920 0.118836862 fv Log-Normal RP(P), Gamma FALSE #> 5255 329 0.6073953 0.118395269 fv Log-Normal RP(P), Gamma FALSE #> 5271 330 0.4730565 0.093665743 fv Log-Normal RP(P), Gamma FALSE #> 5287 331 0.7787809 0.146186396 fv Log-Normal RP(P), Gamma FALSE #> 5303 332 0.6139570 0.118138831 fv Log-Normal RP(P), Gamma FALSE #> 5319 333 0.4885412 0.097414696 fv Log-Normal RP(P), Gamma FALSE #> 5335 334 0.4894316 0.096621925 fv Log-Normal RP(P), Gamma FALSE #> 5351 335 0.5028639 0.099176225 fv Log-Normal RP(P), Gamma FALSE #> 5367 336 0.7814231 0.148463487 fv Log-Normal RP(P), Gamma FALSE #> 5383 337 0.6035500 0.116907362 fv Log-Normal RP(P), Gamma FALSE #> 5399 338 0.6560915 0.125409466 fv Log-Normal RP(P), Gamma FALSE #> 5415 339 0.5183767 0.102142302 fv Log-Normal RP(P), Gamma FALSE #> 5431 340 0.8199144 0.154586635 fv Log-Normal RP(P), Gamma FALSE #> 5447 341 0.5944860 0.117533729 fv Log-Normal RP(P), Gamma FALSE #> 5463 342 0.5193587 0.101756311 fv Log-Normal RP(P), Gamma FALSE #> 5479 343 0.5446257 0.106850374 fv Log-Normal RP(P), Gamma FALSE #> 5495 344 0.6177256 0.119809792 fv Log-Normal RP(P), Gamma FALSE #> 5511 345 0.5759749 0.111483975 fv Log-Normal RP(P), Gamma FALSE #> 5527 346 0.4476355 0.090001470 fv Log-Normal RP(P), Gamma FALSE #> 5543 347 0.5928304 0.115552336 fv Log-Normal RP(P), Gamma FALSE #> 5559 348 0.5431772 0.107072485 fv Log-Normal RP(P), Gamma FALSE #> 5575 349 0.5982843 0.115709329 fv Log-Normal RP(P), Gamma FALSE #> 5591 350 0.7122423 0.135849723 fv Log-Normal RP(P), Gamma FALSE #> 5607 351 0.5011156 0.098603090 fv Log-Normal RP(P), Gamma FALSE #> 5623 352 0.7612241 0.144981811 fv Log-Normal RP(P), Gamma FALSE #> 5639 353 0.6852220 0.132046410 fv Log-Normal RP(P), Gamma FALSE #> 5655 354 0.5857311 0.113477028 fv Log-Normal RP(P), Gamma FALSE #> 5671 355 0.6652417 0.127193917 fv Log-Normal RP(P), Gamma FALSE #> 5687 356 0.6173133 0.120742547 fv Log-Normal RP(P), Gamma FALSE #> 5703 357 0.9043420 0.173016497 fv Log-Normal RP(P), Gamma FALSE #> 5719 358 0.6080989 0.117536852 fv Log-Normal RP(P), Gamma FALSE #> 5735 359 0.4819349 0.096115857 fv Log-Normal RP(P), Gamma FALSE #> 5751 360 0.5666892 0.109982691 fv Log-Normal RP(P), Gamma FALSE #> 5767 361 0.5681239 0.110789224 fv Log-Normal RP(P), Gamma FALSE #> 5783 362 0.6273366 0.122363810 fv Log-Normal RP(P), Gamma FALSE #> 5799 363 0.5816115 0.114102264 fv Log-Normal RP(P), Gamma FALSE #> 5815 364 0.6876475 0.130288820 fv Log-Normal RP(P), Gamma FALSE #> 5831 365 0.6489056 0.124382293 fv Log-Normal RP(P), Gamma FALSE #> 5847 366 0.5872749 0.113916746 fv Log-Normal RP(P), Gamma FALSE #> 5863 367 0.7316313 0.139986854 fv Log-Normal RP(P), Gamma FALSE #> 5879 368 0.8058332 0.151315932 fv Log-Normal RP(P), Gamma FALSE #> 5895 369 0.5094609 0.100121566 fv Log-Normal RP(P), Gamma FALSE #> 5911 370 0.6612134 0.126708507 fv Log-Normal RP(P), Gamma FALSE #> 5927 371 0.6350437 0.124249605 fv Log-Normal RP(P), Gamma FALSE #> 5943 372 0.4578136 0.091413362 fv Log-Normal RP(P), Gamma FALSE #> 5959 373 0.8627763 0.160868809 fv Log-Normal RP(P), Gamma FALSE #> 5975 374 0.5059833 0.100171027 fv Log-Normal RP(P), Gamma FALSE #> 5991 375 0.6308717 0.122756047 fv Log-Normal RP(P), Gamma FALSE #> 6007 376 0.6040654 0.116977417 fv Log-Normal RP(P), Gamma FALSE #> 6023 377 0.4763770 0.094353796 fv Log-Normal RP(P), Gamma FALSE #> 6039 378 0.5335836 0.104644051 fv Log-Normal RP(P), Gamma FALSE #> 6055 379 0.4834626 0.095929962 fv Log-Normal RP(P), Gamma FALSE #> 6071 380 0.5706786 0.110657205 fv Log-Normal RP(P), Gamma FALSE #> 6087 381 0.6870494 0.130888764 fv Log-Normal RP(P), Gamma FALSE #> 6103 382 0.6297807 0.121858418 fv Log-Normal RP(P), Gamma FALSE #> 6119 383 0.6695102 0.128506247 fv Log-Normal RP(P), Gamma FALSE #> 6135 384 0.5836747 0.112718407 fv Log-Normal RP(P), Gamma FALSE #> 6151 385 0.5061154 0.100209905 fv Log-Normal RP(P), Gamma FALSE #> 6167 386 0.7746371 0.147352863 fv Log-Normal RP(P), Gamma FALSE #> 6183 387 0.5793071 0.114012787 fv Log-Normal RP(P), Gamma FALSE #> 6199 388 0.7006456 0.132262925 fv Log-Normal RP(P), Gamma FALSE #> 6215 389 0.6591775 0.125828401 fv Log-Normal RP(P), Gamma FALSE #> 6231 390 0.5756189 0.112118694 fv Log-Normal RP(P), Gamma FALSE #> 6247 391 0.7166769 0.135906531 fv Log-Normal RP(P), Gamma FALSE #> 6263 392 0.5582759 0.109346080 fv Log-Normal RP(P), Gamma FALSE #> 6279 393 0.5188225 0.102003293 fv Log-Normal RP(P), Gamma FALSE #> 6295 394 0.8340129 0.157802893 fv Log-Normal RP(P), Gamma FALSE #> 6311 395 0.6561839 0.125677696 fv Log-Normal RP(P), Gamma FALSE #> 6327 396 0.8530720 0.159253424 fv Log-Normal RP(P), Gamma FALSE #> 6343 397 0.5767037 0.111714735 fv Log-Normal RP(P), Gamma FALSE #> 6359 398 0.5759109 0.111597778 fv Log-Normal RP(P), Gamma FALSE #> 6375 399 0.7355098 0.139897611 fv Log-Normal RP(P), Gamma FALSE #> 6391 400 0.4833498 0.096136542 fv Log-Normal RP(P), Gamma FALSE #> 6407 401 0.5287786 0.103547267 fv Log-Normal RP(P), Gamma FALSE #> 6423 402 0.4729205 0.094927871 fv Log-Normal RP(P), Gamma FALSE #> 6439 403 0.4768322 0.093865073 fv Log-Normal RP(P), Gamma FALSE #> 6455 404 0.5503689 0.108894551 fv Log-Normal RP(P), Gamma FALSE #> 6471 405 0.4675984 0.093559702 fv Log-Normal RP(P), Gamma FALSE #> 6487 406 0.5998105 0.115658274 fv Log-Normal RP(P), Gamma FALSE #> 6503 407 0.7071862 0.135917794 fv Log-Normal RP(P), Gamma FALSE #> 6519 408 0.4551711 0.092545500 fv Log-Normal RP(P), Gamma FALSE #> 6535 409 0.6003096 0.116002539 fv Log-Normal RP(P), Gamma FALSE #> 6551 410 0.7354522 0.141341112 fv Log-Normal RP(P), Gamma FALSE #> 6567 411 0.5842355 0.114276721 fv Log-Normal RP(P), Gamma FALSE #> 6583 412 0.6358926 0.123916656 fv Log-Normal RP(P), Gamma FALSE #> 6599 413 0.4809322 0.096109620 fv Log-Normal RP(P), Gamma FALSE #> 6615 414 0.8207219 0.154498864 fv Log-Normal RP(P), Gamma FALSE #> 6631 415 1.0478283 0.190504759 fv Log-Normal RP(P), Gamma TRUE #> 6647 416 0.5063546 0.100886285 fv Log-Normal RP(P), Gamma FALSE #> 6663 417 0.5075324 0.100029009 fv Log-Normal RP(P), Gamma FALSE #> 6679 418 0.7581325 0.142360888 fv Log-Normal RP(P), Gamma FALSE #> 6695 419 0.4093657 0.082325590 fv Log-Normal RP(P), Gamma FALSE #> 6711 420 0.6457404 0.124412096 fv Log-Normal RP(P), Gamma FALSE #> 6727 421 0.7234085 0.138143903 fv Log-Normal RP(P), Gamma FALSE #> 6743 422 0.5477184 0.108345673 fv Log-Normal RP(P), Gamma FALSE #> 6759 423 0.5300261 0.103870701 fv Log-Normal RP(P), Gamma FALSE #> 6775 424 0.5958915 0.115434340 fv Log-Normal RP(P), Gamma FALSE #> 6791 425 0.7100163 0.136393457 fv Log-Normal RP(P), Gamma FALSE #> 6807 426 0.7479045 0.142305623 fv Log-Normal RP(P), Gamma FALSE #> 6823 427 0.9319722 0.173864781 fv Log-Normal RP(P), Gamma FALSE #> 6839 428 0.7297775 0.139498288 fv Log-Normal RP(P), Gamma FALSE #> 6855 429 0.6427432 0.123394639 fv Log-Normal RP(P), Gamma FALSE #> 6871 430 0.7897896 0.149428903 fv Log-Normal RP(P), Gamma FALSE #> 6887 431 0.5758042 0.112117071 fv Log-Normal RP(P), Gamma FALSE #> 6903 432 0.7845424 0.148213986 fv Log-Normal RP(P), Gamma FALSE #> 6919 433 0.5083695 0.099715747 fv Log-Normal RP(P), Gamma FALSE #> 6935 434 0.5697794 0.111842649 fv Log-Normal RP(P), Gamma FALSE #> 6951 435 0.4351491 0.087346250 fv Log-Normal RP(P), Gamma FALSE #> 6967 436 0.6492604 0.124247657 fv Log-Normal RP(P), Gamma FALSE #> 6983 437 0.4988429 0.098454001 fv Log-Normal RP(P), Gamma FALSE #> 6999 438 0.7564725 0.143124263 fv Log-Normal RP(P), Gamma FALSE #> 7015 439 0.5207554 0.103025427 fv Log-Normal RP(P), Gamma FALSE #> 7031 440 0.4006907 0.082110901 fv Log-Normal RP(P), Gamma FALSE #> 7047 441 0.5223614 0.103142164 fv Log-Normal RP(P), Gamma FALSE #> 7063 442 0.6273843 0.121115548 fv Log-Normal RP(P), Gamma FALSE #> 7079 443 0.7123241 0.136178257 fv Log-Normal RP(P), Gamma FALSE #> 7095 444 0.8116075 0.154510279 fv Log-Normal RP(P), Gamma FALSE #> 7111 445 0.7520363 0.141861132 fv Log-Normal RP(P), Gamma FALSE #> 7127 446 0.5504050 0.107298726 fv Log-Normal RP(P), Gamma FALSE #> 7143 447 0.7152656 0.135495651 fv Log-Normal RP(P), Gamma FALSE #> 7159 448 0.7269417 0.137299228 fv Log-Normal RP(P), Gamma FALSE #> 7175 449 0.8130967 0.153586780 fv Log-Normal RP(P), Gamma FALSE #> 7191 450 0.5713784 0.110828743 fv Log-Normal RP(P), Gamma FALSE #> 7207 451 0.6855537 0.130631019 fv Log-Normal RP(P), Gamma FALSE #> 7223 452 0.6852773 0.130601824 fv Log-Normal RP(P), Gamma FALSE #> 7239 453 0.6419976 0.123417285 fv Log-Normal RP(P), Gamma FALSE #> 7255 454 0.5915648 0.114794688 fv Log-Normal RP(P), Gamma FALSE #> 7271 455 0.5989062 0.116767828 fv Log-Normal RP(P), Gamma FALSE #> 7287 456 0.4514905 0.090400569 fv Log-Normal RP(P), Gamma FALSE #> 7303 457 0.7626711 0.143657175 fv Log-Normal RP(P), Gamma FALSE #> 7319 458 0.6695412 0.129232733 fv Log-Normal RP(P), Gamma FALSE #> 7335 459 0.7901092 0.149271994 fv Log-Normal RP(P), Gamma FALSE #> 7351 460 0.5384375 0.104506896 fv Log-Normal RP(P), Gamma FALSE #> 7367 461 0.6738614 0.128328530 fv Log-Normal RP(P), Gamma FALSE #> 7383 462 0.5995043 0.115203166 fv Log-Normal RP(P), Gamma FALSE #> 7399 463 0.8008576 0.152482024 fv Log-Normal RP(P), Gamma FALSE #> 7415 464 0.6534097 0.124409356 fv Log-Normal RP(P), Gamma FALSE #> 7431 465 0.7405431 0.140658325 fv Log-Normal RP(P), Gamma FALSE #> 7447 466 0.7429010 0.141190155 fv Log-Normal RP(P), Gamma FALSE #> 7463 467 0.6592663 0.127357206 fv Log-Normal RP(P), Gamma FALSE #> 7479 468 0.7478064 0.140591623 fv Log-Normal RP(P), Gamma FALSE #> 7495 469 0.7980469 0.151851588 fv Log-Normal RP(P), Gamma FALSE #> 7511 470 0.6707510 0.129109794 fv Log-Normal RP(P), Gamma FALSE #> 7527 471 0.5195360 0.101809578 fv Log-Normal RP(P), Gamma FALSE #> 7543 472 0.7761691 0.146491082 fv Log-Normal RP(P), Gamma FALSE #> 7559 473 0.6077641 0.117774706 fv Log-Normal RP(P), Gamma FALSE #> 7575 474 0.8208932 0.153749136 fv Log-Normal RP(P), Gamma FALSE #> 7591 475 0.5398973 0.105059599 fv Log-Normal RP(P), Gamma FALSE #> 7607 476 0.4413755 0.088778916 fv Log-Normal RP(P), Gamma FALSE #> 7623 477 0.4970617 0.099301281 fv Log-Normal RP(P), Gamma FALSE #> 7639 478 0.6622706 0.125773445 fv Log-Normal RP(P), Gamma FALSE #> 7655 479 0.6789292 0.129891752 fv Log-Normal RP(P), Gamma FALSE #> 7671 480 0.9229350 0.172022096 fv Log-Normal RP(P), Gamma FALSE #> 7687 481 0.8684971 0.161812769 fv Log-Normal RP(P), Gamma FALSE #> 7703 482 0.6084379 0.117279552 fv Log-Normal RP(P), Gamma FALSE #> 7719 483 0.7379684 0.139763885 fv Log-Normal RP(P), Gamma FALSE #> 7735 484 0.7328743 0.138984469 fv Log-Normal RP(P), Gamma FALSE #> 7751 485 0.5262836 0.103060594 fv Log-Normal RP(P), Gamma FALSE #> 7767 486 0.3908574 0.078920916 fv Log-Normal RP(P), Gamma FALSE #> 7783 487 0.7438818 0.140375079 fv Log-Normal RP(P), Gamma FALSE #> 7799 488 0.3983944 0.080663557 fv Log-Normal RP(P), Gamma FALSE #> 7815 489 0.6557783 0.126320270 fv Log-Normal RP(P), Gamma FALSE #> 7831 490 0.6026455 0.116547326 fv Log-Normal RP(P), Gamma FALSE #> 7847 491 0.6247174 0.121016263 fv Log-Normal RP(P), Gamma FALSE #> 7863 492 0.4832708 0.095096379 fv Log-Normal RP(P), Gamma FALSE #> 7879 493 0.9574865 0.177139532 fv Log-Normal RP(P), Gamma FALSE #> 7895 494 0.6006230 0.115956493 fv Log-Normal RP(P), Gamma FALSE #> 7911 495 0.7155432 0.135390082 fv Log-Normal RP(P), Gamma FALSE #> 7927 496 0.8779148 0.162996545 fv Log-Normal RP(P), Gamma FALSE #> 7943 497 0.5217565 0.102371859 fv Log-Normal RP(P), Gamma FALSE #> 7959 498 0.6078818 0.118535765 fv Log-Normal RP(P), Gamma FALSE #> 7975 499 0.7589340 0.144470802 fv Log-Normal RP(P), Gamma FALSE #> 7991 500 0.6576165 0.127056728 fv Log-Normal RP(P), Gamma FALSE #> 8007 501 1.1934506 0.215189767 fv Log-Normal RP(P), Gamma TRUE #> 8023 502 0.7026905 0.134449675 fv Log-Normal RP(P), Gamma FALSE #> 8039 503 0.6461175 0.123792245 fv Log-Normal RP(P), Gamma FALSE #> 8055 504 0.7780519 0.146498296 fv Log-Normal RP(P), Gamma FALSE #> 8071 505 0.6050506 0.116115429 fv Log-Normal RP(P), Gamma FALSE #> 8087 506 0.8133249 0.152842454 fv Log-Normal RP(P), Gamma FALSE #> 8103 507 0.5879703 0.113085205 fv Log-Normal RP(P), Gamma FALSE #> 8119 508 0.5068504 0.101178044 fv Log-Normal RP(P), Gamma FALSE #> 8135 509 0.5746260 0.111451015 fv Log-Normal RP(P), Gamma FALSE #> 8151 510 0.5602904 0.108703773 fv Log-Normal RP(P), Gamma FALSE #> 8167 511 0.4046575 0.081300884 fv Log-Normal RP(P), Gamma FALSE #> 8183 512 0.5938522 0.114988561 fv Log-Normal RP(P), Gamma FALSE #> 8199 513 0.6468916 0.123938467 fv Log-Normal RP(P), Gamma FALSE #> 8215 514 0.6397314 0.123893154 fv Log-Normal RP(P), Gamma FALSE #> 8231 515 0.5028497 0.099639884 fv Log-Normal RP(P), Gamma FALSE #> 8247 516 0.6476726 0.124767612 fv Log-Normal RP(P), Gamma FALSE #> 8263 517 0.3325667 0.068670557 fv Log-Normal RP(P), Gamma FALSE #> 8279 518 0.6558678 0.125826549 fv Log-Normal RP(P), Gamma FALSE #> 8295 519 0.6732987 0.128685268 fv Log-Normal RP(P), Gamma FALSE #> 8311 520 0.6850792 0.130179158 fv Log-Normal RP(P), Gamma FALSE #> 8327 521 0.6370219 0.122012074 fv Log-Normal RP(P), Gamma FALSE #> 8343 522 0.4885136 0.096484117 fv Log-Normal RP(P), Gamma FALSE #> 8359 523 0.6496220 0.124197298 fv Log-Normal RP(P), Gamma FALSE #> 8375 524 0.5234049 0.104270802 fv Log-Normal RP(P), Gamma FALSE #> 8391 525 0.6765518 0.130414457 fv Log-Normal RP(P), Gamma FALSE #> 8407 526 0.5584063 0.109625927 fv Log-Normal RP(P), Gamma FALSE #> 8423 527 0.6834322 0.132081427 fv Log-Normal RP(P), Gamma FALSE #> 8439 528 0.7426000 0.140512963 fv Log-Normal RP(P), Gamma FALSE #> 8455 529 0.7934196 0.148789101 fv Log-Normal RP(P), Gamma FALSE #> 8471 530 0.3948235 0.080023161 fv Log-Normal RP(P), Gamma FALSE #> 8487 531 0.7875890 0.147558495 fv Log-Normal RP(P), Gamma FALSE #> 8503 532 0.6135217 0.117702935 fv Log-Normal RP(P), Gamma FALSE #> 8519 533 0.6120718 0.118048211 fv Log-Normal RP(P), Gamma FALSE #> 8535 534 0.6716551 0.129306507 fv Log-Normal RP(P), Gamma FALSE #> 8551 535 0.7335196 0.138512829 fv Log-Normal RP(P), Gamma FALSE #> 8567 536 0.5204424 0.102465629 fv Log-Normal RP(P), Gamma FALSE #> 8583 537 1.0379600 0.188908964 fv Log-Normal RP(P), Gamma TRUE #> 8599 538 0.4548943 0.090692268 fv Log-Normal RP(P), Gamma FALSE #> 8615 539 0.6713151 0.130815161 fv Log-Normal RP(P), Gamma FALSE #> 8631 540 0.5523580 0.107988775 fv Log-Normal RP(P), Gamma FALSE #> 8647 541 0.8042797 0.150903144 fv Log-Normal RP(P), Gamma FALSE #> 8663 542 0.6949027 0.132583092 fv Log-Normal RP(P), Gamma FALSE #> 8679 543 0.7476093 0.142469608 fv Log-Normal RP(P), Gamma FALSE #> 8695 544 0.6774908 0.129791800 fv Log-Normal RP(P), Gamma FALSE #> 8711 545 0.5143813 0.100902954 fv Log-Normal RP(P), Gamma FALSE #> 8727 546 0.8312447 0.156455946 fv Log-Normal RP(P), Gamma FALSE #> 8743 547 0.6121114 0.118650971 fv Log-Normal RP(P), Gamma FALSE #> 8759 548 0.5140565 0.102068375 fv Log-Normal RP(P), Gamma FALSE #> 8775 549 0.7348816 0.138826062 fv Log-Normal RP(P), Gamma FALSE #> 8791 550 0.5090552 0.102033236 fv Log-Normal RP(P), Gamma FALSE #> 8807 551 0.6688984 0.127755112 fv Log-Normal RP(P), Gamma FALSE #> 8823 552 0.6265386 0.120777429 fv Log-Normal RP(P), Gamma FALSE #> 8839 553 0.7047650 0.132991368 fv Log-Normal RP(P), Gamma FALSE #> 8855 554 0.8291163 0.157127475 fv Log-Normal RP(P), Gamma FALSE #> 8871 555 0.6850161 0.130269138 fv Log-Normal RP(P), Gamma FALSE #> 8887 556 0.7538022 0.142279468 fv Log-Normal RP(P), Gamma FALSE #> 8903 557 0.6250217 0.120230852 fv Log-Normal RP(P), Gamma FALSE #> 8919 558 0.6063746 0.117061554 fv Log-Normal RP(P), Gamma FALSE #> 8935 559 0.5429581 0.106505362 fv Log-Normal RP(P), Gamma FALSE #> 8951 560 0.7137899 0.135857490 fv Log-Normal RP(P), Gamma FALSE #> 8967 561 1.0273063 0.187917372 fv Log-Normal RP(P), Gamma TRUE #> 8983 562 0.7434955 0.141140034 fv Log-Normal RP(P), Gamma FALSE #> 8999 563 0.6801410 0.129591934 fv Log-Normal RP(P), Gamma FALSE #> 9015 564 0.5086320 0.099547959 fv Log-Normal RP(P), Gamma FALSE #> 9031 565 0.5188484 0.102466411 fv Log-Normal RP(P), Gamma FALSE #> 9047 566 0.6244033 0.120264371 fv Log-Normal RP(P), Gamma FALSE #> 9063 567 0.5979873 0.115359367 fv Log-Normal RP(P), Gamma FALSE #> 9079 568 0.4721114 0.093701853 fv Log-Normal RP(P), Gamma FALSE #> 9095 569 0.7965129 0.150098223 fv Log-Normal RP(P), Gamma FALSE #> 9111 570 0.4628960 0.091470885 fv Log-Normal RP(P), Gamma FALSE #> 9127 571 0.5842951 0.112728421 fv Log-Normal RP(P), Gamma FALSE #> 9143 572 0.5708745 0.111699420 fv Log-Normal RP(P), Gamma FALSE #> 9159 573 0.5750242 0.111902694 fv Log-Normal RP(P), Gamma FALSE #> 9175 574 0.6440778 0.123736426 fv Log-Normal RP(P), Gamma FALSE #> 9191 575 0.5468114 0.107030650 fv Log-Normal RP(P), Gamma FALSE #> 9207 576 0.5554273 0.108360345 fv Log-Normal RP(P), Gamma FALSE #> 9223 577 0.9266912 0.174564789 fv Log-Normal RP(P), Gamma FALSE #> 9239 578 0.5261017 0.103127649 fv Log-Normal RP(P), Gamma FALSE #> 9255 579 0.5387574 0.106274310 fv Log-Normal RP(P), Gamma FALSE #> 9271 580 0.4707019 0.094408535 fv Log-Normal RP(P), Gamma FALSE #> 9287 581 0.6504271 0.124298433 fv Log-Normal RP(P), Gamma FALSE #> 9303 582 0.6775845 0.129556677 fv Log-Normal RP(P), Gamma FALSE #> 9319 583 0.8861042 0.163642549 fv Log-Normal RP(P), Gamma FALSE #> 9335 584 0.5002307 0.099003587 fv Log-Normal RP(P), Gamma FALSE #> 9351 585 0.6170829 0.118479185 fv Log-Normal RP(P), Gamma FALSE #> 9367 586 0.6901922 0.132247790 fv Log-Normal RP(P), Gamma FALSE #> 9383 587 0.8271364 0.156625337 fv Log-Normal RP(P), Gamma FALSE #> 9399 588 0.4991248 0.098354530 fv Log-Normal RP(P), Gamma FALSE #> 9415 589 0.5658254 0.110527743 fv Log-Normal RP(P), Gamma FALSE #> 9431 590 0.6760460 0.129168104 fv Log-Normal RP(P), Gamma FALSE #> 9447 591 0.7096084 0.134844438 fv Log-Normal RP(P), Gamma FALSE #> 9463 592 0.6397263 0.122142964 fv Log-Normal RP(P), Gamma FALSE #> 9479 593 0.8485950 0.159290802 fv Log-Normal RP(P), Gamma FALSE #> 9495 594 0.5980829 0.115005110 fv Log-Normal RP(P), Gamma FALSE #> 9511 595 0.4900971 0.096783028 fv Log-Normal RP(P), Gamma FALSE #> 9527 596 0.7574788 0.147358757 fv Log-Normal RP(P), Gamma FALSE #> 9543 597 0.5555007 0.108764648 fv Log-Normal RP(P), Gamma FALSE #> 9559 598 0.8869603 0.164652912 fv Log-Normal RP(P), Gamma FALSE #> 9575 599 0.7172531 0.139602364 fv Log-Normal RP(P), Gamma FALSE #> 9591 600 0.4875005 0.096751810 fv Log-Normal RP(P), Gamma FALSE #> 9607 601 1.0034908 0.185067542 fv Log-Normal RP(P), Gamma TRUE #> 9623 602 0.9315667 0.173569567 fv Log-Normal RP(P), Gamma FALSE #> 9639 603 0.3891561 0.079134558 fv Log-Normal RP(P), Gamma FALSE #> 9655 604 0.6831090 0.130655727 fv Log-Normal RP(P), Gamma FALSE #> 9671 605 1.2021178 0.217657229 fv Log-Normal RP(P), Gamma TRUE #> 9687 606 0.6513685 0.125714802 fv Log-Normal RP(P), Gamma FALSE #> 9703 607 0.5322629 0.105264233 fv Log-Normal RP(P), Gamma FALSE #> 9719 608 0.3897829 0.078912911 fv Log-Normal RP(P), Gamma FALSE #> 9735 609 0.7388302 0.139633573 fv Log-Normal RP(P), Gamma FALSE #> 9751 610 0.5779827 0.112718737 fv Log-Normal RP(P), Gamma FALSE #> 9767 611 0.7309416 0.140033806 fv Log-Normal RP(P), Gamma FALSE #> 9783 612 0.4843671 0.095423699 fv Log-Normal RP(P), Gamma FALSE #> 9799 613 0.6706920 0.127546045 fv Log-Normal RP(P), Gamma FALSE #> 9815 614 0.6183168 0.118772783 fv Log-Normal RP(P), Gamma FALSE #> 9831 615 0.7045260 0.133355951 fv Log-Normal RP(P), Gamma FALSE #> 9847 616 0.6489493 0.123879789 fv Log-Normal RP(P), Gamma FALSE #> 9863 617 0.6632689 0.126921727 fv Log-Normal RP(P), Gamma FALSE #> 9879 618 0.6334784 0.123145460 fv Log-Normal RP(P), Gamma FALSE #> 9895 619 0.7035638 0.133736565 fv Log-Normal RP(P), Gamma FALSE #> 9911 620 0.7020430 0.134210585 fv Log-Normal RP(P), Gamma FALSE #> 9927 621 0.4819005 0.094952770 fv Log-Normal RP(P), Gamma FALSE #> 9943 622 0.5397034 0.105579639 fv Log-Normal RP(P), Gamma FALSE #> 9959 623 0.7881921 0.149884077 fv Log-Normal RP(P), Gamma FALSE #> 9975 624 0.5203504 0.102733074 fv Log-Normal RP(P), Gamma FALSE #> 9991 625 0.6837447 0.131406762 fv Log-Normal RP(P), Gamma FALSE #> 10007 626 0.5549372 0.108180877 fv Log-Normal RP(P), Gamma FALSE #> 10023 627 0.5179683 0.101178304 fv Log-Normal RP(P), Gamma FALSE #> 10039 628 0.6020692 0.118086101 fv Log-Normal RP(P), Gamma FALSE #> 10055 629 0.6000282 0.116646938 fv Log-Normal RP(P), Gamma FALSE #> 10071 630 0.7279731 0.137843137 fv Log-Normal RP(P), Gamma FALSE #> 10087 631 0.6027202 0.116593410 fv Log-Normal RP(P), Gamma FALSE #> 10103 632 0.6537910 0.125818670 fv Log-Normal RP(P), Gamma FALSE #> 10119 633 0.4513900 0.090185550 fv Log-Normal RP(P), Gamma FALSE #> 10135 634 0.5375152 0.105208433 fv Log-Normal RP(P), Gamma FALSE #> 10151 635 0.7997065 0.151945464 fv Log-Normal RP(P), Gamma FALSE #> 10167 636 0.3688985 0.074968576 fv Log-Normal RP(P), Gamma FALSE #> 10183 637 0.8181358 0.153742550 fv Log-Normal RP(P), Gamma FALSE #> 10199 638 0.6190300 0.120041647 fv Log-Normal RP(P), Gamma FALSE #> 10215 639 0.4075020 0.082684708 fv Log-Normal RP(P), Gamma FALSE #> 10231 640 0.6079183 0.117406864 fv Log-Normal RP(P), Gamma FALSE #> 10247 641 0.5327102 0.105110772 fv Log-Normal RP(P), Gamma FALSE #> 10263 642 0.5627774 0.109736079 fv Log-Normal RP(P), Gamma FALSE #> 10279 643 0.6140868 0.118512864 fv Log-Normal RP(P), Gamma FALSE #> 10295 644 0.5859136 0.113867905 fv Log-Normal RP(P), Gamma FALSE #> 10311 645 0.7201751 0.137426049 fv Log-Normal RP(P), Gamma FALSE #> 10327 646 NA NA fv Log-Normal RP(P), Gamma NA #> 10343 647 0.5681908 0.110136754 fv Log-Normal RP(P), Gamma FALSE #> 10359 648 0.9305917 0.172374754 fv Log-Normal RP(P), Gamma FALSE #> 10375 649 0.5485075 0.107764779 fv Log-Normal RP(P), Gamma FALSE #> 10391 650 0.7601556 0.143756671 fv Log-Normal RP(P), Gamma FALSE #> 10407 651 0.6466322 0.123731016 fv Log-Normal RP(P), Gamma FALSE #> 10423 652 1.0102019 0.184233698 fv Log-Normal RP(P), Gamma TRUE #> 10439 653 0.4677185 0.093001021 fv Log-Normal RP(P), Gamma FALSE #> 10455 654 0.5012781 0.099290261 fv Log-Normal RP(P), Gamma FALSE #> 10471 655 0.6184514 0.119322143 fv Log-Normal RP(P), Gamma FALSE #> 10487 656 0.5893034 0.114337156 fv Log-Normal RP(P), Gamma FALSE #> 10503 657 0.4700947 0.093330712 fv Log-Normal RP(P), Gamma FALSE #> 10519 658 0.9548714 0.176352345 fv Log-Normal RP(P), Gamma FALSE #> 10535 659 0.9221158 0.172214444 fv Log-Normal RP(P), Gamma FALSE #> 10551 660 0.6906597 0.131068552 fv Log-Normal RP(P), Gamma FALSE #> 10567 661 0.4580311 0.090771001 fv Log-Normal RP(P), Gamma FALSE #> 10583 662 0.5164133 0.101474521 fv Log-Normal RP(P), Gamma FALSE #> 10599 663 0.5910451 0.114456254 fv Log-Normal RP(P), Gamma FALSE #> 10615 664 0.6069571 0.116792001 fv Log-Normal RP(P), Gamma FALSE #> 10631 665 0.7872832 0.148967481 fv Log-Normal RP(P), Gamma FALSE #> 10647 666 0.9872431 0.180995966 fv Log-Normal RP(P), Gamma TRUE #> 10663 667 0.5861609 0.113728094 fv Log-Normal RP(P), Gamma FALSE #> 10679 668 0.5965077 0.116224148 fv Log-Normal RP(P), Gamma FALSE #> 10695 669 0.7858658 0.148111774 fv Log-Normal RP(P), Gamma FALSE #> 10711 670 0.5644456 0.111070175 fv Log-Normal RP(P), Gamma FALSE #> 10727 671 0.7257817 0.138317915 fv Log-Normal RP(P), Gamma FALSE #> 10743 672 0.8699537 0.162873189 fv Log-Normal RP(P), Gamma FALSE #> 10759 673 NA NA fv Log-Normal RP(P), Gamma NA #> 10775 674 0.7477157 0.142416167 fv Log-Normal RP(P), Gamma FALSE #> 10791 675 0.5433898 0.107245880 fv Log-Normal RP(P), Gamma FALSE #> 10807 676 0.8399640 0.157547560 fv Log-Normal RP(P), Gamma FALSE #> 10823 677 0.6227503 0.120604554 fv Log-Normal RP(P), Gamma FALSE #> 10839 678 0.5245707 0.103511296 fv Log-Normal RP(P), Gamma FALSE #> 10855 679 0.5837353 0.114105618 fv Log-Normal RP(P), Gamma FALSE #> 10871 680 0.6687400 0.128093769 fv Log-Normal RP(P), Gamma FALSE #> 10887 681 0.8689437 0.162084794 fv Log-Normal RP(P), Gamma FALSE #> 10903 682 0.5411130 0.105287312 fv Log-Normal RP(P), Gamma FALSE #> 10919 683 0.7576341 0.145307823 fv Log-Normal RP(P), Gamma FALSE #> 10935 684 0.9589529 0.177509901 fv Log-Normal RP(P), Gamma FALSE #> 10951 685 0.5633214 0.109342344 fv Log-Normal RP(P), Gamma FALSE #> 10967 686 0.8200752 0.154050410 fv Log-Normal RP(P), Gamma FALSE #> 10983 687 0.5295936 0.103602159 fv Log-Normal RP(P), Gamma FALSE #> 10999 688 0.5361570 0.105208722 fv Log-Normal RP(P), Gamma FALSE #> 11015 689 0.5920704 0.115501697 fv Log-Normal RP(P), Gamma FALSE #> 11031 690 0.7275334 0.138140884 fv Log-Normal RP(P), Gamma FALSE #> 11047 691 0.7479373 0.145837123 fv Log-Normal RP(P), Gamma FALSE #> 11063 692 0.5492636 0.106737488 fv Log-Normal RP(P), Gamma FALSE #> 11079 693 0.4530186 0.090401153 fv Log-Normal RP(P), Gamma FALSE #> 11095 694 0.6821877 0.130885389 fv Log-Normal RP(P), Gamma FALSE #> 11111 695 0.5561848 0.108503923 fv Log-Normal RP(P), Gamma FALSE #> 11127 696 0.6698984 0.127785352 fv Log-Normal RP(P), Gamma FALSE #> 11143 697 0.8044238 0.152341904 fv Log-Normal RP(P), Gamma FALSE #> 11159 698 0.4029591 0.081215489 fv Log-Normal RP(P), Gamma FALSE #> 11175 699 0.6220318 0.120794862 fv Log-Normal RP(P), Gamma FALSE #> 11191 700 0.4838667 0.095650738 fv Log-Normal RP(P), Gamma FALSE #> 11207 701 0.7141305 0.135782693 fv Log-Normal RP(P), Gamma FALSE #> 11223 702 0.7876228 0.150480099 fv Log-Normal RP(P), Gamma FALSE #> 11239 703 0.6834653 0.131044510 fv Log-Normal RP(P), Gamma FALSE #> 11255 704 0.6006202 0.117032734 fv Log-Normal RP(P), Gamma FALSE #> 11271 705 0.5825614 0.112553700 fv Log-Normal RP(P), Gamma FALSE #> 11287 706 0.6462783 0.123967447 fv Log-Normal RP(P), Gamma FALSE #> 11303 707 0.7719009 0.144912433 fv Log-Normal RP(P), Gamma FALSE #> 11319 708 0.7589118 0.142597681 fv Log-Normal RP(P), Gamma FALSE #> 11335 709 0.7050173 0.137776068 fv Log-Normal RP(P), Gamma FALSE #> 11351 710 0.4858904 0.096616911 fv Log-Normal RP(P), Gamma FALSE #> 11367 711 0.6714817 0.132119633 fv Log-Normal RP(P), Gamma FALSE #> 11383 712 0.6359158 0.122551215 fv Log-Normal RP(P), Gamma FALSE #> 11399 713 0.8791749 0.164312628 fv Log-Normal RP(P), Gamma FALSE #> 11415 714 0.7282695 0.139130739 fv Log-Normal RP(P), Gamma FALSE #> 11431 715 0.6771839 0.128896557 fv Log-Normal RP(P), Gamma FALSE #> 11447 716 0.6207014 0.118958633 fv Log-Normal RP(P), Gamma FALSE #> 11463 717 0.6726106 0.128777566 fv Log-Normal RP(P), Gamma FALSE #> 11479 718 0.7884210 0.149205688 fv Log-Normal RP(P), Gamma FALSE #> 11495 719 0.9354300 0.174953745 fv Log-Normal RP(P), Gamma FALSE #> 11511 720 0.6328266 0.120907672 fv Log-Normal RP(P), Gamma FALSE #> 11527 721 0.5089454 0.100114135 fv Log-Normal RP(P), Gamma FALSE #> 11543 722 0.7041724 0.133806495 fv Log-Normal RP(P), Gamma FALSE #> 11559 723 0.5814509 0.113499196 fv Log-Normal RP(P), Gamma FALSE #> 11575 724 0.6792830 0.131396754 fv Log-Normal RP(P), Gamma FALSE #> 11591 725 0.6745890 0.128900101 fv Log-Normal RP(P), Gamma FALSE #> 11607 726 0.5696167 0.111100388 fv Log-Normal RP(P), Gamma FALSE #> 11623 727 0.6978610 0.132614516 fv Log-Normal RP(P), Gamma FALSE #> 11639 728 0.9034155 0.167348520 fv Log-Normal RP(P), Gamma FALSE #> 11655 729 0.6633172 0.127045130 fv Log-Normal RP(P), Gamma FALSE #> 11671 730 0.7354073 0.139683994 fv Log-Normal RP(P), Gamma FALSE #> 11687 731 0.4588272 0.091441953 fv Log-Normal RP(P), Gamma FALSE #> 11703 732 0.3973257 0.079866721 fv Log-Normal RP(P), Gamma FALSE #> 11719 733 0.7814645 0.146827178 fv Log-Normal RP(P), Gamma FALSE #> 11735 734 0.7249903 0.137092513 fv Log-Normal RP(P), Gamma FALSE #> 11751 735 0.8071961 0.150405379 fv Log-Normal RP(P), Gamma FALSE #> 11767 736 0.7304049 0.138624944 fv Log-Normal RP(P), Gamma FALSE #> 11783 737 0.6499469 0.124179968 fv Log-Normal RP(P), Gamma FALSE #> 11799 738 0.5145282 0.102065122 fv Log-Normal RP(P), Gamma FALSE #> 11815 739 0.5378257 0.105378663 fv Log-Normal RP(P), Gamma FALSE #> 11831 740 0.7258771 0.138116188 fv Log-Normal RP(P), Gamma FALSE #> 11847 741 0.7920583 0.148213635 fv Log-Normal RP(P), Gamma FALSE #> 11863 742 0.5970828 0.115587617 fv Log-Normal RP(P), Gamma FALSE #> 11879 743 0.6394701 0.122627568 fv Log-Normal RP(P), Gamma FALSE #> 11895 744 0.6091485 0.117450392 fv Log-Normal RP(P), Gamma FALSE #> 11911 745 0.6261920 0.120351132 fv Log-Normal RP(P), Gamma FALSE #> 11927 746 0.6135938 0.122447852 fv Log-Normal RP(P), Gamma FALSE #> 11943 747 0.5673960 0.110262652 fv Log-Normal RP(P), Gamma FALSE #> 11959 748 0.8174448 0.154866402 fv Log-Normal RP(P), Gamma FALSE #> 11975 749 0.8885850 0.166289328 fv Log-Normal RP(P), Gamma FALSE #> 11991 750 0.6699179 0.128164911 fv Log-Normal RP(P), Gamma FALSE #> 12007 751 0.7705349 0.145197488 fv Log-Normal RP(P), Gamma FALSE #> 12023 752 0.6450425 0.126445127 fv Log-Normal RP(P), Gamma FALSE #> 12039 753 0.4026709 0.081871038 fv Log-Normal RP(P), Gamma FALSE #> 12055 754 0.6467650 0.123887308 fv Log-Normal RP(P), Gamma FALSE #> 12071 755 0.5962017 0.115578760 fv Log-Normal RP(P), Gamma FALSE #> 12087 756 0.3445761 0.070995077 fv Log-Normal RP(P), Gamma FALSE #> 12103 757 0.6404506 0.123358322 fv Log-Normal RP(P), Gamma FALSE #> 12119 758 0.6790225 0.129965624 fv Log-Normal RP(P), Gamma FALSE #> 12135 759 0.5793013 0.112522796 fv Log-Normal RP(P), Gamma FALSE #> 12151 760 0.8538180 0.161150772 fv Log-Normal RP(P), Gamma FALSE #> 12167 761 0.5461966 0.107166035 fv Log-Normal RP(P), Gamma FALSE #> 12183 762 0.7113599 0.136036958 fv Log-Normal RP(P), Gamma FALSE #> 12199 763 0.5127570 0.101335906 fv Log-Normal RP(P), Gamma FALSE #> 12215 764 0.5758858 0.111788456 fv Log-Normal RP(P), Gamma FALSE #> 12231 765 0.7675959 0.144097832 fv Log-Normal RP(P), Gamma FALSE #> 12247 766 0.5609105 0.108690460 fv Log-Normal RP(P), Gamma FALSE #> 12263 767 0.7365808 0.139483235 fv Log-Normal RP(P), Gamma FALSE #> 12279 768 0.4824173 0.095129579 fv Log-Normal RP(P), Gamma FALSE #> 12295 769 0.8394776 0.157050045 fv Log-Normal RP(P), Gamma FALSE #> 12311 770 0.5206753 0.102467205 fv Log-Normal RP(P), Gamma FALSE #> 12327 771 0.5324155 0.106859081 fv Log-Normal RP(P), Gamma FALSE #> 12343 772 0.5028216 0.098894975 fv Log-Normal RP(P), Gamma FALSE #> 12359 773 0.5634591 0.111361709 fv Log-Normal RP(P), Gamma FALSE #> 12375 774 0.6726680 0.129487861 fv Log-Normal RP(P), Gamma FALSE #> 12391 775 0.6117312 0.118219973 fv Log-Normal RP(P), Gamma FALSE #> 12407 776 0.5611248 0.108670367 fv Log-Normal RP(P), Gamma FALSE #> 12423 777 0.5629907 0.109897969 fv Log-Normal RP(P), Gamma FALSE #> 12439 778 0.5298195 0.103885618 fv Log-Normal RP(P), Gamma FALSE #> 12455 779 0.5462480 0.106788201 fv Log-Normal RP(P), Gamma FALSE #> 12471 780 0.5444594 0.106379957 fv Log-Normal RP(P), Gamma FALSE #> 12487 781 0.6444463 0.124004297 fv Log-Normal RP(P), Gamma FALSE #> 12503 782 0.5443616 0.106294312 fv Log-Normal RP(P), Gamma FALSE #> 12519 783 0.5651637 0.110239835 fv Log-Normal RP(P), Gamma FALSE #> 12535 784 0.7141628 0.136152496 fv Log-Normal RP(P), Gamma FALSE #> 12551 785 0.4331883 0.086467176 fv Log-Normal RP(P), Gamma FALSE #> 12567 786 0.5881396 0.114710602 fv Log-Normal RP(P), Gamma FALSE #> 12583 787 0.8314603 0.155149305 fv Log-Normal RP(P), Gamma FALSE #> 12599 788 0.6241300 0.120299910 fv Log-Normal RP(P), Gamma FALSE #> 12615 789 0.7653722 0.144630922 fv Log-Normal RP(P), Gamma FALSE #> 12631 790 0.6111340 0.117710305 fv Log-Normal RP(P), Gamma FALSE #> 12647 791 0.3753609 0.075903655 fv Log-Normal RP(P), Gamma FALSE #> 12663 792 0.5553672 0.110018225 fv Log-Normal RP(P), Gamma FALSE #> 12679 793 0.7380648 0.139320411 fv Log-Normal RP(P), Gamma FALSE #> 12695 794 0.6753683 0.133256274 fv Log-Normal RP(P), Gamma FALSE #> 12711 795 0.5768839 0.112455428 fv Log-Normal RP(P), Gamma FALSE #> 12727 796 0.5128957 0.100971449 fv Log-Normal RP(P), Gamma FALSE #> 12743 797 0.5171431 0.101337411 fv Log-Normal RP(P), Gamma FALSE #> 12759 798 0.4026960 0.081677375 fv Log-Normal RP(P), Gamma FALSE #> 12775 799 0.6303514 0.120628692 fv Log-Normal RP(P), Gamma FALSE #> 12791 800 0.6501893 0.125184344 fv Log-Normal RP(P), Gamma FALSE #> 12807 801 0.9250278 0.172573485 fv Log-Normal RP(P), Gamma FALSE #> 12823 802 0.6252328 0.119546062 fv Log-Normal RP(P), Gamma FALSE #> 12839 803 0.6134816 0.118753122 fv Log-Normal RP(P), Gamma FALSE #> 12855 804 0.6678647 0.127903390 fv Log-Normal RP(P), Gamma FALSE #> 12871 805 0.8631726 0.164708763 fv Log-Normal RP(P), Gamma FALSE #> 12887 806 0.8331630 0.159110944 fv Log-Normal RP(P), Gamma FALSE #> 12903 807 0.6846960 0.136036587 fv Log-Normal RP(P), Gamma FALSE #> 12919 808 0.4612360 0.091479967 fv Log-Normal RP(P), Gamma FALSE #> 12935 809 0.5738387 0.111513989 fv Log-Normal RP(P), Gamma FALSE #> 12951 810 0.6283526 0.120695686 fv Log-Normal RP(P), Gamma FALSE #> 12967 811 0.4109691 0.082520063 fv Log-Normal RP(P), Gamma FALSE #> 12983 812 0.6375459 0.123083940 fv Log-Normal RP(P), Gamma FALSE #> 12999 813 0.7069596 0.133763426 fv Log-Normal RP(P), Gamma FALSE #> 13015 814 0.6129295 0.118654574 fv Log-Normal RP(P), Gamma FALSE #> 13031 815 0.5429190 0.107859435 fv Log-Normal RP(P), Gamma FALSE #> 13047 816 0.5861718 0.113598258 fv Log-Normal RP(P), Gamma FALSE #> 13063 817 0.4079590 0.082085894 fv Log-Normal RP(P), Gamma FALSE #> 13079 818 0.6366459 0.124630856 fv Log-Normal RP(P), Gamma FALSE #> 13095 819 0.7049751 0.133589547 fv Log-Normal RP(P), Gamma FALSE #> 13111 820 0.8116920 0.153995715 fv Log-Normal RP(P), Gamma FALSE #> 13127 821 0.4937436 0.097102999 fv Log-Normal RP(P), Gamma FALSE #> 13143 822 0.8114681 0.152991774 fv Log-Normal RP(P), Gamma FALSE #> 13159 823 0.9386106 0.175718415 fv Log-Normal RP(P), Gamma FALSE #> 13175 824 0.7808530 0.147394509 fv Log-Normal RP(P), Gamma FALSE #> 13191 825 0.7047845 0.134917093 fv Log-Normal RP(P), Gamma FALSE #> 13207 826 0.7088981 0.135782107 fv Log-Normal RP(P), Gamma FALSE #> 13223 827 0.8137925 0.154712370 fv Log-Normal RP(P), Gamma FALSE #> 13239 828 0.5961539 0.116832078 fv Log-Normal RP(P), Gamma FALSE #> 13255 829 0.6508909 0.125234317 fv Log-Normal RP(P), Gamma FALSE #> 13271 830 0.7521623 0.142500178 fv Log-Normal RP(P), Gamma FALSE #> 13287 831 0.6926346 0.131352292 fv Log-Normal RP(P), Gamma FALSE #> 13303 832 0.4914520 0.097328337 fv Log-Normal RP(P), Gamma FALSE #> 13319 833 0.7543088 0.142866110 fv Log-Normal RP(P), Gamma FALSE #> 13335 834 0.5803865 0.113194461 fv Log-Normal RP(P), Gamma FALSE #> 13351 835 0.6213117 0.120310790 fv Log-Normal RP(P), Gamma FALSE #> 13367 836 0.6794638 0.130019762 fv Log-Normal RP(P), Gamma FALSE #> 13383 837 0.7571700 0.144029552 fv Log-Normal RP(P), Gamma FALSE #> 13399 838 0.6022522 0.116527948 fv Log-Normal RP(P), Gamma FALSE #> 13415 839 0.5678387 0.111762360 fv Log-Normal RP(P), Gamma FALSE #> 13431 840 0.5794574 0.112732652 fv Log-Normal RP(P), Gamma FALSE #> 13447 841 0.9027367 0.169264440 fv Log-Normal RP(P), Gamma FALSE #> 13463 842 0.4945054 0.097465716 fv Log-Normal RP(P), Gamma FALSE #> 13479 843 0.6164251 0.120453087 fv Log-Normal RP(P), Gamma FALSE #> 13495 844 0.7770622 0.145721886 fv Log-Normal RP(P), Gamma FALSE #> 13511 845 0.8054185 0.151160755 fv Log-Normal RP(P), Gamma FALSE #> 13527 846 0.4947152 0.097800871 fv Log-Normal RP(P), Gamma FALSE #> 13543 847 0.8873520 0.164465959 fv Log-Normal RP(P), Gamma FALSE #> 13559 848 0.6732286 0.128419353 fv Log-Normal RP(P), Gamma FALSE #> 13575 849 0.5501974 0.107615525 fv Log-Normal RP(P), Gamma FALSE #> 13591 850 0.7657343 0.145271938 fv Log-Normal RP(P), Gamma FALSE #> 13607 851 0.5838296 0.112816077 fv Log-Normal RP(P), Gamma FALSE #> 13623 852 0.6089890 0.117360510 fv Log-Normal RP(P), Gamma FALSE #> 13639 853 0.8570792 0.158811310 fv Log-Normal RP(P), Gamma FALSE #> 13655 854 0.6181706 0.120058291 fv Log-Normal RP(P), Gamma FALSE #> 13671 855 0.5443013 0.106559331 fv Log-Normal RP(P), Gamma FALSE #> 13687 856 0.7619340 0.144167343 fv Log-Normal RP(P), Gamma FALSE #> 13703 857 0.7054784 0.134681813 fv Log-Normal RP(P), Gamma FALSE #> 13719 858 0.8737770 0.162469522 fv Log-Normal RP(P), Gamma FALSE #> 13735 859 0.8436609 0.158355957 fv Log-Normal RP(P), Gamma FALSE #> 13751 860 0.6203294 0.120462203 fv Log-Normal RP(P), Gamma FALSE #> 13767 861 0.4246650 0.085201724 fv Log-Normal RP(P), Gamma FALSE #> 13783 862 0.5717094 0.110974928 fv Log-Normal RP(P), Gamma FALSE #> 13799 863 0.5930878 0.114981994 fv Log-Normal RP(P), Gamma FALSE #> 13815 864 0.7889726 0.148845738 fv Log-Normal RP(P), Gamma FALSE #> 13831 865 0.8396676 0.157504805 fv Log-Normal RP(P), Gamma FALSE #> 13847 866 0.7315134 0.140372989 fv Log-Normal RP(P), Gamma FALSE #> 13863 867 0.5339683 0.105161674 fv Log-Normal RP(P), Gamma FALSE #> 13879 868 0.8342745 0.157649889 fv Log-Normal RP(P), Gamma FALSE #> 13895 869 0.4553345 0.090508558 fv Log-Normal RP(P), Gamma FALSE #> 13911 870 0.7264093 0.138973381 fv Log-Normal RP(P), Gamma FALSE #> 13927 871 0.4569173 0.091103928 fv Log-Normal RP(P), Gamma FALSE #> 13943 872 0.4280552 0.086058153 fv Log-Normal RP(P), Gamma FALSE #> 13959 873 0.7410597 0.139690887 fv Log-Normal RP(P), Gamma FALSE #> 13975 874 0.6408185 0.123644052 fv Log-Normal RP(P), Gamma FALSE #> 13991 875 0.5388062 0.104971339 fv Log-Normal RP(P), Gamma FALSE #> 14007 876 0.5538235 0.108515653 fv Log-Normal RP(P), Gamma FALSE #> 14023 877 0.5173804 0.102558125 fv Log-Normal RP(P), Gamma FALSE #> 14039 878 0.6131328 0.119010688 fv Log-Normal RP(P), Gamma FALSE #> 14055 879 0.6097417 0.118099906 fv Log-Normal RP(P), Gamma FALSE #> 14071 880 0.7281233 0.137755819 fv Log-Normal RP(P), Gamma FALSE #> 14087 881 0.4819108 0.095257938 fv Log-Normal RP(P), Gamma FALSE #> 14103 882 0.6543178 0.126842054 fv Log-Normal RP(P), Gamma FALSE #> 14119 883 0.5607813 0.109303367 fv Log-Normal RP(P), Gamma FALSE #> 14135 884 0.4932391 0.097437433 fv Log-Normal RP(P), Gamma FALSE #> 14151 885 0.6588153 0.126232716 fv Log-Normal RP(P), Gamma FALSE #> 14167 886 0.5743023 0.112137457 fv Log-Normal RP(P), Gamma FALSE #> 14183 887 0.3462275 0.071202207 fv Log-Normal RP(P), Gamma FALSE #> 14199 888 0.5389566 0.105124924 fv Log-Normal RP(P), Gamma FALSE #> 14215 889 0.6030921 0.116845053 fv Log-Normal RP(P), Gamma FALSE #> 14231 890 0.6118626 0.117833825 fv Log-Normal RP(P), Gamma FALSE #> 14247 891 0.6524154 0.124896117 fv Log-Normal RP(P), Gamma FALSE #> 14263 892 0.9531941 0.178350481 fv Log-Normal RP(P), Gamma FALSE #> 14279 893 0.4343296 0.087215814 fv Log-Normal RP(P), Gamma FALSE #> 14295 894 0.5594749 0.110073852 fv Log-Normal RP(P), Gamma FALSE #> 14311 895 0.7014979 0.134457311 fv Log-Normal RP(P), Gamma FALSE #> 14327 896 0.4731205 0.093660204 fv Log-Normal RP(P), Gamma FALSE #> 14343 897 0.5714472 0.110989910 fv Log-Normal RP(P), Gamma FALSE #> 14359 898 0.6785190 0.129913470 fv Log-Normal RP(P), Gamma FALSE #> 14375 899 0.7737308 0.149258753 fv Log-Normal RP(P), Gamma FALSE #> 14391 900 0.6258468 0.120819485 fv Log-Normal RP(P), Gamma FALSE #> 14407 901 0.6898911 0.131170243 fv Log-Normal RP(P), Gamma FALSE #> 14423 902 0.7154328 0.135521156 fv Log-Normal RP(P), Gamma FALSE #> 14439 903 0.5104288 0.100779991 fv Log-Normal RP(P), Gamma FALSE #> 14455 904 0.5856834 0.113572720 fv Log-Normal RP(P), Gamma FALSE #> 14471 905 0.6004749 0.115324014 fv Log-Normal RP(P), Gamma FALSE #> 14487 906 0.6359688 0.122586572 fv Log-Normal RP(P), Gamma FALSE #> 14503 907 0.5900934 0.115657031 fv Log-Normal RP(P), Gamma FALSE #> 14519 908 0.4540465 0.090511303 fv Log-Normal RP(P), Gamma FALSE #> 14535 909 0.7511004 0.141521670 fv Log-Normal RP(P), Gamma FALSE #> 14551 910 0.5658137 0.110268564 fv Log-Normal RP(P), Gamma FALSE #> 14567 911 0.6072191 0.117365255 fv Log-Normal RP(P), Gamma FALSE #> 14583 912 0.3616722 0.073972649 fv Log-Normal RP(P), Gamma FALSE #> 14599 913 0.5503152 0.107431667 fv Log-Normal RP(P), Gamma FALSE #> 14615 914 0.7685300 0.145147343 fv Log-Normal RP(P), Gamma FALSE #> 14631 915 0.5856077 0.113156906 fv Log-Normal RP(P), Gamma FALSE #> 14647 916 0.6230510 0.119988154 fv Log-Normal RP(P), Gamma FALSE #> 14663 917 0.4810465 0.096021894 fv Log-Normal RP(P), Gamma FALSE #> 14679 918 0.5535167 0.109209013 fv Log-Normal RP(P), Gamma FALSE #> 14695 919 0.6199536 0.120122996 fv Log-Normal RP(P), Gamma FALSE #> 14711 920 0.5967302 0.115422824 fv Log-Normal RP(P), Gamma FALSE #> 14727 921 0.9743057 0.178872657 fv Log-Normal RP(P), Gamma FALSE #> 14743 922 0.5749685 0.112106133 fv Log-Normal RP(P), Gamma FALSE #> 14759 923 0.8627857 0.160537625 fv Log-Normal RP(P), Gamma FALSE #> 14775 924 0.6123826 0.118440207 fv Log-Normal RP(P), Gamma FALSE #> 14791 925 0.6977269 0.134168790 fv Log-Normal RP(P), Gamma FALSE #> 14807 926 0.7560266 0.142158465 fv Log-Normal RP(P), Gamma FALSE #> 14823 927 0.7244242 0.137428355 fv Log-Normal RP(P), Gamma FALSE #> 14839 928 0.6414165 0.123785383 fv Log-Normal RP(P), Gamma FALSE #> 14855 929 0.6732490 0.128390941 fv Log-Normal RP(P), Gamma FALSE #> 14871 930 0.5125839 0.101497596 fv Log-Normal RP(P), Gamma FALSE #> 14887 931 0.7127123 0.136040162 fv Log-Normal RP(P), Gamma FALSE #> 14903 932 0.5071163 0.100658331 fv Log-Normal RP(P), Gamma FALSE #> 14919 933 0.4956539 0.097351924 fv Log-Normal RP(P), Gamma FALSE #> 14935 934 0.6492066 0.125778769 fv Log-Normal RP(P), Gamma FALSE #> 14951 935 0.7579194 0.142654366 fv Log-Normal RP(P), Gamma FALSE #> 14967 936 0.6662641 0.128059082 fv Log-Normal RP(P), Gamma FALSE #> 14983 937 0.6552375 0.124704511 fv Log-Normal RP(P), Gamma FALSE #> 14999 938 0.6935610 0.131635443 fv Log-Normal RP(P), Gamma FALSE #> 15015 939 0.5076373 0.099638563 fv Log-Normal RP(P), Gamma FALSE #> 15031 940 0.6941711 0.133443392 fv Log-Normal RP(P), Gamma FALSE #> 15047 941 0.4272667 0.085962338 fv Log-Normal RP(P), Gamma FALSE #> 15063 942 0.7084198 0.133980596 fv Log-Normal RP(P), Gamma FALSE #> 15079 943 0.4592534 0.091044580 fv Log-Normal RP(P), Gamma FALSE #> 15095 944 0.5670107 0.110185647 fv Log-Normal RP(P), Gamma FALSE #> 15111 945 0.9419069 0.175234747 fv Log-Normal RP(P), Gamma FALSE #> 15127 946 0.7159091 0.136177032 fv Log-Normal RP(P), Gamma FALSE #> 15143 947 0.7179454 0.135868745 fv Log-Normal RP(P), Gamma FALSE #> 15159 948 0.4495258 0.091309189 fv Log-Normal RP(P), Gamma FALSE #> 15175 949 0.5815352 0.112460379 fv Log-Normal RP(P), Gamma FALSE #> 15191 950 0.6932335 0.132488165 fv Log-Normal RP(P), Gamma FALSE #> 15207 951 0.4666819 0.092380052 fv Log-Normal RP(P), Gamma FALSE #> 15223 952 0.5314269 0.103829685 fv Log-Normal RP(P), Gamma FALSE #> 15239 953 0.5565247 0.109149397 fv Log-Normal RP(P), Gamma FALSE #> 15255 954 0.7841108 0.150127737 fv Log-Normal RP(P), Gamma FALSE #> 15271 955 0.6303305 0.121517200 fv Log-Normal RP(P), Gamma FALSE #> 15287 956 0.7256964 0.136703077 fv Log-Normal RP(P), Gamma FALSE #> 15303 957 0.5263540 0.102902469 fv Log-Normal RP(P), Gamma FALSE #> 15319 958 0.5512942 0.108239740 fv Log-Normal RP(P), Gamma FALSE #> 15335 959 0.6362485 0.122428233 fv Log-Normal RP(P), Gamma FALSE #> 15351 960 0.4981004 0.097951714 fv Log-Normal RP(P), Gamma FALSE #> 15367 961 0.7240723 0.136822170 fv Log-Normal RP(P), Gamma FALSE #> 15383 962 0.6738336 0.128430099 fv Log-Normal RP(P), Gamma FALSE #> 15399 963 0.8590658 0.161400634 fv Log-Normal RP(P), Gamma FALSE #> 15415 964 0.6778286 0.131550538 fv Log-Normal RP(P), Gamma FALSE #> 15431 965 0.4974168 0.098176690 fv Log-Normal RP(P), Gamma FALSE #> 15447 966 0.8272373 0.153861102 fv Log-Normal RP(P), Gamma FALSE #> 15463 967 0.8021231 0.151700494 fv Log-Normal RP(P), Gamma FALSE #> 15479 968 0.7554846 0.144617670 fv Log-Normal RP(P), Gamma FALSE #> 15495 969 0.9243088 0.170805922 fv Log-Normal RP(P), Gamma FALSE #> 15511 970 0.7071617 0.135442111 fv Log-Normal RP(P), Gamma FALSE #> 15527 971 0.7640821 0.143246252 fv Log-Normal RP(P), Gamma FALSE #> 15543 972 0.5395954 0.105794951 fv Log-Normal RP(P), Gamma FALSE #> 15559 973 0.7931946 0.148915324 fv Log-Normal RP(P), Gamma FALSE #> 15575 974 0.8197008 0.153760685 fv Log-Normal RP(P), Gamma FALSE #> 15591 975 0.8907927 0.164905062 fv Log-Normal RP(P), Gamma FALSE #> 15607 976 0.7038651 0.135980149 fv Log-Normal RP(P), Gamma FALSE #> 15623 977 0.9187497 0.170234899 fv Log-Normal RP(P), Gamma FALSE #> 15639 978 0.7007673 0.133951052 fv Log-Normal RP(P), Gamma FALSE #> 15655 979 0.5554255 0.108409573 fv Log-Normal RP(P), Gamma FALSE #> 15671 980 0.6745765 0.129438354 fv Log-Normal RP(P), Gamma FALSE #> 15687 981 0.5670618 0.109771497 fv Log-Normal RP(P), Gamma FALSE #> 15703 982 0.5361854 0.104634937 fv Log-Normal RP(P), Gamma FALSE #> 15719 983 0.6498347 0.124437335 fv Log-Normal RP(P), Gamma FALSE #> 15735 984 0.6185397 0.120212982 fv Log-Normal RP(P), Gamma FALSE #> 15751 985 0.7716535 0.145635881 fv Log-Normal RP(P), Gamma FALSE #> 15767 986 0.6954360 0.133693819 fv Log-Normal RP(P), Gamma FALSE #> 15783 987 0.6610757 0.128995735 fv Log-Normal RP(P), Gamma FALSE #> 15799 988 0.7090702 0.134191221 fv Log-Normal RP(P), Gamma FALSE #> 15815 989 0.7499270 0.140913712 fv Log-Normal RP(P), Gamma FALSE #> 15831 990 0.6791009 0.130402853 fv Log-Normal RP(P), Gamma FALSE #> 15847 991 0.7486170 0.141785330 fv Log-Normal RP(P), Gamma FALSE #> 15863 992 0.6478979 0.124552181 fv Log-Normal RP(P), Gamma FALSE #> 15879 993 0.6378838 0.121975666 fv Log-Normal RP(P), Gamma FALSE #> 15895 994 0.6296675 0.123056122 fv Log-Normal RP(P), Gamma FALSE #> 15911 995 0.5297010 0.103909524 fv Log-Normal RP(P), Gamma FALSE #> 15927 996 0.6733473 0.130527337 fv Log-Normal RP(P), Gamma FALSE #> 15943 997 0.5759983 0.111233442 fv Log-Normal RP(P), Gamma FALSE #> 15959 998 0.5520605 0.108023635 fv Log-Normal RP(P), Gamma FALSE #> 15975 999 0.6755070 0.129234930 fv Log-Normal RP(P), Gamma FALSE #> 15991 1000 0.5820900 0.112838328 fv Log-Normal RP(P), Gamma FALSE #> 8 1 0.7587269 0.160310074 fv Log-Normal RP(P), Log-Normal FALSE #> 24 2 0.6427095 0.136481613 fv Log-Normal RP(P), Log-Normal FALSE #> 40 3 0.8272743 0.174133172 fv Log-Normal RP(P), Log-Normal FALSE #> 56 4 0.6154492 0.132224678 fv Log-Normal RP(P), Log-Normal FALSE #> 72 5 1.0040595 0.212010663 fv Log-Normal RP(P), Log-Normal FALSE #> 88 6 0.8839655 0.187498893 fv Log-Normal RP(P), Log-Normal FALSE #> 104 7 0.5927076 0.126010284 fv Log-Normal RP(P), Log-Normal FALSE #> 120 8 0.8303076 0.176094173 fv Log-Normal RP(P), Log-Normal FALSE #> 136 9 0.7248036 0.153480938 fv Log-Normal RP(P), Log-Normal FALSE #> 152 10 1.0116901 0.215026028 fv Log-Normal RP(P), Log-Normal FALSE #> 168 11 0.9163779 0.192812176 fv Log-Normal RP(P), Log-Normal FALSE #> 184 12 0.5531775 0.117536667 fv Log-Normal RP(P), Log-Normal FALSE #> 200 13 0.8309998 0.174965974 fv Log-Normal RP(P), Log-Normal FALSE #> 216 14 0.8142702 0.172262423 fv Log-Normal RP(P), Log-Normal FALSE #> 232 15 0.7403548 0.157621039 fv Log-Normal RP(P), Log-Normal FALSE #> 248 16 0.5815212 0.124702775 fv Log-Normal RP(P), Log-Normal FALSE #> 264 17 0.6448992 0.136415060 fv Log-Normal RP(P), Log-Normal FALSE #> 280 18 0.8723504 0.185445247 fv Log-Normal RP(P), Log-Normal FALSE #> 296 19 0.9424444 0.197979689 fv Log-Normal RP(P), Log-Normal FALSE #> 312 20 0.6112837 0.130269558 fv Log-Normal RP(P), Log-Normal FALSE #> 328 21 0.7055255 0.150812066 fv Log-Normal RP(P), Log-Normal FALSE #> 344 22 0.6008341 0.128261543 fv Log-Normal RP(P), Log-Normal FALSE #> 360 23 0.8761728 0.183388185 fv Log-Normal RP(P), Log-Normal FALSE #> 376 24 0.8105771 0.171983797 fv Log-Normal RP(P), Log-Normal FALSE #> 392 25 0.6233797 0.132823464 fv Log-Normal RP(P), Log-Normal FALSE #> 408 26 0.7552494 0.159767947 fv Log-Normal RP(P), Log-Normal FALSE #> 424 27 0.5365736 0.118347519 fv Log-Normal RP(P), Log-Normal FALSE #> 440 28 0.7291543 0.155121274 fv Log-Normal RP(P), Log-Normal FALSE #> 456 29 1.0757698 0.224219202 fv Log-Normal RP(P), Log-Normal FALSE #> 472 30 0.7238761 0.156782077 fv Log-Normal RP(P), Log-Normal FALSE #> 488 31 0.5599923 0.120185524 fv Log-Normal RP(P), Log-Normal FALSE #> 504 32 0.5305952 0.112891465 fv Log-Normal RP(P), Log-Normal FALSE #> 520 33 0.7705200 0.164509859 fv Log-Normal RP(P), Log-Normal FALSE #> 536 34 0.9181142 0.193544815 fv Log-Normal RP(P), Log-Normal FALSE #> 552 35 0.5262293 0.112984685 fv Log-Normal RP(P), Log-Normal FALSE #> 568 36 0.5191213 0.111910048 fv Log-Normal RP(P), Log-Normal FALSE #> 584 37 0.7019126 0.149573895 fv Log-Normal RP(P), Log-Normal FALSE #> 600 38 0.6378678 0.135525656 fv Log-Normal RP(P), Log-Normal FALSE #> 616 39 0.8017794 0.170404386 fv Log-Normal RP(P), Log-Normal FALSE #> 632 40 0.5714472 0.121859157 fv Log-Normal RP(P), Log-Normal FALSE #> 648 41 0.8335074 0.177134554 fv Log-Normal RP(P), Log-Normal FALSE #> 664 42 0.5632683 0.120257577 fv Log-Normal RP(P), Log-Normal FALSE #> 680 43 0.5641544 0.122123217 fv Log-Normal RP(P), Log-Normal FALSE #> 696 44 0.7949684 0.169464289 fv Log-Normal RP(P), Log-Normal FALSE #> 712 45 0.6326050 0.134725078 fv Log-Normal RP(P), Log-Normal FALSE #> 728 46 0.3403314 0.074346940 fv Log-Normal RP(P), Log-Normal FALSE #> 744 47 0.9563960 0.202431253 fv Log-Normal RP(P), Log-Normal FALSE #> 760 48 0.8868588 0.187192828 fv Log-Normal RP(P), Log-Normal FALSE #> 776 49 0.9689607 0.202879027 fv Log-Normal RP(P), Log-Normal FALSE #> 792 50 0.6034856 0.129155376 fv Log-Normal RP(P), Log-Normal FALSE #> 808 51 0.8875662 0.188455833 fv Log-Normal RP(P), Log-Normal FALSE #> 824 52 0.5304852 0.114409866 fv Log-Normal RP(P), Log-Normal FALSE #> 840 53 0.9347285 0.195611763 fv Log-Normal RP(P), Log-Normal FALSE #> 856 54 0.7253010 0.153848983 fv Log-Normal RP(P), Log-Normal FALSE #> 872 55 0.9365095 0.197246816 fv Log-Normal RP(P), Log-Normal FALSE #> 888 56 0.7698460 0.161108352 fv Log-Normal RP(P), Log-Normal FALSE #> 904 57 0.9240850 0.195363045 fv Log-Normal RP(P), Log-Normal FALSE #> 920 58 0.7679395 0.161928888 fv Log-Normal RP(P), Log-Normal FALSE #> 936 59 0.7182305 0.151499862 fv Log-Normal RP(P), Log-Normal FALSE #> 952 60 1.0058746 0.216721875 fv Log-Normal RP(P), Log-Normal FALSE #> 968 61 0.7566231 0.160366843 fv Log-Normal RP(P), Log-Normal FALSE #> 984 62 0.6235933 0.132341918 fv Log-Normal RP(P), Log-Normal FALSE #> 1000 63 0.8330331 0.174751715 fv Log-Normal RP(P), Log-Normal FALSE #> 1016 64 0.7372343 0.154560392 fv Log-Normal RP(P), Log-Normal FALSE #> 1032 65 0.9324597 0.196214421 fv Log-Normal RP(P), Log-Normal FALSE #> 1048 66 0.6556111 0.140836763 fv Log-Normal RP(P), Log-Normal FALSE #> 1064 67 0.6283832 0.133766573 fv Log-Normal RP(P), Log-Normal FALSE #> 1080 68 0.5259450 0.113787629 fv Log-Normal RP(P), Log-Normal FALSE #> 1096 69 0.8150040 0.171983367 fv Log-Normal RP(P), Log-Normal FALSE #> 1112 70 0.7752526 0.163616805 fv Log-Normal RP(P), Log-Normal FALSE #> 1128 71 1.0256382 0.217584719 fv Log-Normal RP(P), Log-Normal FALSE #> 1144 72 0.6090315 0.129986511 fv Log-Normal RP(P), Log-Normal FALSE #> 1160 73 0.7378555 0.157540359 fv Log-Normal RP(P), Log-Normal FALSE #> 1176 74 0.4266073 0.091598299 fv Log-Normal RP(P), Log-Normal FALSE #> 1192 75 0.7264828 0.153774539 fv Log-Normal RP(P), Log-Normal FALSE #> 1208 76 0.6558995 0.140177692 fv Log-Normal RP(P), Log-Normal FALSE #> 1224 77 0.8527293 0.179762381 fv Log-Normal RP(P), Log-Normal FALSE #> 1240 78 0.7870716 0.165681047 fv Log-Normal RP(P), Log-Normal FALSE #> 1256 79 1.0961721 0.229344262 fv Log-Normal RP(P), Log-Normal FALSE #> 1272 80 0.5928102 0.126126879 fv Log-Normal RP(P), Log-Normal FALSE #> 1288 81 1.0116718 0.212214328 fv Log-Normal RP(P), Log-Normal FALSE #> 1304 82 0.6932804 0.146529625 fv Log-Normal RP(P), Log-Normal FALSE #> 1320 83 0.8128450 0.173169547 fv Log-Normal RP(P), Log-Normal FALSE #> 1336 84 0.6546543 0.140338914 fv Log-Normal RP(P), Log-Normal FALSE #> 1352 85 0.6580420 0.139756530 fv Log-Normal RP(P), Log-Normal FALSE #> 1368 86 0.5651574 0.120395675 fv Log-Normal RP(P), Log-Normal FALSE #> 1384 87 0.7739794 0.164331266 fv Log-Normal RP(P), Log-Normal FALSE #> 1400 88 0.7745832 0.167238556 fv Log-Normal RP(P), Log-Normal FALSE #> 1416 89 1.0368143 0.217170812 fv Log-Normal RP(P), Log-Normal FALSE #> 1432 90 0.8166873 0.170720378 fv Log-Normal RP(P), Log-Normal FALSE #> 1448 91 0.9071331 0.190130518 fv Log-Normal RP(P), Log-Normal FALSE #> 1464 92 0.8923346 0.189677791 fv Log-Normal RP(P), Log-Normal FALSE #> 1480 93 0.6132879 0.130286551 fv Log-Normal RP(P), Log-Normal FALSE #> 1496 94 0.8505242 0.181240095 fv Log-Normal RP(P), Log-Normal FALSE #> 1512 95 0.6782855 0.143566528 fv Log-Normal RP(P), Log-Normal FALSE #> 1528 96 0.5793421 0.124444915 fv Log-Normal RP(P), Log-Normal FALSE #> 1544 97 0.8184744 0.172217358 fv Log-Normal RP(P), Log-Normal FALSE #> 1560 98 0.4638964 0.100253533 fv Log-Normal RP(P), Log-Normal FALSE #> 1576 99 0.9303806 0.199727243 fv Log-Normal RP(P), Log-Normal FALSE #> 1592 100 0.6869339 0.148166559 fv Log-Normal RP(P), Log-Normal FALSE #> 1608 101 0.6467181 0.136969509 fv Log-Normal RP(P), Log-Normal FALSE #> 1624 102 0.4957626 0.105808839 fv Log-Normal RP(P), Log-Normal FALSE #> 1640 103 0.7884881 0.166125050 fv Log-Normal RP(P), Log-Normal FALSE #> 1656 104 0.7369302 0.156103668 fv Log-Normal RP(P), Log-Normal FALSE #> 1672 105 0.4680770 0.100530696 fv Log-Normal RP(P), Log-Normal FALSE #> 1688 106 0.6814912 0.146176406 fv Log-Normal RP(P), Log-Normal FALSE #> 1704 107 0.8653450 0.182292080 fv Log-Normal RP(P), Log-Normal FALSE #> 1720 108 0.7160621 0.153662080 fv Log-Normal RP(P), Log-Normal FALSE #> 1736 109 0.9318352 0.195104641 fv Log-Normal RP(P), Log-Normal FALSE #> 1752 110 0.9333831 0.197785385 fv Log-Normal RP(P), Log-Normal FALSE #> 1768 111 0.6395728 0.135269065 fv Log-Normal RP(P), Log-Normal FALSE #> 1784 112 0.7016627 0.147545888 fv Log-Normal RP(P), Log-Normal FALSE #> 1800 113 0.8576238 0.179983637 fv Log-Normal RP(P), Log-Normal FALSE #> 1816 114 0.6710954 0.142328711 fv Log-Normal RP(P), Log-Normal FALSE #> 1832 115 0.7820406 0.166205449 fv Log-Normal RP(P), Log-Normal FALSE #> 1848 116 0.7939534 0.167711038 fv Log-Normal RP(P), Log-Normal FALSE #> 1864 117 0.8430940 0.176684051 fv Log-Normal RP(P), Log-Normal FALSE #> 1880 118 0.6212618 0.132330606 fv Log-Normal RP(P), Log-Normal FALSE #> 1896 119 0.5727404 0.121504334 fv Log-Normal RP(P), Log-Normal FALSE #> 1912 120 0.8243130 0.174444030 fv Log-Normal RP(P), Log-Normal FALSE #> 1928 121 0.7202072 0.152475354 fv Log-Normal RP(P), Log-Normal FALSE #> 1944 122 0.5561335 0.119749873 fv Log-Normal RP(P), Log-Normal FALSE #> 1960 123 0.5294622 0.113195261 fv Log-Normal RP(P), Log-Normal FALSE #> 1976 124 0.5606144 0.119830783 fv Log-Normal RP(P), Log-Normal FALSE #> 1992 125 0.5467464 0.117088993 fv Log-Normal RP(P), Log-Normal FALSE #> 2008 126 1.2215715 0.256569950 fv Log-Normal RP(P), Log-Normal TRUE #> 2024 127 0.5218994 0.113209374 fv Log-Normal RP(P), Log-Normal FALSE #> 2040 128 0.5216607 0.111937164 fv Log-Normal RP(P), Log-Normal FALSE #> 2056 129 0.7174736 0.154534528 fv Log-Normal RP(P), Log-Normal FALSE #> 2072 130 0.5770054 0.123890286 fv Log-Normal RP(P), Log-Normal FALSE #> 2088 131 0.6689280 0.142266715 fv Log-Normal RP(P), Log-Normal FALSE #> 2104 132 0.7957550 0.170120599 fv Log-Normal RP(P), Log-Normal FALSE #> 2120 133 0.9412438 0.196855270 fv Log-Normal RP(P), Log-Normal FALSE #> 2136 134 1.0838532 0.226912038 fv Log-Normal RP(P), Log-Normal FALSE #> 2152 135 0.6648603 0.140092983 fv Log-Normal RP(P), Log-Normal FALSE #> 2168 136 0.5492014 0.117363787 fv Log-Normal RP(P), Log-Normal FALSE #> 2184 137 0.5291266 0.115402392 fv Log-Normal RP(P), Log-Normal FALSE #> 2200 138 0.5264330 0.112494837 fv Log-Normal RP(P), Log-Normal FALSE #> 2216 139 0.7533269 0.160159857 fv Log-Normal RP(P), Log-Normal FALSE #> 2232 140 0.8110847 0.171158128 fv Log-Normal RP(P), Log-Normal FALSE #> 2248 141 0.4367489 0.094597121 fv Log-Normal RP(P), Log-Normal FALSE #> 2264 142 0.4940670 0.106169645 fv Log-Normal RP(P), Log-Normal FALSE #> 2280 143 0.5794493 0.122951278 fv Log-Normal RP(P), Log-Normal FALSE #> 2296 144 0.6778027 0.143521271 fv Log-Normal RP(P), Log-Normal FALSE #> 2312 145 0.5837892 0.125941371 fv Log-Normal RP(P), Log-Normal FALSE #> 2328 146 0.7325227 0.154220307 fv Log-Normal RP(P), Log-Normal FALSE #> 2344 147 0.6357226 0.135958395 fv Log-Normal RP(P), Log-Normal FALSE #> 2360 148 0.5487951 0.117138970 fv Log-Normal RP(P), Log-Normal FALSE #> 2376 149 0.4091531 0.089138976 fv Log-Normal RP(P), Log-Normal FALSE #> 2392 150 0.5623525 0.119787569 fv Log-Normal RP(P), Log-Normal FALSE #> 2408 151 0.9870081 0.207968406 fv Log-Normal RP(P), Log-Normal FALSE #> 2424 152 0.7257533 0.155576929 fv Log-Normal RP(P), Log-Normal FALSE #> 2440 153 0.7938888 0.166001332 fv Log-Normal RP(P), Log-Normal FALSE #> 2456 154 0.7543676 0.159096926 fv Log-Normal RP(P), Log-Normal FALSE #> 2472 155 1.0111457 0.212971620 fv Log-Normal RP(P), Log-Normal FALSE #> 2488 156 0.6544524 0.141043356 fv Log-Normal RP(P), Log-Normal FALSE #> 2504 157 0.6432003 0.138898907 fv Log-Normal RP(P), Log-Normal FALSE #> 2520 158 0.6411141 0.135716820 fv Log-Normal RP(P), Log-Normal FALSE #> 2536 159 0.8229442 0.176716197 fv Log-Normal RP(P), Log-Normal FALSE #> 2552 160 0.8120361 0.174187032 fv Log-Normal RP(P), Log-Normal FALSE #> 2568 161 0.9019813 0.188117850 fv Log-Normal RP(P), Log-Normal FALSE #> 2584 162 1.0499623 0.220400899 fv Log-Normal RP(P), Log-Normal FALSE #> 2600 163 0.6371458 0.137262190 fv Log-Normal RP(P), Log-Normal FALSE #> 2616 164 0.6859633 0.145451105 fv Log-Normal RP(P), Log-Normal FALSE #> 2632 165 0.5519135 0.117940756 fv Log-Normal RP(P), Log-Normal FALSE #> 2648 166 0.4479469 0.095793295 fv Log-Normal RP(P), Log-Normal FALSE #> 2664 167 0.7613875 0.161975639 fv Log-Normal RP(P), Log-Normal FALSE #> 2680 168 0.8959044 0.188861131 fv Log-Normal RP(P), Log-Normal FALSE #> 2696 169 0.6531845 0.138023079 fv Log-Normal RP(P), Log-Normal FALSE #> 2712 170 0.7664620 0.162066953 fv Log-Normal RP(P), Log-Normal FALSE #> 2728 171 0.8455567 0.178186955 fv Log-Normal RP(P), Log-Normal FALSE #> 2744 172 0.7766548 0.164499182 fv Log-Normal RP(P), Log-Normal FALSE #> 2760 173 0.7349752 0.154532530 fv Log-Normal RP(P), Log-Normal FALSE #> 2776 174 0.6099624 0.129739699 fv Log-Normal RP(P), Log-Normal FALSE #> 2792 175 0.8046287 0.169421952 fv Log-Normal RP(P), Log-Normal FALSE #> 2808 176 1.0156282 0.214174421 fv Log-Normal RP(P), Log-Normal FALSE #> 2824 177 0.8256876 0.175175875 fv Log-Normal RP(P), Log-Normal FALSE #> 2840 178 0.5414903 0.116046912 fv Log-Normal RP(P), Log-Normal FALSE #> 2856 179 0.9627749 0.202015293 fv Log-Normal RP(P), Log-Normal FALSE #> 2872 180 0.5801914 0.124401399 fv Log-Normal RP(P), Log-Normal FALSE #> 2888 181 0.7554494 0.159701514 fv Log-Normal RP(P), Log-Normal FALSE #> 2904 182 1.2537245 0.262312759 fv Log-Normal RP(P), Log-Normal TRUE #> 2920 183 0.7659203 0.165867012 fv Log-Normal RP(P), Log-Normal FALSE #> 2936 184 0.9738310 0.203471702 fv Log-Normal RP(P), Log-Normal FALSE #> 2952 185 0.8121692 0.171028940 fv Log-Normal RP(P), Log-Normal FALSE #> 2968 186 0.7982599 0.168832783 fv Log-Normal RP(P), Log-Normal FALSE #> 2984 187 0.6883828 0.145342853 fv Log-Normal RP(P), Log-Normal FALSE #> 3000 188 0.8374741 0.176193562 fv Log-Normal RP(P), Log-Normal FALSE #> 3016 189 0.6993496 0.147808847 fv Log-Normal RP(P), Log-Normal FALSE #> 3032 190 0.8064399 0.170804825 fv Log-Normal RP(P), Log-Normal FALSE #> 3048 191 0.8008227 0.173861583 fv Log-Normal RP(P), Log-Normal FALSE #> 3064 192 0.6525505 0.137788950 fv Log-Normal RP(P), Log-Normal FALSE #> 3080 193 0.7916083 0.170491952 fv Log-Normal RP(P), Log-Normal FALSE #> 3096 194 0.9988075 0.209353233 fv Log-Normal RP(P), Log-Normal FALSE #> 3112 195 0.5880564 0.124916660 fv Log-Normal RP(P), Log-Normal FALSE #> 3128 196 0.6367192 0.135928623 fv Log-Normal RP(P), Log-Normal FALSE #> 3144 197 0.6587380 0.139314113 fv Log-Normal RP(P), Log-Normal FALSE #> 3160 198 0.7988690 0.168411544 fv Log-Normal RP(P), Log-Normal FALSE #> 3176 199 0.5340730 0.114133322 fv Log-Normal RP(P), Log-Normal FALSE #> 3192 200 0.6108400 0.131066750 fv Log-Normal RP(P), Log-Normal FALSE #> 3208 201 0.8908497 0.188126967 fv Log-Normal RP(P), Log-Normal FALSE #> 3224 202 0.7243823 0.152769551 fv Log-Normal RP(P), Log-Normal FALSE #> 3240 203 0.6371139 0.135630072 fv Log-Normal RP(P), Log-Normal FALSE #> 3256 204 0.6812425 0.144876357 fv Log-Normal RP(P), Log-Normal FALSE #> 3272 205 0.6640707 0.142647914 fv Log-Normal RP(P), Log-Normal FALSE #> 3288 206 0.7955822 0.169584226 fv Log-Normal RP(P), Log-Normal FALSE #> 3304 207 0.8122343 0.171305716 fv Log-Normal RP(P), Log-Normal FALSE #> 3320 208 1.0716857 0.225174141 fv Log-Normal RP(P), Log-Normal FALSE #> 3336 209 0.6729434 0.145634249 fv Log-Normal RP(P), Log-Normal FALSE #> 3352 210 0.7233139 0.155217656 fv Log-Normal RP(P), Log-Normal FALSE #> 3368 211 0.8224261 0.173753257 fv Log-Normal RP(P), Log-Normal FALSE #> 3384 212 0.8106002 0.171929743 fv Log-Normal RP(P), Log-Normal FALSE #> 3400 213 0.6209349 0.132488452 fv Log-Normal RP(P), Log-Normal FALSE #> 3416 214 0.6651939 0.141701897 fv Log-Normal RP(P), Log-Normal FALSE #> 3432 215 0.6681925 0.142692548 fv Log-Normal RP(P), Log-Normal FALSE #> 3448 216 0.9718383 0.203611298 fv Log-Normal RP(P), Log-Normal FALSE #> 3464 217 0.7615306 0.161592701 fv Log-Normal RP(P), Log-Normal FALSE #> 3480 218 0.5932685 0.126182039 fv Log-Normal RP(P), Log-Normal FALSE #> 3496 219 0.8440250 0.177280275 fv Log-Normal RP(P), Log-Normal FALSE #> 3512 220 0.9111737 0.193577494 fv Log-Normal RP(P), Log-Normal FALSE #> 3528 221 0.6454833 0.139083353 fv Log-Normal RP(P), Log-Normal FALSE #> 3544 222 0.3710342 0.081236086 fv Log-Normal RP(P), Log-Normal FALSE #> 3560 223 0.5463579 0.116226442 fv Log-Normal RP(P), Log-Normal FALSE #> 3576 224 0.5958494 0.127390309 fv Log-Normal RP(P), Log-Normal FALSE #> 3592 225 0.8256615 0.173178721 fv Log-Normal RP(P), Log-Normal FALSE #> 3608 226 1.0751549 0.225902510 fv Log-Normal RP(P), Log-Normal FALSE #> 3624 227 0.7671138 0.162589102 fv Log-Normal RP(P), Log-Normal FALSE #> 3640 228 0.8685262 0.182915069 fv Log-Normal RP(P), Log-Normal FALSE #> 3656 229 0.4077865 0.089309434 fv Log-Normal RP(P), Log-Normal FALSE #> 3672 230 0.6142203 0.130122245 fv Log-Normal RP(P), Log-Normal FALSE #> 3688 231 0.6568914 0.139096135 fv Log-Normal RP(P), Log-Normal FALSE #> 3704 232 0.9518400 0.200405291 fv Log-Normal RP(P), Log-Normal FALSE #> 3720 233 0.9620535 0.203495174 fv Log-Normal RP(P), Log-Normal FALSE #> 3736 234 0.9386042 0.197203991 fv Log-Normal RP(P), Log-Normal FALSE #> 3752 235 0.5533993 0.117867348 fv Log-Normal RP(P), Log-Normal FALSE #> 3768 236 0.6340348 0.134447642 fv Log-Normal RP(P), Log-Normal FALSE #> 3784 237 0.5453294 0.115930957 fv Log-Normal RP(P), Log-Normal FALSE #> 3800 238 0.8944895 0.191484666 fv Log-Normal RP(P), Log-Normal FALSE #> 3816 239 0.9288279 0.195513931 fv Log-Normal RP(P), Log-Normal FALSE #> 3832 240 0.6350098 0.135823593 fv Log-Normal RP(P), Log-Normal FALSE #> 3848 241 0.7685612 0.163948020 fv Log-Normal RP(P), Log-Normal FALSE #> 3864 242 0.5467803 0.117102138 fv Log-Normal RP(P), Log-Normal FALSE #> 3880 243 0.6730960 0.142931552 fv Log-Normal RP(P), Log-Normal FALSE #> 3896 244 0.6142116 0.131941975 fv Log-Normal RP(P), Log-Normal FALSE #> 3912 245 0.5020462 0.109122006 fv Log-Normal RP(P), Log-Normal FALSE #> 3928 246 0.7921927 0.168021380 fv Log-Normal RP(P), Log-Normal FALSE #> 3944 247 0.6592181 0.139530433 fv Log-Normal RP(P), Log-Normal FALSE #> 3960 248 1.1777612 0.254244197 fv Log-Normal RP(P), Log-Normal TRUE #> 3976 249 0.5943575 0.127544821 fv Log-Normal RP(P), Log-Normal FALSE #> 3992 250 0.7502168 0.158141093 fv Log-Normal RP(P), Log-Normal FALSE #> 4008 251 0.6268527 0.133734241 fv Log-Normal RP(P), Log-Normal FALSE #> 4024 252 0.4776854 0.102284469 fv Log-Normal RP(P), Log-Normal FALSE #> 4040 253 0.8681536 0.183500004 fv Log-Normal RP(P), Log-Normal FALSE #> 4056 254 0.7439174 0.156041861 fv Log-Normal RP(P), Log-Normal FALSE #> 4072 255 0.9441697 0.201330530 fv Log-Normal RP(P), Log-Normal FALSE #> 4088 256 0.8607312 0.182317109 fv Log-Normal RP(P), Log-Normal FALSE #> 4104 257 0.8369787 0.175261357 fv Log-Normal RP(P), Log-Normal FALSE #> 4120 258 0.4171869 0.089856660 fv Log-Normal RP(P), Log-Normal FALSE #> 4136 259 0.6676815 0.141483812 fv Log-Normal RP(P), Log-Normal FALSE #> 4152 260 0.6884486 0.147931703 fv Log-Normal RP(P), Log-Normal FALSE #> 4168 261 0.8876474 0.187002433 fv Log-Normal RP(P), Log-Normal FALSE #> 4184 262 0.6886344 0.145893409 fv Log-Normal RP(P), Log-Normal FALSE #> 4200 263 0.8769823 0.186762641 fv Log-Normal RP(P), Log-Normal FALSE #> 4216 264 0.7973775 0.168952281 fv Log-Normal RP(P), Log-Normal FALSE #> 4232 265 0.6224204 0.131746513 fv Log-Normal RP(P), Log-Normal FALSE #> 4248 266 0.6649661 0.143208152 fv Log-Normal RP(P), Log-Normal FALSE #> 4264 267 0.6170590 0.130985777 fv Log-Normal RP(P), Log-Normal FALSE #> 4280 268 0.9638015 0.201609273 fv Log-Normal RP(P), Log-Normal FALSE #> 4296 269 0.6192713 0.132297670 fv Log-Normal RP(P), Log-Normal FALSE #> 4312 270 0.6272993 0.133300944 fv Log-Normal RP(P), Log-Normal FALSE #> 4328 271 0.7800909 0.164123810 fv Log-Normal RP(P), Log-Normal FALSE #> 4344 272 0.5661606 0.121060836 fv Log-Normal RP(P), Log-Normal FALSE #> 4360 273 0.7588228 0.161878411 fv Log-Normal RP(P), Log-Normal FALSE #> 4376 274 0.7671855 0.161327099 fv Log-Normal RP(P), Log-Normal FALSE #> 4392 275 0.6394525 0.136719057 fv Log-Normal RP(P), Log-Normal FALSE #> 4408 276 0.7903120 0.166291219 fv Log-Normal RP(P), Log-Normal FALSE #> 4424 277 0.7234781 0.152518392 fv Log-Normal RP(P), Log-Normal FALSE #> 4440 278 0.6278358 0.135101300 fv Log-Normal RP(P), Log-Normal FALSE #> 4456 279 0.8158385 0.171062766 fv Log-Normal RP(P), Log-Normal FALSE #> 4472 280 0.8400655 0.178662425 fv Log-Normal RP(P), Log-Normal FALSE #> 4488 281 0.7252124 0.152822320 fv Log-Normal RP(P), Log-Normal FALSE #> 4504 282 0.6556109 0.140682373 fv Log-Normal RP(P), Log-Normal FALSE #> 4520 283 0.8872840 0.188990041 fv Log-Normal RP(P), Log-Normal FALSE #> 4536 284 0.6237917 0.133109411 fv Log-Normal RP(P), Log-Normal FALSE #> 4552 285 0.7104471 0.150620789 fv Log-Normal RP(P), Log-Normal FALSE #> 4568 286 0.7010266 0.148553607 fv Log-Normal RP(P), Log-Normal FALSE #> 4584 287 0.5983036 0.127533893 fv Log-Normal RP(P), Log-Normal FALSE #> 4600 288 0.6194319 0.132300120 fv Log-Normal RP(P), Log-Normal FALSE #> 4616 289 0.6953902 0.147668888 fv Log-Normal RP(P), Log-Normal FALSE #> 4632 290 0.6789570 0.143987778 fv Log-Normal RP(P), Log-Normal FALSE #> 4648 291 0.7671789 0.162019778 fv Log-Normal RP(P), Log-Normal FALSE #> 4664 292 0.6671205 0.145690555 fv Log-Normal RP(P), Log-Normal FALSE #> 4680 293 0.6823554 0.144154584 fv Log-Normal RP(P), Log-Normal FALSE #> 4696 294 0.7332624 0.154464681 fv Log-Normal RP(P), Log-Normal FALSE #> 4712 295 0.6404999 0.135858256 fv Log-Normal RP(P), Log-Normal FALSE #> 4728 296 0.8064440 0.169134786 fv Log-Normal RP(P), Log-Normal FALSE #> 4744 297 0.4154099 0.089707885 fv Log-Normal RP(P), Log-Normal FALSE #> 4760 298 0.7001526 0.148958370 fv Log-Normal RP(P), Log-Normal FALSE #> 4776 299 0.7901542 0.166005499 fv Log-Normal RP(P), Log-Normal FALSE #> 4792 300 0.6383931 0.135316588 fv Log-Normal RP(P), Log-Normal FALSE #> 4808 301 1.0797894 0.226631922 fv Log-Normal RP(P), Log-Normal FALSE #> 4824 302 0.7333982 0.154129270 fv Log-Normal RP(P), Log-Normal FALSE #> 4840 303 0.6448902 0.136135374 fv Log-Normal RP(P), Log-Normal FALSE #> 4856 304 0.6874369 0.145600025 fv Log-Normal RP(P), Log-Normal FALSE #> 4872 305 0.8473673 0.180072933 fv Log-Normal RP(P), Log-Normal FALSE #> 4888 306 0.5855319 0.124660389 fv Log-Normal RP(P), Log-Normal FALSE #> 4904 307 0.6260604 0.133351831 fv Log-Normal RP(P), Log-Normal FALSE #> 4920 308 0.7265619 0.155227234 fv Log-Normal RP(P), Log-Normal FALSE #> 4936 309 0.6165858 0.131736323 fv Log-Normal RP(P), Log-Normal FALSE #> 4952 310 0.6669932 0.143636364 fv Log-Normal RP(P), Log-Normal FALSE #> 4968 311 0.8948024 0.187518922 fv Log-Normal RP(P), Log-Normal FALSE #> 4984 312 0.7340584 0.156045396 fv Log-Normal RP(P), Log-Normal FALSE #> 5000 313 0.5098630 0.110514496 fv Log-Normal RP(P), Log-Normal FALSE #> 5016 314 0.7006581 0.149757043 fv Log-Normal RP(P), Log-Normal FALSE #> 5032 315 0.6800828 0.144554310 fv Log-Normal RP(P), Log-Normal FALSE #> 5048 316 0.5944615 0.126393843 fv Log-Normal RP(P), Log-Normal FALSE #> 5064 317 0.8636833 0.180934577 fv Log-Normal RP(P), Log-Normal FALSE #> 5080 318 0.5483091 0.116304349 fv Log-Normal RP(P), Log-Normal FALSE #> 5096 319 0.7523237 0.160342794 fv Log-Normal RP(P), Log-Normal FALSE #> 5112 320 0.8391743 0.176178376 fv Log-Normal RP(P), Log-Normal FALSE #> 5128 321 0.9163775 0.194154288 fv Log-Normal RP(P), Log-Normal FALSE #> 5144 322 0.5894324 0.127298736 fv Log-Normal RP(P), Log-Normal FALSE #> 5160 323 0.8114798 0.171935681 fv Log-Normal RP(P), Log-Normal FALSE #> 5176 324 0.5338577 0.114284662 fv Log-Normal RP(P), Log-Normal FALSE #> 5192 325 0.6217815 0.132298631 fv Log-Normal RP(P), Log-Normal FALSE #> 5208 326 1.0836512 0.235917887 fv Log-Normal RP(P), Log-Normal FALSE #> 5224 327 0.5334750 0.115076500 fv Log-Normal RP(P), Log-Normal FALSE #> 5240 328 0.7989732 0.169468715 fv Log-Normal RP(P), Log-Normal FALSE #> 5256 329 0.6360385 0.134479974 fv Log-Normal RP(P), Log-Normal FALSE #> 5272 330 0.5875593 0.128101031 fv Log-Normal RP(P), Log-Normal FALSE #> 5288 331 0.9377907 0.197762013 fv Log-Normal RP(P), Log-Normal FALSE #> 5304 332 0.6885284 0.145055687 fv Log-Normal RP(P), Log-Normal FALSE #> 5320 333 0.5064415 0.108148237 fv Log-Normal RP(P), Log-Normal FALSE #> 5336 334 0.5541498 0.118443759 fv Log-Normal RP(P), Log-Normal FALSE #> 5352 335 0.5482213 0.116736851 fv Log-Normal RP(P), Log-Normal FALSE #> 5368 336 0.7934025 0.166004228 fv Log-Normal RP(P), Log-Normal FALSE #> 5384 337 0.6571731 0.138502229 fv Log-Normal RP(P), Log-Normal FALSE #> 5400 338 0.7728687 0.163033764 fv Log-Normal RP(P), Log-Normal FALSE #> 5416 339 0.5965669 0.128341597 fv Log-Normal RP(P), Log-Normal FALSE #> 5432 340 0.9275768 0.195141879 fv Log-Normal RP(P), Log-Normal FALSE #> 5448 341 0.6692119 0.145172381 fv Log-Normal RP(P), Log-Normal FALSE #> 5464 342 0.5902572 0.125475073 fv Log-Normal RP(P), Log-Normal FALSE #> 5480 343 0.5801466 0.123098768 fv Log-Normal RP(P), Log-Normal FALSE #> 5496 344 0.6785553 0.144580820 fv Log-Normal RP(P), Log-Normal FALSE #> 5512 345 0.6981478 0.149010321 fv Log-Normal RP(P), Log-Normal FALSE #> 5528 346 0.5238796 0.114762954 fv Log-Normal RP(P), Log-Normal FALSE #> 5544 347 0.6274841 0.133216940 fv Log-Normal RP(P), Log-Normal FALSE #> 5560 348 0.6138076 0.132661263 fv Log-Normal RP(P), Log-Normal FALSE #> 5576 349 0.7089060 0.151241295 fv Log-Normal RP(P), Log-Normal FALSE #> 5592 350 0.7922423 0.166710243 fv Log-Normal RP(P), Log-Normal FALSE #> 5608 351 0.6095110 0.131638592 fv Log-Normal RP(P), Log-Normal FALSE #> 5624 352 0.8227668 0.174673506 fv Log-Normal RP(P), Log-Normal FALSE #> 5640 353 0.7124254 0.149873339 fv Log-Normal RP(P), Log-Normal FALSE #> 5656 354 0.6746969 0.142588109 fv Log-Normal RP(P), Log-Normal FALSE #> 5672 355 0.7436915 0.155836291 fv Log-Normal RP(P), Log-Normal FALSE #> 5688 356 0.6364339 0.135095851 fv Log-Normal RP(P), Log-Normal FALSE #> 5704 357 0.9283883 0.195684960 fv Log-Normal RP(P), Log-Normal FALSE #> 5720 358 0.6779987 0.143013219 fv Log-Normal RP(P), Log-Normal FALSE #> 5736 359 0.5223231 0.112182424 fv Log-Normal RP(P), Log-Normal FALSE #> 5752 360 0.6818928 0.145867770 fv Log-Normal RP(P), Log-Normal FALSE #> 5768 361 0.6438289 0.136908189 fv Log-Normal RP(P), Log-Normal FALSE #> 5784 362 0.6308484 0.133550798 fv Log-Normal RP(P), Log-Normal FALSE #> 5800 363 0.6184552 0.131494207 fv Log-Normal RP(P), Log-Normal FALSE #> 5816 364 0.9020074 0.191480398 fv Log-Normal RP(P), Log-Normal FALSE #> 5832 365 0.8085743 0.174120700 fv Log-Normal RP(P), Log-Normal FALSE #> 5848 366 0.6868125 0.146863645 fv Log-Normal RP(P), Log-Normal FALSE #> 5864 367 0.8043925 0.169415489 fv Log-Normal RP(P), Log-Normal FALSE #> 5880 368 0.9940984 0.211797215 fv Log-Normal RP(P), Log-Normal FALSE #> 5896 369 0.6067818 0.130133487 fv Log-Normal RP(P), Log-Normal FALSE #> 5912 370 0.7791594 0.164610115 fv Log-Normal RP(P), Log-Normal FALSE #> 5928 371 0.6579660 0.139290440 fv Log-Normal RP(P), Log-Normal FALSE #> 5944 372 0.4998593 0.107079991 fv Log-Normal RP(P), Log-Normal FALSE #> 5960 373 1.1187507 0.239669973 fv Log-Normal RP(P), Log-Normal TRUE #> 5976 374 0.5445436 0.116192907 fv Log-Normal RP(P), Log-Normal FALSE #> 5992 375 0.6589562 0.140315215 fv Log-Normal RP(P), Log-Normal FALSE #> 6008 376 0.7039143 0.151300247 fv Log-Normal RP(P), Log-Normal FALSE #> 6024 377 0.5442462 0.116958497 fv Log-Normal RP(P), Log-Normal FALSE #> 6040 378 0.6207517 0.133000762 fv Log-Normal RP(P), Log-Normal FALSE #> 6056 379 0.5070180 0.108149121 fv Log-Normal RP(P), Log-Normal FALSE #> 6072 380 0.6588885 0.139471825 fv Log-Normal RP(P), Log-Normal FALSE #> 6088 381 0.8548545 0.181832063 fv Log-Normal RP(P), Log-Normal FALSE #> 6104 382 0.7335509 0.156313750 fv Log-Normal RP(P), Log-Normal FALSE #> 6120 383 0.7137172 0.150203860 fv Log-Normal RP(P), Log-Normal FALSE #> 6136 384 0.7104134 0.150412373 fv Log-Normal RP(P), Log-Normal FALSE #> 6152 385 0.5935099 0.129534784 fv Log-Normal RP(P), Log-Normal FALSE #> 6168 386 0.9411797 0.201815466 fv Log-Normal RP(P), Log-Normal FALSE #> 6184 387 0.5892174 0.125279876 fv Log-Normal RP(P), Log-Normal FALSE #> 6200 388 0.9310919 0.196820097 fv Log-Normal RP(P), Log-Normal FALSE #> 6216 389 0.8066429 0.170511534 fv Log-Normal RP(P), Log-Normal FALSE #> 6232 390 0.6786750 0.144396146 fv Log-Normal RP(P), Log-Normal FALSE #> 6248 391 0.8198229 0.172515332 fv Log-Normal RP(P), Log-Normal FALSE #> 6264 392 0.6270577 0.133542272 fv Log-Normal RP(P), Log-Normal FALSE #> 6280 393 0.5605416 0.119072930 fv Log-Normal RP(P), Log-Normal FALSE #> 6296 394 0.8810824 0.186080625 fv Log-Normal RP(P), Log-Normal FALSE #> 6312 395 0.7626802 0.161748237 fv Log-Normal RP(P), Log-Normal FALSE #> 6328 396 1.0186980 0.215519936 fv Log-Normal RP(P), Log-Normal FALSE #> 6344 397 0.7136712 0.152808078 fv Log-Normal RP(P), Log-Normal FALSE #> 6360 398 0.6724088 0.142879285 fv Log-Normal RP(P), Log-Normal FALSE #> 6376 399 0.8200587 0.173443890 fv Log-Normal RP(P), Log-Normal FALSE #> 6392 400 0.5373662 0.114719406 fv Log-Normal RP(P), Log-Normal FALSE #> 6408 401 0.6198081 0.133051510 fv Log-Normal RP(P), Log-Normal FALSE #> 6424 402 0.5456393 0.120676593 fv Log-Normal RP(P), Log-Normal FALSE #> 6440 403 0.6242481 0.134826074 fv Log-Normal RP(P), Log-Normal FALSE #> 6456 404 0.5789455 0.124683392 fv Log-Normal RP(P), Log-Normal FALSE #> 6472 405 0.4740742 0.101148159 fv Log-Normal RP(P), Log-Normal FALSE #> 6488 406 0.7363722 0.157413363 fv Log-Normal RP(P), Log-Normal FALSE #> 6504 407 0.7570074 0.160550534 fv Log-Normal RP(P), Log-Normal FALSE #> 6520 408 0.4959259 0.108490225 fv Log-Normal RP(P), Log-Normal FALSE #> 6536 409 0.7356424 0.157765466 fv Log-Normal RP(P), Log-Normal FALSE #> 6552 410 0.7712851 0.162320795 fv Log-Normal RP(P), Log-Normal FALSE #> 6568 411 0.6541786 0.140317219 fv Log-Normal RP(P), Log-Normal FALSE #> 6584 412 0.6661183 0.143455097 fv Log-Normal RP(P), Log-Normal FALSE #> 6600 413 0.5350439 0.115753646 fv Log-Normal RP(P), Log-Normal FALSE #> 6616 414 0.8643640 0.180317810 fv Log-Normal RP(P), Log-Normal FALSE #> 6632 415 1.2739619 0.266898773 fv Log-Normal RP(P), Log-Normal TRUE #> 6648 416 0.5686275 0.124459667 fv Log-Normal RP(P), Log-Normal FALSE #> 6664 417 0.5516460 0.117282911 fv Log-Normal RP(P), Log-Normal FALSE #> 6680 418 0.8937930 0.187628969 fv Log-Normal RP(P), Log-Normal FALSE #> 6696 419 0.4939313 0.107958764 fv Log-Normal RP(P), Log-Normal FALSE #> 6712 420 0.7618818 0.162553523 fv Log-Normal RP(P), Log-Normal FALSE #> 6728 421 0.7941336 0.166611656 fv Log-Normal RP(P), Log-Normal FALSE #> 6744 422 0.5760020 0.123123483 fv Log-Normal RP(P), Log-Normal FALSE #> 6760 423 0.5860742 0.124560347 fv Log-Normal RP(P), Log-Normal FALSE #> 6776 424 0.6808656 0.144707278 fv Log-Normal RP(P), Log-Normal FALSE #> 6792 425 0.7515341 0.158171202 fv Log-Normal RP(P), Log-Normal FALSE #> 6808 426 0.8278194 0.174409626 fv Log-Normal RP(P), Log-Normal FALSE #> 6824 427 0.9565671 0.199453527 fv Log-Normal RP(P), Log-Normal FALSE #> 6840 428 0.8208074 0.173449828 fv Log-Normal RP(P), Log-Normal FALSE #> 6856 429 0.7261118 0.153860717 fv Log-Normal RP(P), Log-Normal FALSE #> 6872 430 0.8154937 0.170888139 fv Log-Normal RP(P), Log-Normal FALSE #> 6888 431 0.6854336 0.147503360 fv Log-Normal RP(P), Log-Normal FALSE #> 6904 432 0.8698979 0.183151737 fv Log-Normal RP(P), Log-Normal FALSE #> 6920 433 0.5932630 0.126716505 fv Log-Normal RP(P), Log-Normal FALSE #> 6936 434 0.5884706 0.124621858 fv Log-Normal RP(P), Log-Normal FALSE #> 6952 435 0.4976009 0.107213878 fv Log-Normal RP(P), Log-Normal FALSE #> 6968 436 0.7641928 0.161595804 fv Log-Normal RP(P), Log-Normal FALSE #> 6984 437 0.5831031 0.126014583 fv Log-Normal RP(P), Log-Normal FALSE #> 7000 438 0.8816506 0.185159712 fv Log-Normal RP(P), Log-Normal FALSE #> 7016 439 0.5992139 0.129551688 fv Log-Normal RP(P), Log-Normal FALSE #> 7032 440 0.4173110 0.090549796 fv Log-Normal RP(P), Log-Normal FALSE #> 7048 441 0.5608792 0.120279561 fv Log-Normal RP(P), Log-Normal FALSE #> 7064 442 0.7522919 0.160420421 fv Log-Normal RP(P), Log-Normal FALSE #> 7080 443 0.8041542 0.170485517 fv Log-Normal RP(P), Log-Normal FALSE #> 7096 444 0.8333665 0.174907941 fv Log-Normal RP(P), Log-Normal FALSE #> 7112 445 0.9032992 0.190709150 fv Log-Normal RP(P), Log-Normal FALSE #> 7128 446 0.6382998 0.136039454 fv Log-Normal RP(P), Log-Normal FALSE #> 7144 447 0.8913664 0.188101809 fv Log-Normal RP(P), Log-Normal FALSE #> 7160 448 0.9185656 0.194708815 fv Log-Normal RP(P), Log-Normal FALSE #> 7176 449 0.9114504 0.192914583 fv Log-Normal RP(P), Log-Normal FALSE #> 7192 450 0.7040628 0.150193038 fv Log-Normal RP(P), Log-Normal FALSE #> 7208 451 0.7951696 0.168085049 fv Log-Normal RP(P), Log-Normal FALSE #> 7224 452 0.7822380 0.164962493 fv Log-Normal RP(P), Log-Normal FALSE #> 7240 453 0.6990982 0.147390463 fv Log-Normal RP(P), Log-Normal FALSE #> 7256 454 0.6810218 0.145335768 fv Log-Normal RP(P), Log-Normal FALSE #> 7272 455 0.6300676 0.133453170 fv Log-Normal RP(P), Log-Normal FALSE #> 7288 456 0.4863927 0.104457276 fv Log-Normal RP(P), Log-Normal FALSE #> 7304 457 0.9178214 0.193997798 fv Log-Normal RP(P), Log-Normal FALSE #> 7320 458 0.7946535 0.172717509 fv Log-Normal RP(P), Log-Normal FALSE #> 7336 459 0.9718512 0.208815317 fv Log-Normal RP(P), Log-Normal FALSE #> 7352 460 0.6861966 0.146417539 fv Log-Normal RP(P), Log-Normal FALSE #> 7368 461 0.7851648 0.165669430 fv Log-Normal RP(P), Log-Normal FALSE #> 7384 462 0.7271394 0.153568596 fv Log-Normal RP(P), Log-Normal FALSE #> 7400 463 0.8837419 0.187918773 fv Log-Normal RP(P), Log-Normal FALSE #> 7416 464 0.8135415 0.171708945 fv Log-Normal RP(P), Log-Normal FALSE #> 7432 465 0.8182940 0.172522261 fv Log-Normal RP(P), Log-Normal FALSE #> 7448 466 0.8493356 0.179784542 fv Log-Normal RP(P), Log-Normal FALSE #> 7464 467 0.7431155 0.158019881 fv Log-Normal RP(P), Log-Normal FALSE #> 7480 468 0.9245746 0.194819936 fv Log-Normal RP(P), Log-Normal FALSE #> 7496 469 0.8093364 0.169629324 fv Log-Normal RP(P), Log-Normal FALSE #> 7512 470 0.7536124 0.160736238 fv Log-Normal RP(P), Log-Normal FALSE #> 7528 471 0.6319489 0.135425252 fv Log-Normal RP(P), Log-Normal FALSE #> 7544 472 0.8705816 0.183151533 fv Log-Normal RP(P), Log-Normal FALSE #> 7560 473 0.6939116 0.147277985 fv Log-Normal RP(P), Log-Normal FALSE #> 7576 474 1.0226695 0.218679643 fv Log-Normal RP(P), Log-Normal FALSE #> 7592 475 0.6441230 0.137039433 fv Log-Normal RP(P), Log-Normal FALSE #> 7608 476 0.4760739 0.102644848 fv Log-Normal RP(P), Log-Normal FALSE #> 7624 477 0.5102537 0.108874669 fv Log-Normal RP(P), Log-Normal FALSE #> 7640 478 0.8094600 0.170268803 fv Log-Normal RP(P), Log-Normal FALSE #> 7656 479 0.7402423 0.155742727 fv Log-Normal RP(P), Log-Normal FALSE #> 7672 480 1.0188028 0.213534164 fv Log-Normal RP(P), Log-Normal FALSE #> 7688 481 1.0312072 0.216978595 fv Log-Normal RP(P), Log-Normal FALSE #> 7704 482 0.7865807 0.168666058 fv Log-Normal RP(P), Log-Normal FALSE #> 7720 483 0.9423222 0.201963450 fv Log-Normal RP(P), Log-Normal FALSE #> 7736 484 0.8973102 0.192445828 fv Log-Normal RP(P), Log-Normal FALSE #> 7752 485 0.5963984 0.127055639 fv Log-Normal RP(P), Log-Normal FALSE #> 7768 486 0.4671000 0.102302527 fv Log-Normal RP(P), Log-Normal FALSE #> 7784 487 0.8902634 0.188247313 fv Log-Normal RP(P), Log-Normal FALSE #> 7800 488 0.4450478 0.096615368 fv Log-Normal RP(P), Log-Normal FALSE #> 7816 489 0.8021624 0.173231327 fv Log-Normal RP(P), Log-Normal FALSE #> 7832 490 0.7137305 0.152534661 fv Log-Normal RP(P), Log-Normal FALSE #> 7848 491 0.6903608 0.146100755 fv Log-Normal RP(P), Log-Normal FALSE #> 7864 492 0.5592670 0.118971312 fv Log-Normal RP(P), Log-Normal FALSE #> 7880 493 1.0805007 0.228198880 fv Log-Normal RP(P), Log-Normal FALSE #> 7896 494 0.6613173 0.139508951 fv Log-Normal RP(P), Log-Normal FALSE #> 7912 495 0.8229525 0.172706856 fv Log-Normal RP(P), Log-Normal FALSE #> 7928 496 1.0935848 0.231781117 fv Log-Normal RP(P), Log-Normal FALSE #> 7944 497 0.5926421 0.126095802 fv Log-Normal RP(P), Log-Normal FALSE #> 7960 498 0.6349464 0.134880116 fv Log-Normal RP(P), Log-Normal FALSE #> 7976 499 0.9057009 0.193169237 fv Log-Normal RP(P), Log-Normal FALSE #> 7992 500 0.6787804 0.143590515 fv Log-Normal RP(P), Log-Normal FALSE #> 8008 501 1.3525305 0.283084001 fv Log-Normal RP(P), Log-Normal TRUE #> 8024 502 0.7740755 0.163786111 fv Log-Normal RP(P), Log-Normal FALSE #> 8040 503 0.7478861 0.158084965 fv Log-Normal RP(P), Log-Normal FALSE #> 8056 504 0.8826810 0.185135409 fv Log-Normal RP(P), Log-Normal FALSE #> 8072 505 0.7557309 0.160151723 fv Log-Normal RP(P), Log-Normal FALSE #> 8088 506 1.0247701 0.219285990 fv Log-Normal RP(P), Log-Normal FALSE #> 8104 507 0.7332673 0.155458606 fv Log-Normal RP(P), Log-Normal FALSE #> 8120 508 0.5395012 0.115690840 fv Log-Normal RP(P), Log-Normal FALSE #> 8136 509 0.6787263 0.144817990 fv Log-Normal RP(P), Log-Normal FALSE #> 8152 510 0.6847482 0.146363988 fv Log-Normal RP(P), Log-Normal FALSE #> 8168 511 0.4605915 0.099150023 fv Log-Normal RP(P), Log-Normal FALSE #> 8184 512 0.7265371 0.156046468 fv Log-Normal RP(P), Log-Normal FALSE #> 8200 513 0.8072477 0.171715037 fv Log-Normal RP(P), Log-Normal FALSE #> 8216 514 0.7180859 0.151783993 fv Log-Normal RP(P), Log-Normal FALSE #> 8232 515 0.5582958 0.119831433 fv Log-Normal RP(P), Log-Normal FALSE #> 8248 516 0.7381316 0.155789374 fv Log-Normal RP(P), Log-Normal FALSE #> 8264 517 0.3674411 0.080541276 fv Log-Normal RP(P), Log-Normal FALSE #> 8280 518 0.7450873 0.157554369 fv Log-Normal RP(P), Log-Normal FALSE #> 8296 519 0.7681291 0.162465401 fv Log-Normal RP(P), Log-Normal FALSE #> 8312 520 0.8008281 0.168852756 fv Log-Normal RP(P), Log-Normal FALSE #> 8328 521 0.7998675 0.170293482 fv Log-Normal RP(P), Log-Normal FALSE #> 8344 522 0.5387534 0.114980391 fv Log-Normal RP(P), Log-Normal FALSE #> 8360 523 0.7672604 0.162198321 fv Log-Normal RP(P), Log-Normal FALSE #> 8376 524 0.5280884 0.112519890 fv Log-Normal RP(P), Log-Normal FALSE #> 8392 525 0.7053708 0.149423744 fv Log-Normal RP(P), Log-Normal FALSE #> 8408 526 0.6066376 0.129241961 fv Log-Normal RP(P), Log-Normal FALSE #> 8424 527 0.7129661 0.150656058 fv Log-Normal RP(P), Log-Normal FALSE #> 8440 528 0.9281260 0.195995962 fv Log-Normal RP(P), Log-Normal FALSE #> 8456 529 0.9355893 0.196208641 fv Log-Normal RP(P), Log-Normal FALSE #> 8472 530 0.4504997 0.097884739 fv Log-Normal RP(P), Log-Normal FALSE #> 8488 531 1.0001840 0.211155769 fv Log-Normal RP(P), Log-Normal FALSE #> 8504 532 0.7216514 0.152077098 fv Log-Normal RP(P), Log-Normal FALSE #> 8520 533 0.6905167 0.145804123 fv Log-Normal RP(P), Log-Normal FALSE #> 8536 534 0.7425754 0.157498257 fv Log-Normal RP(P), Log-Normal FALSE #> 8552 535 0.8638945 0.181911550 fv Log-Normal RP(P), Log-Normal FALSE #> 8568 536 0.5969459 0.128825659 fv Log-Normal RP(P), Log-Normal FALSE #> 8584 537 1.2497526 0.261387193 fv Log-Normal RP(P), Log-Normal TRUE #> 8600 538 0.5072017 0.109014290 fv Log-Normal RP(P), Log-Normal FALSE #> 8616 539 0.6856868 0.144442198 fv Log-Normal RP(P), Log-Normal FALSE #> 8632 540 0.6145395 0.130947333 fv Log-Normal RP(P), Log-Normal FALSE #> 8648 541 0.9003393 0.188467630 fv Log-Normal RP(P), Log-Normal FALSE #> 8664 542 0.8263942 0.175286712 fv Log-Normal RP(P), Log-Normal FALSE #> 8680 543 0.7581448 0.159106779 fv Log-Normal RP(P), Log-Normal FALSE #> 8696 544 0.7628214 0.161333872 fv Log-Normal RP(P), Log-Normal FALSE #> 8712 545 0.5729157 0.121622886 fv Log-Normal RP(P), Log-Normal FALSE #> 8728 546 0.9048540 0.189585012 fv Log-Normal RP(P), Log-Normal FALSE #> 8744 547 0.6888985 0.146237060 fv Log-Normal RP(P), Log-Normal FALSE #> 8760 548 0.5388485 0.114867872 fv Log-Normal RP(P), Log-Normal FALSE #> 8776 549 0.8844165 0.187783761 fv Log-Normal RP(P), Log-Normal FALSE #> 8792 550 0.5216935 0.112325747 fv Log-Normal RP(P), Log-Normal FALSE #> 8808 551 0.7981204 0.168826559 fv Log-Normal RP(P), Log-Normal FALSE #> 8824 552 0.7043843 0.148695174 fv Log-Normal RP(P), Log-Normal FALSE #> 8840 553 0.8456647 0.176887854 fv Log-Normal RP(P), Log-Normal FALSE #> 8856 554 0.9029274 0.189275208 fv Log-Normal RP(P), Log-Normal FALSE #> 8872 555 0.8338211 0.176687000 fv Log-Normal RP(P), Log-Normal FALSE #> 8888 556 0.8771735 0.184240708 fv Log-Normal RP(P), Log-Normal FALSE #> 8904 557 0.6994326 0.147519245 fv Log-Normal RP(P), Log-Normal FALSE #> 8920 558 0.6675003 0.140850673 fv Log-Normal RP(P), Log-Normal FALSE #> 8936 559 0.6142336 0.132089175 fv Log-Normal RP(P), Log-Normal FALSE #> 8952 560 0.7787745 0.163344772 fv Log-Normal RP(P), Log-Normal FALSE #> 8968 561 1.2512491 0.263068744 fv Log-Normal RP(P), Log-Normal TRUE #> 8984 562 0.8979502 0.193680428 fv Log-Normal RP(P), Log-Normal FALSE #> 9000 563 0.7952133 0.167695091 fv Log-Normal RP(P), Log-Normal FALSE #> 9016 564 0.6546188 0.141378883 fv Log-Normal RP(P), Log-Normal FALSE #> 9032 565 0.5562875 0.118568595 fv Log-Normal RP(P), Log-Normal FALSE #> 9048 566 0.7792219 0.167873773 fv Log-Normal RP(P), Log-Normal FALSE #> 9064 567 0.7419551 0.158352827 fv Log-Normal RP(P), Log-Normal FALSE #> 9080 568 0.5379826 0.115223660 fv Log-Normal RP(P), Log-Normal FALSE #> 9096 569 0.8461880 0.177143809 fv Log-Normal RP(P), Log-Normal FALSE #> 9112 570 0.5799163 0.126002183 fv Log-Normal RP(P), Log-Normal FALSE #> 9128 571 0.6983018 0.147992860 fv Log-Normal RP(P), Log-Normal FALSE #> 9144 572 0.6094856 0.128898875 fv Log-Normal RP(P), Log-Normal FALSE #> 9160 573 0.6552102 0.139040826 fv Log-Normal RP(P), Log-Normal FALSE #> 9176 574 0.7370159 0.156124757 fv Log-Normal RP(P), Log-Normal FALSE #> 9192 575 0.6652785 0.143329039 fv Log-Normal RP(P), Log-Normal FALSE #> 9208 576 0.7048646 0.153254428 fv Log-Normal RP(P), Log-Normal FALSE #> 9224 577 0.9167098 0.191907050 fv Log-Normal RP(P), Log-Normal FALSE #> 9240 578 0.5877871 0.124960960 fv Log-Normal RP(P), Log-Normal FALSE #> 9256 579 0.6016587 0.129835840 fv Log-Normal RP(P), Log-Normal FALSE #> 9272 580 0.4967792 0.106638664 fv Log-Normal RP(P), Log-Normal FALSE #> 9288 581 0.7942713 0.168013813 fv Log-Normal RP(P), Log-Normal FALSE #> 9304 582 0.7758947 0.163986474 fv Log-Normal RP(P), Log-Normal FALSE #> 9320 583 1.0340860 0.215440480 fv Log-Normal RP(P), Log-Normal FALSE #> 9336 584 0.5415647 0.114993075 fv Log-Normal RP(P), Log-Normal FALSE #> 9352 585 0.7207829 0.152475876 fv Log-Normal RP(P), Log-Normal FALSE #> 9368 586 0.7453476 0.156907193 fv Log-Normal RP(P), Log-Normal FALSE #> 9384 587 0.9381973 0.198355658 fv Log-Normal RP(P), Log-Normal FALSE #> 9400 588 0.5818223 0.125118084 fv Log-Normal RP(P), Log-Normal FALSE #> 9416 589 0.6031015 0.127799852 fv Log-Normal RP(P), Log-Normal FALSE #> 9432 590 0.8243606 0.175362711 fv Log-Normal RP(P), Log-Normal FALSE #> 9448 591 0.8454856 0.179386646 fv Log-Normal RP(P), Log-Normal FALSE #> 9464 592 0.8293279 0.176428804 fv Log-Normal RP(P), Log-Normal FALSE #> 9480 593 0.9311402 0.195578453 fv Log-Normal RP(P), Log-Normal FALSE #> 9496 594 0.7218285 0.152965863 fv Log-Normal RP(P), Log-Normal FALSE #> 9512 595 0.5446728 0.116520386 fv Log-Normal RP(P), Log-Normal FALSE #> 9528 596 0.7359036 0.154479518 fv Log-Normal RP(P), Log-Normal FALSE #> 9544 597 0.6073041 0.128691128 fv Log-Normal RP(P), Log-Normal FALSE #> 9560 598 1.0738637 0.225311791 fv Log-Normal RP(P), Log-Normal FALSE #> 9576 599 0.7532017 0.160702035 fv Log-Normal RP(P), Log-Normal FALSE #> 9592 600 0.5313748 0.113456443 fv Log-Normal RP(P), Log-Normal FALSE #> 9608 601 1.1762696 0.247690829 fv Log-Normal RP(P), Log-Normal TRUE #> 9624 602 0.9869736 0.208165567 fv Log-Normal RP(P), Log-Normal FALSE #> 9640 603 0.4156015 0.089856898 fv Log-Normal RP(P), Log-Normal FALSE #> 9656 604 0.7562236 0.159112332 fv Log-Normal RP(P), Log-Normal FALSE #> 9672 605 1.2356747 0.256716135 fv Log-Normal RP(P), Log-Normal TRUE #> 9688 606 0.6753278 0.142231678 fv Log-Normal RP(P), Log-Normal FALSE #> 9704 607 0.6100967 0.131469811 fv Log-Normal RP(P), Log-Normal FALSE #> 9720 608 0.4384887 0.095081321 fv Log-Normal RP(P), Log-Normal FALSE #> 9736 609 0.8299211 0.173601960 fv Log-Normal RP(P), Log-Normal FALSE #> 9752 610 0.6332973 0.134588006 fv Log-Normal RP(P), Log-Normal FALSE #> 9768 611 0.8122094 0.173499710 fv Log-Normal RP(P), Log-Normal FALSE #> 9784 612 0.5912979 0.127198194 fv Log-Normal RP(P), Log-Normal FALSE #> 9800 613 0.8186354 0.172772228 fv Log-Normal RP(P), Log-Normal FALSE #> 9816 614 0.7847640 0.167841517 fv Log-Normal RP(P), Log-Normal FALSE #> 9832 615 0.8697196 0.183433952 fv Log-Normal RP(P), Log-Normal FALSE #> 9848 616 0.7828021 0.165439563 fv Log-Normal RP(P), Log-Normal FALSE #> 9864 617 0.7846758 0.165990375 fv Log-Normal RP(P), Log-Normal FALSE #> 9880 618 0.6823886 0.144285111 fv Log-Normal RP(P), Log-Normal FALSE #> 9896 619 0.8198467 0.172557735 fv Log-Normal RP(P), Log-Normal FALSE #> 9912 620 0.8185053 0.173878169 fv Log-Normal RP(P), Log-Normal FALSE #> 9928 621 0.5663070 0.121246532 fv Log-Normal RP(P), Log-Normal FALSE #> 9944 622 0.6302051 0.135303879 fv Log-Normal RP(P), Log-Normal FALSE #> 9960 623 0.8783656 0.185679970 fv Log-Normal RP(P), Log-Normal FALSE #> 9976 624 0.5837145 0.125580529 fv Log-Normal RP(P), Log-Normal FALSE #> 9992 625 0.7638096 0.162639813 fv Log-Normal RP(P), Log-Normal FALSE #> 10008 626 0.6378765 0.135851705 fv Log-Normal RP(P), Log-Normal FALSE #> 10024 627 0.6253581 0.133238137 fv Log-Normal RP(P), Log-Normal FALSE #> 10040 628 0.6694660 0.143767320 fv Log-Normal RP(P), Log-Normal FALSE #> 10056 629 0.6392508 0.134956518 fv Log-Normal RP(P), Log-Normal FALSE #> 10072 630 0.8351055 0.175262379 fv Log-Normal RP(P), Log-Normal FALSE #> 10088 631 0.6715506 0.142213889 fv Log-Normal RP(P), Log-Normal FALSE #> 10104 632 0.7776511 0.166721548 fv Log-Normal RP(P), Log-Normal FALSE #> 10120 633 0.4910653 0.105740740 fv Log-Normal RP(P), Log-Normal FALSE #> 10136 634 0.6757272 0.146378271 fv Log-Normal RP(P), Log-Normal FALSE #> 10152 635 0.9063761 0.191682174 fv Log-Normal RP(P), Log-Normal FALSE #> 10168 636 0.4196552 0.091166924 fv Log-Normal RP(P), Log-Normal FALSE #> 10184 637 0.8757533 0.183031296 fv Log-Normal RP(P), Log-Normal FALSE #> 10200 638 0.6839210 0.145657493 fv Log-Normal RP(P), Log-Normal FALSE #> 10216 639 0.4323877 0.093765125 fv Log-Normal RP(P), Log-Normal FALSE #> 10232 640 0.7235325 0.154259737 fv Log-Normal RP(P), Log-Normal FALSE #> 10248 641 0.5858835 0.125271208 fv Log-Normal RP(P), Log-Normal FALSE #> 10264 642 0.6400015 0.136631265 fv Log-Normal RP(P), Log-Normal FALSE #> 10280 643 0.6645860 0.140296010 fv Log-Normal RP(P), Log-Normal FALSE #> 10296 644 0.6198370 0.131300536 fv Log-Normal RP(P), Log-Normal FALSE #> 10312 645 0.7546684 0.158768904 fv Log-Normal RP(P), Log-Normal FALSE #> 10328 646 0.8385785 0.177475226 fv Log-Normal RP(P), Log-Normal FALSE #> 10344 647 0.6580940 0.139159678 fv Log-Normal RP(P), Log-Normal FALSE #> 10360 648 1.0746985 0.225177802 fv Log-Normal RP(P), Log-Normal FALSE #> 10376 649 0.6308988 0.136195814 fv Log-Normal RP(P), Log-Normal FALSE #> 10392 650 0.8130078 0.170621264 fv Log-Normal RP(P), Log-Normal FALSE #> 10408 651 0.7933222 0.168885503 fv Log-Normal RP(P), Log-Normal FALSE #> 10424 652 1.2738896 0.266494041 fv Log-Normal RP(P), Log-Normal TRUE #> 10440 653 0.5448666 0.117388941 fv Log-Normal RP(P), Log-Normal FALSE #> 10456 654 0.5869671 0.127309334 fv Log-Normal RP(P), Log-Normal FALSE #> 10472 655 0.7057334 0.149997780 fv Log-Normal RP(P), Log-Normal FALSE #> 10488 656 0.7129275 0.153121486 fv Log-Normal RP(P), Log-Normal FALSE #> 10504 657 0.5353386 0.115029010 fv Log-Normal RP(P), Log-Normal FALSE #> 10520 658 1.1549453 0.246231092 fv Log-Normal RP(P), Log-Normal TRUE #> 10536 659 1.0576571 0.224338275 fv Log-Normal RP(P), Log-Normal FALSE #> 10552 660 0.8581929 0.181070027 fv Log-Normal RP(P), Log-Normal FALSE #> 10568 661 0.5674477 0.122688388 fv Log-Normal RP(P), Log-Normal FALSE #> 10584 662 0.5904257 0.125804978 fv Log-Normal RP(P), Log-Normal FALSE #> 10600 663 0.7041159 0.150024604 fv Log-Normal RP(P), Log-Normal FALSE #> 10616 664 0.7043639 0.148712478 fv Log-Normal RP(P), Log-Normal FALSE #> 10632 665 0.8841932 0.186280285 fv Log-Normal RP(P), Log-Normal FALSE #> 10648 666 1.1689748 0.244131156 fv Log-Normal RP(P), Log-Normal TRUE #> 10664 667 0.6492794 0.137535848 fv Log-Normal RP(P), Log-Normal FALSE #> 10680 668 0.6326668 0.134054761 fv Log-Normal RP(P), Log-Normal FALSE #> 10696 669 0.9185632 0.194052341 fv Log-Normal RP(P), Log-Normal FALSE #> 10712 670 0.6207600 0.134223983 fv Log-Normal RP(P), Log-Normal FALSE #> 10728 671 0.7991586 0.168309558 fv Log-Normal RP(P), Log-Normal FALSE #> 10744 672 0.9575733 0.201175273 fv Log-Normal RP(P), Log-Normal FALSE #> 10760 673 0.6513651 0.137218194 fv Log-Normal RP(P), Log-Normal FALSE #> 10776 674 0.8220483 0.172548799 fv Log-Normal RP(P), Log-Normal FALSE #> 10792 675 0.6542018 0.144640287 fv Log-Normal RP(P), Log-Normal FALSE #> 10808 676 0.8790873 0.184291598 fv Log-Normal RP(P), Log-Normal FALSE #> 10824 677 0.6809257 0.143968265 fv Log-Normal RP(P), Log-Normal FALSE #> 10840 678 0.5718382 0.122834126 fv Log-Normal RP(P), Log-Normal FALSE #> 10856 679 0.6114109 0.129944256 fv Log-Normal RP(P), Log-Normal FALSE #> 10872 680 0.7505338 0.159061609 fv Log-Normal RP(P), Log-Normal FALSE #> 10888 681 1.0280511 0.216051309 fv Log-Normal RP(P), Log-Normal FALSE #> 10904 682 0.6922360 0.148686633 fv Log-Normal RP(P), Log-Normal FALSE #> 10920 683 0.8160459 0.173021939 fv Log-Normal RP(P), Log-Normal FALSE #> 10936 684 1.0630183 0.223385225 fv Log-Normal RP(P), Log-Normal FALSE #> 10952 685 0.6666902 0.142274967 fv Log-Normal RP(P), Log-Normal FALSE #> 10968 686 0.8987511 0.188963362 fv Log-Normal RP(P), Log-Normal FALSE #> 10984 687 0.5852340 0.124061916 fv Log-Normal RP(P), Log-Normal FALSE #> 11000 688 0.6144874 0.131917388 fv Log-Normal RP(P), Log-Normal FALSE #> 11016 689 0.6590173 0.140975370 fv Log-Normal RP(P), Log-Normal FALSE #> 11032 690 0.8739728 0.185496227 fv Log-Normal RP(P), Log-Normal FALSE #> 11048 691 0.8872853 0.197067546 fv Log-Normal RP(P), Log-Normal FALSE #> 11064 692 0.6787807 0.144806881 fv Log-Normal RP(P), Log-Normal FALSE #> 11080 693 0.5443873 0.119028846 fv Log-Normal RP(P), Log-Normal FALSE #> 11096 694 0.7311672 0.154007226 fv Log-Normal RP(P), Log-Normal FALSE #> 11112 695 0.6437481 0.137433283 fv Log-Normal RP(P), Log-Normal FALSE #> 11128 696 0.7796264 0.164444138 fv Log-Normal RP(P), Log-Normal FALSE #> 11144 697 0.8935000 0.188433606 fv Log-Normal RP(P), Log-Normal FALSE #> 11160 698 0.4678461 0.101556136 fv Log-Normal RP(P), Log-Normal FALSE #> 11176 699 0.7196923 0.155980475 fv Log-Normal RP(P), Log-Normal FALSE #> 11192 700 0.5476779 0.117221047 fv Log-Normal RP(P), Log-Normal FALSE #> 11208 701 0.8599958 0.182880781 fv Log-Normal RP(P), Log-Normal FALSE #> 11224 702 0.8684833 0.183468073 fv Log-Normal RP(P), Log-Normal FALSE #> 11240 703 0.7419362 0.157049016 fv Log-Normal RP(P), Log-Normal FALSE #> 11256 704 0.6422867 0.136115231 fv Log-Normal RP(P), Log-Normal FALSE #> 11272 705 0.7063944 0.150466188 fv Log-Normal RP(P), Log-Normal FALSE #> 11288 706 0.7662985 0.163581974 fv Log-Normal RP(P), Log-Normal FALSE #> 11304 707 0.9691335 0.204225294 fv Log-Normal RP(P), Log-Normal FALSE #> 11320 708 0.9287081 0.195346367 fv Log-Normal RP(P), Log-Normal FALSE #> 11336 709 0.6754008 0.142370655 fv Log-Normal RP(P), Log-Normal FALSE #> 11352 710 0.5128397 0.109458719 fv Log-Normal RP(P), Log-Normal FALSE #> 11368 711 0.6479967 0.136748161 fv Log-Normal RP(P), Log-Normal FALSE #> 11384 712 0.6760885 0.143146392 fv Log-Normal RP(P), Log-Normal FALSE #> 11400 713 1.0587777 0.226926537 fv Log-Normal RP(P), Log-Normal FALSE #> 11416 714 0.8103874 0.172391443 fv Log-Normal RP(P), Log-Normal FALSE #> 11432 715 0.8616532 0.183384192 fv Log-Normal RP(P), Log-Normal FALSE #> 11448 716 0.7627301 0.161883444 fv Log-Normal RP(P), Log-Normal FALSE #> 11464 717 0.8267358 0.177301411 fv Log-Normal RP(P), Log-Normal FALSE #> 11480 718 0.8593514 0.180603036 fv Log-Normal RP(P), Log-Normal FALSE #> 11496 719 0.9936252 0.208990822 fv Log-Normal RP(P), Log-Normal FALSE #> 11512 720 0.7871392 0.166350119 fv Log-Normal RP(P), Log-Normal FALSE #> 11528 721 0.6135418 0.132430075 fv Log-Normal RP(P), Log-Normal FALSE #> 11544 722 0.8048205 0.169138187 fv Log-Normal RP(P), Log-Normal FALSE #> 11560 723 0.6336888 0.133709011 fv Log-Normal RP(P), Log-Normal FALSE #> 11576 724 0.7570649 0.162435404 fv Log-Normal RP(P), Log-Normal FALSE #> 11592 725 0.7604770 0.159995583 fv Log-Normal RP(P), Log-Normal FALSE #> 11608 726 0.6782080 0.145809322 fv Log-Normal RP(P), Log-Normal FALSE #> 11624 727 0.7886025 0.166038605 fv Log-Normal RP(P), Log-Normal FALSE #> 11640 728 1.0345666 0.216064658 fv Log-Normal RP(P), Log-Normal FALSE #> 11656 729 0.7882665 0.167027116 fv Log-Normal RP(P), Log-Normal FALSE #> 11672 730 0.8534764 0.181349873 fv Log-Normal RP(P), Log-Normal FALSE #> 11688 731 0.5696950 0.125642912 fv Log-Normal RP(P), Log-Normal FALSE #> 11704 732 0.5007401 0.109484333 fv Log-Normal RP(P), Log-Normal FALSE #> 11720 733 0.9913558 0.210293324 fv Log-Normal RP(P), Log-Normal FALSE #> 11736 734 0.8984254 0.190596960 fv Log-Normal RP(P), Log-Normal FALSE #> 11752 735 1.0045821 0.209748742 fv Log-Normal RP(P), Log-Normal FALSE #> 11768 736 0.8546730 0.181624950 fv Log-Normal RP(P), Log-Normal FALSE #> 11784 737 0.7414317 0.156044397 fv Log-Normal RP(P), Log-Normal FALSE #> 11800 738 0.5333088 0.113415989 fv Log-Normal RP(P), Log-Normal FALSE #> 11816 739 0.6038187 0.128465242 fv Log-Normal RP(P), Log-Normal FALSE #> 11832 740 0.8191753 0.172172004 fv Log-Normal RP(P), Log-Normal FALSE #> 11848 741 1.0159289 0.214617959 fv Log-Normal RP(P), Log-Normal FALSE #> 11864 742 0.6619821 0.140186802 fv Log-Normal RP(P), Log-Normal FALSE #> 11880 743 0.7680557 0.163357348 fv Log-Normal RP(P), Log-Normal FALSE #> 11896 744 0.7937786 0.169514194 fv Log-Normal RP(P), Log-Normal FALSE #> 11912 745 0.7812691 0.167323224 fv Log-Normal RP(P), Log-Normal FALSE #> 11928 746 0.5998087 0.127989709 fv Log-Normal RP(P), Log-Normal FALSE #> 11944 747 0.6568120 0.139744765 fv Log-Normal RP(P), Log-Normal FALSE #> 11960 748 0.8625290 0.182461742 fv Log-Normal RP(P), Log-Normal FALSE #> 11976 749 0.9144162 0.190862281 fv Log-Normal RP(P), Log-Normal FALSE #> 11992 750 0.7515278 0.158912889 fv Log-Normal RP(P), Log-Normal FALSE #> 12008 751 0.8962423 0.188510336 fv Log-Normal RP(P), Log-Normal FALSE #> 12024 752 0.6919608 0.146949221 fv Log-Normal RP(P), Log-Normal FALSE #> 12040 753 0.4449890 0.097148812 fv Log-Normal RP(P), Log-Normal FALSE #> 12056 754 0.7894919 0.168720623 fv Log-Normal RP(P), Log-Normal FALSE #> 12072 755 0.6692060 0.141962729 fv Log-Normal RP(P), Log-Normal FALSE #> 12088 756 0.3791451 0.083307800 fv Log-Normal RP(P), Log-Normal FALSE #> 12104 757 0.6778335 0.142766228 fv Log-Normal RP(P), Log-Normal FALSE #> 12120 758 0.7767465 0.163788353 fv Log-Normal RP(P), Log-Normal FALSE #> 12136 759 0.6789998 0.145162056 fv Log-Normal RP(P), Log-Normal FALSE #> 12152 760 0.8683342 0.182144862 fv Log-Normal RP(P), Log-Normal FALSE #> 12168 761 0.6313595 0.135984337 fv Log-Normal RP(P), Log-Normal FALSE #> 12184 762 0.7627906 0.160815382 fv Log-Normal RP(P), Log-Normal FALSE #> 12200 763 0.5636338 0.120435542 fv Log-Normal RP(P), Log-Normal FALSE #> 12216 764 0.6550750 0.139154314 fv Log-Normal RP(P), Log-Normal FALSE #> 12232 765 0.9488338 0.199510616 fv Log-Normal RP(P), Log-Normal FALSE #> 12248 766 0.6551717 0.138803758 fv Log-Normal RP(P), Log-Normal FALSE #> 12264 767 0.8757343 0.184959715 fv Log-Normal RP(P), Log-Normal FALSE #> 12280 768 0.5887793 0.126819926 fv Log-Normal RP(P), Log-Normal FALSE #> 12296 769 1.0171618 0.215500452 fv Log-Normal RP(P), Log-Normal FALSE #> 12312 770 0.6148654 0.132775036 fv Log-Normal RP(P), Log-Normal FALSE #> 12328 771 0.5976970 0.132295735 fv Log-Normal RP(P), Log-Normal FALSE #> 12344 772 0.5871158 0.125960628 fv Log-Normal RP(P), Log-Normal FALSE #> 12360 773 0.5685788 0.121516270 fv Log-Normal RP(P), Log-Normal FALSE #> 12376 774 0.7244019 0.153578398 fv Log-Normal RP(P), Log-Normal FALSE #> 12392 775 0.6802586 0.143831811 fv Log-Normal RP(P), Log-Normal FALSE #> 12408 776 0.6866827 0.146032205 fv Log-Normal RP(P), Log-Normal FALSE #> 12424 777 0.6203969 0.132172613 fv Log-Normal RP(P), Log-Normal FALSE #> 12440 778 0.7183854 0.158574836 fv Log-Normal RP(P), Log-Normal FALSE #> 12456 779 0.6753122 0.144883399 fv Log-Normal RP(P), Log-Normal FALSE #> 12472 780 0.6160541 0.131106508 fv Log-Normal RP(P), Log-Normal FALSE #> 12488 781 0.7326720 0.155116377 fv Log-Normal RP(P), Log-Normal FALSE #> 12504 782 0.6621541 0.142738346 fv Log-Normal RP(P), Log-Normal FALSE #> 12520 783 0.6287083 0.133979151 fv Log-Normal RP(P), Log-Normal FALSE #> 12536 784 0.8098296 0.172015664 fv Log-Normal RP(P), Log-Normal FALSE #> 12552 785 0.4960243 0.106711922 fv Log-Normal RP(P), Log-Normal FALSE #> 12568 786 0.6282832 0.132700908 fv Log-Normal RP(P), Log-Normal FALSE #> 12584 787 1.0193503 0.214991602 fv Log-Normal RP(P), Log-Normal FALSE #> 12600 788 0.7023544 0.148436749 fv Log-Normal RP(P), Log-Normal FALSE #> 12616 789 0.9366437 0.198809199 fv Log-Normal RP(P), Log-Normal FALSE #> 12632 790 0.7471967 0.159328647 fv Log-Normal RP(P), Log-Normal FALSE #> 12648 791 0.4173760 0.089707369 fv Log-Normal RP(P), Log-Normal FALSE #> 12664 792 0.5457081 0.116097924 fv Log-Normal RP(P), Log-Normal FALSE #> 12680 793 0.8483324 0.177748663 fv Log-Normal RP(P), Log-Normal FALSE #> 12696 794 0.6784384 0.143937841 fv Log-Normal RP(P), Log-Normal FALSE #> 12712 795 0.6359556 0.134828170 fv Log-Normal RP(P), Log-Normal FALSE #> 12728 796 0.6165200 0.132435256 fv Log-Normal RP(P), Log-Normal FALSE #> 12744 797 0.6907832 0.150317886 fv Log-Normal RP(P), Log-Normal FALSE #> 12760 798 0.4117881 0.088709883 fv Log-Normal RP(P), Log-Normal FALSE #> 12776 799 0.7682074 0.162286568 fv Log-Normal RP(P), Log-Normal FALSE #> 12792 800 0.7651115 0.163718433 fv Log-Normal RP(P), Log-Normal FALSE #> 12808 801 0.9873650 0.205793074 fv Log-Normal RP(P), Log-Normal FALSE #> 12824 802 0.8000314 0.169900579 fv Log-Normal RP(P), Log-Normal FALSE #> 12840 803 0.6589400 0.139023748 fv Log-Normal RP(P), Log-Normal FALSE #> 12856 804 0.7561575 0.159117690 fv Log-Normal RP(P), Log-Normal FALSE #> 12872 805 0.8335457 0.177422828 fv Log-Normal RP(P), Log-Normal FALSE #> 12888 806 0.7948196 0.167169091 fv Log-Normal RP(P), Log-Normal FALSE #> 12904 807 0.6478946 0.137327899 fv Log-Normal RP(P), Log-Normal FALSE #> 12920 808 0.5049294 0.107753449 fv Log-Normal RP(P), Log-Normal FALSE #> 12936 809 0.6866783 0.146444220 fv Log-Normal RP(P), Log-Normal FALSE #> 12952 810 0.8176093 0.175570535 fv Log-Normal RP(P), Log-Normal FALSE #> 12968 811 0.4701681 0.101472086 fv Log-Normal RP(P), Log-Normal FALSE #> 12984 812 0.7254187 0.154409760 fv Log-Normal RP(P), Log-Normal FALSE #> 13000 813 0.8822935 0.186603747 fv Log-Normal RP(P), Log-Normal FALSE #> 13016 814 0.6854783 0.145765097 fv Log-Normal RP(P), Log-Normal FALSE #> 13032 815 0.6016377 0.128446956 fv Log-Normal RP(P), Log-Normal FALSE #> 13048 816 0.7010985 0.149468580 fv Log-Normal RP(P), Log-Normal FALSE #> 13064 817 0.4708990 0.102155376 fv Log-Normal RP(P), Log-Normal FALSE #> 13080 818 0.6450147 0.137380618 fv Log-Normal RP(P), Log-Normal FALSE #> 13096 819 0.8378345 0.176970921 fv Log-Normal RP(P), Log-Normal FALSE #> 13112 820 0.8576343 0.180150135 fv Log-Normal RP(P), Log-Normal FALSE #> 13128 821 0.5662469 0.120721140 fv Log-Normal RP(P), Log-Normal FALSE #> 13144 822 0.8889136 0.187187876 fv Log-Normal RP(P), Log-Normal FALSE #> 13160 823 0.9775185 0.205187695 fv Log-Normal RP(P), Log-Normal FALSE #> 13176 824 0.9211403 0.195513547 fv Log-Normal RP(P), Log-Normal FALSE #> 13192 825 0.7635747 0.160829429 fv Log-Normal RP(P), Log-Normal FALSE #> 13208 826 0.8164489 0.174414205 fv Log-Normal RP(P), Log-Normal FALSE #> 13224 827 0.8926966 0.188893449 fv Log-Normal RP(P), Log-Normal FALSE #> 13240 828 0.7527147 0.166002735 fv Log-Normal RP(P), Log-Normal FALSE #> 13256 829 0.7122050 0.151290715 fv Log-Normal RP(P), Log-Normal FALSE #> 13272 830 0.8138187 0.170842420 fv Log-Normal RP(P), Log-Normal FALSE #> 13288 831 0.8730454 0.184519785 fv Log-Normal RP(P), Log-Normal FALSE #> 13304 832 0.5916892 0.128420243 fv Log-Normal RP(P), Log-Normal FALSE #> 13320 833 0.8830502 0.188067591 fv Log-Normal RP(P), Log-Normal FALSE #> 13336 834 0.6506210 0.138700701 fv Log-Normal RP(P), Log-Normal FALSE #> 13352 835 0.6835081 0.144988682 fv Log-Normal RP(P), Log-Normal FALSE #> 13368 836 0.7839667 0.166049829 fv Log-Normal RP(P), Log-Normal FALSE #> 13384 837 0.7779566 0.164337100 fv Log-Normal RP(P), Log-Normal FALSE #> 13400 838 0.7060874 0.150748480 fv Log-Normal RP(P), Log-Normal FALSE #> 13416 839 0.5924718 0.126535761 fv Log-Normal RP(P), Log-Normal FALSE #> 13432 840 0.6193618 0.130899012 fv Log-Normal RP(P), Log-Normal FALSE #> 13448 841 0.9297818 0.194868377 fv Log-Normal RP(P), Log-Normal FALSE #> 13464 842 0.5606622 0.119736556 fv Log-Normal RP(P), Log-Normal FALSE #> 13480 843 0.6762162 0.144251070 fv Log-Normal RP(P), Log-Normal FALSE #> 13496 844 0.9144180 0.191981506 fv Log-Normal RP(P), Log-Normal FALSE #> 13512 845 0.9881628 0.211034090 fv Log-Normal RP(P), Log-Normal FALSE #> 13528 846 0.5534972 0.118336281 fv Log-Normal RP(P), Log-Normal FALSE #> 13544 847 1.0290028 0.214054040 fv Log-Normal RP(P), Log-Normal FALSE #> 13560 848 0.8411118 0.179136575 fv Log-Normal RP(P), Log-Normal FALSE #> 13576 849 0.6203488 0.132377496 fv Log-Normal RP(P), Log-Normal FALSE #> 13592 850 0.8147564 0.170744905 fv Log-Normal RP(P), Log-Normal FALSE #> 13608 851 0.6998219 0.148832242 fv Log-Normal RP(P), Log-Normal FALSE #> 13624 852 0.7564399 0.162157304 fv Log-Normal RP(P), Log-Normal FALSE #> 13640 853 1.0395607 0.217703991 fv Log-Normal RP(P), Log-Normal FALSE #> 13656 854 0.7111847 0.153481986 fv Log-Normal RP(P), Log-Normal FALSE #> 13672 855 0.6556235 0.141046741 fv Log-Normal RP(P), Log-Normal FALSE #> 13688 856 0.8817583 0.185649134 fv Log-Normal RP(P), Log-Normal FALSE #> 13704 857 0.8236771 0.176693971 fv Log-Normal RP(P), Log-Normal FALSE #> 13720 858 1.0746228 0.225811089 fv Log-Normal RP(P), Log-Normal FALSE #> 13736 859 0.9032464 0.189257870 fv Log-Normal RP(P), Log-Normal FALSE #> 13752 860 0.6669187 0.140695981 fv Log-Normal RP(P), Log-Normal FALSE #> 13768 861 0.4674381 0.100584211 fv Log-Normal RP(P), Log-Normal FALSE #> 13784 862 0.6539350 0.139109487 fv Log-Normal RP(P), Log-Normal FALSE #> 13800 863 0.6985242 0.149374254 fv Log-Normal RP(P), Log-Normal FALSE #> 13816 864 0.9300939 0.195732499 fv Log-Normal RP(P), Log-Normal FALSE #> 13832 865 0.9147309 0.192068804 fv Log-Normal RP(P), Log-Normal FALSE #> 13848 866 0.7371777 0.155715515 fv Log-Normal RP(P), Log-Normal FALSE #> 13864 867 0.6011364 0.129343485 fv Log-Normal RP(P), Log-Normal FALSE #> 13880 868 0.9004135 0.190191869 fv Log-Normal RP(P), Log-Normal FALSE #> 13896 869 0.5327774 0.115070470 fv Log-Normal RP(P), Log-Normal FALSE #> 13912 870 0.7729887 0.162396364 fv Log-Normal RP(P), Log-Normal FALSE #> 13928 871 0.5056960 0.108030427 fv Log-Normal RP(P), Log-Normal FALSE #> 13944 872 0.4679061 0.100976748 fv Log-Normal RP(P), Log-Normal FALSE #> 13960 873 0.8761508 0.183471906 fv Log-Normal RP(P), Log-Normal FALSE #> 13976 874 0.7799599 0.169034662 fv Log-Normal RP(P), Log-Normal FALSE #> 13992 875 0.6787270 0.145232289 fv Log-Normal RP(P), Log-Normal FALSE #> 14008 876 0.6180641 0.132265443 fv Log-Normal RP(P), Log-Normal FALSE #> 14024 877 0.5860993 0.126704444 fv Log-Normal RP(P), Log-Normal FALSE #> 14040 878 0.6935008 0.147945921 fv Log-Normal RP(P), Log-Normal FALSE #> 14056 879 0.6991619 0.148966789 fv Log-Normal RP(P), Log-Normal FALSE #> 14072 880 0.8484464 0.178825011 fv Log-Normal RP(P), Log-Normal FALSE #> 14088 881 0.5680401 0.122215485 fv Log-Normal RP(P), Log-Normal FALSE #> 14104 882 0.7194115 0.152466317 fv Log-Normal RP(P), Log-Normal FALSE #> 14120 883 0.6455610 0.138335850 fv Log-Normal RP(P), Log-Normal FALSE #> 14136 884 0.5987946 0.129856482 fv Log-Normal RP(P), Log-Normal FALSE #> 14152 885 0.7790563 0.165257741 fv Log-Normal RP(P), Log-Normal FALSE #> 14168 886 0.6659939 0.143104558 fv Log-Normal RP(P), Log-Normal FALSE #> 14184 887 0.3835719 0.083984835 fv Log-Normal RP(P), Log-Normal FALSE #> 14200 888 0.6800915 0.145916762 fv Log-Normal RP(P), Log-Normal FALSE #> 14216 889 0.7790675 0.168710053 fv Log-Normal RP(P), Log-Normal FALSE #> 14232 890 0.7112296 0.150790256 fv Log-Normal RP(P), Log-Normal FALSE #> 14248 891 0.7533556 0.158934342 fv Log-Normal RP(P), Log-Normal FALSE #> 14264 892 1.0280236 0.216825888 fv Log-Normal RP(P), Log-Normal FALSE #> 14280 893 0.4979805 0.108875811 fv Log-Normal RP(P), Log-Normal FALSE #> 14296 894 0.5899637 0.125759510 fv Log-Normal RP(P), Log-Normal FALSE #> 14312 895 0.8458281 0.181512736 fv Log-Normal RP(P), Log-Normal FALSE #> 14328 896 0.6045651 0.132440253 fv Log-Normal RP(P), Log-Normal FALSE #> 14344 897 0.6866283 0.146988855 fv Log-Normal RP(P), Log-Normal FALSE #> 14360 898 0.9461391 0.207475067 fv Log-Normal RP(P), Log-Normal FALSE #> 14376 899 0.9445390 0.209309102 fv Log-Normal RP(P), Log-Normal FALSE #> 14392 900 0.7393498 0.158497566 fv Log-Normal RP(P), Log-Normal FALSE #> 14408 901 0.7860897 0.165549053 fv Log-Normal RP(P), Log-Normal FALSE #> 14424 902 0.8546871 0.180690608 fv Log-Normal RP(P), Log-Normal FALSE #> 14440 903 0.5857383 0.126360181 fv Log-Normal RP(P), Log-Normal FALSE #> 14456 904 0.7061914 0.151616081 fv Log-Normal RP(P), Log-Normal FALSE #> 14472 905 0.7376254 0.156073478 fv Log-Normal RP(P), Log-Normal FALSE #> 14488 906 0.7232913 0.153209296 fv Log-Normal RP(P), Log-Normal FALSE #> 14504 907 0.6382404 0.136709915 fv Log-Normal RP(P), Log-Normal FALSE #> 14520 908 0.5651374 0.123783693 fv Log-Normal RP(P), Log-Normal FALSE #> 14536 909 0.9548552 0.202591456 fv Log-Normal RP(P), Log-Normal FALSE #> 14552 910 0.6873823 0.148859446 fv Log-Normal RP(P), Log-Normal FALSE #> 14568 911 0.6891131 0.146179957 fv Log-Normal RP(P), Log-Normal FALSE #> 14584 912 0.3917437 0.085173152 fv Log-Normal RP(P), Log-Normal FALSE #> 14600 913 0.6144485 0.130166853 fv Log-Normal RP(P), Log-Normal FALSE #> 14616 914 0.8656710 0.182025187 fv Log-Normal RP(P), Log-Normal FALSE #> 14632 915 0.6897622 0.146139260 fv Log-Normal RP(P), Log-Normal FALSE #> 14648 916 0.7306908 0.154546332 fv Log-Normal RP(P), Log-Normal FALSE #> 14664 917 0.5319260 0.114753494 fv Log-Normal RP(P), Log-Normal FALSE #> 14680 918 0.5755386 0.122888377 fv Log-Normal RP(P), Log-Normal FALSE #> 14696 919 0.6552902 0.138537843 fv Log-Normal RP(P), Log-Normal FALSE #> 14712 920 0.6870121 0.145734240 fv Log-Normal RP(P), Log-Normal FALSE #> 14728 921 1.1915721 0.250004473 fv Log-Normal RP(P), Log-Normal TRUE #> 14744 922 0.6152027 0.130501228 fv Log-Normal RP(P), Log-Normal FALSE #> 14760 923 1.0916553 0.230692777 fv Log-Normal RP(P), Log-Normal FALSE #> 14776 924 0.6760298 0.142944236 fv Log-Normal RP(P), Log-Normal FALSE #> 14792 925 0.7494020 0.158189841 fv Log-Normal RP(P), Log-Normal FALSE #> 14808 926 0.9539570 0.201126456 fv Log-Normal RP(P), Log-Normal FALSE #> 14824 927 0.8094500 0.170148180 fv Log-Normal RP(P), Log-Normal FALSE #> 14840 928 0.6872926 0.144714385 fv Log-Normal RP(P), Log-Normal FALSE #> 14856 929 0.7639833 0.160366801 fv Log-Normal RP(P), Log-Normal FALSE #> 14872 930 0.5785785 0.123893681 fv Log-Normal RP(P), Log-Normal FALSE #> 14888 931 0.8122490 0.171642861 fv Log-Normal RP(P), Log-Normal FALSE #> 14904 932 0.5424141 0.116670467 fv Log-Normal RP(P), Log-Normal FALSE #> 14920 933 0.5758885 0.122632998 fv Log-Normal RP(P), Log-Normal FALSE #> 14936 934 0.6847454 0.144785290 fv Log-Normal RP(P), Log-Normal FALSE #> 14952 935 0.8990435 0.189337431 fv Log-Normal RP(P), Log-Normal FALSE #> 14968 936 0.7029922 0.148015811 fv Log-Normal RP(P), Log-Normal FALSE #> 14984 937 0.8511214 0.180869991 fv Log-Normal RP(P), Log-Normal FALSE #> 15000 938 0.9018481 0.192865935 fv Log-Normal RP(P), Log-Normal FALSE #> 15016 939 0.5681631 0.120827024 fv Log-Normal RP(P), Log-Normal FALSE #> 15032 940 0.8683425 0.190570808 fv Log-Normal RP(P), Log-Normal FALSE #> 15048 941 0.4731799 0.101370652 fv Log-Normal RP(P), Log-Normal FALSE #> 15064 942 0.8718579 0.184619662 fv Log-Normal RP(P), Log-Normal FALSE #> 15080 943 0.5215956 0.111687693 fv Log-Normal RP(P), Log-Normal FALSE #> 15096 944 0.6585742 0.139791246 fv Log-Normal RP(P), Log-Normal FALSE #> 15112 945 0.9998814 0.208886842 fv Log-Normal RP(P), Log-Normal FALSE #> 15128 946 0.8286117 0.174615350 fv Log-Normal RP(P), Log-Normal FALSE #> 15144 947 0.8353904 0.175679093 fv Log-Normal RP(P), Log-Normal FALSE #> 15160 948 0.4626225 0.099317399 fv Log-Normal RP(P), Log-Normal FALSE #> 15176 949 0.7781009 0.168477774 fv Log-Normal RP(P), Log-Normal FALSE #> 15192 950 0.7759783 0.163272466 fv Log-Normal RP(P), Log-Normal FALSE #> 15208 951 0.5897491 0.127953505 fv Log-Normal RP(P), Log-Normal FALSE #> 15224 952 0.6290545 0.134915562 fv Log-Normal RP(P), Log-Normal FALSE #> 15240 953 0.6030549 0.128014906 fv Log-Normal RP(P), Log-Normal FALSE #> 15256 954 0.8211460 0.173732484 fv Log-Normal RP(P), Log-Normal FALSE #> 15272 955 0.7009093 0.148157664 fv Log-Normal RP(P), Log-Normal FALSE #> 15288 956 0.8915759 0.187676590 fv Log-Normal RP(P), Log-Normal FALSE #> 15304 957 0.6267329 0.133922808 fv Log-Normal RP(P), Log-Normal FALSE #> 15320 958 0.6016424 0.128035145 fv Log-Normal RP(P), Log-Normal FALSE #> 15336 959 0.6840954 0.143990005 fv Log-Normal RP(P), Log-Normal FALSE #> 15352 960 0.5972503 0.128658505 fv Log-Normal RP(P), Log-Normal FALSE #> 15368 961 0.8240171 0.173195111 fv Log-Normal RP(P), Log-Normal FALSE #> 15384 962 0.8506117 0.181056393 fv Log-Normal RP(P), Log-Normal FALSE #> 15400 963 0.8979819 0.188022071 fv Log-Normal RP(P), Log-Normal FALSE #> 15416 964 0.6863717 0.145397560 fv Log-Normal RP(P), Log-Normal FALSE #> 15432 965 0.5656577 0.120857677 fv Log-Normal RP(P), Log-Normal FALSE #> 15448 966 1.0575889 0.222503361 fv Log-Normal RP(P), Log-Normal FALSE #> 15464 967 0.9055166 0.192117872 fv Log-Normal RP(P), Log-Normal FALSE #> 15480 968 0.8399767 0.178050315 fv Log-Normal RP(P), Log-Normal FALSE #> 15496 969 1.0258198 0.213819100 fv Log-Normal RP(P), Log-Normal FALSE #> 15512 970 0.7745776 0.163833552 fv Log-Normal RP(P), Log-Normal FALSE #> 15528 971 0.9605636 0.200926578 fv Log-Normal RP(P), Log-Normal FALSE #> 15544 972 0.6146916 0.130993578 fv Log-Normal RP(P), Log-Normal FALSE #> 15560 973 0.9199785 0.192746059 fv Log-Normal RP(P), Log-Normal FALSE #> 15576 974 0.9125999 0.192011883 fv Log-Normal RP(P), Log-Normal FALSE #> 15592 975 1.0480335 0.219730800 fv Log-Normal RP(P), Log-Normal FALSE #> 15608 976 0.8193862 0.179589718 fv Log-Normal RP(P), Log-Normal FALSE #> 15624 977 1.1556586 0.244268056 fv Log-Normal RP(P), Log-Normal TRUE #> 15640 978 0.8382332 0.180255798 fv Log-Normal RP(P), Log-Normal FALSE #> 15656 979 0.6259659 0.132736866 fv Log-Normal RP(P), Log-Normal FALSE #> 15672 980 0.8406804 0.182112889 fv Log-Normal RP(P), Log-Normal FALSE #> 15688 981 0.6702017 0.142022616 fv Log-Normal RP(P), Log-Normal FALSE #> 15704 982 0.7070367 0.153212663 fv Log-Normal RP(P), Log-Normal FALSE #> 15720 983 0.7404223 0.156213950 fv Log-Normal RP(P), Log-Normal FALSE #> 15736 984 0.6419067 0.135852588 fv Log-Normal RP(P), Log-Normal FALSE #> 15752 985 0.8310183 0.173870127 fv Log-Normal RP(P), Log-Normal FALSE #> 15768 986 0.7701285 0.162750927 fv Log-Normal RP(P), Log-Normal FALSE #> 15784 987 0.6682787 0.141252244 fv Log-Normal RP(P), Log-Normal FALSE #> 15800 988 0.9022389 0.190619051 fv Log-Normal RP(P), Log-Normal FALSE #> 15816 989 0.9754269 0.206348524 fv Log-Normal RP(P), Log-Normal FALSE #> 15832 990 0.7016794 0.147600528 fv Log-Normal RP(P), Log-Normal FALSE #> 15848 991 0.7990861 0.167185785 fv Log-Normal RP(P), Log-Normal FALSE #> 15864 992 0.7155265 0.151583447 fv Log-Normal RP(P), Log-Normal FALSE #> 15880 993 0.7555724 0.158552064 fv Log-Normal RP(P), Log-Normal FALSE #> 15896 994 0.7013507 0.151341125 fv Log-Normal RP(P), Log-Normal FALSE #> 15912 995 0.6369622 0.137876294 fv Log-Normal RP(P), Log-Normal FALSE #> 15928 996 0.7173666 0.152233112 fv Log-Normal RP(P), Log-Normal FALSE #> 15944 997 0.7181560 0.152642728 fv Log-Normal RP(P), Log-Normal FALSE #> 15960 998 0.6523091 0.140451142 fv Log-Normal RP(P), Log-Normal FALSE #> 15976 999 0.8016289 0.171180170 fv Log-Normal RP(P), Log-Normal FALSE #> 15992 1000 0.7201794 0.155276856 fv Log-Normal RP(P), Log-Normal FALSE # Using regular standardisation: dropbig( data = frailty2, estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\", max = 2, semax = 2, robust = FALSE ) #> i b se par fv_dist model .dropbig #> 1 1 0.6569546 0.125696425 fv Gamma Cox, Gamma FALSE #> 17 2 0.6613376 0.129510423 fv Gamma Cox, Gamma FALSE #> 33 3 1.0953274 0.206427350 fv Gamma Cox, Gamma TRUE #> 49 4 0.8406551 0.156744704 fv Gamma Cox, Gamma FALSE #> 65 5 0.7027899 0.135173710 fv Gamma Cox, Gamma FALSE #> 81 6 0.7745830 0.145766148 fv Gamma Cox, Gamma FALSE #> 97 7 0.6471639 0.124092810 fv Gamma Cox, Gamma FALSE #> 113 8 0.9999895 0.185104048 fv Gamma Cox, Gamma FALSE #> 129 9 0.8249801 0.156193824 fv Gamma Cox, Gamma FALSE #> 145 10 0.8173031 0.154691420 fv Gamma Cox, Gamma FALSE #> 161 11 0.8131207 0.155467829 fv Gamma Cox, Gamma FALSE #> 177 12 0.9917031 0.183639448 fv Gamma Cox, Gamma FALSE #> 193 13 0.9497115 0.177544292 fv Gamma Cox, Gamma FALSE #> 209 14 0.5818812 0.115038898 fv Gamma Cox, Gamma FALSE #> 225 15 0.8821317 NA fv Gamma Cox, Gamma NA #> 241 16 1.0080549 0.185306797 fv Gamma Cox, Gamma FALSE #> 257 17 0.5966007 NA fv Gamma Cox, Gamma NA #> 273 18 0.4670966 0.096268874 fv Gamma Cox, Gamma FALSE #> 289 19 0.7333278 0.139560619 fv Gamma Cox, Gamma FALSE #> 305 20 0.9569888 0.178946282 fv Gamma Cox, Gamma FALSE #> 321 21 0.5534068 0.111432621 fv Gamma Cox, Gamma FALSE #> 337 22 0.8922715 0.168260755 fv Gamma Cox, Gamma FALSE #> 353 23 0.6148386 0.118749326 fv Gamma Cox, Gamma FALSE #> 369 24 0.7503412 0.141751724 fv Gamma Cox, Gamma FALSE #> 385 25 0.7795077 0.147239297 fv Gamma Cox, Gamma FALSE #> 401 26 0.7226755 0.138933052 fv Gamma Cox, Gamma FALSE #> 417 27 1.1454385 0.211444516 fv Gamma Cox, Gamma TRUE #> 433 28 1.0146311 0.187317613 fv Gamma Cox, Gamma FALSE #> 449 29 0.9243730 0.171650779 fv Gamma Cox, Gamma FALSE #> 465 30 0.9627598 0.180455732 fv Gamma Cox, Gamma FALSE #> 481 31 0.6097090 0.120254015 fv Gamma Cox, Gamma FALSE #> 497 32 0.7776626 0.148059501 fv Gamma Cox, Gamma FALSE #> 513 33 0.5967068 0.115380144 fv Gamma Cox, Gamma FALSE #> 529 34 0.5604221 0.109501220 fv Gamma Cox, Gamma FALSE #> 545 35 0.7513179 0.145994135 fv Gamma Cox, Gamma FALSE #> 561 36 0.6005370 0.119633066 fv Gamma Cox, Gamma FALSE #> 577 37 0.5965864 0.115755917 fv Gamma Cox, Gamma FALSE #> 593 38 0.5250277 0.103624408 fv Gamma Cox, Gamma FALSE #> 609 39 0.7131612 0.135237995 fv Gamma Cox, Gamma FALSE #> 625 40 0.4799652 0.095913495 fv Gamma Cox, Gamma FALSE #> 641 41 1.1936478 0.213913615 fv Gamma Cox, Gamma TRUE #> 657 42 0.7119055 0.138537976 fv Gamma Cox, Gamma FALSE #> 673 43 0.8157571 0.153496265 fv Gamma Cox, Gamma FALSE #> 689 44 0.8510680 0.159321249 fv Gamma Cox, Gamma FALSE #> 705 45 0.7759695 0.146268948 fv Gamma Cox, Gamma FALSE #> 721 46 0.7346442 0.139055138 fv Gamma Cox, Gamma FALSE #> 737 47 0.9080543 0.172117120 fv Gamma Cox, Gamma FALSE #> 753 48 0.7536020 0.144378149 fv Gamma Cox, Gamma FALSE #> 769 49 0.7841137 0.149576489 fv Gamma Cox, Gamma FALSE #> 785 50 0.7177537 0.136129350 fv Gamma Cox, Gamma FALSE #> 801 51 0.8978122 0.167355928 fv Gamma Cox, Gamma FALSE #> 817 52 0.6175795 0.122643583 fv Gamma Cox, Gamma FALSE #> 833 53 0.6747666 0.130004394 fv Gamma Cox, Gamma FALSE #> 849 54 0.5300899 0.104816453 fv Gamma Cox, Gamma FALSE #> 865 55 0.7787970 0.147506719 fv Gamma Cox, Gamma FALSE #> 881 56 0.7118185 0.137916725 fv Gamma Cox, Gamma FALSE #> 897 57 0.7858698 0.147909226 fv Gamma Cox, Gamma FALSE #> 913 58 0.6599301 0.129157781 fv Gamma Cox, Gamma FALSE #> 929 59 0.7204171 0.137316794 fv Gamma Cox, Gamma FALSE #> 945 60 0.7932676 0.149975681 fv Gamma Cox, Gamma FALSE #> 961 61 0.6694679 0.127685261 fv Gamma Cox, Gamma FALSE #> 977 62 0.6581751 0.128702271 fv Gamma Cox, Gamma FALSE #> 993 63 0.8591200 0.161433261 fv Gamma Cox, Gamma FALSE #> 1009 64 0.6534059 0.125264584 fv Gamma Cox, Gamma FALSE #> 1025 65 0.6942950 0.131759071 fv Gamma Cox, Gamma FALSE #> 1041 66 0.5443571 0.107289026 fv Gamma Cox, Gamma FALSE #> 1057 67 0.8156791 0.152361675 fv Gamma Cox, Gamma FALSE #> 1073 68 0.7439907 0.141612286 fv Gamma Cox, Gamma FALSE #> 1089 69 0.5563484 0.109062941 fv Gamma Cox, Gamma FALSE #> 1105 70 0.7094223 0.138731564 fv Gamma Cox, Gamma FALSE #> 1121 71 0.9385094 0.173908062 fv Gamma Cox, Gamma FALSE #> 1137 72 0.6524139 0.125365577 fv Gamma Cox, Gamma FALSE #> 1153 73 0.4720556 0.093786069 fv Gamma Cox, Gamma FALSE #> 1169 74 0.6739725 0.128962357 fv Gamma Cox, Gamma FALSE #> 1185 75 0.6948754 0.133454468 fv Gamma Cox, Gamma FALSE #> 1201 76 0.6981009 0.137070297 fv Gamma Cox, Gamma FALSE #> 1217 77 0.7876992 0.150774294 fv Gamma Cox, Gamma FALSE #> 1233 78 1.0321320 0.191564904 fv Gamma Cox, Gamma TRUE #> 1249 79 1.3305115 0.241107247 fv Gamma Cox, Gamma TRUE #> 1265 80 0.6233959 NA fv Gamma Cox, Gamma NA #> 1281 81 0.9222954 0.175122280 fv Gamma Cox, Gamma FALSE #> 1297 82 0.7312982 0.138898303 fv Gamma Cox, Gamma FALSE #> 1313 83 0.4805826 0.099069389 fv Gamma Cox, Gamma FALSE #> 1329 84 0.7162687 0.135900182 fv Gamma Cox, Gamma FALSE #> 1345 85 0.7361328 0.139875756 fv Gamma Cox, Gamma FALSE #> 1361 86 0.7164863 0.136540922 fv Gamma Cox, Gamma FALSE #> 1377 87 0.5816154 0.112900191 fv Gamma Cox, Gamma FALSE #> 1393 88 0.7229512 0.137090004 fv Gamma Cox, Gamma FALSE #> 1409 89 0.7304707 0.138664712 fv Gamma Cox, Gamma FALSE #> 1425 90 0.8836079 0.164198901 fv Gamma Cox, Gamma FALSE #> 1441 91 0.7189481 NA fv Gamma Cox, Gamma NA #> 1457 92 0.6588464 0.126022294 fv Gamma Cox, Gamma FALSE #> 1473 93 0.9816849 0.189387187 fv Gamma Cox, Gamma FALSE #> 1489 94 0.8230985 0.157285147 fv Gamma Cox, Gamma FALSE #> 1505 95 0.7466798 0.141511812 fv Gamma Cox, Gamma FALSE #> 1521 96 0.4641167 0.092989583 fv Gamma Cox, Gamma FALSE #> 1537 97 0.5859572 0.113349778 fv Gamma Cox, Gamma FALSE #> 1553 98 0.8012617 0.151058934 fv Gamma Cox, Gamma FALSE #> 1569 99 0.5711848 0.112322499 fv Gamma Cox, Gamma FALSE #> 1585 100 0.8500351 0.158095260 fv Gamma Cox, Gamma FALSE #> 1601 101 0.8357950 0.155451666 fv Gamma Cox, Gamma FALSE #> 1617 102 0.7019364 0.133488910 fv Gamma Cox, Gamma FALSE #> 1633 103 0.8787124 0.167784796 fv Gamma Cox, Gamma FALSE #> 1649 104 0.7382161 0.139205129 fv Gamma Cox, Gamma FALSE #> 1665 105 0.8438084 0.159385939 fv Gamma Cox, Gamma FALSE #> 1681 106 0.7100979 0.135186030 fv Gamma Cox, Gamma FALSE #> 1697 107 0.8909452 0.169147434 fv Gamma Cox, Gamma FALSE #> 1713 108 0.7774559 0.150824798 fv Gamma Cox, Gamma FALSE #> 1729 109 0.6953965 0.134268584 fv Gamma Cox, Gamma FALSE #> 1745 110 0.7992946 0.150758285 fv Gamma Cox, Gamma FALSE #> 1761 111 0.8471403 0.159125513 fv Gamma Cox, Gamma FALSE #> 1777 112 0.4643017 0.092950661 fv Gamma Cox, Gamma FALSE #> 1793 113 0.5483133 0.107644803 fv Gamma Cox, Gamma FALSE #> 1809 114 1.1737434 0.213064251 fv Gamma Cox, Gamma TRUE #> 1825 115 0.6447690 0.123844155 fv Gamma Cox, Gamma FALSE #> 1841 116 0.5122411 0.101175678 fv Gamma Cox, Gamma FALSE #> 1857 117 0.7563907 0.142289904 fv Gamma Cox, Gamma FALSE #> 1873 118 0.5579905 0.109454501 fv Gamma Cox, Gamma FALSE #> 1889 119 0.6022598 0.116858325 fv Gamma Cox, Gamma FALSE #> 1905 120 0.7124728 0.135859121 fv Gamma Cox, Gamma FALSE #> 1921 121 0.6402494 0.124028005 fv Gamma Cox, Gamma FALSE #> 1937 122 0.6346064 0.122733103 fv Gamma Cox, Gamma FALSE #> 1953 123 0.7902516 0.149333148 fv Gamma Cox, Gamma FALSE #> 1969 124 0.7329650 0.138554104 fv Gamma Cox, Gamma FALSE #> 1985 125 0.8161002 0.155025922 fv Gamma Cox, Gamma FALSE #> 2001 126 0.9990640 0.191074644 fv Gamma Cox, Gamma FALSE #> 2017 127 0.8700787 0.162375752 fv Gamma Cox, Gamma FALSE #> 2033 128 0.8619723 0.161242325 fv Gamma Cox, Gamma FALSE #> 2049 129 0.5981983 0.118892839 fv Gamma Cox, Gamma FALSE #> 2065 130 0.6716077 0.128978878 fv Gamma Cox, Gamma FALSE #> 2081 131 0.6123596 0.117347356 fv Gamma Cox, Gamma FALSE #> 2097 132 0.7632396 0.147960034 fv Gamma Cox, Gamma FALSE #> 2113 133 0.7684878 0.147084782 fv Gamma Cox, Gamma FALSE #> 2129 134 0.7563895 0.143358097 fv Gamma Cox, Gamma FALSE #> 2145 135 0.5840973 0.113775282 fv Gamma Cox, Gamma FALSE #> 2161 136 0.8139715 0.154214677 fv Gamma Cox, Gamma FALSE #> 2177 137 0.8279570 0.155323396 fv Gamma Cox, Gamma FALSE #> 2193 138 0.9684096 0.181892869 fv Gamma Cox, Gamma FALSE #> 2209 139 0.6380475 0.122896692 fv Gamma Cox, Gamma FALSE #> 2225 140 0.7126356 NA fv Gamma Cox, Gamma NA #> 2241 141 0.5544497 0.005829212 fv Gamma Cox, Gamma TRUE #> 2257 142 0.6984548 0.133299410 fv Gamma Cox, Gamma FALSE #> 2273 143 1.1447313 0.218348635 fv Gamma Cox, Gamma TRUE #> 2289 144 0.8534851 0.158864910 fv Gamma Cox, Gamma FALSE #> 2305 145 0.6954310 0.132985154 fv Gamma Cox, Gamma FALSE #> 2321 146 0.6862429 0.131920086 fv Gamma Cox, Gamma FALSE #> 2337 147 0.8487307 0.158487657 fv Gamma Cox, Gamma FALSE #> 2353 148 0.5181133 0.101967871 fv Gamma Cox, Gamma FALSE #> 2369 149 0.6841244 0.131624816 fv Gamma Cox, Gamma FALSE #> 2385 150 0.8869154 0.165727435 fv Gamma Cox, Gamma FALSE #> 2401 151 0.8331944 0.156397071 fv Gamma Cox, Gamma FALSE #> 2417 152 0.7961492 0.152467958 fv Gamma Cox, Gamma FALSE #> 2433 153 0.4915269 0.097749704 fv Gamma Cox, Gamma FALSE #> 2449 154 0.8353449 0.156425229 fv Gamma Cox, Gamma FALSE #> 2465 155 0.6917804 0.135298989 fv Gamma Cox, Gamma FALSE #> 2481 156 0.7141483 0.135622707 fv Gamma Cox, Gamma FALSE #> 2497 157 0.9579114 0.180865947 fv Gamma Cox, Gamma FALSE #> 2513 158 0.9919173 0.186831104 fv Gamma Cox, Gamma FALSE #> 2529 159 0.5056687 0.100572196 fv Gamma Cox, Gamma FALSE #> 2545 160 0.5668849 0.110729771 fv Gamma Cox, Gamma FALSE #> 2561 161 1.1593267 0.211623189 fv Gamma Cox, Gamma TRUE #> 2577 162 0.6686198 0.129654468 fv Gamma Cox, Gamma FALSE #> 2593 163 0.5947095 0.115432055 fv Gamma Cox, Gamma FALSE #> 2609 164 0.9409729 0.174195456 fv Gamma Cox, Gamma FALSE #> 2625 165 0.7712525 0.145156218 fv Gamma Cox, Gamma FALSE #> 2641 166 0.7944783 0.152945382 fv Gamma Cox, Gamma FALSE #> 2657 167 0.8759279 0.163421782 fv Gamma Cox, Gamma FALSE #> 2673 168 0.9305016 0.172681632 fv Gamma Cox, Gamma FALSE #> 2689 169 0.6998018 0.134466938 fv Gamma Cox, Gamma FALSE #> 2705 170 0.6956819 0.133436242 fv Gamma Cox, Gamma FALSE #> 2721 171 0.6792319 0.131731221 fv Gamma Cox, Gamma FALSE #> 2737 172 0.8680243 0.162039061 fv Gamma Cox, Gamma FALSE #> 2753 173 0.5991408 0.117150299 fv Gamma Cox, Gamma FALSE #> 2769 174 0.8197266 0.154957877 fv Gamma Cox, Gamma FALSE #> 2785 175 0.6402142 0.124225276 fv Gamma Cox, Gamma FALSE #> 2801 176 0.6677623 0.127397054 fv Gamma Cox, Gamma FALSE #> 2817 177 0.5600635 0.111041351 fv Gamma Cox, Gamma FALSE #> 2833 178 0.8664575 0.161085253 fv Gamma Cox, Gamma FALSE #> 2849 179 0.5696270 0.110580250 fv Gamma Cox, Gamma FALSE #> 2865 180 0.7490451 0.145597001 fv Gamma Cox, Gamma FALSE #> 2881 181 0.8332298 0.156165685 fv Gamma Cox, Gamma FALSE #> 2897 182 0.7299111 0.138267866 fv Gamma Cox, Gamma FALSE #> 2913 183 0.5643054 0.109921943 fv Gamma Cox, Gamma FALSE #> 2929 184 0.6713498 0.129903821 fv Gamma Cox, Gamma FALSE #> 2945 185 0.8565735 0.161036493 fv Gamma Cox, Gamma FALSE #> 2961 186 0.9053793 0.172727818 fv Gamma Cox, Gamma FALSE #> 2977 187 0.7412392 0.141072766 fv Gamma Cox, Gamma FALSE #> 2993 188 0.5539059 0.108329615 fv Gamma Cox, Gamma FALSE #> 3009 189 0.7630802 0.144798954 fv Gamma Cox, Gamma FALSE #> 3025 190 0.7739996 0.145679338 fv Gamma Cox, Gamma FALSE #> 3041 191 0.7531330 0.142505520 fv Gamma Cox, Gamma FALSE #> 3057 192 0.7746974 0.149498584 fv Gamma Cox, Gamma FALSE #> 3073 193 0.6405375 0.123698525 fv Gamma Cox, Gamma FALSE #> 3089 194 0.5955132 0.115145832 fv Gamma Cox, Gamma FALSE #> 3105 195 0.8745908 0.162591705 fv Gamma Cox, Gamma FALSE #> 3121 196 0.8178457 0.154589268 fv Gamma Cox, Gamma FALSE #> 3137 197 0.7511736 0.141661815 fv Gamma Cox, Gamma FALSE #> 3153 198 0.7769079 0.146017528 fv Gamma Cox, Gamma FALSE #> 3169 199 0.5582030 0.109200412 fv Gamma Cox, Gamma FALSE #> 3185 200 0.8259496 0.154374691 fv Gamma Cox, Gamma FALSE #> 3201 201 0.7413535 0.141501117 fv Gamma Cox, Gamma FALSE #> 3217 202 0.7883145 0.147891265 fv Gamma Cox, Gamma FALSE #> 3233 203 0.7376850 0.139098696 fv Gamma Cox, Gamma FALSE #> 3249 204 0.7431473 0.145125912 fv Gamma Cox, Gamma FALSE #> 3265 205 0.5968534 0.116380154 fv Gamma Cox, Gamma FALSE #> 3281 206 0.7364319 0.139955581 fv Gamma Cox, Gamma FALSE #> 3297 207 0.5674448 0.110932711 fv Gamma Cox, Gamma FALSE #> 3313 208 0.7440635 0.141631276 fv Gamma Cox, Gamma FALSE #> 3329 209 0.6788077 0.130198366 fv Gamma Cox, Gamma FALSE #> 3345 210 0.6888451 0.132771993 fv Gamma Cox, Gamma FALSE #> 3361 211 0.9803778 0.184836601 fv Gamma Cox, Gamma FALSE #> 3377 212 0.7256449 0.141318320 fv Gamma Cox, Gamma FALSE #> 3393 213 0.8183619 0.154776877 fv Gamma Cox, Gamma FALSE #> 3409 214 0.6497936 0.125621597 fv Gamma Cox, Gamma FALSE #> 3425 215 0.8793079 0.164432320 fv Gamma Cox, Gamma FALSE #> 3441 216 0.9162205 0.170569691 fv Gamma Cox, Gamma FALSE #> 3457 217 0.6777625 0.131187108 fv Gamma Cox, Gamma FALSE #> 3473 218 0.6131194 0.119393013 fv Gamma Cox, Gamma FALSE #> 3489 219 0.8569040 0.162515848 fv Gamma Cox, Gamma FALSE #> 3505 220 0.5628894 0.109933688 fv Gamma Cox, Gamma FALSE #> 3521 221 0.7097276 0.136447984 fv Gamma Cox, Gamma FALSE #> 3537 222 0.7727905 0.147170732 fv Gamma Cox, Gamma FALSE #> 3553 223 0.7964844 0.154284092 fv Gamma Cox, Gamma FALSE #> 3569 224 0.7614475 0.144615174 fv Gamma Cox, Gamma FALSE #> 3585 225 0.6722549 0.129075014 fv Gamma Cox, Gamma FALSE #> 3601 226 0.8333519 0.160111938 fv Gamma Cox, Gamma FALSE #> 3617 227 0.6560251 0.126793123 fv Gamma Cox, Gamma FALSE #> 3633 228 0.8900574 0.165684363 fv Gamma Cox, Gamma FALSE #> 3649 229 0.7783440 0.147316655 fv Gamma Cox, Gamma FALSE #> 3665 230 0.7010892 0.133597427 fv Gamma Cox, Gamma FALSE #> 3681 231 0.7965352 0.151151697 fv Gamma Cox, Gamma FALSE #> 3697 232 0.7331452 0.142033787 fv Gamma Cox, Gamma FALSE #> 3713 233 0.8746416 0.164268652 fv Gamma Cox, Gamma FALSE #> 3729 234 0.6285312 0.121126267 fv Gamma Cox, Gamma FALSE #> 3745 235 0.7432271 0.143094417 fv Gamma Cox, Gamma FALSE #> 3761 236 0.4979838 0.099104026 fv Gamma Cox, Gamma FALSE #> 3777 237 0.6728080 0.130707771 fv Gamma Cox, Gamma FALSE #> 3793 238 0.5840668 0.114928913 fv Gamma Cox, Gamma FALSE #> 3809 239 0.7097176 0.134414945 fv Gamma Cox, Gamma FALSE #> 3825 240 0.8599517 0.164169343 fv Gamma Cox, Gamma FALSE #> 3841 241 0.6564593 0.126134874 fv Gamma Cox, Gamma FALSE #> 3857 242 0.5141763 0.101693306 fv Gamma Cox, Gamma FALSE #> 3873 243 0.8631191 0.166522993 fv Gamma Cox, Gamma FALSE #> 3889 244 0.5648038 0.110152544 fv Gamma Cox, Gamma FALSE #> 3905 245 0.9067207 0.169979694 fv Gamma Cox, Gamma FALSE #> 3921 246 0.6699933 0.127877304 fv Gamma Cox, Gamma FALSE #> 3937 247 0.7658413 0.145211179 fv Gamma Cox, Gamma FALSE #> 3953 248 0.9431198 0.174221858 fv Gamma Cox, Gamma FALSE #> 3969 249 0.9559739 0.179913652 fv Gamma Cox, Gamma FALSE #> 3985 250 0.7309363 0.139895733 fv Gamma Cox, Gamma FALSE #> 4001 251 0.7953055 0.152686790 fv Gamma Cox, Gamma FALSE #> 4017 252 0.8009815 0.153887446 fv Gamma Cox, Gamma FALSE #> 4033 253 0.9063613 0.176153220 fv Gamma Cox, Gamma FALSE #> 4049 254 0.5192107 0.101929593 fv Gamma Cox, Gamma FALSE #> 4065 255 0.7741374 0.145083036 fv Gamma Cox, Gamma FALSE #> 4081 256 0.7237488 0.138470282 fv Gamma Cox, Gamma FALSE #> 4097 257 0.5354834 0.104354126 fv Gamma Cox, Gamma FALSE #> 4113 258 0.7012728 0.138891396 fv Gamma Cox, Gamma FALSE #> 4129 259 0.7423993 0.141143911 fv Gamma Cox, Gamma FALSE #> 4145 260 0.8676835 0.162799994 fv Gamma Cox, Gamma FALSE #> 4161 261 0.4985565 0.098347563 fv Gamma Cox, Gamma FALSE #> 4177 262 0.7309571 0.140660952 fv Gamma Cox, Gamma FALSE #> 4193 263 0.6045868 0.117674653 fv Gamma Cox, Gamma FALSE #> 4209 264 0.5101925 0.100166533 fv Gamma Cox, Gamma FALSE #> 4225 265 0.5926958 0.114423413 fv Gamma Cox, Gamma FALSE #> 4241 266 0.6141473 0.118472417 fv Gamma Cox, Gamma FALSE #> 4257 267 0.7089350 0.135707003 fv Gamma Cox, Gamma FALSE #> 4273 268 0.7461537 0.141208361 fv Gamma Cox, Gamma FALSE #> 4289 269 1.0603612 0.198754812 fv Gamma Cox, Gamma TRUE #> 4305 270 0.9058827 0.173864681 fv Gamma Cox, Gamma FALSE #> 4321 271 0.8913131 0.167006421 fv Gamma Cox, Gamma FALSE #> 4337 272 0.5385219 0.106340887 fv Gamma Cox, Gamma FALSE #> 4353 273 0.6611358 0.127691135 fv Gamma Cox, Gamma FALSE #> 4369 274 0.7211689 0.136721186 fv Gamma Cox, Gamma FALSE #> 4385 275 0.8557535 0.159471673 fv Gamma Cox, Gamma FALSE #> 4401 276 0.8100907 0.155893661 fv Gamma Cox, Gamma FALSE #> 4417 277 0.6766183 0.128987177 fv Gamma Cox, Gamma FALSE #> 4433 278 0.7339860 0.138921953 fv Gamma Cox, Gamma FALSE #> 4449 279 0.7292968 0.138338078 fv Gamma Cox, Gamma FALSE #> 4465 280 0.7607655 0.143846232 fv Gamma Cox, Gamma FALSE #> 4481 281 1.0222759 0.191682241 fv Gamma Cox, Gamma TRUE #> 4497 282 0.6012837 0.116686105 fv Gamma Cox, Gamma FALSE #> 4513 283 0.8065287 0.008370025 fv Gamma Cox, Gamma TRUE #> 4529 284 0.6538202 0.125329340 fv Gamma Cox, Gamma FALSE #> 4545 285 0.5004678 0.098826427 fv Gamma Cox, Gamma FALSE #> 4561 286 0.7617749 0.144340603 fv Gamma Cox, Gamma FALSE #> 4577 287 0.6411900 0.124111128 fv Gamma Cox, Gamma FALSE #> 4593 288 1.2156838 0.222204393 fv Gamma Cox, Gamma TRUE #> 4609 289 0.6293359 0.121873921 fv Gamma Cox, Gamma FALSE #> 4625 290 0.5973796 0.115942379 fv Gamma Cox, Gamma FALSE #> 4641 291 0.6142454 NA fv Gamma Cox, Gamma NA #> 4657 292 0.6275111 0.121149223 fv Gamma Cox, Gamma FALSE #> 4673 293 0.8857171 0.166063448 fv Gamma Cox, Gamma FALSE #> 4689 294 0.6322969 0.122255267 fv Gamma Cox, Gamma FALSE #> 4705 295 1.0640640 0.195201183 fv Gamma Cox, Gamma TRUE #> 4721 296 0.7341485 0.140160744 fv Gamma Cox, Gamma FALSE #> 4737 297 1.1991235 0.216487970 fv Gamma Cox, Gamma TRUE #> 4753 298 0.5712964 0.111273754 fv Gamma Cox, Gamma FALSE #> 4769 299 0.5672383 0.111172863 fv Gamma Cox, Gamma FALSE #> 4785 300 0.8495776 0.158426390 fv Gamma Cox, Gamma FALSE #> 4801 301 0.5310383 0.104267983 fv Gamma Cox, Gamma FALSE #> 4817 302 0.7523369 0.141562397 fv Gamma Cox, Gamma FALSE #> 4833 303 0.6689623 0.129247470 fv Gamma Cox, Gamma FALSE #> 4849 304 0.7352516 0.140697289 fv Gamma Cox, Gamma FALSE #> 4865 305 0.8685145 0.162232921 fv Gamma Cox, Gamma FALSE #> 4881 306 0.7403740 0.140931785 fv Gamma Cox, Gamma FALSE #> 4897 307 0.7625273 0.146362956 fv Gamma Cox, Gamma FALSE #> 4913 308 0.6529047 0.125331572 fv Gamma Cox, Gamma FALSE #> 4929 309 0.7335789 0.138755400 fv Gamma Cox, Gamma FALSE #> 4945 310 1.0352441 0.191706968 fv Gamma Cox, Gamma TRUE #> 4961 311 0.8210888 0.154167236 fv Gamma Cox, Gamma FALSE #> 4977 312 1.1316319 0.214506331 fv Gamma Cox, Gamma TRUE #> 4993 313 0.7858570 0.148363040 fv Gamma Cox, Gamma FALSE #> 5009 314 0.6270082 0.121419429 fv Gamma Cox, Gamma FALSE #> 5025 315 0.7580926 0.143019862 fv Gamma Cox, Gamma FALSE #> 5041 316 1.0442184 0.191879128 fv Gamma Cox, Gamma TRUE #> 5057 317 0.6437053 0.124174313 fv Gamma Cox, Gamma FALSE #> 5073 318 0.8451586 0.162886989 fv Gamma Cox, Gamma FALSE #> 5089 319 0.6154748 0.119202669 fv Gamma Cox, Gamma FALSE #> 5105 320 0.6052390 0.117161496 fv Gamma Cox, Gamma FALSE #> 5121 321 0.8562321 0.161151124 fv Gamma Cox, Gamma FALSE #> 5137 322 0.5475235 0.107601448 fv Gamma Cox, Gamma FALSE #> 5153 323 0.8516726 0.159610025 fv Gamma Cox, Gamma FALSE #> 5169 324 0.6284455 0.122771029 fv Gamma Cox, Gamma FALSE #> 5185 325 0.7340504 0.139368912 fv Gamma Cox, Gamma FALSE #> 5201 326 0.7039394 0.134465568 fv Gamma Cox, Gamma FALSE #> 5217 327 0.7570131 0.143284492 fv Gamma Cox, Gamma FALSE #> 5233 328 1.0241436 0.191230022 fv Gamma Cox, Gamma TRUE #> 5249 329 0.8762071 0.165668652 fv Gamma Cox, Gamma FALSE #> 5265 330 0.6943285 0.133117878 fv Gamma Cox, Gamma FALSE #> 5281 331 0.8439616 0.157763791 fv Gamma Cox, Gamma FALSE #> 5297 332 0.5597510 0.110415552 fv Gamma Cox, Gamma FALSE #> 5313 333 0.5408626 0.105579808 fv Gamma Cox, Gamma FALSE #> 5329 334 0.9467958 0.173919137 fv Gamma Cox, Gamma FALSE #> 5345 335 0.7653749 0.145590511 fv Gamma Cox, Gamma FALSE #> 5361 336 0.4797265 0.096031622 fv Gamma Cox, Gamma FALSE #> 5377 337 0.6413684 0.124650010 fv Gamma Cox, Gamma FALSE #> 5393 338 0.6035586 NA fv Gamma Cox, Gamma NA #> 5409 339 0.8262291 0.156546194 fv Gamma Cox, Gamma FALSE #> 5425 340 0.7801398 0.152957082 fv Gamma Cox, Gamma FALSE #> 5441 341 0.5609456 0.109188392 fv Gamma Cox, Gamma FALSE #> 5457 342 0.4505560 0.089857208 fv Gamma Cox, Gamma TRUE #> 5473 343 0.6379761 0.123470515 fv Gamma Cox, Gamma FALSE #> 5489 344 0.9821211 0.184488378 fv Gamma Cox, Gamma FALSE #> 5505 345 0.8685154 0.163017679 fv Gamma Cox, Gamma FALSE #> 5521 346 0.7913166 0.148203721 fv Gamma Cox, Gamma FALSE #> 5537 347 0.7336193 0.139101579 fv Gamma Cox, Gamma FALSE #> 5553 348 0.9254888 0.171694360 fv Gamma Cox, Gamma FALSE #> 5569 349 0.8488816 0.159294203 fv Gamma Cox, Gamma FALSE #> 5585 350 0.8160615 0.152965564 fv Gamma Cox, Gamma FALSE #> 5601 351 0.8759466 0.167886380 fv Gamma Cox, Gamma FALSE #> 5617 352 0.7981894 0.153964217 fv Gamma Cox, Gamma FALSE #> 5633 353 0.5791672 0.113057885 fv Gamma Cox, Gamma FALSE #> 5649 354 0.7416095 0.141018326 fv Gamma Cox, Gamma FALSE #> 5665 355 0.8010796 0.149943272 fv Gamma Cox, Gamma FALSE #> 5681 356 0.8282803 0.158193917 fv Gamma Cox, Gamma FALSE #> 5697 357 0.6938562 0.132663709 fv Gamma Cox, Gamma FALSE #> 5713 358 0.6402635 0.122101470 fv Gamma Cox, Gamma FALSE #> 5729 359 0.6742980 0.132978427 fv Gamma Cox, Gamma FALSE #> 5745 360 0.6040056 0.117051665 fv Gamma Cox, Gamma FALSE #> 5761 361 0.9421937 0.178772166 fv Gamma Cox, Gamma FALSE #> 5777 362 0.4601477 0.091085384 fv Gamma Cox, Gamma FALSE #> 5793 363 0.7026636 0.135100787 fv Gamma Cox, Gamma FALSE #> 5809 364 0.5302217 0.104442908 fv Gamma Cox, Gamma FALSE #> 5825 365 0.7690703 0.150669849 fv Gamma Cox, Gamma FALSE #> 5841 366 0.8267876 0.157050939 fv Gamma Cox, Gamma FALSE #> 5857 367 0.8874453 0.165351401 fv Gamma Cox, Gamma FALSE #> 5873 368 0.8804541 0.171672792 fv Gamma Cox, Gamma FALSE #> 5889 369 0.5558909 0.108356937 fv Gamma Cox, Gamma FALSE #> 5905 370 0.5224601 0.102908943 fv Gamma Cox, Gamma FALSE #> 5921 371 0.8876388 0.168386174 fv Gamma Cox, Gamma FALSE #> 5937 372 0.6286268 0.125304837 fv Gamma Cox, Gamma FALSE #> 5953 373 0.6690070 0.127890066 fv Gamma Cox, Gamma FALSE #> 5969 374 0.6330213 0.122146795 fv Gamma Cox, Gamma FALSE #> 5985 375 0.6227287 0.120453980 fv Gamma Cox, Gamma FALSE #> 6001 376 0.6703751 0.129140001 fv Gamma Cox, Gamma FALSE #> 6017 377 0.8079140 0.155596402 fv Gamma Cox, Gamma FALSE #> 6033 378 0.7798553 0.146544187 fv Gamma Cox, Gamma FALSE #> 6049 379 0.6475737 0.124463927 fv Gamma Cox, Gamma FALSE #> 6065 380 0.7688097 0.145489816 fv Gamma Cox, Gamma FALSE #> 6081 381 0.6649357 0.128253722 fv Gamma Cox, Gamma FALSE #> 6097 382 0.6807352 0.130459416 fv Gamma Cox, Gamma FALSE #> 6113 383 1.0192008 0.186327756 fv Gamma Cox, Gamma TRUE #> 6129 384 0.8434297 0.158539964 fv Gamma Cox, Gamma FALSE #> 6145 385 0.5428752 0.106117665 fv Gamma Cox, Gamma FALSE #> 6161 386 0.3967401 0.081332469 fv Gamma Cox, Gamma TRUE #> 6177 387 0.5406499 0.105272643 fv Gamma Cox, Gamma FALSE #> 6193 388 0.6602657 0.126552615 fv Gamma Cox, Gamma FALSE #> 6209 389 0.5332555 0.104791180 fv Gamma Cox, Gamma FALSE #> 6225 390 0.6045228 0.117241227 fv Gamma Cox, Gamma FALSE #> 6241 391 0.4999031 NA fv Gamma Cox, Gamma NA #> 6257 392 0.9248187 0.171305899 fv Gamma Cox, Gamma FALSE #> 6273 393 0.5798027 0.113219618 fv Gamma Cox, Gamma FALSE #> 6289 394 0.8907170 0.167374282 fv Gamma Cox, Gamma FALSE #> 6305 395 0.7016240 0.135025361 fv Gamma Cox, Gamma FALSE #> 6321 396 0.7121455 0.139294610 fv Gamma Cox, Gamma FALSE #> 6337 397 0.8229104 0.153784172 fv Gamma Cox, Gamma FALSE #> 6353 398 0.7712521 0.146309386 fv Gamma Cox, Gamma FALSE #> 6369 399 0.6190504 0.119937746 fv Gamma Cox, Gamma FALSE #> 6385 400 0.6672967 0.128315064 fv Gamma Cox, Gamma FALSE #> 6401 401 0.8584411 0.163304952 fv Gamma Cox, Gamma FALSE #> 6417 402 0.7225680 0.141193789 fv Gamma Cox, Gamma FALSE #> 6433 403 0.6821864 0.130069717 fv Gamma Cox, Gamma FALSE #> 6449 404 0.8921011 0.169978122 fv Gamma Cox, Gamma FALSE #> 6465 405 0.6364897 0.121986924 fv Gamma Cox, Gamma FALSE #> 6481 406 0.6312721 0.122132709 fv Gamma Cox, Gamma FALSE #> 6497 407 0.7537675 0.143468500 fv Gamma Cox, Gamma FALSE #> 6513 408 0.4830750 0.100264446 fv Gamma Cox, Gamma FALSE #> 6529 409 0.9120263 0.168875217 fv Gamma Cox, Gamma FALSE #> 6545 410 0.9317740 0.176472419 fv Gamma Cox, Gamma FALSE #> 6561 411 0.7853073 0.155061040 fv Gamma Cox, Gamma FALSE #> 6577 412 0.6760708 0.129238258 fv Gamma Cox, Gamma FALSE #> 6593 413 0.7106746 NA fv Gamma Cox, Gamma NA #> 6609 414 0.7126918 0.136010675 fv Gamma Cox, Gamma FALSE #> 6625 415 0.8278815 0.154436751 fv Gamma Cox, Gamma FALSE #> 6641 416 0.6144755 0.118999790 fv Gamma Cox, Gamma FALSE #> 6657 417 0.7064656 0.134614387 fv Gamma Cox, Gamma FALSE #> 6673 418 0.7280710 0.138588048 fv Gamma Cox, Gamma FALSE #> 6689 419 0.5977421 0.117049099 fv Gamma Cox, Gamma FALSE #> 6705 420 0.7984141 0.153630576 fv Gamma Cox, Gamma FALSE #> 6721 421 0.7789264 0.146973632 fv Gamma Cox, Gamma FALSE #> 6737 422 0.7189249 0.136830403 fv Gamma Cox, Gamma FALSE #> 6753 423 0.7767172 0.146505554 fv Gamma Cox, Gamma FALSE #> 6769 424 0.6711159 0.129971477 fv Gamma Cox, Gamma FALSE #> 6785 425 0.5421033 0.106506310 fv Gamma Cox, Gamma FALSE #> 6801 426 0.9738877 0.180388841 fv Gamma Cox, Gamma FALSE #> 6817 427 0.4334204 0.087612339 fv Gamma Cox, Gamma TRUE #> 6833 428 0.9192375 0.174367363 fv Gamma Cox, Gamma FALSE #> 6849 429 0.6307533 0.121860719 fv Gamma Cox, Gamma FALSE #> 6865 430 0.5862901 0.113931845 fv Gamma Cox, Gamma FALSE #> 6881 431 0.8326353 0.156104642 fv Gamma Cox, Gamma FALSE #> 6897 432 0.5651382 0.111271681 fv Gamma Cox, Gamma FALSE #> 6913 433 0.7605602 0.146061740 fv Gamma Cox, Gamma FALSE #> 6929 434 0.9151370 0.168917938 fv Gamma Cox, Gamma FALSE #> 6945 435 0.6420012 0.123004617 fv Gamma Cox, Gamma FALSE #> 6961 436 0.8857909 0.167510125 fv Gamma Cox, Gamma FALSE #> 6977 437 0.6462434 0.124127766 fv Gamma Cox, Gamma FALSE #> 6993 438 0.4972460 0.098754303 fv Gamma Cox, Gamma FALSE #> 7009 439 0.6779588 0.130863527 fv Gamma Cox, Gamma FALSE #> 7025 440 0.6825645 0.130306052 fv Gamma Cox, Gamma FALSE #> 7041 441 0.4502677 0.089999523 fv Gamma Cox, Gamma TRUE #> 7057 442 0.8187358 0.153159795 fv Gamma Cox, Gamma FALSE #> 7073 443 0.4864113 0.097415951 fv Gamma Cox, Gamma FALSE #> 7089 444 0.6307093 NA fv Gamma Cox, Gamma NA #> 7105 445 0.8960691 0.172700705 fv Gamma Cox, Gamma FALSE #> 7121 446 0.7375956 0.139800669 fv Gamma Cox, Gamma FALSE #> 7137 447 0.7060355 0.134536437 fv Gamma Cox, Gamma FALSE #> 7153 448 0.7606137 0.144593023 fv Gamma Cox, Gamma FALSE #> 7169 449 0.8188267 0.152908387 fv Gamma Cox, Gamma FALSE #> 7185 450 0.6649946 0.127035238 fv Gamma Cox, Gamma FALSE #> 7201 451 0.7889763 0.148648185 fv Gamma Cox, Gamma FALSE #> 7217 452 0.5385995 0.106107012 fv Gamma Cox, Gamma FALSE #> 7233 453 0.7976309 0.149294907 fv Gamma Cox, Gamma FALSE #> 7249 454 0.6812803 0.133807496 fv Gamma Cox, Gamma FALSE #> 7265 455 0.7853285 0.148442373 fv Gamma Cox, Gamma FALSE #> 7281 456 0.8013663 0.150752027 fv Gamma Cox, Gamma FALSE #> 7297 457 0.7567226 0.143306581 fv Gamma Cox, Gamma FALSE #> 7313 458 0.8390265 0.158325038 fv Gamma Cox, Gamma FALSE #> 7329 459 0.6846816 0.131871936 fv Gamma Cox, Gamma FALSE #> 7345 460 0.5993262 NA fv Gamma Cox, Gamma NA #> 7361 461 0.7089733 0.135818026 fv Gamma Cox, Gamma FALSE #> 7377 462 0.9322032 0.176108434 fv Gamma Cox, Gamma FALSE #> 7393 463 0.5899818 0.113578435 fv Gamma Cox, Gamma FALSE #> 7409 464 0.5457337 0.107935854 fv Gamma Cox, Gamma FALSE #> 7425 465 0.6924278 0.131950434 fv Gamma Cox, Gamma FALSE #> 7441 466 0.8586186 0.164067739 fv Gamma Cox, Gamma FALSE #> 7457 467 0.8607295 0.162516222 fv Gamma Cox, Gamma FALSE #> 7473 468 0.5840632 0.113431719 fv Gamma Cox, Gamma FALSE #> 7489 469 0.7721755 0.148974573 fv Gamma Cox, Gamma FALSE #> 7505 470 0.7864966 0.147551158 fv Gamma Cox, Gamma FALSE #> 7521 471 0.6014325 0.116605603 fv Gamma Cox, Gamma FALSE #> 7537 472 0.7782183 0.146490838 fv Gamma Cox, Gamma FALSE #> 7553 473 0.6782043 0.129840010 fv Gamma Cox, Gamma FALSE #> 7569 474 0.6246471 0.122746003 fv Gamma Cox, Gamma FALSE #> 7585 475 1.1066875 0.208302683 fv Gamma Cox, Gamma TRUE #> 7601 476 0.5556522 0.108984002 fv Gamma Cox, Gamma FALSE #> 7617 477 0.8566296 0.159877492 fv Gamma Cox, Gamma FALSE #> 7633 478 0.6815679 0.131090134 fv Gamma Cox, Gamma FALSE #> 7649 479 0.8652759 0.161735280 fv Gamma Cox, Gamma FALSE #> 7665 480 0.7542582 0.144197098 fv Gamma Cox, Gamma FALSE #> 7681 481 0.6792317 0.131026222 fv Gamma Cox, Gamma FALSE #> 7697 482 0.6255814 0.124083667 fv Gamma Cox, Gamma FALSE #> 7713 483 0.6524135 0.127114059 fv Gamma Cox, Gamma FALSE #> 7729 484 0.7084909 0.134146311 fv Gamma Cox, Gamma FALSE #> 7745 485 0.7116749 0.135010465 fv Gamma Cox, Gamma FALSE #> 7761 486 0.5675852 0.111128327 fv Gamma Cox, Gamma FALSE #> 7777 487 0.8227084 0.154214426 fv Gamma Cox, Gamma FALSE #> 7793 488 0.6805839 0.132475141 fv Gamma Cox, Gamma FALSE #> 7809 489 0.8828861 0.168922643 fv Gamma Cox, Gamma FALSE #> 7825 490 1.0616372 0.193890898 fv Gamma Cox, Gamma TRUE #> 7841 491 0.6822397 0.130612568 fv Gamma Cox, Gamma FALSE #> 7857 492 0.8222004 0.155512481 fv Gamma Cox, Gamma FALSE #> 7873 493 0.7750104 0.151083906 fv Gamma Cox, Gamma FALSE #> 7889 494 0.7222312 0.137802429 fv Gamma Cox, Gamma FALSE #> 7905 495 0.7690374 0.146304536 fv Gamma Cox, Gamma FALSE #> 7921 496 0.5161178 0.102242565 fv Gamma Cox, Gamma FALSE #> 7937 497 0.6616442 0.126467428 fv Gamma Cox, Gamma FALSE #> 7953 498 0.6310750 0.122098317 fv Gamma Cox, Gamma FALSE #> 7969 499 0.9368503 0.175074305 fv Gamma Cox, Gamma FALSE #> 7985 500 0.8980660 0.169636790 fv Gamma Cox, Gamma FALSE #> 8001 501 0.6945294 0.132580566 fv Gamma Cox, Gamma FALSE #> 8017 502 0.7586970 0.143861263 fv Gamma Cox, Gamma FALSE #> 8033 503 0.6796761 0.130505602 fv Gamma Cox, Gamma FALSE #> 8049 504 0.8750771 0.162492220 fv Gamma Cox, Gamma FALSE #> 8065 505 0.9242294 0.173034278 fv Gamma Cox, Gamma FALSE #> 8081 506 0.6642908 0.127078492 fv Gamma Cox, Gamma FALSE #> 8097 507 0.6220734 0.120661088 fv Gamma Cox, Gamma FALSE #> 8113 508 0.6638922 0.127459533 fv Gamma Cox, Gamma FALSE #> 8129 509 0.7011241 0.133602323 fv Gamma Cox, Gamma FALSE #> 8145 510 0.9146957 0.169745733 fv Gamma Cox, Gamma FALSE #> 8161 511 0.7417783 0.141579855 fv Gamma Cox, Gamma FALSE #> 8177 512 0.8087679 0.152328374 fv Gamma Cox, Gamma FALSE #> 8193 513 0.5954906 0.116001360 fv Gamma Cox, Gamma FALSE #> 8209 514 0.6569979 0.126927260 fv Gamma Cox, Gamma FALSE #> 8225 515 0.6212970 0.120107176 fv Gamma Cox, Gamma FALSE #> 8241 516 0.7542450 0.144369845 fv Gamma Cox, Gamma FALSE #> 8257 517 0.7857159 0.148313320 fv Gamma Cox, Gamma FALSE #> 8273 518 0.8537068 0.158622013 fv Gamma Cox, Gamma FALSE #> 8289 519 0.7034337 0.134310592 fv Gamma Cox, Gamma FALSE #> 8305 520 0.6197376 0.119943182 fv Gamma Cox, Gamma FALSE #> 8321 521 0.5610014 0.109140591 fv Gamma Cox, Gamma FALSE #> 8337 522 0.5438508 0.106296184 fv Gamma Cox, Gamma FALSE #> 8353 523 0.6698531 0.129490382 fv Gamma Cox, Gamma FALSE #> 8369 524 0.6020242 0.117226384 fv Gamma Cox, Gamma FALSE #> 8385 525 1.0516324 0.192496879 fv Gamma Cox, Gamma TRUE #> 8401 526 0.7609652 0.144096404 fv Gamma Cox, Gamma FALSE #> 8417 527 0.6881981 0.133087351 fv Gamma Cox, Gamma FALSE #> 8433 528 0.6054273 0.117775780 fv Gamma Cox, Gamma FALSE #> 8449 529 0.8516933 0.159701160 fv Gamma Cox, Gamma FALSE #> 8465 530 0.8926019 0.166575907 fv Gamma Cox, Gamma FALSE #> 8481 531 0.7916298 0.148159862 fv Gamma Cox, Gamma FALSE #> 8497 532 0.7897519 0.149192705 fv Gamma Cox, Gamma FALSE #> 8513 533 0.7284274 0.138699326 fv Gamma Cox, Gamma FALSE #> 8529 534 0.7790291 0.146354155 fv Gamma Cox, Gamma FALSE #> 8545 535 0.9538809 0.176303899 fv Gamma Cox, Gamma FALSE #> 8561 536 0.8270741 0.154370683 fv Gamma Cox, Gamma FALSE #> 8577 537 0.7138513 0.139534596 fv Gamma Cox, Gamma FALSE #> 8593 538 0.6246478 NA fv Gamma Cox, Gamma NA #> 8609 539 0.8627532 0.161183355 fv Gamma Cox, Gamma FALSE #> 8625 540 0.7660902 0.149389899 fv Gamma Cox, Gamma FALSE #> 8641 541 0.6295377 0.122597777 fv Gamma Cox, Gamma FALSE #> 8657 542 0.8369873 0.157179557 fv Gamma Cox, Gamma FALSE #> 8673 543 0.9027111 0.167848994 fv Gamma Cox, Gamma FALSE #> 8689 544 0.8231412 0.154281762 fv Gamma Cox, Gamma FALSE #> 8705 545 0.6971651 0.133999902 fv Gamma Cox, Gamma FALSE #> 8721 546 0.6917187 0.132692058 fv Gamma Cox, Gamma FALSE #> 8737 547 0.6612332 0.126891190 fv Gamma Cox, Gamma FALSE #> 8753 548 0.6319194 0.006583581 fv Gamma Cox, Gamma TRUE #> 8769 549 0.8020343 0.153784386 fv Gamma Cox, Gamma FALSE #> 8785 550 0.8857710 0.173416696 fv Gamma Cox, Gamma FALSE #> 8801 551 0.7206925 0.137282217 fv Gamma Cox, Gamma FALSE #> 8817 552 0.5655243 0.111609299 fv Gamma Cox, Gamma FALSE #> 8833 553 0.5894449 0.115099271 fv Gamma Cox, Gamma FALSE #> 8849 554 0.6799194 0.131022822 fv Gamma Cox, Gamma FALSE #> 8865 555 0.5942723 0.116121667 fv Gamma Cox, Gamma FALSE #> 8881 556 0.5409466 0.106333958 fv Gamma Cox, Gamma FALSE #> 8897 557 1.1276785 0.208600321 fv Gamma Cox, Gamma TRUE #> 8913 558 0.8056241 0.152243016 fv Gamma Cox, Gamma FALSE #> 8929 559 0.6165829 0.122550777 fv Gamma Cox, Gamma FALSE #> 8945 560 0.7506013 0.143366986 fv Gamma Cox, Gamma FALSE #> 8961 561 0.7560469 0.142619604 fv Gamma Cox, Gamma FALSE #> 8977 562 0.4475603 0.089294336 fv Gamma Cox, Gamma TRUE #> 8993 563 0.7697251 0.146259739 fv Gamma Cox, Gamma FALSE #> 9009 564 0.7596255 0.143001550 fv Gamma Cox, Gamma FALSE #> 9025 565 0.8209886 0.158901699 fv Gamma Cox, Gamma FALSE #> 9041 566 0.8540708 0.160172577 fv Gamma Cox, Gamma FALSE #> 9057 567 0.7239583 0.138160326 fv Gamma Cox, Gamma FALSE #> 9073 568 0.7918967 0.152246336 fv Gamma Cox, Gamma FALSE #> 9089 569 0.6846417 0.132938759 fv Gamma Cox, Gamma FALSE #> 9105 570 0.7180058 0.136793903 fv Gamma Cox, Gamma FALSE #> 9121 571 0.7534625 0.142541419 fv Gamma Cox, Gamma FALSE #> 9137 572 0.8277711 0.154274630 fv Gamma Cox, Gamma FALSE #> 9153 573 0.5338253 0.105713447 fv Gamma Cox, Gamma FALSE #> 9169 574 0.8516856 0.162398703 fv Gamma Cox, Gamma FALSE #> 9185 575 0.7042959 0.134581473 fv Gamma Cox, Gamma FALSE #> 9201 576 0.7417747 0.142360056 fv Gamma Cox, Gamma FALSE #> 9217 577 0.6314368 0.122446267 fv Gamma Cox, Gamma FALSE #> 9233 578 0.6519440 0.125000623 fv Gamma Cox, Gamma FALSE #> 9249 579 0.6465344 NA fv Gamma Cox, Gamma NA #> 9265 580 0.6101363 0.117780410 fv Gamma Cox, Gamma FALSE #> 9281 581 0.8567743 0.159745166 fv Gamma Cox, Gamma FALSE #> 9297 582 0.4249017 0.084684463 fv Gamma Cox, Gamma TRUE #> 9313 583 0.7812605 0.147186401 fv Gamma Cox, Gamma FALSE #> 9329 584 0.6289872 NA fv Gamma Cox, Gamma NA #> 9345 585 1.1129083 0.202616476 fv Gamma Cox, Gamma TRUE #> 9361 586 1.0020180 0.183131340 fv Gamma Cox, Gamma FALSE #> 9377 587 0.7823646 0.147627151 fv Gamma Cox, Gamma FALSE #> 9393 588 0.7965984 0.151873142 fv Gamma Cox, Gamma FALSE #> 9409 589 0.5848703 0.113875946 fv Gamma Cox, Gamma FALSE #> 9425 590 0.6723444 0.129201859 fv Gamma Cox, Gamma FALSE #> 9441 591 0.7146685 0.136960728 fv Gamma Cox, Gamma FALSE #> 9457 592 0.8875873 0.165449957 fv Gamma Cox, Gamma FALSE #> 9473 593 0.6956131 0.136694985 fv Gamma Cox, Gamma FALSE #> 9489 594 0.7214667 0.138957335 fv Gamma Cox, Gamma FALSE #> 9505 595 0.7101161 0.135025353 fv Gamma Cox, Gamma FALSE #> 9521 596 0.8418777 0.157263827 fv Gamma Cox, Gamma FALSE #> 9537 597 0.9729782 0.183742916 fv Gamma Cox, Gamma FALSE #> 9553 598 0.7302043 0.138489839 fv Gamma Cox, Gamma FALSE #> 9569 599 1.0924857 0.198613543 fv Gamma Cox, Gamma TRUE #> 9585 600 0.9354165 0.172435311 fv Gamma Cox, Gamma FALSE #> 9601 601 0.6883910 0.131587270 fv Gamma Cox, Gamma FALSE #> 9617 602 0.8070003 0.154414727 fv Gamma Cox, Gamma FALSE #> 9633 603 0.6856989 0.130901389 fv Gamma Cox, Gamma FALSE #> 9649 604 0.8376770 0.164630472 fv Gamma Cox, Gamma FALSE #> 9665 605 0.8981670 0.170534144 fv Gamma Cox, Gamma FALSE #> 9681 606 0.7882221 0.148789284 fv Gamma Cox, Gamma FALSE #> 9697 607 0.6476463 0.125475048 fv Gamma Cox, Gamma FALSE #> 9713 608 0.8155224 0.153555972 fv Gamma Cox, Gamma FALSE #> 9729 609 0.8892325 0.166132966 fv Gamma Cox, Gamma FALSE #> 9745 610 0.7927409 0.149226966 fv Gamma Cox, Gamma FALSE #> 9761 611 0.6492237 0.125252832 fv Gamma Cox, Gamma FALSE #> 9777 612 0.8847558 0.164946654 fv Gamma Cox, Gamma FALSE #> 9793 613 0.7555553 0.143065459 fv Gamma Cox, Gamma FALSE #> 9809 614 0.6999420 0.133898539 fv Gamma Cox, Gamma FALSE #> 9825 615 0.6323970 0.121998668 fv Gamma Cox, Gamma FALSE #> 9841 616 0.9258004 0.171970867 fv Gamma Cox, Gamma FALSE #> 9857 617 0.9810413 0.184675944 fv Gamma Cox, Gamma FALSE #> 9873 618 0.5773346 0.112316606 fv Gamma Cox, Gamma FALSE #> 9889 619 0.6347891 0.122523189 fv Gamma Cox, Gamma FALSE #> 9905 620 0.6827832 0.131100442 fv Gamma Cox, Gamma FALSE #> 9921 621 0.7975355 0.150353049 fv Gamma Cox, Gamma FALSE #> 9937 622 1.1223277 0.204313520 fv Gamma Cox, Gamma TRUE #> 9953 623 0.5579222 0.108700678 fv Gamma Cox, Gamma FALSE #> 9969 624 0.7128043 0.135198610 fv Gamma Cox, Gamma FALSE #> 9985 625 0.6645098 0.127866473 fv Gamma Cox, Gamma FALSE #> 10001 626 0.5434477 0.107111683 fv Gamma Cox, Gamma FALSE #> 10017 627 0.6384977 0.127531672 fv Gamma Cox, Gamma FALSE #> 10033 628 0.7155575 0.135607273 fv Gamma Cox, Gamma FALSE #> 10049 629 0.5743986 0.113030438 fv Gamma Cox, Gamma FALSE #> 10065 630 0.9263040 0.171879492 fv Gamma Cox, Gamma FALSE #> 10081 631 0.8454909 0.163553297 fv Gamma Cox, Gamma FALSE #> 10097 632 0.5915189 0.115112532 fv Gamma Cox, Gamma FALSE #> 10113 633 0.5378909 0.105342707 fv Gamma Cox, Gamma FALSE #> 10129 634 0.5606903 0.109482541 fv Gamma Cox, Gamma FALSE #> 10145 635 0.4726450 0.094667526 fv Gamma Cox, Gamma FALSE #> 10161 636 0.6834728 0.132595448 fv Gamma Cox, Gamma FALSE #> 10177 637 0.7517155 0.142228970 fv Gamma Cox, Gamma FALSE #> 10193 638 0.6135361 0.122501483 fv Gamma Cox, Gamma FALSE #> 10209 639 0.7014499 0.133681174 fv Gamma Cox, Gamma FALSE #> 10225 640 0.6128640 NA fv Gamma Cox, Gamma NA #> 10241 641 0.6673911 0.127458375 fv Gamma Cox, Gamma FALSE #> 10257 642 0.6815744 0.131201354 fv Gamma Cox, Gamma FALSE #> 10273 643 0.6395380 0.123473684 fv Gamma Cox, Gamma FALSE #> 10289 644 0.9281496 0.178044104 fv Gamma Cox, Gamma FALSE #> 10305 645 0.5058058 0.099576567 fv Gamma Cox, Gamma FALSE #> 10321 646 0.5752018 0.112537616 fv Gamma Cox, Gamma FALSE #> 10337 647 1.0966623 0.201529503 fv Gamma Cox, Gamma TRUE #> 10353 648 0.7244534 0.137071261 fv Gamma Cox, Gamma FALSE #> 10369 649 0.8332207 0.156331374 fv Gamma Cox, Gamma FALSE #> 10385 650 0.9649527 0.179069982 fv Gamma Cox, Gamma FALSE #> 10401 651 0.9464873 0.175101726 fv Gamma Cox, Gamma FALSE #> 10417 652 0.7609635 0.144258476 fv Gamma Cox, Gamma FALSE #> 10433 653 0.9382049 0.177882581 fv Gamma Cox, Gamma FALSE #> 10449 654 0.6062464 0.117645954 fv Gamma Cox, Gamma FALSE #> 10465 655 0.6767305 0.129314528 fv Gamma Cox, Gamma FALSE #> 10481 656 0.7862486 0.148608077 fv Gamma Cox, Gamma FALSE #> 10497 657 0.7137173 0.136369085 fv Gamma Cox, Gamma FALSE #> 10513 658 0.8178731 0.154550758 fv Gamma Cox, Gamma FALSE #> 10529 659 0.8561291 0.161265853 fv Gamma Cox, Gamma FALSE #> 10545 660 0.7951042 0.153064842 fv Gamma Cox, Gamma FALSE #> 10561 661 0.5838602 0.113215726 fv Gamma Cox, Gamma FALSE #> 10577 662 0.4485783 0.089198580 fv Gamma Cox, Gamma TRUE #> 10593 663 0.6581613 NA fv Gamma Cox, Gamma NA #> 10609 664 0.7241489 0.137001157 fv Gamma Cox, Gamma FALSE #> 10625 665 0.6926612 0.133197792 fv Gamma Cox, Gamma FALSE #> 10641 666 0.6778013 0.132901048 fv Gamma Cox, Gamma FALSE #> 10657 667 0.8867749 0.168166698 fv Gamma Cox, Gamma FALSE #> 10673 668 0.8301043 0.158911230 fv Gamma Cox, Gamma FALSE #> 10689 669 0.5407391 0.106146295 fv Gamma Cox, Gamma FALSE #> 10705 670 0.8485756 0.162192318 fv Gamma Cox, Gamma FALSE #> 10721 671 0.8766589 0.163763076 fv Gamma Cox, Gamma FALSE #> 10737 672 0.6153715 NA fv Gamma Cox, Gamma NA #> 10753 673 0.6107089 0.117370604 fv Gamma Cox, Gamma FALSE #> 10769 674 0.9545713 0.180865051 fv Gamma Cox, Gamma FALSE #> 10785 675 0.6959295 0.132291736 fv Gamma Cox, Gamma FALSE #> 10801 676 0.5082065 0.102830300 fv Gamma Cox, Gamma FALSE #> 10817 677 0.6335714 0.121472662 fv Gamma Cox, Gamma FALSE #> 10833 678 0.8358190 0.157360400 fv Gamma Cox, Gamma FALSE #> 10849 679 0.9489850 0.175902516 fv Gamma Cox, Gamma FALSE #> 10865 680 0.6831995 0.135084593 fv Gamma Cox, Gamma FALSE #> 10881 681 0.5643254 0.110253548 fv Gamma Cox, Gamma FALSE #> 10897 682 0.7617965 0.143922368 fv Gamma Cox, Gamma FALSE #> 10913 683 0.8612983 0.164005648 fv Gamma Cox, Gamma FALSE #> 10929 684 0.9306887 0.172309343 fv Gamma Cox, Gamma FALSE #> 10945 685 0.6426137 0.123487366 fv Gamma Cox, Gamma FALSE #> 10961 686 0.5504300 0.108056938 fv Gamma Cox, Gamma FALSE #> 10977 687 1.0715471 0.195861853 fv Gamma Cox, Gamma TRUE #> 10993 688 0.7247087 0.137711351 fv Gamma Cox, Gamma FALSE #> 11009 689 0.7044312 0.134177121 fv Gamma Cox, Gamma FALSE #> 11025 690 0.9424856 0.173674021 fv Gamma Cox, Gamma FALSE #> 11041 691 0.7890166 0.149550201 fv Gamma Cox, Gamma FALSE #> 11057 692 0.7272266 0.137587457 fv Gamma Cox, Gamma FALSE #> 11073 693 0.8573916 0.162747887 fv Gamma Cox, Gamma FALSE #> 11089 694 0.8534868 0.161603640 fv Gamma Cox, Gamma FALSE #> 11105 695 0.7322424 0.142478400 fv Gamma Cox, Gamma FALSE #> 11121 696 0.7257254 0.140591529 fv Gamma Cox, Gamma FALSE #> 11137 697 0.7333151 0.139148123 fv Gamma Cox, Gamma FALSE #> 11153 698 0.7079694 0.135061149 fv Gamma Cox, Gamma FALSE #> 11169 699 0.7213398 0.136395589 fv Gamma Cox, Gamma FALSE #> 11185 700 1.1804472 0.212933204 fv Gamma Cox, Gamma TRUE #> 11201 701 0.6387989 0.122746463 fv Gamma Cox, Gamma FALSE #> 11217 702 0.7190115 0.141352091 fv Gamma Cox, Gamma FALSE #> 11233 703 0.5731256 0.112207992 fv Gamma Cox, Gamma FALSE #> 11249 704 0.9037123 0.167031332 fv Gamma Cox, Gamma FALSE #> 11265 705 0.9728518 0.179527679 fv Gamma Cox, Gamma FALSE #> 11281 706 0.7500375 0.141850521 fv Gamma Cox, Gamma FALSE #> 11297 707 0.5756002 0.113226216 fv Gamma Cox, Gamma FALSE #> 11313 708 0.8181883 0.157337000 fv Gamma Cox, Gamma FALSE #> 11329 709 0.7474298 0.141423613 fv Gamma Cox, Gamma FALSE #> 11345 710 0.7454622 0.140549261 fv Gamma Cox, Gamma FALSE #> 11361 711 0.3894059 0.079382350 fv Gamma Cox, Gamma TRUE #> 11377 712 0.7212272 0.137524828 fv Gamma Cox, Gamma FALSE #> 11393 713 0.7565196 0.142332022 fv Gamma Cox, Gamma FALSE #> 11409 714 0.8595678 0.164830902 fv Gamma Cox, Gamma FALSE #> 11425 715 0.9462299 0.175784475 fv Gamma Cox, Gamma FALSE #> 11441 716 0.8149458 0.154563840 fv Gamma Cox, Gamma FALSE #> 11457 717 0.6258843 0.125296314 fv Gamma Cox, Gamma FALSE #> 11473 718 0.7241018 0.138809353 fv Gamma Cox, Gamma FALSE #> 11489 719 0.6472919 0.124029879 fv Gamma Cox, Gamma FALSE #> 11505 720 0.6462965 0.124507001 fv Gamma Cox, Gamma FALSE #> 11521 721 0.8668431 0.163374189 fv Gamma Cox, Gamma FALSE #> 11537 722 0.8751804 0.163803285 fv Gamma Cox, Gamma FALSE #> 11553 723 0.7688477 0.148856537 fv Gamma Cox, Gamma FALSE #> 11569 724 0.6330552 0.122262688 fv Gamma Cox, Gamma FALSE #> 11585 725 0.6439821 0.123472393 fv Gamma Cox, Gamma FALSE #> 11601 726 0.6382621 0.124017757 fv Gamma Cox, Gamma FALSE #> 11617 727 0.8274516 0.157670945 fv Gamma Cox, Gamma FALSE #> 11633 728 0.5470298 0.110455707 fv Gamma Cox, Gamma FALSE #> 11649 729 0.7934510 0.149151202 fv Gamma Cox, Gamma FALSE #> 11665 730 0.9028028 0.172657452 fv Gamma Cox, Gamma FALSE #> 11681 731 0.9106973 0.169985677 fv Gamma Cox, Gamma FALSE #> 11697 732 0.8609186 0.159667483 fv Gamma Cox, Gamma FALSE #> 11713 733 0.5696342 0.111161534 fv Gamma Cox, Gamma FALSE #> 11729 734 0.5714461 0.111644351 fv Gamma Cox, Gamma FALSE #> 11745 735 0.7858057 0.147794812 fv Gamma Cox, Gamma FALSE #> 11761 736 0.8311006 0.159563715 fv Gamma Cox, Gamma FALSE #> 11777 737 0.7011583 0.133559009 fv Gamma Cox, Gamma FALSE #> 11793 738 0.6425217 0.129359897 fv Gamma Cox, Gamma FALSE #> 11809 739 0.6952162 0.132859258 fv Gamma Cox, Gamma FALSE #> 11825 740 0.6816161 0.130493619 fv Gamma Cox, Gamma FALSE #> 11841 741 0.7984124 0.151405815 fv Gamma Cox, Gamma FALSE #> 11857 742 0.6113573 0.118351933 fv Gamma Cox, Gamma FALSE #> 11873 743 0.7768640 0.146725181 fv Gamma Cox, Gamma FALSE #> 11889 744 1.0010037 0.187976904 fv Gamma Cox, Gamma FALSE #> 11905 745 0.6369326 0.124638617 fv Gamma Cox, Gamma FALSE #> 11921 746 0.4547392 0.090878742 fv Gamma Cox, Gamma FALSE #> 11937 747 0.6243564 NA fv Gamma Cox, Gamma NA #> 11953 748 0.8321617 0.155213104 fv Gamma Cox, Gamma FALSE #> 11969 749 0.6214388 0.120268760 fv Gamma Cox, Gamma FALSE #> 11985 750 0.5547780 0.108170284 fv Gamma Cox, Gamma FALSE #> 12001 751 0.9029269 0.167251872 fv Gamma Cox, Gamma FALSE #> 12017 752 0.8158367 0.153701903 fv Gamma Cox, Gamma FALSE #> 12033 753 0.6268532 0.122830159 fv Gamma Cox, Gamma FALSE #> 12049 754 0.7604952 0.143957643 fv Gamma Cox, Gamma FALSE #> 12065 755 0.7755205 0.146754514 fv Gamma Cox, Gamma FALSE #> 12081 756 1.1338308 0.205371520 fv Gamma Cox, Gamma TRUE #> 12097 757 0.6141619 0.119190168 fv Gamma Cox, Gamma FALSE #> 12113 758 0.5421448 0.106441629 fv Gamma Cox, Gamma FALSE #> 12129 759 0.6135692 0.118641503 fv Gamma Cox, Gamma FALSE #> 12145 760 0.6039901 NA fv Gamma Cox, Gamma NA #> 12161 761 0.7675576 0.146194900 fv Gamma Cox, Gamma FALSE #> 12177 762 0.6497935 0.124892235 fv Gamma Cox, Gamma FALSE #> 12193 763 0.6141013 0.119005700 fv Gamma Cox, Gamma FALSE #> 12209 764 0.7138323 0.136853512 fv Gamma Cox, Gamma FALSE #> 12225 765 0.6968334 0.134411196 fv Gamma Cox, Gamma FALSE #> 12241 766 0.5653622 0.110834209 fv Gamma Cox, Gamma FALSE #> 12257 767 0.7773964 0.147674261 fv Gamma Cox, Gamma FALSE #> 12273 768 0.7275932 0.138104443 fv Gamma Cox, Gamma FALSE #> 12289 769 0.8012518 0.150258739 fv Gamma Cox, Gamma FALSE #> 12305 770 0.5881467 0.115918836 fv Gamma Cox, Gamma FALSE #> 12321 771 0.5582652 0.109204974 fv Gamma Cox, Gamma FALSE #> 12337 772 0.8615970 0.165608183 fv Gamma Cox, Gamma FALSE #> 12353 773 0.6832303 0.131879273 fv Gamma Cox, Gamma FALSE #> 12369 774 0.7392229 0.139984302 fv Gamma Cox, Gamma FALSE #> 12385 775 0.9718989 0.182805349 fv Gamma Cox, Gamma FALSE #> 12401 776 0.7453084 0.140746137 fv Gamma Cox, Gamma FALSE #> 12417 777 0.6330554 0.122393589 fv Gamma Cox, Gamma FALSE #> 12433 778 0.7985011 0.151646980 fv Gamma Cox, Gamma FALSE #> 12449 779 0.8074756 0.152531003 fv Gamma Cox, Gamma FALSE #> 12465 780 0.8180757 0.154987196 fv Gamma Cox, Gamma FALSE #> 12481 781 0.6082118 0.119222818 fv Gamma Cox, Gamma FALSE #> 12497 782 0.6587172 0.131465834 fv Gamma Cox, Gamma FALSE #> 12513 783 0.7736700 0.145777095 fv Gamma Cox, Gamma FALSE #> 12529 784 0.6471594 0.123949451 fv Gamma Cox, Gamma FALSE #> 12545 785 0.6391755 0.122834514 fv Gamma Cox, Gamma FALSE #> 12561 786 0.9004978 0.168639083 fv Gamma Cox, Gamma FALSE #> 12577 787 0.8098357 0.157221614 fv Gamma Cox, Gamma FALSE #> 12593 788 0.7364478 0.140602985 fv Gamma Cox, Gamma FALSE #> 12609 789 0.8480764 0.161362989 fv Gamma Cox, Gamma FALSE #> 12625 790 0.9009634 0.172274725 fv Gamma Cox, Gamma FALSE #> 12641 791 0.9429739 0.177975160 fv Gamma Cox, Gamma FALSE #> 12657 792 0.9334192 0.173662065 fv Gamma Cox, Gamma FALSE #> 12673 793 0.6720125 0.128866983 fv Gamma Cox, Gamma FALSE #> 12689 794 0.3839860 0.077645568 fv Gamma Cox, Gamma TRUE #> 12705 795 0.6986569 0.134254162 fv Gamma Cox, Gamma FALSE #> 12721 796 0.7909092 0.149755855 fv Gamma Cox, Gamma FALSE #> 12737 797 0.6261971 0.121737443 fv Gamma Cox, Gamma FALSE #> 12753 798 0.5844054 0.114012882 fv Gamma Cox, Gamma FALSE #> 12769 799 0.9180832 0.177794269 fv Gamma Cox, Gamma FALSE #> 12785 800 0.8898310 0.009215322 fv Gamma Cox, Gamma TRUE #> 12801 801 0.6029141 0.118004690 fv Gamma Cox, Gamma FALSE #> 12817 802 0.6136151 0.118209030 fv Gamma Cox, Gamma FALSE #> 12833 803 0.7643843 0.144107978 fv Gamma Cox, Gamma FALSE #> 12849 804 0.7880555 0.148940888 fv Gamma Cox, Gamma FALSE #> 12865 805 0.7998431 0.151085310 fv Gamma Cox, Gamma FALSE #> 12881 806 0.5799163 0.112694012 fv Gamma Cox, Gamma FALSE #> 12897 807 0.9651011 0.178731784 fv Gamma Cox, Gamma FALSE #> 12913 808 0.7025718 0.137651644 fv Gamma Cox, Gamma FALSE #> 12929 809 0.8694688 0.167063978 fv Gamma Cox, Gamma FALSE #> 12945 810 0.7524828 0.142292627 fv Gamma Cox, Gamma FALSE #> 12961 811 0.9760360 0.179659577 fv Gamma Cox, Gamma FALSE #> 12977 812 0.6752901 0.129939984 fv Gamma Cox, Gamma FALSE #> 12993 813 0.8548886 0.159815547 fv Gamma Cox, Gamma FALSE #> 13009 814 0.8475993 0.160224215 fv Gamma Cox, Gamma FALSE #> 13025 815 1.0378135 0.193339139 fv Gamma Cox, Gamma TRUE #> 13041 816 0.6058893 0.118810341 fv Gamma Cox, Gamma FALSE #> 13057 817 0.8294245 0.160278552 fv Gamma Cox, Gamma FALSE #> 13073 818 0.6699606 0.129819938 fv Gamma Cox, Gamma FALSE #> 13089 819 0.9026802 0.171814094 fv Gamma Cox, Gamma FALSE #> 13105 820 0.6607045 0.126534866 fv Gamma Cox, Gamma FALSE #> 13121 821 0.7740695 0.148978813 fv Gamma Cox, Gamma FALSE #> 13137 822 0.5192049 0.101919886 fv Gamma Cox, Gamma FALSE #> 13153 823 0.7124120 0.136595828 fv Gamma Cox, Gamma FALSE #> 13169 824 0.7414032 0.141357073 fv Gamma Cox, Gamma FALSE #> 13185 825 0.5626547 0.109971816 fv Gamma Cox, Gamma FALSE #> 13201 826 0.7043875 0.133119162 fv Gamma Cox, Gamma FALSE #> 13217 827 0.6514503 0.124574860 fv Gamma Cox, Gamma FALSE #> 13233 828 0.9596989 0.181593656 fv Gamma Cox, Gamma FALSE #> 13249 829 0.6007949 0.116361517 fv Gamma Cox, Gamma FALSE #> 13265 830 0.8469501 0.159224212 fv Gamma Cox, Gamma FALSE #> 13281 831 0.5408164 0.107608019 fv Gamma Cox, Gamma FALSE #> 13297 832 0.7255851 0.137920926 fv Gamma Cox, Gamma FALSE #> 13313 833 0.7233601 0.137867717 fv Gamma Cox, Gamma FALSE #> 13329 834 0.5366763 0.106094653 fv Gamma Cox, Gamma FALSE #> 13345 835 0.6807868 0.129887049 fv Gamma Cox, Gamma FALSE #> 13361 836 0.7233304 0.138523590 fv Gamma Cox, Gamma FALSE #> 13377 837 0.6975474 0.134553921 fv Gamma Cox, Gamma FALSE #> 13393 838 0.9069225 0.168108493 fv Gamma Cox, Gamma FALSE #> 13409 839 0.6369026 NA fv Gamma Cox, Gamma NA #> 13425 840 0.7404369 0.141071662 fv Gamma Cox, Gamma FALSE #> 13441 841 0.7236781 0.136543217 fv Gamma Cox, Gamma FALSE #> 13457 842 0.7269617 0.139559720 fv Gamma Cox, Gamma FALSE #> 13473 843 0.9404634 0.175372253 fv Gamma Cox, Gamma FALSE #> 13489 844 0.7591388 0.146210176 fv Gamma Cox, Gamma FALSE #> 13505 845 0.8950945 0.167596204 fv Gamma Cox, Gamma FALSE #> 13521 846 0.6293815 0.123382026 fv Gamma Cox, Gamma FALSE #> 13537 847 0.6395938 0.126059073 fv Gamma Cox, Gamma FALSE #> 13553 848 0.5252646 0.103677785 fv Gamma Cox, Gamma FALSE #> 13569 849 0.7224527 0.136457894 fv Gamma Cox, Gamma FALSE #> 13585 850 0.6655871 0.127329444 fv Gamma Cox, Gamma FALSE #> 13601 851 0.7693731 0.146390092 fv Gamma Cox, Gamma FALSE #> 13617 852 0.4630289 0.092204110 fv Gamma Cox, Gamma FALSE #> 13633 853 0.7458003 0.141114834 fv Gamma Cox, Gamma FALSE #> 13649 854 0.5495523 0.107672747 fv Gamma Cox, Gamma FALSE #> 13665 855 0.9345197 0.173532238 fv Gamma Cox, Gamma FALSE #> 13681 856 0.8111527 0.152332420 fv Gamma Cox, Gamma FALSE #> 13697 857 0.5890767 0.115410240 fv Gamma Cox, Gamma FALSE #> 13713 858 0.6332795 0.122745694 fv Gamma Cox, Gamma FALSE #> 13729 859 0.6800949 0.133382028 fv Gamma Cox, Gamma FALSE #> 13745 860 0.6622329 0.127201962 fv Gamma Cox, Gamma FALSE #> 13761 861 0.8276490 0.155843336 fv Gamma Cox, Gamma FALSE #> 13777 862 0.6250495 0.119957952 fv Gamma Cox, Gamma FALSE #> 13793 863 0.7531449 0.143142148 fv Gamma Cox, Gamma FALSE #> 13809 864 0.7254803 0.138882972 fv Gamma Cox, Gamma FALSE #> 13825 865 0.7898965 0.149750258 fv Gamma Cox, Gamma FALSE #> 13841 866 0.6936516 0.132582282 fv Gamma Cox, Gamma FALSE #> 13857 867 0.7247385 0.138061579 fv Gamma Cox, Gamma FALSE #> 13873 868 0.7636970 0.144736951 fv Gamma Cox, Gamma FALSE #> 13889 869 0.7396685 0.140631206 fv Gamma Cox, Gamma FALSE #> 13905 870 0.6878653 0.134946113 fv Gamma Cox, Gamma FALSE #> 13921 871 0.9322391 0.174943111 fv Gamma Cox, Gamma FALSE #> 13937 872 0.8718313 0.164024706 fv Gamma Cox, Gamma FALSE #> 13953 873 0.8129908 0.152112199 fv Gamma Cox, Gamma FALSE #> 13969 874 1.0572431 0.200675949 fv Gamma Cox, Gamma TRUE #> 13985 875 0.6157512 0.118829283 fv Gamma Cox, Gamma FALSE #> 14001 876 0.6630098 0.126690567 fv Gamma Cox, Gamma FALSE #> 14017 877 0.7466926 0.141466654 fv Gamma Cox, Gamma FALSE #> 14033 878 0.7914158 0.152095093 fv Gamma Cox, Gamma FALSE #> 14049 879 0.7052097 0.139283078 fv Gamma Cox, Gamma FALSE #> 14065 880 0.9210401 0.170865848 fv Gamma Cox, Gamma FALSE #> 14081 881 0.8075285 0.152978998 fv Gamma Cox, Gamma FALSE #> 14097 882 0.9622325 0.177253168 fv Gamma Cox, Gamma FALSE #> 14113 883 0.6113031 0.118690674 fv Gamma Cox, Gamma FALSE #> 14129 884 0.5963768 0.115010525 fv Gamma Cox, Gamma FALSE #> 14145 885 0.5900931 0.114649215 fv Gamma Cox, Gamma FALSE #> 14161 886 0.5895583 0.114812076 fv Gamma Cox, Gamma FALSE #> 14177 887 0.7148329 0.136753996 fv Gamma Cox, Gamma FALSE #> 14193 888 0.9594745 0.176947839 fv Gamma Cox, Gamma FALSE #> 14209 889 0.8042972 0.150368824 fv Gamma Cox, Gamma FALSE #> 14225 890 0.6175176 0.120106236 fv Gamma Cox, Gamma FALSE #> 14241 891 0.5137172 0.100840519 fv Gamma Cox, Gamma FALSE #> 14257 892 0.6850107 0.131015607 fv Gamma Cox, Gamma FALSE #> 14273 893 0.8293255 0.157982630 fv Gamma Cox, Gamma FALSE #> 14289 894 0.5677705 0.110836627 fv Gamma Cox, Gamma FALSE #> 14305 895 0.7644482 0.145093246 fv Gamma Cox, Gamma FALSE #> 14321 896 0.8710288 0.162208151 fv Gamma Cox, Gamma FALSE #> 14337 897 0.7168600 0.136395174 fv Gamma Cox, Gamma FALSE #> 14353 898 0.9065450 0.167962428 fv Gamma Cox, Gamma FALSE #> 14369 899 0.7682189 0.146120927 fv Gamma Cox, Gamma FALSE #> 14385 900 0.7950990 0.152564307 fv Gamma Cox, Gamma FALSE #> 14401 901 0.6035077 NA fv Gamma Cox, Gamma NA #> 14417 902 0.5803465 0.112617990 fv Gamma Cox, Gamma FALSE #> 14433 903 0.6449096 0.123722630 fv Gamma Cox, Gamma FALSE #> 14449 904 1.0645195 0.202580828 fv Gamma Cox, Gamma TRUE #> 14465 905 0.6154062 0.118202301 fv Gamma Cox, Gamma FALSE #> 14481 906 0.9287891 0.171263363 fv Gamma Cox, Gamma FALSE #> 14497 907 0.7180920 0.136679548 fv Gamma Cox, Gamma FALSE #> 14513 908 0.6552036 0.129720385 fv Gamma Cox, Gamma FALSE #> 14529 909 0.6176879 0.120066685 fv Gamma Cox, Gamma FALSE #> 14545 910 0.5521694 0.107962585 fv Gamma Cox, Gamma FALSE #> 14561 911 0.7069066 0.138490781 fv Gamma Cox, Gamma FALSE #> 14577 912 0.5462190 0.106165748 fv Gamma Cox, Gamma FALSE #> 14593 913 0.7016262 0.133463712 fv Gamma Cox, Gamma FALSE #> 14609 914 0.6332994 0.123546571 fv Gamma Cox, Gamma FALSE #> 14625 915 0.8871169 0.168167223 fv Gamma Cox, Gamma FALSE #> 14641 916 0.5314523 0.103737093 fv Gamma Cox, Gamma FALSE #> 14657 917 0.8251601 0.158076990 fv Gamma Cox, Gamma FALSE #> 14673 918 0.7812981 0.146882310 fv Gamma Cox, Gamma FALSE #> 14689 919 0.5633497 0.109510022 fv Gamma Cox, Gamma FALSE #> 14705 920 0.7551588 0.142268945 fv Gamma Cox, Gamma FALSE #> 14721 921 0.8233179 0.155619571 fv Gamma Cox, Gamma FALSE #> 14737 922 1.0592208 0.198177894 fv Gamma Cox, Gamma TRUE #> 14753 923 0.7166090 0.136329906 fv Gamma Cox, Gamma FALSE #> 14769 924 0.7695951 0.144746860 fv Gamma Cox, Gamma FALSE #> 14785 925 0.8674089 0.165902857 fv Gamma Cox, Gamma FALSE #> 14801 926 0.7045694 0.133491756 fv Gamma Cox, Gamma FALSE #> 14817 927 0.4593230 0.091649779 fv Gamma Cox, Gamma FALSE #> 14833 928 0.6908884 0.131414692 fv Gamma Cox, Gamma FALSE #> 14849 929 0.7466114 0.142611050 fv Gamma Cox, Gamma FALSE #> 14865 930 0.8842713 0.169298190 fv Gamma Cox, Gamma FALSE #> 14881 931 0.6753965 0.128818557 fv Gamma Cox, Gamma FALSE #> 14897 932 0.8354712 0.155898458 fv Gamma Cox, Gamma FALSE #> 14913 933 0.6292981 0.121754957 fv Gamma Cox, Gamma FALSE #> 14929 934 0.6014700 0.116226490 fv Gamma Cox, Gamma FALSE #> 14945 935 0.5048390 0.100465756 fv Gamma Cox, Gamma FALSE #> 14961 936 0.5914851 0.114415232 fv Gamma Cox, Gamma FALSE #> 14977 937 1.1046727 0.204362478 fv Gamma Cox, Gamma TRUE #> 14993 938 0.7889907 0.149274856 fv Gamma Cox, Gamma FALSE #> 15009 939 0.8269311 0.155176151 fv Gamma Cox, Gamma FALSE #> 15025 940 0.7645462 0.144080751 fv Gamma Cox, Gamma FALSE #> 15041 941 0.6339856 0.122117198 fv Gamma Cox, Gamma FALSE #> 15057 942 0.6443675 0.124341205 fv Gamma Cox, Gamma FALSE #> 15073 943 0.4804556 0.095616415 fv Gamma Cox, Gamma FALSE #> 15089 944 0.6182545 0.118864711 fv Gamma Cox, Gamma FALSE #> 15105 945 0.6165893 0.119585898 fv Gamma Cox, Gamma FALSE #> 15121 946 0.7660069 0.148721347 fv Gamma Cox, Gamma FALSE #> 15137 947 0.6810811 0.132003647 fv Gamma Cox, Gamma FALSE #> 15153 948 0.5142477 0.102747891 fv Gamma Cox, Gamma FALSE #> 15169 949 0.6180526 0.120672028 fv Gamma Cox, Gamma FALSE #> 15185 950 0.6232314 0.121836187 fv Gamma Cox, Gamma FALSE #> 15201 951 0.7127207 0.135731437 fv Gamma Cox, Gamma FALSE #> 15217 952 0.6730731 0.129521227 fv Gamma Cox, Gamma FALSE #> 15233 953 1.0916190 0.201684689 fv Gamma Cox, Gamma TRUE #> 15249 954 0.6736457 0.128998241 fv Gamma Cox, Gamma FALSE #> 15265 955 0.8188607 0.153567795 fv Gamma Cox, Gamma FALSE #> 15281 956 0.6635977 0.128355306 fv Gamma Cox, Gamma FALSE #> 15297 957 0.6342700 0.123055464 fv Gamma Cox, Gamma FALSE #> 15313 958 0.5356595 0.105054232 fv Gamma Cox, Gamma FALSE #> 15329 959 0.5970231 0.115463296 fv Gamma Cox, Gamma FALSE #> 15345 960 0.7817517 0.148307504 fv Gamma Cox, Gamma FALSE #> 15361 961 0.5115240 0.101112635 fv Gamma Cox, Gamma FALSE #> 15377 962 0.9019772 0.168201411 fv Gamma Cox, Gamma FALSE #> 15393 963 0.8333257 0.157848012 fv Gamma Cox, Gamma FALSE #> 15409 964 0.6911721 0.132489255 fv Gamma Cox, Gamma FALSE #> 15425 965 0.6365177 NA fv Gamma Cox, Gamma NA #> 15441 966 0.7677420 0.146639440 fv Gamma Cox, Gamma FALSE #> 15457 967 0.6649532 0.127278523 fv Gamma Cox, Gamma FALSE #> 15473 968 0.5605857 NA fv Gamma Cox, Gamma NA #> 15489 969 0.7488110 0.144103923 fv Gamma Cox, Gamma FALSE #> 15505 970 0.7009266 0.138336093 fv Gamma Cox, Gamma FALSE #> 15521 971 0.6355460 0.123055558 fv Gamma Cox, Gamma FALSE #> 15537 972 0.6550597 0.129518392 fv Gamma Cox, Gamma FALSE #> 15553 973 0.9634266 0.184669702 fv Gamma Cox, Gamma FALSE #> 15569 974 0.5254167 0.103755606 fv Gamma Cox, Gamma FALSE #> 15585 975 0.5023696 0.099748952 fv Gamma Cox, Gamma FALSE #> 15601 976 0.7553050 0.143657040 fv Gamma Cox, Gamma FALSE #> 15617 977 0.8486740 0.158219365 fv Gamma Cox, Gamma FALSE #> 15633 978 0.8302479 0.159751197 fv Gamma Cox, Gamma FALSE #> 15649 979 0.8144014 0.157040892 fv Gamma Cox, Gamma FALSE #> 15665 980 0.5347503 0.104809583 fv Gamma Cox, Gamma FALSE #> 15681 981 0.7146458 0.137812497 fv Gamma Cox, Gamma FALSE #> 15697 982 0.9672795 0.181190607 fv Gamma Cox, Gamma FALSE #> 15713 983 0.5328782 0.105163422 fv Gamma Cox, Gamma FALSE #> 15729 984 0.7516136 0.142836565 fv Gamma Cox, Gamma FALSE #> 15745 985 0.8197373 0.157629048 fv Gamma Cox, Gamma FALSE #> 15761 986 0.6112163 0.117185425 fv Gamma Cox, Gamma FALSE #> 15777 987 0.5479787 0.107370042 fv Gamma Cox, Gamma FALSE #> 15793 988 0.6274646 0.121024201 fv Gamma Cox, Gamma FALSE #> 15809 989 0.7944407 0.149409280 fv Gamma Cox, Gamma FALSE #> 15825 990 0.7107532 0.134620748 fv Gamma Cox, Gamma FALSE #> 15841 991 0.7552528 0.144020517 fv Gamma Cox, Gamma FALSE #> 15857 992 0.7777255 0.148341692 fv Gamma Cox, Gamma FALSE #> 15873 993 0.9434033 0.174832389 fv Gamma Cox, Gamma FALSE #> 15889 994 0.6601987 0.127035638 fv Gamma Cox, Gamma FALSE #> 15905 995 0.8169684 0.154338190 fv Gamma Cox, Gamma FALSE #> 15921 996 0.6693038 0.128326952 fv Gamma Cox, Gamma FALSE #> 15937 997 0.6015899 0.120247558 fv Gamma Cox, Gamma FALSE #> 15953 998 0.6444796 NA fv Gamma Cox, Gamma NA #> 15969 999 0.5082930 0.099750960 fv Gamma Cox, Gamma FALSE #> 15985 1000 0.4986563 0.099227493 fv Gamma Cox, Gamma FALSE #> 2 1 0.8396248 0.166336769 fv Gamma Cox, Log-Normal FALSE #> 18 2 0.8654809 0.287973324 fv Gamma Cox, Log-Normal FALSE #> 34 3 1.5533362 0.443124033 fv Gamma Cox, Log-Normal TRUE #> 50 4 1.2021700 0.231528152 fv Gamma Cox, Log-Normal FALSE #> 66 5 0.9069256 0.231546211 fv Gamma Cox, Log-Normal FALSE #> 82 6 0.9705696 0.123099170 fv Gamma Cox, Log-Normal FALSE #> 98 7 0.9037494 0.210255478 fv Gamma Cox, Log-Normal FALSE #> 114 8 1.3330730 0.290669413 fv Gamma Cox, Log-Normal FALSE #> 130 9 1.2289061 0.328816511 fv Gamma Cox, Log-Normal FALSE #> 146 10 0.9917595 0.216966969 fv Gamma Cox, Log-Normal FALSE #> 162 11 1.0384351 0.279205813 fv Gamma Cox, Log-Normal FALSE #> 178 12 1.4401730 0.363584050 fv Gamma Cox, Log-Normal FALSE #> 194 13 1.1820887 0.272273545 fv Gamma Cox, Log-Normal FALSE #> 210 14 0.7876591 0.215587735 fv Gamma Cox, Log-Normal FALSE #> 226 15 1.1958391 0.297749174 fv Gamma Cox, Log-Normal FALSE #> 242 16 1.2056374 0.239853982 fv Gamma Cox, Log-Normal FALSE #> 258 17 0.7638555 0.152259647 fv Gamma Cox, Log-Normal FALSE #> 274 18 0.5600481 0.242034309 fv Gamma Cox, Log-Normal FALSE #> 290 19 0.8972620 0.206362814 fv Gamma Cox, Log-Normal FALSE #> 306 20 1.2974784 0.351726424 fv Gamma Cox, Log-Normal FALSE #> 322 21 0.6876797 0.226521087 fv Gamma Cox, Log-Normal FALSE #> 338 22 1.2148856 0.314376529 fv Gamma Cox, Log-Normal FALSE #> 354 23 0.8145580 0.191955407 fv Gamma Cox, Log-Normal FALSE #> 370 24 1.0265042 0.210536939 fv Gamma Cox, Log-Normal FALSE #> 386 25 1.1179286 0.310945298 fv Gamma Cox, Log-Normal FALSE #> 402 26 0.9579917 0.258514556 fv Gamma Cox, Log-Normal FALSE #> 418 27 1.7975474 0.493417117 fv Gamma Cox, Log-Normal TRUE #> 434 28 1.4423476 0.315633062 fv Gamma Cox, Log-Normal FALSE #> 450 29 1.2699356 0.241097065 fv Gamma Cox, Log-Normal FALSE #> 466 30 1.4047494 0.406179915 fv Gamma Cox, Log-Normal TRUE #> 482 31 0.8005746 0.266232147 fv Gamma Cox, Log-Normal FALSE #> 498 32 0.9957436 0.261294995 fv Gamma Cox, Log-Normal FALSE #> 514 33 0.8044589 0.172836665 fv Gamma Cox, Log-Normal FALSE #> 530 34 0.7033578 0.165484797 fv Gamma Cox, Log-Normal FALSE #> 546 35 1.0301148 0.275033997 fv Gamma Cox, Log-Normal FALSE #> 562 36 0.7542718 0.277262843 fv Gamma Cox, Log-Normal FALSE #> 578 37 0.7112477 0.143086191 fv Gamma Cox, Log-Normal FALSE #> 594 38 0.6321543 0.120638937 fv Gamma Cox, Log-Normal FALSE #> 610 39 0.9190196 0.162403199 fv Gamma Cox, Log-Normal FALSE #> 626 40 0.5901511 0.153295406 fv Gamma Cox, Log-Normal FALSE #> 642 41 1.6955260 0.274068495 fv Gamma Cox, Log-Normal TRUE #> 658 42 0.9786594 0.338436250 fv Gamma Cox, Log-Normal FALSE #> 674 43 1.0846014 0.238001169 fv Gamma Cox, Log-Normal FALSE #> 690 44 1.0670686 0.209168137 fv Gamma Cox, Log-Normal FALSE #> 706 45 0.9094972 0.153713130 fv Gamma Cox, Log-Normal FALSE #> 722 46 0.8628380 0.143624017 fv Gamma Cox, Log-Normal FALSE #> 738 47 1.3744833 0.379085783 fv Gamma Cox, Log-Normal FALSE #> 754 48 0.9447438 0.241373759 fv Gamma Cox, Log-Normal FALSE #> 770 49 1.2051056 0.332843614 fv Gamma Cox, Log-Normal FALSE #> 786 50 1.0122736 0.235362960 fv Gamma Cox, Log-Normal FALSE #> 802 51 1.2202208 0.297438475 fv Gamma Cox, Log-Normal FALSE #> 818 52 0.6319282 0.158343089 fv Gamma Cox, Log-Normal FALSE #> 834 53 0.7892154 0.148666919 fv Gamma Cox, Log-Normal FALSE #> 850 54 0.6218626 0.147453939 fv Gamma Cox, Log-Normal FALSE #> 866 55 1.0992895 0.242091300 fv Gamma Cox, Log-Normal FALSE #> 882 56 0.7880115 0.207821575 fv Gamma Cox, Log-Normal FALSE #> 898 57 1.0838536 0.252999308 fv Gamma Cox, Log-Normal FALSE #> 914 58 0.9053863 0.269296974 fv Gamma Cox, Log-Normal FALSE #> 930 59 0.8521828 0.183532101 fv Gamma Cox, Log-Normal FALSE #> 946 60 1.1226700 0.315581488 fv Gamma Cox, Log-Normal FALSE #> 962 61 0.8470775 0.165184536 fv Gamma Cox, Log-Normal FALSE #> 978 62 0.6807293 0.158237205 fv Gamma Cox, Log-Normal FALSE #> 994 63 1.1740857 0.253571694 fv Gamma Cox, Log-Normal FALSE #> 1010 64 0.8143805 0.154909462 fv Gamma Cox, Log-Normal FALSE #> 1026 65 0.8776911 0.151461233 fv Gamma Cox, Log-Normal FALSE #> 1042 66 0.6450936 0.146446549 fv Gamma Cox, Log-Normal FALSE #> 1058 67 1.1252565 0.202649366 fv Gamma Cox, Log-Normal FALSE #> 1074 68 0.9440104 0.190197229 fv Gamma Cox, Log-Normal FALSE #> 1090 69 0.6562820 0.142885574 fv Gamma Cox, Log-Normal FALSE #> 1106 70 0.8936893 0.304947589 fv Gamma Cox, Log-Normal FALSE #> 1122 71 1.2357687 0.253047569 fv Gamma Cox, Log-Normal FALSE #> 1138 72 0.7974302 0.195318813 fv Gamma Cox, Log-Normal FALSE #> 1154 73 0.5968091 0.117975560 fv Gamma Cox, Log-Normal FALSE #> 1170 74 0.8786436 0.164497228 fv Gamma Cox, Log-Normal FALSE #> 1186 75 0.9750754 0.226532064 fv Gamma Cox, Log-Normal FALSE #> 1202 76 0.9645318 0.277393275 fv Gamma Cox, Log-Normal FALSE #> 1218 77 1.0142834 0.249169464 fv Gamma Cox, Log-Normal FALSE #> 1234 78 1.4324625 0.392466363 fv Gamma Cox, Log-Normal TRUE #> 1250 79 2.0973063 0.420079538 fv Gamma Cox, Log-Normal TRUE #> 1266 80 0.7760451 0.266768649 fv Gamma Cox, Log-Normal FALSE #> 1282 81 1.2518287 0.326399591 fv Gamma Cox, Log-Normal FALSE #> 1298 82 0.9445711 0.170469026 fv Gamma Cox, Log-Normal FALSE #> 1314 83 0.6203977 0.269831486 fv Gamma Cox, Log-Normal FALSE #> 1330 84 0.9623414 0.181377810 fv Gamma Cox, Log-Normal FALSE #> 1346 85 0.8411381 0.151718027 fv Gamma Cox, Log-Normal FALSE #> 1362 86 0.8777074 0.173496863 fv Gamma Cox, Log-Normal FALSE #> 1378 87 0.7852935 0.148358262 fv Gamma Cox, Log-Normal FALSE #> 1394 88 0.8880239 0.169358612 fv Gamma Cox, Log-Normal FALSE #> 1410 89 1.0105583 0.218935211 fv Gamma Cox, Log-Normal FALSE #> 1426 90 1.1248867 0.226352162 fv Gamma Cox, Log-Normal FALSE #> 1442 91 0.9313413 0.176657570 fv Gamma Cox, Log-Normal FALSE #> 1458 92 0.8291607 0.161043102 fv Gamma Cox, Log-Normal FALSE #> 1474 93 1.4062271 0.492947581 fv Gamma Cox, Log-Normal TRUE #> 1490 94 1.1792259 0.371694722 fv Gamma Cox, Log-Normal FALSE #> 1506 95 0.9422527 0.186808785 fv Gamma Cox, Log-Normal FALSE #> 1522 96 0.5352317 0.122349552 fv Gamma Cox, Log-Normal FALSE #> 1538 97 0.7041875 0.129219142 fv Gamma Cox, Log-Normal FALSE #> 1554 98 1.0580233 0.191281068 fv Gamma Cox, Log-Normal FALSE #> 1570 99 0.7207367 0.195627282 fv Gamma Cox, Log-Normal FALSE #> 1586 100 1.2143961 0.232039398 fv Gamma Cox, Log-Normal FALSE #> 1602 101 1.1645575 0.202974678 fv Gamma Cox, Log-Normal FALSE #> 1618 102 0.9260904 0.205704353 fv Gamma Cox, Log-Normal FALSE #> 1634 103 1.3313203 0.415434246 fv Gamma Cox, Log-Normal TRUE #> 1650 104 1.0674271 0.230488475 fv Gamma Cox, Log-Normal FALSE #> 1666 105 1.2580642 0.312120608 fv Gamma Cox, Log-Normal FALSE #> 1682 106 0.8964461 0.176933658 fv Gamma Cox, Log-Normal FALSE #> 1698 107 1.3021989 0.320620447 fv Gamma Cox, Log-Normal FALSE #> 1714 108 1.1976726 0.374873974 fv Gamma Cox, Log-Normal FALSE #> 1730 109 0.9569265 0.273685851 fv Gamma Cox, Log-Normal FALSE #> 1746 110 1.0515898 0.268561562 fv Gamma Cox, Log-Normal FALSE #> 1762 111 1.1520637 0.261829502 fv Gamma Cox, Log-Normal FALSE #> 1778 112 0.5659670 0.130417896 fv Gamma Cox, Log-Normal FALSE #> 1794 113 0.6317424 0.122015603 fv Gamma Cox, Log-Normal FALSE #> 1810 114 1.6902270 0.334508909 fv Gamma Cox, Log-Normal TRUE #> 1826 115 0.8076343 0.168987445 fv Gamma Cox, Log-Normal FALSE #> 1842 116 0.5972826 0.130764421 fv Gamma Cox, Log-Normal FALSE #> 1858 117 1.0718606 0.210925331 fv Gamma Cox, Log-Normal FALSE #> 1874 118 0.6408203 0.135263593 fv Gamma Cox, Log-Normal FALSE #> 1890 119 0.7973938 0.174571464 fv Gamma Cox, Log-Normal FALSE #> 1906 120 0.9153147 0.177857493 fv Gamma Cox, Log-Normal FALSE #> 1922 121 0.7644599 0.150392418 fv Gamma Cox, Log-Normal FALSE #> 1938 122 0.8651735 0.261036284 fv Gamma Cox, Log-Normal FALSE #> 1954 123 0.9257951 0.187252850 fv Gamma Cox, Log-Normal FALSE #> 1970 124 0.9726617 0.154366389 fv Gamma Cox, Log-Normal FALSE #> 1986 125 1.2347948 0.317895986 fv Gamma Cox, Log-Normal FALSE #> 2002 126 1.5107344 0.412559767 fv Gamma Cox, Log-Normal TRUE #> 2018 127 1.0864985 0.244291312 fv Gamma Cox, Log-Normal FALSE #> 2034 128 1.0878460 0.217467789 fv Gamma Cox, Log-Normal FALSE #> 2050 129 0.7731209 0.303435174 fv Gamma Cox, Log-Normal FALSE #> 2066 130 0.8530204 0.197021469 fv Gamma Cox, Log-Normal FALSE #> 2082 131 0.8648655 0.165310174 fv Gamma Cox, Log-Normal FALSE #> 2098 132 1.0140972 0.302995158 fv Gamma Cox, Log-Normal FALSE #> 2114 133 0.9104868 0.221438344 fv Gamma Cox, Log-Normal FALSE #> 2130 134 1.0784862 0.271217304 fv Gamma Cox, Log-Normal FALSE #> 2146 135 0.7869113 0.180651674 fv Gamma Cox, Log-Normal FALSE #> 2162 136 0.9755650 0.258643410 fv Gamma Cox, Log-Normal FALSE #> 2178 137 1.2555462 0.298280359 fv Gamma Cox, Log-Normal FALSE #> 2194 138 1.2653651 0.320038448 fv Gamma Cox, Log-Normal FALSE #> 2210 139 0.7961798 0.144604970 fv Gamma Cox, Log-Normal FALSE #> 2226 140 1.0511116 0.243823137 fv Gamma Cox, Log-Normal FALSE #> 2242 141 0.7462247 0.208792390 fv Gamma Cox, Log-Normal FALSE #> 2258 142 0.9738903 0.212138716 fv Gamma Cox, Log-Normal FALSE #> 2274 143 1.5330380 0.537623136 fv Gamma Cox, Log-Normal TRUE #> 2290 144 1.1149075 0.230445555 fv Gamma Cox, Log-Normal FALSE #> 2306 145 0.8547372 0.185823683 fv Gamma Cox, Log-Normal FALSE #> 2322 146 0.8861187 0.183574772 fv Gamma Cox, Log-Normal FALSE #> 2338 147 1.0399587 0.194159810 fv Gamma Cox, Log-Normal FALSE #> 2354 148 0.6173024 0.109281577 fv Gamma Cox, Log-Normal FALSE #> 2370 149 0.8373295 0.191571256 fv Gamma Cox, Log-Normal FALSE #> 2386 150 1.1780887 0.217442230 fv Gamma Cox, Log-Normal FALSE #> 2402 151 1.1285433 0.226278803 fv Gamma Cox, Log-Normal FALSE #> 2418 152 1.1992517 0.394939611 fv Gamma Cox, Log-Normal TRUE #> 2434 153 0.6319684 0.172725513 fv Gamma Cox, Log-Normal FALSE #> 2450 154 1.1200567 0.236910662 fv Gamma Cox, Log-Normal FALSE #> 2466 155 0.9404373 0.309352450 fv Gamma Cox, Log-Normal FALSE #> 2482 156 0.9335558 0.170459226 fv Gamma Cox, Log-Normal FALSE #> 2498 157 1.4355503 0.361703696 fv Gamma Cox, Log-Normal FALSE #> 2514 158 1.4701395 0.366841193 fv Gamma Cox, Log-Normal TRUE #> 2530 159 0.6612553 0.189431483 fv Gamma Cox, Log-Normal FALSE #> 2546 160 0.6884649 0.160081027 fv Gamma Cox, Log-Normal FALSE #> 2562 161 1.7235061 0.366167519 fv Gamma Cox, Log-Normal TRUE #> 2578 162 0.9637307 0.277366991 fv Gamma Cox, Log-Normal FALSE #> 2594 163 0.6826128 0.123999357 fv Gamma Cox, Log-Normal FALSE #> 2610 164 1.2137278 0.254986878 fv Gamma Cox, Log-Normal FALSE #> 2626 165 1.0759865 0.243107518 fv Gamma Cox, Log-Normal FALSE #> 2642 166 1.1514913 0.353009050 fv Gamma Cox, Log-Normal FALSE #> 2658 167 1.3171715 0.267054689 fv Gamma Cox, Log-Normal FALSE #> 2674 168 1.0866206 0.235629785 fv Gamma Cox, Log-Normal FALSE #> 2690 169 0.9467015 0.224115190 fv Gamma Cox, Log-Normal FALSE #> 2706 170 0.9395929 0.217597367 fv Gamma Cox, Log-Normal FALSE #> 2722 171 0.9618300 0.263408111 fv Gamma Cox, Log-Normal FALSE #> 2738 172 1.1425683 0.242325710 fv Gamma Cox, Log-Normal FALSE #> 2754 173 0.7877272 0.217794070 fv Gamma Cox, Log-Normal FALSE #> 2770 174 1.1282426 0.267735233 fv Gamma Cox, Log-Normal FALSE #> 2786 175 0.8178924 0.230738271 fv Gamma Cox, Log-Normal FALSE #> 2802 176 0.8741514 0.162586064 fv Gamma Cox, Log-Normal FALSE #> 2818 177 0.7687814 0.283467846 fv Gamma Cox, Log-Normal FALSE #> 2834 178 1.1744687 0.211056326 fv Gamma Cox, Log-Normal FALSE #> 2850 179 0.7526095 0.150027385 fv Gamma Cox, Log-Normal FALSE #> 2866 180 1.0216310 0.316148826 fv Gamma Cox, Log-Normal FALSE #> 2882 181 1.1712040 0.260266639 fv Gamma Cox, Log-Normal FALSE #> 2898 182 0.9333976 0.175417306 fv Gamma Cox, Log-Normal FALSE #> 2914 183 0.7609429 0.152764885 fv Gamma Cox, Log-Normal FALSE #> 2930 184 0.9364676 0.263118357 fv Gamma Cox, Log-Normal FALSE #> 2946 185 1.1970108 0.256427056 fv Gamma Cox, Log-Normal FALSE #> 2962 186 1.3811930 0.386834280 fv Gamma Cox, Log-Normal FALSE #> 2978 187 0.9677626 0.218961822 fv Gamma Cox, Log-Normal FALSE #> 2994 188 0.6677381 0.129193425 fv Gamma Cox, Log-Normal FALSE #> 3010 189 1.0300136 0.181675457 fv Gamma Cox, Log-Normal FALSE #> 3026 190 0.9781161 0.186623640 fv Gamma Cox, Log-Normal FALSE #> 3042 191 1.0047812 0.234422284 fv Gamma Cox, Log-Normal FALSE #> 3058 192 1.0481335 0.313856424 fv Gamma Cox, Log-Normal FALSE #> 3074 193 0.8578876 0.206851646 fv Gamma Cox, Log-Normal FALSE #> 3090 194 0.8025329 0.177765199 fv Gamma Cox, Log-Normal FALSE #> 3106 195 1.0948348 0.189268663 fv Gamma Cox, Log-Normal FALSE #> 3122 196 1.1531601 0.315355691 fv Gamma Cox, Log-Normal FALSE #> 3138 197 0.9174118 0.146017107 fv Gamma Cox, Log-Normal FALSE #> 3154 198 0.9822719 0.160214536 fv Gamma Cox, Log-Normal FALSE #> 3170 199 0.7665154 0.178048907 fv Gamma Cox, Log-Normal FALSE #> 3186 200 1.0827449 0.216626911 fv Gamma Cox, Log-Normal FALSE #> 3202 201 1.0550061 0.243012425 fv Gamma Cox, Log-Normal FALSE #> 3218 202 1.0972858 0.215662323 fv Gamma Cox, Log-Normal FALSE #> 3234 203 0.9855765 0.182481322 fv Gamma Cox, Log-Normal FALSE #> 3250 204 1.0561904 0.348906497 fv Gamma Cox, Log-Normal FALSE #> 3266 205 0.7564109 0.205512464 fv Gamma Cox, Log-Normal FALSE #> 3282 206 1.0125371 0.222694936 fv Gamma Cox, Log-Normal FALSE #> 3298 207 0.6826566 0.147213825 fv Gamma Cox, Log-Normal FALSE #> 3314 208 0.9760813 0.224712745 fv Gamma Cox, Log-Normal FALSE #> 3330 209 0.9269613 0.220844066 fv Gamma Cox, Log-Normal FALSE #> 3346 210 0.9133674 0.231763968 fv Gamma Cox, Log-Normal FALSE #> 3362 211 1.4904914 0.390725669 fv Gamma Cox, Log-Normal TRUE #> 3378 212 0.9920371 0.255836508 fv Gamma Cox, Log-Normal FALSE #> 3394 213 1.1118333 0.294714345 fv Gamma Cox, Log-Normal FALSE #> 3410 214 1.0039471 0.304092232 fv Gamma Cox, Log-Normal FALSE #> 3426 215 1.1241297 0.264189786 fv Gamma Cox, Log-Normal FALSE #> 3442 216 1.2582014 0.301083523 fv Gamma Cox, Log-Normal FALSE #> 3458 217 0.8366225 0.210156062 fv Gamma Cox, Log-Normal FALSE #> 3474 218 0.8448105 0.236493852 fv Gamma Cox, Log-Normal FALSE #> 3490 219 1.2107113 0.347155926 fv Gamma Cox, Log-Normal FALSE #> 3506 220 0.7158888 0.136382455 fv Gamma Cox, Log-Normal FALSE #> 3522 221 0.9339555 0.266680492 fv Gamma Cox, Log-Normal FALSE #> 3538 222 1.1192118 0.312072336 fv Gamma Cox, Log-Normal FALSE #> 3554 223 1.0452753 0.280574246 fv Gamma Cox, Log-Normal FALSE #> 3570 224 1.0115289 0.233439970 fv Gamma Cox, Log-Normal FALSE #> 3586 225 0.8032168 0.161726631 fv Gamma Cox, Log-Normal FALSE #> 3602 226 1.3087768 0.413967329 fv Gamma Cox, Log-Normal TRUE #> 3618 227 0.8661987 0.237439745 fv Gamma Cox, Log-Normal FALSE #> 3634 228 1.1166755 0.216930095 fv Gamma Cox, Log-Normal FALSE #> 3650 229 1.1105627 0.275511999 fv Gamma Cox, Log-Normal FALSE #> 3666 230 0.8823663 0.147648628 fv Gamma Cox, Log-Normal FALSE #> 3682 231 1.1464490 0.264342378 fv Gamma Cox, Log-Normal FALSE #> 3698 232 1.0282286 0.294509349 fv Gamma Cox, Log-Normal FALSE #> 3714 233 1.1858851 0.308748988 fv Gamma Cox, Log-Normal FALSE #> 3730 234 0.9141730 0.234737862 fv Gamma Cox, Log-Normal FALSE #> 3746 235 1.1254600 0.356891640 fv Gamma Cox, Log-Normal FALSE #> 3762 236 0.6441731 0.174629945 fv Gamma Cox, Log-Normal FALSE #> 3778 237 0.8396326 0.205428196 fv Gamma Cox, Log-Normal FALSE #> 3794 238 0.8108753 0.210967352 fv Gamma Cox, Log-Normal FALSE #> 3810 239 0.9353923 0.175452236 fv Gamma Cox, Log-Normal FALSE #> 3826 240 1.1534031 0.316909074 fv Gamma Cox, Log-Normal FALSE #> 3842 241 0.8525632 0.153161651 fv Gamma Cox, Log-Normal FALSE #> 3858 242 0.6325823 0.110859718 fv Gamma Cox, Log-Normal FALSE #> 3874 243 1.3438274 0.504696267 fv Gamma Cox, Log-Normal TRUE #> 3890 244 0.6847331 0.117664089 fv Gamma Cox, Log-Normal FALSE #> 3906 245 1.5084013 0.416220066 fv Gamma Cox, Log-Normal TRUE #> 3922 246 0.8600815 0.160092148 fv Gamma Cox, Log-Normal FALSE #> 3938 247 1.0459691 0.247888885 fv Gamma Cox, Log-Normal FALSE #> 3954 248 1.3774923 0.295724239 fv Gamma Cox, Log-Normal FALSE #> 3970 249 1.4544026 0.401018407 fv Gamma Cox, Log-Normal TRUE #> 3986 250 0.9930866 0.252367133 fv Gamma Cox, Log-Normal FALSE #> 4002 251 1.0750961 0.286717462 fv Gamma Cox, Log-Normal FALSE #> 4018 252 1.1463194 0.342407069 fv Gamma Cox, Log-Normal FALSE #> 4034 253 1.2383183 0.401788395 fv Gamma Cox, Log-Normal TRUE #> 4050 254 0.6184252 0.098351797 fv Gamma Cox, Log-Normal FALSE #> 4066 255 0.9288740 0.135923481 fv Gamma Cox, Log-Normal FALSE #> 4082 256 0.9116082 0.198199738 fv Gamma Cox, Log-Normal FALSE #> 4098 257 0.6749869 0.129906431 fv Gamma Cox, Log-Normal FALSE #> 4114 258 1.0142908 0.337359222 fv Gamma Cox, Log-Normal FALSE #> 4130 259 0.9440221 0.210134843 fv Gamma Cox, Log-Normal FALSE #> 4146 260 1.1202138 0.249898993 fv Gamma Cox, Log-Normal FALSE #> 4162 261 0.5960250 0.118672454 fv Gamma Cox, Log-Normal FALSE #> 4178 262 0.8366969 0.176398436 fv Gamma Cox, Log-Normal FALSE #> 4194 263 0.7871702 0.205713317 fv Gamma Cox, Log-Normal FALSE #> 4210 264 0.6057126 0.113149327 fv Gamma Cox, Log-Normal FALSE #> 4226 265 0.7758375 0.147043597 fv Gamma Cox, Log-Normal FALSE #> 4242 266 0.8500845 0.224891518 fv Gamma Cox, Log-Normal FALSE #> 4258 267 0.9199981 0.195893000 fv Gamma Cox, Log-Normal FALSE #> 4274 268 0.9880338 0.209263821 fv Gamma Cox, Log-Normal FALSE #> 4290 269 1.6572488 0.438643117 fv Gamma Cox, Log-Normal TRUE #> 4306 270 1.2169293 0.315454041 fv Gamma Cox, Log-Normal FALSE #> 4322 271 1.2092937 0.306710304 fv Gamma Cox, Log-Normal FALSE #> 4338 272 0.7054006 0.192228252 fv Gamma Cox, Log-Normal FALSE #> 4354 273 0.8125655 0.154642396 fv Gamma Cox, Log-Normal FALSE #> 4370 274 0.9034828 0.186117871 fv Gamma Cox, Log-Normal FALSE #> 4386 275 1.1334718 0.225436721 fv Gamma Cox, Log-Normal FALSE #> 4402 276 1.0808167 0.354131546 fv Gamma Cox, Log-Normal FALSE #> 4418 277 0.8663479 0.141176671 fv Gamma Cox, Log-Normal FALSE #> 4434 278 1.0154270 0.195194389 fv Gamma Cox, Log-Normal FALSE #> 4450 279 0.9972416 0.246791708 fv Gamma Cox, Log-Normal FALSE #> 4466 280 0.9485671 0.192665901 fv Gamma Cox, Log-Normal FALSE #> 4482 281 1.5419471 0.432963938 fv Gamma Cox, Log-Normal TRUE #> 4498 282 0.7366272 0.154485998 fv Gamma Cox, Log-Normal FALSE #> 4514 283 1.1387523 0.351311035 fv Gamma Cox, Log-Normal FALSE #> 4530 284 0.7606273 0.130651621 fv Gamma Cox, Log-Normal FALSE #> 4546 285 0.5940809 0.114410663 fv Gamma Cox, Log-Normal FALSE #> 4562 286 0.9980889 0.165993278 fv Gamma Cox, Log-Normal FALSE #> 4578 287 0.7786292 0.173527925 fv Gamma Cox, Log-Normal FALSE #> 4594 288 1.8012469 0.384382846 fv Gamma Cox, Log-Normal TRUE #> 4610 289 0.8352625 0.230080256 fv Gamma Cox, Log-Normal FALSE #> 4626 290 0.7462650 0.161150218 fv Gamma Cox, Log-Normal FALSE #> 4642 291 0.7581738 0.185194416 fv Gamma Cox, Log-Normal FALSE #> 4658 292 0.7315072 0.136632050 fv Gamma Cox, Log-Normal FALSE #> 4674 293 1.1794738 0.263230250 fv Gamma Cox, Log-Normal FALSE #> 4690 294 0.8364797 0.177888851 fv Gamma Cox, Log-Normal FALSE #> 4706 295 1.5702252 0.363660287 fv Gamma Cox, Log-Normal TRUE #> 4722 296 1.0030032 0.212419723 fv Gamma Cox, Log-Normal FALSE #> 4738 297 1.7048282 0.324692247 fv Gamma Cox, Log-Normal TRUE #> 4754 298 0.6792576 0.124013511 fv Gamma Cox, Log-Normal FALSE #> 4770 299 0.7179893 0.156934076 fv Gamma Cox, Log-Normal FALSE #> 4786 300 1.1245685 0.198322193 fv Gamma Cox, Log-Normal FALSE #> 4802 301 0.6708749 0.171248942 fv Gamma Cox, Log-Normal FALSE #> 4818 302 1.0425587 0.181386611 fv Gamma Cox, Log-Normal FALSE #> 4834 303 0.7687011 0.144588971 fv Gamma Cox, Log-Normal FALSE #> 4850 304 0.8183131 0.180688666 fv Gamma Cox, Log-Normal FALSE #> 4866 305 1.1994373 0.254185287 fv Gamma Cox, Log-Normal FALSE #> 4882 306 0.9480399 0.206670969 fv Gamma Cox, Log-Normal FALSE #> 4898 307 1.0547876 0.317754660 fv Gamma Cox, Log-Normal FALSE #> 4914 308 0.8707234 0.206289074 fv Gamma Cox, Log-Normal FALSE #> 4930 309 1.0009221 0.187321610 fv Gamma Cox, Log-Normal FALSE #> 4946 310 1.5183534 0.350397464 fv Gamma Cox, Log-Normal TRUE #> 4962 311 1.2122527 0.296579713 fv Gamma Cox, Log-Normal FALSE #> 4978 312 1.8443405 0.479858067 fv Gamma Cox, Log-Normal TRUE #> 4994 313 1.1266272 0.250518734 fv Gamma Cox, Log-Normal FALSE #> 5010 314 0.9134451 0.223254762 fv Gamma Cox, Log-Normal FALSE #> 5026 315 1.0694137 0.206784794 fv Gamma Cox, Log-Normal FALSE #> 5042 316 1.5557750 0.331763485 fv Gamma Cox, Log-Normal TRUE #> 5058 317 0.7900325 0.184343319 fv Gamma Cox, Log-Normal FALSE #> 5074 318 0.9676750 0.285161091 fv Gamma Cox, Log-Normal FALSE #> 5090 319 0.7534842 0.186475417 fv Gamma Cox, Log-Normal FALSE #> 5106 320 0.7587523 0.158245032 fv Gamma Cox, Log-Normal FALSE #> 5122 321 1.3296280 0.289607929 fv Gamma Cox, Log-Normal FALSE #> 5138 322 0.6540554 0.153362582 fv Gamma Cox, Log-Normal FALSE #> 5154 323 1.1866786 0.246796331 fv Gamma Cox, Log-Normal FALSE #> 5170 324 0.7879666 0.235532790 fv Gamma Cox, Log-Normal FALSE #> 5186 325 0.9063958 0.177813514 fv Gamma Cox, Log-Normal FALSE #> 5202 326 0.8994038 0.180708837 fv Gamma Cox, Log-Normal FALSE #> 5218 327 0.9343756 0.199207745 fv Gamma Cox, Log-Normal FALSE #> 5234 328 1.4427292 0.367840271 fv Gamma Cox, Log-Normal FALSE #> 5250 329 1.2314166 0.320033252 fv Gamma Cox, Log-Normal FALSE #> 5266 330 0.9467010 0.225445798 fv Gamma Cox, Log-Normal FALSE #> 5282 331 1.1330281 0.231943006 fv Gamma Cox, Log-Normal FALSE #> 5298 332 0.7331899 0.197574585 fv Gamma Cox, Log-Normal FALSE #> 5314 333 0.6844227 0.140883756 fv Gamma Cox, Log-Normal FALSE #> 5330 334 1.3781416 0.249637577 fv Gamma Cox, Log-Normal FALSE #> 5346 335 1.0702186 0.271371029 fv Gamma Cox, Log-Normal FALSE #> 5362 336 0.6209932 0.164255992 fv Gamma Cox, Log-Normal FALSE #> 5378 337 0.8421416 0.206148684 fv Gamma Cox, Log-Normal FALSE #> 5394 338 0.7236815 0.112024580 fv Gamma Cox, Log-Normal FALSE #> 5410 339 1.0388795 0.295391600 fv Gamma Cox, Log-Normal FALSE #> 5426 340 1.1095304 0.403572705 fv Gamma Cox, Log-Normal TRUE #> 5442 341 0.6719273 0.137761634 fv Gamma Cox, Log-Normal FALSE #> 5458 342 0.5332889 0.101209542 fv Gamma Cox, Log-Normal FALSE #> 5474 343 0.7748324 0.181756300 fv Gamma Cox, Log-Normal FALSE #> 5490 344 1.3667207 0.352452784 fv Gamma Cox, Log-Normal FALSE #> 5506 345 1.1973392 0.238025218 fv Gamma Cox, Log-Normal FALSE #> 5522 346 1.0638629 0.203973708 fv Gamma Cox, Log-Normal FALSE #> 5538 347 0.9372712 0.157409347 fv Gamma Cox, Log-Normal FALSE #> 5554 348 1.4096446 0.303746493 fv Gamma Cox, Log-Normal FALSE #> 5570 349 1.1515909 0.267338558 fv Gamma Cox, Log-Normal FALSE #> 5586 350 1.0566777 0.204651400 fv Gamma Cox, Log-Normal FALSE #> 5602 351 1.2270499 0.365187960 fv Gamma Cox, Log-Normal FALSE #> 5618 352 1.1384745 0.320730548 fv Gamma Cox, Log-Normal FALSE #> 5634 353 0.6761084 0.151468116 fv Gamma Cox, Log-Normal FALSE #> 5650 354 0.9381758 0.195546224 fv Gamma Cox, Log-Normal FALSE #> 5666 355 1.1119338 0.223665047 fv Gamma Cox, Log-Normal FALSE #> 5682 356 1.0905507 0.292129252 fv Gamma Cox, Log-Normal FALSE #> 5698 357 0.8452529 0.184177665 fv Gamma Cox, Log-Normal FALSE #> 5714 358 0.8066733 0.115900961 fv Gamma Cox, Log-Normal FALSE #> 5730 359 0.8677696 0.265080079 fv Gamma Cox, Log-Normal FALSE #> 5746 360 0.7287289 0.131955369 fv Gamma Cox, Log-Normal FALSE #> 5762 361 1.3008883 0.360862820 fv Gamma Cox, Log-Normal FALSE #> 5778 362 0.5904270 0.130278388 fv Gamma Cox, Log-Normal FALSE #> 5794 363 0.9529346 0.266922925 fv Gamma Cox, Log-Normal FALSE #> 5810 364 0.6480905 0.167160297 fv Gamma Cox, Log-Normal FALSE #> 5826 365 0.9971018 0.330971308 fv Gamma Cox, Log-Normal FALSE #> 5842 366 1.1939180 0.294834729 fv Gamma Cox, Log-Normal FALSE #> 5858 367 1.1703409 0.220120120 fv Gamma Cox, Log-Normal FALSE #> 5874 368 1.1791884 0.429781697 fv Gamma Cox, Log-Normal TRUE #> 5890 369 0.6704603 0.124258362 fv Gamma Cox, Log-Normal FALSE #> 5906 370 0.6437177 0.144677882 fv Gamma Cox, Log-Normal FALSE #> 5922 371 1.0793130 0.276618474 fv Gamma Cox, Log-Normal FALSE #> 5938 372 0.7821637 0.249248520 fv Gamma Cox, Log-Normal FALSE #> 5954 373 0.9198681 0.214796254 fv Gamma Cox, Log-Normal FALSE #> 5970 374 0.7206397 0.140563196 fv Gamma Cox, Log-Normal FALSE #> 5986 375 0.7455317 0.156345249 fv Gamma Cox, Log-Normal FALSE #> 6002 376 0.7820201 0.164687256 fv Gamma Cox, Log-Normal FALSE #> 6018 377 1.2011353 0.333770351 fv Gamma Cox, Log-Normal FALSE #> 6034 378 1.0732917 0.230685922 fv Gamma Cox, Log-Normal FALSE #> 6050 379 0.7956228 0.135068436 fv Gamma Cox, Log-Normal FALSE #> 6066 380 0.9821977 0.202408585 fv Gamma Cox, Log-Normal FALSE #> 6082 381 0.7109656 0.149643496 fv Gamma Cox, Log-Normal FALSE #> 6098 382 0.9332571 0.225055001 fv Gamma Cox, Log-Normal FALSE #> 6114 383 1.4525060 0.252050709 fv Gamma Cox, Log-Normal FALSE #> 6130 384 1.1156376 0.225314386 fv Gamma Cox, Log-Normal FALSE #> 6146 385 0.6937414 0.130805747 fv Gamma Cox, Log-Normal FALSE #> 6162 386 0.4539095 0.143952602 fv Gamma Cox, Log-Normal TRUE #> 6178 387 0.6909378 0.131527306 fv Gamma Cox, Log-Normal FALSE #> 6194 388 0.8732335 0.176442179 fv Gamma Cox, Log-Normal FALSE #> 6210 389 0.6361769 0.145037919 fv Gamma Cox, Log-Normal FALSE #> 6226 390 0.7550553 0.176928641 fv Gamma Cox, Log-Normal FALSE #> 6242 391 0.6148799 0.135829174 fv Gamma Cox, Log-Normal FALSE #> 6258 392 1.1216041 0.230266849 fv Gamma Cox, Log-Normal FALSE #> 6274 393 0.6766989 0.155586331 fv Gamma Cox, Log-Normal FALSE #> 6290 394 1.2809946 0.303295151 fv Gamma Cox, Log-Normal FALSE #> 6306 395 0.9574912 0.257132721 fv Gamma Cox, Log-Normal FALSE #> 6322 396 0.9517729 0.286349874 fv Gamma Cox, Log-Normal FALSE #> 6338 397 1.1124126 0.212177754 fv Gamma Cox, Log-Normal FALSE #> 6354 398 0.9331498 0.195380303 fv Gamma Cox, Log-Normal FALSE #> 6370 399 0.7590104 0.183901117 fv Gamma Cox, Log-Normal FALSE #> 6386 400 0.8141348 0.209282394 fv Gamma Cox, Log-Normal FALSE #> 6402 401 1.1725501 0.302794794 fv Gamma Cox, Log-Normal FALSE #> 6418 402 0.8902602 0.257412268 fv Gamma Cox, Log-Normal FALSE #> 6434 403 0.8519330 0.172126937 fv Gamma Cox, Log-Normal FALSE #> 6450 404 1.0476725 0.336457821 fv Gamma Cox, Log-Normal FALSE #> 6466 405 0.7691769 0.130780437 fv Gamma Cox, Log-Normal FALSE #> 6482 406 0.7361662 0.138962491 fv Gamma Cox, Log-Normal FALSE #> 6498 407 1.0450332 0.255588768 fv Gamma Cox, Log-Normal FALSE #> 6514 408 0.6282204 0.263436321 fv Gamma Cox, Log-Normal FALSE #> 6530 409 1.2675705 0.255827563 fv Gamma Cox, Log-Normal FALSE #> 6546 410 1.4027855 0.405498694 fv Gamma Cox, Log-Normal TRUE #> 6562 411 1.0909367 0.364351515 fv Gamma Cox, Log-Normal FALSE #> 6578 412 0.8247547 0.147850429 fv Gamma Cox, Log-Normal FALSE #> 6594 413 0.9001954 0.207926748 fv Gamma Cox, Log-Normal FALSE #> 6610 414 0.8922666 0.205074388 fv Gamma Cox, Log-Normal FALSE #> 6626 415 1.1201345 0.235581947 fv Gamma Cox, Log-Normal FALSE #> 6642 416 0.7256155 0.151266912 fv Gamma Cox, Log-Normal FALSE #> 6658 417 0.9635329 0.165467319 fv Gamma Cox, Log-Normal FALSE #> 6674 418 0.9579341 0.221398430 fv Gamma Cox, Log-Normal FALSE #> 6690 419 0.8134821 0.226987586 fv Gamma Cox, Log-Normal FALSE #> 6706 420 1.1122495 0.304778954 fv Gamma Cox, Log-Normal FALSE #> 6722 421 1.0634088 0.195189997 fv Gamma Cox, Log-Normal FALSE #> 6738 422 0.9576175 0.239546727 fv Gamma Cox, Log-Normal FALSE #> 6754 423 1.0594321 0.228721736 fv Gamma Cox, Log-Normal FALSE #> 6770 424 0.9597868 0.276897329 fv Gamma Cox, Log-Normal FALSE #> 6786 425 0.7315512 0.180004030 fv Gamma Cox, Log-Normal FALSE #> 6802 426 1.2737580 0.295162754 fv Gamma Cox, Log-Normal FALSE #> 6818 427 0.5082034 0.138832393 fv Gamma Cox, Log-Normal FALSE #> 6834 428 1.4427275 0.408389941 fv Gamma Cox, Log-Normal TRUE #> 6850 429 0.7931159 0.177763555 fv Gamma Cox, Log-Normal FALSE #> 6866 430 0.6869118 0.109383857 fv Gamma Cox, Log-Normal FALSE #> 6882 431 1.0984440 0.245113401 fv Gamma Cox, Log-Normal FALSE #> 6898 432 0.6733838 0.147400668 fv Gamma Cox, Log-Normal FALSE #> 6914 433 1.1186541 0.329798430 fv Gamma Cox, Log-Normal FALSE #> 6930 434 1.2398972 0.222930487 fv Gamma Cox, Log-Normal FALSE #> 6946 435 0.8050301 0.140179777 fv Gamma Cox, Log-Normal FALSE #> 6962 436 1.2438138 0.307965337 fv Gamma Cox, Log-Normal FALSE #> 6978 437 0.8224460 0.126221473 fv Gamma Cox, Log-Normal FALSE #> 6994 438 0.6359268 0.189779025 fv Gamma Cox, Log-Normal FALSE #> 7010 439 0.9316025 0.286812594 fv Gamma Cox, Log-Normal FALSE #> 7026 440 0.8116677 0.150546885 fv Gamma Cox, Log-Normal FALSE #> 7042 441 0.4957894 0.090606260 fv Gamma Cox, Log-Normal TRUE #> 7058 442 0.9920610 0.183115913 fv Gamma Cox, Log-Normal FALSE #> 7074 443 0.6649345 0.222904431 fv Gamma Cox, Log-Normal FALSE #> 7090 444 0.8035197 0.183494932 fv Gamma Cox, Log-Normal FALSE #> 7106 445 1.2090738 0.358004906 fv Gamma Cox, Log-Normal FALSE #> 7122 446 1.0087995 0.220975718 fv Gamma Cox, Log-Normal FALSE #> 7138 447 0.9565913 0.200822801 fv Gamma Cox, Log-Normal FALSE #> 7154 448 1.0441738 0.260365565 fv Gamma Cox, Log-Normal FALSE #> 7170 449 1.1615839 0.216975618 fv Gamma Cox, Log-Normal FALSE #> 7186 450 0.7740953 0.140879888 fv Gamma Cox, Log-Normal FALSE #> 7202 451 1.0692578 0.222198213 fv Gamma Cox, Log-Normal FALSE #> 7218 452 0.6524954 0.123359523 fv Gamma Cox, Log-Normal FALSE #> 7234 453 1.0336945 0.199674407 fv Gamma Cox, Log-Normal FALSE #> 7250 454 0.8403049 0.274222788 fv Gamma Cox, Log-Normal FALSE #> 7266 455 1.0557566 0.225824987 fv Gamma Cox, Log-Normal FALSE #> 7282 456 1.0962428 0.243979297 fv Gamma Cox, Log-Normal FALSE #> 7298 457 1.1029915 0.213750191 fv Gamma Cox, Log-Normal FALSE #> 7314 458 1.2720893 0.351284624 fv Gamma Cox, Log-Normal FALSE #> 7330 459 0.8717904 0.217191101 fv Gamma Cox, Log-Normal FALSE #> 7346 460 0.8326436 0.222186414 fv Gamma Cox, Log-Normal FALSE #> 7362 461 1.0365468 0.264064386 fv Gamma Cox, Log-Normal FALSE #> 7378 462 1.3924264 0.387524188 fv Gamma Cox, Log-Normal FALSE #> 7394 463 0.7356121 0.119417840 fv Gamma Cox, Log-Normal FALSE #> 7410 464 0.6727029 0.179079073 fv Gamma Cox, Log-Normal FALSE #> 7426 465 0.9358999 0.191441499 fv Gamma Cox, Log-Normal FALSE #> 7442 466 1.0797508 0.320286330 fv Gamma Cox, Log-Normal FALSE #> 7458 467 1.2546135 0.331880843 fv Gamma Cox, Log-Normal FALSE #> 7474 468 0.6594459 0.127506910 fv Gamma Cox, Log-Normal FALSE #> 7490 469 1.0773071 0.306539717 fv Gamma Cox, Log-Normal FALSE #> 7506 470 0.9831728 0.182063344 fv Gamma Cox, Log-Normal FALSE #> 7522 471 0.7441140 0.128457720 fv Gamma Cox, Log-Normal FALSE #> 7538 472 1.1705633 0.275046221 fv Gamma Cox, Log-Normal FALSE #> 7554 473 0.7944060 0.160426950 fv Gamma Cox, Log-Normal FALSE #> 7570 474 0.7893312 0.236801144 fv Gamma Cox, Log-Normal FALSE #> 7586 475 1.6420040 0.472204521 fv Gamma Cox, Log-Normal TRUE #> 7602 476 0.6907611 0.179152271 fv Gamma Cox, Log-Normal FALSE #> 7618 477 1.2306596 0.240740348 fv Gamma Cox, Log-Normal FALSE #> 7634 478 0.9703432 0.280043037 fv Gamma Cox, Log-Normal FALSE #> 7650 479 1.2556369 0.278832138 fv Gamma Cox, Log-Normal FALSE #> 7666 480 1.0316289 0.262194195 fv Gamma Cox, Log-Normal FALSE #> 7682 481 0.9069980 0.240001733 fv Gamma Cox, Log-Normal FALSE #> 7698 482 0.8651847 0.324883873 fv Gamma Cox, Log-Normal FALSE #> 7714 483 0.9195134 0.324966495 fv Gamma Cox, Log-Normal FALSE #> 7730 484 0.9354766 0.158821908 fv Gamma Cox, Log-Normal FALSE #> 7746 485 1.0036369 0.235477830 fv Gamma Cox, Log-Normal FALSE #> 7762 486 0.7230942 0.191080579 fv Gamma Cox, Log-Normal FALSE #> 7778 487 1.0953227 0.216107707 fv Gamma Cox, Log-Normal FALSE #> 7794 488 0.9509228 0.341422686 fv Gamma Cox, Log-Normal FALSE #> 7810 489 1.2438654 0.335909184 fv Gamma Cox, Log-Normal FALSE #> 7826 490 1.6108304 0.304536731 fv Gamma Cox, Log-Normal TRUE #> 7842 491 0.8306550 0.168517444 fv Gamma Cox, Log-Normal FALSE #> 7858 492 1.2528581 0.347548040 fv Gamma Cox, Log-Normal FALSE #> 7874 493 1.1141412 0.417141114 fv Gamma Cox, Log-Normal TRUE #> 7890 494 0.8588516 0.179209258 fv Gamma Cox, Log-Normal FALSE #> 7906 495 0.9641937 0.220531498 fv Gamma Cox, Log-Normal FALSE #> 7922 496 0.6759623 0.166289250 fv Gamma Cox, Log-Normal FALSE #> 7938 497 0.9033618 0.200323244 fv Gamma Cox, Log-Normal FALSE #> 7954 498 0.8062435 0.190505432 fv Gamma Cox, Log-Normal FALSE #> 7970 499 1.0779911 0.255751410 fv Gamma Cox, Log-Normal FALSE #> 7986 500 1.2670375 0.297555986 fv Gamma Cox, Log-Normal FALSE #> 8002 501 0.8648506 0.180810911 fv Gamma Cox, Log-Normal FALSE #> 8018 502 1.0364983 0.208051259 fv Gamma Cox, Log-Normal FALSE #> 8034 503 0.7537958 0.149464952 fv Gamma Cox, Log-Normal FALSE #> 8050 504 1.2053252 0.210116068 fv Gamma Cox, Log-Normal FALSE #> 8066 505 1.4316809 0.361150122 fv Gamma Cox, Log-Normal FALSE #> 8082 506 0.8599211 0.164904216 fv Gamma Cox, Log-Normal FALSE #> 8098 507 0.6803896 0.132319900 fv Gamma Cox, Log-Normal FALSE #> 8114 508 0.8321579 0.174584707 fv Gamma Cox, Log-Normal FALSE #> 8130 509 0.8577265 0.171261565 fv Gamma Cox, Log-Normal FALSE #> 8146 510 1.0840758 0.191525801 fv Gamma Cox, Log-Normal FALSE #> 8162 511 0.9751571 0.228962046 fv Gamma Cox, Log-Normal FALSE #> 8178 512 0.9171955 0.141575466 fv Gamma Cox, Log-Normal FALSE #> 8194 513 0.7704456 0.179734941 fv Gamma Cox, Log-Normal FALSE #> 8210 514 0.9767960 0.270516974 fv Gamma Cox, Log-Normal FALSE #> 8226 515 0.8482220 0.193164393 fv Gamma Cox, Log-Normal FALSE #> 8242 516 1.0376892 0.256220330 fv Gamma Cox, Log-Normal FALSE #> 8258 517 1.1357326 0.273350115 fv Gamma Cox, Log-Normal FALSE #> 8274 518 1.2253076 0.238917068 fv Gamma Cox, Log-Normal FALSE #> 8290 519 0.8713882 0.184042855 fv Gamma Cox, Log-Normal FALSE #> 8306 520 0.7926449 0.167454593 fv Gamma Cox, Log-Normal FALSE #> 8322 521 0.7127690 0.140016713 fv Gamma Cox, Log-Normal FALSE #> 8338 522 0.6570335 0.147981785 fv Gamma Cox, Log-Normal FALSE #> 8354 523 0.9035491 0.240796228 fv Gamma Cox, Log-Normal FALSE #> 8370 524 0.7910639 0.197298251 fv Gamma Cox, Log-Normal FALSE #> 8386 525 1.3295251 0.263165691 fv Gamma Cox, Log-Normal FALSE #> 8402 526 1.1085831 0.260362630 fv Gamma Cox, Log-Normal FALSE #> 8418 527 0.9930652 0.328052452 fv Gamma Cox, Log-Normal FALSE #> 8434 528 0.7418328 0.169881227 fv Gamma Cox, Log-Normal FALSE #> 8450 529 1.2037156 0.256995886 fv Gamma Cox, Log-Normal FALSE #> 8466 530 1.3353275 0.308725331 fv Gamma Cox, Log-Normal FALSE #> 8482 531 1.0724559 0.185489763 fv Gamma Cox, Log-Normal FALSE #> 8498 532 1.1767181 0.288783024 fv Gamma Cox, Log-Normal FALSE #> 8514 533 0.9461511 0.224624441 fv Gamma Cox, Log-Normal FALSE #> 8530 534 1.0525213 0.206749296 fv Gamma Cox, Log-Normal FALSE #> 8546 535 1.4301389 0.327696069 fv Gamma Cox, Log-Normal FALSE #> 8562 536 1.0021084 0.171694724 fv Gamma Cox, Log-Normal FALSE #> 8578 537 0.9908633 0.334784893 fv Gamma Cox, Log-Normal FALSE #> 8594 538 0.7459350 0.166232904 fv Gamma Cox, Log-Normal FALSE #> 8610 539 1.1963909 0.302554905 fv Gamma Cox, Log-Normal FALSE #> 8626 540 1.0600937 0.334538983 fv Gamma Cox, Log-Normal FALSE #> 8642 541 0.7824209 0.191635059 fv Gamma Cox, Log-Normal FALSE #> 8658 542 1.0469726 0.186010712 fv Gamma Cox, Log-Normal FALSE #> 8674 543 1.1353147 0.200048549 fv Gamma Cox, Log-Normal FALSE #> 8690 544 1.0727346 0.223928441 fv Gamma Cox, Log-Normal FALSE #> 8706 545 0.9542188 0.258825073 fv Gamma Cox, Log-Normal FALSE #> 8722 546 0.7626356 0.145367051 fv Gamma Cox, Log-Normal FALSE #> 8738 547 0.7998809 0.146606750 fv Gamma Cox, Log-Normal FALSE #> 8754 548 0.8468470 0.311423205 fv Gamma Cox, Log-Normal FALSE #> 8770 549 1.0343320 0.291774386 fv Gamma Cox, Log-Normal FALSE #> 8786 550 1.3436451 0.531137533 fv Gamma Cox, Log-Normal TRUE #> 8802 551 0.9109458 0.190163812 fv Gamma Cox, Log-Normal FALSE #> 8818 552 0.7473400 0.168944580 fv Gamma Cox, Log-Normal FALSE #> 8834 553 0.7435618 0.152999604 fv Gamma Cox, Log-Normal FALSE #> 8850 554 0.9450358 0.248564971 fv Gamma Cox, Log-Normal FALSE #> 8866 555 0.6737041 0.126162135 fv Gamma Cox, Log-Normal FALSE #> 8882 556 0.6772282 0.151785951 fv Gamma Cox, Log-Normal FALSE #> 8898 557 1.6904828 0.395312396 fv Gamma Cox, Log-Normal TRUE #> 8914 558 1.0339234 0.212529669 fv Gamma Cox, Log-Normal FALSE #> 8930 559 0.7993772 0.259858142 fv Gamma Cox, Log-Normal FALSE #> 8946 560 0.9719681 0.242674636 fv Gamma Cox, Log-Normal FALSE #> 8962 561 1.0261247 0.212406152 fv Gamma Cox, Log-Normal FALSE #> 8978 562 0.5757420 0.150997039 fv Gamma Cox, Log-Normal FALSE #> 8994 563 1.0409490 0.228433773 fv Gamma Cox, Log-Normal FALSE #> 9010 564 1.0615467 0.193348628 fv Gamma Cox, Log-Normal FALSE #> 9026 565 1.1679880 0.390837268 fv Gamma Cox, Log-Normal TRUE #> 9042 566 1.2199602 0.278996060 fv Gamma Cox, Log-Normal FALSE #> 9058 567 0.9822957 0.244996294 fv Gamma Cox, Log-Normal FALSE #> 9074 568 1.0201589 0.280017514 fv Gamma Cox, Log-Normal FALSE #> 9090 569 0.9406773 0.270807399 fv Gamma Cox, Log-Normal FALSE #> 9106 570 0.9279776 0.161765327 fv Gamma Cox, Log-Normal FALSE #> 9122 571 0.9326456 0.179721507 fv Gamma Cox, Log-Normal FALSE #> 9138 572 1.1013126 0.198471955 fv Gamma Cox, Log-Normal FALSE #> 9154 573 0.6222332 0.126446396 fv Gamma Cox, Log-Normal FALSE #> 9170 574 1.1432237 0.294379732 fv Gamma Cox, Log-Normal FALSE #> 9186 575 0.9600009 0.226550540 fv Gamma Cox, Log-Normal FALSE #> 9202 576 1.0609559 0.287309234 fv Gamma Cox, Log-Normal FALSE #> 9218 577 0.9115962 0.250289364 fv Gamma Cox, Log-Normal FALSE #> 9234 578 0.9202321 0.181635402 fv Gamma Cox, Log-Normal FALSE #> 9250 579 0.7970005 0.198574996 fv Gamma Cox, Log-Normal FALSE #> 9266 580 0.8541770 0.199446336 fv Gamma Cox, Log-Normal FALSE #> 9282 581 1.1327424 0.203938321 fv Gamma Cox, Log-Normal FALSE #> 9298 582 0.5324844 0.110727241 fv Gamma Cox, Log-Normal FALSE #> 9314 583 1.2170472 0.265887560 fv Gamma Cox, Log-Normal FALSE #> 9330 584 0.7405038 0.190327265 fv Gamma Cox, Log-Normal FALSE #> 9346 585 1.4674663 0.296880097 fv Gamma Cox, Log-Normal TRUE #> 9362 586 1.3357663 0.233595693 fv Gamma Cox, Log-Normal FALSE #> 9378 587 1.0434712 0.197298685 fv Gamma Cox, Log-Normal FALSE #> 9394 588 1.0601227 0.260760641 fv Gamma Cox, Log-Normal FALSE #> 9410 589 0.7426001 0.163007177 fv Gamma Cox, Log-Normal FALSE #> 9426 590 0.8895731 0.197968824 fv Gamma Cox, Log-Normal FALSE #> 9442 591 0.9799824 0.254028822 fv Gamma Cox, Log-Normal FALSE #> 9458 592 1.2819594 0.227298189 fv Gamma Cox, Log-Normal FALSE #> 9474 593 0.9126781 0.272510318 fv Gamma Cox, Log-Normal FALSE #> 9490 594 0.9415930 0.242944719 fv Gamma Cox, Log-Normal FALSE #> 9506 595 0.8669225 0.154822055 fv Gamma Cox, Log-Normal FALSE #> 9522 596 1.2023114 0.234135962 fv Gamma Cox, Log-Normal FALSE #> 9538 597 1.1852910 0.306402855 fv Gamma Cox, Log-Normal FALSE #> 9554 598 1.0144108 0.236994186 fv Gamma Cox, Log-Normal FALSE #> 9570 599 1.5141491 0.267682298 fv Gamma Cox, Log-Normal TRUE #> 9586 600 1.3093034 0.231071705 fv Gamma Cox, Log-Normal FALSE #> 9602 601 0.9685267 0.220530237 fv Gamma Cox, Log-Normal FALSE #> 9618 602 0.9567572 0.270622698 fv Gamma Cox, Log-Normal FALSE #> 9634 603 0.9007697 0.220945058 fv Gamma Cox, Log-Normal FALSE #> 9650 604 1.2452340 0.442246635 fv Gamma Cox, Log-Normal TRUE #> 9666 605 1.2222252 0.357745466 fv Gamma Cox, Log-Normal FALSE #> 9682 606 1.0475542 0.230114466 fv Gamma Cox, Log-Normal FALSE #> 9698 607 0.8173250 0.184012955 fv Gamma Cox, Log-Normal FALSE #> 9714 608 1.0264445 0.211869827 fv Gamma Cox, Log-Normal FALSE #> 9730 609 1.3393035 0.328197864 fv Gamma Cox, Log-Normal FALSE #> 9746 610 1.1612145 0.269944445 fv Gamma Cox, Log-Normal FALSE #> 9762 611 0.8716488 0.218240481 fv Gamma Cox, Log-Normal FALSE #> 9778 612 1.2478780 0.254679202 fv Gamma Cox, Log-Normal FALSE #> 9794 613 0.9089129 0.180981311 fv Gamma Cox, Log-Normal FALSE #> 9810 614 0.8236289 0.176298875 fv Gamma Cox, Log-Normal FALSE #> 9826 615 0.7781034 0.172342440 fv Gamma Cox, Log-Normal FALSE #> 9842 616 1.3207941 0.299666982 fv Gamma Cox, Log-Normal FALSE #> 9858 617 1.3523404 0.308465331 fv Gamma Cox, Log-Normal FALSE #> 9874 618 0.7054131 0.154359305 fv Gamma Cox, Log-Normal FALSE #> 9890 619 0.7621622 0.144288017 fv Gamma Cox, Log-Normal FALSE #> 9906 620 0.9294349 0.245020462 fv Gamma Cox, Log-Normal FALSE #> 9922 621 1.0852212 0.238577452 fv Gamma Cox, Log-Normal FALSE #> 9938 622 1.6889800 0.375733753 fv Gamma Cox, Log-Normal TRUE #> 9954 623 0.6497480 0.112506675 fv Gamma Cox, Log-Normal FALSE #> 9970 624 0.9417119 0.185039732 fv Gamma Cox, Log-Normal FALSE #> 9986 625 0.9615533 0.250108888 fv Gamma Cox, Log-Normal FALSE #> 10002 626 0.6491316 0.143634254 fv Gamma Cox, Log-Normal FALSE #> 10018 627 0.7991016 0.265477031 fv Gamma Cox, Log-Normal FALSE #> 10034 628 0.9209861 0.166585647 fv Gamma Cox, Log-Normal FALSE #> 10050 629 0.7470039 0.203007785 fv Gamma Cox, Log-Normal FALSE #> 10066 630 1.0690011 0.196367163 fv Gamma Cox, Log-Normal FALSE #> 10082 631 1.2764893 0.441219524 fv Gamma Cox, Log-Normal TRUE #> 10098 632 0.6869833 0.163540177 fv Gamma Cox, Log-Normal FALSE #> 10114 633 0.7001066 0.175297359 fv Gamma Cox, Log-Normal FALSE #> 10130 634 0.7032764 0.156311954 fv Gamma Cox, Log-Normal FALSE #> 10146 635 0.5491568 0.134395251 fv Gamma Cox, Log-Normal FALSE #> 10162 636 0.8513401 0.270874157 fv Gamma Cox, Log-Normal FALSE #> 10178 637 0.9566533 0.176784838 fv Gamma Cox, Log-Normal FALSE #> 10194 638 0.7933296 0.280428246 fv Gamma Cox, Log-Normal FALSE #> 10210 639 0.8824408 0.186779642 fv Gamma Cox, Log-Normal FALSE #> 10226 640 0.6936361 0.161515249 fv Gamma Cox, Log-Normal FALSE #> 10242 641 0.8355947 0.150330827 fv Gamma Cox, Log-Normal FALSE #> 10258 642 0.9279600 0.209555469 fv Gamma Cox, Log-Normal FALSE #> 10274 643 0.8074046 0.197113858 fv Gamma Cox, Log-Normal FALSE #> 10290 644 1.3611674 0.423889750 fv Gamma Cox, Log-Normal TRUE #> 10306 645 0.6554522 0.148982743 fv Gamma Cox, Log-Normal FALSE #> 10322 646 0.7228923 0.181773449 fv Gamma Cox, Log-Normal FALSE #> 10338 647 1.8011240 0.416701461 fv Gamma Cox, Log-Normal TRUE #> 10354 648 0.9024813 0.147263424 fv Gamma Cox, Log-Normal FALSE #> 10370 649 1.1228993 0.247566629 fv Gamma Cox, Log-Normal FALSE #> 10386 650 1.3658269 0.347823938 fv Gamma Cox, Log-Normal FALSE #> 10402 651 1.3826703 0.312517206 fv Gamma Cox, Log-Normal FALSE #> 10418 652 0.9966013 0.263252969 fv Gamma Cox, Log-Normal FALSE #> 10434 653 1.3938498 0.378569327 fv Gamma Cox, Log-Normal FALSE #> 10450 654 0.7498765 0.198991232 fv Gamma Cox, Log-Normal FALSE #> 10466 655 0.8188198 0.148632081 fv Gamma Cox, Log-Normal FALSE #> 10482 656 0.9838947 0.237718941 fv Gamma Cox, Log-Normal FALSE #> 10498 657 0.9509122 0.222243095 fv Gamma Cox, Log-Normal FALSE #> 10514 658 1.0495215 0.221859992 fv Gamma Cox, Log-Normal FALSE #> 10530 659 1.1024600 0.246582294 fv Gamma Cox, Log-Normal FALSE #> 10546 660 1.1214802 0.345331077 fv Gamma Cox, Log-Normal FALSE #> 10562 661 0.8252543 0.208741101 fv Gamma Cox, Log-Normal FALSE #> 10578 662 0.5439256 0.113712777 fv Gamma Cox, Log-Normal FALSE #> 10594 663 0.7762586 0.185818017 fv Gamma Cox, Log-Normal FALSE #> 10610 664 0.9321685 0.141486786 fv Gamma Cox, Log-Normal FALSE #> 10626 665 0.9641151 0.245897886 fv Gamma Cox, Log-Normal FALSE #> 10642 666 0.9707480 0.281544181 fv Gamma Cox, Log-Normal FALSE #> 10658 667 1.1775076 0.327488577 fv Gamma Cox, Log-Normal FALSE #> 10674 668 1.2100674 0.383647041 fv Gamma Cox, Log-Normal FALSE #> 10690 669 0.7079595 0.202483076 fv Gamma Cox, Log-Normal FALSE #> 10706 670 1.1701748 0.308158336 fv Gamma Cox, Log-Normal FALSE #> 10722 671 1.2338212 0.274821951 fv Gamma Cox, Log-Normal FALSE #> 10738 672 0.7795158 0.186065151 fv Gamma Cox, Log-Normal FALSE #> 10754 673 0.8208763 0.152826786 fv Gamma Cox, Log-Normal FALSE #> 10770 674 1.3740360 0.392376078 fv Gamma Cox, Log-Normal TRUE #> 10786 675 0.9580433 0.177217021 fv Gamma Cox, Log-Normal FALSE #> 10802 676 0.6479120 0.215451916 fv Gamma Cox, Log-Normal FALSE #> 10818 677 0.8237457 0.173619019 fv Gamma Cox, Log-Normal FALSE #> 10834 678 1.1448183 0.294799498 fv Gamma Cox, Log-Normal FALSE #> 10850 679 1.4160710 0.319465728 fv Gamma Cox, Log-Normal FALSE #> 10866 680 1.0010333 0.366282201 fv Gamma Cox, Log-Normal FALSE #> 10882 681 0.7361065 0.213144710 fv Gamma Cox, Log-Normal FALSE #> 10898 682 0.9640440 0.204357977 fv Gamma Cox, Log-Normal FALSE #> 10914 683 1.1832964 0.328296114 fv Gamma Cox, Log-Normal FALSE #> 10930 684 1.2352413 0.256935059 fv Gamma Cox, Log-Normal FALSE #> 10946 685 0.8576592 0.208323295 fv Gamma Cox, Log-Normal FALSE #> 10962 686 0.6559387 0.148327340 fv Gamma Cox, Log-Normal FALSE #> 10978 687 1.3955422 0.274232845 fv Gamma Cox, Log-Normal FALSE #> 10994 688 0.9477181 0.185695063 fv Gamma Cox, Log-Normal FALSE #> 11010 689 0.8098337 0.146404742 fv Gamma Cox, Log-Normal FALSE #> 11026 690 1.2282291 0.224138226 fv Gamma Cox, Log-Normal FALSE #> 11042 691 1.0052381 0.169059700 fv Gamma Cox, Log-Normal FALSE #> 11058 692 0.9559934 0.175651808 fv Gamma Cox, Log-Normal FALSE #> 11074 693 1.3037994 0.320750495 fv Gamma Cox, Log-Normal FALSE #> 11090 694 1.0887350 0.262845102 fv Gamma Cox, Log-Normal FALSE #> 11106 695 1.0245538 0.316179341 fv Gamma Cox, Log-Normal FALSE #> 11122 696 1.0057025 0.279965660 fv Gamma Cox, Log-Normal FALSE #> 11138 697 1.0332112 0.228229709 fv Gamma Cox, Log-Normal FALSE #> 11154 698 1.0008029 0.230392985 fv Gamma Cox, Log-Normal FALSE #> 11170 699 0.9448768 0.148606204 fv Gamma Cox, Log-Normal FALSE #> 11186 700 1.6100507 0.301322970 fv Gamma Cox, Log-Normal TRUE #> 11202 701 0.8168552 0.166749623 fv Gamma Cox, Log-Normal FALSE #> 11218 702 0.7951008 0.229465092 fv Gamma Cox, Log-Normal FALSE #> 11234 703 0.7124699 0.176676006 fv Gamma Cox, Log-Normal FALSE #> 11250 704 1.2850043 0.227968238 fv Gamma Cox, Log-Normal FALSE #> 11266 705 1.4407282 0.311041525 fv Gamma Cox, Log-Normal FALSE #> 11282 706 1.0292844 0.184432785 fv Gamma Cox, Log-Normal FALSE #> 11298 707 0.7592113 0.220094759 fv Gamma Cox, Log-Normal FALSE #> 11314 708 1.1536924 0.378570168 fv Gamma Cox, Log-Normal FALSE #> 11330 709 0.9301348 0.152019700 fv Gamma Cox, Log-Normal FALSE #> 11346 710 0.9747393 0.152258390 fv Gamma Cox, Log-Normal FALSE #> 11362 711 0.4419933 0.091587040 fv Gamma Cox, Log-Normal TRUE #> 11378 712 0.9574598 0.232824090 fv Gamma Cox, Log-Normal FALSE #> 11394 713 0.9989393 0.196517724 fv Gamma Cox, Log-Normal FALSE #> 11410 714 1.2846766 0.430198645 fv Gamma Cox, Log-Normal TRUE #> 11426 715 1.3765564 0.287137467 fv Gamma Cox, Log-Normal FALSE #> 11442 716 1.0736204 0.271160711 fv Gamma Cox, Log-Normal FALSE #> 11458 717 0.8447250 0.275879055 fv Gamma Cox, Log-Normal FALSE #> 11474 718 1.0081585 0.250844357 fv Gamma Cox, Log-Normal FALSE #> 11490 719 0.7888853 0.143021641 fv Gamma Cox, Log-Normal FALSE #> 11506 720 0.8275914 0.169821218 fv Gamma Cox, Log-Normal FALSE #> 11522 721 1.0362940 0.250343175 fv Gamma Cox, Log-Normal FALSE #> 11538 722 1.2802454 0.333262567 fv Gamma Cox, Log-Normal FALSE #> 11554 723 1.0636312 0.323034788 fv Gamma Cox, Log-Normal FALSE #> 11570 724 0.7908268 0.162506524 fv Gamma Cox, Log-Normal FALSE #> 11586 725 0.8741268 0.195905074 fv Gamma Cox, Log-Normal FALSE #> 11602 726 0.7664078 0.217471393 fv Gamma Cox, Log-Normal FALSE #> 11618 727 1.1345593 0.312048852 fv Gamma Cox, Log-Normal FALSE #> 11634 728 0.6815268 0.256231339 fv Gamma Cox, Log-Normal FALSE #> 11650 729 1.0012762 0.190967467 fv Gamma Cox, Log-Normal FALSE #> 11666 730 1.3645868 0.417363902 fv Gamma Cox, Log-Normal TRUE #> 11682 731 1.4012566 0.325484691 fv Gamma Cox, Log-Normal FALSE #> 11698 732 1.2333383 0.213696113 fv Gamma Cox, Log-Normal FALSE #> 11714 733 0.7422468 0.180001456 fv Gamma Cox, Log-Normal FALSE #> 11730 734 0.7656523 0.212408503 fv Gamma Cox, Log-Normal FALSE #> 11746 735 1.1366086 0.281915857 fv Gamma Cox, Log-Normal FALSE #> 11762 736 1.0835050 0.304493693 fv Gamma Cox, Log-Normal FALSE #> 11778 737 0.9811711 0.246886659 fv Gamma Cox, Log-Normal FALSE #> 11794 738 0.8368011 0.340475523 fv Gamma Cox, Log-Normal FALSE #> 11810 739 0.9087165 0.200542432 fv Gamma Cox, Log-Normal FALSE #> 11826 740 0.8700050 0.193399163 fv Gamma Cox, Log-Normal FALSE #> 11842 741 1.0493966 0.242318925 fv Gamma Cox, Log-Normal FALSE #> 11858 742 0.7285165 0.152167499 fv Gamma Cox, Log-Normal FALSE #> 11874 743 1.0809077 0.253157125 fv Gamma Cox, Log-Normal FALSE #> 11890 744 1.3116924 0.349032088 fv Gamma Cox, Log-Normal FALSE #> 11906 745 0.8668810 0.255673856 fv Gamma Cox, Log-Normal FALSE #> 11922 746 0.5031063 0.086395670 fv Gamma Cox, Log-Normal FALSE #> 11938 747 0.8514091 0.212312538 fv Gamma Cox, Log-Normal FALSE #> 11954 748 1.0763630 0.181266049 fv Gamma Cox, Log-Normal FALSE #> 11970 749 0.8902869 0.251796213 fv Gamma Cox, Log-Normal FALSE #> 11986 750 0.6972912 0.147370632 fv Gamma Cox, Log-Normal FALSE #> 12002 751 1.1695505 0.209407579 fv Gamma Cox, Log-Normal FALSE #> 12018 752 1.0586978 0.231401972 fv Gamma Cox, Log-Normal FALSE #> 12034 753 0.7359262 0.219724376 fv Gamma Cox, Log-Normal FALSE #> 12050 754 1.0893551 0.230029873 fv Gamma Cox, Log-Normal FALSE #> 12066 755 0.9971904 0.175161437 fv Gamma Cox, Log-Normal FALSE #> 12082 756 1.5691599 0.295112101 fv Gamma Cox, Log-Normal TRUE #> 12098 757 0.7713164 0.186796598 fv Gamma Cox, Log-Normal FALSE #> 12114 758 0.6428408 0.152198490 fv Gamma Cox, Log-Normal FALSE #> 12130 759 0.7885099 0.154161821 fv Gamma Cox, Log-Normal FALSE #> 12146 760 0.7606324 0.162254956 fv Gamma Cox, Log-Normal FALSE #> 12162 761 1.0477843 0.279182770 fv Gamma Cox, Log-Normal FALSE #> 12178 762 0.8354850 0.168909484 fv Gamma Cox, Log-Normal FALSE #> 12194 763 0.7569949 0.166489594 fv Gamma Cox, Log-Normal FALSE #> 12210 764 0.9842876 0.267116745 fv Gamma Cox, Log-Normal FALSE #> 12226 765 0.7749107 0.196827870 fv Gamma Cox, Log-Normal FALSE #> 12242 766 0.6556944 0.126006011 fv Gamma Cox, Log-Normal FALSE #> 12258 767 0.9765773 0.221128587 fv Gamma Cox, Log-Normal FALSE #> 12274 768 1.0265077 0.226275490 fv Gamma Cox, Log-Normal FALSE #> 12290 769 1.0165964 0.206041439 fv Gamma Cox, Log-Normal FALSE #> 12306 770 0.7551010 0.216493504 fv Gamma Cox, Log-Normal FALSE #> 12322 771 0.6450434 0.111705699 fv Gamma Cox, Log-Normal FALSE #> 12338 772 1.1912443 0.351233857 fv Gamma Cox, Log-Normal FALSE #> 12354 773 0.8052817 0.219677124 fv Gamma Cox, Log-Normal FALSE #> 12370 774 0.9495006 0.183682679 fv Gamma Cox, Log-Normal FALSE #> 12386 775 1.4295249 0.357730455 fv Gamma Cox, Log-Normal FALSE #> 12402 776 0.9464133 0.161655065 fv Gamma Cox, Log-Normal FALSE #> 12418 777 0.7990472 0.188022633 fv Gamma Cox, Log-Normal FALSE #> 12434 778 1.1233230 0.279950067 fv Gamma Cox, Log-Normal FALSE #> 12450 779 1.1826743 0.287929833 fv Gamma Cox, Log-Normal FALSE #> 12466 780 1.1225019 0.260847577 fv Gamma Cox, Log-Normal FALSE #> 12482 781 0.8087508 0.219948457 fv Gamma Cox, Log-Normal FALSE #> 12498 782 0.9323221 0.354579850 fv Gamma Cox, Log-Normal FALSE #> 12514 783 0.9546923 0.172823948 fv Gamma Cox, Log-Normal FALSE #> 12530 784 0.8109267 0.135871785 fv Gamma Cox, Log-Normal FALSE #> 12546 785 0.8227292 0.153966550 fv Gamma Cox, Log-Normal FALSE #> 12562 786 1.0155313 0.221229923 fv Gamma Cox, Log-Normal FALSE #> 12578 787 1.2265997 0.381780641 fv Gamma Cox, Log-Normal FALSE #> 12594 788 0.9968011 0.271020910 fv Gamma Cox, Log-Normal FALSE #> 12610 789 0.9961110 0.264108258 fv Gamma Cox, Log-Normal FALSE #> 12626 790 1.3866559 0.403052216 fv Gamma Cox, Log-Normal TRUE #> 12642 791 1.2942187 0.345936087 fv Gamma Cox, Log-Normal FALSE #> 12658 792 1.3274802 0.294559219 fv Gamma Cox, Log-Normal FALSE #> 12674 793 0.8710422 0.188337532 fv Gamma Cox, Log-Normal FALSE #> 12690 794 0.4656342 0.086212385 fv Gamma Cox, Log-Normal TRUE #> 12706 795 0.9488004 0.249943737 fv Gamma Cox, Log-Normal FALSE #> 12722 796 1.0833683 0.238579911 fv Gamma Cox, Log-Normal FALSE #> 12738 797 0.7134433 0.174971445 fv Gamma Cox, Log-Normal FALSE #> 12754 798 0.7488683 0.203887403 fv Gamma Cox, Log-Normal FALSE #> 12770 799 1.4826244 0.460159427 fv Gamma Cox, Log-Normal TRUE #> 12786 800 1.2555919 0.228477636 fv Gamma Cox, Log-Normal FALSE #> 12802 801 0.7767814 0.216792490 fv Gamma Cox, Log-Normal FALSE #> 12818 802 0.8039006 0.143589898 fv Gamma Cox, Log-Normal FALSE #> 12834 803 0.9486562 0.154256665 fv Gamma Cox, Log-Normal FALSE #> 12850 804 1.0328948 0.231771198 fv Gamma Cox, Log-Normal FALSE #> 12866 805 0.9798605 0.228212803 fv Gamma Cox, Log-Normal FALSE #> 12882 806 0.7306827 0.144691202 fv Gamma Cox, Log-Normal FALSE #> 12898 807 1.2700539 0.278143788 fv Gamma Cox, Log-Normal FALSE #> 12914 808 0.9736841 0.293168234 fv Gamma Cox, Log-Normal FALSE #> 12930 809 1.3303860 0.442691890 fv Gamma Cox, Log-Normal TRUE #> 12946 810 0.9218010 0.172303136 fv Gamma Cox, Log-Normal FALSE #> 12962 811 1.3147421 0.258687544 fv Gamma Cox, Log-Normal FALSE #> 12978 812 0.8372171 0.211667829 fv Gamma Cox, Log-Normal FALSE #> 12994 813 1.1669162 0.244223344 fv Gamma Cox, Log-Normal FALSE #> 13010 814 0.9559600 0.260826010 fv Gamma Cox, Log-Normal FALSE #> 13026 815 1.4235527 0.327459602 fv Gamma Cox, Log-Normal FALSE #> 13042 816 0.7081849 0.196971428 fv Gamma Cox, Log-Normal FALSE #> 13058 817 1.2131452 0.372971263 fv Gamma Cox, Log-Normal FALSE #> 13074 818 0.8741341 0.256450653 fv Gamma Cox, Log-Normal FALSE #> 13090 819 1.3459854 0.408062364 fv Gamma Cox, Log-Normal TRUE #> 13106 820 0.8721563 0.225198849 fv Gamma Cox, Log-Normal FALSE #> 13122 821 0.9494623 0.270727048 fv Gamma Cox, Log-Normal FALSE #> 13138 822 0.6048632 0.109814168 fv Gamma Cox, Log-Normal FALSE #> 13154 823 1.0187693 0.277289565 fv Gamma Cox, Log-Normal FALSE #> 13170 824 0.9878398 0.232512666 fv Gamma Cox, Log-Normal FALSE #> 13186 825 0.6361843 0.116639807 fv Gamma Cox, Log-Normal FALSE #> 13202 826 0.9407440 0.186621880 fv Gamma Cox, Log-Normal FALSE #> 13218 827 0.9250230 0.206624297 fv Gamma Cox, Log-Normal FALSE #> 13234 828 1.4586544 0.400674246 fv Gamma Cox, Log-Normal TRUE #> 13250 829 0.7062700 0.123119510 fv Gamma Cox, Log-Normal FALSE #> 13266 830 1.2702881 0.292952627 fv Gamma Cox, Log-Normal FALSE #> 13282 831 0.7167738 0.210742781 fv Gamma Cox, Log-Normal FALSE #> 13298 832 0.8667566 0.156346725 fv Gamma Cox, Log-Normal FALSE #> 13314 833 0.9890096 0.226437277 fv Gamma Cox, Log-Normal FALSE #> 13330 834 0.6529406 0.148180979 fv Gamma Cox, Log-Normal FALSE #> 13346 835 0.9492850 0.219981130 fv Gamma Cox, Log-Normal FALSE #> 13362 836 0.9453736 0.258429879 fv Gamma Cox, Log-Normal FALSE #> 13378 837 0.9578582 0.272680782 fv Gamma Cox, Log-Normal FALSE #> 13394 838 1.2202325 0.219416306 fv Gamma Cox, Log-Normal FALSE #> 13410 839 0.7622538 0.136150062 fv Gamma Cox, Log-Normal FALSE #> 13426 840 1.0482271 0.241604455 fv Gamma Cox, Log-Normal FALSE #> 13442 841 0.9043676 0.148058562 fv Gamma Cox, Log-Normal FALSE #> 13458 842 0.9913150 0.280168128 fv Gamma Cox, Log-Normal FALSE #> 13474 843 1.3223045 0.330990887 fv Gamma Cox, Log-Normal FALSE #> 13490 844 1.0021235 0.292823919 fv Gamma Cox, Log-Normal FALSE #> 13506 845 1.4004414 0.318104284 fv Gamma Cox, Log-Normal FALSE #> 13522 846 0.8416453 0.250660878 fv Gamma Cox, Log-Normal FALSE #> 13538 847 0.8243172 0.288155697 fv Gamma Cox, Log-Normal FALSE #> 13554 848 0.5899439 0.122537752 fv Gamma Cox, Log-Normal FALSE #> 13570 849 0.9414000 0.178355553 fv Gamma Cox, Log-Normal FALSE #> 13586 850 0.8407891 0.160878072 fv Gamma Cox, Log-Normal FALSE #> 13602 851 0.9823066 0.238544662 fv Gamma Cox, Log-Normal FALSE #> 13618 852 0.5618333 0.110283440 fv Gamma Cox, Log-Normal FALSE #> 13634 853 0.9624791 0.197866836 fv Gamma Cox, Log-Normal FALSE #> 13650 854 0.7179179 0.157504403 fv Gamma Cox, Log-Normal FALSE #> 13666 855 1.2551276 0.310599897 fv Gamma Cox, Log-Normal FALSE #> 13682 856 1.0833605 0.207529494 fv Gamma Cox, Log-Normal FALSE #> 13698 857 0.7307127 0.179278420 fv Gamma Cox, Log-Normal FALSE #> 13714 858 0.8702718 0.224544233 fv Gamma Cox, Log-Normal FALSE #> 13730 859 0.8669632 0.270433850 fv Gamma Cox, Log-Normal FALSE #> 13746 860 0.7547683 0.132468609 fv Gamma Cox, Log-Normal FALSE #> 13762 861 1.1262160 0.257465167 fv Gamma Cox, Log-Normal FALSE #> 13778 862 0.8389212 0.161464653 fv Gamma Cox, Log-Normal FALSE #> 13794 863 1.0119069 0.212102924 fv Gamma Cox, Log-Normal FALSE #> 13810 864 0.9537157 0.216189336 fv Gamma Cox, Log-Normal FALSE #> 13826 865 1.0120405 0.205255774 fv Gamma Cox, Log-Normal FALSE #> 13842 866 0.7974231 0.133804459 fv Gamma Cox, Log-Normal FALSE #> 13858 867 0.9060825 0.156806604 fv Gamma Cox, Log-Normal FALSE #> 13874 868 0.9688863 0.217092971 fv Gamma Cox, Log-Normal FALSE #> 13890 869 1.0266109 0.254779900 fv Gamma Cox, Log-Normal FALSE #> 13906 870 0.9479034 0.327682086 fv Gamma Cox, Log-Normal FALSE #> 13922 871 1.2468126 0.291359832 fv Gamma Cox, Log-Normal FALSE #> 13938 872 1.3083943 0.333635934 fv Gamma Cox, Log-Normal FALSE #> 13954 873 1.1743319 0.209116592 fv Gamma Cox, Log-Normal FALSE #> 13970 874 1.5305586 0.443951756 fv Gamma Cox, Log-Normal TRUE #> 13986 875 0.7607191 0.145312089 fv Gamma Cox, Log-Normal FALSE #> 14002 876 0.8779484 0.192866111 fv Gamma Cox, Log-Normal FALSE #> 14018 877 0.9984085 0.211132798 fv Gamma Cox, Log-Normal FALSE #> 14034 878 1.0891524 0.319090619 fv Gamma Cox, Log-Normal FALSE #> 14050 879 0.8993115 0.342239070 fv Gamma Cox, Log-Normal FALSE #> 14066 880 1.4072146 0.315934948 fv Gamma Cox, Log-Normal FALSE #> 14082 881 1.1304945 0.294741363 fv Gamma Cox, Log-Normal FALSE #> 14098 882 1.2693027 0.233265611 fv Gamma Cox, Log-Normal FALSE #> 14114 883 0.7511724 0.169083381 fv Gamma Cox, Log-Normal FALSE #> 14130 884 0.7769513 0.153621573 fv Gamma Cox, Log-Normal FALSE #> 14146 885 0.7564225 0.181152611 fv Gamma Cox, Log-Normal FALSE #> 14162 886 0.7533057 0.187639873 fv Gamma Cox, Log-Normal FALSE #> 14178 887 0.9411945 0.197051463 fv Gamma Cox, Log-Normal FALSE #> 14194 888 1.3209266 0.241801270 fv Gamma Cox, Log-Normal FALSE #> 14210 889 1.0464163 0.206246274 fv Gamma Cox, Log-Normal FALSE #> 14226 890 0.7922736 0.208611946 fv Gamma Cox, Log-Normal FALSE #> 14242 891 0.6048097 0.093277354 fv Gamma Cox, Log-Normal FALSE #> 14258 892 0.9090234 0.181751021 fv Gamma Cox, Log-Normal FALSE #> 14274 893 1.1860418 0.343862998 fv Gamma Cox, Log-Normal FALSE #> 14290 894 0.7139899 0.164547200 fv Gamma Cox, Log-Normal FALSE #> 14306 895 0.8511802 0.176060960 fv Gamma Cox, Log-Normal FALSE #> 14322 896 1.1897072 0.217763226 fv Gamma Cox, Log-Normal FALSE #> 14338 897 0.8726068 0.157842972 fv Gamma Cox, Log-Normal FALSE #> 14354 898 1.1845061 0.237803283 fv Gamma Cox, Log-Normal FALSE #> 14370 899 1.0443795 0.246772790 fv Gamma Cox, Log-Normal FALSE #> 14386 900 1.1583504 0.323680854 fv Gamma Cox, Log-Normal FALSE #> 14402 901 0.7415650 0.170452452 fv Gamma Cox, Log-Normal FALSE #> 14418 902 0.7003490 0.139088567 fv Gamma Cox, Log-Normal FALSE #> 14434 903 0.7841447 0.149742194 fv Gamma Cox, Log-Normal FALSE #> 14450 904 1.5901697 0.482677057 fv Gamma Cox, Log-Normal TRUE #> 14466 905 0.7896432 0.138737460 fv Gamma Cox, Log-Normal FALSE #> 14482 906 1.3915225 0.266295262 fv Gamma Cox, Log-Normal FALSE #> 14498 907 1.0235347 0.258435199 fv Gamma Cox, Log-Normal FALSE #> 14514 908 0.8794528 0.274871726 fv Gamma Cox, Log-Normal FALSE #> 14530 909 0.7616585 0.153069885 fv Gamma Cox, Log-Normal FALSE #> 14546 910 0.6709826 0.127266750 fv Gamma Cox, Log-Normal FALSE #> 14562 911 0.9426690 0.305758226 fv Gamma Cox, Log-Normal FALSE #> 14578 912 0.6876512 0.115011789 fv Gamma Cox, Log-Normal FALSE #> 14594 913 0.9720124 0.200778297 fv Gamma Cox, Log-Normal FALSE #> 14610 914 0.8574690 0.251944490 fv Gamma Cox, Log-Normal FALSE #> 14626 915 1.1770862 0.283699685 fv Gamma Cox, Log-Normal FALSE #> 14642 916 0.6674906 0.129719682 fv Gamma Cox, Log-Normal FALSE #> 14658 917 1.0089240 0.301683903 fv Gamma Cox, Log-Normal FALSE #> 14674 918 1.0180468 0.176241349 fv Gamma Cox, Log-Normal FALSE #> 14690 919 0.6774361 0.111074751 fv Gamma Cox, Log-Normal FALSE #> 14706 920 0.9816049 0.176035972 fv Gamma Cox, Log-Normal FALSE #> 14722 921 1.1225462 0.265504818 fv Gamma Cox, Log-Normal FALSE #> 14738 922 1.6005520 0.403568432 fv Gamma Cox, Log-Normal TRUE #> 14754 923 0.9384639 0.171544257 fv Gamma Cox, Log-Normal FALSE #> 14770 924 0.9551133 0.151122096 fv Gamma Cox, Log-Normal FALSE #> 14786 925 1.2062083 0.344311268 fv Gamma Cox, Log-Normal FALSE #> 14802 926 0.9341805 0.185300287 fv Gamma Cox, Log-Normal FALSE #> 14818 927 0.5496008 0.113479221 fv Gamma Cox, Log-Normal FALSE #> 14834 928 0.9298163 0.196767579 fv Gamma Cox, Log-Normal FALSE #> 14850 929 1.0148063 0.250301564 fv Gamma Cox, Log-Normal FALSE #> 14866 930 1.4671972 0.477190164 fv Gamma Cox, Log-Normal TRUE #> 14882 931 0.9037657 0.193220022 fv Gamma Cox, Log-Normal FALSE #> 14898 932 1.2131691 0.230914741 fv Gamma Cox, Log-Normal FALSE #> 14914 933 0.7664552 0.172978498 fv Gamma Cox, Log-Normal FALSE #> 14930 934 0.7235467 0.099478559 fv Gamma Cox, Log-Normal FALSE #> 14946 935 0.5651276 0.109392225 fv Gamma Cox, Log-Normal FALSE #> 14962 936 0.7738704 0.156934151 fv Gamma Cox, Log-Normal FALSE #> 14978 937 1.4874432 0.363632319 fv Gamma Cox, Log-Normal TRUE #> 14994 938 1.0628662 0.267143882 fv Gamma Cox, Log-Normal FALSE #> 15010 939 1.0222365 0.192388758 fv Gamma Cox, Log-Normal FALSE #> 15026 940 1.0277460 0.196087165 fv Gamma Cox, Log-Normal FALSE #> 15042 941 0.8016317 0.159316442 fv Gamma Cox, Log-Normal FALSE #> 15058 942 0.8411527 0.182284638 fv Gamma Cox, Log-Normal FALSE #> 15074 943 0.5594256 0.113623496 fv Gamma Cox, Log-Normal FALSE #> 15090 944 0.7729183 0.124686294 fv Gamma Cox, Log-Normal FALSE #> 15106 945 0.7428305 0.151083868 fv Gamma Cox, Log-Normal FALSE #> 15122 946 1.1677163 0.377504451 fv Gamma Cox, Log-Normal FALSE #> 15138 947 0.8375811 0.210228463 fv Gamma Cox, Log-Normal FALSE #> 15154 948 0.6906720 0.230450716 fv Gamma Cox, Log-Normal FALSE #> 15170 949 0.8148721 0.226169057 fv Gamma Cox, Log-Normal FALSE #> 15186 950 0.7721582 0.203677104 fv Gamma Cox, Log-Normal FALSE #> 15202 951 0.9992324 0.220599272 fv Gamma Cox, Log-Normal FALSE #> 15218 952 0.8222391 0.179491347 fv Gamma Cox, Log-Normal FALSE #> 15234 953 1.6443296 0.391757692 fv Gamma Cox, Log-Normal TRUE #> 15250 954 0.8622421 0.193926799 fv Gamma Cox, Log-Normal FALSE #> 15266 955 1.0271637 0.198165599 fv Gamma Cox, Log-Normal FALSE #> 15282 956 0.7877326 0.190345590 fv Gamma Cox, Log-Normal FALSE #> 15298 957 0.7332077 0.170648591 fv Gamma Cox, Log-Normal FALSE #> 15314 958 0.6742120 0.141736639 fv Gamma Cox, Log-Normal FALSE #> 15330 959 0.8116423 0.176636628 fv Gamma Cox, Log-Normal FALSE #> 15346 960 1.0381126 0.247132858 fv Gamma Cox, Log-Normal FALSE #> 15362 961 0.6263490 0.119573651 fv Gamma Cox, Log-Normal FALSE #> 15378 962 1.2298672 0.279659616 fv Gamma Cox, Log-Normal FALSE #> 15394 963 1.3100317 0.351291999 fv Gamma Cox, Log-Normal FALSE #> 15410 964 0.9385725 0.212853684 fv Gamma Cox, Log-Normal FALSE #> 15426 965 0.7237833 0.136184000 fv Gamma Cox, Log-Normal FALSE #> 15442 966 1.0774498 0.255201646 fv Gamma Cox, Log-Normal FALSE #> 15458 967 0.8661890 0.186999729 fv Gamma Cox, Log-Normal FALSE #> 15474 968 0.7440313 0.163577636 fv Gamma Cox, Log-Normal FALSE #> 15490 969 1.0548245 0.323917765 fv Gamma Cox, Log-Normal FALSE #> 15506 970 1.0335275 0.417785729 fv Gamma Cox, Log-Normal TRUE #> 15522 971 0.8920170 0.217781465 fv Gamma Cox, Log-Normal FALSE #> 15538 972 0.8443654 0.262375588 fv Gamma Cox, Log-Normal FALSE #> 15554 973 1.4316470 0.431582164 fv Gamma Cox, Log-Normal TRUE #> 15570 974 0.6408896 0.154553156 fv Gamma Cox, Log-Normal FALSE #> 15586 975 0.5818109 0.121328131 fv Gamma Cox, Log-Normal FALSE #> 15602 976 0.9803179 0.204723535 fv Gamma Cox, Log-Normal FALSE #> 15618 977 1.1977389 0.247126848 fv Gamma Cox, Log-Normal FALSE #> 15634 978 1.1178645 0.327386366 fv Gamma Cox, Log-Normal FALSE #> 15650 979 1.2145658 0.344268311 fv Gamma Cox, Log-Normal FALSE #> 15666 980 0.6638111 0.139988436 fv Gamma Cox, Log-Normal FALSE #> 15682 981 0.9741935 0.298000366 fv Gamma Cox, Log-Normal FALSE #> 15698 982 1.2667102 0.291885120 fv Gamma Cox, Log-Normal FALSE #> 15714 983 0.6366284 0.142543764 fv Gamma Cox, Log-Normal FALSE #> 15730 984 0.9916257 0.230161087 fv Gamma Cox, Log-Normal FALSE #> 15746 985 1.1673924 0.329455282 fv Gamma Cox, Log-Normal FALSE #> 15762 986 0.8093946 0.131512474 fv Gamma Cox, Log-Normal FALSE #> 15778 987 0.6809663 0.166413324 fv Gamma Cox, Log-Normal FALSE #> 15794 988 0.8090418 0.168468434 fv Gamma Cox, Log-Normal FALSE #> 15810 989 1.1203963 0.254390270 fv Gamma Cox, Log-Normal FALSE #> 15826 990 0.8937730 0.181708706 fv Gamma Cox, Log-Normal FALSE #> 15842 991 1.0581390 0.254618273 fv Gamma Cox, Log-Normal FALSE #> 15858 992 1.1236897 0.339523124 fv Gamma Cox, Log-Normal FALSE #> 15874 993 1.4089872 0.331849490 fv Gamma Cox, Log-Normal FALSE #> 15890 994 0.9304340 0.200697045 fv Gamma Cox, Log-Normal FALSE #> 15906 995 0.9726530 0.218311522 fv Gamma Cox, Log-Normal FALSE #> 15922 996 0.8111108 0.164699823 fv Gamma Cox, Log-Normal FALSE #> 15938 997 0.7307507 0.230449780 fv Gamma Cox, Log-Normal FALSE #> 15954 998 0.8727082 0.192062571 fv Gamma Cox, Log-Normal FALSE #> 15970 999 0.6342790 0.116767975 fv Gamma Cox, Log-Normal FALSE #> 15986 1000 0.6557219 0.167090143 fv Gamma Cox, Log-Normal FALSE #> 3 1 0.6583130 0.126035398 fv Gamma RP(P), Gamma FALSE #> 19 2 0.6622712 0.129798360 fv Gamma RP(P), Gamma FALSE #> 35 3 1.0983598 0.207128706 fv Gamma RP(P), Gamma TRUE #> 51 4 0.8432273 0.157280985 fv Gamma RP(P), Gamma FALSE #> 67 5 0.7044549 0.135560564 fv Gamma RP(P), Gamma FALSE #> 83 6 NA NA fv Gamma RP(P), Gamma NA #> 99 7 0.6501343 0.124699716 fv Gamma RP(P), Gamma FALSE #> 115 8 1.0008371 0.185404780 fv Gamma RP(P), Gamma FALSE #> 131 9 0.8262565 0.156514195 fv Gamma RP(P), Gamma FALSE #> 147 10 0.8201887 0.155263227 fv Gamma RP(P), Gamma FALSE #> 163 11 0.8137370 0.155704386 fv Gamma RP(P), Gamma FALSE #> 179 12 0.9939974 0.184176616 fv Gamma RP(P), Gamma FALSE #> 195 13 0.9504802 0.177824029 fv Gamma RP(P), Gamma FALSE #> 211 14 0.5829730 0.115298145 fv Gamma RP(P), Gamma FALSE #> 227 15 0.8822492 0.165491846 fv Gamma RP(P), Gamma FALSE #> 243 16 1.0082479 0.185522929 fv Gamma RP(P), Gamma FALSE #> 259 17 0.5973382 0.115826569 fv Gamma RP(P), Gamma FALSE #> 275 18 0.4678429 0.096466091 fv Gamma RP(P), Gamma FALSE #> 291 19 0.7328936 0.139614821 fv Gamma RP(P), Gamma FALSE #> 307 20 0.9565953 0.179037879 fv Gamma RP(P), Gamma FALSE #> 323 21 0.5538343 0.111582907 fv Gamma RP(P), Gamma FALSE #> 339 22 0.8928450 0.168502035 fv Gamma RP(P), Gamma FALSE #> 355 23 0.6152640 0.118919219 fv Gamma RP(P), Gamma FALSE #> 371 24 0.7529937 0.142318629 fv Gamma RP(P), Gamma FALSE #> 387 25 0.7807405 0.147597737 fv Gamma RP(P), Gamma FALSE #> 403 26 0.7246273 0.139343002 fv Gamma RP(P), Gamma FALSE #> 419 27 1.1459225 0.211761785 fv Gamma RP(P), Gamma TRUE #> 435 28 1.0210508 0.188347485 fv Gamma RP(P), Gamma TRUE #> 451 29 NA NA fv Gamma RP(P), Gamma NA #> 467 30 0.9633830 0.180741692 fv Gamma RP(P), Gamma FALSE #> 483 31 0.6172289 0.121507402 fv Gamma RP(P), Gamma FALSE #> 499 32 0.7787334 0.148374349 fv Gamma RP(P), Gamma FALSE #> 515 33 0.5966043 0.115428078 fv Gamma RP(P), Gamma FALSE #> 531 34 0.5606909 0.109628967 fv Gamma RP(P), Gamma FALSE #> 547 35 0.7528722 0.146377360 fv Gamma RP(P), Gamma FALSE #> 563 36 0.6003364 0.119702219 fv Gamma RP(P), Gamma FALSE #> 579 37 0.5981520 0.116125997 fv Gamma RP(P), Gamma FALSE #> 595 38 0.5258415 0.103812772 fv Gamma RP(P), Gamma FALSE #> 611 39 0.7151039 0.135677110 fv Gamma RP(P), Gamma FALSE #> 627 40 0.4805411 0.096069472 fv Gamma RP(P), Gamma FALSE #> 643 41 1.1955770 0.214465980 fv Gamma RP(P), Gamma TRUE #> 659 42 0.7131938 0.138882554 fv Gamma RP(P), Gamma FALSE #> 675 43 0.8178025 0.153932387 fv Gamma RP(P), Gamma FALSE #> 691 44 0.8517164 0.159552144 fv Gamma RP(P), Gamma FALSE #> 707 45 0.7770909 0.146570656 fv Gamma RP(P), Gamma FALSE #> 723 46 0.7352140 0.139274517 fv Gamma RP(P), Gamma FALSE #> 739 47 0.9088789 0.172401938 fv Gamma RP(P), Gamma FALSE #> 755 48 0.7543666 0.144637452 fv Gamma RP(P), Gamma FALSE #> 771 49 0.7861070 0.150029967 fv Gamma RP(P), Gamma FALSE #> 787 50 0.7194816 0.136551253 fv Gamma RP(P), Gamma FALSE #> 803 51 0.8995177 0.167805917 fv Gamma RP(P), Gamma FALSE #> 819 52 0.6174492 0.122678304 fv Gamma RP(P), Gamma FALSE #> 835 53 0.6750597 0.130159913 fv Gamma RP(P), Gamma FALSE #> 851 54 0.5309038 0.105027975 fv Gamma RP(P), Gamma FALSE #> 867 55 0.7826463 0.148256356 fv Gamma RP(P), Gamma FALSE #> 883 56 0.7107366 0.137819603 fv Gamma RP(P), Gamma FALSE #> 899 57 0.7873837 0.148295624 fv Gamma RP(P), Gamma FALSE #> 915 58 0.6604236 0.129333742 fv Gamma RP(P), Gamma FALSE #> 931 59 0.7204677 0.137455234 fv Gamma RP(P), Gamma FALSE #> 947 60 0.7937934 0.150215116 fv Gamma RP(P), Gamma FALSE #> 963 61 0.6713512 0.128115321 fv Gamma RP(P), Gamma FALSE #> 979 62 0.6573296 0.128650691 fv Gamma RP(P), Gamma FALSE #> 995 63 0.8607833 0.161828019 fv Gamma RP(P), Gamma FALSE #> 1011 64 0.6543734 0.125543532 fv Gamma RP(P), Gamma FALSE #> 1027 65 0.6954612 0.132073413 fv Gamma RP(P), Gamma FALSE #> 1043 66 0.5448760 0.107425993 fv Gamma RP(P), Gamma FALSE #> 1059 67 0.8194453 0.153073618 fv Gamma RP(P), Gamma FALSE #> 1075 68 0.7446814 0.141854001 fv Gamma RP(P), Gamma FALSE #> 1091 69 0.5579674 0.109410924 fv Gamma RP(P), Gamma FALSE #> 1107 70 0.7098810 0.138933383 fv Gamma RP(P), Gamma FALSE #> 1123 71 0.9406454 0.174400598 fv Gamma RP(P), Gamma FALSE #> 1139 72 0.6530136 0.125588844 fv Gamma RP(P), Gamma FALSE #> 1155 73 0.4734941 0.094092884 fv Gamma RP(P), Gamma FALSE #> 1171 74 0.6754394 0.129318464 fv Gamma RP(P), Gamma FALSE #> 1187 75 0.6957309 0.133701552 fv Gamma RP(P), Gamma FALSE #> 1203 76 0.6999121 0.137477919 fv Gamma RP(P), Gamma FALSE #> 1219 77 0.7887771 0.151086397 fv Gamma RP(P), Gamma FALSE #> 1235 78 1.0335900 0.192017708 fv Gamma RP(P), Gamma TRUE #> 1251 79 NA NA fv Gamma RP(P), Gamma NA #> 1267 80 0.6232660 0.123397871 fv Gamma RP(P), Gamma FALSE #> 1283 81 0.9226520 0.175330403 fv Gamma RP(P), Gamma FALSE #> 1299 82 0.7323600 0.139191757 fv Gamma RP(P), Gamma FALSE #> 1315 83 0.4818189 0.099344646 fv Gamma RP(P), Gamma FALSE #> 1331 84 0.7176281 0.136243403 fv Gamma RP(P), Gamma FALSE #> 1347 85 0.7361589 0.140006217 fv Gamma RP(P), Gamma FALSE #> 1363 86 0.7168970 0.136729680 fv Gamma RP(P), Gamma FALSE #> 1379 87 0.5834150 0.113285946 fv Gamma RP(P), Gamma FALSE #> 1395 88 0.7231209 0.137245493 fv Gamma RP(P), Gamma FALSE #> 1411 89 0.7319681 0.139036681 fv Gamma RP(P), Gamma FALSE #> 1427 90 0.8849887 0.164574278 fv Gamma RP(P), Gamma FALSE #> 1443 91 0.7182218 0.136983847 fv Gamma RP(P), Gamma FALSE #> 1459 92 0.6588262 0.126126153 fv Gamma RP(P), Gamma FALSE #> 1475 93 0.9819063 0.189623911 fv Gamma RP(P), Gamma TRUE #> 1491 94 0.8240654 0.157587552 fv Gamma RP(P), Gamma FALSE #> 1507 95 0.7488191 0.141983395 fv Gamma RP(P), Gamma FALSE #> 1523 96 0.4645649 0.093124853 fv Gamma RP(P), Gamma FALSE #> 1539 97 0.5863916 0.113518710 fv Gamma RP(P), Gamma FALSE #> 1555 98 0.8032145 0.151506486 fv Gamma RP(P), Gamma FALSE #> 1571 99 0.5726988 0.112665995 fv Gamma RP(P), Gamma FALSE #> 1587 100 0.8511137 0.158396953 fv Gamma RP(P), Gamma FALSE #> 1603 101 0.8372638 0.155812635 fv Gamma RP(P), Gamma FALSE #> 1619 102 0.7029086 0.133768529 fv Gamma RP(P), Gamma FALSE #> 1635 103 0.8836859 0.168715151 fv Gamma RP(P), Gamma FALSE #> 1651 104 0.7399044 0.139619137 fv Gamma RP(P), Gamma FALSE #> 1667 105 0.8444006 0.159608342 fv Gamma RP(P), Gamma FALSE #> 1683 106 0.7104030 0.135352973 fv Gamma RP(P), Gamma FALSE #> 1699 107 0.8920210 0.169462833 fv Gamma RP(P), Gamma FALSE #> 1715 108 0.7782067 0.151086705 fv Gamma RP(P), Gamma FALSE #> 1731 109 0.6967850 0.134601272 fv Gamma RP(P), Gamma FALSE #> 1747 110 0.8004486 0.151100596 fv Gamma RP(P), Gamma FALSE #> 1763 111 0.8477821 0.159358489 fv Gamma RP(P), Gamma FALSE #> 1779 112 0.4652326 0.093174135 fv Gamma RP(P), Gamma FALSE #> 1795 113 0.5514675 0.108252595 fv Gamma RP(P), Gamma FALSE #> 1811 114 1.1754267 0.213550148 fv Gamma RP(P), Gamma TRUE #> 1827 115 0.6453176 0.124038453 fv Gamma RP(P), Gamma FALSE #> 1843 116 0.5128212 0.101337623 fv Gamma RP(P), Gamma FALSE #> 1859 117 0.7576375 0.142629401 fv Gamma RP(P), Gamma FALSE #> 1875 118 0.5586394 0.109635442 fv Gamma RP(P), Gamma FALSE #> 1891 119 0.6029588 0.117070228 fv Gamma RP(P), Gamma FALSE #> 1907 120 0.7150186 0.136386100 fv Gamma RP(P), Gamma FALSE #> 1923 121 0.6403640 0.124114963 fv Gamma RP(P), Gamma FALSE #> 1939 122 0.6358076 0.123045049 fv Gamma RP(P), Gamma FALSE #> 1955 123 0.7902879 0.149476111 fv Gamma RP(P), Gamma FALSE #> 1971 124 0.7337196 0.138801406 fv Gamma RP(P), Gamma FALSE #> 1987 125 0.8200071 0.155766631 fv Gamma RP(P), Gamma FALSE #> 2003 126 1.0013545 0.191643283 fv Gamma RP(P), Gamma TRUE #> 2019 127 0.8700811 0.162504747 fv Gamma RP(P), Gamma FALSE #> 2035 128 0.8632368 0.161576650 fv Gamma RP(P), Gamma FALSE #> 2051 129 0.5996664 0.119267007 fv Gamma RP(P), Gamma FALSE #> 2067 130 0.6725998 0.129252647 fv Gamma RP(P), Gamma FALSE #> 2083 131 0.6140982 0.117746976 fv Gamma RP(P), Gamma FALSE #> 2099 132 0.7648175 0.148356745 fv Gamma RP(P), Gamma FALSE #> 2115 133 0.7689487 0.147279141 fv Gamma RP(P), Gamma FALSE #> 2131 134 0.7587084 0.143867770 fv Gamma RP(P), Gamma FALSE #> 2147 135 0.5861381 0.114200376 fv Gamma RP(P), Gamma FALSE #> 2163 136 0.8141926 0.154375749 fv Gamma RP(P), Gamma FALSE #> 2179 137 0.8289906 0.155615181 fv Gamma RP(P), Gamma FALSE #> 2195 138 0.9755553 0.183087173 fv Gamma RP(P), Gamma FALSE #> 2211 139 0.6394931 0.123231427 fv Gamma RP(P), Gamma FALSE #> 2227 140 0.7139152 0.135322499 fv Gamma RP(P), Gamma FALSE #> 2243 141 0.5553028 0.110080872 fv Gamma RP(P), Gamma FALSE #> 2259 142 0.6996978 0.133621865 fv Gamma RP(P), Gamma FALSE #> 2275 143 1.1445345 0.218513226 fv Gamma RP(P), Gamma TRUE #> 2291 144 0.8547572 0.159213535 fv Gamma RP(P), Gamma FALSE #> 2307 145 0.6957523 0.133145347 fv Gamma RP(P), Gamma FALSE #> 2323 146 0.6861047 0.131992921 fv Gamma RP(P), Gamma FALSE #> 2339 147 NA NA fv Gamma RP(P), Gamma NA #> 2355 148 0.5179757 0.102001564 fv Gamma RP(P), Gamma FALSE #> 2371 149 0.6846178 0.131810489 fv Gamma RP(P), Gamma FALSE #> 2387 150 NA NA fv Gamma RP(P), Gamma NA #> 2403 151 0.8349086 0.156790347 fv Gamma RP(P), Gamma FALSE #> 2419 152 0.7973294 0.152804025 fv Gamma RP(P), Gamma FALSE #> 2435 153 0.4923993 0.097955760 fv Gamma RP(P), Gamma FALSE #> 2451 154 0.8363995 0.156721844 fv Gamma RP(P), Gamma FALSE #> 2467 155 0.6940619 0.135793329 fv Gamma RP(P), Gamma FALSE #> 2483 156 0.7151754 0.135913072 fv Gamma RP(P), Gamma FALSE #> 2499 157 0.9592753 0.181238490 fv Gamma RP(P), Gamma FALSE #> 2515 158 0.9946384 0.187427777 fv Gamma RP(P), Gamma FALSE #> 2531 159 0.5061336 0.100702406 fv Gamma RP(P), Gamma FALSE #> 2547 160 0.5671472 0.110846444 fv Gamma RP(P), Gamma FALSE #> 2563 161 1.1633775 0.212438568 fv Gamma RP(P), Gamma TRUE #> 2579 162 0.6706864 0.130117295 fv Gamma RP(P), Gamma FALSE #> 2595 163 0.5941737 0.115420188 fv Gamma RP(P), Gamma FALSE #> 2611 164 NA NA fv Gamma RP(P), Gamma NA #> 2627 165 0.7721841 0.145456395 fv Gamma RP(P), Gamma FALSE #> 2643 166 0.7965391 0.153433961 fv Gamma RP(P), Gamma FALSE #> 2659 167 0.8767056 0.163672379 fv Gamma RP(P), Gamma FALSE #> 2675 168 0.9296400 0.172682823 fv Gamma RP(P), Gamma FALSE #> 2691 169 0.7003157 0.134657034 fv Gamma RP(P), Gamma FALSE #> 2707 170 0.6969487 0.133752385 fv Gamma RP(P), Gamma FALSE #> 2723 171 0.6804580 0.132041501 fv Gamma RP(P), Gamma FALSE #> 2739 172 0.8676534 0.162110574 fv Gamma RP(P), Gamma FALSE #> 2755 173 0.6007524 0.117520007 fv Gamma RP(P), Gamma FALSE #> 2771 174 0.8205264 0.155211088 fv Gamma RP(P), Gamma FALSE #> 2787 175 0.6411124 0.124482470 fv Gamma RP(P), Gamma FALSE #> 2803 176 0.6685131 0.127629256 fv Gamma RP(P), Gamma FALSE #> 2819 177 0.5612191 0.111324967 fv Gamma RP(P), Gamma FALSE #> 2835 178 0.8696153 0.161721652 fv Gamma RP(P), Gamma FALSE #> 2851 179 0.5719307 0.111038706 fv Gamma RP(P), Gamma FALSE #> 2867 180 0.7498661 0.145859719 fv Gamma RP(P), Gamma FALSE #> 2883 181 0.8342400 0.156449843 fv Gamma RP(P), Gamma FALSE #> 2899 182 0.7307317 0.138530913 fv Gamma RP(P), Gamma FALSE #> 2915 183 0.5660622 0.110296482 fv Gamma RP(P), Gamma FALSE #> 2931 184 0.6722313 0.130153600 fv Gamma RP(P), Gamma FALSE #> 2947 185 0.8576717 0.161343877 fv Gamma RP(P), Gamma FALSE #> 2963 186 0.9062698 0.173016643 fv Gamma RP(P), Gamma FALSE #> 2979 187 0.7414907 0.141220753 fv Gamma RP(P), Gamma FALSE #> 2995 188 0.5549364 0.108588007 fv Gamma RP(P), Gamma FALSE #> 3011 189 NA NA fv Gamma RP(P), Gamma NA #> 3027 190 0.7746357 0.145922206 fv Gamma RP(P), Gamma FALSE #> 3043 191 0.7551856 0.142985236 fv Gamma RP(P), Gamma FALSE #> 3059 192 0.7775915 0.150107716 fv Gamma RP(P), Gamma FALSE #> 3075 193 0.6430137 0.124203106 fv Gamma RP(P), Gamma FALSE #> 3091 194 0.5962792 0.115366357 fv Gamma RP(P), Gamma FALSE #> 3107 195 0.8757453 0.162926509 fv Gamma RP(P), Gamma FALSE #> 3123 196 0.8185691 0.154828956 fv Gamma RP(P), Gamma FALSE #> 3139 197 0.7523839 0.141992354 fv Gamma RP(P), Gamma FALSE #> 3155 198 0.7791112 0.146503900 fv Gamma RP(P), Gamma FALSE #> 3171 199 0.5594019 0.109474490 fv Gamma RP(P), Gamma FALSE #> 3187 200 0.8269718 0.154676067 fv Gamma RP(P), Gamma FALSE #> 3203 201 0.7421167 0.141738015 fv Gamma RP(P), Gamma FALSE #> 3219 202 0.7899331 0.148298132 fv Gamma RP(P), Gamma FALSE #> 3235 203 0.7402666 0.139639494 fv Gamma RP(P), Gamma FALSE #> 3251 204 0.7440994 0.145413762 fv Gamma RP(P), Gamma FALSE #> 3267 205 0.5970540 0.116504438 fv Gamma RP(P), Gamma FALSE #> 3283 206 0.7403789 0.140695149 fv Gamma RP(P), Gamma FALSE #> 3299 207 0.5683539 0.111182081 fv Gamma RP(P), Gamma FALSE #> 3315 208 0.7459009 0.142060451 fv Gamma RP(P), Gamma FALSE #> 3331 209 0.6797062 0.130454189 fv Gamma RP(P), Gamma FALSE #> 3347 210 0.6908023 0.133192700 fv Gamma RP(P), Gamma FALSE #> 3363 211 0.9814670 0.185180252 fv Gamma RP(P), Gamma FALSE #> 3379 212 0.7275717 0.141752091 fv Gamma RP(P), Gamma FALSE #> 3395 213 0.8195451 0.155112422 fv Gamma RP(P), Gamma FALSE #> 3411 214 0.6510424 0.125935368 fv Gamma RP(P), Gamma FALSE #> 3427 215 0.8809648 0.164847839 fv Gamma RP(P), Gamma FALSE #> 3443 216 0.9160453 0.170696980 fv Gamma RP(P), Gamma FALSE #> 3459 217 0.6786443 0.131436644 fv Gamma RP(P), Gamma FALSE #> 3475 218 0.6130170 0.119462464 fv Gamma RP(P), Gamma FALSE #> 3491 219 0.8587860 0.162940219 fv Gamma RP(P), Gamma FALSE #> 3507 220 0.5645745 0.110301667 fv Gamma RP(P), Gamma FALSE #> 3523 221 0.7121007 0.136949273 fv Gamma RP(P), Gamma FALSE #> 3539 222 0.7729783 0.147339017 fv Gamma RP(P), Gamma FALSE #> 3555 223 0.7974666 0.154576435 fv Gamma RP(P), Gamma FALSE #> 3571 224 0.7615940 0.144773736 fv Gamma RP(P), Gamma FALSE #> 3587 225 0.6728903 0.129293781 fv Gamma RP(P), Gamma FALSE #> 3603 226 0.8358787 0.160645352 fv Gamma RP(P), Gamma FALSE #> 3619 227 0.6563351 0.126951384 fv Gamma RP(P), Gamma FALSE #> 3635 228 0.8883501 0.165539138 fv Gamma RP(P), Gamma FALSE #> 3651 229 0.7794882 0.147653006 fv Gamma RP(P), Gamma FALSE #> 3667 230 0.7046264 0.134302636 fv Gamma RP(P), Gamma FALSE #> 3683 231 0.7995473 0.151758843 fv Gamma RP(P), Gamma FALSE #> 3699 232 0.7343045 0.142360273 fv Gamma RP(P), Gamma FALSE #> 3715 233 0.8751457 0.164490904 fv Gamma RP(P), Gamma FALSE #> 3731 234 0.6297026 0.121422242 fv Gamma RP(P), Gamma FALSE #> 3747 235 0.7447860 0.143473450 fv Gamma RP(P), Gamma FALSE #> 3763 236 0.4983589 0.099237135 fv Gamma RP(P), Gamma FALSE #> 3779 237 0.6746635 0.131114127 fv Gamma RP(P), Gamma FALSE #> 3795 238 0.5865575 0.115419368 fv Gamma RP(P), Gamma FALSE #> 3811 239 0.7115553 0.134845742 fv Gamma RP(P), Gamma FALSE #> 3827 240 0.8624671 0.164706486 fv Gamma RP(P), Gamma FALSE #> 3843 241 0.6575508 0.126415736 fv Gamma RP(P), Gamma FALSE #> 3859 242 0.5155896 0.101988080 fv Gamma RP(P), Gamma FALSE #> 3875 243 0.8672063 0.167331273 fv Gamma RP(P), Gamma FALSE #> 3891 244 0.5652190 0.110299698 fv Gamma RP(P), Gamma FALSE #> 3907 245 0.9099031 0.170615102 fv Gamma RP(P), Gamma FALSE #> 3923 246 0.6715121 0.128245541 fv Gamma RP(P), Gamma FALSE #> 3939 247 0.7666596 0.145481254 fv Gamma RP(P), Gamma FALSE #> 3955 248 0.9441329 0.174552266 fv Gamma RP(P), Gamma FALSE #> 3971 249 0.9565287 0.180161217 fv Gamma RP(P), Gamma FALSE #> 3987 250 0.7319608 0.140182669 fv Gamma RP(P), Gamma FALSE #> 4003 251 0.7972592 0.153143991 fv Gamma RP(P), Gamma FALSE #> 4019 252 0.8050622 0.154700370 fv Gamma RP(P), Gamma FALSE #> 4035 253 0.9078567 0.176560322 fv Gamma RP(P), Gamma FALSE #> 4051 254 0.5209792 0.102295614 fv Gamma RP(P), Gamma FALSE #> 4067 255 0.7747142 0.145325614 fv Gamma RP(P), Gamma FALSE #> 4083 256 0.7249451 0.138771215 fv Gamma RP(P), Gamma FALSE #> 4099 257 0.5361170 0.104550822 fv Gamma RP(P), Gamma FALSE #> 4115 258 0.7026252 0.139222844 fv Gamma RP(P), Gamma FALSE #> 4131 259 0.7429085 0.141357296 fv Gamma RP(P), Gamma FALSE #> 4147 260 NA NA fv Gamma RP(P), Gamma NA #> 4163 261 0.4996380 0.098593653 fv Gamma RP(P), Gamma FALSE #> 4179 262 0.7307282 0.140705499 fv Gamma RP(P), Gamma FALSE #> 4195 263 0.6060010 0.118004035 fv Gamma RP(P), Gamma FALSE #> 4211 264 0.5116451 0.100491965 fv Gamma RP(P), Gamma FALSE #> 4227 265 0.5946271 0.114842799 fv Gamma RP(P), Gamma FALSE #> 4243 266 0.6163830 0.118942533 fv Gamma RP(P), Gamma FALSE #> 4259 267 0.7102904 0.136036062 fv Gamma RP(P), Gamma FALSE #> 4275 268 0.7470312 0.141482234 fv Gamma RP(P), Gamma FALSE #> 4291 269 1.0631565 0.199380875 fv Gamma RP(P), Gamma TRUE #> 4307 270 0.9061584 0.174043080 fv Gamma RP(P), Gamma FALSE #> 4323 271 0.8927398 0.167378590 fv Gamma RP(P), Gamma FALSE #> 4339 272 0.5411831 0.106864266 fv Gamma RP(P), Gamma FALSE #> 4355 273 0.6638746 0.128232822 fv Gamma RP(P), Gamma FALSE #> 4371 274 0.7225398 0.137091182 fv Gamma RP(P), Gamma FALSE #> 4387 275 0.8562018 0.159672512 fv Gamma RP(P), Gamma FALSE #> 4403 276 0.8120395 0.156356817 fv Gamma RP(P), Gamma FALSE #> 4419 277 0.6780585 0.129342060 fv Gamma RP(P), Gamma FALSE #> 4435 278 0.7362699 0.139418618 fv Gamma RP(P), Gamma FALSE #> 4451 279 0.7312040 0.138791432 fv Gamma RP(P), Gamma FALSE #> 4467 280 0.7617472 0.144139706 fv Gamma RP(P), Gamma FALSE #> 4483 281 1.0239004 0.192140750 fv Gamma RP(P), Gamma TRUE #> 4499 282 0.6014472 0.116810971 fv Gamma RP(P), Gamma FALSE #> 4515 283 0.8070494 0.156406698 fv Gamma RP(P), Gamma FALSE #> 4531 284 0.6547454 0.125591638 fv Gamma RP(P), Gamma FALSE #> 4547 285 0.5017963 0.099125117 fv Gamma RP(P), Gamma FALSE #> 4563 286 0.7664404 0.145194703 fv Gamma RP(P), Gamma FALSE #> 4579 287 0.6417145 0.124295516 fv Gamma RP(P), Gamma FALSE #> 4595 288 1.2160035 0.222504503 fv Gamma RP(P), Gamma TRUE #> 4611 289 0.6310461 0.122257396 fv Gamma RP(P), Gamma FALSE #> 4627 290 0.5976140 0.116077104 fv Gamma RP(P), Gamma FALSE #> 4643 291 0.6144723 0.119062165 fv Gamma RP(P), Gamma FALSE #> 4659 292 0.6279208 0.121314205 fv Gamma RP(P), Gamma FALSE #> 4675 293 0.8865261 0.166337950 fv Gamma RP(P), Gamma FALSE #> 4691 294 0.6338803 0.122601043 fv Gamma RP(P), Gamma FALSE #> 4707 295 1.0653819 0.195613485 fv Gamma RP(P), Gamma TRUE #> 4723 296 0.7351061 0.140428978 fv Gamma RP(P), Gamma FALSE #> 4739 297 NA NA fv Gamma RP(P), Gamma NA #> 4755 298 0.5714635 0.111383939 fv Gamma RP(P), Gamma FALSE #> 4771 299 0.5687379 0.111502873 fv Gamma RP(P), Gamma FALSE #> 4787 300 0.8507623 0.158735467 fv Gamma RP(P), Gamma FALSE #> 4803 301 0.5324432 0.104591380 fv Gamma RP(P), Gamma FALSE #> 4819 302 0.7542968 0.142000299 fv Gamma RP(P), Gamma FALSE #> 4835 303 0.6702254 0.129544084 fv Gamma RP(P), Gamma FALSE #> 4851 304 0.7359526 0.140947337 fv Gamma RP(P), Gamma FALSE #> 4867 305 0.8686497 0.162388264 fv Gamma RP(P), Gamma FALSE #> 4883 306 0.7459705 0.141847704 fv Gamma RP(P), Gamma FALSE #> 4899 307 0.7645224 0.146818849 fv Gamma RP(P), Gamma FALSE #> 4915 308 0.6534080 0.125521136 fv Gamma RP(P), Gamma FALSE #> 4931 309 0.7355909 0.139210502 fv Gamma RP(P), Gamma FALSE #> 4947 310 NA NA fv Gamma RP(P), Gamma NA #> 4963 311 0.8223787 0.154504491 fv Gamma RP(P), Gamma FALSE #> 4979 312 1.1338355 0.215053067 fv Gamma RP(P), Gamma TRUE #> 4995 313 0.7878946 0.148828816 fv Gamma RP(P), Gamma FALSE #> 5011 314 0.6331384 0.122483624 fv Gamma RP(P), Gamma FALSE #> 5027 315 0.7590237 0.143303796 fv Gamma RP(P), Gamma FALSE #> 5043 316 1.0456069 0.192281909 fv Gamma RP(P), Gamma TRUE #> 5059 317 0.6438263 0.124298460 fv Gamma RP(P), Gamma FALSE #> 5075 318 0.8458746 0.163143415 fv Gamma RP(P), Gamma FALSE #> 5091 319 0.6167836 0.119519907 fv Gamma RP(P), Gamma FALSE #> 5107 320 0.6054894 0.117299351 fv Gamma RP(P), Gamma FALSE #> 5123 321 0.8581595 0.161575543 fv Gamma RP(P), Gamma FALSE #> 5139 322 0.5470126 0.107569123 fv Gamma RP(P), Gamma FALSE #> 5155 323 0.8521730 0.159824438 fv Gamma RP(P), Gamma FALSE #> 5171 324 0.6293737 0.123041276 fv Gamma RP(P), Gamma FALSE #> 5187 325 0.7351303 0.139660930 fv Gamma RP(P), Gamma FALSE #> 5203 326 0.7037406 0.134539252 fv Gamma RP(P), Gamma FALSE #> 5219 327 0.7573005 0.143468222 fv Gamma RP(P), Gamma FALSE #> 5235 328 1.0260740 0.191722687 fv Gamma RP(P), Gamma TRUE #> 5251 329 0.8785208 0.166167340 fv Gamma RP(P), Gamma FALSE #> 5267 330 0.6958925 0.133498433 fv Gamma RP(P), Gamma FALSE #> 5283 331 0.8444511 0.157981839 fv Gamma RP(P), Gamma FALSE #> 5299 332 0.5635456 0.111106954 fv Gamma RP(P), Gamma FALSE #> 5315 333 0.5430382 0.106020576 fv Gamma RP(P), Gamma FALSE #> 5331 334 0.9485748 0.174368602 fv Gamma RP(P), Gamma FALSE #> 5347 335 0.7668800 0.145970993 fv Gamma RP(P), Gamma FALSE #> 5363 336 0.4803202 0.096188584 fv Gamma RP(P), Gamma FALSE #> 5379 337 0.6414976 0.124756829 fv Gamma RP(P), Gamma FALSE #> 5395 338 0.6042093 0.116438825 fv Gamma RP(P), Gamma FALSE #> 5411 339 0.8270540 0.156836453 fv Gamma RP(P), Gamma FALSE #> 5427 340 0.7812948 0.153293387 fv Gamma RP(P), Gamma FALSE #> 5443 341 0.5615693 0.109395593 fv Gamma RP(P), Gamma FALSE #> 5459 342 0.4507156 0.089944670 fv Gamma RP(P), Gamma TRUE #> 5475 343 0.6379126 0.123551359 fv Gamma RP(P), Gamma FALSE #> 5491 344 0.9832700 0.184814008 fv Gamma RP(P), Gamma FALSE #> 5507 345 0.8700732 0.163382934 fv Gamma RP(P), Gamma FALSE #> 5523 346 0.7930586 0.148638590 fv Gamma RP(P), Gamma FALSE #> 5539 347 0.7362875 0.139653656 fv Gamma RP(P), Gamma FALSE #> 5555 348 0.9288355 0.172358490 fv Gamma RP(P), Gamma FALSE #> 5571 349 0.8545774 0.160193152 fv Gamma RP(P), Gamma FALSE #> 5587 350 0.8162435 0.153114319 fv Gamma RP(P), Gamma FALSE #> 5603 351 0.8768429 0.168170983 fv Gamma RP(P), Gamma FALSE #> 5619 352 0.7998651 0.154372925 fv Gamma RP(P), Gamma FALSE #> 5635 353 0.5789433 0.113105924 fv Gamma RP(P), Gamma FALSE #> 5651 354 0.7427434 0.141322244 fv Gamma RP(P), Gamma FALSE #> 5667 355 0.8022031 0.150273181 fv Gamma RP(P), Gamma FALSE #> 5683 356 0.8292656 0.158481791 fv Gamma RP(P), Gamma FALSE #> 5699 357 0.6949861 0.132957253 fv Gamma RP(P), Gamma FALSE #> 5715 358 0.6410077 0.122340318 fv Gamma RP(P), Gamma FALSE #> 5731 359 0.6758443 0.133342092 fv Gamma RP(P), Gamma FALSE #> 5747 360 0.6048735 0.117286870 fv Gamma RP(P), Gamma FALSE #> 5763 361 0.9452275 0.179410146 fv Gamma RP(P), Gamma FALSE #> 5779 362 0.4613285 0.091336265 fv Gamma RP(P), Gamma TRUE #> 5795 363 NA NA fv Gamma RP(P), Gamma NA #> 5811 364 0.5305074 0.104571551 fv Gamma RP(P), Gamma FALSE #> 5827 365 0.7692393 0.150826618 fv Gamma RP(P), Gamma FALSE #> 5843 366 0.8281260 0.157369897 fv Gamma RP(P), Gamma FALSE #> 5859 367 0.8879069 0.165562059 fv Gamma RP(P), Gamma FALSE #> 5875 368 0.8819495 0.172077745 fv Gamma RP(P), Gamma FALSE #> 5891 369 0.5571989 0.108663257 fv Gamma RP(P), Gamma FALSE #> 5907 370 0.5240141 0.103230461 fv Gamma RP(P), Gamma FALSE #> 5923 371 0.8850740 0.167914113 fv Gamma RP(P), Gamma FALSE #> 5939 372 0.6292203 0.125493047 fv Gamma RP(P), Gamma FALSE #> 5955 373 0.6711393 0.128355923 fv Gamma RP(P), Gamma FALSE #> 5971 374 0.6330126 0.122222933 fv Gamma RP(P), Gamma FALSE #> 5987 375 0.6232037 0.120619676 fv Gamma RP(P), Gamma FALSE #> 6003 376 0.6709763 0.129346165 fv Gamma RP(P), Gamma FALSE #> 6019 377 0.8081042 0.155740601 fv Gamma RP(P), Gamma FALSE #> 6035 378 0.7807703 0.146835814 fv Gamma RP(P), Gamma FALSE #> 6051 379 0.6489020 0.124780001 fv Gamma RP(P), Gamma FALSE #> 6067 380 0.7690472 0.145653760 fv Gamma RP(P), Gamma FALSE #> 6083 381 0.6655172 0.128470538 fv Gamma RP(P), Gamma FALSE #> 6099 382 0.6834100 0.131022145 fv Gamma RP(P), Gamma FALSE #> 6115 383 1.0199434 0.186627092 fv Gamma RP(P), Gamma TRUE #> 6131 384 0.8425240 0.158501752 fv Gamma RP(P), Gamma FALSE #> 6147 385 0.5435103 0.106298014 fv Gamma RP(P), Gamma FALSE #> 6163 386 0.3974050 0.081499042 fv Gamma RP(P), Gamma TRUE #> 6179 387 0.5426046 0.105687478 fv Gamma RP(P), Gamma FALSE #> 6195 388 0.6611317 0.126806617 fv Gamma RP(P), Gamma FALSE #> 6211 389 0.5349625 0.105162575 fv Gamma RP(P), Gamma FALSE #> 6227 390 0.6059506 0.117577612 fv Gamma RP(P), Gamma FALSE #> 6243 391 0.5031306 0.099223928 fv Gamma RP(P), Gamma FALSE #> 6259 392 0.9247264 0.171447639 fv Gamma RP(P), Gamma FALSE #> 6275 393 0.5799003 0.113309467 fv Gamma RP(P), Gamma FALSE #> 6291 394 0.8923633 0.167756406 fv Gamma RP(P), Gamma FALSE #> 6307 395 0.7025183 0.135296087 fv Gamma RP(P), Gamma FALSE #> 6323 396 0.7120067 0.139386238 fv Gamma RP(P), Gamma FALSE #> 6339 397 0.8245329 0.154169882 fv Gamma RP(P), Gamma FALSE #> 6355 398 0.7714605 0.146465081 fv Gamma RP(P), Gamma FALSE #> 6371 399 0.6201603 0.120225120 fv Gamma RP(P), Gamma FALSE #> 6387 400 0.6674704 0.128448157 fv Gamma RP(P), Gamma FALSE #> 6403 401 0.8591833 0.163558247 fv Gamma RP(P), Gamma FALSE #> 6419 402 0.7237335 0.141496085 fv Gamma RP(P), Gamma FALSE #> 6435 403 0.6842458 0.130528240 fv Gamma RP(P), Gamma FALSE #> 6451 404 0.8914124 0.170001726 fv Gamma RP(P), Gamma FALSE #> 6467 405 0.6372709 0.122209769 fv Gamma RP(P), Gamma FALSE #> 6483 406 0.6333429 0.122577106 fv Gamma RP(P), Gamma FALSE #> 6499 407 0.7540527 0.143640882 fv Gamma RP(P), Gamma FALSE #> 6515 408 0.4838950 0.100461103 fv Gamma RP(P), Gamma FALSE #> 6531 409 0.9146888 0.169439375 fv Gamma RP(P), Gamma FALSE #> 6547 410 0.9330222 0.176834198 fv Gamma RP(P), Gamma FALSE #> 6563 411 0.7883049 0.155697900 fv Gamma RP(P), Gamma FALSE #> 6579 412 0.6774845 0.129576379 fv Gamma RP(P), Gamma FALSE #> 6595 413 0.7116535 0.136948608 fv Gamma RP(P), Gamma FALSE #> 6611 414 0.7132797 0.136232402 fv Gamma RP(P), Gamma FALSE #> 6627 415 0.8286193 0.154693246 fv Gamma RP(P), Gamma FALSE #> 6643 416 0.6156083 0.119284639 fv Gamma RP(P), Gamma FALSE #> 6659 417 0.7087812 0.135096167 fv Gamma RP(P), Gamma FALSE #> 6675 418 0.7293437 0.138932311 fv Gamma RP(P), Gamma FALSE #> 6691 419 0.5997472 0.117475840 fv Gamma RP(P), Gamma FALSE #> 6707 420 0.7993144 0.153914851 fv Gamma RP(P), Gamma FALSE #> 6723 421 0.7797894 0.147239639 fv Gamma RP(P), Gamma FALSE #> 6739 422 0.7196492 0.137084047 fv Gamma RP(P), Gamma FALSE #> 6755 423 0.7782277 0.146884783 fv Gamma RP(P), Gamma FALSE #> 6771 424 0.6735367 0.130483600 fv Gamma RP(P), Gamma FALSE #> 6787 425 0.5438044 0.106872272 fv Gamma RP(P), Gamma FALSE #> 6803 426 0.9765959 0.180951859 fv Gamma RP(P), Gamma FALSE #> 6819 427 0.4342931 0.087816670 fv Gamma RP(P), Gamma TRUE #> 6835 428 NA NA fv Gamma RP(P), Gamma NA #> 6851 429 0.6326812 0.122272867 fv Gamma RP(P), Gamma FALSE #> 6867 430 0.5864832 0.114045582 fv Gamma RP(P), Gamma FALSE #> 6883 431 0.8330418 0.156297552 fv Gamma RP(P), Gamma FALSE #> 6899 432 0.5660420 0.111497263 fv Gamma RP(P), Gamma FALSE #> 6915 433 0.7633897 0.146680676 fv Gamma RP(P), Gamma FALSE #> 6931 434 0.9157854 0.169179334 fv Gamma RP(P), Gamma FALSE #> 6947 435 0.6436417 0.123386611 fv Gamma RP(P), Gamma FALSE #> 6963 436 0.8894330 0.168215631 fv Gamma RP(P), Gamma FALSE #> 6979 437 0.6466005 0.124257627 fv Gamma RP(P), Gamma FALSE #> 6995 438 0.4983309 0.099003740 fv Gamma RP(P), Gamma FALSE #> 7011 439 0.6788690 0.131122725 fv Gamma RP(P), Gamma FALSE #> 7027 440 0.6840970 0.130674970 fv Gamma RP(P), Gamma FALSE #> 7043 441 0.4509432 0.090190377 fv Gamma RP(P), Gamma TRUE #> 7059 442 0.8197896 0.153466848 fv Gamma RP(P), Gamma FALSE #> 7075 443 0.4883504 0.097806334 fv Gamma RP(P), Gamma FALSE #> 7091 444 0.6309643 0.121865041 fv Gamma RP(P), Gamma FALSE #> 7107 445 0.8964975 0.172918156 fv Gamma RP(P), Gamma FALSE #> 7123 446 0.7383350 0.140046750 fv Gamma RP(P), Gamma FALSE #> 7139 447 0.7068869 0.134798962 fv Gamma RP(P), Gamma FALSE #> 7155 448 0.7623019 0.144996154 fv Gamma RP(P), Gamma FALSE #> 7171 449 0.8202607 0.153262713 fv Gamma RP(P), Gamma FALSE #> 7187 450 0.6652518 0.127192030 fv Gamma RP(P), Gamma FALSE #> 7203 451 0.7929428 0.149414357 fv Gamma RP(P), Gamma FALSE #> 7219 452 0.5390468 0.106252035 fv Gamma RP(P), Gamma FALSE #> 7235 453 0.7983611 0.149574089 fv Gamma RP(P), Gamma FALSE #> 7251 454 0.6809155 0.133855974 fv Gamma RP(P), Gamma FALSE #> 7267 455 0.7867915 0.148808687 fv Gamma RP(P), Gamma FALSE #> 7283 456 0.8027674 0.151115965 fv Gamma RP(P), Gamma FALSE #> 7299 457 0.7599211 0.143934714 fv Gamma RP(P), Gamma FALSE #> 7315 458 0.8392784 0.158497506 fv Gamma RP(P), Gamma FALSE #> 7331 459 0.6859136 0.132185682 fv Gamma RP(P), Gamma FALSE #> 7347 460 0.5989569 0.116734400 fv Gamma RP(P), Gamma FALSE #> 7363 461 0.7104775 0.136171002 fv Gamma RP(P), Gamma FALSE #> 7379 462 0.9353550 0.176644991 fv Gamma RP(P), Gamma FALSE #> 7395 463 0.5917203 0.113971563 fv Gamma RP(P), Gamma FALSE #> 7411 464 0.5466129 0.108141319 fv Gamma RP(P), Gamma FALSE #> 7427 465 0.6924133 0.132057038 fv Gamma RP(P), Gamma FALSE #> 7443 466 0.8595890 0.164380309 fv Gamma RP(P), Gamma FALSE #> 7459 467 0.8621341 0.162880467 fv Gamma RP(P), Gamma FALSE #> 7475 468 0.5844938 0.113603790 fv Gamma RP(P), Gamma FALSE #> 7491 469 0.7748601 0.149549630 fv Gamma RP(P), Gamma FALSE #> 7507 470 0.7885976 0.148029828 fv Gamma RP(P), Gamma FALSE #> 7523 471 0.6020256 0.116789527 fv Gamma RP(P), Gamma FALSE #> 7539 472 0.7796100 0.146855855 fv Gamma RP(P), Gamma FALSE #> 7555 473 0.6785752 0.130008471 fv Gamma RP(P), Gamma FALSE #> 7571 474 0.6250698 0.122879162 fv Gamma RP(P), Gamma FALSE #> 7587 475 1.1078072 0.208724589 fv Gamma RP(P), Gamma TRUE #> 7603 476 0.5563729 0.109196239 fv Gamma RP(P), Gamma FALSE #> 7619 477 0.8587266 0.160352193 fv Gamma RP(P), Gamma FALSE #> 7635 478 0.6830960 0.131457533 fv Gamma RP(P), Gamma FALSE #> 7651 479 0.8681593 0.162333605 fv Gamma RP(P), Gamma FALSE #> 7667 480 0.7574428 0.144816517 fv Gamma RP(P), Gamma FALSE #> 7683 481 NA NA fv Gamma RP(P), Gamma NA #> 7699 482 0.6266013 0.124370257 fv Gamma RP(P), Gamma FALSE #> 7715 483 0.6528467 0.127306631 fv Gamma RP(P), Gamma FALSE #> 7731 484 0.7127943 0.134930802 fv Gamma RP(P), Gamma FALSE #> 7747 485 0.7125054 0.135276927 fv Gamma RP(P), Gamma FALSE #> 7763 486 0.5687850 0.111413020 fv Gamma RP(P), Gamma FALSE #> 7779 487 0.8243935 0.154600910 fv Gamma RP(P), Gamma FALSE #> 7795 488 0.6812360 0.132703870 fv Gamma RP(P), Gamma FALSE #> 7811 489 0.8845371 0.169323636 fv Gamma RP(P), Gamma FALSE #> 7827 490 1.0653722 0.194660353 fv Gamma RP(P), Gamma TRUE #> 7843 491 0.6826541 0.130776905 fv Gamma RP(P), Gamma FALSE #> 7859 492 0.8235202 0.155848858 fv Gamma RP(P), Gamma FALSE #> 7875 493 0.7768356 0.151524876 fv Gamma RP(P), Gamma FALSE #> 7891 494 0.7218053 0.137841570 fv Gamma RP(P), Gamma FALSE #> 7907 495 0.7695705 0.146521336 fv Gamma RP(P), Gamma FALSE #> 7923 496 0.5166882 0.102399021 fv Gamma RP(P), Gamma FALSE #> 7939 497 0.6627873 0.126766292 fv Gamma RP(P), Gamma FALSE #> 7955 498 0.6342445 0.122728374 fv Gamma RP(P), Gamma FALSE #> 7971 499 0.9374378 0.175338174 fv Gamma RP(P), Gamma FALSE #> 7987 500 0.9019653 0.170409658 fv Gamma RP(P), Gamma FALSE #> 8003 501 0.6962305 0.132980257 fv Gamma RP(P), Gamma FALSE #> 8019 502 0.7603688 0.144250280 fv Gamma RP(P), Gamma FALSE #> 8035 503 0.6803697 0.130734079 fv Gamma RP(P), Gamma FALSE #> 8051 504 0.8753725 0.162673418 fv Gamma RP(P), Gamma FALSE #> 8067 505 0.9260534 0.173473955 fv Gamma RP(P), Gamma FALSE #> 8083 506 0.6660089 0.127478067 fv Gamma RP(P), Gamma FALSE #> 8099 507 0.6217409 0.120696018 fv Gamma RP(P), Gamma FALSE #> 8115 508 0.6657625 0.127882730 fv Gamma RP(P), Gamma FALSE #> 8131 509 0.7035885 0.134122091 fv Gamma RP(P), Gamma FALSE #> 8147 510 0.9153649 0.169975579 fv Gamma RP(P), Gamma FALSE #> 8163 511 0.7435226 0.141999828 fv Gamma RP(P), Gamma FALSE #> 8179 512 0.8092206 0.152504675 fv Gamma RP(P), Gamma FALSE #> 8195 513 0.5970830 0.116342118 fv Gamma RP(P), Gamma FALSE #> 8211 514 0.6584162 0.127259558 fv Gamma RP(P), Gamma FALSE #> 8227 515 0.6218205 0.120288402 fv Gamma RP(P), Gamma FALSE #> 8243 516 0.7564849 0.144835314 fv Gamma RP(P), Gamma FALSE #> 8259 517 0.7866480 0.148609375 fv Gamma RP(P), Gamma FALSE #> 8275 518 0.8554770 0.159037294 fv Gamma RP(P), Gamma FALSE #> 8291 519 0.7052320 0.134728823 fv Gamma RP(P), Gamma FALSE #> 8307 520 0.6204574 0.120158025 fv Gamma RP(P), Gamma FALSE #> 8323 521 0.5621929 0.109422753 fv Gamma RP(P), Gamma FALSE #> 8339 522 0.5443101 0.106427943 fv Gamma RP(P), Gamma FALSE #> 8355 523 0.6711061 0.129798304 fv Gamma RP(P), Gamma FALSE #> 8371 524 0.6038576 0.117617477 fv Gamma RP(P), Gamma FALSE #> 8387 525 1.0537419 0.193004302 fv Gamma RP(P), Gamma TRUE #> 8403 526 0.7616132 0.144330441 fv Gamma RP(P), Gamma FALSE #> 8419 527 0.6897576 0.133491604 fv Gamma RP(P), Gamma FALSE #> 8435 528 0.6067378 0.118097165 fv Gamma RP(P), Gamma FALSE #> 8451 529 0.8534833 0.160118465 fv Gamma RP(P), Gamma FALSE #> 8467 530 0.8925411 0.166714870 fv Gamma RP(P), Gamma FALSE #> 8483 531 0.7934168 0.148589902 fv Gamma RP(P), Gamma FALSE #> 8499 532 0.7905062 0.149455790 fv Gamma RP(P), Gamma FALSE #> 8515 533 0.7295545 0.139010779 fv Gamma RP(P), Gamma FALSE #> 8531 534 0.7802222 0.146683135 fv Gamma RP(P), Gamma FALSE #> 8547 535 0.9550213 0.176657581 fv Gamma RP(P), Gamma FALSE #> 8563 536 0.8285902 0.154754825 fv Gamma RP(P), Gamma FALSE #> 8579 537 0.7142590 0.139710304 fv Gamma RP(P), Gamma FALSE #> 8595 538 0.6242860 0.121665242 fv Gamma RP(P), Gamma FALSE #> 8611 539 0.8641128 0.161545364 fv Gamma RP(P), Gamma FALSE #> 8627 540 0.7678492 0.149811233 fv Gamma RP(P), Gamma FALSE #> 8643 541 0.6289813 0.122609687 fv Gamma RP(P), Gamma FALSE #> 8659 542 0.8359050 0.157109048 fv Gamma RP(P), Gamma FALSE #> 8675 543 0.9027601 0.167995185 fv Gamma RP(P), Gamma FALSE #> 8691 544 0.8244925 0.154618216 fv Gamma RP(P), Gamma FALSE #> 8707 545 0.6980857 0.134268057 fv Gamma RP(P), Gamma FALSE #> 8723 546 0.6933300 0.133073387 fv Gamma RP(P), Gamma FALSE #> 8739 547 NA NA fv Gamma RP(P), Gamma NA #> 8755 548 0.6333770 0.125231052 fv Gamma RP(P), Gamma FALSE #> 8771 549 0.8023245 0.153987219 fv Gamma RP(P), Gamma FALSE #> 8787 550 0.8868958 0.173752332 fv Gamma RP(P), Gamma FALSE #> 8803 551 0.7222047 0.137638041 fv Gamma RP(P), Gamma FALSE #> 8819 552 0.5671938 0.111950384 fv Gamma RP(P), Gamma FALSE #> 8835 553 0.5909826 0.115431956 fv Gamma RP(P), Gamma FALSE #> 8851 554 0.6819668 0.131463459 fv Gamma RP(P), Gamma FALSE #> 8867 555 0.5949893 0.116327674 fv Gamma RP(P), Gamma FALSE #> 8883 556 0.5424623 0.106665952 fv Gamma RP(P), Gamma FALSE #> 8899 557 1.1345537 0.209862447 fv Gamma RP(P), Gamma TRUE #> 8915 558 0.8058485 0.152388030 fv Gamma RP(P), Gamma FALSE #> 8931 559 0.6173724 0.122782335 fv Gamma RP(P), Gamma FALSE #> 8947 560 0.7512495 0.143599104 fv Gamma RP(P), Gamma FALSE #> 8963 561 0.7585141 0.143155705 fv Gamma RP(P), Gamma FALSE #> 8979 562 0.4484573 0.089532416 fv Gamma RP(P), Gamma TRUE #> 8995 563 0.7698720 0.146396748 fv Gamma RP(P), Gamma FALSE #> 9011 564 0.7607873 0.143322348 fv Gamma RP(P), Gamma FALSE #> 9027 565 0.8222472 0.159236501 fv Gamma RP(P), Gamma FALSE #> 9043 566 0.8548495 0.160429756 fv Gamma RP(P), Gamma FALSE #> 9059 567 0.7245818 0.138376691 fv Gamma RP(P), Gamma FALSE #> 9075 568 0.7931173 0.152597975 fv Gamma RP(P), Gamma FALSE #> 9091 569 0.6850610 0.133116653 fv Gamma RP(P), Gamma FALSE #> 9107 570 NA NA fv Gamma RP(P), Gamma NA #> 9123 571 0.7549228 0.142914728 fv Gamma RP(P), Gamma FALSE #> 9139 572 0.8278657 0.154426950 fv Gamma RP(P), Gamma FALSE #> 9155 573 0.5344300 0.105884223 fv Gamma RP(P), Gamma FALSE #> 9171 574 0.8527038 0.162694626 fv Gamma RP(P), Gamma FALSE #> 9187 575 0.7057682 0.134947723 fv Gamma RP(P), Gamma FALSE #> 9203 576 0.7448504 0.142986350 fv Gamma RP(P), Gamma FALSE #> 9219 577 0.6324739 0.122708071 fv Gamma RP(P), Gamma FALSE #> 9235 578 0.6535771 0.125371078 fv Gamma RP(P), Gamma FALSE #> 9251 579 0.6463148 0.124602683 fv Gamma RP(P), Gamma FALSE #> 9267 580 0.6122098 0.118229398 fv Gamma RP(P), Gamma FALSE #> 9283 581 0.8581943 0.160096945 fv Gamma RP(P), Gamma FALSE #> 9299 582 0.4255333 0.084857238 fv Gamma RP(P), Gamma TRUE #> 9315 583 0.7830994 0.147615332 fv Gamma RP(P), Gamma FALSE #> 9331 584 0.6297757 0.122421778 fv Gamma RP(P), Gamma FALSE #> 9347 585 1.1118116 0.202600547 fv Gamma RP(P), Gamma TRUE #> 9363 586 NA NA fv Gamma RP(P), Gamma NA #> 9379 587 0.7835051 0.147939858 fv Gamma RP(P), Gamma FALSE #> 9395 588 0.7974640 0.152143429 fv Gamma RP(P), Gamma FALSE #> 9411 589 0.5862546 0.114190230 fv Gamma RP(P), Gamma FALSE #> 9427 590 0.6735269 0.129506738 fv Gamma RP(P), Gamma FALSE #> 9443 591 0.7163856 0.137360805 fv Gamma RP(P), Gamma FALSE #> 9459 592 0.8887836 0.165763416 fv Gamma RP(P), Gamma FALSE #> 9475 593 0.6961761 0.136894275 fv Gamma RP(P), Gamma FALSE #> 9491 594 0.7225011 0.139237787 fv Gamma RP(P), Gamma FALSE #> 9507 595 0.7110869 0.135311991 fv Gamma RP(P), Gamma FALSE #> 9523 596 0.8419027 0.157392494 fv Gamma RP(P), Gamma FALSE #> 9539 597 0.9726863 0.183877561 fv Gamma RP(P), Gamma FALSE #> 9555 598 0.7321676 0.138931246 fv Gamma RP(P), Gamma FALSE #> 9571 599 1.0933409 0.198947458 fv Gamma RP(P), Gamma TRUE #> 9587 600 0.9365142 0.172756965 fv Gamma RP(P), Gamma FALSE #> 9603 601 0.6900339 0.131971647 fv Gamma RP(P), Gamma FALSE #> 9619 602 0.8071034 0.154541397 fv Gamma RP(P), Gamma FALSE #> 9635 603 0.6864634 0.131149003 fv Gamma RP(P), Gamma FALSE #> 9651 604 0.8388411 0.164957900 fv Gamma RP(P), Gamma FALSE #> 9667 605 0.8991808 0.170856264 fv Gamma RP(P), Gamma FALSE #> 9683 606 0.7896722 0.149157106 fv Gamma RP(P), Gamma FALSE #> 9699 607 0.6483373 0.125688013 fv Gamma RP(P), Gamma FALSE #> 9715 608 0.8165667 0.153820340 fv Gamma RP(P), Gamma FALSE #> 9731 609 0.8902387 0.166429149 fv Gamma RP(P), Gamma FALSE #> 9747 610 0.7933518 0.149471334 fv Gamma RP(P), Gamma FALSE #> 9763 611 0.6512893 0.125696501 fv Gamma RP(P), Gamma FALSE #> 9779 612 0.8855873 0.165210328 fv Gamma RP(P), Gamma FALSE #> 9795 613 0.7551929 0.143131416 fv Gamma RP(P), Gamma FALSE #> 9811 614 0.7010086 0.134204870 fv Gamma RP(P), Gamma FALSE #> 9827 615 0.6334929 0.122282301 fv Gamma RP(P), Gamma FALSE #> 9843 616 NA NA fv Gamma RP(P), Gamma NA #> 9859 617 0.9807549 0.184785018 fv Gamma RP(P), Gamma FALSE #> 9875 618 0.5779344 0.112517396 fv Gamma RP(P), Gamma FALSE #> 9891 619 0.6355496 0.122741929 fv Gamma RP(P), Gamma FALSE #> 9907 620 0.6841379 0.131439881 fv Gamma RP(P), Gamma FALSE #> 9923 621 0.7994067 0.150798986 fv Gamma RP(P), Gamma FALSE #> 9939 622 1.1226630 0.204596360 fv Gamma RP(P), Gamma TRUE #> 9955 623 0.5592545 0.109014752 fv Gamma RP(P), Gamma FALSE #> 9971 624 0.7146248 0.135617788 fv Gamma RP(P), Gamma FALSE #> 9987 625 0.6678007 0.128544119 fv Gamma RP(P), Gamma FALSE #> 10003 626 0.5438265 0.107223540 fv Gamma RP(P), Gamma FALSE #> 10019 627 0.6402631 0.127929319 fv Gamma RP(P), Gamma FALSE #> 10035 628 0.7161136 0.135821754 fv Gamma RP(P), Gamma FALSE #> 10051 629 0.5761695 0.113413852 fv Gamma RP(P), Gamma FALSE #> 10067 630 0.9265988 0.172078476 fv Gamma RP(P), Gamma FALSE #> 10083 631 0.8463990 0.163840387 fv Gamma RP(P), Gamma FALSE #> 10099 632 0.5918212 0.115253393 fv Gamma RP(P), Gamma FALSE #> 10115 633 0.5392676 0.105659170 fv Gamma RP(P), Gamma FALSE #> 10131 634 0.5612710 0.109666236 fv Gamma RP(P), Gamma FALSE #> 10147 635 0.4758954 0.095277949 fv Gamma RP(P), Gamma FALSE #> 10163 636 0.6850059 0.132963753 fv Gamma RP(P), Gamma FALSE #> 10179 637 0.7534974 0.142630643 fv Gamma RP(P), Gamma FALSE #> 10195 638 0.6156667 0.122944131 fv Gamma RP(P), Gamma FALSE #> 10211 639 0.7024871 0.133973160 fv Gamma RP(P), Gamma FALSE #> 10227 640 0.6138612 0.120005152 fv Gamma RP(P), Gamma FALSE #> 10243 641 0.6687009 0.127792012 fv Gamma RP(P), Gamma FALSE #> 10259 642 0.6827599 0.131499855 fv Gamma RP(P), Gamma FALSE #> 10275 643 0.6416117 0.123916292 fv Gamma RP(P), Gamma FALSE #> 10291 644 0.9303135 0.178541883 fv Gamma RP(P), Gamma FALSE #> 10307 645 0.5072111 0.099892269 fv Gamma RP(P), Gamma FALSE #> 10323 646 0.5770236 0.112923822 fv Gamma RP(P), Gamma FALSE #> 10339 647 1.0987860 0.202063919 fv Gamma RP(P), Gamma TRUE #> 10355 648 0.7249466 0.137273492 fv Gamma RP(P), Gamma FALSE #> 10371 649 0.8361975 0.156905913 fv Gamma RP(P), Gamma FALSE #> 10387 650 0.9657631 0.179386120 fv Gamma RP(P), Gamma FALSE #> 10403 651 0.9480153 0.175508178 fv Gamma RP(P), Gamma FALSE #> 10419 652 0.7609753 0.144403263 fv Gamma RP(P), Gamma FALSE #> 10435 653 0.9390345 0.178175424 fv Gamma RP(P), Gamma FALSE #> 10451 654 0.6071795 0.117910755 fv Gamma RP(P), Gamma FALSE #> 10467 655 0.6768799 0.129452910 fv Gamma RP(P), Gamma FALSE #> 10483 656 0.7872342 0.148934201 fv Gamma RP(P), Gamma FALSE #> 10499 657 0.7155506 0.136779245 fv Gamma RP(P), Gamma FALSE #> 10515 658 0.8186467 0.154783223 fv Gamma RP(P), Gamma FALSE #> 10531 659 0.8561195 0.161384412 fv Gamma RP(P), Gamma FALSE #> 10547 660 0.7969361 0.153486464 fv Gamma RP(P), Gamma FALSE #> 10563 661 0.5847750 0.113459778 fv Gamma RP(P), Gamma FALSE #> 10579 662 0.4491533 0.089376759 fv Gamma RP(P), Gamma TRUE #> 10595 663 0.6583715 0.127150411 fv Gamma RP(P), Gamma FALSE #> 10611 664 0.7245792 0.137191115 fv Gamma RP(P), Gamma FALSE #> 10627 665 0.6935069 0.133446603 fv Gamma RP(P), Gamma FALSE #> 10643 666 0.6789625 0.133210260 fv Gamma RP(P), Gamma FALSE #> 10659 667 NA NA fv Gamma RP(P), Gamma NA #> 10675 668 0.8326042 0.159460222 fv Gamma RP(P), Gamma FALSE #> 10691 669 0.5423378 0.106498804 fv Gamma RP(P), Gamma FALSE #> 10707 670 0.8502685 0.162585636 fv Gamma RP(P), Gamma FALSE #> 10723 671 0.8776545 0.164067176 fv Gamma RP(P), Gamma FALSE #> 10739 672 0.6152927 0.119051797 fv Gamma RP(P), Gamma FALSE #> 10755 673 0.6122459 0.117726094 fv Gamma RP(P), Gamma FALSE #> 10771 674 0.9559380 0.181254051 fv Gamma RP(P), Gamma FALSE #> 10787 675 0.6980390 0.132753824 fv Gamma RP(P), Gamma FALSE #> 10803 676 0.5088804 0.102994006 fv Gamma RP(P), Gamma FALSE #> 10819 677 0.6339165 0.121646475 fv Gamma RP(P), Gamma FALSE #> 10835 678 0.8369559 0.157675553 fv Gamma RP(P), Gamma FALSE #> 10851 679 0.9492848 0.176109260 fv Gamma RP(P), Gamma FALSE #> 10867 680 0.6841460 0.135356905 fv Gamma RP(P), Gamma FALSE #> 10883 681 0.5654321 0.110524762 fv Gamma RP(P), Gamma FALSE #> 10899 682 0.7617394 0.144044913 fv Gamma RP(P), Gamma FALSE #> 10915 683 0.8624482 0.164333849 fv Gamma RP(P), Gamma FALSE #> 10931 684 0.9321014 0.172684748 fv Gamma RP(P), Gamma FALSE #> 10947 685 0.6441355 0.123847642 fv Gamma RP(P), Gamma FALSE #> 10963 686 0.5512106 0.108266248 fv Gamma RP(P), Gamma FALSE #> 10979 687 NA NA fv Gamma RP(P), Gamma NA #> 10995 688 0.7248728 0.137856421 fv Gamma RP(P), Gamma FALSE #> 11011 689 0.7052454 0.134429054 fv Gamma RP(P), Gamma FALSE #> 11027 690 NA NA fv Gamma RP(P), Gamma NA #> 11043 691 NA NA fv Gamma RP(P), Gamma NA #> 11059 692 0.7287757 0.137960478 fv Gamma RP(P), Gamma FALSE #> 11075 693 0.8591672 0.163147539 fv Gamma RP(P), Gamma FALSE #> 11091 694 0.8546217 0.161886212 fv Gamma RP(P), Gamma FALSE #> 11107 695 0.7359517 0.143204482 fv Gamma RP(P), Gamma FALSE #> 11123 696 0.7274184 0.140975651 fv Gamma RP(P), Gamma FALSE #> 11139 697 0.7343352 0.139432429 fv Gamma RP(P), Gamma FALSE #> 11155 698 0.7107206 0.135622115 fv Gamma RP(P), Gamma FALSE #> 11171 699 0.7219693 0.136624664 fv Gamma RP(P), Gamma FALSE #> 11187 700 NA NA fv Gamma RP(P), Gamma NA #> 11203 701 0.6390749 0.122901167 fv Gamma RP(P), Gamma FALSE #> 11219 702 0.7207084 0.141765393 fv Gamma RP(P), Gamma FALSE #> 11235 703 0.5731972 0.112301241 fv Gamma RP(P), Gamma FALSE #> 11251 704 0.9050465 0.167387536 fv Gamma RP(P), Gamma FALSE #> 11267 705 0.9729034 0.179704350 fv Gamma RP(P), Gamma FALSE #> 11283 706 0.7510740 0.142142712 fv Gamma RP(P), Gamma FALSE #> 11299 707 0.5762848 0.113425276 fv Gamma RP(P), Gamma FALSE #> 11315 708 0.8182433 0.157478515 fv Gamma RP(P), Gamma FALSE #> 11331 709 0.7488299 0.141777904 fv Gamma RP(P), Gamma FALSE #> 11347 710 0.7464753 0.140839219 fv Gamma RP(P), Gamma FALSE #> 11363 711 0.3895724 0.079456850 fv Gamma RP(P), Gamma TRUE #> 11379 712 0.7226782 0.137898089 fv Gamma RP(P), Gamma FALSE #> 11395 713 0.7579136 0.142711103 fv Gamma RP(P), Gamma FALSE #> 11411 714 0.8613708 0.165279895 fv Gamma RP(P), Gamma FALSE #> 11427 715 0.9499191 0.176494223 fv Gamma RP(P), Gamma FALSE #> 11443 716 0.8153731 0.154756057 fv Gamma RP(P), Gamma FALSE #> 11459 717 0.6266283 0.125506065 fv Gamma RP(P), Gamma FALSE #> 11475 718 NA NA fv Gamma RP(P), Gamma NA #> 11491 719 0.6487120 0.124374007 fv Gamma RP(P), Gamma FALSE #> 11507 720 0.6467946 0.124681595 fv Gamma RP(P), Gamma FALSE #> 11523 721 0.8677451 0.163658213 fv Gamma RP(P), Gamma FALSE #> 11539 722 0.8762603 0.164114507 fv Gamma RP(P), Gamma FALSE #> 11555 723 0.7702204 0.149232323 fv Gamma RP(P), Gamma FALSE #> 11571 724 NA NA fv Gamma RP(P), Gamma NA #> 11587 725 0.6452807 0.123798465 fv Gamma RP(P), Gamma FALSE #> 11603 726 0.6388286 0.124187802 fv Gamma RP(P), Gamma FALSE #> 11619 727 0.8294437 0.158131813 fv Gamma RP(P), Gamma FALSE #> 11635 728 0.5498798 0.110995415 fv Gamma RP(P), Gamma FALSE #> 11651 729 0.7956737 0.149669575 fv Gamma RP(P), Gamma FALSE #> 11667 730 0.9039416 0.172983881 fv Gamma RP(P), Gamma FALSE #> 11683 731 0.9129412 0.170480535 fv Gamma RP(P), Gamma FALSE #> 11699 732 0.8631376 0.160142721 fv Gamma RP(P), Gamma FALSE #> 11715 733 0.5700636 0.111318610 fv Gamma RP(P), Gamma FALSE #> 11731 734 0.5720887 0.111838652 fv Gamma RP(P), Gamma FALSE #> 11747 735 0.7865514 0.148067100 fv Gamma RP(P), Gamma FALSE #> 11763 736 0.8314412 0.159749066 fv Gamma RP(P), Gamma FALSE #> 11779 737 0.7051831 0.134332472 fv Gamma RP(P), Gamma FALSE #> 11795 738 0.6441563 0.129738565 fv Gamma RP(P), Gamma FALSE #> 11811 739 0.6962830 0.133154711 fv Gamma RP(P), Gamma FALSE #> 11827 740 0.6820458 0.130662984 fv Gamma RP(P), Gamma FALSE #> 11843 741 NA NA fv Gamma RP(P), Gamma NA #> 11859 742 0.6129049 0.118716275 fv Gamma RP(P), Gamma FALSE #> 11875 743 0.7773048 0.146924665 fv Gamma RP(P), Gamma FALSE #> 11891 744 1.0015653 0.188279252 fv Gamma RP(P), Gamma FALSE #> 11907 745 0.6374989 0.124833327 fv Gamma RP(P), Gamma FALSE #> 11923 746 0.4555035 0.091061162 fv Gamma RP(P), Gamma TRUE #> 11939 747 0.6241370 0.120584114 fv Gamma RP(P), Gamma FALSE #> 11955 748 0.8319601 0.155303605 fv Gamma RP(P), Gamma FALSE #> 11971 749 0.6239035 0.120784818 fv Gamma RP(P), Gamma FALSE #> 11987 750 0.5559165 0.108448974 fv Gamma RP(P), Gamma FALSE #> 12003 751 0.9025966 0.167345296 fv Gamma RP(P), Gamma FALSE #> 12019 752 0.8153572 0.153739062 fv Gamma RP(P), Gamma FALSE #> 12035 753 0.6272796 0.122999496 fv Gamma RP(P), Gamma FALSE #> 12051 754 0.7630634 0.144501360 fv Gamma RP(P), Gamma FALSE #> 12067 755 0.7765286 0.147048699 fv Gamma RP(P), Gamma FALSE #> 12083 756 1.1339230 0.205593685 fv Gamma RP(P), Gamma TRUE #> 12099 757 0.6148180 0.119394869 fv Gamma RP(P), Gamma FALSE #> 12115 758 0.5432530 0.106690499 fv Gamma RP(P), Gamma FALSE #> 12131 759 0.6139540 0.118795452 fv Gamma RP(P), Gamma FALSE #> 12147 760 0.6053061 0.117009343 fv Gamma RP(P), Gamma FALSE #> 12163 761 0.7687177 0.146506742 fv Gamma RP(P), Gamma FALSE #> 12179 762 0.6503456 0.125085698 fv Gamma RP(P), Gamma FALSE #> 12195 763 0.6147158 0.119201346 fv Gamma RP(P), Gamma FALSE #> 12211 764 0.7158499 0.137306674 fv Gamma RP(P), Gamma FALSE #> 12227 765 0.7002176 0.134930951 fv Gamma RP(P), Gamma FALSE #> 12243 766 0.5657031 0.110972938 fv Gamma RP(P), Gamma FALSE #> 12259 767 0.7776944 0.147857952 fv Gamma RP(P), Gamma FALSE #> 12275 768 0.7286661 0.138405976 fv Gamma RP(P), Gamma FALSE #> 12291 769 0.8013336 0.150430910 fv Gamma RP(P), Gamma FALSE #> 12307 770 0.5887824 0.116113997 fv Gamma RP(P), Gamma FALSE #> 12323 771 0.5586792 0.109343864 fv Gamma RP(P), Gamma FALSE #> 12339 772 0.8625072 0.165893739 fv Gamma RP(P), Gamma FALSE #> 12355 773 0.6841501 0.132154034 fv Gamma RP(P), Gamma FALSE #> 12371 774 0.7403145 0.140287332 fv Gamma RP(P), Gamma FALSE #> 12387 775 0.9725393 0.183070759 fv Gamma RP(P), Gamma FALSE #> 12403 776 0.7450303 0.140817496 fv Gamma RP(P), Gamma FALSE #> 12419 777 0.6343648 0.122711321 fv Gamma RP(P), Gamma FALSE #> 12435 778 0.7993270 0.151902110 fv Gamma RP(P), Gamma FALSE #> 12451 779 0.8088646 0.152875106 fv Gamma RP(P), Gamma FALSE #> 12467 780 NA NA fv Gamma RP(P), Gamma NA #> 12483 781 0.6087847 0.119407501 fv Gamma RP(P), Gamma FALSE #> 12499 782 0.6605803 0.131867548 fv Gamma RP(P), Gamma FALSE #> 12515 783 0.7750586 0.146132801 fv Gamma RP(P), Gamma FALSE #> 12531 784 0.6495380 0.124443981 fv Gamma RP(P), Gamma FALSE #> 12547 785 0.6407272 0.123198032 fv Gamma RP(P), Gamma FALSE #> 12563 786 0.9000376 0.168714826 fv Gamma RP(P), Gamma FALSE #> 12579 787 0.8111483 0.157542078 fv Gamma RP(P), Gamma FALSE #> 12595 788 0.7380264 0.140992473 fv Gamma RP(P), Gamma FALSE #> 12611 789 0.8476976 0.161406608 fv Gamma RP(P), Gamma FALSE #> 12627 790 0.9024427 0.172655911 fv Gamma RP(P), Gamma FALSE #> 12643 791 0.9430376 0.178166763 fv Gamma RP(P), Gamma FALSE #> 12659 792 0.9351843 0.174085705 fv Gamma RP(P), Gamma FALSE #> 12675 793 0.6732365 0.129192553 fv Gamma RP(P), Gamma FALSE #> 12691 794 0.3859247 0.078027842 fv Gamma RP(P), Gamma TRUE #> 12707 795 0.6998057 0.134561671 fv Gamma RP(P), Gamma FALSE #> 12723 796 0.7919689 0.150058245 fv Gamma RP(P), Gamma FALSE #> 12739 797 0.6275349 0.122051366 fv Gamma RP(P), Gamma FALSE #> 12755 798 0.5850261 0.114219338 fv Gamma RP(P), Gamma FALSE #> 12771 799 0.9191908 0.178128093 fv Gamma RP(P), Gamma FALSE #> 12787 800 0.8922223 0.166340459 fv Gamma RP(P), Gamma FALSE #> 12803 801 0.6043574 0.118347117 fv Gamma RP(P), Gamma FALSE #> 12819 802 0.6171306 0.118894255 fv Gamma RP(P), Gamma FALSE #> 12835 803 0.7658729 0.144480842 fv Gamma RP(P), Gamma FALSE #> 12851 804 0.7889772 0.149222466 fv Gamma RP(P), Gamma FALSE #> 12867 805 0.8005181 0.151346516 fv Gamma RP(P), Gamma FALSE #> 12883 806 0.5808515 0.112939967 fv Gamma RP(P), Gamma FALSE #> 12899 807 0.9661626 0.179076575 fv Gamma RP(P), Gamma FALSE #> 12915 808 0.7042314 0.138042522 fv Gamma RP(P), Gamma FALSE #> 12931 809 0.8734012 0.167819080 fv Gamma RP(P), Gamma FALSE #> 12947 810 0.7531191 0.142535233 fv Gamma RP(P), Gamma FALSE #> 12963 811 0.9776521 0.180079230 fv Gamma RP(P), Gamma FALSE #> 12979 812 0.6756066 0.130110250 fv Gamma RP(P), Gamma FALSE #> 12995 813 0.8547872 0.159923942 fv Gamma RP(P), Gamma FALSE #> 13011 814 0.8478379 0.160402232 fv Gamma RP(P), Gamma FALSE #> 13027 815 1.0381546 0.193586062 fv Gamma RP(P), Gamma TRUE #> 13043 816 0.6065386 0.119016822 fv Gamma RP(P), Gamma FALSE #> 13059 817 0.8312686 0.160699876 fv Gamma RP(P), Gamma FALSE #> 13075 818 0.6723233 0.130326892 fv Gamma RP(P), Gamma FALSE #> 13091 819 0.9040734 0.172206834 fv Gamma RP(P), Gamma FALSE #> 13107 820 0.6626870 0.126985479 fv Gamma RP(P), Gamma FALSE #> 13123 821 0.7749392 0.149228961 fv Gamma RP(P), Gamma FALSE #> 13139 822 0.5198505 0.102096349 fv Gamma RP(P), Gamma FALSE #> 13155 823 0.7135305 0.136903270 fv Gamma RP(P), Gamma FALSE #> 13171 824 0.7431181 0.141763121 fv Gamma RP(P), Gamma FALSE #> 13187 825 0.5631657 0.110129879 fv Gamma RP(P), Gamma FALSE #> 13203 826 0.7061344 0.133539029 fv Gamma RP(P), Gamma FALSE #> 13219 827 0.6528873 0.124927870 fv Gamma RP(P), Gamma FALSE #> 13235 828 0.9604082 0.181879005 fv Gamma RP(P), Gamma FALSE #> 13251 829 0.6024186 0.116726974 fv Gamma RP(P), Gamma FALSE #> 13267 830 0.8517937 0.160118257 fv Gamma RP(P), Gamma FALSE #> 13283 831 0.5413722 0.107776935 fv Gamma RP(P), Gamma FALSE #> 13299 832 0.7271789 0.138304720 fv Gamma RP(P), Gamma FALSE #> 13315 833 0.7249351 0.138256244 fv Gamma RP(P), Gamma FALSE #> 13331 834 0.5385471 0.106479275 fv Gamma RP(P), Gamma FALSE #> 13347 835 0.6823086 0.130247610 fv Gamma RP(P), Gamma FALSE #> 13363 836 0.7231375 0.138611031 fv Gamma RP(P), Gamma FALSE #> 13379 837 0.6984835 0.134825376 fv Gamma RP(P), Gamma FALSE #> 13395 838 0.9073089 0.168321113 fv Gamma RP(P), Gamma FALSE #> 13411 839 0.6372419 0.123018519 fv Gamma RP(P), Gamma FALSE #> 13427 840 0.7448403 0.141879837 fv Gamma RP(P), Gamma FALSE #> 13443 841 0.7244250 0.136804241 fv Gamma RP(P), Gamma FALSE #> 13459 842 0.7297928 0.140145685 fv Gamma RP(P), Gamma FALSE #> 13475 843 0.9415358 0.175690499 fv Gamma RP(P), Gamma FALSE #> 13491 844 0.7608448 0.146469678 fv Gamma RP(P), Gamma FALSE #> 13507 845 0.8961165 0.167892095 fv Gamma RP(P), Gamma FALSE #> 13523 846 0.6313314 0.123796847 fv Gamma RP(P), Gamma FALSE #> 13539 847 0.6408113 0.126385690 fv Gamma RP(P), Gamma FALSE #> 13555 848 0.5258133 0.103834384 fv Gamma RP(P), Gamma FALSE #> 13571 849 0.7230815 0.136689050 fv Gamma RP(P), Gamma FALSE #> 13587 850 0.6668834 0.127661821 fv Gamma RP(P), Gamma FALSE #> 13603 851 0.7700720 0.146643873 fv Gamma RP(P), Gamma FALSE #> 13619 852 0.4635693 0.092359411 fv Gamma RP(P), Gamma FALSE #> 13635 853 0.7474297 0.141513530 fv Gamma RP(P), Gamma FALSE #> 13651 854 0.5512805 0.108040252 fv Gamma RP(P), Gamma FALSE #> 13667 855 0.9322641 0.173321281 fv Gamma RP(P), Gamma FALSE #> 13683 856 0.8130425 0.152735715 fv Gamma RP(P), Gamma FALSE #> 13699 857 0.5913117 0.115856491 fv Gamma RP(P), Gamma FALSE #> 13715 858 0.6348206 0.123095885 fv Gamma RP(P), Gamma FALSE #> 13731 859 0.6829374 0.133973853 fv Gamma RP(P), Gamma FALSE #> 13747 860 0.6630881 0.127449186 fv Gamma RP(P), Gamma FALSE #> 13763 861 0.8296646 0.156284689 fv Gamma RP(P), Gamma FALSE #> 13779 862 0.6256559 0.120163322 fv Gamma RP(P), Gamma FALSE #> 13795 863 0.7547157 0.143508193 fv Gamma RP(P), Gamma FALSE #> 13811 864 0.7274700 0.139329512 fv Gamma RP(P), Gamma FALSE #> 13827 865 0.7915269 0.150148411 fv Gamma RP(P), Gamma FALSE #> 13843 866 0.6938166 0.132710273 fv Gamma RP(P), Gamma FALSE #> 13859 867 0.7270595 0.138558270 fv Gamma RP(P), Gamma FALSE #> 13875 868 0.7646349 0.145030386 fv Gamma RP(P), Gamma FALSE #> 13891 869 0.7412567 0.141031242 fv Gamma RP(P), Gamma FALSE #> 13907 870 0.6928811 0.135884346 fv Gamma RP(P), Gamma FALSE #> 13923 871 NA NA fv Gamma RP(P), Gamma NA #> 13939 872 0.8741667 0.164519963 fv Gamma RP(P), Gamma FALSE #> 13955 873 0.8141794 0.152418868 fv Gamma RP(P), Gamma FALSE #> 13971 874 1.0582781 0.201045860 fv Gamma RP(P), Gamma TRUE #> 13987 875 0.6152695 0.118843687 fv Gamma RP(P), Gamma FALSE #> 14003 876 0.6653659 0.127197470 fv Gamma RP(P), Gamma FALSE #> 14019 877 0.7482744 0.141869490 fv Gamma RP(P), Gamma FALSE #> 14035 878 0.7940041 0.152669508 fv Gamma RP(P), Gamma FALSE #> 14051 879 0.7056140 0.139457238 fv Gamma RP(P), Gamma FALSE #> 14067 880 0.9237356 0.171450639 fv Gamma RP(P), Gamma FALSE #> 14083 881 NA NA fv Gamma RP(P), Gamma NA #> 14099 882 0.9622642 0.177419442 fv Gamma RP(P), Gamma FALSE #> 14115 883 0.6122745 0.118943858 fv Gamma RP(P), Gamma FALSE #> 14131 884 0.6036147 0.116254204 fv Gamma RP(P), Gamma FALSE #> 14147 885 0.5917685 0.115023471 fv Gamma RP(P), Gamma FALSE #> 14163 886 0.5903262 0.115035223 fv Gamma RP(P), Gamma FALSE #> 14179 887 0.7178929 0.137358795 fv Gamma RP(P), Gamma FALSE #> 14195 888 0.9596692 0.177126009 fv Gamma RP(P), Gamma FALSE #> 14211 889 0.8047857 0.150574821 fv Gamma RP(P), Gamma FALSE #> 14227 890 0.6195377 0.120542563 fv Gamma RP(P), Gamma FALSE #> 14243 891 0.5142069 0.100991313 fv Gamma RP(P), Gamma FALSE #> 14259 892 0.6862121 0.131311434 fv Gamma RP(P), Gamma FALSE #> 14275 893 0.8301538 0.158225903 fv Gamma RP(P), Gamma FALSE #> 14291 894 0.5690579 0.111132288 fv Gamma RP(P), Gamma FALSE #> 14307 895 0.7646876 0.145255201 fv Gamma RP(P), Gamma FALSE #> 14323 896 0.8736150 0.162750200 fv Gamma RP(P), Gamma FALSE #> 14339 897 0.7174357 0.136603078 fv Gamma RP(P), Gamma FALSE #> 14355 898 0.9077453 0.168301401 fv Gamma RP(P), Gamma FALSE #> 14371 899 0.7703075 0.146578385 fv Gamma RP(P), Gamma FALSE #> 14387 900 0.7968261 0.152992830 fv Gamma RP(P), Gamma FALSE #> 14403 901 0.6041539 0.117492458 fv Gamma RP(P), Gamma FALSE #> 14419 902 0.5806196 0.112757680 fv Gamma RP(P), Gamma FALSE #> 14435 903 0.6449749 0.123830439 fv Gamma RP(P), Gamma FALSE #> 14451 904 1.0648896 0.202836264 fv Gamma RP(P), Gamma TRUE #> 14467 905 0.6172244 0.118612589 fv Gamma RP(P), Gamma FALSE #> 14483 906 0.9307485 0.171739678 fv Gamma RP(P), Gamma FALSE #> 14499 907 0.7212674 0.137324092 fv Gamma RP(P), Gamma FALSE #> 14515 908 0.6557254 0.129913240 fv Gamma RP(P), Gamma FALSE #> 14531 909 0.6191823 0.120399527 fv Gamma RP(P), Gamma FALSE #> 14547 910 0.5543950 0.108411251 fv Gamma RP(P), Gamma FALSE #> 14563 911 0.7093924 0.139027722 fv Gamma RP(P), Gamma FALSE #> 14579 912 0.5474285 0.106437830 fv Gamma RP(P), Gamma FALSE #> 14595 913 0.7027527 0.133771400 fv Gamma RP(P), Gamma FALSE #> 14611 914 0.6350090 0.123912603 fv Gamma RP(P), Gamma FALSE #> 14627 915 0.8877144 0.168402032 fv Gamma RP(P), Gamma FALSE #> 14643 916 0.5324769 0.103993777 fv Gamma RP(P), Gamma FALSE #> 14659 917 0.8257094 0.158306447 fv Gamma RP(P), Gamma FALSE #> 14675 918 0.7822604 0.147161994 fv Gamma RP(P), Gamma FALSE #> 14691 919 0.5649634 0.109871170 fv Gamma RP(P), Gamma FALSE #> 14707 920 0.7581416 0.142890003 fv Gamma RP(P), Gamma FALSE #> 14723 921 0.8239834 0.155853841 fv Gamma RP(P), Gamma FALSE #> 14739 922 1.0610788 0.198654926 fv Gamma RP(P), Gamma TRUE #> 14755 923 0.7195818 0.136933304 fv Gamma RP(P), Gamma FALSE #> 14771 924 0.7698761 0.144921933 fv Gamma RP(P), Gamma FALSE #> 14787 925 0.8687568 0.166258634 fv Gamma RP(P), Gamma FALSE #> 14803 926 0.7069269 0.133988760 fv Gamma RP(P), Gamma FALSE #> 14819 927 0.4598690 0.091786557 fv Gamma RP(P), Gamma FALSE #> 14835 928 0.6924455 0.131790224 fv Gamma RP(P), Gamma FALSE #> 14851 929 NA NA fv Gamma RP(P), Gamma NA #> 14867 930 0.8848479 0.169540478 fv Gamma RP(P), Gamma FALSE #> 14883 931 0.6753327 0.128916825 fv Gamma RP(P), Gamma FALSE #> 14899 932 0.8372623 0.156313520 fv Gamma RP(P), Gamma FALSE #> 14915 933 0.6307088 0.122091618 fv Gamma RP(P), Gamma FALSE #> 14931 934 0.6027997 0.116538645 fv Gamma RP(P), Gamma FALSE #> 14947 935 0.5052707 0.100596407 fv Gamma RP(P), Gamma FALSE #> 14963 936 0.5930017 0.114762813 fv Gamma RP(P), Gamma FALSE #> 14979 937 1.1060700 0.204812720 fv Gamma RP(P), Gamma TRUE #> 14995 938 0.7900036 0.149577687 fv Gamma RP(P), Gamma FALSE #> 15011 939 0.8269911 0.155312585 fv Gamma RP(P), Gamma FALSE #> 15027 940 0.7651135 0.144304466 fv Gamma RP(P), Gamma FALSE #> 15043 941 0.6356078 0.122487768 fv Gamma RP(P), Gamma FALSE #> 15059 942 0.6473050 0.124922562 fv Gamma RP(P), Gamma FALSE #> 15075 943 0.4807370 0.095724602 fv Gamma RP(P), Gamma FALSE #> 15091 944 0.6194064 0.119154705 fv Gamma RP(P), Gamma FALSE #> 15107 945 0.6175935 0.119838731 fv Gamma RP(P), Gamma FALSE #> 15123 946 0.7670644 0.149036648 fv Gamma RP(P), Gamma FALSE #> 15139 947 0.6811637 0.132119739 fv Gamma RP(P), Gamma FALSE #> 15155 948 0.5151351 0.102962455 fv Gamma RP(P), Gamma FALSE #> 15171 949 0.6194144 0.120993729 fv Gamma RP(P), Gamma FALSE #> 15187 950 0.6245088 0.122145644 fv Gamma RP(P), Gamma FALSE #> 15203 951 0.7155764 0.136307065 fv Gamma RP(P), Gamma FALSE #> 15219 952 0.6737609 0.129729678 fv Gamma RP(P), Gamma FALSE #> 15235 953 1.0941966 0.202309534 fv Gamma RP(P), Gamma TRUE #> 15251 954 0.6752267 0.129373036 fv Gamma RP(P), Gamma FALSE #> 15267 955 0.8191963 0.153734262 fv Gamma RP(P), Gamma FALSE #> 15283 956 0.6642468 0.128557962 fv Gamma RP(P), Gamma FALSE #> 15299 957 0.6334643 0.123008889 fv Gamma RP(P), Gamma FALSE #> 15315 958 0.5365145 0.105276009 fv Gamma RP(P), Gamma FALSE #> 15331 959 0.5981546 0.115741211 fv Gamma RP(P), Gamma FALSE #> 15347 960 0.7820444 0.148491202 fv Gamma RP(P), Gamma FALSE #> 15363 961 0.5120426 0.101261877 fv Gamma RP(P), Gamma FALSE #> 15379 962 0.9039760 0.168664395 fv Gamma RP(P), Gamma FALSE #> 15395 963 0.8351072 0.158257000 fv Gamma RP(P), Gamma FALSE #> 15411 964 0.6922496 0.132776055 fv Gamma RP(P), Gamma FALSE #> 15427 965 0.6365475 0.123530828 fv Gamma RP(P), Gamma FALSE #> 15443 966 0.7682227 0.146838969 fv Gamma RP(P), Gamma FALSE #> 15459 967 0.6676674 0.127821817 fv Gamma RP(P), Gamma FALSE #> 15475 968 0.5625265 0.109741850 fv Gamma RP(P), Gamma FALSE #> 15491 969 0.7509732 0.144589636 fv Gamma RP(P), Gamma FALSE #> 15507 970 0.7023211 0.138688899 fv Gamma RP(P), Gamma FALSE #> 15523 971 0.6365563 0.123319119 fv Gamma RP(P), Gamma FALSE #> 15539 972 0.6556819 0.129732139 fv Gamma RP(P), Gamma FALSE #> 15555 973 0.9647090 0.185057265 fv Gamma RP(P), Gamma FALSE #> 15571 974 0.5263112 0.103972669 fv Gamma RP(P), Gamma FALSE #> 15587 975 0.5028392 0.099877710 fv Gamma RP(P), Gamma FALSE #> 15603 976 0.7556945 0.143837742 fv Gamma RP(P), Gamma FALSE #> 15619 977 0.8499235 0.158553778 fv Gamma RP(P), Gamma FALSE #> 15635 978 0.8299769 0.159832741 fv Gamma RP(P), Gamma FALSE #> 15651 979 0.8153734 0.157312216 fv Gamma RP(P), Gamma FALSE #> 15667 980 0.5361506 0.105128657 fv Gamma RP(P), Gamma FALSE #> 15683 981 0.7147316 0.137951031 fv Gamma RP(P), Gamma FALSE #> 15699 982 0.9684844 0.181555375 fv Gamma RP(P), Gamma FALSE #> 15715 983 0.5330180 0.105260888 fv Gamma RP(P), Gamma FALSE #> 15731 984 0.7522072 0.143060278 fv Gamma RP(P), Gamma FALSE #> 15747 985 0.8205779 0.157882770 fv Gamma RP(P), Gamma FALSE #> 15763 986 0.6120942 0.117431990 fv Gamma RP(P), Gamma FALSE #> 15779 987 0.5490514 0.107616085 fv Gamma RP(P), Gamma FALSE #> 15795 988 0.6296822 0.121481511 fv Gamma RP(P), Gamma FALSE #> 15811 989 0.7954111 0.149703493 fv Gamma RP(P), Gamma FALSE #> 15827 990 0.7113507 0.134852556 fv Gamma RP(P), Gamma FALSE #> 15843 991 0.7586014 0.144688767 fv Gamma RP(P), Gamma FALSE #> 15859 992 0.7789712 0.148678906 fv Gamma RP(P), Gamma FALSE #> 15875 993 0.9452686 0.175283351 fv Gamma RP(P), Gamma FALSE #> 15891 994 0.6625835 0.127525541 fv Gamma RP(P), Gamma FALSE #> 15907 995 0.8179336 0.154628613 fv Gamma RP(P), Gamma FALSE #> 15923 996 0.6698410 0.128532500 fv Gamma RP(P), Gamma FALSE #> 15939 997 0.6029261 0.120579994 fv Gamma RP(P), Gamma FALSE #> 15955 998 0.6444980 0.124308172 fv Gamma RP(P), Gamma FALSE #> 15971 999 0.5097824 0.100070485 fv Gamma RP(P), Gamma FALSE #> 15987 1000 0.5002252 0.099547221 fv Gamma RP(P), Gamma FALSE #> 4 1 0.8410503 0.180489790 fv Gamma RP(P), Log-Normal FALSE #> 20 2 0.8678277 0.194181070 fv Gamma RP(P), Log-Normal FALSE #> 36 3 1.5656905 0.354448508 fv Gamma RP(P), Log-Normal TRUE #> 52 4 1.2089109 0.260522826 fv Gamma RP(P), Log-Normal FALSE #> 68 5 0.9105106 0.200479265 fv Gamma RP(P), Log-Normal FALSE #> 84 6 0.9727359 0.207142387 fv Gamma RP(P), Log-Normal FALSE #> 100 7 0.9091356 0.198318108 fv Gamma RP(P), Log-Normal FALSE #> 116 8 1.3377013 0.293288046 fv Gamma RP(P), Log-Normal FALSE #> 132 9 1.2350450 0.276016839 fv Gamma RP(P), Log-Normal FALSE #> 148 10 0.9974789 0.217294847 fv Gamma RP(P), Log-Normal FALSE #> 164 11 1.0414795 0.229502409 fv Gamma RP(P), Log-Normal FALSE #> 180 12 1.4499625 0.321000485 fv Gamma RP(P), Log-Normal FALSE #> 196 13 1.2289253 0.270499075 fv Gamma RP(P), Log-Normal FALSE #> 212 14 0.7903710 0.178471107 fv Gamma RP(P), Log-Normal FALSE #> 228 15 1.1996110 0.263087699 fv Gamma RP(P), Log-Normal FALSE #> 244 16 1.2290670 0.262683325 fv Gamma RP(P), Log-Normal FALSE #> 260 17 0.7668133 0.166707205 fv Gamma RP(P), Log-Normal FALSE #> 276 18 0.5614283 0.129201981 fv Gamma RP(P), Log-Normal FALSE #> 292 19 0.8973139 0.194570679 fv Gamma RP(P), Log-Normal FALSE #> 308 20 1.2979832 0.290290296 fv Gamma RP(P), Log-Normal FALSE #> 324 21 0.6887073 0.156427688 fv Gamma RP(P), Log-Normal FALSE #> 340 22 1.2170119 0.272426758 fv Gamma RP(P), Log-Normal FALSE #> 356 23 0.8168514 0.177990111 fv Gamma RP(P), Log-Normal FALSE #> 372 24 1.0319698 0.223783982 fv Gamma RP(P), Log-Normal FALSE #> 388 25 1.1205947 0.246445015 fv Gamma RP(P), Log-Normal FALSE #> 404 26 0.9638065 0.214741205 fv Gamma RP(P), Log-Normal FALSE #> 420 27 1.8077166 0.405187974 fv Gamma RP(P), Log-Normal TRUE #> 436 28 1.4582922 0.319696485 fv Gamma RP(P), Log-Normal FALSE #> 452 29 1.2743998 0.277048737 fv Gamma RP(P), Log-Normal FALSE #> 468 30 1.4103568 0.311798652 fv Gamma RP(P), Log-Normal FALSE #> 484 31 0.8138218 0.185276938 fv Gamma RP(P), Log-Normal FALSE #> 500 32 0.9982089 0.220955990 fv Gamma RP(P), Log-Normal FALSE #> 516 33 0.8061031 0.175345832 fv Gamma RP(P), Log-Normal FALSE #> 532 34 0.7039887 0.153529988 fv Gamma RP(P), Log-Normal FALSE #> 548 35 1.0346859 0.233365573 fv Gamma RP(P), Log-Normal FALSE #> 564 36 0.7549084 0.171089345 fv Gamma RP(P), Log-Normal FALSE #> 580 37 0.7130831 0.152936839 fv Gamma RP(P), Log-Normal FALSE #> 596 38 0.6323124 0.137321184 fv Gamma RP(P), Log-Normal FALSE #> 612 39 0.9223978 0.197745952 fv Gamma RP(P), Log-Normal FALSE #> 628 40 0.5917448 0.131429331 fv Gamma RP(P), Log-Normal FALSE #> 644 41 1.7030475 0.362512848 fv Gamma RP(P), Log-Normal TRUE #> 660 42 0.9836085 0.221167054 fv Gamma RP(P), Log-Normal FALSE #> 676 43 1.0892011 0.236781660 fv Gamma RP(P), Log-Normal FALSE #> 692 44 1.0691287 0.229946817 fv Gamma RP(P), Log-Normal FALSE #> 708 45 0.9125777 0.193490742 fv Gamma RP(P), Log-Normal FALSE #> 724 46 0.8640446 0.183399015 fv Gamma RP(P), Log-Normal FALSE #> 740 47 1.3812417 0.310356076 fv Gamma RP(P), Log-Normal FALSE #> 756 48 0.9461687 0.209437725 fv Gamma RP(P), Log-Normal FALSE #> 772 49 1.2123569 0.272535046 fv Gamma RP(P), Log-Normal FALSE #> 788 50 1.0157173 0.219640404 fv Gamma RP(P), Log-Normal FALSE #> 804 51 1.2240924 0.266048868 fv Gamma RP(P), Log-Normal FALSE #> 820 52 0.6314951 0.135520991 fv Gamma RP(P), Log-Normal FALSE #> 836 53 0.7902155 0.170518782 fv Gamma RP(P), Log-Normal FALSE #> 852 54 0.6234466 0.136430712 fv Gamma RP(P), Log-Normal FALSE #> 868 55 1.1077144 0.243206554 fv Gamma RP(P), Log-Normal FALSE #> 884 56 0.8032454 0.176040775 fv Gamma RP(P), Log-Normal FALSE #> 900 57 1.0879018 0.236307364 fv Gamma RP(P), Log-Normal FALSE #> 916 58 0.9079961 0.206563826 fv Gamma RP(P), Log-Normal FALSE #> 932 59 0.8521420 0.182802754 fv Gamma RP(P), Log-Normal FALSE #> 948 60 1.1246211 0.247632446 fv Gamma RP(P), Log-Normal FALSE #> 964 61 0.8496498 0.182406159 fv Gamma RP(P), Log-Normal FALSE #> 980 62 0.6798459 0.145192799 fv Gamma RP(P), Log-Normal FALSE #> 996 63 1.1786060 0.259638432 fv Gamma RP(P), Log-Normal FALSE #> 1012 64 0.8159884 0.175037739 fv Gamma RP(P), Log-Normal FALSE #> 1028 65 0.8800785 0.187329515 fv Gamma RP(P), Log-Normal FALSE #> 1044 66 0.6475174 0.141594919 fv Gamma RP(P), Log-Normal FALSE #> 1060 67 1.1346861 0.243224867 fv Gamma RP(P), Log-Normal FALSE #> 1076 68 0.9451782 0.204530548 fv Gamma RP(P), Log-Normal FALSE #> 1092 69 0.6591367 0.142421595 fv Gamma RP(P), Log-Normal FALSE #> 1108 70 0.8957225 0.201454630 fv Gamma RP(P), Log-Normal FALSE #> 1124 71 1.2425651 0.269862801 fv Gamma RP(P), Log-Normal FALSE #> 1140 72 0.7988484 0.172472083 fv Gamma RP(P), Log-Normal FALSE #> 1156 73 0.5992919 0.131137709 fv Gamma RP(P), Log-Normal FALSE #> 1172 74 0.8804460 0.189838649 fv Gamma RP(P), Log-Normal FALSE #> 1188 75 0.9777687 0.216420261 fv Gamma RP(P), Log-Normal FALSE #> 1204 76 0.9693736 0.219502318 fv Gamma RP(P), Log-Normal FALSE #> 1220 77 1.0165404 0.226139509 fv Gamma RP(P), Log-Normal FALSE #> 1236 78 1.4399271 0.315071555 fv Gamma RP(P), Log-Normal FALSE #> 1252 79 2.1221995 0.470009490 fv Gamma RP(P), Log-Normal TRUE #> 1268 80 0.7791535 0.174703739 fv Gamma RP(P), Log-Normal FALSE #> 1284 81 1.2547237 0.280827316 fv Gamma RP(P), Log-Normal FALSE #> 1300 82 0.9467868 0.204477217 fv Gamma RP(P), Log-Normal FALSE #> 1316 83 0.6230714 0.145922655 fv Gamma RP(P), Log-Normal FALSE #> 1332 84 0.9656183 0.208305949 fv Gamma RP(P), Log-Normal FALSE #> 1348 85 0.8409584 0.179338509 fv Gamma RP(P), Log-Normal FALSE #> 1364 86 0.8783902 0.188634107 fv Gamma RP(P), Log-Normal FALSE #> 1380 87 0.7891754 0.171683960 fv Gamma RP(P), Log-Normal FALSE #> 1396 88 0.8889765 0.189117565 fv Gamma RP(P), Log-Normal FALSE #> 1412 89 1.0136504 0.220546193 fv Gamma RP(P), Log-Normal FALSE #> 1428 90 1.1286349 0.241320253 fv Gamma RP(P), Log-Normal FALSE #> 1444 91 0.9312858 0.201825397 fv Gamma RP(P), Log-Normal FALSE #> 1460 92 0.8289786 0.178341610 fv Gamma RP(P), Log-Normal FALSE #> 1476 93 1.4146168 0.330757275 fv Gamma RP(P), Log-Normal TRUE #> 1492 94 1.1853824 0.265460198 fv Gamma RP(P), Log-Normal FALSE #> 1508 95 0.9465371 0.204446330 fv Gamma RP(P), Log-Normal FALSE #> 1524 96 0.5360025 0.117580795 fv Gamma RP(P), Log-Normal FALSE #> 1540 97 0.7049504 0.150930049 fv Gamma RP(P), Log-Normal FALSE #> 1556 98 1.0626450 0.230692215 fv Gamma RP(P), Log-Normal FALSE #> 1572 99 0.7236906 0.160439565 fv Gamma RP(P), Log-Normal FALSE #> 1588 100 1.2194488 0.261578712 fv Gamma RP(P), Log-Normal FALSE #> 1604 101 1.0668733 0.228523775 fv Gamma RP(P), Log-Normal FALSE #> 1620 102 0.9285004 0.200447554 fv Gamma RP(P), Log-Normal FALSE #> 1636 103 1.3458088 0.304378913 fv Gamma RP(P), Log-Normal FALSE #> 1652 104 1.0710874 0.231465125 fv Gamma RP(P), Log-Normal FALSE #> 1668 105 1.2613946 0.281394393 fv Gamma RP(P), Log-Normal FALSE #> 1684 106 0.8969644 0.193536579 fv Gamma RP(P), Log-Normal FALSE #> 1700 107 1.3073644 0.291540572 fv Gamma RP(P), Log-Normal FALSE #> 1716 108 1.2015396 0.273156263 fv Gamma RP(P), Log-Normal FALSE #> 1732 109 0.9608367 0.215133741 fv Gamma RP(P), Log-Normal FALSE #> 1748 110 1.0549760 0.230967027 fv Gamma RP(P), Log-Normal FALSE #> 1764 111 1.1546607 0.253379239 fv Gamma RP(P), Log-Normal FALSE #> 1780 112 0.5673895 0.125437515 fv Gamma RP(P), Log-Normal FALSE #> 1796 113 0.6343064 0.137652658 fv Gamma RP(P), Log-Normal FALSE #> 1812 114 1.6994774 0.372630539 fv Gamma RP(P), Log-Normal TRUE #> 1828 115 0.8096436 0.174316311 fv Gamma RP(P), Log-Normal FALSE #> 1844 116 0.5983113 0.130571723 fv Gamma RP(P), Log-Normal FALSE #> 1860 117 1.0752666 0.230788747 fv Gamma RP(P), Log-Normal FALSE #> 1876 118 0.6424306 0.138884328 fv Gamma RP(P), Log-Normal FALSE #> 1892 119 0.7987293 0.174838654 fv Gamma RP(P), Log-Normal FALSE #> 1908 120 0.9198102 0.199426585 fv Gamma RP(P), Log-Normal FALSE #> 1924 121 0.7655232 0.165876205 fv Gamma RP(P), Log-Normal FALSE #> 1940 122 0.8673380 0.192315723 fv Gamma RP(P), Log-Normal FALSE #> 1956 123 0.9257457 0.199557099 fv Gamma RP(P), Log-Normal FALSE #> 1972 124 0.9741059 0.208749126 fv Gamma RP(P), Log-Normal FALSE #> 1988 125 1.2460856 0.279458468 fv Gamma RP(P), Log-Normal FALSE #> 2004 126 1.5223418 0.348979386 fv Gamma RP(P), Log-Normal TRUE #> 2020 127 1.0897918 0.233748704 fv Gamma RP(P), Log-Normal FALSE #> 2036 128 1.0913695 0.235245203 fv Gamma RP(P), Log-Normal FALSE #> 2052 129 0.7759233 0.174810378 fv Gamma RP(P), Log-Normal FALSE #> 2068 130 0.8542536 0.185655091 fv Gamma RP(P), Log-Normal FALSE #> 2084 131 0.8677951 0.186392333 fv Gamma RP(P), Log-Normal FALSE #> 2100 132 1.0182273 0.229239447 fv Gamma RP(P), Log-Normal FALSE #> 2116 133 0.9314544 0.204039232 fv Gamma RP(P), Log-Normal FALSE #> 2132 134 1.0852088 0.238460386 fv Gamma RP(P), Log-Normal FALSE #> 2148 135 0.7909149 0.173975625 fv Gamma RP(P), Log-Normal FALSE #> 2164 136 0.9778860 0.214124322 fv Gamma RP(P), Log-Normal FALSE #> 2180 137 1.2598163 0.276133548 fv Gamma RP(P), Log-Normal FALSE #> 2196 138 1.2809055 0.281451627 fv Gamma RP(P), Log-Normal FALSE #> 2212 139 0.7995624 0.172343978 fv Gamma RP(P), Log-Normal FALSE #> 2228 140 1.0542020 0.228792828 fv Gamma RP(P), Log-Normal FALSE #> 2244 141 0.7478963 0.168448746 fv Gamma RP(P), Log-Normal FALSE #> 2260 142 0.9760714 0.213021566 fv Gamma RP(P), Log-Normal FALSE #> 2276 143 1.7801465 0.420367979 fv Gamma RP(P), Log-Normal TRUE #> 2292 144 1.1180069 0.240026858 fv Gamma RP(P), Log-Normal FALSE #> 2308 145 0.8550480 0.185257078 fv Gamma RP(P), Log-Normal FALSE #> 2324 146 0.8869459 0.194368374 fv Gamma RP(P), Log-Normal FALSE #> 2340 147 1.0416163 0.222624864 fv Gamma RP(P), Log-Normal FALSE #> 2356 148 0.6177941 0.133321319 fv Gamma RP(P), Log-Normal FALSE #> 2372 149 0.8384950 0.183594689 fv Gamma RP(P), Log-Normal FALSE #> 2388 150 1.1818709 0.256428027 fv Gamma RP(P), Log-Normal FALSE #> 2404 151 1.1336835 0.246106754 fv Gamma RP(P), Log-Normal FALSE #> 2420 152 1.2047244 0.274407174 fv Gamma RP(P), Log-Normal FALSE #> 2436 153 0.6319178 0.140024355 fv Gamma RP(P), Log-Normal FALSE #> 2452 154 1.1227542 0.243273981 fv Gamma RP(P), Log-Normal FALSE #> 2468 155 0.9472756 0.213435649 fv Gamma RP(P), Log-Normal FALSE #> 2484 156 0.9353948 0.201845857 fv Gamma RP(P), Log-Normal FALSE #> 2500 157 1.4443196 0.325027201 fv Gamma RP(P), Log-Normal FALSE #> 2516 158 1.4804150 0.332558943 fv Gamma RP(P), Log-Normal TRUE #> 2532 159 0.6630153 0.148287051 fv Gamma RP(P), Log-Normal FALSE #> 2548 160 0.6900087 0.149587077 fv Gamma RP(P), Log-Normal FALSE #> 2564 161 1.7387701 0.385887845 fv Gamma RP(P), Log-Normal TRUE #> 2580 162 0.9687233 0.217750869 fv Gamma RP(P), Log-Normal FALSE #> 2596 163 0.6827167 0.145583781 fv Gamma RP(P), Log-Normal FALSE #> 2612 164 1.2172745 0.262189900 fv Gamma RP(P), Log-Normal FALSE #> 2628 165 1.0784115 0.233084303 fv Gamma RP(P), Log-Normal FALSE #> 2644 166 1.1583751 0.261285259 fv Gamma RP(P), Log-Normal FALSE #> 2660 167 1.3212424 0.288994706 fv Gamma RP(P), Log-Normal FALSE #> 2676 168 1.0892162 0.232654723 fv Gamma RP(P), Log-Normal FALSE #> 2692 169 0.9488717 0.210488425 fv Gamma RP(P), Log-Normal FALSE #> 2708 170 0.9425105 0.207346315 fv Gamma RP(P), Log-Normal FALSE #> 2724 171 0.9648281 0.217152696 fv Gamma RP(P), Log-Normal FALSE #> 2740 172 1.1441352 0.247932693 fv Gamma RP(P), Log-Normal FALSE #> 2756 173 0.7910405 0.176024495 fv Gamma RP(P), Log-Normal FALSE #> 2772 174 1.1316952 0.249970141 fv Gamma RP(P), Log-Normal FALSE #> 2788 175 0.8198924 0.180989910 fv Gamma RP(P), Log-Normal FALSE #> 2804 176 0.8753872 0.188037677 fv Gamma RP(P), Log-Normal FALSE #> 2820 177 0.7720114 0.176313354 fv Gamma RP(P), Log-Normal FALSE #> 2836 178 1.1816336 0.253573112 fv Gamma RP(P), Log-Normal FALSE #> 2852 179 0.7570887 0.163987104 fv Gamma RP(P), Log-Normal FALSE #> 2868 180 1.0248482 0.231084001 fv Gamma RP(P), Log-Normal FALSE #> 2884 181 1.1758148 0.255526928 fv Gamma RP(P), Log-Normal FALSE #> 2900 182 0.9353048 0.200381412 fv Gamma RP(P), Log-Normal FALSE #> 2916 183 0.7649203 0.166913250 fv Gamma RP(P), Log-Normal FALSE #> 2932 184 0.9391842 0.210675866 fv Gamma RP(P), Log-Normal FALSE #> 2948 185 1.2001237 0.263877714 fv Gamma RP(P), Log-Normal FALSE #> 2964 186 1.3870806 0.315929817 fv Gamma RP(P), Log-Normal FALSE #> 2980 187 0.9699397 0.211577834 fv Gamma RP(P), Log-Normal FALSE #> 2996 188 0.6690904 0.144881941 fv Gamma RP(P), Log-Normal FALSE #> 3012 189 1.0329302 0.225123247 fv Gamma RP(P), Log-Normal FALSE #> 3028 190 0.9803038 0.208776860 fv Gamma RP(P), Log-Normal FALSE #> 3044 191 1.0084836 0.219927110 fv Gamma RP(P), Log-Normal FALSE #> 3060 192 1.0550664 0.236314960 fv Gamma RP(P), Log-Normal FALSE #> 3076 193 0.8630140 0.189691189 fv Gamma RP(P), Log-Normal FALSE #> 3092 194 0.8052466 0.175195362 fv Gamma RP(P), Log-Normal FALSE #> 3108 195 1.0968900 0.233922924 fv Gamma RP(P), Log-Normal FALSE #> 3124 196 1.1559404 0.256854876 fv Gamma RP(P), Log-Normal FALSE #> 3140 197 0.9197354 0.195423075 fv Gamma RP(P), Log-Normal FALSE #> 3156 198 0.9870597 0.210203075 fv Gamma RP(P), Log-Normal FALSE #> 3172 199 0.7693873 0.169248931 fv Gamma RP(P), Log-Normal FALSE #> 3188 200 1.0852385 0.232970650 fv Gamma RP(P), Log-Normal FALSE #> 3204 201 1.0582087 0.233919328 fv Gamma RP(P), Log-Normal FALSE #> 3220 202 1.1012224 0.237450055 fv Gamma RP(P), Log-Normal FALSE #> 3236 203 0.9917678 0.212158246 fv Gamma RP(P), Log-Normal FALSE #> 3252 204 1.0600987 0.242348250 fv Gamma RP(P), Log-Normal FALSE #> 3268 205 0.7573698 0.166925875 fv Gamma RP(P), Log-Normal FALSE #> 3284 206 1.0214815 0.222696133 fv Gamma RP(P), Log-Normal FALSE #> 3300 207 0.6835123 0.147794118 fv Gamma RP(P), Log-Normal FALSE #> 3316 208 0.9790364 0.214484170 fv Gamma RP(P), Log-Normal FALSE #> 3332 209 0.9284396 0.203537107 fv Gamma RP(P), Log-Normal FALSE #> 3348 210 0.9177248 0.203825830 fv Gamma RP(P), Log-Normal FALSE #> 3364 211 1.4985260 0.338006117 fv Gamma RP(P), Log-Normal TRUE #> 3380 212 0.9970864 0.223396310 fv Gamma RP(P), Log-Normal FALSE #> 3396 213 1.1144267 0.246404561 fv Gamma RP(P), Log-Normal FALSE #> 3412 214 1.0088299 0.226415030 fv Gamma RP(P), Log-Normal FALSE #> 3428 215 1.1291796 0.244563544 fv Gamma RP(P), Log-Normal FALSE #> 3444 216 1.2609631 0.275896977 fv Gamma RP(P), Log-Normal FALSE #> 3460 217 0.8389670 0.184949511 fv Gamma RP(P), Log-Normal FALSE #> 3476 218 0.8453860 0.188622069 fv Gamma RP(P), Log-Normal FALSE #> 3492 219 1.2183609 0.274303728 fv Gamma RP(P), Log-Normal FALSE #> 3508 220 0.7187300 0.156561885 fv Gamma RP(P), Log-Normal FALSE #> 3524 221 0.9388220 0.208447345 fv Gamma RP(P), Log-Normal FALSE #> 3540 222 1.1209367 0.250349485 fv Gamma RP(P), Log-Normal FALSE #> 3556 223 1.0480275 0.237133986 fv Gamma RP(P), Log-Normal FALSE #> 3572 224 1.0128154 0.221061644 fv Gamma RP(P), Log-Normal FALSE #> 3588 225 0.8044790 0.173788213 fv Gamma RP(P), Log-Normal FALSE #> 3604 226 1.3216154 0.300532131 fv Gamma RP(P), Log-Normal FALSE #> 3620 227 0.8680673 0.191662277 fv Gamma RP(P), Log-Normal FALSE #> 3636 228 1.1162978 0.238070849 fv Gamma RP(P), Log-Normal FALSE #> 3652 229 1.1133721 0.244781394 fv Gamma RP(P), Log-Normal FALSE #> 3668 230 0.8878602 0.190636787 fv Gamma RP(P), Log-Normal FALSE #> 3684 231 1.1544228 0.255759683 fv Gamma RP(P), Log-Normal FALSE #> 3700 232 1.0320456 0.230128037 fv Gamma RP(P), Log-Normal FALSE #> 3716 233 1.1888143 0.263237985 fv Gamma RP(P), Log-Normal FALSE #> 3732 234 0.9164521 0.201120134 fv Gamma RP(P), Log-Normal FALSE #> 3748 235 1.1327970 0.257687761 fv Gamma RP(P), Log-Normal FALSE #> 3764 236 0.6460332 0.144131419 fv Gamma RP(P), Log-Normal FALSE #> 3780 237 0.8430326 0.186855350 fv Gamma RP(P), Log-Normal FALSE #> 3796 238 0.8158895 0.183957007 fv Gamma RP(P), Log-Normal FALSE #> 3812 239 0.9394292 0.201459225 fv Gamma RP(P), Log-Normal FALSE #> 3828 240 1.1606621 0.257905170 fv Gamma RP(P), Log-Normal FALSE #> 3844 241 0.8538658 0.185111653 fv Gamma RP(P), Log-Normal FALSE #> 3860 242 0.6336259 0.138341079 fv Gamma RP(P), Log-Normal FALSE #> 3876 243 1.3611347 0.316943569 fv Gamma RP(P), Log-Normal FALSE #> 3892 244 0.6853487 0.148004398 fv Gamma RP(P), Log-Normal FALSE #> 3908 245 1.5239087 0.341431129 fv Gamma RP(P), Log-Normal TRUE #> 3924 246 0.8620671 0.184937320 fv Gamma RP(P), Log-Normal FALSE #> 3940 247 1.0483086 0.230069168 fv Gamma RP(P), Log-Normal FALSE #> 3956 248 1.3814399 0.299598493 fv Gamma RP(P), Log-Normal FALSE #> 3972 249 1.4587490 0.332527808 fv Gamma RP(P), Log-Normal TRUE #> 3988 250 0.9961178 0.219966795 fv Gamma RP(P), Log-Normal FALSE #> 4004 251 1.0802323 0.239577478 fv Gamma RP(P), Log-Normal FALSE #> 4020 252 1.1573802 0.260140925 fv Gamma RP(P), Log-Normal FALSE #> 4036 253 1.2435742 0.287752260 fv Gamma RP(P), Log-Normal FALSE #> 4052 254 0.6213066 0.133993890 fv Gamma RP(P), Log-Normal FALSE #> 4068 255 0.9306108 0.196210153 fv Gamma RP(P), Log-Normal FALSE #> 4084 256 0.9142294 0.199393458 fv Gamma RP(P), Log-Normal FALSE #> 4100 257 0.6756633 0.145660199 fv Gamma RP(P), Log-Normal FALSE #> 4116 258 1.0192314 0.236693687 fv Gamma RP(P), Log-Normal FALSE #> 4132 259 0.9446257 0.205216936 fv Gamma RP(P), Log-Normal FALSE #> 4148 260 1.1233469 0.244803377 fv Gamma RP(P), Log-Normal FALSE #> 4164 261 0.5981253 0.129981226 fv Gamma RP(P), Log-Normal FALSE #> 4180 262 0.8469669 0.185096728 fv Gamma RP(P), Log-Normal FALSE #> 4196 263 0.7899133 0.174604035 fv Gamma RP(P), Log-Normal FALSE #> 4212 264 0.6078800 0.131030433 fv Gamma RP(P), Log-Normal FALSE #> 4228 265 0.7793063 0.167770678 fv Gamma RP(P), Log-Normal FALSE #> 4244 266 0.8557823 0.187576892 fv Gamma RP(P), Log-Normal FALSE #> 4260 267 0.9221636 0.200920447 fv Gamma RP(P), Log-Normal FALSE #> 4276 268 0.9907061 0.213920651 fv Gamma RP(P), Log-Normal FALSE #> 4292 269 1.6707648 0.379565298 fv Gamma RP(P), Log-Normal TRUE #> 4308 270 1.2213651 0.278069743 fv Gamma RP(P), Log-Normal FALSE #> 4324 271 1.2134813 0.268186948 fv Gamma RP(P), Log-Normal FALSE #> 4340 272 0.7105029 0.158227375 fv Gamma RP(P), Log-Normal FALSE #> 4356 273 0.8171010 0.178367886 fv Gamma RP(P), Log-Normal FALSE #> 4372 274 0.9050407 0.193402733 fv Gamma RP(P), Log-Normal FALSE #> 4388 275 1.1353543 0.243983601 fv Gamma RP(P), Log-Normal FALSE #> 4404 276 1.0858343 0.244403762 fv Gamma RP(P), Log-Normal FALSE #> 4420 277 0.8684428 0.186238953 fv Gamma RP(P), Log-Normal FALSE #> 4436 278 1.0203287 0.220451182 fv Gamma RP(P), Log-Normal FALSE #> 4452 279 1.0011619 0.217423012 fv Gamma RP(P), Log-Normal FALSE #> 4468 280 0.9509821 0.203861367 fv Gamma RP(P), Log-Normal FALSE #> 4484 281 1.5506510 0.348875344 fv Gamma RP(P), Log-Normal TRUE #> 4500 282 0.7365934 0.158887674 fv Gamma RP(P), Log-Normal FALSE #> 4516 283 1.1427590 0.261767217 fv Gamma RP(P), Log-Normal FALSE #> 4532 284 0.7622570 0.162455472 fv Gamma RP(P), Log-Normal FALSE #> 4548 285 0.5961491 0.129287813 fv Gamma RP(P), Log-Normal FALSE #> 4564 286 1.0061213 0.217649530 fv Gamma RP(P), Log-Normal FALSE #> 4580 287 0.7806262 0.169733695 fv Gamma RP(P), Log-Normal FALSE #> 4596 288 1.8098902 0.399947941 fv Gamma RP(P), Log-Normal TRUE #> 4612 289 0.8393518 0.185200626 fv Gamma RP(P), Log-Normal FALSE #> 4628 290 0.7468449 0.162723595 fv Gamma RP(P), Log-Normal FALSE #> 4644 291 0.7601939 0.165843465 fv Gamma RP(P), Log-Normal FALSE #> 4660 292 0.7323268 0.156954458 fv Gamma RP(P), Log-Normal FALSE #> 4676 293 1.2258149 0.268151985 fv Gamma RP(P), Log-Normal FALSE #> 4692 294 0.8404157 0.183782801 fv Gamma RP(P), Log-Normal FALSE #> 4708 295 1.5766100 0.346101076 fv Gamma RP(P), Log-Normal TRUE #> 4724 296 1.0056320 0.220767234 fv Gamma RP(P), Log-Normal FALSE #> 4740 297 1.7157538 0.372587669 fv Gamma RP(P), Log-Normal TRUE #> 4756 298 0.6795482 0.146389054 fv Gamma RP(P), Log-Normal FALSE #> 4772 299 0.7207333 0.158465129 fv Gamma RP(P), Log-Normal FALSE #> 4788 300 1.1288850 0.241916357 fv Gamma RP(P), Log-Normal FALSE #> 4804 301 0.6731434 0.147303733 fv Gamma RP(P), Log-Normal FALSE #> 4820 302 1.0472072 0.224351808 fv Gamma RP(P), Log-Normal FALSE #> 4836 303 0.7717841 0.166341408 fv Gamma RP(P), Log-Normal FALSE #> 4852 304 0.8192309 0.175783833 fv Gamma RP(P), Log-Normal FALSE #> 4868 305 1.2026302 0.261708291 fv Gamma RP(P), Log-Normal FALSE #> 4884 306 0.9576788 0.208093071 fv Gamma RP(P), Log-Normal FALSE #> 4900 307 1.0605048 0.238865352 fv Gamma RP(P), Log-Normal FALSE #> 4916 308 0.8711031 0.189633570 fv Gamma RP(P), Log-Normal FALSE #> 4932 309 1.0053989 0.216562485 fv Gamma RP(P), Log-Normal FALSE #> 4948 310 1.6051705 0.357305337 fv Gamma RP(P), Log-Normal TRUE #> 4964 311 1.2178320 0.266118483 fv Gamma RP(P), Log-Normal FALSE #> 4980 312 1.8621584 0.430025773 fv Gamma RP(P), Log-Normal TRUE #> 4996 313 1.1324318 0.248100889 fv Gamma RP(P), Log-Normal FALSE #> 5012 314 0.9259319 0.204944464 fv Gamma RP(P), Log-Normal FALSE #> 5028 315 1.0717161 0.231194628 fv Gamma RP(P), Log-Normal FALSE #> 5044 316 1.5632161 0.343308715 fv Gamma RP(P), Log-Normal TRUE #> 5060 317 0.7911773 0.172163115 fv Gamma RP(P), Log-Normal FALSE #> 5076 318 1.0257467 0.229465201 fv Gamma RP(P), Log-Normal FALSE #> 5092 319 0.7560379 0.164851201 fv Gamma RP(P), Log-Normal FALSE #> 5108 320 0.7598209 0.164946075 fv Gamma RP(P), Log-Normal FALSE #> 5124 321 1.3366113 0.296232365 fv Gamma RP(P), Log-Normal FALSE #> 5140 322 0.6541514 0.142874097 fv Gamma RP(P), Log-Normal FALSE #> 5156 323 1.1888806 0.259384609 fv Gamma RP(P), Log-Normal FALSE #> 5172 324 0.7895205 0.174817665 fv Gamma RP(P), Log-Normal FALSE #> 5188 325 0.9089904 0.195887537 fv Gamma RP(P), Log-Normal FALSE #> 5204 326 0.8991867 0.194800348 fv Gamma RP(P), Log-Normal FALSE #> 5220 327 0.9354573 0.200972552 fv Gamma RP(P), Log-Normal FALSE #> 5236 328 1.4508772 0.321883010 fv Gamma RP(P), Log-Normal FALSE #> 5252 329 1.2389575 0.278410321 fv Gamma RP(P), Log-Normal FALSE #> 5268 330 0.9497564 0.208683102 fv Gamma RP(P), Log-Normal FALSE #> 5284 331 1.1348318 0.243830181 fv Gamma RP(P), Log-Normal FALSE #> 5300 332 0.7406454 0.165819274 fv Gamma RP(P), Log-Normal FALSE #> 5316 333 0.6882928 0.148784950 fv Gamma RP(P), Log-Normal FALSE #> 5332 334 1.3842558 0.296929851 fv Gamma RP(P), Log-Normal FALSE #> 5348 335 1.0741546 0.237337608 fv Gamma RP(P), Log-Normal FALSE #> 5364 336 0.6223286 0.139826644 fv Gamma RP(P), Log-Normal FALSE #> 5380 337 0.8436957 0.186307291 fv Gamma RP(P), Log-Normal FALSE #> 5396 338 0.7251021 0.154411004 fv Gamma RP(P), Log-Normal FALSE #> 5412 339 1.0911888 0.239706177 fv Gamma RP(P), Log-Normal FALSE #> 5428 340 1.1139385 0.259970148 fv Gamma RP(P), Log-Normal FALSE #> 5444 341 0.6722575 0.144746633 fv Gamma RP(P), Log-Normal FALSE #> 5460 342 0.5335198 0.115837477 fv Gamma RP(P), Log-Normal FALSE #> 5476 343 0.7759368 0.168497568 fv Gamma RP(P), Log-Normal FALSE #> 5492 344 1.3745439 0.304745479 fv Gamma RP(P), Log-Normal FALSE #> 5508 345 1.2019517 0.264238640 fv Gamma RP(P), Log-Normal FALSE #> 5524 346 1.0680673 0.228681184 fv Gamma RP(P), Log-Normal FALSE #> 5540 347 0.9424073 0.202173546 fv Gamma RP(P), Log-Normal FALSE #> 5556 348 1.4206305 0.311160176 fv Gamma RP(P), Log-Normal FALSE #> 5572 349 1.1631266 0.253819909 fv Gamma RP(P), Log-Normal FALSE #> 5588 350 1.0587565 0.227239061 fv Gamma RP(P), Log-Normal FALSE #> 5604 351 1.2314624 0.279628007 fv Gamma RP(P), Log-Normal FALSE #> 5620 352 1.1441911 0.257794647 fv Gamma RP(P), Log-Normal FALSE #> 5636 353 0.6759264 0.146595798 fv Gamma RP(P), Log-Normal FALSE #> 5652 354 0.9403395 0.204457172 fv Gamma RP(P), Log-Normal FALSE #> 5668 355 1.1145079 0.239429075 fv Gamma RP(P), Log-Normal FALSE #> 5684 356 1.0944187 0.241452823 fv Gamma RP(P), Log-Normal FALSE #> 5700 357 0.8472675 0.182834330 fv Gamma RP(P), Log-Normal FALSE #> 5716 358 0.8078994 0.171141015 fv Gamma RP(P), Log-Normal FALSE #> 5732 359 0.8715760 0.197056186 fv Gamma RP(P), Log-Normal FALSE #> 5748 360 0.7305572 0.157575039 fv Gamma RP(P), Log-Normal FALSE #> 5764 361 1.3093898 0.295995439 fv Gamma RP(P), Log-Normal FALSE #> 5780 362 0.5932042 0.128820637 fv Gamma RP(P), Log-Normal FALSE #> 5796 363 0.9537684 0.211563876 fv Gamma RP(P), Log-Normal FALSE #> 5812 364 0.6500835 0.143060235 fv Gamma RP(P), Log-Normal FALSE #> 5828 365 0.9988684 0.230090658 fv Gamma RP(P), Log-Normal FALSE #> 5844 366 1.2002573 0.268259798 fv Gamma RP(P), Log-Normal FALSE #> 5860 367 1.1732540 0.253572484 fv Gamma RP(P), Log-Normal FALSE #> 5876 368 1.1839640 0.274942607 fv Gamma RP(P), Log-Normal FALSE #> 5892 369 0.6725999 0.144571959 fv Gamma RP(P), Log-Normal FALSE #> 5908 370 0.6474614 0.141195590 fv Gamma RP(P), Log-Normal FALSE #> 5924 371 1.0778251 0.237098302 fv Gamma RP(P), Log-Normal FALSE #> 5940 372 0.7840598 0.178284497 fv Gamma RP(P), Log-Normal FALSE #> 5956 373 0.9240125 0.200650555 fv Gamma RP(P), Log-Normal FALSE #> 5972 374 0.7215876 0.154150935 fv Gamma RP(P), Log-Normal FALSE #> 5988 375 0.7472158 0.161834638 fv Gamma RP(P), Log-Normal FALSE #> 6004 376 0.7840256 0.168608101 fv Gamma RP(P), Log-Normal FALSE #> 6020 377 1.2063017 0.272271466 fv Gamma RP(P), Log-Normal FALSE #> 6036 378 1.0759738 0.232885696 fv Gamma RP(P), Log-Normal FALSE #> 6052 379 0.7991445 0.171767634 fv Gamma RP(P), Log-Normal FALSE #> 6068 380 0.9835843 0.213394452 fv Gamma RP(P), Log-Normal FALSE #> 6084 381 0.7117307 0.151443197 fv Gamma RP(P), Log-Normal FALSE #> 6100 382 0.9374011 0.204621752 fv Gamma RP(P), Log-Normal FALSE #> 6116 383 1.4564452 0.312580654 fv Gamma RP(P), Log-Normal FALSE #> 6132 384 1.1166026 0.243039524 fv Gamma RP(P), Log-Normal FALSE #> 6148 385 0.6950395 0.150883736 fv Gamma RP(P), Log-Normal FALSE #> 6164 386 0.4544464 0.102122826 fv Gamma RP(P), Log-Normal TRUE #> 6180 387 0.6941927 0.149352262 fv Gamma RP(P), Log-Normal FALSE #> 6196 388 0.8740749 0.189471295 fv Gamma RP(P), Log-Normal FALSE #> 6212 389 0.6379024 0.138928630 fv Gamma RP(P), Log-Normal FALSE #> 6228 390 0.7579377 0.165386684 fv Gamma RP(P), Log-Normal FALSE #> 6244 391 0.6208441 0.135164000 fv Gamma RP(P), Log-Normal FALSE #> 6260 392 1.1388947 0.243164287 fv Gamma RP(P), Log-Normal FALSE #> 6276 393 0.6777050 0.146669241 fv Gamma RP(P), Log-Normal FALSE #> 6292 394 1.2875572 0.285500045 fv Gamma RP(P), Log-Normal FALSE #> 6308 395 0.9594942 0.212902410 fv Gamma RP(P), Log-Normal FALSE #> 6324 396 0.9535688 0.214993979 fv Gamma RP(P), Log-Normal FALSE #> 6340 397 1.1170706 0.239961536 fv Gamma RP(P), Log-Normal FALSE #> 6356 398 0.9337227 0.201800746 fv Gamma RP(P), Log-Normal FALSE #> 6372 399 0.7611877 0.165402284 fv Gamma RP(P), Log-Normal FALSE #> 6388 400 0.8163529 0.177586051 fv Gamma RP(P), Log-Normal FALSE #> 6404 401 1.1755879 0.260480234 fv Gamma RP(P), Log-Normal FALSE #> 6420 402 0.8926168 0.200255305 fv Gamma RP(P), Log-Normal FALSE #> 6436 403 0.8545840 0.183751295 fv Gamma RP(P), Log-Normal FALSE #> 6452 404 1.1315518 0.257023968 fv Gamma RP(P), Log-Normal FALSE #> 6468 405 0.7711867 0.164072761 fv Gamma RP(P), Log-Normal FALSE #> 6484 406 0.7394725 0.158175027 fv Gamma RP(P), Log-Normal FALSE #> 6500 407 1.0465095 0.229942406 fv Gamma RP(P), Log-Normal FALSE #> 6516 408 0.6300849 0.149381842 fv Gamma RP(P), Log-Normal FALSE #> 6532 409 1.2759445 0.275964040 fv Gamma RP(P), Log-Normal FALSE #> 6548 410 1.4092819 0.317311958 fv Gamma RP(P), Log-Normal FALSE #> 6564 411 1.0991484 0.254405935 fv Gamma RP(P), Log-Normal FALSE #> 6580 412 0.8267034 0.177108154 fv Gamma RP(P), Log-Normal FALSE #> 6596 413 0.9031192 0.199459030 fv Gamma RP(P), Log-Normal FALSE #> 6612 414 0.8929692 0.192911734 fv Gamma RP(P), Log-Normal FALSE #> 6628 415 1.1226055 0.241604742 fv Gamma RP(P), Log-Normal FALSE #> 6644 416 0.7277533 0.157426254 fv Gamma RP(P), Log-Normal FALSE #> 6660 417 0.9685098 0.210134619 fv Gamma RP(P), Log-Normal FALSE #> 6676 418 0.9593147 0.209686673 fv Gamma RP(P), Log-Normal FALSE #> 6692 419 0.8180942 0.182657405 fv Gamma RP(P), Log-Normal FALSE #> 6708 420 1.1163400 0.250241104 fv Gamma RP(P), Log-Normal FALSE #> 6724 421 1.0662506 0.230681634 fv Gamma RP(P), Log-Normal FALSE #> 6740 422 0.9590765 0.208021402 fv Gamma RP(P), Log-Normal FALSE #> 6756 423 1.0631685 0.230888818 fv Gamma RP(P), Log-Normal FALSE #> 6772 424 0.9657118 0.217152814 fv Gamma RP(P), Log-Normal FALSE #> 6788 425 0.7349995 0.162179797 fv Gamma RP(P), Log-Normal FALSE #> 6804 426 1.2825616 0.279074728 fv Gamma RP(P), Log-Normal FALSE #> 6820 427 0.5095550 0.112703591 fv Gamma RP(P), Log-Normal FALSE #> 6836 428 1.4523732 0.327933855 fv Gamma RP(P), Log-Normal TRUE #> 6852 429 0.7978037 0.173408480 fv Gamma RP(P), Log-Normal FALSE #> 6868 430 0.6875011 0.147810346 fv Gamma RP(P), Log-Normal FALSE #> 6884 431 1.1006941 0.238750756 fv Gamma RP(P), Log-Normal FALSE #> 6900 432 0.6748862 0.147308411 fv Gamma RP(P), Log-Normal FALSE #> 6916 433 1.1282877 0.250568935 fv Gamma RP(P), Log-Normal FALSE #> 6932 434 1.2431724 0.265520208 fv Gamma RP(P), Log-Normal FALSE #> 6948 435 0.8078352 0.172249398 fv Gamma RP(P), Log-Normal FALSE #> 6964 436 1.2539909 0.282120990 fv Gamma RP(P), Log-Normal FALSE #> 6980 437 0.8230815 0.177122345 fv Gamma RP(P), Log-Normal FALSE #> 6996 438 0.6367504 0.141576527 fv Gamma RP(P), Log-Normal FALSE #> 7012 439 0.9345544 0.208661903 fv Gamma RP(P), Log-Normal FALSE #> 7028 440 0.8145396 0.174404632 fv Gamma RP(P), Log-Normal FALSE #> 7044 441 0.4963037 0.107331468 fv Gamma RP(P), Log-Normal TRUE #> 7060 442 0.9945112 0.210487712 fv Gamma RP(P), Log-Normal FALSE #> 7076 443 0.6687881 0.151032821 fv Gamma RP(P), Log-Normal FALSE #> 7092 444 0.8057132 0.174622153 fv Gamma RP(P), Log-Normal FALSE #> 7108 445 1.2113594 0.278671053 fv Gamma RP(P), Log-Normal FALSE #> 7124 446 1.0112616 0.219825528 fv Gamma RP(P), Log-Normal FALSE #> 7140 447 0.9580334 0.208122592 fv Gamma RP(P), Log-Normal FALSE #> 7156 448 1.0480268 0.231358840 fv Gamma RP(P), Log-Normal FALSE #> 7172 449 1.1654833 0.250305711 fv Gamma RP(P), Log-Normal FALSE #> 7188 450 0.7747101 0.164631434 fv Gamma RP(P), Log-Normal FALSE #> 7204 451 1.0778703 0.233850216 fv Gamma RP(P), Log-Normal FALSE #> 7220 452 0.6532856 0.142936025 fv Gamma RP(P), Log-Normal FALSE #> 7236 453 1.0354556 0.220201966 fv Gamma RP(P), Log-Normal FALSE #> 7252 454 0.8410267 0.188393838 fv Gamma RP(P), Log-Normal FALSE #> 7268 455 1.0590126 0.231017540 fv Gamma RP(P), Log-Normal FALSE #> 7284 456 1.1002554 0.239040113 fv Gamma RP(P), Log-Normal FALSE #> 7300 457 1.1113213 0.242020836 fv Gamma RP(P), Log-Normal FALSE #> 7316 458 1.2737451 0.283902711 fv Gamma RP(P), Log-Normal FALSE #> 7332 459 0.8741005 0.192529765 fv Gamma RP(P), Log-Normal FALSE #> 7348 460 0.8343565 0.185513409 fv Gamma RP(P), Log-Normal FALSE #> 7364 461 1.0413598 0.229681208 fv Gamma RP(P), Log-Normal FALSE #> 7380 462 1.4058311 0.313874121 fv Gamma RP(P), Log-Normal FALSE #> 7396 463 0.7385880 0.157268096 fv Gamma RP(P), Log-Normal FALSE #> 7412 464 0.6749140 0.150334899 fv Gamma RP(P), Log-Normal FALSE #> 7428 465 0.9372626 0.202416087 fv Gamma RP(P), Log-Normal FALSE #> 7444 466 1.0819470 0.240560277 fv Gamma RP(P), Log-Normal FALSE #> 7460 467 1.2583393 0.280960356 fv Gamma RP(P), Log-Normal FALSE #> 7476 468 0.6603316 0.141287880 fv Gamma RP(P), Log-Normal FALSE #> 7492 469 1.0850180 0.243295647 fv Gamma RP(P), Log-Normal FALSE #> 7508 470 0.9881027 0.210406927 fv Gamma RP(P), Log-Normal FALSE #> 7524 471 0.7454241 0.160990011 fv Gamma RP(P), Log-Normal FALSE #> 7540 472 1.1745015 0.256706796 fv Gamma RP(P), Log-Normal FALSE #> 7556 473 0.7959574 0.170031541 fv Gamma RP(P), Log-Normal FALSE #> 7572 474 0.7918319 0.177803843 fv Gamma RP(P), Log-Normal FALSE #> 7588 475 1.6522706 0.375398426 fv Gamma RP(P), Log-Normal TRUE #> 7604 476 0.6916373 0.152453433 fv Gamma RP(P), Log-Normal FALSE #> 7620 477 1.2375353 0.268085782 fv Gamma RP(P), Log-Normal FALSE #> 7636 478 0.9740985 0.216425920 fv Gamma RP(P), Log-Normal FALSE #> 7652 479 1.2632676 0.276699164 fv Gamma RP(P), Log-Normal FALSE #> 7668 480 1.0387783 0.230531068 fv Gamma RP(P), Log-Normal FALSE #> 7684 481 0.9091348 0.201095913 fv Gamma RP(P), Log-Normal FALSE #> 7700 482 0.8691584 0.198334797 fv Gamma RP(P), Log-Normal FALSE #> 7716 483 0.9225715 0.209461889 fv Gamma RP(P), Log-Normal FALSE #> 7732 484 0.9439964 0.201865531 fv Gamma RP(P), Log-Normal FALSE #> 7748 485 1.0052738 0.218556409 fv Gamma RP(P), Log-Normal FALSE #> 7764 486 0.7260035 0.159970767 fv Gamma RP(P), Log-Normal FALSE #> 7780 487 1.1001328 0.238315614 fv Gamma RP(P), Log-Normal FALSE #> 7796 488 0.9538392 0.216822184 fv Gamma RP(P), Log-Normal FALSE #> 7812 489 1.2501391 0.282675830 fv Gamma RP(P), Log-Normal FALSE #> 7828 490 1.6236317 0.352529801 fv Gamma RP(P), Log-Normal TRUE #> 7844 491 0.8316296 0.178919604 fv Gamma RP(P), Log-Normal FALSE #> 7860 492 1.2586735 0.281277951 fv Gamma RP(P), Log-Normal FALSE #> 7876 493 1.1213778 0.258755786 fv Gamma RP(P), Log-Normal FALSE #> 7892 494 0.8594317 0.184538921 fv Gamma RP(P), Log-Normal FALSE #> 7908 495 0.9649592 0.211567053 fv Gamma RP(P), Log-Normal FALSE #> 7924 496 0.6773521 0.150596337 fv Gamma RP(P), Log-Normal FALSE #> 7940 497 0.9052519 0.196094400 fv Gamma RP(P), Log-Normal FALSE #> 7956 498 0.8116850 0.178283650 fv Gamma RP(P), Log-Normal FALSE #> 7972 499 1.1086720 0.241326577 fv Gamma RP(P), Log-Normal FALSE #> 7988 500 1.2773651 0.281428323 fv Gamma RP(P), Log-Normal FALSE #> 8004 501 0.8676161 0.186252713 fv Gamma RP(P), Log-Normal FALSE #> 8020 502 1.0407176 0.226742031 fv Gamma RP(P), Log-Normal FALSE #> 8036 503 0.7548621 0.161416065 fv Gamma RP(P), Log-Normal FALSE #> 8052 504 1.2077979 0.258824089 fv Gamma RP(P), Log-Normal FALSE #> 8068 505 1.4398156 0.321294471 fv Gamma RP(P), Log-Normal FALSE #> 8084 506 0.8624584 0.186157457 fv Gamma RP(P), Log-Normal FALSE #> 8100 507 0.6802796 0.145481059 fv Gamma RP(P), Log-Normal FALSE #> 8116 508 0.8342436 0.181087868 fv Gamma RP(P), Log-Normal FALSE #> 8132 509 0.8612357 0.185773025 fv Gamma RP(P), Log-Normal FALSE #> 8148 510 1.0875058 0.231453325 fv Gamma RP(P), Log-Normal FALSE #> 8164 511 0.9780855 0.214288070 fv Gamma RP(P), Log-Normal FALSE #> 8180 512 0.9185424 0.195605141 fv Gamma RP(P), Log-Normal FALSE #> 8196 513 0.7742017 0.169231006 fv Gamma RP(P), Log-Normal FALSE #> 8212 514 0.9812394 0.218050507 fv Gamma RP(P), Log-Normal FALSE #> 8228 515 0.8492711 0.186072576 fv Gamma RP(P), Log-Normal FALSE #> 8244 516 1.0440155 0.231448528 fv Gamma RP(P), Log-Normal FALSE #> 8260 517 1.1390878 0.249921695 fv Gamma RP(P), Log-Normal FALSE #> 8276 518 1.2314535 0.263976453 fv Gamma RP(P), Log-Normal FALSE #> 8292 519 0.8741643 0.188132491 fv Gamma RP(P), Log-Normal FALSE #> 8308 520 0.7946016 0.172820195 fv Gamma RP(P), Log-Normal FALSE #> 8324 521 0.7155341 0.154658107 fv Gamma RP(P), Log-Normal FALSE #> 8340 522 0.6586910 0.142144906 fv Gamma RP(P), Log-Normal FALSE #> 8356 523 0.9070928 0.201961629 fv Gamma RP(P), Log-Normal FALSE #> 8372 524 0.7949849 0.175434365 fv Gamma RP(P), Log-Normal FALSE #> 8388 525 1.3355748 0.288021411 fv Gamma RP(P), Log-Normal FALSE #> 8404 526 1.1111854 0.243883438 fv Gamma RP(P), Log-Normal FALSE #> 8420 527 0.9980110 0.225250690 fv Gamma RP(P), Log-Normal FALSE #> 8436 528 0.7536701 0.165035815 fv Gamma RP(P), Log-Normal FALSE #> 8452 529 1.2088138 0.264226878 fv Gamma RP(P), Log-Normal FALSE #> 8468 530 1.3388039 0.295083388 fv Gamma RP(P), Log-Normal FALSE #> 8484 531 1.0765928 0.230423607 fv Gamma RP(P), Log-Normal FALSE #> 8500 532 1.1797360 0.260368744 fv Gamma RP(P), Log-Normal FALSE #> 8516 533 0.9477534 0.207558206 fv Gamma RP(P), Log-Normal FALSE #> 8532 534 1.0563309 0.227002868 fv Gamma RP(P), Log-Normal FALSE #> 8548 535 1.4357549 0.313963101 fv Gamma RP(P), Log-Normal FALSE #> 8564 536 1.0051141 0.212301508 fv Gamma RP(P), Log-Normal FALSE #> 8580 537 0.9940413 0.229846666 fv Gamma RP(P), Log-Normal FALSE #> 8596 538 0.7485919 0.163118834 fv Gamma RP(P), Log-Normal FALSE #> 8612 539 1.2009352 0.262424788 fv Gamma RP(P), Log-Normal FALSE #> 8628 540 1.0656493 0.243252483 fv Gamma RP(P), Log-Normal FALSE #> 8644 541 0.7818527 0.171862648 fv Gamma RP(P), Log-Normal FALSE #> 8660 542 1.0476007 0.225722387 fv Gamma RP(P), Log-Normal FALSE #> 8676 543 1.1371033 0.243339241 fv Gamma RP(P), Log-Normal FALSE #> 8692 544 1.0773876 0.231123459 fv Gamma RP(P), Log-Normal FALSE #> 8708 545 0.9565211 0.212700204 fv Gamma RP(P), Log-Normal FALSE #> 8724 546 0.7647347 0.163566244 fv Gamma RP(P), Log-Normal FALSE #> 8740 547 0.8206825 0.176359832 fv Gamma RP(P), Log-Normal FALSE #> 8756 548 0.8505963 0.192550911 fv Gamma RP(P), Log-Normal FALSE #> 8772 549 1.0358106 0.229635225 fv Gamma RP(P), Log-Normal FALSE #> 8788 550 1.3523884 0.318258072 fv Gamma RP(P), Log-Normal FALSE #> 8804 551 0.9140688 0.197916220 fv Gamma RP(P), Log-Normal FALSE #> 8820 552 0.7505092 0.167863310 fv Gamma RP(P), Log-Normal FALSE #> 8836 553 0.7462582 0.163755065 fv Gamma RP(P), Log-Normal FALSE #> 8852 554 0.9503633 0.210343956 fv Gamma RP(P), Log-Normal FALSE #> 8868 555 0.6745831 0.145777323 fv Gamma RP(P), Log-Normal FALSE #> 8884 556 0.6796815 0.149173569 fv Gamma RP(P), Log-Normal FALSE #> 8900 557 1.7294668 0.385290497 fv Gamma RP(P), Log-Normal TRUE #> 8916 558 1.0353587 0.226097195 fv Gamma RP(P), Log-Normal FALSE #> 8932 559 0.8016693 0.181657786 fv Gamma RP(P), Log-Normal FALSE #> 8948 560 0.9729378 0.214345554 fv Gamma RP(P), Log-Normal FALSE #> 8964 561 1.0321929 0.223653751 fv Gamma RP(P), Log-Normal FALSE #> 8980 562 0.5768487 0.127198483 fv Gamma RP(P), Log-Normal FALSE #> 8996 563 1.0433632 0.228621090 fv Gamma RP(P), Log-Normal FALSE #> 9012 564 1.0641236 0.228678050 fv Gamma RP(P), Log-Normal FALSE #> 9028 565 1.1732304 0.270298444 fv Gamma RP(P), Log-Normal FALSE #> 9044 566 1.2237949 0.268476490 fv Gamma RP(P), Log-Normal FALSE #> 9060 567 0.9843680 0.216254289 fv Gamma RP(P), Log-Normal FALSE #> 9076 568 1.0225418 0.226931553 fv Gamma RP(P), Log-Normal FALSE #> 9092 569 0.9425398 0.212381043 fv Gamma RP(P), Log-Normal FALSE #> 9108 570 0.9305842 0.201175459 fv Gamma RP(P), Log-Normal FALSE #> 9124 571 0.9345155 0.201116344 fv Gamma RP(P), Log-Normal FALSE #> 9140 572 1.1021244 0.234409464 fv Gamma RP(P), Log-Normal FALSE #> 9156 573 0.6234484 0.137000395 fv Gamma RP(P), Log-Normal FALSE #> 9172 574 1.1480059 0.255124057 fv Gamma RP(P), Log-Normal FALSE #> 9188 575 0.9620612 0.211148150 fv Gamma RP(P), Log-Normal FALSE #> 9204 576 1.0678341 0.238868687 fv Gamma RP(P), Log-Normal FALSE #> 9220 577 0.9150045 0.204456329 fv Gamma RP(P), Log-Normal FALSE #> 9236 578 0.9233870 0.200603592 fv Gamma RP(P), Log-Normal FALSE #> 9252 579 0.7994219 0.174027563 fv Gamma RP(P), Log-Normal FALSE #> 9268 580 0.8585172 0.187898896 fv Gamma RP(P), Log-Normal FALSE #> 9284 581 1.1376346 0.243722038 fv Gamma RP(P), Log-Normal FALSE #> 9300 582 0.5331588 0.116180181 fv Gamma RP(P), Log-Normal FALSE #> 9316 583 1.2227234 0.266819438 fv Gamma RP(P), Log-Normal FALSE #> 9332 584 0.7424917 0.162892931 fv Gamma RP(P), Log-Normal FALSE #> 9348 585 1.4718067 0.317670941 fv Gamma RP(P), Log-Normal FALSE #> 9364 586 1.3376029 0.285083541 fv Gamma RP(P), Log-Normal FALSE #> 9380 587 1.0466999 0.227298927 fv Gamma RP(P), Log-Normal FALSE #> 9396 588 1.0628152 0.236226350 fv Gamma RP(P), Log-Normal FALSE #> 9412 589 0.7456047 0.162916840 fv Gamma RP(P), Log-Normal FALSE #> 9428 590 0.8908216 0.194809140 fv Gamma RP(P), Log-Normal FALSE #> 9444 591 0.9844521 0.217603161 fv Gamma RP(P), Log-Normal FALSE #> 9460 592 1.2872132 0.280054795 fv Gamma RP(P), Log-Normal FALSE #> 9476 593 0.9145775 0.207193045 fv Gamma RP(P), Log-Normal FALSE #> 9492 594 0.9446292 0.210280528 fv Gamma RP(P), Log-Normal FALSE #> 9508 595 0.8683941 0.185769779 fv Gamma RP(P), Log-Normal FALSE #> 9524 596 1.2043136 0.260901489 fv Gamma RP(P), Log-Normal FALSE #> 9540 597 1.2713689 0.283428607 fv Gamma RP(P), Log-Normal FALSE #> 9556 598 1.0191519 0.221381269 fv Gamma RP(P), Log-Normal FALSE #> 9572 599 1.5192954 0.325918384 fv Gamma RP(P), Log-Normal TRUE #> 9588 600 1.3131604 0.281586578 fv Gamma RP(P), Log-Normal FALSE #> 9604 601 0.9717941 0.212607335 fv Gamma RP(P), Log-Normal FALSE #> 9620 602 1.1056106 0.248359854 fv Gamma RP(P), Log-Normal FALSE #> 9636 603 0.9020656 0.196090741 fv Gamma RP(P), Log-Normal FALSE #> 9652 604 1.2529459 0.293640836 fv Gamma RP(P), Log-Normal FALSE #> 9668 605 1.2259883 0.274240763 fv Gamma RP(P), Log-Normal FALSE #> 9684 606 1.0511216 0.228404129 fv Gamma RP(P), Log-Normal FALSE #> 9700 607 0.8190508 0.180281936 fv Gamma RP(P), Log-Normal FALSE #> 9716 608 1.0311424 0.221802458 fv Gamma RP(P), Log-Normal FALSE #> 9732 609 1.3455592 0.295910286 fv Gamma RP(P), Log-Normal FALSE #> 9748 610 1.1642916 0.254371166 fv Gamma RP(P), Log-Normal FALSE #> 9764 611 0.8758176 0.192522572 fv Gamma RP(P), Log-Normal FALSE #> 9780 612 1.2516100 0.272167401 fv Gamma RP(P), Log-Normal FALSE #> 9796 613 0.9097464 0.194713999 fv Gamma RP(P), Log-Normal FALSE #> 9812 614 0.8241780 0.176682356 fv Gamma RP(P), Log-Normal FALSE #> 9828 615 0.7807667 0.169402047 fv Gamma RP(P), Log-Normal FALSE #> 9844 616 1.3256338 0.290042297 fv Gamma RP(P), Log-Normal FALSE #> 9860 617 1.3554468 0.302421137 fv Gamma RP(P), Log-Normal FALSE #> 9876 618 0.7059805 0.153032728 fv Gamma RP(P), Log-Normal FALSE #> 9892 619 0.7640548 0.164327342 fv Gamma RP(P), Log-Normal FALSE #> 9908 620 0.9324604 0.205897957 fv Gamma RP(P), Log-Normal FALSE #> 9924 621 1.0897527 0.237414370 fv Gamma RP(P), Log-Normal FALSE #> 9940 622 1.6936806 0.371698035 fv Gamma RP(P), Log-Normal TRUE #> 9956 623 0.6527658 0.139972359 fv Gamma RP(P), Log-Normal FALSE #> 9972 624 0.9466176 0.203085311 fv Gamma RP(P), Log-Normal FALSE #> 9988 625 0.9681196 0.214775219 fv Gamma RP(P), Log-Normal FALSE #> 10004 626 0.6523744 0.142834891 fv Gamma RP(P), Log-Normal FALSE #> 10020 627 0.8021879 0.184418783 fv Gamma RP(P), Log-Normal FALSE #> 10036 628 0.9225400 0.197465937 fv Gamma RP(P), Log-Normal FALSE #> 10052 629 0.7501559 0.167348318 fv Gamma RP(P), Log-Normal FALSE #> 10068 630 1.0706745 0.227798971 fv Gamma RP(P), Log-Normal FALSE #> 10084 631 1.2827158 0.297285469 fv Gamma RP(P), Log-Normal FALSE #> 10100 632 0.6876342 0.149439809 fv Gamma RP(P), Log-Normal FALSE #> 10116 633 0.7028224 0.154619674 fv Gamma RP(P), Log-Normal FALSE #> 10132 634 0.7042120 0.153299268 fv Gamma RP(P), Log-Normal FALSE #> 10148 635 0.5541380 0.122244773 fv Gamma RP(P), Log-Normal FALSE #> 10164 636 0.8544896 0.190728571 fv Gamma RP(P), Log-Normal FALSE #> 10180 637 0.9603207 0.207191756 fv Gamma RP(P), Log-Normal FALSE #> 10196 638 0.7983102 0.182031114 fv Gamma RP(P), Log-Normal FALSE #> 10212 639 0.8838410 0.190983119 fv Gamma RP(P), Log-Normal FALSE #> 10228 640 0.6961483 0.152110407 fv Gamma RP(P), Log-Normal FALSE #> 10244 641 0.8369696 0.179150999 fv Gamma RP(P), Log-Normal FALSE #> 10260 642 0.9306106 0.205637032 fv Gamma RP(P), Log-Normal FALSE #> 10276 643 0.8113072 0.177171734 fv Gamma RP(P), Log-Normal FALSE #> 10292 644 1.3693170 0.317286312 fv Gamma RP(P), Log-Normal FALSE #> 10308 645 0.6575557 0.143623229 fv Gamma RP(P), Log-Normal FALSE #> 10324 646 0.7264648 0.160017681 fv Gamma RP(P), Log-Normal FALSE #> 10340 647 1.8140427 0.405472844 fv Gamma RP(P), Log-Normal TRUE #> 10356 648 0.9039734 0.192803400 fv Gamma RP(P), Log-Normal FALSE #> 10372 649 1.1307165 0.245793699 fv Gamma RP(P), Log-Normal FALSE #> 10388 650 1.3697853 0.300532613 fv Gamma RP(P), Log-Normal FALSE #> 10404 651 1.3913723 0.303438110 fv Gamma RP(P), Log-Normal FALSE #> 10420 652 0.9976010 0.218156662 fv Gamma RP(P), Log-Normal FALSE #> 10436 653 1.3997037 0.316519464 fv Gamma RP(P), Log-Normal FALSE #> 10452 654 0.7512885 0.164131512 fv Gamma RP(P), Log-Normal FALSE #> 10468 655 0.8184646 0.175458083 fv Gamma RP(P), Log-Normal FALSE #> 10484 656 0.9856965 0.213573425 fv Gamma RP(P), Log-Normal FALSE #> 10500 657 0.9542220 0.209937231 fv Gamma RP(P), Log-Normal FALSE #> 10516 658 1.0526322 0.230309237 fv Gamma RP(P), Log-Normal FALSE #> 10532 659 1.1040578 0.242269392 fv Gamma RP(P), Log-Normal FALSE #> 10548 660 1.1274148 0.257234161 fv Gamma RP(P), Log-Normal FALSE #> 10564 661 0.8272565 0.181590492 fv Gamma RP(P), Log-Normal FALSE #> 10580 662 0.5442579 0.118095785 fv Gamma RP(P), Log-Normal FALSE #> 10596 663 0.7790189 0.168677889 fv Gamma RP(P), Log-Normal FALSE #> 10612 664 0.9338401 0.199297546 fv Gamma RP(P), Log-Normal FALSE #> 10628 665 0.9666500 0.213744208 fv Gamma RP(P), Log-Normal FALSE #> 10644 666 0.9744446 0.220001257 fv Gamma RP(P), Log-Normal FALSE #> 10660 667 1.1828443 0.261467314 fv Gamma RP(P), Log-Normal FALSE #> 10676 668 1.2192520 0.274526839 fv Gamma RP(P), Log-Normal FALSE #> 10692 669 0.7113574 0.156924713 fv Gamma RP(P), Log-Normal FALSE #> 10708 670 1.1756310 0.262566467 fv Gamma RP(P), Log-Normal FALSE #> 10724 671 1.2383003 0.270216646 fv Gamma RP(P), Log-Normal FALSE #> 10740 672 0.7815664 0.169986858 fv Gamma RP(P), Log-Normal FALSE #> 10756 673 0.8229793 0.176870677 fv Gamma RP(P), Log-Normal FALSE #> 10772 674 1.3774475 0.311832718 fv Gamma RP(P), Log-Normal FALSE #> 10788 675 0.9621601 0.207902235 fv Gamma RP(P), Log-Normal FALSE #> 10804 676 0.6528028 0.150614959 fv Gamma RP(P), Log-Normal FALSE #> 10820 677 0.8233554 0.177246238 fv Gamma RP(P), Log-Normal FALSE #> 10836 678 1.1489514 0.253442670 fv Gamma RP(P), Log-Normal FALSE #> 10852 679 1.4208344 0.311543201 fv Gamma RP(P), Log-Normal FALSE #> 10868 680 1.0054416 0.232372166 fv Gamma RP(P), Log-Normal FALSE #> 10884 681 0.7391488 0.162759723 fv Gamma RP(P), Log-Normal FALSE #> 10900 682 0.9652976 0.207135311 fv Gamma RP(P), Log-Normal FALSE #> 10916 683 1.1870484 0.264442808 fv Gamma RP(P), Log-Normal FALSE #> 10932 684 1.2401849 0.268198690 fv Gamma RP(P), Log-Normal FALSE #> 10948 685 0.8596652 0.187197015 fv Gamma RP(P), Log-Normal FALSE #> 10964 686 0.6571789 0.143054753 fv Gamma RP(P), Log-Normal FALSE #> 10980 687 1.3996390 0.301433070 fv Gamma RP(P), Log-Normal FALSE #> 10996 688 0.9489165 0.205546007 fv Gamma RP(P), Log-Normal FALSE #> 11012 689 0.8114256 0.172547414 fv Gamma RP(P), Log-Normal FALSE #> 11028 690 1.2437062 0.265491213 fv Gamma RP(P), Log-Normal FALSE #> 11044 691 1.0092470 0.219771733 fv Gamma RP(P), Log-Normal FALSE #> 11060 692 0.9598097 0.205613691 fv Gamma RP(P), Log-Normal FALSE #> 11076 693 1.3113167 0.296323950 fv Gamma RP(P), Log-Normal FALSE #> 11092 694 1.0933889 0.242376514 fv Gamma RP(P), Log-Normal FALSE #> 11108 695 1.0333338 0.234007271 fv Gamma RP(P), Log-Normal FALSE #> 11124 696 1.0102497 0.229737838 fv Gamma RP(P), Log-Normal FALSE #> 11140 697 1.0358479 0.225442770 fv Gamma RP(P), Log-Normal FALSE #> 11156 698 1.0073535 0.220756703 fv Gamma RP(P), Log-Normal FALSE #> 11172 699 0.9466231 0.201809941 fv Gamma RP(P), Log-Normal FALSE #> 11188 700 1.6203374 0.346406720 fv Gamma RP(P), Log-Normal TRUE #> 11204 701 0.8178477 0.176518370 fv Gamma RP(P), Log-Normal FALSE #> 11220 702 0.8281316 0.185009839 fv Gamma RP(P), Log-Normal FALSE #> 11236 703 0.7131766 0.156512821 fv Gamma RP(P), Log-Normal FALSE #> 11252 704 1.2908383 0.275089666 fv Gamma RP(P), Log-Normal FALSE #> 11268 705 1.4435519 0.314942107 fv Gamma RP(P), Log-Normal FALSE #> 11284 706 1.0319566 0.223149598 fv Gamma RP(P), Log-Normal FALSE #> 11300 707 0.7611768 0.169895358 fv Gamma RP(P), Log-Normal FALSE #> 11316 708 1.1576638 0.261635419 fv Gamma RP(P), Log-Normal FALSE #> 11332 709 0.9334649 0.200133791 fv Gamma RP(P), Log-Normal FALSE #> 11348 710 0.9774021 0.208540201 fv Gamma RP(P), Log-Normal FALSE #> 11364 711 0.4418561 0.097246388 fv Gamma RP(P), Log-Normal TRUE #> 11380 712 0.9598169 0.208774489 fv Gamma RP(P), Log-Normal FALSE #> 11396 713 1.0013023 0.213927288 fv Gamma RP(P), Log-Normal FALSE #> 11412 714 1.2931185 0.294648103 fv Gamma RP(P), Log-Normal FALSE #> 11428 715 1.3871912 0.304898248 fv Gamma RP(P), Log-Normal FALSE #> 11444 716 1.0762644 0.237239678 fv Gamma RP(P), Log-Normal FALSE #> 11460 717 0.8472068 0.196043062 fv Gamma RP(P), Log-Normal FALSE #> 11476 718 1.0140154 0.225564166 fv Gamma RP(P), Log-Normal FALSE #> 11492 719 0.7918815 0.168968345 fv Gamma RP(P), Log-Normal FALSE #> 11508 720 0.8275318 0.180171933 fv Gamma RP(P), Log-Normal FALSE #> 11524 721 1.0706093 0.233121948 fv Gamma RP(P), Log-Normal FALSE #> 11540 722 1.2852624 0.283010838 fv Gamma RP(P), Log-Normal FALSE #> 11556 723 1.0671711 0.239730437 fv Gamma RP(P), Log-Normal FALSE #> 11572 724 0.7945824 0.172668400 fv Gamma RP(P), Log-Normal FALSE #> 11588 725 0.8761793 0.190162437 fv Gamma RP(P), Log-Normal FALSE #> 11604 726 0.7683224 0.169454349 fv Gamma RP(P), Log-Normal FALSE #> 11620 727 1.1401463 0.252371583 fv Gamma RP(P), Log-Normal FALSE #> 11636 728 0.6869455 0.156140309 fv Gamma RP(P), Log-Normal FALSE #> 11652 729 1.0045609 0.214384308 fv Gamma RP(P), Log-Normal FALSE #> 11668 730 1.3739350 0.314933136 fv Gamma RP(P), Log-Normal FALSE #> 11684 731 1.4105734 0.312439279 fv Gamma RP(P), Log-Normal FALSE #> 11700 732 1.2408039 0.265123430 fv Gamma RP(P), Log-Normal FALSE #> 11716 733 0.7434313 0.162871630 fv Gamma RP(P), Log-Normal FALSE #> 11732 734 0.7670277 0.169974871 fv Gamma RP(P), Log-Normal FALSE #> 11748 735 1.1391446 0.249095776 fv Gamma RP(P), Log-Normal FALSE #> 11764 736 1.0869389 0.241739791 fv Gamma RP(P), Log-Normal FALSE #> 11780 737 0.9900843 0.215836490 fv Gamma RP(P), Log-Normal FALSE #> 11796 738 0.8400574 0.198380530 fv Gamma RP(P), Log-Normal FALSE #> 11812 739 0.9098679 0.198083628 fv Gamma RP(P), Log-Normal FALSE #> 11828 740 0.8715673 0.188184780 fv Gamma RP(P), Log-Normal FALSE #> 11844 741 1.0522008 0.231884466 fv Gamma RP(P), Log-Normal FALSE #> 11860 742 0.7308650 0.157131775 fv Gamma RP(P), Log-Normal FALSE #> 11876 743 1.0840980 0.236451512 fv Gamma RP(P), Log-Normal FALSE #> 11892 744 1.4346874 0.319759809 fv Gamma RP(P), Log-Normal FALSE #> 11908 745 0.8684263 0.196492889 fv Gamma RP(P), Log-Normal FALSE #> 11924 746 0.5042351 0.108711465 fv Gamma RP(P), Log-Normal FALSE #> 11940 747 0.8521053 0.186267508 fv Gamma RP(P), Log-Normal FALSE #> 11956 748 1.0776501 0.229694112 fv Gamma RP(P), Log-Normal FALSE #> 11972 749 0.8956342 0.198659923 fv Gamma RP(P), Log-Normal FALSE #> 11988 750 0.6991894 0.151825792 fv Gamma RP(P), Log-Normal FALSE #> 12004 751 1.1707087 0.250296870 fv Gamma RP(P), Log-Normal FALSE #> 12020 752 1.0602200 0.230669899 fv Gamma RP(P), Log-Normal FALSE #> 12036 753 0.7372900 0.163529975 fv Gamma RP(P), Log-Normal FALSE #> 12052 754 1.0951085 0.238851460 fv Gamma RP(P), Log-Normal FALSE #> 12068 755 0.9993447 0.215552225 fv Gamma RP(P), Log-Normal FALSE #> 12084 756 1.5740582 0.337943971 fv Gamma RP(P), Log-Normal TRUE #> 12100 757 0.7728525 0.169474840 fv Gamma RP(P), Log-Normal FALSE #> 12116 758 0.6452476 0.140301410 fv Gamma RP(P), Log-Normal FALSE #> 12132 759 0.7901227 0.171488061 fv Gamma RP(P), Log-Normal FALSE #> 12148 760 0.7639433 0.164920427 fv Gamma RP(P), Log-Normal FALSE #> 12164 761 1.0515490 0.232290105 fv Gamma RP(P), Log-Normal FALSE #> 12180 762 0.8354865 0.180633162 fv Gamma RP(P), Log-Normal FALSE #> 12196 763 0.7587626 0.164916919 fv Gamma RP(P), Log-Normal FALSE #> 12212 764 0.9886533 0.219427415 fv Gamma RP(P), Log-Normal FALSE #> 12228 765 0.7802736 0.170307432 fv Gamma RP(P), Log-Normal FALSE #> 12244 766 0.6561777 0.142009060 fv Gamma RP(P), Log-Normal FALSE #> 12260 767 0.9769743 0.213573667 fv Gamma RP(P), Log-Normal FALSE #> 12276 768 1.0293469 0.224440289 fv Gamma RP(P), Log-Normal FALSE #> 12292 769 1.0177818 0.217646319 fv Gamma RP(P), Log-Normal FALSE #> 12308 770 0.7562416 0.168946252 fv Gamma RP(P), Log-Normal FALSE #> 12324 771 0.6463465 0.139187794 fv Gamma RP(P), Log-Normal FALSE #> 12340 772 1.1961842 0.271932662 fv Gamma RP(P), Log-Normal FALSE #> 12356 773 0.8067420 0.176962096 fv Gamma RP(P), Log-Normal FALSE #> 12372 774 0.9520088 0.205128560 fv Gamma RP(P), Log-Normal FALSE #> 12388 775 1.4347408 0.319703347 fv Gamma RP(P), Log-Normal FALSE #> 12404 776 0.9481417 0.202311942 fv Gamma RP(P), Log-Normal FALSE #> 12420 777 0.8016802 0.175031737 fv Gamma RP(P), Log-Normal FALSE #> 12436 778 1.1275293 0.249908367 fv Gamma RP(P), Log-Normal FALSE #> 12452 779 1.1870282 0.261537316 fv Gamma RP(P), Log-Normal FALSE #> 12468 780 1.1268945 0.249877221 fv Gamma RP(P), Log-Normal FALSE #> 12484 781 0.8099723 0.181662555 fv Gamma RP(P), Log-Normal FALSE #> 12500 782 0.9387734 0.218754552 fv Gamma RP(P), Log-Normal FALSE #> 12516 783 0.9578883 0.204613312 fv Gamma RP(P), Log-Normal FALSE #> 12532 784 0.8156845 0.174404492 fv Gamma RP(P), Log-Normal FALSE #> 12548 785 0.8247289 0.177841946 fv Gamma RP(P), Log-Normal FALSE #> 12564 786 1.0226574 0.217558799 fv Gamma RP(P), Log-Normal FALSE #> 12580 787 1.2335064 0.284150031 fv Gamma RP(P), Log-Normal FALSE #> 12596 788 1.0013196 0.221958849 fv Gamma RP(P), Log-Normal FALSE #> 12612 789 1.0288684 0.227267275 fv Gamma RP(P), Log-Normal FALSE #> 12628 790 1.3948807 0.318147375 fv Gamma RP(P), Log-Normal FALSE #> 12644 791 1.2962548 0.289253927 fv Gamma RP(P), Log-Normal FALSE #> 12660 792 1.3337738 0.290805393 fv Gamma RP(P), Log-Normal FALSE #> 12676 793 0.8720682 0.188928270 fv Gamma RP(P), Log-Normal FALSE #> 12692 794 0.4682845 0.102407124 fv Gamma RP(P), Log-Normal TRUE #> 12708 795 0.9519556 0.210182873 fv Gamma RP(P), Log-Normal FALSE #> 12724 796 1.0864968 0.238092719 fv Gamma RP(P), Log-Normal FALSE #> 12740 797 0.7159644 0.155862128 fv Gamma RP(P), Log-Normal FALSE #> 12756 798 0.7497156 0.165610200 fv Gamma RP(P), Log-Normal FALSE #> 12772 799 1.4945789 0.345846891 fv Gamma RP(P), Log-Normal TRUE #> 12788 800 1.2630625 0.274880885 fv Gamma RP(P), Log-Normal FALSE #> 12804 801 0.7800030 0.172871017 fv Gamma RP(P), Log-Normal FALSE #> 12820 802 0.8108326 0.174897662 fv Gamma RP(P), Log-Normal FALSE #> 12836 803 0.9512588 0.202956493 fv Gamma RP(P), Log-Normal FALSE #> 12852 804 1.0362523 0.225794955 fv Gamma RP(P), Log-Normal FALSE #> 12868 805 0.9811922 0.212636632 fv Gamma RP(P), Log-Normal FALSE #> 12884 806 0.7326683 0.158761559 fv Gamma RP(P), Log-Normal FALSE #> 12900 807 1.2740750 0.276544259 fv Gamma RP(P), Log-Normal FALSE #> 12916 808 0.9781884 0.222359075 fv Gamma RP(P), Log-Normal FALSE #> 12932 809 1.3453651 0.309478390 fv Gamma RP(P), Log-Normal FALSE #> 12948 810 0.9232016 0.196664367 fv Gamma RP(P), Log-Normal FALSE #> 12964 811 1.3197955 0.283396132 fv Gamma RP(P), Log-Normal FALSE #> 12980 812 0.8368495 0.182262628 fv Gamma RP(P), Log-Normal FALSE #> 12996 813 1.1692435 0.253391788 fv Gamma RP(P), Log-Normal FALSE #> 13012 814 0.9869950 0.215275425 fv Gamma RP(P), Log-Normal FALSE #> 13028 815 1.4267797 0.314102008 fv Gamma RP(P), Log-Normal FALSE #> 13044 816 0.7096351 0.156897106 fv Gamma RP(P), Log-Normal FALSE #> 13060 817 1.2207826 0.279563602 fv Gamma RP(P), Log-Normal FALSE #> 13076 818 0.8781833 0.195168438 fv Gamma RP(P), Log-Normal FALSE #> 13092 819 1.3528171 0.307115701 fv Gamma RP(P), Log-Normal FALSE #> 13108 820 0.8750937 0.190140123 fv Gamma RP(P), Log-Normal FALSE #> 13124 821 1.0024784 0.225742050 fv Gamma RP(P), Log-Normal FALSE #> 13140 822 0.6059361 0.130452065 fv Gamma RP(P), Log-Normal FALSE #> 13156 823 1.0219096 0.227328071 fv Gamma RP(P), Log-Normal FALSE #> 13172 824 0.9918559 0.217538890 fv Gamma RP(P), Log-Normal FALSE #> 13188 825 0.6366212 0.136266805 fv Gamma RP(P), Log-Normal FALSE #> 13204 826 0.9444450 0.201370921 fv Gamma RP(P), Log-Normal FALSE #> 13220 827 0.9275230 0.201228122 fv Gamma RP(P), Log-Normal FALSE #> 13236 828 1.4648905 0.331911086 fv Gamma RP(P), Log-Normal TRUE #> 13252 829 0.7088462 0.152408167 fv Gamma RP(P), Log-Normal FALSE #> 13268 830 1.2836749 0.282634446 fv Gamma RP(P), Log-Normal FALSE #> 13284 831 0.7178710 0.163143070 fv Gamma RP(P), Log-Normal FALSE #> 13300 832 0.8691501 0.185987043 fv Gamma RP(P), Log-Normal FALSE #> 13316 833 0.9918025 0.216794384 fv Gamma RP(P), Log-Normal FALSE #> 13332 834 0.6561897 0.145029001 fv Gamma RP(P), Log-Normal FALSE #> 13348 835 0.9531690 0.206507185 fv Gamma RP(P), Log-Normal FALSE #> 13364 836 0.9457929 0.208627065 fv Gamma RP(P), Log-Normal FALSE #> 13380 837 0.9604259 0.214827897 fv Gamma RP(P), Log-Normal FALSE #> 13396 838 1.2231002 0.262948896 fv Gamma RP(P), Log-Normal FALSE #> 13412 839 0.7639873 0.164814888 fv Gamma RP(P), Log-Normal FALSE #> 13428 840 1.0584085 0.233394444 fv Gamma RP(P), Log-Normal FALSE #> 13444 841 0.9060566 0.191644127 fv Gamma RP(P), Log-Normal FALSE #> 13460 842 0.9981854 0.222833868 fv Gamma RP(P), Log-Normal FALSE #> 13476 843 1.3271882 0.294385787 fv Gamma RP(P), Log-Normal FALSE #> 13492 844 1.0083776 0.222785765 fv Gamma RP(P), Log-Normal FALSE #> 13508 845 1.4067028 0.311118514 fv Gamma RP(P), Log-Normal FALSE #> 13524 846 0.8457063 0.189664761 fv Gamma RP(P), Log-Normal FALSE #> 13540 847 0.8266072 0.185765621 fv Gamma RP(P), Log-Normal FALSE #> 13556 848 0.5911078 0.127933794 fv Gamma RP(P), Log-Normal FALSE #> 13572 849 0.9435684 0.200827455 fv Gamma RP(P), Log-Normal FALSE #> 13588 850 0.8421106 0.180835192 fv Gamma RP(P), Log-Normal FALSE #> 13604 851 0.9838631 0.215975837 fv Gamma RP(P), Log-Normal FALSE #> 13620 852 0.5626470 0.122791446 fv Gamma RP(P), Log-Normal FALSE #> 13636 853 0.9664855 0.207250226 fv Gamma RP(P), Log-Normal FALSE #> 13652 854 0.7210802 0.158669568 fv Gamma RP(P), Log-Normal FALSE #> 13668 855 1.2549558 0.273909144 fv Gamma RP(P), Log-Normal FALSE #> 13684 856 1.0890084 0.235216876 fv Gamma RP(P), Log-Normal FALSE #> 13700 857 0.7349918 0.162187111 fv Gamma RP(P), Log-Normal FALSE #> 13716 858 0.8738882 0.193200988 fv Gamma RP(P), Log-Normal FALSE #> 13732 859 0.8725583 0.195344571 fv Gamma RP(P), Log-Normal FALSE #> 13748 860 0.7565733 0.161739089 fv Gamma RP(P), Log-Normal FALSE #> 13764 861 1.1321227 0.246524283 fv Gamma RP(P), Log-Normal FALSE #> 13780 862 0.8393021 0.180926336 fv Gamma RP(P), Log-Normal FALSE #> 13796 863 1.0161557 0.222141368 fv Gamma RP(P), Log-Normal FALSE #> 13812 864 0.9572296 0.210418635 fv Gamma RP(P), Log-Normal FALSE #> 13828 865 1.0152870 0.222102537 fv Gamma RP(P), Log-Normal FALSE #> 13844 866 0.7984746 0.170205293 fv Gamma RP(P), Log-Normal FALSE #> 13860 867 0.9096029 0.196759398 fv Gamma RP(P), Log-Normal FALSE #> 13876 868 0.9705552 0.210115673 fv Gamma RP(P), Log-Normal FALSE #> 13892 869 1.0294965 0.226495818 fv Gamma RP(P), Log-Normal FALSE #> 13908 870 0.9585866 0.217548683 fv Gamma RP(P), Log-Normal FALSE #> 13924 871 1.2540751 0.273750013 fv Gamma RP(P), Log-Normal FALSE #> 13940 872 1.3178539 0.292907644 fv Gamma RP(P), Log-Normal FALSE #> 13956 873 1.1780594 0.254082562 fv Gamma RP(P), Log-Normal FALSE #> 13972 874 1.5369549 0.349989569 fv Gamma RP(P), Log-Normal TRUE #> 13988 875 0.7606339 0.164512020 fv Gamma RP(P), Log-Normal FALSE #> 14004 876 0.8818046 0.191259261 fv Gamma RP(P), Log-Normal FALSE #> 14020 877 1.0016215 0.217910809 fv Gamma RP(P), Log-Normal FALSE #> 14036 878 1.0960247 0.243448439 fv Gamma RP(P), Log-Normal FALSE #> 14052 879 0.9010159 0.208415640 fv Gamma RP(P), Log-Normal FALSE #> 14068 880 1.4167836 0.309960875 fv Gamma RP(P), Log-Normal FALSE #> 14084 881 1.1367712 0.251722155 fv Gamma RP(P), Log-Normal FALSE #> 14100 882 1.2721470 0.272715293 fv Gamma RP(P), Log-Normal FALSE #> 14116 883 0.7534025 0.164687938 fv Gamma RP(P), Log-Normal FALSE #> 14132 884 0.7895471 0.169947985 fv Gamma RP(P), Log-Normal FALSE #> 14148 885 0.7598150 0.165598184 fv Gamma RP(P), Log-Normal FALSE #> 14164 886 0.7546992 0.165577188 fv Gamma RP(P), Log-Normal FALSE #> 14180 887 0.9464325 0.207391951 fv Gamma RP(P), Log-Normal FALSE #> 14196 888 1.3249936 0.285528452 fv Gamma RP(P), Log-Normal FALSE #> 14212 889 1.0483529 0.223855961 fv Gamma RP(P), Log-Normal FALSE #> 14228 890 0.7960197 0.175686722 fv Gamma RP(P), Log-Normal FALSE #> 14244 891 0.6057941 0.129842155 fv Gamma RP(P), Log-Normal FALSE #> 14260 892 0.9117945 0.197815689 fv Gamma RP(P), Log-Normal FALSE #> 14276 893 1.1931191 0.269494148 fv Gamma RP(P), Log-Normal FALSE #> 14292 894 0.7163861 0.156284310 fv Gamma RP(P), Log-Normal FALSE #> 14308 895 0.8521234 0.181727642 fv Gamma RP(P), Log-Normal FALSE #> 14324 896 1.1969657 0.257466332 fv Gamma RP(P), Log-Normal FALSE #> 14340 897 0.8738869 0.187008230 fv Gamma RP(P), Log-Normal FALSE #> 14356 898 1.1901902 0.254087597 fv Gamma RP(P), Log-Normal FALSE #> 14372 899 1.0493014 0.231872092 fv Gamma RP(P), Log-Normal FALSE #> 14388 900 1.1641367 0.259296079 fv Gamma RP(P), Log-Normal FALSE #> 14404 901 0.7441833 0.162379902 fv Gamma RP(P), Log-Normal FALSE #> 14420 902 0.7006841 0.150598713 fv Gamma RP(P), Log-Normal FALSE #> 14436 903 0.7852252 0.167720028 fv Gamma RP(P), Log-Normal FALSE #> 14452 904 1.5979510 0.368445748 fv Gamma RP(P), Log-Normal TRUE #> 14468 905 0.7930490 0.170065240 fv Gamma RP(P), Log-Normal FALSE #> 14484 906 1.3977134 0.301200536 fv Gamma RP(P), Log-Normal FALSE #> 14500 907 1.0303398 0.225804461 fv Gamma RP(P), Log-Normal FALSE #> 14516 908 0.8813457 0.201251276 fv Gamma RP(P), Log-Normal FALSE #> 14532 909 0.7644669 0.167107442 fv Gamma RP(P), Log-Normal FALSE #> 14548 910 0.6744757 0.145971855 fv Gamma RP(P), Log-Normal FALSE #> 14564 911 0.9481477 0.214870715 fv Gamma RP(P), Log-Normal FALSE #> 14580 912 0.6898847 0.148216456 fv Gamma RP(P), Log-Normal FALSE #> 14596 913 0.9740810 0.210880647 fv Gamma RP(P), Log-Normal FALSE #> 14612 914 0.8619948 0.192708186 fv Gamma RP(P), Log-Normal FALSE #> 14628 915 1.1804584 0.260025660 fv Gamma RP(P), Log-Normal FALSE #> 14644 916 0.6691827 0.144375958 fv Gamma RP(P), Log-Normal FALSE #> 14660 917 1.0113326 0.222850102 fv Gamma RP(P), Log-Normal FALSE #> 14676 918 1.0209571 0.217855650 fv Gamma RP(P), Log-Normal FALSE #> 14692 919 0.6796905 0.145360386 fv Gamma RP(P), Log-Normal FALSE #> 14708 920 0.9871577 0.211586286 fv Gamma RP(P), Log-Normal FALSE #> 14724 921 1.1250715 0.248801866 fv Gamma RP(P), Log-Normal FALSE #> 14740 922 1.6097787 0.362204329 fv Gamma RP(P), Log-Normal TRUE #> 14756 923 0.9436780 0.203595015 fv Gamma RP(P), Log-Normal FALSE #> 14772 924 0.9564219 0.203337756 fv Gamma RP(P), Log-Normal FALSE #> 14788 925 1.2119817 0.273392844 fv Gamma RP(P), Log-Normal FALSE #> 14804 926 0.9400838 0.200647180 fv Gamma RP(P), Log-Normal FALSE #> 14820 927 0.5509122 0.120006203 fv Gamma RP(P), Log-Normal FALSE #> 14836 928 0.9335398 0.201024284 fv Gamma RP(P), Log-Normal FALSE #> 14852 929 1.0175155 0.223295340 fv Gamma RP(P), Log-Normal FALSE #> 14868 930 1.4778512 0.339083118 fv Gamma RP(P), Log-Normal TRUE #> 14884 931 0.9049402 0.195294270 fv Gamma RP(P), Log-Normal FALSE #> 14900 932 1.2187532 0.262280942 fv Gamma RP(P), Log-Normal FALSE #> 14916 933 0.7691144 0.167095118 fv Gamma RP(P), Log-Normal FALSE #> 14932 934 0.7255674 0.155278746 fv Gamma RP(P), Log-Normal FALSE #> 14948 935 0.5660748 0.122968010 fv Gamma RP(P), Log-Normal FALSE #> 14964 936 0.7769992 0.168390284 fv Gamma RP(P), Log-Normal FALSE #> 14980 937 1.4918244 0.328500321 fv Gamma RP(P), Log-Normal TRUE #> 14996 938 1.0659751 0.233315986 fv Gamma RP(P), Log-Normal FALSE #> 15012 939 1.0236145 0.218522667 fv Gamma RP(P), Log-Normal FALSE #> 15028 940 1.0295400 0.221691720 fv Gamma RP(P), Log-Normal FALSE #> 15044 941 0.8047617 0.173567485 fv Gamma RP(P), Log-Normal FALSE #> 15060 942 0.8464834 0.185539126 fv Gamma RP(P), Log-Normal FALSE #> 15076 943 0.5599465 0.122123725 fv Gamma RP(P), Log-Normal FALSE #> 15092 944 0.7749006 0.165689234 fv Gamma RP(P), Log-Normal FALSE #> 15108 945 0.7455152 0.160417654 fv Gamma RP(P), Log-Normal FALSE #> 15124 946 1.1738343 0.268801235 fv Gamma RP(P), Log-Normal FALSE #> 15140 947 0.8388128 0.185803625 fv Gamma RP(P), Log-Normal FALSE #> 15156 948 0.6952556 0.158342180 fv Gamma RP(P), Log-Normal FALSE #> 15172 949 0.8177120 0.182041579 fv Gamma RP(P), Log-Normal FALSE #> 15188 950 0.7743235 0.171749308 fv Gamma RP(P), Log-Normal FALSE #> 15204 951 1.0063523 0.219655118 fv Gamma RP(P), Log-Normal FALSE #> 15220 952 0.8235324 0.177580617 fv Gamma RP(P), Log-Normal FALSE #> 15236 953 1.6557073 0.364829706 fv Gamma RP(P), Log-Normal TRUE #> 15252 954 0.8653755 0.187285027 fv Gamma RP(P), Log-Normal FALSE #> 15268 955 1.0301056 0.220205471 fv Gamma RP(P), Log-Normal FALSE #> 15284 956 0.7894323 0.172205969 fv Gamma RP(P), Log-Normal FALSE #> 15300 957 0.7333930 0.159610119 fv Gamma RP(P), Log-Normal FALSE #> 15316 958 0.6756133 0.147379474 fv Gamma RP(P), Log-Normal FALSE #> 15332 959 0.8148421 0.177271917 fv Gamma RP(P), Log-Normal FALSE #> 15348 960 1.0392486 0.227370460 fv Gamma RP(P), Log-Normal FALSE #> 15364 961 0.6272968 0.137352074 fv Gamma RP(P), Log-Normal FALSE #> 15380 962 1.2355976 0.269890470 fv Gamma RP(P), Log-Normal FALSE #> 15396 963 1.3179458 0.295990708 fv Gamma RP(P), Log-Normal FALSE #> 15412 964 0.9410797 0.206058732 fv Gamma RP(P), Log-Normal FALSE #> 15428 965 0.7249062 0.156451201 fv Gamma RP(P), Log-Normal FALSE #> 15444 966 1.0797601 0.240333361 fv Gamma RP(P), Log-Normal FALSE #> 15460 967 0.8711198 0.188877816 fv Gamma RP(P), Log-Normal FALSE #> 15476 968 0.7484915 0.163756006 fv Gamma RP(P), Log-Normal FALSE #> 15492 969 1.0608001 0.239446947 fv Gamma RP(P), Log-Normal FALSE #> 15508 970 1.0392551 0.242127789 fv Gamma RP(P), Log-Normal FALSE #> 15524 971 0.8947299 0.198047800 fv Gamma RP(P), Log-Normal FALSE #> 15540 972 0.8458660 0.191087294 fv Gamma RP(P), Log-Normal FALSE #> 15556 973 1.4370855 0.329114189 fv Gamma RP(P), Log-Normal TRUE #> 15572 974 0.6426835 0.141462608 fv Gamma RP(P), Log-Normal FALSE #> 15588 975 0.5829796 0.126731490 fv Gamma RP(P), Log-Normal FALSE #> 15604 976 0.9819053 0.214952765 fv Gamma RP(P), Log-Normal FALSE #> 15620 977 1.2025767 0.259993700 fv Gamma RP(P), Log-Normal FALSE #> 15636 978 1.1207741 0.253448839 fv Gamma RP(P), Log-Normal FALSE #> 15652 979 1.2212617 0.277004405 fv Gamma RP(P), Log-Normal FALSE #> 15668 980 0.6660679 0.144904550 fv Gamma RP(P), Log-Normal FALSE #> 15684 981 0.9800822 0.220568363 fv Gamma RP(P), Log-Normal FALSE #> 15700 982 1.2715142 0.278377255 fv Gamma RP(P), Log-Normal FALSE #> 15716 983 0.6362243 0.139600397 fv Gamma RP(P), Log-Normal FALSE #> 15732 984 0.9930194 0.216807089 fv Gamma RP(P), Log-Normal FALSE #> 15748 985 1.1721930 0.263401263 fv Gamma RP(P), Log-Normal FALSE #> 15764 986 0.8120336 0.173385919 fv Gamma RP(P), Log-Normal FALSE #> 15780 987 0.6828491 0.148950787 fv Gamma RP(P), Log-Normal FALSE #> 15796 988 0.8144041 0.176435041 fv Gamma RP(P), Log-Normal FALSE #> 15812 989 1.1247055 0.243500492 fv Gamma RP(P), Log-Normal FALSE #> 15828 990 0.8947567 0.191212448 fv Gamma RP(P), Log-Normal FALSE #> 15844 991 1.0661028 0.236299935 fv Gamma RP(P), Log-Normal FALSE #> 15860 992 1.1284313 0.252598990 fv Gamma RP(P), Log-Normal FALSE #> 15876 993 1.4178796 0.311252553 fv Gamma RP(P), Log-Normal FALSE #> 15892 994 0.9354356 0.205470856 fv Gamma RP(P), Log-Normal FALSE #> 15908 995 0.9748574 0.210421807 fv Gamma RP(P), Log-Normal FALSE #> 15924 996 0.8126153 0.174760175 fv Gamma RP(P), Log-Normal FALSE #> 15940 997 0.7325642 0.165565100 fv Gamma RP(P), Log-Normal FALSE #> 15956 998 0.8758146 0.191746972 fv Gamma RP(P), Log-Normal FALSE #> 15972 999 0.6360544 0.137587237 fv Gamma RP(P), Log-Normal FALSE #> 15988 1000 0.6592714 0.146375303 fv Gamma RP(P), Log-Normal FALSE #> 5 1 0.6394722 0.122380809 fv Log-Normal Cox, Gamma FALSE #> 21 2 0.6045856 NA fv Log-Normal Cox, Gamma NA #> 37 3 0.8010657 0.151976580 fv Log-Normal Cox, Gamma FALSE #> 53 4 0.5251708 0.102995382 fv Log-Normal Cox, Gamma FALSE #> 69 5 0.7983593 0.148846197 fv Log-Normal Cox, Gamma FALSE #> 85 6 0.6885611 0.130409358 fv Log-Normal Cox, Gamma FALSE #> 101 7 0.5151179 0.100941935 fv Log-Normal Cox, Gamma FALSE #> 117 8 0.7621628 0.144318000 fv Log-Normal Cox, Gamma FALSE #> 133 9 0.6643665 0.127376922 fv Log-Normal Cox, Gamma FALSE #> 149 10 0.8283729 0.155318927 fv Log-Normal Cox, Gamma FALSE #> 165 11 0.7869555 0.147558877 fv Log-Normal Cox, Gamma FALSE #> 181 12 0.5133479 0.101148388 fv Log-Normal Cox, Gamma FALSE #> 197 13 0.7532925 0.143254004 fv Log-Normal Cox, Gamma FALSE #> 213 14 0.6319419 0.120525268 fv Log-Normal Cox, Gamma FALSE #> 229 15 0.6431606 NA fv Log-Normal Cox, Gamma NA #> 245 16 0.5317893 0.104988331 fv Log-Normal Cox, Gamma FALSE #> 261 17 0.6485239 NA fv Log-Normal Cox, Gamma NA #> 277 18 0.6937009 0.131641157 fv Log-Normal Cox, Gamma FALSE #> 293 19 0.7893061 0.147649710 fv Log-Normal Cox, Gamma FALSE #> 309 20 0.5473277 0.107505962 fv Log-Normal Cox, Gamma FALSE #> 325 21 0.6159281 0.119712689 fv Log-Normal Cox, Gamma FALSE #> 341 22 0.5034632 0.098706022 fv Log-Normal Cox, Gamma FALSE #> 357 23 0.8872145 0.167318484 fv Log-Normal Cox, Gamma FALSE #> 373 24 0.6747845 0.128587018 fv Log-Normal Cox, Gamma FALSE #> 389 25 0.5306071 0.103635336 fv Log-Normal Cox, Gamma FALSE #> 405 26 0.6424292 0.123098114 fv Log-Normal Cox, Gamma FALSE #> 421 27 0.4616309 0.092627917 fv Log-Normal Cox, Gamma FALSE #> 437 28 0.6455285 0.124584641 fv Log-Normal Cox, Gamma FALSE #> 453 29 0.9355245 0.171887190 fv Log-Normal Cox, Gamma TRUE #> 469 30 0.5683618 NA fv Log-Normal Cox, Gamma NA #> 485 31 0.5122115 0.101457499 fv Log-Normal Cox, Gamma FALSE #> 501 32 0.5137421 0.101410278 fv Log-Normal Cox, Gamma FALSE #> 517 33 0.6617973 0.126758113 fv Log-Normal Cox, Gamma FALSE #> 533 34 0.8792537 0.165007321 fv Log-Normal Cox, Gamma FALSE #> 549 35 0.5056708 0.102050813 fv Log-Normal Cox, Gamma FALSE #> 565 36 0.4631456 0.092364702 fv Log-Normal Cox, Gamma FALSE #> 581 37 0.6402471 0.123639086 fv Log-Normal Cox, Gamma FALSE #> 597 38 0.6072469 0.118505183 fv Log-Normal Cox, Gamma FALSE #> 613 39 0.7170843 0.136908818 fv Log-Normal Cox, Gamma FALSE #> 629 40 0.5771348 0.115752065 fv Log-Normal Cox, Gamma FALSE #> 645 41 0.6529139 0.124393480 fv Log-Normal Cox, Gamma FALSE #> 661 42 0.5148011 0.101711999 fv Log-Normal Cox, Gamma FALSE #> 677 43 0.4666952 0.004937570 fv Log-Normal Cox, Gamma TRUE #> 693 44 0.6189380 0.118445497 fv Log-Normal Cox, Gamma FALSE #> 709 45 0.5376220 0.104802034 fv Log-Normal Cox, Gamma FALSE #> 725 46 0.3144607 0.065053567 fv Log-Normal Cox, Gamma TRUE #> 741 47 0.7584395 0.142672550 fv Log-Normal Cox, Gamma FALSE #> 757 48 0.8275518 0.156556744 fv Log-Normal Cox, Gamma FALSE #> 773 49 0.8489886 0.158293529 fv Log-Normal Cox, Gamma FALSE #> 789 50 0.5482973 0.107386748 fv Log-Normal Cox, Gamma FALSE #> 805 51 0.6839991 0.129492956 fv Log-Normal Cox, Gamma FALSE #> 821 52 0.4843987 0.096408435 fv Log-Normal Cox, Gamma FALSE #> 837 53 0.8510057 0.158864620 fv Log-Normal Cox, Gamma FALSE #> 853 54 0.6256909 0.120555710 fv Log-Normal Cox, Gamma FALSE #> 869 55 0.8346268 0.156087294 fv Log-Normal Cox, Gamma FALSE #> 885 56 0.7882049 0.150416666 fv Log-Normal Cox, Gamma FALSE #> 901 57 0.8201443 0.154000281 fv Log-Normal Cox, Gamma FALSE #> 917 58 0.7040050 0.135316400 fv Log-Normal Cox, Gamma FALSE #> 933 59 0.6359651 0.121923449 fv Log-Normal Cox, Gamma FALSE #> 949 60 0.8198970 0.153870480 fv Log-Normal Cox, Gamma FALSE #> 965 61 0.7175756 0.137152304 fv Log-Normal Cox, Gamma FALSE #> 981 62 0.6076507 0.118508879 fv Log-Normal Cox, Gamma FALSE #> 997 63 0.7819970 0.147791047 fv Log-Normal Cox, Gamma FALSE #> 1013 64 0.6957054 0.132639426 fv Log-Normal Cox, Gamma FALSE #> 1029 65 0.9526125 0.009775405 fv Log-Normal Cox, Gamma TRUE #> 1045 66 0.5441474 0.106172085 fv Log-Normal Cox, Gamma FALSE #> 1061 67 0.5523208 0.108353716 fv Log-Normal Cox, Gamma FALSE #> 1077 68 0.4929681 0.098414398 fv Log-Normal Cox, Gamma FALSE #> 1093 69 0.7299153 0.138530230 fv Log-Normal Cox, Gamma FALSE #> 1109 70 0.6423527 0.122802482 fv Log-Normal Cox, Gamma FALSE #> 1125 71 0.8632862 0.161486059 fv Log-Normal Cox, Gamma FALSE #> 1141 72 0.5591545 0.109417396 fv Log-Normal Cox, Gamma FALSE #> 1157 73 0.6075278 0.117438980 fv Log-Normal Cox, Gamma FALSE #> 1173 74 0.4193468 0.085150618 fv Log-Normal Cox, Gamma FALSE #> 1189 75 0.6458334 0.123807889 fv Log-Normal Cox, Gamma FALSE #> 1205 76 0.5319590 0.103524013 fv Log-Normal Cox, Gamma FALSE #> 1221 77 0.8210381 0.156007454 fv Log-Normal Cox, Gamma FALSE #> 1237 78 0.7326486 0.139950963 fv Log-Normal Cox, Gamma FALSE #> 1253 79 0.9943199 0.182305762 fv Log-Normal Cox, Gamma TRUE #> 1269 80 0.5401692 0.105772312 fv Log-Normal Cox, Gamma FALSE #> 1285 81 0.8195515 0.152333242 fv Log-Normal Cox, Gamma FALSE #> 1301 82 0.5996208 0.115639258 fv Log-Normal Cox, Gamma FALSE #> 1317 83 0.6878985 0.131159675 fv Log-Normal Cox, Gamma FALSE #> 1333 84 0.5677818 0.110729113 fv Log-Normal Cox, Gamma FALSE #> 1349 85 0.6777671 0.132744504 fv Log-Normal Cox, Gamma FALSE #> 1365 86 0.5697309 0.113283344 fv Log-Normal Cox, Gamma FALSE #> 1381 87 0.6515879 0.125557308 fv Log-Normal Cox, Gamma FALSE #> 1397 88 0.6589741 0.126940719 fv Log-Normal Cox, Gamma FALSE #> 1413 89 0.9088941 0.169266584 fv Log-Normal Cox, Gamma TRUE #> 1429 90 0.7931475 0.150240420 fv Log-Normal Cox, Gamma FALSE #> 1445 91 0.7963163 0.149402965 fv Log-Normal Cox, Gamma FALSE #> 1461 92 0.7857943 0.149847987 fv Log-Normal Cox, Gamma FALSE #> 1477 93 0.5504720 0.107382694 fv Log-Normal Cox, Gamma FALSE #> 1493 94 0.6884429 0.131346884 fv Log-Normal Cox, Gamma FALSE #> 1509 95 0.6380857 0.123419439 fv Log-Normal Cox, Gamma FALSE #> 1525 96 0.5041330 0.099649898 fv Log-Normal Cox, Gamma FALSE #> 1541 97 0.7322696 0.139902706 fv Log-Normal Cox, Gamma FALSE #> 1557 98 0.4127046 0.082919455 fv Log-Normal Cox, Gamma FALSE #> 1573 99 0.6763370 0.128560573 fv Log-Normal Cox, Gamma FALSE #> 1589 100 0.5878556 0.114387018 fv Log-Normal Cox, Gamma FALSE #> 1605 101 0.5514084 0.106995494 fv Log-Normal Cox, Gamma FALSE #> 1621 102 0.4762293 0.094742579 fv Log-Normal Cox, Gamma FALSE #> 1637 103 0.7020256 0.133873178 fv Log-Normal Cox, Gamma FALSE #> 1653 104 0.7099326 0.137457024 fv Log-Normal Cox, Gamma FALSE #> 1669 105 0.5077478 0.103091644 fv Log-Normal Cox, Gamma FALSE #> 1685 106 0.5839560 NA fv Log-Normal Cox, Gamma NA #> 1701 107 0.6986634 0.132088893 fv Log-Normal Cox, Gamma FALSE #> 1717 108 0.6167183 0.119245954 fv Log-Normal Cox, Gamma FALSE #> 1733 109 0.8992052 0.168845162 fv Log-Normal Cox, Gamma FALSE #> 1749 110 0.7958962 0.150043027 fv Log-Normal Cox, Gamma FALSE #> 1765 111 0.6292353 0.123510171 fv Log-Normal Cox, Gamma FALSE #> 1781 112 0.6629978 0.127077109 fv Log-Normal Cox, Gamma FALSE #> 1797 113 0.7261570 0.136779956 fv Log-Normal Cox, Gamma FALSE #> 1813 114 0.6276345 0.122291276 fv Log-Normal Cox, Gamma FALSE #> 1829 115 0.6639073 0.126950626 fv Log-Normal Cox, Gamma FALSE #> 1845 116 0.6771155 0.129017151 fv Log-Normal Cox, Gamma FALSE #> 1861 117 0.7574856 0.142852173 fv Log-Normal Cox, Gamma FALSE #> 1877 118 0.5400931 0.105299387 fv Log-Normal Cox, Gamma FALSE #> 1893 119 0.5348068 0.104913423 fv Log-Normal Cox, Gamma FALSE #> 1909 120 0.7474894 0.142057002 fv Log-Normal Cox, Gamma FALSE #> 1925 121 0.6748811 0.129647969 fv Log-Normal Cox, Gamma FALSE #> 1941 122 0.5375076 0.108052856 fv Log-Normal Cox, Gamma FALSE #> 1957 123 0.4856003 0.096121275 fv Log-Normal Cox, Gamma FALSE #> 1973 124 0.5246200 0.103885319 fv Log-Normal Cox, Gamma FALSE #> 1989 125 0.4720605 NA fv Log-Normal Cox, Gamma NA #> 2005 126 0.9482783 0.174156199 fv Log-Normal Cox, Gamma TRUE #> 2021 127 0.4306473 0.085975068 fv Log-Normal Cox, Gamma FALSE #> 2037 128 0.4410806 0.087616373 fv Log-Normal Cox, Gamma FALSE #> 2053 129 0.5998340 0.116337857 fv Log-Normal Cox, Gamma FALSE #> 2069 130 0.5329207 0.106038502 fv Log-Normal Cox, Gamma FALSE #> 2085 131 0.5852483 0.113419735 fv Log-Normal Cox, Gamma FALSE #> 2101 132 0.6742929 0.128681326 fv Log-Normal Cox, Gamma FALSE #> 2117 133 0.8438814 0.157495241 fv Log-Normal Cox, Gamma FALSE #> 2133 134 0.8725599 0.161209909 fv Log-Normal Cox, Gamma FALSE #> 2149 135 0.6599414 0.127969864 fv Log-Normal Cox, Gamma FALSE #> 2165 136 0.5626806 0.112982953 fv Log-Normal Cox, Gamma FALSE #> 2181 137 0.4613542 0.092148877 fv Log-Normal Cox, Gamma FALSE #> 2197 138 0.4897440 0.096970193 fv Log-Normal Cox, Gamma FALSE #> 2213 139 0.6186832 0.118880800 fv Log-Normal Cox, Gamma FALSE #> 2229 140 0.6882313 0.130677278 fv Log-Normal Cox, Gamma FALSE #> 2245 141 0.4057784 0.082456100 fv Log-Normal Cox, Gamma FALSE #> 2261 142 0.4533127 0.090505938 fv Log-Normal Cox, Gamma FALSE #> 2277 143 0.5205757 0.101899405 fv Log-Normal Cox, Gamma FALSE #> 2293 144 0.6642470 0.129879650 fv Log-Normal Cox, Gamma FALSE #> 2309 145 0.4846138 0.095680840 fv Log-Normal Cox, Gamma FALSE #> 2325 146 0.6727758 0.128705520 fv Log-Normal Cox, Gamma FALSE #> 2341 147 0.6505837 0.128350311 fv Log-Normal Cox, Gamma FALSE #> 2357 148 0.5095640 0.100748115 fv Log-Normal Cox, Gamma FALSE #> 2373 149 0.3838389 0.078579334 fv Log-Normal Cox, Gamma FALSE #> 2389 150 0.5015661 0.098921642 fv Log-Normal Cox, Gamma FALSE #> 2405 151 0.8316167 0.156175999 fv Log-Normal Cox, Gamma FALSE #> 2421 152 0.6107663 0.117805851 fv Log-Normal Cox, Gamma FALSE #> 2437 153 0.7774550 0.147567258 fv Log-Normal Cox, Gamma FALSE #> 2453 154 0.6456305 0.123420490 fv Log-Normal Cox, Gamma FALSE #> 2469 155 0.9161229 0.170688228 fv Log-Normal Cox, Gamma TRUE #> 2485 156 0.5364627 0.104848903 fv Log-Normal Cox, Gamma FALSE #> 2501 157 0.5613152 0.109806565 fv Log-Normal Cox, Gamma FALSE #> 2517 158 0.6129741 NA fv Log-Normal Cox, Gamma NA #> 2533 159 0.6589814 0.126591843 fv Log-Normal Cox, Gamma FALSE #> 2549 160 0.6071451 0.116592113 fv Log-Normal Cox, Gamma FALSE #> 2565 161 0.8464096 0.158851699 fv Log-Normal Cox, Gamma FALSE #> 2581 162 0.8600343 0.160292687 fv Log-Normal Cox, Gamma FALSE #> 2597 163 0.5244066 0.102558542 fv Log-Normal Cox, Gamma FALSE #> 2613 164 0.6350957 0.122832752 fv Log-Normal Cox, Gamma FALSE #> 2629 165 0.4845964 0.095537265 fv Log-Normal Cox, Gamma FALSE #> 2645 166 0.4272914 0.086071366 fv Log-Normal Cox, Gamma FALSE #> 2661 167 0.6479949 0.124144693 fv Log-Normal Cox, Gamma FALSE #> 2677 168 0.7462762 0.140607751 fv Log-Normal Cox, Gamma FALSE #> 2693 169 0.6323112 0.122436745 fv Log-Normal Cox, Gamma FALSE #> 2709 170 0.6601451 0.125902988 fv Log-Normal Cox, Gamma FALSE #> 2725 171 0.7032168 0.133018961 fv Log-Normal Cox, Gamma FALSE #> 2741 172 0.6390154 0.122082524 fv Log-Normal Cox, Gamma FALSE #> 2757 173 0.7009973 0.134209465 fv Log-Normal Cox, Gamma FALSE #> 2773 174 0.5290113 0.103348766 fv Log-Normal Cox, Gamma FALSE #> 2789 175 0.7105678 0.135604428 fv Log-Normal Cox, Gamma FALSE #> 2805 176 0.8662738 0.161421953 fv Log-Normal Cox, Gamma FALSE #> 2821 177 0.6637685 0.126258249 fv Log-Normal Cox, Gamma FALSE #> 2837 178 0.4790982 0.094932397 fv Log-Normal Cox, Gamma FALSE #> 2853 179 0.7824449 0.146344350 fv Log-Normal Cox, Gamma FALSE #> 2869 180 0.4960902 0.097942874 fv Log-Normal Cox, Gamma FALSE #> 2885 181 0.6319581 NA fv Log-Normal Cox, Gamma NA #> 2901 182 1.0215608 0.186181702 fv Log-Normal Cox, Gamma TRUE #> 2917 183 0.6556942 0.127650618 fv Log-Normal Cox, Gamma FALSE #> 2933 184 0.8197292 0.152798041 fv Log-Normal Cox, Gamma FALSE #> 2949 185 0.7209598 0.136991783 fv Log-Normal Cox, Gamma FALSE #> 2965 186 0.6961555 0.132783636 fv Log-Normal Cox, Gamma FALSE #> 2981 187 0.6427010 0.124017514 fv Log-Normal Cox, Gamma FALSE #> 2997 188 0.8413523 0.159781367 fv Log-Normal Cox, Gamma FALSE #> 3013 189 0.6291343 0.120949937 fv Log-Normal Cox, Gamma FALSE #> 3029 190 0.6312602 0.120553681 fv Log-Normal Cox, Gamma FALSE #> 3045 191 0.6229767 0.120163049 fv Log-Normal Cox, Gamma FALSE #> 3061 192 0.6625294 0.128824188 fv Log-Normal Cox, Gamma FALSE #> 3077 193 0.6095303 0.117152349 fv Log-Normal Cox, Gamma FALSE #> 3093 194 0.8906886 0.165363633 fv Log-Normal Cox, Gamma FALSE #> 3109 195 0.5763599 0.113600171 fv Log-Normal Cox, Gamma FALSE #> 3125 196 0.5388661 0.105243328 fv Log-Normal Cox, Gamma FALSE #> 3141 197 0.6062427 0.117145578 fv Log-Normal Cox, Gamma FALSE #> 3157 198 0.6999424 0.133524072 fv Log-Normal Cox, Gamma FALSE #> 3173 199 0.4751412 0.094093909 fv Log-Normal Cox, Gamma FALSE #> 3189 200 0.5362176 0.105172510 fv Log-Normal Cox, Gamma FALSE #> 3205 201 0.7915355 0.148896926 fv Log-Normal Cox, Gamma FALSE #> 3221 202 0.6256725 0.120094411 fv Log-Normal Cox, Gamma FALSE #> 3237 203 0.5558678 0.108296694 fv Log-Normal Cox, Gamma FALSE #> 3253 204 0.5876585 0.113892273 fv Log-Normal Cox, Gamma FALSE #> 3269 205 0.5468949 0.106525018 fv Log-Normal Cox, Gamma FALSE #> 3285 206 0.6698007 0.128281193 fv Log-Normal Cox, Gamma FALSE #> 3301 207 0.8537181 0.163478068 fv Log-Normal Cox, Gamma FALSE #> 3317 208 0.8151591 0.151573969 fv Log-Normal Cox, Gamma FALSE #> 3333 209 0.5738887 0.112038746 fv Log-Normal Cox, Gamma FALSE #> 3349 210 0.5948765 0.115005913 fv Log-Normal Cox, Gamma FALSE #> 3365 211 0.7051577 0.134016025 fv Log-Normal Cox, Gamma FALSE #> 3381 212 0.6688139 0.127473682 fv Log-Normal Cox, Gamma FALSE #> 3397 213 0.5682107 0.111343598 fv Log-Normal Cox, Gamma FALSE #> 3413 214 0.5596977 0.108622186 fv Log-Normal Cox, Gamma FALSE #> 3429 215 0.6736498 0.131769952 fv Log-Normal Cox, Gamma FALSE #> 3445 216 0.8402526 0.156811031 fv Log-Normal Cox, Gamma FALSE #> 3461 217 0.6569014 0.126067931 fv Log-Normal Cox, Gamma FALSE #> 3477 218 0.6265203 NA fv Log-Normal Cox, Gamma NA #> 3493 219 0.8265282 0.156692936 fv Log-Normal Cox, Gamma FALSE #> 3509 220 0.7025852 0.132963964 fv Log-Normal Cox, Gamma FALSE #> 3525 221 0.5591480 0.109170032 fv Log-Normal Cox, Gamma FALSE #> 3541 222 0.3308424 0.068028520 fv Log-Normal Cox, Gamma TRUE #> 3557 223 0.4912096 0.096931558 fv Log-Normal Cox, Gamma FALSE #> 3573 224 0.4900371 0.096260044 fv Log-Normal Cox, Gamma FALSE #> 3589 225 0.7671184 0.144972525 fv Log-Normal Cox, Gamma FALSE #> 3605 226 0.8535113 0.158140918 fv Log-Normal Cox, Gamma FALSE #> 3621 227 0.6378454 0.121921746 fv Log-Normal Cox, Gamma FALSE #> 3637 228 0.7197385 0.135876027 fv Log-Normal Cox, Gamma FALSE #> 3653 229 0.3791053 0.077674263 fv Log-Normal Cox, Gamma TRUE #> 3669 230 0.5811553 0.113632012 fv Log-Normal Cox, Gamma FALSE #> 3685 231 0.5860880 0.113549906 fv Log-Normal Cox, Gamma FALSE #> 3701 232 0.8037955 0.151262566 fv Log-Normal Cox, Gamma FALSE #> 3717 233 0.8533986 0.160021433 fv Log-Normal Cox, Gamma FALSE #> 3733 234 0.8484815 0.159241562 fv Log-Normal Cox, Gamma FALSE #> 3749 235 0.4897224 0.096400413 fv Log-Normal Cox, Gamma FALSE #> 3765 236 0.5762535 0.112239275 fv Log-Normal Cox, Gamma FALSE #> 3781 237 0.5269204 0.103993561 fv Log-Normal Cox, Gamma FALSE #> 3797 238 0.7820117 0.148029154 fv Log-Normal Cox, Gamma FALSE #> 3813 239 0.8192601 0.155041621 fv Log-Normal Cox, Gamma FALSE #> 3829 240 0.5402785 0.105436912 fv Log-Normal Cox, Gamma FALSE #> 3845 241 0.6507911 0.125139921 fv Log-Normal Cox, Gamma FALSE #> 3861 242 0.4837204 0.095399989 fv Log-Normal Cox, Gamma FALSE #> 3877 243 0.6195218 0.119990163 fv Log-Normal Cox, Gamma FALSE #> 3893 244 0.5100376 0.100590658 fv Log-Normal Cox, Gamma FALSE #> 3909 245 0.4265852 0.085555768 fv Log-Normal Cox, Gamma FALSE #> 3925 246 0.7625282 0.147743867 fv Log-Normal Cox, Gamma FALSE #> 3941 247 0.6393146 0.124452824 fv Log-Normal Cox, Gamma FALSE #> 3957 248 0.8878569 0.164863233 fv Log-Normal Cox, Gamma FALSE #> 3973 249 0.5104467 0.100139240 fv Log-Normal Cox, Gamma FALSE #> 3989 250 0.7090348 0.135416883 fv Log-Normal Cox, Gamma FALSE #> 4005 251 0.5665994 0.110662478 fv Log-Normal Cox, Gamma FALSE #> 4021 252 0.4789176 0.096840906 fv Log-Normal Cox, Gamma FALSE #> 4037 253 0.7726023 0.145748257 fv Log-Normal Cox, Gamma FALSE #> 4053 254 0.6799045 0.131222201 fv Log-Normal Cox, Gamma FALSE #> 4069 255 0.8679381 0.163075058 fv Log-Normal Cox, Gamma FALSE #> 4085 256 0.7877915 0.149581667 fv Log-Normal Cox, Gamma FALSE #> 4101 257 0.7172398 0.135506691 fv Log-Normal Cox, Gamma FALSE #> 4117 258 0.4064345 0.082947195 fv Log-Normal Cox, Gamma FALSE #> 4133 259 0.5807491 0.112471382 fv Log-Normal Cox, Gamma FALSE #> 4149 260 0.5464734 0.106275466 fv Log-Normal Cox, Gamma FALSE #> 4165 261 0.7065837 0.133504731 fv Log-Normal Cox, Gamma FALSE #> 4181 262 0.5931230 0.114792244 fv Log-Normal Cox, Gamma FALSE #> 4197 263 0.7014259 0.133353663 fv Log-Normal Cox, Gamma FALSE #> 4213 264 0.7179491 0.137495764 fv Log-Normal Cox, Gamma FALSE #> 4229 265 0.5649677 0.109814735 fv Log-Normal Cox, Gamma FALSE #> 4245 266 0.5471308 0.106789710 fv Log-Normal Cox, Gamma FALSE #> 4261 267 0.5878749 0.115444716 fv Log-Normal Cox, Gamma FALSE #> 4277 268 0.8704538 0.161935150 fv Log-Normal Cox, Gamma FALSE #> 4293 269 0.5588668 0.109315818 fv Log-Normal Cox, Gamma FALSE #> 4309 270 0.5682294 0.110657678 fv Log-Normal Cox, Gamma FALSE #> 4325 271 0.7742804 0.148840997 fv Log-Normal Cox, Gamma FALSE #> 4341 272 0.5158531 0.101581050 fv Log-Normal Cox, Gamma FALSE #> 4357 273 0.6160109 NA fv Log-Normal Cox, Gamma NA #> 4373 274 0.7917479 0.153086307 fv Log-Normal Cox, Gamma FALSE #> 4389 275 0.6364515 0.126896193 fv Log-Normal Cox, Gamma FALSE #> 4405 276 0.6699600 0.127579619 fv Log-Normal Cox, Gamma FALSE #> 4421 277 0.6950828 0.007187089 fv Log-Normal Cox, Gamma TRUE #> 4437 278 0.5145957 0.101023595 fv Log-Normal Cox, Gamma FALSE #> 4453 279 0.8117977 0.153216708 fv Log-Normal Cox, Gamma FALSE #> 4469 280 0.6997337 0.133181330 fv Log-Normal Cox, Gamma FALSE #> 4485 281 0.6982049 0.133445042 fv Log-Normal Cox, Gamma FALSE #> 4501 282 0.5416213 0.105440717 fv Log-Normal Cox, Gamma FALSE #> 4517 283 0.6857669 0.130142790 fv Log-Normal Cox, Gamma FALSE #> 4533 284 0.5399607 0.105818606 fv Log-Normal Cox, Gamma FALSE #> 4549 285 0.5893622 0.113916611 fv Log-Normal Cox, Gamma FALSE #> 4565 286 0.6293867 0.121852607 fv Log-Normal Cox, Gamma FALSE #> 4581 287 0.5320429 0.104084556 fv Log-Normal Cox, Gamma FALSE #> 4597 288 0.5385214 NA fv Log-Normal Cox, Gamma NA #> 4613 289 0.6079604 0.117589769 fv Log-Normal Cox, Gamma FALSE #> 4629 290 0.6198681 0.119709759 fv Log-Normal Cox, Gamma FALSE #> 4645 291 0.6348176 0.121448764 fv Log-Normal Cox, Gamma FALSE #> 4661 292 0.5566394 0.109253711 fv Log-Normal Cox, Gamma FALSE #> 4677 293 0.5642341 0.108813689 fv Log-Normal Cox, Gamma FALSE #> 4693 294 0.6430886 0.123339440 fv Log-Normal Cox, Gamma FALSE #> 4709 295 0.5805056 0.113140088 fv Log-Normal Cox, Gamma FALSE #> 4725 296 0.7567236 0.143584763 fv Log-Normal Cox, Gamma FALSE #> 4741 297 0.3855174 0.078215125 fv Log-Normal Cox, Gamma FALSE #> 4757 298 0.5794998 0.112104842 fv Log-Normal Cox, Gamma FALSE #> 4773 299 0.7028882 0.133589533 fv Log-Normal Cox, Gamma FALSE #> 4789 300 0.5797419 0.112542288 fv Log-Normal Cox, Gamma FALSE #> 4805 301 0.9211398 0.170258250 fv Log-Normal Cox, Gamma TRUE #> 4821 302 0.7451349 0.144010919 fv Log-Normal Cox, Gamma FALSE #> 4837 303 0.5897070 0.114105453 fv Log-Normal Cox, Gamma FALSE #> 4853 304 0.5902198 0.114066882 fv Log-Normal Cox, Gamma FALSE #> 4869 305 0.6998113 0.132962809 fv Log-Normal Cox, Gamma FALSE #> 4885 306 0.5558410 0.108825873 fv Log-Normal Cox, Gamma FALSE #> 4901 307 0.5096845 0.099400324 fv Log-Normal Cox, Gamma FALSE #> 4917 308 0.6120856 0.118043549 fv Log-Normal Cox, Gamma FALSE #> 4933 309 0.5238446 0.102522839 fv Log-Normal Cox, Gamma FALSE #> 4949 310 0.5755179 0.112344745 fv Log-Normal Cox, Gamma FALSE #> 4965 311 0.7940267 0.148985319 fv Log-Normal Cox, Gamma FALSE #> 4981 312 0.5853714 0.006099306 fv Log-Normal Cox, Gamma TRUE #> 4997 313 0.4366253 0.087746151 fv Log-Normal Cox, Gamma FALSE #> 5013 314 0.6141543 0.119168693 fv Log-Normal Cox, Gamma FALSE #> 5029 315 0.5634745 0.109117311 fv Log-Normal Cox, Gamma FALSE #> 5045 316 0.5563368 0.109703245 fv Log-Normal Cox, Gamma FALSE #> 5061 317 0.7188303 0.135419985 fv Log-Normal Cox, Gamma FALSE #> 5077 318 0.5950034 0.119644402 fv Log-Normal Cox, Gamma FALSE #> 5093 319 0.6531083 0.125747127 fv Log-Normal Cox, Gamma FALSE #> 5109 320 0.7196713 0.136030114 fv Log-Normal Cox, Gamma FALSE #> 5125 321 0.8308015 0.156780085 fv Log-Normal Cox, Gamma FALSE #> 5141 322 0.4956023 0.097888214 fv Log-Normal Cox, Gamma FALSE #> 5157 323 0.6546792 0.124835750 fv Log-Normal Cox, Gamma FALSE #> 5173 324 0.4840185 0.095889192 fv Log-Normal Cox, Gamma FALSE #> 5189 325 0.5702055 0.111852128 fv Log-Normal Cox, Gamma FALSE #> 5205 326 0.7875548 0.148425894 fv Log-Normal Cox, Gamma FALSE #> 5221 327 0.4456639 0.088551255 fv Log-Normal Cox, Gamma FALSE #> 5237 328 0.6199910 0.118511296 fv Log-Normal Cox, Gamma FALSE #> 5253 329 0.6070999 0.118226137 fv Log-Normal Cox, Gamma FALSE #> 5269 330 0.4693525 0.092970101 fv Log-Normal Cox, Gamma FALSE #> 5285 331 0.7782761 0.145952440 fv Log-Normal Cox, Gamma FALSE #> 5301 332 0.6147740 0.118149084 fv Log-Normal Cox, Gamma FALSE #> 5317 333 0.4880236 0.097261035 fv Log-Normal Cox, Gamma FALSE #> 5333 334 0.4884141 0.096379233 fv Log-Normal Cox, Gamma FALSE #> 5349 335 0.5032586 0.099171283 fv Log-Normal Cox, Gamma FALSE #> 5365 336 0.7805535 0.148128686 fv Log-Normal Cox, Gamma FALSE #> 5381 337 0.6032561 0.116743833 fv Log-Normal Cox, Gamma FALSE #> 5397 338 0.6551628 0.125118867 fv Log-Normal Cox, Gamma FALSE #> 5413 339 0.5169801 0.101821996 fv Log-Normal Cox, Gamma FALSE #> 5429 340 0.8196064 0.154398664 fv Log-Normal Cox, Gamma FALSE #> 5445 341 0.5937845 0.117321745 fv Log-Normal Cox, Gamma FALSE #> 5461 342 0.5195210 0.101714573 fv Log-Normal Cox, Gamma FALSE #> 5477 343 0.5449285 0.106821634 fv Log-Normal Cox, Gamma FALSE #> 5493 344 0.6178628 0.119729312 fv Log-Normal Cox, Gamma FALSE #> 5509 345 0.5748172 0.111195189 fv Log-Normal Cox, Gamma FALSE #> 5525 346 0.4467481 0.089775532 fv Log-Normal Cox, Gamma FALSE #> 5541 347 0.5922002 0.115336519 fv Log-Normal Cox, Gamma FALSE #> 5557 348 0.5431553 0.107023045 fv Log-Normal Cox, Gamma FALSE #> 5573 349 0.5963678 0.115282859 fv Log-Normal Cox, Gamma FALSE #> 5589 350 0.7126978 0.135785768 fv Log-Normal Cox, Gamma FALSE #> 5605 351 0.5000000 0.098314792 fv Log-Normal Cox, Gamma FALSE #> 5621 352 0.7598097 0.144565206 fv Log-Normal Cox, Gamma FALSE #> 5637 353 0.6849065 0.131859665 fv Log-Normal Cox, Gamma FALSE #> 5653 354 0.5847636 0.113209083 fv Log-Normal Cox, Gamma FALSE #> 5669 355 0.6647230 0.126982092 fv Log-Normal Cox, Gamma FALSE #> 5685 356 0.6167743 NA fv Log-Normal Cox, Gamma NA #> 5701 357 0.9010051 0.172186528 fv Log-Normal Cox, Gamma FALSE #> 5717 358 0.6069449 0.117219188 fv Log-Normal Cox, Gamma FALSE #> 5733 359 0.4821542 0.096106206 fv Log-Normal Cox, Gamma FALSE #> 5749 360 0.5664989 0.109859357 fv Log-Normal Cox, Gamma FALSE #> 5765 361 0.5678027 0.110631454 fv Log-Normal Cox, Gamma FALSE #> 5781 362 0.6276318 NA fv Log-Normal Cox, Gamma NA #> 5797 363 0.5816629 0.114016656 fv Log-Normal Cox, Gamma FALSE #> 5813 364 0.6859902 0.129879220 fv Log-Normal Cox, Gamma FALSE #> 5829 365 0.6491866 0.124319049 fv Log-Normal Cox, Gamma FALSE #> 5845 366 0.5865690 0.113684228 fv Log-Normal Cox, Gamma FALSE #> 5861 367 0.7319157 0.139897352 fv Log-Normal Cox, Gamma FALSE #> 5877 368 0.8046332 0.150989946 fv Log-Normal Cox, Gamma FALSE #> 5893 369 0.5082926 0.099866024 fv Log-Normal Cox, Gamma FALSE #> 5909 370 0.6604881 0.126498901 fv Log-Normal Cox, Gamma FALSE #> 5925 371 0.6356362 0.124258194 fv Log-Normal Cox, Gamma FALSE #> 5941 372 0.4589990 0.091576188 fv Log-Normal Cox, Gamma FALSE #> 5957 373 0.8629317 0.160738289 fv Log-Normal Cox, Gamma FALSE #> 5973 374 0.5057169 0.100061515 fv Log-Normal Cox, Gamma FALSE #> 5989 375 0.6330062 0.123040876 fv Log-Normal Cox, Gamma FALSE #> 6005 376 0.6046560 0.116978108 fv Log-Normal Cox, Gamma FALSE #> 6021 377 0.4747655 0.005013608 fv Log-Normal Cox, Gamma TRUE #> 6037 378 0.5334781 0.005584094 fv Log-Normal Cox, Gamma TRUE #> 6053 379 0.4830196 0.095784689 fv Log-Normal Cox, Gamma FALSE #> 6069 380 0.5694002 0.110358969 fv Log-Normal Cox, Gamma FALSE #> 6085 381 0.6863816 0.130635692 fv Log-Normal Cox, Gamma FALSE #> 6101 382 0.6287443 0.121561327 fv Log-Normal Cox, Gamma FALSE #> 6117 383 0.6705983 0.128564833 fv Log-Normal Cox, Gamma FALSE #> 6133 384 0.5832236 NA fv Log-Normal Cox, Gamma NA #> 6149 385 0.5054799 0.100036351 fv Log-Normal Cox, Gamma FALSE #> 6165 386 0.7721235 0.146738604 fv Log-Normal Cox, Gamma FALSE #> 6181 387 0.5792390 0.113921561 fv Log-Normal Cox, Gamma FALSE #> 6197 388 0.6998366 0.131999951 fv Log-Normal Cox, Gamma FALSE #> 6213 389 0.6587321 0.125619377 fv Log-Normal Cox, Gamma FALSE #> 6229 390 0.5746738 0.111840939 fv Log-Normal Cox, Gamma FALSE #> 6245 391 0.7150477 0.135480569 fv Log-Normal Cox, Gamma FALSE #> 6261 392 0.5580029 0.109198136 fv Log-Normal Cox, Gamma FALSE #> 6277 393 0.5189269 0.101936787 fv Log-Normal Cox, Gamma FALSE #> 6293 394 0.8337900 0.157631224 fv Log-Normal Cox, Gamma FALSE #> 6309 395 0.6557804 0.125496415 fv Log-Normal Cox, Gamma FALSE #> 6325 396 0.8542463 0.159311110 fv Log-Normal Cox, Gamma FALSE #> 6341 397 0.5753214 0.111380720 fv Log-Normal Cox, Gamma FALSE #> 6357 398 0.5763301 NA fv Log-Normal Cox, Gamma NA #> 6373 399 0.7343354 0.139561737 fv Log-Normal Cox, Gamma FALSE #> 6389 400 0.4829329 0.095986778 fv Log-Normal Cox, Gamma FALSE #> 6405 401 0.5236326 0.102648828 fv Log-Normal Cox, Gamma FALSE #> 6421 402 0.4724927 0.094782726 fv Log-Normal Cox, Gamma FALSE #> 6437 403 0.4746930 0.093432378 fv Log-Normal Cox, Gamma FALSE #> 6453 404 0.5498989 0.108729092 fv Log-Normal Cox, Gamma FALSE #> 6469 405 0.4680169 0.093560491 fv Log-Normal Cox, Gamma FALSE #> 6485 406 0.5976504 0.115198092 fv Log-Normal Cox, Gamma FALSE #> 6501 407 0.7073151 0.135807607 fv Log-Normal Cox, Gamma FALSE #> 6517 408 0.4534840 0.092196184 fv Log-Normal Cox, Gamma FALSE #> 6533 409 0.5996849 0.115802131 fv Log-Normal Cox, Gamma FALSE #> 6549 410 0.7350483 0.141098444 fv Log-Normal Cox, Gamma FALSE #> 6565 411 0.5844294 0.114213027 fv Log-Normal Cox, Gamma FALSE #> 6581 412 0.6355002 0.123732471 fv Log-Normal Cox, Gamma FALSE #> 6597 413 0.4795980 0.095797688 fv Log-Normal Cox, Gamma FALSE #> 6613 414 0.8214290 0.154482941 fv Log-Normal Cox, Gamma FALSE #> 6629 415 1.0474272 0.190204210 fv Log-Normal Cox, Gamma TRUE #> 6645 416 0.5058717 0.100738059 fv Log-Normal Cox, Gamma FALSE #> 6661 417 0.5077597 0.099999290 fv Log-Normal Cox, Gamma FALSE #> 6677 418 0.7561877 0.141887306 fv Log-Normal Cox, Gamma FALSE #> 6693 419 0.4072063 0.081901396 fv Log-Normal Cox, Gamma FALSE #> 6709 420 0.6455902 0.124271550 fv Log-Normal Cox, Gamma FALSE #> 6725 421 0.7228223 0.137917495 fv Log-Normal Cox, Gamma FALSE #> 6741 422 0.5497526 0.108664623 fv Log-Normal Cox, Gamma FALSE #> 6757 423 0.5299681 0.103771903 fv Log-Normal Cox, Gamma FALSE #> 6773 424 0.5967779 0.115501171 fv Log-Normal Cox, Gamma FALSE #> 6789 425 0.7086593 0.136018726 fv Log-Normal Cox, Gamma FALSE #> 6805 426 0.7463880 0.141871924 fv Log-Normal Cox, Gamma FALSE #> 6821 427 0.9312417 0.173523729 fv Log-Normal Cox, Gamma TRUE #> 6837 428 0.7297720 0.139335836 fv Log-Normal Cox, Gamma FALSE #> 6853 429 0.6423904 0.123215428 fv Log-Normal Cox, Gamma FALSE #> 6869 430 0.7904786 0.149398357 fv Log-Normal Cox, Gamma FALSE #> 6885 431 0.5748521 0.111859450 fv Log-Normal Cox, Gamma FALSE #> 6901 432 0.7837588 0.147930476 fv Log-Normal Cox, Gamma FALSE #> 6917 433 0.5077611 0.099539593 fv Log-Normal Cox, Gamma FALSE #> 6933 434 0.5698565 0.111750053 fv Log-Normal Cox, Gamma FALSE #> 6949 435 0.4345445 0.087168355 fv Log-Normal Cox, Gamma FALSE #> 6965 436 0.6488462 0.124059132 fv Log-Normal Cox, Gamma FALSE #> 6981 437 0.4985519 0.098328201 fv Log-Normal Cox, Gamma FALSE #> 6997 438 0.7555537 0.142820397 fv Log-Normal Cox, Gamma FALSE #> 7013 439 0.5195431 0.102728067 fv Log-Normal Cox, Gamma FALSE #> 7029 440 0.4001901 0.081978639 fv Log-Normal Cox, Gamma FALSE #> 7045 441 0.5221735 0.103055594 fv Log-Normal Cox, Gamma FALSE #> 7061 442 0.6261760 0.120790762 fv Log-Normal Cox, Gamma FALSE #> 7077 443 0.7115103 0.135894182 fv Log-Normal Cox, Gamma FALSE #> 7093 444 0.8105371 0.154148350 fv Log-Normal Cox, Gamma FALSE #> 7109 445 0.7507591 0.141487559 fv Log-Normal Cox, Gamma FALSE #> 7125 446 0.5493869 0.107028499 fv Log-Normal Cox, Gamma FALSE #> 7141 447 0.7140244 0.135131039 fv Log-Normal Cox, Gamma FALSE #> 7157 448 0.7267933 0.007501018 fv Log-Normal Cox, Gamma TRUE #> 7173 449 0.8146904 0.153718357 fv Log-Normal Cox, Gamma FALSE #> 7189 450 0.5712926 0.005956948 fv Log-Normal Cox, Gamma TRUE #> 7205 451 0.6845371 0.007089436 fv Log-Normal Cox, Gamma TRUE #> 7221 452 0.6853901 0.130472792 fv Log-Normal Cox, Gamma FALSE #> 7237 453 0.6417479 0.123250237 fv Log-Normal Cox, Gamma FALSE #> 7253 454 0.5911276 0.114601422 fv Log-Normal Cox, Gamma FALSE #> 7269 455 0.5984098 0.116590552 fv Log-Normal Cox, Gamma FALSE #> 7285 456 0.4505173 0.090165786 fv Log-Normal Cox, Gamma FALSE #> 7301 457 0.7620831 0.143403670 fv Log-Normal Cox, Gamma FALSE #> 7317 458 0.6686242 0.128940301 fv Log-Normal Cox, Gamma FALSE #> 7333 459 0.7889405 0.148922011 fv Log-Normal Cox, Gamma FALSE #> 7349 460 0.5358846 0.103974358 fv Log-Normal Cox, Gamma FALSE #> 7365 461 0.6733711 0.128134140 fv Log-Normal Cox, Gamma FALSE #> 7381 462 0.5991040 0.115019026 fv Log-Normal Cox, Gamma FALSE #> 7397 463 0.8014668 0.152431379 fv Log-Normal Cox, Gamma FALSE #> 7413 464 0.6531009 0.124232793 fv Log-Normal Cox, Gamma FALSE #> 7429 465 0.7414829 0.140694298 fv Log-Normal Cox, Gamma FALSE #> 7445 466 0.7425237 0.140996639 fv Log-Normal Cox, Gamma FALSE #> 7461 467 0.6586817 0.127143401 fv Log-Normal Cox, Gamma FALSE #> 7477 468 0.7449020 0.139983687 fv Log-Normal Cox, Gamma FALSE #> 7493 469 0.7953894 0.151211847 fv Log-Normal Cox, Gamma FALSE #> 7509 470 0.6709136 0.129021836 fv Log-Normal Cox, Gamma FALSE #> 7525 471 0.5187494 0.101602830 fv Log-Normal Cox, Gamma FALSE #> 7541 472 0.7762352 0.146346463 fv Log-Normal Cox, Gamma FALSE #> 7557 473 0.6079842 0.117712573 fv Log-Normal Cox, Gamma FALSE #> 7573 474 0.8214972 0.153722361 fv Log-Normal Cox, Gamma FALSE #> 7589 475 0.5320746 0.103794209 fv Log-Normal Cox, Gamma FALSE #> 7605 476 0.4423624 0.088897145 fv Log-Normal Cox, Gamma FALSE #> 7621 477 0.4959494 0.099039376 fv Log-Normal Cox, Gamma FALSE #> 7637 478 0.6609360 0.125421024 fv Log-Normal Cox, Gamma FALSE #> 7653 479 0.6794332 0.129846506 fv Log-Normal Cox, Gamma FALSE #> 7669 480 0.9217237 0.171612582 fv Log-Normal Cox, Gamma TRUE #> 7685 481 0.8691868 0.161785535 fv Log-Normal Cox, Gamma FALSE #> 7701 482 0.6070555 0.116947739 fv Log-Normal Cox, Gamma FALSE #> 7717 483 0.7383561 0.139682652 fv Log-Normal Cox, Gamma FALSE #> 7733 484 0.7324532 0.138770244 fv Log-Normal Cox, Gamma FALSE #> 7749 485 0.5259924 0.102916295 fv Log-Normal Cox, Gamma FALSE #> 7765 486 0.3905568 0.078816713 fv Log-Normal Cox, Gamma FALSE #> 7781 487 0.7444582 0.140331842 fv Log-Normal Cox, Gamma FALSE #> 7797 488 0.3979924 0.080542514 fv Log-Normal Cox, Gamma FALSE #> 7813 489 0.6556261 0.126188084 fv Log-Normal Cox, Gamma FALSE #> 7829 490 0.6030237 NA fv Log-Normal Cox, Gamma NA #> 7845 491 0.6246608 0.120905487 fv Log-Normal Cox, Gamma FALSE #> 7861 492 0.4825731 0.094903496 fv Log-Normal Cox, Gamma FALSE #> 7877 493 0.9584215 0.177094162 fv Log-Normal Cox, Gamma TRUE #> 7893 494 0.6014177 NA fv Log-Normal Cox, Gamma NA #> 7909 495 0.7160493 0.135345935 fv Log-Normal Cox, Gamma FALSE #> 7925 496 0.8782739 0.009032245 fv Log-Normal Cox, Gamma TRUE #> 7941 497 0.5213246 0.102227484 fv Log-Normal Cox, Gamma FALSE #> 7957 498 0.6085879 NA fv Log-Normal Cox, Gamma NA #> 7973 499 0.7577549 0.144119208 fv Log-Normal Cox, Gamma FALSE #> 7989 500 0.6578232 NA fv Log-Normal Cox, Gamma NA #> 8005 501 1.1931654 0.214830369 fv Log-Normal Cox, Gamma TRUE #> 8021 502 0.7043797 0.134622077 fv Log-Normal Cox, Gamma FALSE #> 8037 503 0.6449373 0.123467432 fv Log-Normal Cox, Gamma FALSE #> 8053 504 0.7763836 0.146112050 fv Log-Normal Cox, Gamma FALSE #> 8069 505 0.6039837 0.115828958 fv Log-Normal Cox, Gamma FALSE #> 8085 506 0.8130845 0.152643800 fv Log-Normal Cox, Gamma FALSE #> 8101 507 0.5864967 0.112727930 fv Log-Normal Cox, Gamma FALSE #> 8117 508 0.5052933 0.100823068 fv Log-Normal Cox, Gamma FALSE #> 8133 509 0.5737083 0.111195098 fv Log-Normal Cox, Gamma FALSE #> 8149 510 0.5598720 0.108532643 fv Log-Normal Cox, Gamma FALSE #> 8165 511 0.4042964 0.081176179 fv Log-Normal Cox, Gamma FALSE #> 8181 512 0.5921053 0.114606976 fv Log-Normal Cox, Gamma FALSE #> 8197 513 0.6463252 0.123735617 fv Log-Normal Cox, Gamma FALSE #> 8213 514 0.6396754 0.123749665 fv Log-Normal Cox, Gamma FALSE #> 8229 515 0.5031870 0.099629425 fv Log-Normal Cox, Gamma FALSE #> 8245 516 0.6478424 0.124667693 fv Log-Normal Cox, Gamma FALSE #> 8261 517 0.3317136 0.068474900 fv Log-Normal Cox, Gamma TRUE #> 8277 518 0.6553708 0.125632038 fv Log-Normal Cox, Gamma FALSE #> 8293 519 0.6725635 0.128430012 fv Log-Normal Cox, Gamma FALSE #> 8309 520 0.6841932 0.129888821 fv Log-Normal Cox, Gamma FALSE #> 8325 521 0.6377897 NA fv Log-Normal Cox, Gamma NA #> 8341 522 0.4878991 0.096317522 fv Log-Normal Cox, Gamma FALSE #> 8357 523 0.6491452 0.123990211 fv Log-Normal Cox, Gamma FALSE #> 8373 524 0.5224167 0.104004647 fv Log-Normal Cox, Gamma FALSE #> 8389 525 0.6777538 0.130516488 fv Log-Normal Cox, Gamma FALSE #> 8405 526 0.5584814 0.109562292 fv Log-Normal Cox, Gamma FALSE #> 8421 527 0.6843104 0.132090449 fv Log-Normal Cox, Gamma FALSE #> 8437 528 0.7413526 0.140137362 fv Log-Normal Cox, Gamma FALSE #> 8453 529 0.7941552 0.148738686 fv Log-Normal Cox, Gamma FALSE #> 8469 530 0.3946714 0.079959532 fv Log-Normal Cox, Gamma FALSE #> 8485 531 0.7861082 0.147135826 fv Log-Normal Cox, Gamma FALSE #> 8501 532 0.6150512 NA fv Log-Normal Cox, Gamma NA #> 8517 533 0.6126927 0.118046878 fv Log-Normal Cox, Gamma FALSE #> 8533 534 0.6733886 0.129512171 fv Log-Normal Cox, Gamma FALSE #> 8549 535 0.7332816 0.138322504 fv Log-Normal Cox, Gamma FALSE #> 8565 536 0.5205081 0.102413941 fv Log-Normal Cox, Gamma FALSE #> 8581 537 1.0384914 0.188738973 fv Log-Normal Cox, Gamma TRUE #> 8597 538 0.4543334 0.090536911 fv Log-Normal Cox, Gamma FALSE #> 8613 539 0.6715901 NA fv Log-Normal Cox, Gamma NA #> 8629 540 0.5523389 0.107900473 fv Log-Normal Cox, Gamma FALSE #> 8645 541 0.8043327 0.150755997 fv Log-Normal Cox, Gamma FALSE #> 8661 542 0.6934063 0.132246580 fv Log-Normal Cox, Gamma FALSE #> 8677 543 0.7469130 0.142208358 fv Log-Normal Cox, Gamma FALSE #> 8693 544 0.6771137 0.129576795 fv Log-Normal Cox, Gamma FALSE #> 8709 545 0.5138754 0.100742098 fv Log-Normal Cox, Gamma FALSE #> 8725 546 0.8303685 0.156135534 fv Log-Normal Cox, Gamma FALSE #> 8741 547 0.6111091 0.118380971 fv Log-Normal Cox, Gamma FALSE #> 8757 548 0.5141719 0.102038969 fv Log-Normal Cox, Gamma FALSE #> 8773 549 0.7349328 0.138690104 fv Log-Normal Cox, Gamma FALSE #> 8789 550 0.5083307 0.101829261 fv Log-Normal Cox, Gamma FALSE #> 8805 551 0.6683084 0.127523621 fv Log-Normal Cox, Gamma FALSE #> 8821 552 0.6281157 NA fv Log-Normal Cox, Gamma NA #> 8837 553 0.7055114 0.132958925 fv Log-Normal Cox, Gamma FALSE #> 8853 554 0.8280844 0.156933583 fv Log-Normal Cox, Gamma FALSE #> 8869 555 0.6843468 0.130041654 fv Log-Normal Cox, Gamma FALSE #> 8885 556 0.7533713 0.142048697 fv Log-Normal Cox, Gamma FALSE #> 8901 557 0.6250902 0.120157525 fv Log-Normal Cox, Gamma FALSE #> 8917 558 0.6066749 0.117016286 fv Log-Normal Cox, Gamma FALSE #> 8933 559 0.5426162 0.106388816 fv Log-Normal Cox, Gamma FALSE #> 8949 560 0.7141690 0.135766994 fv Log-Normal Cox, Gamma FALSE #> 8965 561 1.0274772 0.187741551 fv Log-Normal Cox, Gamma TRUE #> 8981 562 0.7421217 0.140796140 fv Log-Normal Cox, Gamma FALSE #> 8997 563 0.6799533 0.129434410 fv Log-Normal Cox, Gamma FALSE #> 9013 564 0.5069500 0.099182157 fv Log-Normal Cox, Gamma FALSE #> 9029 565 0.5192371 0.102478262 fv Log-Normal Cox, Gamma FALSE #> 9045 566 0.6242465 0.120118523 fv Log-Normal Cox, Gamma FALSE #> 9061 567 0.5965461 0.115018660 fv Log-Normal Cox, Gamma FALSE #> 9077 568 0.4716597 0.093558081 fv Log-Normal Cox, Gamma FALSE #> 9093 569 0.7968988 0.150002405 fv Log-Normal Cox, Gamma FALSE #> 9109 570 0.4621690 0.091289543 fv Log-Normal Cox, Gamma FALSE #> 9125 571 0.5841130 0.112584938 fv Log-Normal Cox, Gamma FALSE #> 9141 572 0.5706712 0.111580535 fv Log-Normal Cox, Gamma FALSE #> 9157 573 0.5738192 0.111598149 fv Log-Normal Cox, Gamma FALSE #> 9173 574 0.6448252 0.123758649 fv Log-Normal Cox, Gamma FALSE #> 9189 575 0.5479147 0.107160503 fv Log-Normal Cox, Gamma FALSE #> 9205 576 0.5551117 0.108212537 fv Log-Normal Cox, Gamma FALSE #> 9221 577 0.9281460 0.174612909 fv Log-Normal Cox, Gamma TRUE #> 9237 578 0.5259939 0.103027487 fv Log-Normal Cox, Gamma FALSE #> 9253 579 0.5383092 0.106116519 fv Log-Normal Cox, Gamma FALSE #> 9269 580 0.4711285 0.094424105 fv Log-Normal Cox, Gamma FALSE #> 9285 581 0.6494811 0.124008306 fv Log-Normal Cox, Gamma FALSE #> 9301 582 0.6771744 0.129385168 fv Log-Normal Cox, Gamma FALSE #> 9317 583 0.8865092 0.163523339 fv Log-Normal Cox, Gamma FALSE #> 9333 584 0.5000000 0.098868076 fv Log-Normal Cox, Gamma FALSE #> 9349 585 0.6156845 0.118126235 fv Log-Normal Cox, Gamma FALSE #> 9365 586 0.6909358 0.132262861 fv Log-Normal Cox, Gamma FALSE #> 9381 587 0.8254731 0.156164504 fv Log-Normal Cox, Gamma FALSE #> 9397 588 0.4985840 0.098185971 fv Log-Normal Cox, Gamma FALSE #> 9413 589 0.5667331 0.110590810 fv Log-Normal Cox, Gamma FALSE #> 9429 590 0.6755327 0.128974744 fv Log-Normal Cox, Gamma FALSE #> 9445 591 0.7100735 0.134783444 fv Log-Normal Cox, Gamma FALSE #> 9461 592 0.6398759 0.122043702 fv Log-Normal Cox, Gamma FALSE #> 9477 593 0.8497606 0.159346921 fv Log-Normal Cox, Gamma FALSE #> 9493 594 0.5974971 0.114783658 fv Log-Normal Cox, Gamma FALSE #> 9509 595 0.4889633 0.096514942 fv Log-Normal Cox, Gamma FALSE #> 9525 596 0.7551888 0.146743300 fv Log-Normal Cox, Gamma FALSE #> 9541 597 0.5546966 0.108577585 fv Log-Normal Cox, Gamma FALSE #> 9557 598 0.8867973 0.164441792 fv Log-Normal Cox, Gamma FALSE #> 9573 599 0.7171896 0.139493732 fv Log-Normal Cox, Gamma FALSE #> 9589 600 0.4879105 0.096772910 fv Log-Normal Cox, Gamma FALSE #> 9605 601 1.0026921 NA fv Log-Normal Cox, Gamma TRUE #> 9621 602 0.9325088 0.173557163 fv Log-Normal Cox, Gamma TRUE #> 9637 603 0.3888751 0.079033438 fv Log-Normal Cox, Gamma FALSE #> 9653 604 0.6842209 0.130715889 fv Log-Normal Cox, Gamma FALSE #> 9669 605 1.2003127 0.217054265 fv Log-Normal Cox, Gamma TRUE #> 9685 606 0.6547442 NA fv Log-Normal Cox, Gamma NA #> 9701 607 0.5317105 0.105097289 fv Log-Normal Cox, Gamma FALSE #> 9717 608 0.3897320 0.078854986 fv Log-Normal Cox, Gamma FALSE #> 9733 609 0.7396654 0.139623911 fv Log-Normal Cox, Gamma FALSE #> 9749 610 0.5778586 0.112592700 fv Log-Normal Cox, Gamma FALSE #> 9765 611 0.7311360 0.139959143 fv Log-Normal Cox, Gamma FALSE #> 9781 612 0.4822317 0.094986841 fv Log-Normal Cox, Gamma FALSE #> 9797 613 0.6700561 0.127315233 fv Log-Normal Cox, Gamma FALSE #> 9813 614 0.6139652 0.117963537 fv Log-Normal Cox, Gamma FALSE #> 9829 615 0.7041258 0.133147573 fv Log-Normal Cox, Gamma FALSE #> 9845 616 0.6486597 0.123698992 fv Log-Normal Cox, Gamma FALSE #> 9861 617 0.6631049 0.126776116 fv Log-Normal Cox, Gamma FALSE #> 9877 618 0.6326642 0.122967228 fv Log-Normal Cox, Gamma FALSE #> 9893 619 0.7031687 0.133526200 fv Log-Normal Cox, Gamma FALSE #> 9909 620 0.7016931 0.134030260 fv Log-Normal Cox, Gamma FALSE #> 9925 621 0.4804179 0.094630231 fv Log-Normal Cox, Gamma FALSE #> 9941 622 0.5398830 0.105518836 fv Log-Normal Cox, Gamma FALSE #> 9957 623 0.7882768 NA fv Log-Normal Cox, Gamma NA #> 9973 624 0.5199565 0.102594438 fv Log-Normal Cox, Gamma FALSE #> 9989 625 0.6821884 0.131007762 fv Log-Normal Cox, Gamma FALSE #> 10005 626 0.5553299 0.108156062 fv Log-Normal Cox, Gamma FALSE #> 10021 627 0.5171324 0.100946474 fv Log-Normal Cox, Gamma FALSE #> 10037 628 0.6021959 0.117996583 fv Log-Normal Cox, Gamma FALSE #> 10053 629 0.5988361 0.116317156 fv Log-Normal Cox, Gamma FALSE #> 10069 630 0.7275214 0.137648611 fv Log-Normal Cox, Gamma FALSE #> 10085 631 0.6014324 0.116267022 fv Log-Normal Cox, Gamma FALSE #> 10101 632 0.6539662 0.125735227 fv Log-Normal Cox, Gamma FALSE #> 10117 633 0.4515294 0.090140744 fv Log-Normal Cox, Gamma FALSE #> 10133 634 0.5366501 0.104960671 fv Log-Normal Cox, Gamma FALSE #> 10149 635 0.7992162 0.151686284 fv Log-Normal Cox, Gamma FALSE #> 10165 636 0.3679142 0.074745635 fv Log-Normal Cox, Gamma TRUE #> 10181 637 0.8172567 0.153430015 fv Log-Normal Cox, Gamma FALSE #> 10197 638 0.6188470 0.119900789 fv Log-Normal Cox, Gamma FALSE #> 10213 639 0.4075475 0.082636108 fv Log-Normal Cox, Gamma FALSE #> 10229 640 0.6079813 0.117311944 fv Log-Normal Cox, Gamma FALSE #> 10245 641 0.5327991 0.105035147 fv Log-Normal Cox, Gamma FALSE #> 10261 642 0.5597292 0.109129262 fv Log-Normal Cox, Gamma FALSE #> 10277 643 0.6139384 0.118367241 fv Log-Normal Cox, Gamma FALSE #> 10293 644 0.5866635 NA fv Log-Normal Cox, Gamma NA #> 10309 645 0.7208784 0.137431969 fv Log-Normal Cox, Gamma FALSE #> 10325 646 0.6933400 0.131413088 fv Log-Normal Cox, Gamma FALSE #> 10341 647 0.5671578 0.109870687 fv Log-Normal Cox, Gamma FALSE #> 10357 648 0.9313582 0.172295847 fv Log-Normal Cox, Gamma TRUE #> 10373 649 0.5481963 0.107649002 fv Log-Normal Cox, Gamma FALSE #> 10389 650 0.7605507 0.143662754 fv Log-Normal Cox, Gamma FALSE #> 10405 651 0.6464110 0.123572571 fv Log-Normal Cox, Gamma FALSE #> 10421 652 1.0094659 NA fv Log-Normal Cox, Gamma TRUE #> 10437 653 0.4670246 0.092824199 fv Log-Normal Cox, Gamma FALSE #> 10453 654 0.5010104 0.099183261 fv Log-Normal Cox, Gamma FALSE #> 10469 655 0.6150549 NA fv Log-Normal Cox, Gamma NA #> 10485 656 0.5876953 0.113979268 fv Log-Normal Cox, Gamma FALSE #> 10501 657 0.4694330 0.093140718 fv Log-Normal Cox, Gamma FALSE #> 10517 658 0.9549667 0.176185188 fv Log-Normal Cox, Gamma TRUE #> 10533 659 0.9190884 0.171500306 fv Log-Normal Cox, Gamma TRUE #> 10549 660 0.6910145 0.131000152 fv Log-Normal Cox, Gamma FALSE #> 10565 661 0.4568377 0.090509242 fv Log-Normal Cox, Gamma FALSE #> 10581 662 0.5172112 0.101535270 fv Log-Normal Cox, Gamma FALSE #> 10597 663 0.5894338 0.114077847 fv Log-Normal Cox, Gamma FALSE #> 10613 664 0.6056533 0.116455334 fv Log-Normal Cox, Gamma FALSE #> 10629 665 0.7852957 0.148553995 fv Log-Normal Cox, Gamma FALSE #> 10645 666 0.9859896 0.180554439 fv Log-Normal Cox, Gamma TRUE #> 10661 667 0.5862766 0.113642712 fv Log-Normal Cox, Gamma FALSE #> 10677 668 0.5949446 0.115866220 fv Log-Normal Cox, Gamma FALSE #> 10693 669 0.7850263 0.147802853 fv Log-Normal Cox, Gamma FALSE #> 10709 670 0.5635746 NA fv Log-Normal Cox, Gamma NA #> 10725 671 0.7259235 0.138202958 fv Log-Normal Cox, Gamma FALSE #> 10741 672 0.8718181 0.163010978 fv Log-Normal Cox, Gamma FALSE #> 10757 673 0.6408388 0.123876096 fv Log-Normal Cox, Gamma FALSE #> 10773 674 0.7466389 0.142055048 fv Log-Normal Cox, Gamma FALSE #> 10789 675 0.5421365 0.106966298 fv Log-Normal Cox, Gamma FALSE #> 10805 676 0.8391278 0.157251504 fv Log-Normal Cox, Gamma FALSE #> 10821 677 0.6225082 0.120465864 fv Log-Normal Cox, Gamma FALSE #> 10837 678 0.5245500 0.103447698 fv Log-Normal Cox, Gamma FALSE #> 10853 679 0.5851618 NA fv Log-Normal Cox, Gamma NA #> 10869 680 0.6683333 0.127906739 fv Log-Normal Cox, Gamma FALSE #> 10885 681 0.8702246 0.162150474 fv Log-Normal Cox, Gamma FALSE #> 10901 682 0.5397913 0.104974509 fv Log-Normal Cox, Gamma FALSE #> 10917 683 0.7569255 0.145064290 fv Log-Normal Cox, Gamma FALSE #> 10933 684 0.9591995 0.177344786 fv Log-Normal Cox, Gamma TRUE #> 10949 685 0.5623235 0.109076488 fv Log-Normal Cox, Gamma FALSE #> 10965 686 0.8192108 0.153746623 fv Log-Normal Cox, Gamma FALSE #> 10981 687 0.5286876 0.103347965 fv Log-Normal Cox, Gamma FALSE #> 10997 688 0.5358129 0.105056766 fv Log-Normal Cox, Gamma FALSE #> 11013 689 0.5913183 0.115293694 fv Log-Normal Cox, Gamma FALSE #> 11029 690 0.7268248 0.137887225 fv Log-Normal Cox, Gamma FALSE #> 11045 691 0.7463031 0.145380092 fv Log-Normal Cox, Gamma FALSE #> 11061 692 0.5489217 0.106600253 fv Log-Normal Cox, Gamma FALSE #> 11077 693 0.4519482 0.090149874 fv Log-Normal Cox, Gamma FALSE #> 11093 694 0.6822745 0.130763160 fv Log-Normal Cox, Gamma FALSE #> 11109 695 0.5559127 0.108383281 fv Log-Normal Cox, Gamma FALSE #> 11125 696 0.6691356 0.127526992 fv Log-Normal Cox, Gamma FALSE #> 11141 697 0.8042098 0.152144346 fv Log-Normal Cox, Gamma FALSE #> 11157 698 0.4023952 0.081060891 fv Log-Normal Cox, Gamma FALSE #> 11173 699 0.6212888 0.120567498 fv Log-Normal Cox, Gamma FALSE #> 11189 700 0.4839348 0.095596275 fv Log-Normal Cox, Gamma FALSE #> 11205 701 0.7137080 0.135569766 fv Log-Normal Cox, Gamma FALSE #> 11221 702 0.7879064 0.150369164 fv Log-Normal Cox, Gamma FALSE #> 11237 703 0.6841934 0.131021982 fv Log-Normal Cox, Gamma FALSE #> 11253 704 0.5994003 0.116696139 fv Log-Normal Cox, Gamma FALSE #> 11269 705 0.5822209 0.112386316 fv Log-Normal Cox, Gamma FALSE #> 11285 706 0.6451694 0.123668202 fv Log-Normal Cox, Gamma FALSE #> 11301 707 0.7728336 0.144921118 fv Log-Normal Cox, Gamma FALSE #> 11317 708 0.7578368 0.142268276 fv Log-Normal Cox, Gamma FALSE #> 11333 709 0.7044466 0.137535324 fv Log-Normal Cox, Gamma FALSE #> 11349 710 0.4848854 0.096366538 fv Log-Normal Cox, Gamma FALSE #> 11365 711 0.6696038 0.131629200 fv Log-Normal Cox, Gamma FALSE #> 11381 712 0.6364269 NA fv Log-Normal Cox, Gamma NA #> 11397 713 0.8785677 0.164027544 fv Log-Normal Cox, Gamma FALSE #> 11413 714 0.7289698 0.139114880 fv Log-Normal Cox, Gamma FALSE #> 11429 715 0.6760923 0.128597343 fv Log-Normal Cox, Gamma FALSE #> 11445 716 0.6206559 0.118841559 fv Log-Normal Cox, Gamma FALSE #> 11461 717 0.6715545 0.128487711 fv Log-Normal Cox, Gamma FALSE #> 11477 718 0.7875216 0.148889321 fv Log-Normal Cox, Gamma FALSE #> 11493 719 0.9351608 0.174706425 fv Log-Normal Cox, Gamma TRUE #> 11509 720 0.6329848 0.120820543 fv Log-Normal Cox, Gamma FALSE #> 11525 721 0.5076976 0.099834680 fv Log-Normal Cox, Gamma FALSE #> 11541 722 0.7036759 0.133565138 fv Log-Normal Cox, Gamma FALSE #> 11557 723 0.5811768 0.113354759 fv Log-Normal Cox, Gamma FALSE #> 11573 724 0.6810073 0.131625143 fv Log-Normal Cox, Gamma FALSE #> 11589 725 0.6749253 0.128842134 fv Log-Normal Cox, Gamma FALSE #> 11605 726 0.5682980 0.110789939 fv Log-Normal Cox, Gamma FALSE #> 11621 727 0.6973867 0.132403499 fv Log-Normal Cox, Gamma FALSE #> 11637 728 0.9034403 0.167176467 fv Log-Normal Cox, Gamma FALSE #> 11653 729 0.6618256 0.126659612 fv Log-Normal Cox, Gamma FALSE #> 11669 730 0.7355975 0.139569325 fv Log-Normal Cox, Gamma FALSE #> 11685 731 0.4578597 0.091222814 fv Log-Normal Cox, Gamma FALSE #> 11701 732 0.3962879 0.079619289 fv Log-Normal Cox, Gamma FALSE #> 11717 733 0.7799217 0.146397355 fv Log-Normal Cox, Gamma FALSE #> 11733 734 0.7250782 0.136961355 fv Log-Normal Cox, Gamma FALSE #> 11749 735 0.8080674 0.150410061 fv Log-Normal Cox, Gamma FALSE #> 11765 736 0.7302051 0.138445599 fv Log-Normal Cox, Gamma FALSE #> 11781 737 0.6501185 0.124084760 fv Log-Normal Cox, Gamma FALSE #> 11797 738 0.5133997 0.101780781 fv Log-Normal Cox, Gamma FALSE #> 11813 739 0.5361525 0.104999322 fv Log-Normal Cox, Gamma FALSE #> 11829 740 0.7272712 0.138201013 fv Log-Normal Cox, Gamma FALSE #> 11845 741 0.7920042 0.148046562 fv Log-Normal Cox, Gamma FALSE #> 11861 742 0.5971878 0.115515589 fv Log-Normal Cox, Gamma FALSE #> 11877 743 0.6372487 0.122156878 fv Log-Normal Cox, Gamma FALSE #> 11893 744 0.6076604 0.117080863 fv Log-Normal Cox, Gamma FALSE #> 11909 745 0.6258474 0.120185601 fv Log-Normal Cox, Gamma FALSE #> 11925 746 0.6137741 0.122398199 fv Log-Normal Cox, Gamma FALSE #> 11941 747 0.5661390 0.109952145 fv Log-Normal Cox, Gamma FALSE #> 11957 748 0.8181814 0.154842528 fv Log-Normal Cox, Gamma FALSE #> 11973 749 0.8883396 0.166043136 fv Log-Normal Cox, Gamma FALSE #> 11989 750 0.6714251 0.128300301 fv Log-Normal Cox, Gamma FALSE #> 12005 751 0.7715463 0.145206839 fv Log-Normal Cox, Gamma FALSE #> 12021 752 0.6441060 0.126152659 fv Log-Normal Cox, Gamma FALSE #> 12037 753 0.4018435 0.081668489 fv Log-Normal Cox, Gamma FALSE #> 12053 754 0.6463386 0.123715910 fv Log-Normal Cox, Gamma FALSE #> 12069 755 0.5965575 0.115533717 fv Log-Normal Cox, Gamma FALSE #> 12085 756 0.3440358 0.070858933 fv Log-Normal Cox, Gamma TRUE #> 12101 757 0.6413942 0.123412706 fv Log-Normal Cox, Gamma FALSE #> 12117 758 0.6787276 0.129764259 fv Log-Normal Cox, Gamma FALSE #> 12133 759 0.5787070 0.112332541 fv Log-Normal Cox, Gamma FALSE #> 12149 760 0.8563906 0.161448535 fv Log-Normal Cox, Gamma FALSE #> 12165 761 0.5460240 0.107074937 fv Log-Normal Cox, Gamma FALSE #> 12181 762 0.7127921 0.136154341 fv Log-Normal Cox, Gamma FALSE #> 12197 763 0.5129074 0.101292545 fv Log-Normal Cox, Gamma FALSE #> 12213 764 0.5763837 0.111781244 fv Log-Normal Cox, Gamma FALSE #> 12229 765 0.7664589 0.143748738 fv Log-Normal Cox, Gamma FALSE #> 12245 766 0.5600605 0.108454352 fv Log-Normal Cox, Gamma FALSE #> 12261 767 0.7366908 0.139359440 fv Log-Normal Cox, Gamma FALSE #> 12277 768 0.4817040 0.094934157 fv Log-Normal Cox, Gamma FALSE #> 12293 769 0.8405919 0.157104432 fv Log-Normal Cox, Gamma FALSE #> 12309 770 0.5195843 0.102208060 fv Log-Normal Cox, Gamma FALSE #> 12325 771 0.5317918 0.106680566 fv Log-Normal Cox, Gamma FALSE #> 12341 772 0.5016173 0.098605760 fv Log-Normal Cox, Gamma FALSE #> 12357 773 0.5638723 0.111342842 fv Log-Normal Cox, Gamma FALSE #> 12373 774 0.6730202 0.129443064 fv Log-Normal Cox, Gamma FALSE #> 12389 775 0.6121184 NA fv Log-Normal Cox, Gamma NA #> 12405 776 0.5603536 0.108454516 fv Log-Normal Cox, Gamma FALSE #> 12421 777 0.5635692 0.109901110 fv Log-Normal Cox, Gamma FALSE #> 12437 778 0.5287791 0.103608108 fv Log-Normal Cox, Gamma FALSE #> 12453 779 0.5459400 0.106667094 fv Log-Normal Cox, Gamma FALSE #> 12469 780 0.5454313 0.106487875 fv Log-Normal Cox, Gamma FALSE #> 12485 781 0.6435394 0.123723033 fv Log-Normal Cox, Gamma FALSE #> 12501 782 0.5440785 0.106183644 fv Log-Normal Cox, Gamma FALSE #> 12517 783 0.5646684 0.110072451 fv Log-Normal Cox, Gamma FALSE #> 12533 784 0.7140410 0.135997697 fv Log-Normal Cox, Gamma FALSE #> 12549 785 0.4320567 0.086209585 fv Log-Normal Cox, Gamma FALSE #> 12565 786 0.5871582 0.114417704 fv Log-Normal Cox, Gamma FALSE #> 12581 787 0.8307302 0.154887306 fv Log-Normal Cox, Gamma FALSE #> 12597 788 0.6235801 NA fv Log-Normal Cox, Gamma NA #> 12613 789 0.7648412 0.144381392 fv Log-Normal Cox, Gamma FALSE #> 12629 790 0.6109958 0.117593356 fv Log-Normal Cox, Gamma FALSE #> 12645 791 0.3740806 0.075608302 fv Log-Normal Cox, Gamma TRUE #> 12661 792 0.5561341 0.110068462 fv Log-Normal Cox, Gamma FALSE #> 12677 793 0.7406961 0.139600573 fv Log-Normal Cox, Gamma FALSE #> 12693 794 0.6753768 0.133145979 fv Log-Normal Cox, Gamma FALSE #> 12709 795 0.5773739 0.112448186 fv Log-Normal Cox, Gamma FALSE #> 12725 796 0.5102600 0.100449198 fv Log-Normal Cox, Gamma FALSE #> 12741 797 0.5152045 0.100934224 fv Log-Normal Cox, Gamma FALSE #> 12757 798 0.4019849 0.081496314 fv Log-Normal Cox, Gamma FALSE #> 12773 799 0.6295888 0.120381526 fv Log-Normal Cox, Gamma FALSE #> 12789 800 0.6506860 0.125151707 fv Log-Normal Cox, Gamma FALSE #> 12805 801 0.9235044 0.172121125 fv Log-Normal Cox, Gamma TRUE #> 12821 802 0.6243786 0.119285799 fv Log-Normal Cox, Gamma FALSE #> 12837 803 0.6127131 0.118494093 fv Log-Normal Cox, Gamma FALSE #> 12853 804 0.6683181 0.127845508 fv Log-Normal Cox, Gamma FALSE #> 12869 805 0.8655709 0.164958554 fv Log-Normal Cox, Gamma FALSE #> 12885 806 0.8307338 0.158511657 fv Log-Normal Cox, Gamma FALSE #> 12901 807 0.6847624 0.007098338 fv Log-Normal Cox, Gamma TRUE #> 12917 808 0.4608903 0.091363357 fv Log-Normal Cox, Gamma FALSE #> 12933 809 0.5746463 0.111581806 fv Log-Normal Cox, Gamma FALSE #> 12949 810 0.6261066 0.120222463 fv Log-Normal Cox, Gamma FALSE #> 12965 811 0.4101906 0.082327643 fv Log-Normal Cox, Gamma FALSE #> 12981 812 0.6375601 0.122977631 fv Log-Normal Cox, Gamma FALSE #> 12997 813 0.7067174 0.133583771 fv Log-Normal Cox, Gamma FALSE #> 13013 814 0.6125992 0.118493837 fv Log-Normal Cox, Gamma FALSE #> 13029 815 0.5418829 0.107600002 fv Log-Normal Cox, Gamma FALSE #> 13045 816 0.5858533 NA fv Log-Normal Cox, Gamma NA #> 13061 817 0.4076984 0.081983169 fv Log-Normal Cox, Gamma FALSE #> 13077 818 0.6378915 0.124745913 fv Log-Normal Cox, Gamma FALSE #> 13093 819 0.7019073 0.132946154 fv Log-Normal Cox, Gamma FALSE #> 13109 820 0.8104918 0.153613082 fv Log-Normal Cox, Gamma FALSE #> 13125 821 0.4928717 0.096887270 fv Log-Normal Cox, Gamma FALSE #> 13141 822 0.8106514 0.152692972 fv Log-Normal Cox, Gamma FALSE #> 13157 823 0.9414082 0.176020573 fv Log-Normal Cox, Gamma TRUE #> 13173 824 0.7807771 0.147247985 fv Log-Normal Cox, Gamma FALSE #> 13189 825 0.7034024 0.134541272 fv Log-Normal Cox, Gamma FALSE #> 13205 826 0.7094238 0.135741788 fv Log-Normal Cox, Gamma FALSE #> 13221 827 0.8135921 0.154539346 fv Log-Normal Cox, Gamma FALSE #> 13237 828 0.5962366 0.116746571 fv Log-Normal Cox, Gamma FALSE #> 13253 829 0.6516192 0.125243568 fv Log-Normal Cox, Gamma FALSE #> 13269 830 0.7515323 0.142232279 fv Log-Normal Cox, Gamma FALSE #> 13285 831 0.6930557 0.131294024 fv Log-Normal Cox, Gamma FALSE #> 13301 832 0.4914554 0.097267429 fv Log-Normal Cox, Gamma FALSE #> 13317 833 0.7539417 0.142658069 fv Log-Normal Cox, Gamma FALSE #> 13333 834 0.5800657 0.113033660 fv Log-Normal Cox, Gamma FALSE #> 13349 835 0.6207208 0.120104030 fv Log-Normal Cox, Gamma FALSE #> 13365 836 0.6793893 0.129865727 fv Log-Normal Cox, Gamma FALSE #> 13381 837 0.7548904 0.143482390 fv Log-Normal Cox, Gamma FALSE #> 13397 838 0.6016750 0.116332111 fv Log-Normal Cox, Gamma FALSE #> 13413 839 0.5676191 0.111629149 fv Log-Normal Cox, Gamma FALSE #> 13429 840 0.5784233 0.006032357 fv Log-Normal Cox, Gamma TRUE #> 13445 841 0.9024294 0.169028872 fv Log-Normal Cox, Gamma FALSE #> 13461 842 0.4944220 0.097387303 fv Log-Normal Cox, Gamma FALSE #> 13477 843 0.6174343 NA fv Log-Normal Cox, Gamma NA #> 13493 844 0.7765827 0.145469783 fv Log-Normal Cox, Gamma FALSE #> 13509 845 0.8061865 0.151157541 fv Log-Normal Cox, Gamma FALSE #> 13525 846 0.4946398 0.097713008 fv Log-Normal Cox, Gamma FALSE #> 13541 847 0.8872828 0.164244428 fv Log-Normal Cox, Gamma FALSE #> 13557 848 0.6722396 0.128137186 fv Log-Normal Cox, Gamma FALSE #> 13573 849 0.5499169 0.107476581 fv Log-Normal Cox, Gamma FALSE #> 13589 850 0.7639498 0.144795253 fv Log-Normal Cox, Gamma FALSE #> 13605 851 0.5845154 0.112833034 fv Log-Normal Cox, Gamma FALSE #> 13621 852 0.6056401 0.116696724 fv Log-Normal Cox, Gamma FALSE #> 13637 853 0.8570990 0.158665026 fv Log-Normal Cox, Gamma FALSE #> 13653 854 0.6183688 NA fv Log-Normal Cox, Gamma NA #> 13669 855 0.5442098 0.106470731 fv Log-Normal Cox, Gamma FALSE #> 13685 856 0.7602114 0.143711564 fv Log-Normal Cox, Gamma FALSE #> 13701 857 0.7054449 0.134533671 fv Log-Normal Cox, Gamma FALSE #> 13717 858 0.8738845 0.162323725 fv Log-Normal Cox, Gamma FALSE #> 13733 859 0.8433205 0.158129658 fv Log-Normal Cox, Gamma FALSE #> 13749 860 0.6194807 0.120192334 fv Log-Normal Cox, Gamma FALSE #> 13765 861 0.4240218 0.085035129 fv Log-Normal Cox, Gamma FALSE #> 13781 862 0.5727095 0.111056530 fv Log-Normal Cox, Gamma FALSE #> 13797 863 0.5931713 0.114924197 fv Log-Normal Cox, Gamma FALSE #> 13813 864 0.7886915 0.148632446 fv Log-Normal Cox, Gamma FALSE #> 13829 865 0.8417216 0.157705339 fv Log-Normal Cox, Gamma FALSE #> 13845 866 0.7324513 0.140415114 fv Log-Normal Cox, Gamma FALSE #> 13861 867 0.5336145 0.105020826 fv Log-Normal Cox, Gamma FALSE #> 13877 868 0.8326129 0.157190658 fv Log-Normal Cox, Gamma FALSE #> 13893 869 0.4553176 0.090454476 fv Log-Normal Cox, Gamma FALSE #> 13909 870 0.7275115 0.139000119 fv Log-Normal Cox, Gamma FALSE #> 13925 871 0.4562028 0.090945564 fv Log-Normal Cox, Gamma FALSE #> 13941 872 0.4282411 0.086039728 fv Log-Normal Cox, Gamma FALSE #> 13957 873 0.7410010 0.139529175 fv Log-Normal Cox, Gamma FALSE #> 13973 874 0.6406572 0.123512358 fv Log-Normal Cox, Gamma FALSE #> 13989 875 0.5379126 0.104728825 fv Log-Normal Cox, Gamma FALSE #> 14005 876 0.5522451 0.108150503 fv Log-Normal Cox, Gamma FALSE #> 14021 877 0.5176314 0.102540214 fv Log-Normal Cox, Gamma FALSE #> 14037 878 0.6117499 0.118653415 fv Log-Normal Cox, Gamma FALSE #> 14053 879 0.6092139 0.117915292 fv Log-Normal Cox, Gamma FALSE #> 14069 880 0.7281917 0.137629429 fv Log-Normal Cox, Gamma FALSE #> 14085 881 0.4806627 0.094979574 fv Log-Normal Cox, Gamma FALSE #> 14101 882 0.6538869 0.126627474 fv Log-Normal Cox, Gamma FALSE #> 14117 883 0.5610964 0.109264809 fv Log-Normal Cox, Gamma FALSE #> 14133 884 0.4925104 0.097240268 fv Log-Normal Cox, Gamma FALSE #> 14149 885 0.6589978 0.126130195 fv Log-Normal Cox, Gamma FALSE #> 14165 886 0.5726060 0.111766627 fv Log-Normal Cox, Gamma FALSE #> 14181 887 0.3455108 0.071029692 fv Log-Normal Cox, Gamma TRUE #> 14197 888 0.5385587 0.104973741 fv Log-Normal Cox, Gamma FALSE #> 14213 889 0.6028528 0.116696393 fv Log-Normal Cox, Gamma FALSE #> 14229 890 0.6115686 0.117674263 fv Log-Normal Cox, Gamma FALSE #> 14245 891 0.6530045 0.124860018 fv Log-Normal Cox, Gamma FALSE #> 14261 892 0.9512529 0.177813247 fv Log-Normal Cox, Gamma TRUE #> 14277 893 0.4324512 0.086825693 fv Log-Normal Cox, Gamma FALSE #> 14293 894 0.5597415 0.110075287 fv Log-Normal Cox, Gamma FALSE #> 14309 895 0.7000887 0.134095874 fv Log-Normal Cox, Gamma FALSE #> 14325 896 0.4728721 0.093547165 fv Log-Normal Cox, Gamma FALSE #> 14341 897 0.5701801 0.110691422 fv Log-Normal Cox, Gamma FALSE #> 14357 898 0.6771217 0.129572295 fv Log-Normal Cox, Gamma FALSE #> 14373 899 0.7731560 0.148972225 fv Log-Normal Cox, Gamma FALSE #> 14389 900 0.6242420 0.120427482 fv Log-Normal Cox, Gamma FALSE #> 14405 901 0.6907226 0.131189457 fv Log-Normal Cox, Gamma FALSE #> 14421 902 0.7152259 0.135339899 fv Log-Normal Cox, Gamma FALSE #> 14437 903 0.5105152 0.100732976 fv Log-Normal Cox, Gamma FALSE #> 14453 904 0.5856935 0.113481600 fv Log-Normal Cox, Gamma FALSE #> 14469 905 0.5997602 NA fv Log-Normal Cox, Gamma NA #> 14485 906 0.6365419 0.122578578 fv Log-Normal Cox, Gamma FALSE #> 14501 907 0.5898802 0.115521684 fv Log-Normal Cox, Gamma FALSE #> 14517 908 0.4531988 0.090312108 fv Log-Normal Cox, Gamma FALSE #> 14533 909 0.7511674 0.141395630 fv Log-Normal Cox, Gamma FALSE #> 14549 910 0.5647211 0.109999123 fv Log-Normal Cox, Gamma FALSE #> 14565 911 0.6067530 0.117194452 fv Log-Normal Cox, Gamma FALSE #> 14581 912 0.3617871 0.073947377 fv Log-Normal Cox, Gamma TRUE #> 14597 913 0.5505871 0.107420031 fv Log-Normal Cox, Gamma FALSE #> 14613 914 0.7699292 0.145248215 fv Log-Normal Cox, Gamma FALSE #> 14629 915 0.5864275 0.113192932 fv Log-Normal Cox, Gamma FALSE #> 14645 916 0.6235821 NA fv Log-Normal Cox, Gamma NA #> 14661 917 0.4809311 0.095930729 fv Log-Normal Cox, Gamma FALSE #> 14677 918 0.5527238 0.108983870 fv Log-Normal Cox, Gamma FALSE #> 14693 919 0.6191935 0.119875457 fv Log-Normal Cox, Gamma FALSE #> 14709 920 0.5966615 NA fv Log-Normal Cox, Gamma NA #> 14725 921 0.9739077 0.178572509 fv Log-Normal Cox, Gamma TRUE #> 14741 922 0.5740252 0.111843075 fv Log-Normal Cox, Gamma FALSE #> 14757 923 0.8611072 0.160092580 fv Log-Normal Cox, Gamma FALSE #> 14773 924 0.6116145 0.118190811 fv Log-Normal Cox, Gamma FALSE #> 14789 925 0.6970632 0.133922744 fv Log-Normal Cox, Gamma FALSE #> 14805 926 0.7548431 0.141797187 fv Log-Normal Cox, Gamma FALSE #> 14821 927 0.7246747 0.137313580 fv Log-Normal Cox, Gamma FALSE #> 14837 928 0.6419417 NA fv Log-Normal Cox, Gamma NA #> 14853 929 0.6743449 0.128440051 fv Log-Normal Cox, Gamma FALSE #> 14869 930 0.5122725 0.101372331 fv Log-Normal Cox, Gamma FALSE #> 14885 931 0.7130454 0.135971450 fv Log-Normal Cox, Gamma FALSE #> 14901 932 0.5066433 0.100500273 fv Log-Normal Cox, Gamma FALSE #> 14917 933 0.4945458 0.097082695 fv Log-Normal Cox, Gamma FALSE #> 14933 934 0.6492706 NA fv Log-Normal Cox, Gamma NA #> 14949 935 0.7595802 0.142781942 fv Log-Normal Cox, Gamma FALSE #> 14965 936 0.6649180 0.127703570 fv Log-Normal Cox, Gamma FALSE #> 14981 937 0.6533127 0.124319736 fv Log-Normal Cox, Gamma FALSE #> 14997 938 0.6926645 0.131356315 fv Log-Normal Cox, Gamma FALSE #> 15013 939 0.5077710 0.099590277 fv Log-Normal Cox, Gamma FALSE #> 15029 940 0.6933669 0.133191128 fv Log-Normal Cox, Gamma FALSE #> 15045 941 0.4268047 0.085815756 fv Log-Normal Cox, Gamma FALSE #> 15061 942 0.7084437 0.133839212 fv Log-Normal Cox, Gamma FALSE #> 15077 943 0.4584328 0.090854771 fv Log-Normal Cox, Gamma FALSE #> 15093 944 0.5666850 0.110036299 fv Log-Normal Cox, Gamma FALSE #> 15109 945 0.9440737 0.175421907 fv Log-Normal Cox, Gamma TRUE #> 15125 946 0.7158152 0.136016918 fv Log-Normal Cox, Gamma FALSE #> 15141 947 0.7167894 0.135529442 fv Log-Normal Cox, Gamma FALSE #> 15157 948 0.4493495 0.091216146 fv Log-Normal Cox, Gamma FALSE #> 15173 949 0.5803668 0.112156181 fv Log-Normal Cox, Gamma FALSE #> 15189 950 0.6935612 0.132417693 fv Log-Normal Cox, Gamma FALSE #> 15205 951 0.4651010 0.092037357 fv Log-Normal Cox, Gamma FALSE #> 15221 952 0.5304067 0.103569265 fv Log-Normal Cox, Gamma FALSE #> 15237 953 0.5574506 NA fv Log-Normal Cox, Gamma NA #> 15253 954 0.7829632 0.149765497 fv Log-Normal Cox, Gamma FALSE #> 15269 955 0.6315200 0.121635710 fv Log-Normal Cox, Gamma FALSE #> 15285 956 0.7256935 0.136559638 fv Log-Normal Cox, Gamma FALSE #> 15301 957 0.5255019 0.102668152 fv Log-Normal Cox, Gamma FALSE #> 15317 958 0.5515319 0.108203497 fv Log-Normal Cox, Gamma FALSE #> 15333 959 0.6365335 0.006618674 fv Log-Normal Cox, Gamma TRUE #> 15349 960 0.4975672 0.097788653 fv Log-Normal Cox, Gamma FALSE #> 15365 961 0.7256961 0.136960775 fv Log-Normal Cox, Gamma FALSE #> 15381 962 0.6723918 0.128074823 fv Log-Normal Cox, Gamma FALSE #> 15397 963 0.8582505 0.161076038 fv Log-Normal Cox, Gamma FALSE #> 15413 964 0.6765533 0.131222054 fv Log-Normal Cox, Gamma FALSE #> 15429 965 0.4969462 0.098034066 fv Log-Normal Cox, Gamma FALSE #> 15445 966 0.8281505 0.153884185 fv Log-Normal Cox, Gamma FALSE #> 15461 967 0.8024846 0.151662537 fv Log-Normal Cox, Gamma FALSE #> 15477 968 0.7562529 0.144638541 fv Log-Normal Cox, Gamma FALSE #> 15493 969 0.9270354 0.171035756 fv Log-Normal Cox, Gamma TRUE #> 15509 970 0.7075527 0.135390065 fv Log-Normal Cox, Gamma FALSE #> 15525 971 0.7638483 0.143021387 fv Log-Normal Cox, Gamma FALSE #> 15541 972 0.5393256 0.105657239 fv Log-Normal Cox, Gamma FALSE #> 15557 973 0.7927163 0.148657584 fv Log-Normal Cox, Gamma FALSE #> 15573 974 0.8194812 0.153583984 fv Log-Normal Cox, Gamma FALSE #> 15589 975 0.8901438 0.164621225 fv Log-Normal Cox, Gamma FALSE #> 15605 976 0.7033173 0.135752844 fv Log-Normal Cox, Gamma FALSE #> 15621 977 0.9184243 0.169985183 fv Log-Normal Cox, Gamma TRUE #> 15637 978 0.7000262 0.133687476 fv Log-Normal Cox, Gamma FALSE #> 15653 979 0.5554882 0.108354847 fv Log-Normal Cox, Gamma FALSE #> 15669 980 0.6736097 0.129146495 fv Log-Normal Cox, Gamma FALSE #> 15685 981 0.5661670 0.109523726 fv Log-Normal Cox, Gamma FALSE #> 15701 982 0.5354088 0.104414629 fv Log-Normal Cox, Gamma FALSE #> 15717 983 0.6487939 0.124135434 fv Log-Normal Cox, Gamma FALSE #> 15733 984 0.6188661 0.120173122 fv Log-Normal Cox, Gamma FALSE #> 15749 985 0.7714019 0.145426296 fv Log-Normal Cox, Gamma FALSE #> 15765 986 0.6954945 0.133563065 fv Log-Normal Cox, Gamma FALSE #> 15781 987 0.6624646 0.129133922 fv Log-Normal Cox, Gamma FALSE #> 15797 988 0.7075265 0.133801077 fv Log-Normal Cox, Gamma FALSE #> 15813 989 0.7489396 0.140608370 fv Log-Normal Cox, Gamma FALSE #> 15829 990 0.6790675 0.130260397 fv Log-Normal Cox, Gamma FALSE #> 15845 991 0.7490903 0.141714729 fv Log-Normal Cox, Gamma FALSE #> 15861 992 0.6467935 0.124231773 fv Log-Normal Cox, Gamma FALSE #> 15877 993 0.6374168 0.121764982 fv Log-Normal Cox, Gamma FALSE #> 15893 994 0.6287016 0.122781015 fv Log-Normal Cox, Gamma FALSE #> 15909 995 0.5297770 0.103847152 fv Log-Normal Cox, Gamma FALSE #> 15925 996 0.6734033 0.130429589 fv Log-Normal Cox, Gamma FALSE #> 15941 997 0.5717180 0.110420307 fv Log-Normal Cox, Gamma FALSE #> 15957 998 0.5513744 0.107819150 fv Log-Normal Cox, Gamma FALSE #> 15973 999 0.6754048 0.129106649 fv Log-Normal Cox, Gamma FALSE #> 15989 1000 0.5817786 0.112687286 fv Log-Normal Cox, Gamma FALSE #> 6 1 0.7573628 0.123506225 fv Log-Normal Cox, Log-Normal FALSE #> 22 2 0.6405703 0.151148609 fv Log-Normal Cox, Log-Normal FALSE #> 38 3 0.8261367 0.185927234 fv Log-Normal Cox, Log-Normal FALSE #> 54 4 0.6143026 0.132920004 fv Log-Normal Cox, Log-Normal FALSE #> 70 5 1.0036278 0.198158194 fv Log-Normal Cox, Log-Normal FALSE #> 86 6 0.8832715 0.168543121 fv Log-Normal Cox, Log-Normal FALSE #> 102 7 0.5928196 0.100287978 fv Log-Normal Cox, Log-Normal FALSE #> 118 8 0.8252806 0.180131613 fv Log-Normal Cox, Log-Normal FALSE #> 134 9 0.7244461 0.143635393 fv Log-Normal Cox, Log-Normal FALSE #> 150 10 1.0102669 0.202207973 fv Log-Normal Cox, Log-Normal FALSE #> 166 11 0.9143155 0.184227624 fv Log-Normal Cox, Log-Normal FALSE #> 182 12 0.5534246 0.104169695 fv Log-Normal Cox, Log-Normal FALSE #> 198 13 0.8283860 0.166449749 fv Log-Normal Cox, Log-Normal FALSE #> 214 14 0.8115641 0.147107977 fv Log-Normal Cox, Log-Normal FALSE #> 230 15 0.7390334 0.149549271 fv Log-Normal Cox, Log-Normal FALSE #> 246 16 0.5808222 0.137956200 fv Log-Normal Cox, Log-Normal FALSE #> 262 17 0.6452196 0.146194236 fv Log-Normal Cox, Log-Normal FALSE #> 278 18 0.8714554 0.169853265 fv Log-Normal Cox, Log-Normal FALSE #> 294 19 0.9410003 0.159312483 fv Log-Normal Cox, Log-Normal FALSE #> 310 20 0.6101011 0.120280145 fv Log-Normal Cox, Log-Normal FALSE #> 326 21 0.7051458 0.143022121 fv Log-Normal Cox, Log-Normal FALSE #> 342 22 0.5999060 0.090970833 fv Log-Normal Cox, Log-Normal FALSE #> 358 23 0.8708236 0.203636912 fv Log-Normal Cox, Log-Normal FALSE #> 374 24 0.8089626 0.168542382 fv Log-Normal Cox, Log-Normal FALSE #> 390 25 0.6228305 0.119304963 fv Log-Normal Cox, Log-Normal FALSE #> 406 26 0.7537106 0.142965921 fv Log-Normal Cox, Log-Normal FALSE #> 422 27 0.5366948 0.165486396 fv Log-Normal Cox, Log-Normal FALSE #> 438 28 0.7237506 0.149495788 fv Log-Normal Cox, Log-Normal FALSE #> 454 29 1.0748691 0.171233165 fv Log-Normal Cox, Log-Normal TRUE #> 470 30 0.7213200 0.196299621 fv Log-Normal Cox, Log-Normal FALSE #> 486 31 0.5593267 0.126828054 fv Log-Normal Cox, Log-Normal FALSE #> 502 32 0.5324768 0.090967716 fv Log-Normal Cox, Log-Normal FALSE #> 518 33 0.7693620 0.147380984 fv Log-Normal Cox, Log-Normal FALSE #> 534 34 0.9152415 0.206375212 fv Log-Normal Cox, Log-Normal FALSE #> 550 35 0.5246976 0.132009450 fv Log-Normal Cox, Log-Normal FALSE #> 566 36 0.5188294 0.102537117 fv Log-Normal Cox, Log-Normal FALSE #> 582 37 0.7011186 0.157272513 fv Log-Normal Cox, Log-Normal FALSE #> 598 38 0.6353909 0.145388120 fv Log-Normal Cox, Log-Normal FALSE #> 614 39 0.8001182 0.162578217 fv Log-Normal Cox, Log-Normal FALSE #> 630 40 0.5711178 0.160784364 fv Log-Normal Cox, Log-Normal FALSE #> 646 41 0.8319567 0.168130783 fv Log-Normal Cox, Log-Normal FALSE #> 662 42 0.5614636 0.119677372 fv Log-Normal Cox, Log-Normal FALSE #> 678 43 0.5634340 0.106012887 fv Log-Normal Cox, Log-Normal FALSE #> 694 44 0.7924587 0.144458133 fv Log-Normal Cox, Log-Normal FALSE #> 710 45 0.6313241 0.120340182 fv Log-Normal Cox, Log-Normal FALSE #> 726 46 0.3400322 0.055945672 fv Log-Normal Cox, Log-Normal TRUE #> 742 47 0.9526428 0.199570335 fv Log-Normal Cox, Log-Normal FALSE #> 758 48 0.8841695 0.209442515 fv Log-Normal Cox, Log-Normal FALSE #> 774 49 0.9679034 0.166504814 fv Log-Normal Cox, Log-Normal FALSE #> 790 50 0.6036607 0.119569376 fv Log-Normal Cox, Log-Normal FALSE #> 806 51 0.8862827 0.155150877 fv Log-Normal Cox, Log-Normal FALSE #> 822 52 0.5297618 0.099447197 fv Log-Normal Cox, Log-Normal FALSE #> 838 53 0.9292767 0.157610779 fv Log-Normal Cox, Log-Normal FALSE #> 854 54 0.7239010 0.141347724 fv Log-Normal Cox, Log-Normal FALSE #> 870 55 0.9331984 0.171379276 fv Log-Normal Cox, Log-Normal FALSE #> 886 56 0.7706847 0.175186290 fv Log-Normal Cox, Log-Normal FALSE #> 902 57 0.9189265 0.207804687 fv Log-Normal Cox, Log-Normal FALSE #> 918 58 0.7658154 0.166165565 fv Log-Normal Cox, Log-Normal FALSE #> 934 59 0.7182062 0.124324102 fv Log-Normal Cox, Log-Normal FALSE #> 950 60 1.0041047 0.255917467 fv Log-Normal Cox, Log-Normal TRUE #> 966 61 0.7553592 0.164985154 fv Log-Normal Cox, Log-Normal FALSE #> 982 62 0.6225567 0.137396308 fv Log-Normal Cox, Log-Normal FALSE #> 998 63 0.8218612 0.151697592 fv Log-Normal Cox, Log-Normal FALSE #> 1014 64 0.7358860 0.131559640 fv Log-Normal Cox, Log-Normal FALSE #> 1030 65 0.9223297 0.240231970 fv Log-Normal Cox, Log-Normal TRUE #> 1046 66 0.6545818 0.131376390 fv Log-Normal Cox, Log-Normal FALSE #> 1062 67 0.6277202 0.131711521 fv Log-Normal Cox, Log-Normal FALSE #> 1078 68 0.5256708 0.115778396 fv Log-Normal Cox, Log-Normal FALSE #> 1094 69 0.8150341 0.153682813 fv Log-Normal Cox, Log-Normal FALSE #> 1110 70 0.7740717 0.131663013 fv Log-Normal Cox, Log-Normal FALSE #> 1126 71 1.0082462 0.227978478 fv Log-Normal Cox, Log-Normal TRUE #> 1142 72 0.6084139 0.122907751 fv Log-Normal Cox, Log-Normal FALSE #> 1158 73 0.7363271 0.136694735 fv Log-Normal Cox, Log-Normal FALSE #> 1174 74 0.4269599 0.099018016 fv Log-Normal Cox, Log-Normal FALSE #> 1190 75 0.7249021 0.145933489 fv Log-Normal Cox, Log-Normal FALSE #> 1206 76 0.6560751 0.124898132 fv Log-Normal Cox, Log-Normal FALSE #> 1222 77 0.8511698 0.197171406 fv Log-Normal Cox, Log-Normal FALSE #> 1238 78 0.7871053 0.166915910 fv Log-Normal Cox, Log-Normal FALSE #> 1254 79 1.0822921 0.209965236 fv Log-Normal Cox, Log-Normal TRUE #> 1270 80 0.5922208 0.101102935 fv Log-Normal Cox, Log-Normal FALSE #> 1286 81 1.0111710 0.155662408 fv Log-Normal Cox, Log-Normal FALSE #> 1302 82 0.6914727 0.112813615 fv Log-Normal Cox, Log-Normal FALSE #> 1318 83 0.8092839 0.153960210 fv Log-Normal Cox, Log-Normal FALSE #> 1334 84 0.6559520 0.132512452 fv Log-Normal Cox, Log-Normal FALSE #> 1350 85 0.6577962 0.171457580 fv Log-Normal Cox, Log-Normal FALSE #> 1366 86 0.5651294 0.146528647 fv Log-Normal Cox, Log-Normal FALSE #> 1382 87 0.7661226 0.160460673 fv Log-Normal Cox, Log-Normal FALSE #> 1398 88 0.7721346 0.178271337 fv Log-Normal Cox, Log-Normal FALSE #> 1414 89 1.0368109 0.213632342 fv Log-Normal Cox, Log-Normal FALSE #> 1430 90 0.8168601 0.156924329 fv Log-Normal Cox, Log-Normal FALSE #> 1446 91 0.9053362 0.158323513 fv Log-Normal Cox, Log-Normal FALSE #> 1462 92 0.8835783 0.208147013 fv Log-Normal Cox, Log-Normal FALSE #> 1478 93 0.6132071 0.113008294 fv Log-Normal Cox, Log-Normal FALSE #> 1494 94 0.8483006 0.176707967 fv Log-Normal Cox, Log-Normal FALSE #> 1510 95 0.6763772 0.139840226 fv Log-Normal Cox, Log-Normal FALSE #> 1526 96 0.5777829 0.104392446 fv Log-Normal Cox, Log-Normal FALSE #> 1542 97 0.8161674 0.168581778 fv Log-Normal Cox, Log-Normal FALSE #> 1558 98 0.4622867 0.077274220 fv Log-Normal Cox, Log-Normal FALSE #> 1574 99 0.9279581 0.217300732 fv Log-Normal Cox, Log-Normal FALSE #> 1590 100 0.6855048 0.169304914 fv Log-Normal Cox, Log-Normal FALSE #> 1606 101 0.6455828 0.111943749 fv Log-Normal Cox, Log-Normal FALSE #> 1622 102 0.4964866 0.090284117 fv Log-Normal Cox, Log-Normal FALSE #> 1638 103 0.7884297 0.140191610 fv Log-Normal Cox, Log-Normal FALSE #> 1654 104 0.7372374 0.160504976 fv Log-Normal Cox, Log-Normal FALSE #> 1670 105 0.4689447 0.130167559 fv Log-Normal Cox, Log-Normal FALSE #> 1686 106 0.6774750 0.142381935 fv Log-Normal Cox, Log-Normal FALSE #> 1702 107 0.8642295 0.176000808 fv Log-Normal Cox, Log-Normal FALSE #> 1718 108 0.7159932 0.164105206 fv Log-Normal Cox, Log-Normal FALSE #> 1734 109 0.9263322 0.205073657 fv Log-Normal Cox, Log-Normal FALSE #> 1750 110 0.9255388 0.203254399 fv Log-Normal Cox, Log-Normal FALSE #> 1766 111 0.6391791 0.151025676 fv Log-Normal Cox, Log-Normal FALSE #> 1782 112 0.7006322 0.121622711 fv Log-Normal Cox, Log-Normal FALSE #> 1798 113 0.8573833 0.120517037 fv Log-Normal Cox, Log-Normal FALSE #> 1814 114 0.6713922 0.143109099 fv Log-Normal Cox, Log-Normal FALSE #> 1830 115 0.7800116 0.158241038 fv Log-Normal Cox, Log-Normal FALSE #> 1846 116 0.7935211 0.143635068 fv Log-Normal Cox, Log-Normal FALSE #> 1862 117 0.8402853 0.144118761 fv Log-Normal Cox, Log-Normal FALSE #> 1878 118 0.6211441 0.115222597 fv Log-Normal Cox, Log-Normal FALSE #> 1894 119 0.5731702 0.104678548 fv Log-Normal Cox, Log-Normal FALSE #> 1910 120 0.8207332 0.162722934 fv Log-Normal Cox, Log-Normal FALSE #> 1926 121 0.7191754 0.144618775 fv Log-Normal Cox, Log-Normal FALSE #> 1942 122 0.5527592 0.153698623 fv Log-Normal Cox, Log-Normal FALSE #> 1958 123 0.5289509 0.095546347 fv Log-Normal Cox, Log-Normal FALSE #> 1974 124 0.5600358 0.120518423 fv Log-Normal Cox, Log-Normal FALSE #> 1990 125 0.5451336 0.088492549 fv Log-Normal Cox, Log-Normal FALSE #> 2006 126 1.2150397 0.221438937 fv Log-Normal Cox, Log-Normal TRUE #> 2022 127 0.5215282 0.106426631 fv Log-Normal Cox, Log-Normal FALSE #> 2038 128 0.5208087 0.101330616 fv Log-Normal Cox, Log-Normal FALSE #> 2054 129 0.7158500 0.146716475 fv Log-Normal Cox, Log-Normal FALSE #> 2070 130 0.5736312 0.140201893 fv Log-Normal Cox, Log-Normal FALSE #> 2086 131 0.6678274 0.113502192 fv Log-Normal Cox, Log-Normal FALSE #> 2102 132 0.7954489 0.169093243 fv Log-Normal Cox, Log-Normal FALSE #> 2118 133 0.9256333 0.173618373 fv Log-Normal Cox, Log-Normal FALSE #> 2134 134 1.0816300 0.168628629 fv Log-Normal Cox, Log-Normal TRUE #> 2150 135 0.6646850 0.165230055 fv Log-Normal Cox, Log-Normal FALSE #> 2166 136 0.5493449 0.148696582 fv Log-Normal Cox, Log-Normal FALSE #> 2182 137 0.5273812 0.117786553 fv Log-Normal Cox, Log-Normal FALSE #> 2198 138 0.5253386 0.088599027 fv Log-Normal Cox, Log-Normal FALSE #> 2214 139 0.7508027 0.135122381 fv Log-Normal Cox, Log-Normal FALSE #> 2230 140 0.8098031 0.141963269 fv Log-Normal Cox, Log-Normal FALSE #> 2246 141 0.4369386 0.083891814 fv Log-Normal Cox, Log-Normal FALSE #> 2262 142 0.4940935 0.087599059 fv Log-Normal Cox, Log-Normal FALSE #> 2278 143 0.5792783 0.101315528 fv Log-Normal Cox, Log-Normal FALSE #> 2294 144 0.6762864 0.155722587 fv Log-Normal Cox, Log-Normal FALSE #> 2310 145 0.5822286 0.120935529 fv Log-Normal Cox, Log-Normal FALSE #> 2326 146 0.7312281 0.136443900 fv Log-Normal Cox, Log-Normal FALSE #> 2342 147 0.6361521 0.169644112 fv Log-Normal Cox, Log-Normal FALSE #> 2358 148 0.5484598 0.111863218 fv Log-Normal Cox, Log-Normal FALSE #> 2374 149 0.4096536 0.100250733 fv Log-Normal Cox, Log-Normal TRUE #> 2390 150 0.5619967 0.105650453 fv Log-Normal Cox, Log-Normal FALSE #> 2406 151 0.9789970 0.195216476 fv Log-Normal Cox, Log-Normal FALSE #> 2422 152 0.7259292 0.151900672 fv Log-Normal Cox, Log-Normal FALSE #> 2438 153 0.7965834 0.152245452 fv Log-Normal Cox, Log-Normal FALSE #> 2454 154 0.7530393 0.132140632 fv Log-Normal Cox, Log-Normal FALSE #> 2470 155 1.0025250 0.232384531 fv Log-Normal Cox, Log-Normal TRUE #> 2486 156 0.6533424 0.120684343 fv Log-Normal Cox, Log-Normal FALSE #> 2502 157 0.6428468 0.167081803 fv Log-Normal Cox, Log-Normal FALSE #> 2518 158 0.6380194 0.127185912 fv Log-Normal Cox, Log-Normal FALSE #> 2534 159 0.8212363 0.203723673 fv Log-Normal Cox, Log-Normal FALSE #> 2550 160 0.8091504 0.165469968 fv Log-Normal Cox, Log-Normal FALSE #> 2566 161 0.9019637 0.169031267 fv Log-Normal Cox, Log-Normal FALSE #> 2582 162 1.0323230 0.200155147 fv Log-Normal Cox, Log-Normal FALSE #> 2598 163 0.6359122 0.120933159 fv Log-Normal Cox, Log-Normal FALSE #> 2614 164 0.6830636 0.149902066 fv Log-Normal Cox, Log-Normal FALSE #> 2630 165 0.5514472 0.106974805 fv Log-Normal Cox, Log-Normal FALSE #> 2646 166 0.4478951 0.089446434 fv Log-Normal Cox, Log-Normal FALSE #> 2662 167 0.7607050 0.130475089 fv Log-Normal Cox, Log-Normal FALSE #> 2678 168 0.8939775 0.171724578 fv Log-Normal Cox, Log-Normal FALSE #> 2694 169 0.6535068 0.134031000 fv Log-Normal Cox, Log-Normal FALSE #> 2710 170 0.7646505 0.136587486 fv Log-Normal Cox, Log-Normal FALSE #> 2726 171 0.8427968 0.138307896 fv Log-Normal Cox, Log-Normal FALSE #> 2742 172 0.7751922 0.140039170 fv Log-Normal Cox, Log-Normal FALSE #> 2758 173 0.7330887 0.134029421 fv Log-Normal Cox, Log-Normal FALSE #> 2774 174 0.6091521 0.106460561 fv Log-Normal Cox, Log-Normal FALSE #> 2790 175 0.8038532 0.153669430 fv Log-Normal Cox, Log-Normal FALSE #> 2806 176 1.0095644 0.198360609 fv Log-Normal Cox, Log-Normal FALSE #> 2822 177 0.8252955 0.152377027 fv Log-Normal Cox, Log-Normal FALSE #> 2838 178 0.5408288 0.097128672 fv Log-Normal Cox, Log-Normal FALSE #> 2854 179 0.9621040 0.157483433 fv Log-Normal Cox, Log-Normal FALSE #> 2870 180 0.5787665 0.115056496 fv Log-Normal Cox, Log-Normal FALSE #> 2886 181 0.7536706 0.134534082 fv Log-Normal Cox, Log-Normal FALSE #> 2902 182 1.2239585 0.231054881 fv Log-Normal Cox, Log-Normal TRUE #> 2918 183 0.7538198 0.198686043 fv Log-Normal Cox, Log-Normal FALSE #> 2934 184 0.9676200 0.162661310 fv Log-Normal Cox, Log-Normal FALSE #> 2950 185 0.8095095 0.154239320 fv Log-Normal Cox, Log-Normal FALSE #> 2966 186 0.7963401 0.151409478 fv Log-Normal Cox, Log-Normal FALSE #> 2982 187 0.6878139 0.128133229 fv Log-Normal Cox, Log-Normal FALSE #> 2998 188 0.8316980 0.199665691 fv Log-Normal Cox, Log-Normal FALSE #> 3014 189 0.6992176 0.115061086 fv Log-Normal Cox, Log-Normal FALSE #> 3030 190 0.8038076 0.144511600 fv Log-Normal Cox, Log-Normal FALSE #> 3046 191 0.7962095 0.180472090 fv Log-Normal Cox, Log-Normal FALSE #> 3062 192 0.6544469 0.152934636 fv Log-Normal Cox, Log-Normal FALSE #> 3078 193 0.7893740 0.183862164 fv Log-Normal Cox, Log-Normal FALSE #> 3094 194 0.9888659 0.175645880 fv Log-Normal Cox, Log-Normal FALSE #> 3110 195 0.5870695 0.128305897 fv Log-Normal Cox, Log-Normal FALSE #> 3126 196 0.6371292 0.130232476 fv Log-Normal Cox, Log-Normal FALSE #> 3142 197 0.6610005 0.111740926 fv Log-Normal Cox, Log-Normal FALSE #> 3158 198 0.7978277 0.140662110 fv Log-Normal Cox, Log-Normal FALSE #> 3174 199 0.5343989 0.094741806 fv Log-Normal Cox, Log-Normal FALSE #> 3190 200 0.6102206 0.130221390 fv Log-Normal Cox, Log-Normal FALSE #> 3206 201 0.8895148 0.164670932 fv Log-Normal Cox, Log-Normal FALSE #> 3222 202 0.7229980 0.120155652 fv Log-Normal Cox, Log-Normal FALSE #> 3238 203 0.6368252 0.115279152 fv Log-Normal Cox, Log-Normal FALSE #> 3254 204 0.6809315 0.138454115 fv Log-Normal Cox, Log-Normal FALSE #> 3270 205 0.6617769 0.130662589 fv Log-Normal Cox, Log-Normal FALSE #> 3286 206 0.7916678 0.146803021 fv Log-Normal Cox, Log-Normal FALSE #> 3302 207 0.8047997 0.205254562 fv Log-Normal Cox, Log-Normal FALSE #> 3318 208 1.0690480 0.176315972 fv Log-Normal Cox, Log-Normal TRUE #> 3334 209 0.6734025 0.157675845 fv Log-Normal Cox, Log-Normal FALSE #> 3350 210 0.7235119 0.168335407 fv Log-Normal Cox, Log-Normal FALSE #> 3366 211 0.8209679 0.150541551 fv Log-Normal Cox, Log-Normal FALSE #> 3382 212 0.8093963 0.164234906 fv Log-Normal Cox, Log-Normal FALSE #> 3398 213 0.6197138 0.117369296 fv Log-Normal Cox, Log-Normal FALSE #> 3414 214 0.6649361 0.120661018 fv Log-Normal Cox, Log-Normal FALSE #> 3430 215 0.6650857 0.179625366 fv Log-Normal Cox, Log-Normal FALSE #> 3446 216 0.9689108 0.174717968 fv Log-Normal Cox, Log-Normal FALSE #> 3462 217 0.7612506 0.147631973 fv Log-Normal Cox, Log-Normal FALSE #> 3478 218 0.5926323 0.153430759 fv Log-Normal Cox, Log-Normal FALSE #> 3494 219 0.8441365 0.191720259 fv Log-Normal Cox, Log-Normal FALSE #> 3510 220 0.9102425 0.169208023 fv Log-Normal Cox, Log-Normal FALSE #> 3526 221 0.6440419 0.169991151 fv Log-Normal Cox, Log-Normal FALSE #> 3542 222 0.3699244 0.073773612 fv Log-Normal Cox, Log-Normal TRUE #> 3558 223 0.5477821 0.112031749 fv Log-Normal Cox, Log-Normal FALSE #> 3574 224 0.5942285 0.107253851 fv Log-Normal Cox, Log-Normal FALSE #> 3590 225 0.8208106 0.157270676 fv Log-Normal Cox, Log-Normal FALSE #> 3606 226 1.0721837 0.179757807 fv Log-Normal Cox, Log-Normal TRUE #> 3622 227 0.7651791 0.135412199 fv Log-Normal Cox, Log-Normal FALSE #> 3638 228 0.8680490 0.143223630 fv Log-Normal Cox, Log-Normal FALSE #> 3654 229 0.4073158 0.083161888 fv Log-Normal Cox, Log-Normal TRUE #> 3670 230 0.6139439 0.120049198 fv Log-Normal Cox, Log-Normal FALSE #> 3686 231 0.6567719 0.124099366 fv Log-Normal Cox, Log-Normal FALSE #> 3702 232 0.9446119 0.189529640 fv Log-Normal Cox, Log-Normal FALSE #> 3718 233 0.9526530 0.209694354 fv Log-Normal Cox, Log-Normal FALSE #> 3734 234 0.9358169 0.188575345 fv Log-Normal Cox, Log-Normal FALSE #> 3750 235 0.5533697 0.097841887 fv Log-Normal Cox, Log-Normal FALSE #> 3766 236 0.6345935 0.120180217 fv Log-Normal Cox, Log-Normal FALSE #> 3782 237 0.5440302 0.109896985 fv Log-Normal Cox, Log-Normal FALSE #> 3798 238 0.8898235 0.229632108 fv Log-Normal Cox, Log-Normal TRUE #> 3814 239 0.9262859 0.200846435 fv Log-Normal Cox, Log-Normal FALSE #> 3830 240 0.6338872 0.129524301 fv Log-Normal Cox, Log-Normal FALSE #> 3846 241 0.7667705 0.153378360 fv Log-Normal Cox, Log-Normal FALSE #> 3862 242 0.5466475 0.100527491 fv Log-Normal Cox, Log-Normal FALSE #> 3878 243 0.6728653 0.123466796 fv Log-Normal Cox, Log-Normal FALSE #> 3894 244 0.6107308 0.139143285 fv Log-Normal Cox, Log-Normal FALSE #> 3910 245 0.4997340 0.111627420 fv Log-Normal Cox, Log-Normal FALSE #> 3926 246 0.7877534 0.194794439 fv Log-Normal Cox, Log-Normal FALSE #> 3942 247 0.6585011 0.152234917 fv Log-Normal Cox, Log-Normal FALSE #> 3958 248 1.1751511 0.286449350 fv Log-Normal Cox, Log-Normal TRUE #> 3974 249 0.5939856 0.117058074 fv Log-Normal Cox, Log-Normal FALSE #> 3990 250 0.7479317 0.166505164 fv Log-Normal Cox, Log-Normal FALSE #> 4006 251 0.6258817 0.112068474 fv Log-Normal Cox, Log-Normal FALSE #> 4022 252 0.4768019 0.119359450 fv Log-Normal Cox, Log-Normal FALSE #> 4038 253 0.8642953 0.190101155 fv Log-Normal Cox, Log-Normal FALSE #> 4054 254 0.7457473 0.159020740 fv Log-Normal Cox, Log-Normal FALSE #> 4070 255 0.9277065 0.230633805 fv Log-Normal Cox, Log-Normal TRUE #> 4086 256 0.8557776 0.195869085 fv Log-Normal Cox, Log-Normal FALSE #> 4102 257 0.8342419 0.124293996 fv Log-Normal Cox, Log-Normal FALSE #> 4118 258 0.4166917 0.091790350 fv Log-Normal Cox, Log-Normal TRUE #> 4134 259 0.6658868 0.122476181 fv Log-Normal Cox, Log-Normal FALSE #> 4150 260 0.6874868 0.138634719 fv Log-Normal Cox, Log-Normal FALSE #> 4166 261 0.8838488 0.152030166 fv Log-Normal Cox, Log-Normal FALSE #> 4182 262 0.6874792 0.132166589 fv Log-Normal Cox, Log-Normal FALSE #> 4198 263 0.8748474 0.168551544 fv Log-Normal Cox, Log-Normal FALSE #> 4214 264 0.7949965 0.167523004 fv Log-Normal Cox, Log-Normal FALSE #> 4230 265 0.6229840 0.104494211 fv Log-Normal Cox, Log-Normal FALSE #> 4246 266 0.6632234 0.135646780 fv Log-Normal Cox, Log-Normal FALSE #> 4262 267 0.6158842 0.130400568 fv Log-Normal Cox, Log-Normal FALSE #> 4278 268 0.9506333 0.175878947 fv Log-Normal Cox, Log-Normal FALSE #> 4294 269 0.6188439 0.130825645 fv Log-Normal Cox, Log-Normal FALSE #> 4310 270 0.6262115 0.114392203 fv Log-Normal Cox, Log-Normal FALSE #> 4326 271 0.7801412 0.198342003 fv Log-Normal Cox, Log-Normal FALSE #> 4342 272 0.5658894 0.105200138 fv Log-Normal Cox, Log-Normal FALSE #> 4358 273 0.7581958 0.155271956 fv Log-Normal Cox, Log-Normal FALSE #> 4374 274 0.7608956 0.184496710 fv Log-Normal Cox, Log-Normal FALSE #> 4390 275 0.6392780 0.170823574 fv Log-Normal Cox, Log-Normal FALSE #> 4406 276 0.7882949 0.154743052 fv Log-Normal Cox, Log-Normal FALSE #> 4422 277 0.7194733 0.150653839 fv Log-Normal Cox, Log-Normal FALSE #> 4438 278 0.6262877 0.146135300 fv Log-Normal Cox, Log-Normal FALSE #> 4454 279 0.8160827 0.161699463 fv Log-Normal Cox, Log-Normal FALSE #> 4470 280 0.8380508 0.165760210 fv Log-Normal Cox, Log-Normal FALSE #> 4486 281 0.7250819 0.136678134 fv Log-Normal Cox, Log-Normal FALSE #> 4502 282 0.6543630 0.124834778 fv Log-Normal Cox, Log-Normal FALSE #> 4518 283 0.8861316 0.181607406 fv Log-Normal Cox, Log-Normal FALSE #> 4534 284 0.6234693 0.121773534 fv Log-Normal Cox, Log-Normal FALSE #> 4550 285 0.7075084 0.140506363 fv Log-Normal Cox, Log-Normal FALSE #> 4566 286 0.6991377 0.141637828 fv Log-Normal Cox, Log-Normal FALSE #> 4582 287 0.5969511 0.095232884 fv Log-Normal Cox, Log-Normal FALSE #> 4598 288 0.6185630 0.128807253 fv Log-Normal Cox, Log-Normal FALSE #> 4614 289 0.6932102 0.126244042 fv Log-Normal Cox, Log-Normal FALSE #> 4630 290 0.6795473 0.133309208 fv Log-Normal Cox, Log-Normal FALSE #> 4646 291 0.7658600 0.125787549 fv Log-Normal Cox, Log-Normal FALSE #> 4662 292 0.6655638 0.182337657 fv Log-Normal Cox, Log-Normal FALSE #> 4678 293 0.6811121 0.097619440 fv Log-Normal Cox, Log-Normal FALSE #> 4694 294 0.7341433 0.126424230 fv Log-Normal Cox, Log-Normal FALSE #> 4710 295 0.6397064 0.131345588 fv Log-Normal Cox, Log-Normal FALSE #> 4726 296 0.8036840 0.153632947 fv Log-Normal Cox, Log-Normal FALSE #> 4742 297 0.4156726 0.078965945 fv Log-Normal Cox, Log-Normal TRUE #> 4758 298 0.6992210 0.122399735 fv Log-Normal Cox, Log-Normal FALSE #> 4774 299 0.7895367 0.126931179 fv Log-Normal Cox, Log-Normal FALSE #> 4790 300 0.6389342 0.119908849 fv Log-Normal Cox, Log-Normal FALSE #> 4806 301 1.0721887 0.198275473 fv Log-Normal Cox, Log-Normal TRUE #> 4822 302 0.7313978 0.168882249 fv Log-Normal Cox, Log-Normal FALSE #> 4838 303 0.6443221 0.103189570 fv Log-Normal Cox, Log-Normal FALSE #> 4854 304 0.6883138 0.109793240 fv Log-Normal Cox, Log-Normal FALSE #> 4870 305 0.8457392 0.150880524 fv Log-Normal Cox, Log-Normal FALSE #> 4886 306 0.5848402 0.114151600 fv Log-Normal Cox, Log-Normal FALSE #> 4902 307 0.6233021 0.109508346 fv Log-Normal Cox, Log-Normal FALSE #> 4918 308 0.7261324 0.145349003 fv Log-Normal Cox, Log-Normal FALSE #> 4934 309 0.6156243 0.121821259 fv Log-Normal Cox, Log-Normal FALSE #> 4950 310 0.6653635 0.156392201 fv Log-Normal Cox, Log-Normal FALSE #> 4966 311 0.8914660 0.154933778 fv Log-Normal Cox, Log-Normal FALSE #> 4982 312 0.7331430 0.136281844 fv Log-Normal Cox, Log-Normal FALSE #> 4998 313 0.5088109 0.113177945 fv Log-Normal Cox, Log-Normal FALSE #> 5014 314 0.6998085 0.147494090 fv Log-Normal Cox, Log-Normal FALSE #> 5030 315 0.6788598 0.118669605 fv Log-Normal Cox, Log-Normal FALSE #> 5046 316 0.5935425 0.134907825 fv Log-Normal Cox, Log-Normal FALSE #> 5062 317 0.8622104 0.132961863 fv Log-Normal Cox, Log-Normal FALSE #> 5078 318 0.5477029 0.159243237 fv Log-Normal Cox, Log-Normal FALSE #> 5094 319 0.7504793 0.175775213 fv Log-Normal Cox, Log-Normal FALSE #> 5110 320 0.8374628 0.142534760 fv Log-Normal Cox, Log-Normal FALSE #> 5126 321 0.9088461 0.199125271 fv Log-Normal Cox, Log-Normal FALSE #> 5142 322 0.5883454 0.138882190 fv Log-Normal Cox, Log-Normal FALSE #> 5158 323 0.8097169 0.145185115 fv Log-Normal Cox, Log-Normal FALSE #> 5174 324 0.5327484 0.097126455 fv Log-Normal Cox, Log-Normal FALSE #> 5190 325 0.6209278 0.123937040 fv Log-Normal Cox, Log-Normal FALSE #> 5206 326 1.0813592 0.260419864 fv Log-Normal Cox, Log-Normal TRUE #> 5222 327 0.5318052 0.101090195 fv Log-Normal Cox, Log-Normal FALSE #> 5238 328 0.7967825 0.152965020 fv Log-Normal Cox, Log-Normal FALSE #> 5254 329 0.6356635 0.133230934 fv Log-Normal Cox, Log-Normal FALSE #> 5270 330 0.5814746 0.143686266 fv Log-Normal Cox, Log-Normal FALSE #> 5286 331 0.9345516 0.181733555 fv Log-Normal Cox, Log-Normal FALSE #> 5302 332 0.6891797 0.105822208 fv Log-Normal Cox, Log-Normal FALSE #> 5318 333 0.5057585 0.107033611 fv Log-Normal Cox, Log-Normal FALSE #> 5334 334 0.5523392 0.103592158 fv Log-Normal Cox, Log-Normal FALSE #> 5350 335 0.5487718 0.096238261 fv Log-Normal Cox, Log-Normal FALSE #> 5366 336 0.7938662 0.153381827 fv Log-Normal Cox, Log-Normal FALSE #> 5382 337 0.6558362 0.122412197 fv Log-Normal Cox, Log-Normal FALSE #> 5398 338 0.7716627 0.133216328 fv Log-Normal Cox, Log-Normal FALSE #> 5414 339 0.5946563 0.112089158 fv Log-Normal Cox, Log-Normal FALSE #> 5430 340 0.9258154 0.173020079 fv Log-Normal Cox, Log-Normal FALSE #> 5446 341 0.6554285 0.188998496 fv Log-Normal Cox, Log-Normal FALSE #> 5462 342 0.5903363 0.103543007 fv Log-Normal Cox, Log-Normal FALSE #> 5478 343 0.5801205 0.105220570 fv Log-Normal Cox, Log-Normal FALSE #> 5494 344 0.6781217 0.139143373 fv Log-Normal Cox, Log-Normal FALSE #> 5510 345 0.6961196 0.128199872 fv Log-Normal Cox, Log-Normal FALSE #> 5526 346 0.5227107 0.129366265 fv Log-Normal Cox, Log-Normal FALSE #> 5542 347 0.6271774 0.116481432 fv Log-Normal Cox, Log-Normal FALSE #> 5558 348 0.6129095 0.127848791 fv Log-Normal Cox, Log-Normal FALSE #> 5574 349 0.7061869 0.130911383 fv Log-Normal Cox, Log-Normal FALSE #> 5590 350 0.7924372 0.140354741 fv Log-Normal Cox, Log-Normal FALSE #> 5606 351 0.6081129 0.110915071 fv Log-Normal Cox, Log-Normal FALSE #> 5622 352 0.8113829 0.207987891 fv Log-Normal Cox, Log-Normal FALSE #> 5638 353 0.7123554 0.148029613 fv Log-Normal Cox, Log-Normal FALSE #> 5654 354 0.6733492 0.120250828 fv Log-Normal Cox, Log-Normal FALSE #> 5670 355 0.7413575 0.117491541 fv Log-Normal Cox, Log-Normal FALSE #> 5686 356 0.6356097 0.136723847 fv Log-Normal Cox, Log-Normal FALSE #> 5702 357 0.9077288 0.201687015 fv Log-Normal Cox, Log-Normal FALSE #> 5718 358 0.6760533 0.114786462 fv Log-Normal Cox, Log-Normal FALSE #> 5734 359 0.5219090 0.108201573 fv Log-Normal Cox, Log-Normal FALSE #> 5750 360 0.6815372 0.124079334 fv Log-Normal Cox, Log-Normal FALSE #> 5766 361 0.6430326 0.131155722 fv Log-Normal Cox, Log-Normal FALSE #> 5782 362 0.6311695 0.139240974 fv Log-Normal Cox, Log-Normal FALSE #> 5798 363 0.6177379 0.136118552 fv Log-Normal Cox, Log-Normal FALSE #> 5814 364 0.8976105 0.177776665 fv Log-Normal Cox, Log-Normal FALSE #> 5830 365 0.8077777 0.181160990 fv Log-Normal Cox, Log-Normal FALSE #> 5846 366 0.6859270 0.163243165 fv Log-Normal Cox, Log-Normal FALSE #> 5862 367 0.8039909 0.173052304 fv Log-Normal Cox, Log-Normal FALSE #> 5878 368 0.9904820 0.206693114 fv Log-Normal Cox, Log-Normal FALSE #> 5894 369 0.6043360 0.105582542 fv Log-Normal Cox, Log-Normal FALSE #> 5910 370 0.7742858 0.160759545 fv Log-Normal Cox, Log-Normal FALSE #> 5926 371 0.6578030 0.151843773 fv Log-Normal Cox, Log-Normal FALSE #> 5942 372 0.5007659 0.102818471 fv Log-Normal Cox, Log-Normal FALSE #> 5958 373 1.1151799 0.262411215 fv Log-Normal Cox, Log-Normal TRUE #> 5974 374 0.5438101 0.110074187 fv Log-Normal Cox, Log-Normal FALSE #> 5990 375 0.6580755 0.148102054 fv Log-Normal Cox, Log-Normal FALSE #> 6006 376 0.7039508 0.155302979 fv Log-Normal Cox, Log-Normal FALSE #> 6022 377 0.5414599 0.090535372 fv Log-Normal Cox, Log-Normal FALSE #> 6038 378 0.6197608 0.130994750 fv Log-Normal Cox, Log-Normal FALSE #> 6054 379 0.5067599 0.084260679 fv Log-Normal Cox, Log-Normal FALSE #> 6070 380 0.6564966 0.109664243 fv Log-Normal Cox, Log-Normal FALSE #> 6086 381 0.8540702 0.184255358 fv Log-Normal Cox, Log-Normal FALSE #> 6102 382 0.7318377 0.153279580 fv Log-Normal Cox, Log-Normal FALSE #> 6118 383 0.7133871 0.142053344 fv Log-Normal Cox, Log-Normal FALSE #> 6134 384 0.7092118 0.136370965 fv Log-Normal Cox, Log-Normal FALSE #> 6150 385 0.5917005 0.147258323 fv Log-Normal Cox, Log-Normal FALSE #> 6166 386 0.9153763 0.229498321 fv Log-Normal Cox, Log-Normal TRUE #> 6182 387 0.5871767 0.123612345 fv Log-Normal Cox, Log-Normal FALSE #> 6198 388 0.9291695 0.122982818 fv Log-Normal Cox, Log-Normal FALSE #> 6214 389 0.8058096 0.150461962 fv Log-Normal Cox, Log-Normal FALSE #> 6230 390 0.6773542 0.151801071 fv Log-Normal Cox, Log-Normal FALSE #> 6246 391 0.8182120 0.134244623 fv Log-Normal Cox, Log-Normal FALSE #> 6262 392 0.6261693 0.144322919 fv Log-Normal Cox, Log-Normal FALSE #> 6278 393 0.5608767 0.087397909 fv Log-Normal Cox, Log-Normal FALSE #> 6294 394 0.8782935 0.189730141 fv Log-Normal Cox, Log-Normal FALSE #> 6310 395 0.7611073 0.155530156 fv Log-Normal Cox, Log-Normal FALSE #> 6326 396 1.0179662 0.186941257 fv Log-Normal Cox, Log-Normal FALSE #> 6342 397 0.7116466 0.138074147 fv Log-Normal Cox, Log-Normal FALSE #> 6358 398 0.6727192 0.112933246 fv Log-Normal Cox, Log-Normal FALSE #> 6374 399 0.8183800 0.153200171 fv Log-Normal Cox, Log-Normal FALSE #> 6390 400 0.5367667 0.115885505 fv Log-Normal Cox, Log-Normal FALSE #> 6406 401 0.6126184 0.116844582 fv Log-Normal Cox, Log-Normal FALSE #> 6422 402 0.5449950 0.165808259 fv Log-Normal Cox, Log-Normal FALSE #> 6438 403 0.6208233 0.124821022 fv Log-Normal Cox, Log-Normal FALSE #> 6454 404 0.5770424 0.151038157 fv Log-Normal Cox, Log-Normal FALSE #> 6470 405 0.4747106 0.100298660 fv Log-Normal Cox, Log-Normal FALSE #> 6486 406 0.7328698 0.142571527 fv Log-Normal Cox, Log-Normal FALSE #> 6502 407 0.7521805 0.168896665 fv Log-Normal Cox, Log-Normal FALSE #> 6518 408 0.4939505 0.126659415 fv Log-Normal Cox, Log-Normal FALSE #> 6534 409 0.7342496 0.137209818 fv Log-Normal Cox, Log-Normal FALSE #> 6550 410 0.7711058 0.166901809 fv Log-Normal Cox, Log-Normal FALSE #> 6566 411 0.6537021 0.158644072 fv Log-Normal Cox, Log-Normal FALSE #> 6582 412 0.6641258 0.185779173 fv Log-Normal Cox, Log-Normal FALSE #> 6598 413 0.5336693 0.120967307 fv Log-Normal Cox, Log-Normal FALSE #> 6614 414 0.8645269 0.156417045 fv Log-Normal Cox, Log-Normal FALSE #> 6630 415 1.2669904 0.221355780 fv Log-Normal Cox, Log-Normal TRUE #> 6646 416 0.5679880 0.136164326 fv Log-Normal Cox, Log-Normal FALSE #> 6662 417 0.5518002 0.097475326 fv Log-Normal Cox, Log-Normal FALSE #> 6678 418 0.8899199 0.126041947 fv Log-Normal Cox, Log-Normal FALSE #> 6694 419 0.4910310 0.096522319 fv Log-Normal Cox, Log-Normal FALSE #> 6710 420 0.7613114 0.168472044 fv Log-Normal Cox, Log-Normal FALSE #> 6726 421 0.7927672 0.149403972 fv Log-Normal Cox, Log-Normal FALSE #> 6742 422 0.5762327 0.132336946 fv Log-Normal Cox, Log-Normal FALSE #> 6758 423 0.5858586 0.109042212 fv Log-Normal Cox, Log-Normal FALSE #> 6774 424 0.6812210 0.135407029 fv Log-Normal Cox, Log-Normal FALSE #> 6790 425 0.7494056 0.158380464 fv Log-Normal Cox, Log-Normal FALSE #> 6806 426 0.8255828 0.167092229 fv Log-Normal Cox, Log-Normal FALSE #> 6822 427 0.9580083 0.193525749 fv Log-Normal Cox, Log-Normal FALSE #> 6838 428 0.8200189 0.174800466 fv Log-Normal Cox, Log-Normal FALSE #> 6854 429 0.7253120 0.138989939 fv Log-Normal Cox, Log-Normal FALSE #> 6870 430 0.8015608 0.159246665 fv Log-Normal Cox, Log-Normal FALSE #> 6886 431 0.6839649 0.163805863 fv Log-Normal Cox, Log-Normal FALSE #> 6902 432 0.8651093 0.182008216 fv Log-Normal Cox, Log-Normal FALSE #> 6918 433 0.5920234 0.102567571 fv Log-Normal Cox, Log-Normal FALSE #> 6934 434 0.5880071 0.117101961 fv Log-Normal Cox, Log-Normal FALSE #> 6950 435 0.4973641 0.107090021 fv Log-Normal Cox, Log-Normal FALSE #> 6966 436 0.7631187 0.131617867 fv Log-Normal Cox, Log-Normal FALSE #> 6982 437 0.5823778 0.125462900 fv Log-Normal Cox, Log-Normal FALSE #> 6998 438 0.8514556 0.152749346 fv Log-Normal Cox, Log-Normal FALSE #> 7014 439 0.5976061 0.142466128 fv Log-Normal Cox, Log-Normal FALSE #> 7030 440 0.4167886 0.097617508 fv Log-Normal Cox, Log-Normal TRUE #> 7046 441 0.5600775 0.113085806 fv Log-Normal Cox, Log-Normal FALSE #> 7062 442 0.7506161 0.147798952 fv Log-Normal Cox, Log-Normal FALSE #> 7078 443 0.8033583 0.166071013 fv Log-Normal Cox, Log-Normal FALSE #> 7094 444 0.8324845 0.192734911 fv Log-Normal Cox, Log-Normal FALSE #> 7110 445 0.9003486 0.176256265 fv Log-Normal Cox, Log-Normal FALSE #> 7126 446 0.6375473 0.120152949 fv Log-Normal Cox, Log-Normal FALSE #> 7142 447 0.8891201 0.168609893 fv Log-Normal Cox, Log-Normal FALSE #> 7158 448 0.9157472 0.197688993 fv Log-Normal Cox, Log-Normal FALSE #> 7174 449 0.9081860 0.189349612 fv Log-Normal Cox, Log-Normal FALSE #> 7190 450 0.7032306 0.140992126 fv Log-Normal Cox, Log-Normal FALSE #> 7206 451 0.7939868 0.149065953 fv Log-Normal Cox, Log-Normal FALSE #> 7222 452 0.7822568 0.149666090 fv Log-Normal Cox, Log-Normal FALSE #> 7238 453 0.6987296 0.135190518 fv Log-Normal Cox, Log-Normal FALSE #> 7254 454 0.6802980 0.149217852 fv Log-Normal Cox, Log-Normal FALSE #> 7270 455 0.6300706 0.117145542 fv Log-Normal Cox, Log-Normal FALSE #> 7286 456 0.4853340 0.098943448 fv Log-Normal Cox, Log-Normal FALSE #> 7302 457 0.9159317 0.166991448 fv Log-Normal Cox, Log-Normal FALSE #> 7318 458 0.7926127 0.218179833 fv Log-Normal Cox, Log-Normal FALSE #> 7334 459 0.9673546 0.239194160 fv Log-Normal Cox, Log-Normal TRUE #> 7350 460 0.6824635 0.114496923 fv Log-Normal Cox, Log-Normal FALSE #> 7366 461 0.7838993 0.123060287 fv Log-Normal Cox, Log-Normal FALSE #> 7382 462 0.7263722 0.136940630 fv Log-Normal Cox, Log-Normal FALSE #> 7398 463 0.8725465 0.208727400 fv Log-Normal Cox, Log-Normal FALSE #> 7414 464 0.8133746 0.125786465 fv Log-Normal Cox, Log-Normal FALSE #> 7430 465 0.8180210 0.162596932 fv Log-Normal Cox, Log-Normal FALSE #> 7446 466 0.8447400 0.174373325 fv Log-Normal Cox, Log-Normal FALSE #> 7462 467 0.7417616 0.156331232 fv Log-Normal Cox, Log-Normal FALSE #> 7478 468 0.9181124 0.152344493 fv Log-Normal Cox, Log-Normal FALSE #> 7494 469 0.8086114 0.162584399 fv Log-Normal Cox, Log-Normal FALSE #> 7510 470 0.7530716 0.158528182 fv Log-Normal Cox, Log-Normal FALSE #> 7526 471 0.6314900 0.146336756 fv Log-Normal Cox, Log-Normal FALSE #> 7542 472 0.8683746 0.156186168 fv Log-Normal Cox, Log-Normal FALSE #> 7558 473 0.6937239 0.141938343 fv Log-Normal Cox, Log-Normal FALSE #> 7574 474 1.0218309 0.201167398 fv Log-Normal Cox, Log-Normal FALSE #> 7590 475 0.6337743 0.116592408 fv Log-Normal Cox, Log-Normal FALSE #> 7606 476 0.4770815 0.107961700 fv Log-Normal Cox, Log-Normal FALSE #> 7622 477 0.5086332 0.109130539 fv Log-Normal Cox, Log-Normal FALSE #> 7638 478 0.8075402 0.117965092 fv Log-Normal Cox, Log-Normal FALSE #> 7654 479 0.7389806 0.136893016 fv Log-Normal Cox, Log-Normal FALSE #> 7670 480 1.0175151 0.199915585 fv Log-Normal Cox, Log-Normal FALSE #> 7686 481 1.0192289 0.206087507 fv Log-Normal Cox, Log-Normal FALSE #> 7702 482 0.7832508 0.159491148 fv Log-Normal Cox, Log-Normal FALSE #> 7718 483 0.9418885 0.220672055 fv Log-Normal Cox, Log-Normal TRUE #> 7734 484 0.8962617 0.202093121 fv Log-Normal Cox, Log-Normal FALSE #> 7750 485 0.5958992 0.105063175 fv Log-Normal Cox, Log-Normal FALSE #> 7766 486 0.4667542 0.102867880 fv Log-Normal Cox, Log-Normal FALSE #> 7782 487 0.8900147 0.175007983 fv Log-Normal Cox, Log-Normal FALSE #> 7798 488 0.4449524 0.087682549 fv Log-Normal Cox, Log-Normal FALSE #> 7814 489 0.8004214 0.186144327 fv Log-Normal Cox, Log-Normal FALSE #> 7830 490 0.7127792 0.119173213 fv Log-Normal Cox, Log-Normal FALSE #> 7846 491 0.6889070 0.133673254 fv Log-Normal Cox, Log-Normal FALSE #> 7862 492 0.5582058 0.086242399 fv Log-Normal Cox, Log-Normal FALSE #> 7878 493 1.0663941 0.245806620 fv Log-Normal Cox, Log-Normal TRUE #> 7894 494 0.6613066 0.106604021 fv Log-Normal Cox, Log-Normal FALSE #> 7910 495 0.8228011 0.118045197 fv Log-Normal Cox, Log-Normal FALSE #> 7926 496 1.0887179 0.237339281 fv Log-Normal Cox, Log-Normal TRUE #> 7942 497 0.5916038 0.114587057 fv Log-Normal Cox, Log-Normal FALSE #> 7958 498 0.6348066 0.135633761 fv Log-Normal Cox, Log-Normal FALSE #> 7974 499 0.8889109 0.216181001 fv Log-Normal Cox, Log-Normal FALSE #> 7990 500 0.6773264 0.138954096 fv Log-Normal Cox, Log-Normal FALSE #> 8006 501 1.3435254 0.291530812 fv Log-Normal Cox, Log-Normal TRUE #> 8022 502 0.7736005 0.146718156 fv Log-Normal Cox, Log-Normal FALSE #> 8038 503 0.7460948 0.134956945 fv Log-Normal Cox, Log-Normal FALSE #> 8054 504 0.8756279 0.159497799 fv Log-Normal Cox, Log-Normal FALSE #> 8070 505 0.7539893 0.111108625 fv Log-Normal Cox, Log-Normal FALSE #> 8086 506 1.0221922 0.240938697 fv Log-Normal Cox, Log-Normal TRUE #> 8102 507 0.7310864 0.114690626 fv Log-Normal Cox, Log-Normal FALSE #> 8118 508 0.5378310 0.123741319 fv Log-Normal Cox, Log-Normal FALSE #> 8134 509 0.6777937 0.130389895 fv Log-Normal Cox, Log-Normal FALSE #> 8150 510 0.6842877 0.138741429 fv Log-Normal Cox, Log-Normal FALSE #> 8166 511 0.4603930 0.088394301 fv Log-Normal Cox, Log-Normal FALSE #> 8182 512 0.7229525 0.147506273 fv Log-Normal Cox, Log-Normal FALSE #> 8198 513 0.8035298 0.149275045 fv Log-Normal Cox, Log-Normal FALSE #> 8214 514 0.7179322 0.136809080 fv Log-Normal Cox, Log-Normal FALSE #> 8230 515 0.5586526 0.122315382 fv Log-Normal Cox, Log-Normal FALSE #> 8246 516 0.7377219 0.143754572 fv Log-Normal Cox, Log-Normal FALSE #> 8262 517 0.3667741 0.085169579 fv Log-Normal Cox, Log-Normal TRUE #> 8278 518 0.7435838 0.138029022 fv Log-Normal Cox, Log-Normal FALSE #> 8294 519 0.7674745 0.150261965 fv Log-Normal Cox, Log-Normal FALSE #> 8310 520 0.8003345 0.122407092 fv Log-Normal Cox, Log-Normal FALSE #> 8326 521 0.7988626 0.169064785 fv Log-Normal Cox, Log-Normal FALSE #> 8342 522 0.5375144 0.095228819 fv Log-Normal Cox, Log-Normal FALSE #> 8358 523 0.7667009 0.131558815 fv Log-Normal Cox, Log-Normal FALSE #> 8374 524 0.5269024 0.120077784 fv Log-Normal Cox, Log-Normal FALSE #> 8390 525 0.7031804 0.154586399 fv Log-Normal Cox, Log-Normal FALSE #> 8406 526 0.6061274 0.117091908 fv Log-Normal Cox, Log-Normal FALSE #> 8422 527 0.7137822 0.163596077 fv Log-Normal Cox, Log-Normal FALSE #> 8438 528 0.9252247 0.189829300 fv Log-Normal Cox, Log-Normal FALSE #> 8454 529 0.9342341 0.181406052 fv Log-Normal Cox, Log-Normal FALSE #> 8470 530 0.4498170 0.111087235 fv Log-Normal Cox, Log-Normal FALSE #> 8486 531 0.9979562 0.213629379 fv Log-Normal Cox, Log-Normal FALSE #> 8502 532 0.7223377 0.116231722 fv Log-Normal Cox, Log-Normal FALSE #> 8518 533 0.6906718 0.122960600 fv Log-Normal Cox, Log-Normal FALSE #> 8534 534 0.7416424 0.148941672 fv Log-Normal Cox, Log-Normal FALSE #> 8550 535 0.8626834 0.157323432 fv Log-Normal Cox, Log-Normal FALSE #> 8566 536 0.5963041 0.116089213 fv Log-Normal Cox, Log-Normal FALSE #> 8582 537 1.2345153 0.237582349 fv Log-Normal Cox, Log-Normal TRUE #> 8598 538 0.5063558 0.092401072 fv Log-Normal Cox, Log-Normal FALSE #> 8614 539 0.6862567 0.149536685 fv Log-Normal Cox, Log-Normal FALSE #> 8630 540 0.6141186 0.114391863 fv Log-Normal Cox, Log-Normal FALSE #> 8646 541 0.8968782 0.167673684 fv Log-Normal Cox, Log-Normal FALSE #> 8662 542 0.8198767 0.169342183 fv Log-Normal Cox, Log-Normal FALSE #> 8678 543 0.7575504 0.148707340 fv Log-Normal Cox, Log-Normal FALSE #> 8694 544 0.7617908 0.155859277 fv Log-Normal Cox, Log-Normal FALSE #> 8710 545 0.5717824 0.084305835 fv Log-Normal Cox, Log-Normal FALSE #> 8726 546 0.9040874 0.167410002 fv Log-Normal Cox, Log-Normal FALSE #> 8742 547 0.6870910 0.129415648 fv Log-Normal Cox, Log-Normal FALSE #> 8758 548 0.5381865 0.117060922 fv Log-Normal Cox, Log-Normal FALSE #> 8774 549 0.8835431 0.179113769 fv Log-Normal Cox, Log-Normal FALSE #> 8790 550 0.5208702 0.124333872 fv Log-Normal Cox, Log-Normal FALSE #> 8806 551 0.7964585 0.156422129 fv Log-Normal Cox, Log-Normal FALSE #> 8822 552 0.7041652 0.128276679 fv Log-Normal Cox, Log-Normal FALSE #> 8838 553 0.8459051 0.122339846 fv Log-Normal Cox, Log-Normal FALSE #> 8854 554 0.8977503 0.179088453 fv Log-Normal Cox, Log-Normal FALSE #> 8870 555 0.8326376 0.128746242 fv Log-Normal Cox, Log-Normal FALSE #> 8886 556 0.8753515 0.143451520 fv Log-Normal Cox, Log-Normal FALSE #> 8902 557 0.6984218 0.127912102 fv Log-Normal Cox, Log-Normal FALSE #> 8918 558 0.6669430 0.112161043 fv Log-Normal Cox, Log-Normal FALSE #> 8934 559 0.6132347 0.122896494 fv Log-Normal Cox, Log-Normal FALSE #> 8950 560 0.7760753 0.145292156 fv Log-Normal Cox, Log-Normal FALSE #> 8966 561 1.2406263 0.221751865 fv Log-Normal Cox, Log-Normal TRUE #> 8982 562 0.8951923 0.192853014 fv Log-Normal Cox, Log-Normal FALSE #> 8998 563 0.7936453 0.148256364 fv Log-Normal Cox, Log-Normal FALSE #> 9014 564 0.6496611 0.154999773 fv Log-Normal Cox, Log-Normal FALSE #> 9030 565 0.5558608 0.112968507 fv Log-Normal Cox, Log-Normal FALSE #> 9046 566 0.7784225 0.197678997 fv Log-Normal Cox, Log-Normal FALSE #> 9062 567 0.7390722 0.134151819 fv Log-Normal Cox, Log-Normal FALSE #> 9078 568 0.5370427 0.106409861 fv Log-Normal Cox, Log-Normal FALSE #> 9094 569 0.8446977 0.151362680 fv Log-Normal Cox, Log-Normal FALSE #> 9110 570 0.5783874 0.154235730 fv Log-Normal Cox, Log-Normal FALSE #> 9126 571 0.6980819 0.132611887 fv Log-Normal Cox, Log-Normal FALSE #> 9142 572 0.6078955 0.113509666 fv Log-Normal Cox, Log-Normal FALSE #> 9158 573 0.6531702 0.123193776 fv Log-Normal Cox, Log-Normal FALSE #> 9174 574 0.7369219 0.133697888 fv Log-Normal Cox, Log-Normal FALSE #> 9190 575 0.6652456 0.174809549 fv Log-Normal Cox, Log-Normal FALSE #> 9206 576 0.7042127 0.184240750 fv Log-Normal Cox, Log-Normal FALSE #> 9222 577 0.9058959 0.206369728 fv Log-Normal Cox, Log-Normal FALSE #> 9238 578 0.5871046 0.099243005 fv Log-Normal Cox, Log-Normal FALSE #> 9254 579 0.6010841 0.132716062 fv Log-Normal Cox, Log-Normal FALSE #> 9270 580 0.4971421 0.107766896 fv Log-Normal Cox, Log-Normal FALSE #> 9286 581 0.7923715 0.151082100 fv Log-Normal Cox, Log-Normal FALSE #> 9302 582 0.7728312 0.153502508 fv Log-Normal Cox, Log-Normal FALSE #> 9318 583 1.0323624 0.163822527 fv Log-Normal Cox, Log-Normal FALSE #> 9334 584 0.5414420 0.108025677 fv Log-Normal Cox, Log-Normal FALSE #> 9350 585 0.7190622 0.114529054 fv Log-Normal Cox, Log-Normal FALSE #> 9366 586 0.7455106 0.124365353 fv Log-Normal Cox, Log-Normal FALSE #> 9382 587 0.9302355 0.214573938 fv Log-Normal Cox, Log-Normal FALSE #> 9398 588 0.5806374 0.109803503 fv Log-Normal Cox, Log-Normal FALSE #> 9414 589 0.6039216 0.119344261 fv Log-Normal Cox, Log-Normal FALSE #> 9430 590 0.8219766 0.176507665 fv Log-Normal Cox, Log-Normal FALSE #> 9446 591 0.8456887 0.166784984 fv Log-Normal Cox, Log-Normal FALSE #> 9462 592 0.8298067 0.163691115 fv Log-Normal Cox, Log-Normal FALSE #> 9478 593 0.9301881 0.184785185 fv Log-Normal Cox, Log-Normal FALSE #> 9494 594 0.7212752 0.124340342 fv Log-Normal Cox, Log-Normal FALSE #> 9510 595 0.5431571 0.090258789 fv Log-Normal Cox, Log-Normal FALSE #> 9526 596 0.7293813 0.174344234 fv Log-Normal Cox, Log-Normal FALSE #> 9542 597 0.6050940 0.111506243 fv Log-Normal Cox, Log-Normal FALSE #> 9558 598 1.0673488 0.205896016 fv Log-Normal Cox, Log-Normal TRUE #> 9574 599 0.7497517 0.183646091 fv Log-Normal Cox, Log-Normal FALSE #> 9590 600 0.5310092 0.109738635 fv Log-Normal Cox, Log-Normal FALSE #> 9606 601 1.1622807 0.252214764 fv Log-Normal Cox, Log-Normal TRUE #> 9622 602 0.9860745 0.203449964 fv Log-Normal Cox, Log-Normal FALSE #> 9638 603 0.4156386 0.069227727 fv Log-Normal Cox, Log-Normal TRUE #> 9654 604 0.7547442 0.131357593 fv Log-Normal Cox, Log-Normal FALSE #> 9670 605 1.2270888 0.254788035 fv Log-Normal Cox, Log-Normal TRUE #> 9686 606 0.6744288 0.140766466 fv Log-Normal Cox, Log-Normal FALSE #> 9702 607 0.6089607 0.135399445 fv Log-Normal Cox, Log-Normal FALSE #> 9718 608 0.4385750 0.078430090 fv Log-Normal Cox, Log-Normal FALSE #> 9734 609 0.8290773 0.146094145 fv Log-Normal Cox, Log-Normal FALSE #> 9750 610 0.6340374 0.128702321 fv Log-Normal Cox, Log-Normal FALSE #> 9766 611 0.8007515 0.201200477 fv Log-Normal Cox, Log-Normal FALSE #> 9782 612 0.5875066 0.117282979 fv Log-Normal Cox, Log-Normal FALSE #> 9798 613 0.8175702 0.130135551 fv Log-Normal Cox, Log-Normal FALSE #> 9814 614 0.7773840 0.134334791 fv Log-Normal Cox, Log-Normal FALSE #> 9830 615 0.8689451 0.145406422 fv Log-Normal Cox, Log-Normal FALSE #> 9846 616 0.7820989 0.151533700 fv Log-Normal Cox, Log-Normal FALSE #> 9862 617 0.7837638 0.136211673 fv Log-Normal Cox, Log-Normal FALSE #> 9878 618 0.6788178 0.142475685 fv Log-Normal Cox, Log-Normal FALSE #> 9894 619 0.8183659 0.154788400 fv Log-Normal Cox, Log-Normal FALSE #> 9910 620 0.8171046 0.180268515 fv Log-Normal Cox, Log-Normal FALSE #> 9926 621 0.5639292 0.107073034 fv Log-Normal Cox, Log-Normal FALSE #> 9942 622 0.6314516 0.125356048 fv Log-Normal Cox, Log-Normal FALSE #> 9958 623 0.8785102 0.184572000 fv Log-Normal Cox, Log-Normal FALSE #> 9974 624 0.5825642 0.140201227 fv Log-Normal Cox, Log-Normal FALSE #> 9990 625 0.7614824 0.157638018 fv Log-Normal Cox, Log-Normal FALSE #> 10006 626 0.6383478 0.128329406 fv Log-Normal Cox, Log-Normal FALSE #> 10022 627 0.6242897 0.114015728 fv Log-Normal Cox, Log-Normal FALSE #> 10038 628 0.6642862 0.172314284 fv Log-Normal Cox, Log-Normal FALSE #> 10054 629 0.6375845 0.122839399 fv Log-Normal Cox, Log-Normal FALSE #> 10070 630 0.8324783 0.130755118 fv Log-Normal Cox, Log-Normal FALSE #> 10086 631 0.6702640 0.108227424 fv Log-Normal Cox, Log-Normal FALSE #> 10102 632 0.7767630 0.177729336 fv Log-Normal Cox, Log-Normal FALSE #> 10118 633 0.4914987 0.093416187 fv Log-Normal Cox, Log-Normal FALSE #> 10134 634 0.6746632 0.175170229 fv Log-Normal Cox, Log-Normal FALSE #> 10150 635 0.9036130 0.202423279 fv Log-Normal Cox, Log-Normal FALSE #> 10166 636 0.4183601 0.083783931 fv Log-Normal Cox, Log-Normal TRUE #> 10182 637 0.8719040 0.157295311 fv Log-Normal Cox, Log-Normal FALSE #> 10198 638 0.6832427 0.161228334 fv Log-Normal Cox, Log-Normal FALSE #> 10214 639 0.4325527 0.097111445 fv Log-Normal Cox, Log-Normal FALSE #> 10230 640 0.7229937 0.154618672 fv Log-Normal Cox, Log-Normal FALSE #> 10246 641 0.5857330 0.122395333 fv Log-Normal Cox, Log-Normal FALSE #> 10262 642 0.6360379 0.117279907 fv Log-Normal Cox, Log-Normal FALSE #> 10278 643 0.6645645 0.116264569 fv Log-Normal Cox, Log-Normal FALSE #> 10294 644 0.6190932 0.107311160 fv Log-Normal Cox, Log-Normal FALSE #> 10310 645 0.7533956 0.134819768 fv Log-Normal Cox, Log-Normal FALSE #> 10326 646 0.8375410 0.134833528 fv Log-Normal Cox, Log-Normal FALSE #> 10342 647 0.6563751 0.098262571 fv Log-Normal Cox, Log-Normal FALSE #> 10358 648 1.0706016 0.216998183 fv Log-Normal Cox, Log-Normal TRUE #> 10374 649 0.6314217 0.139306982 fv Log-Normal Cox, Log-Normal FALSE #> 10390 650 0.8102765 0.157581814 fv Log-Normal Cox, Log-Normal FALSE #> 10406 651 0.7925761 0.156304582 fv Log-Normal Cox, Log-Normal FALSE #> 10422 652 1.2665462 0.209947407 fv Log-Normal Cox, Log-Normal TRUE #> 10438 653 0.5434712 0.103592893 fv Log-Normal Cox, Log-Normal FALSE #> 10454 654 0.5856523 0.164414521 fv Log-Normal Cox, Log-Normal FALSE #> 10470 655 0.7001387 0.134566498 fv Log-Normal Cox, Log-Normal FALSE #> 10486 656 0.7099659 0.150674082 fv Log-Normal Cox, Log-Normal FALSE #> 10502 657 0.5343694 0.110794639 fv Log-Normal Cox, Log-Normal FALSE #> 10518 658 1.1477870 0.241951186 fv Log-Normal Cox, Log-Normal TRUE #> 10534 659 1.0433141 0.268908122 fv Log-Normal Cox, Log-Normal TRUE #> 10550 660 0.8574517 0.160474979 fv Log-Normal Cox, Log-Normal FALSE #> 10566 661 0.5656016 0.115462157 fv Log-Normal Cox, Log-Normal FALSE #> 10582 662 0.5913374 0.112065321 fv Log-Normal Cox, Log-Normal FALSE #> 10598 663 0.7014024 0.115616243 fv Log-Normal Cox, Log-Normal FALSE #> 10614 664 0.7024798 0.117240169 fv Log-Normal Cox, Log-Normal FALSE #> 10630 665 0.8771094 0.169469126 fv Log-Normal Cox, Log-Normal FALSE #> 10646 666 1.1630685 0.201255082 fv Log-Normal Cox, Log-Normal TRUE #> 10662 667 0.6484067 0.117314626 fv Log-Normal Cox, Log-Normal FALSE #> 10678 668 0.6308263 0.131132730 fv Log-Normal Cox, Log-Normal FALSE #> 10694 669 0.9142532 0.187111491 fv Log-Normal Cox, Log-Normal FALSE #> 10710 670 0.6192754 0.147049588 fv Log-Normal Cox, Log-Normal FALSE #> 10726 671 0.7969559 0.146088966 fv Log-Normal Cox, Log-Normal FALSE #> 10742 672 0.9573071 0.193663466 fv Log-Normal Cox, Log-Normal FALSE #> 10758 673 0.6501472 0.117106072 fv Log-Normal Cox, Log-Normal FALSE #> 10774 674 0.8224194 0.160584426 fv Log-Normal Cox, Log-Normal FALSE #> 10790 675 0.6495018 0.188477878 fv Log-Normal Cox, Log-Normal FALSE #> 10806 676 0.8711933 0.164562370 fv Log-Normal Cox, Log-Normal FALSE #> 10822 677 0.6800675 0.117054835 fv Log-Normal Cox, Log-Normal FALSE #> 10838 678 0.5713441 0.107816673 fv Log-Normal Cox, Log-Normal FALSE #> 10854 679 0.6112346 0.133477913 fv Log-Normal Cox, Log-Normal FALSE #> 10870 680 0.7496116 0.136062520 fv Log-Normal Cox, Log-Normal FALSE #> 10886 681 1.0147299 0.200149345 fv Log-Normal Cox, Log-Normal FALSE #> 10902 682 0.6897060 0.140083930 fv Log-Normal Cox, Log-Normal FALSE #> 10918 683 0.8143957 0.185740341 fv Log-Normal Cox, Log-Normal FALSE #> 10934 684 1.0560264 0.219153739 fv Log-Normal Cox, Log-Normal TRUE #> 10950 685 0.6654488 0.115993957 fv Log-Normal Cox, Log-Normal FALSE #> 10966 686 0.8930725 0.173037645 fv Log-Normal Cox, Log-Normal FALSE #> 10982 687 0.5843867 0.083530258 fv Log-Normal Cox, Log-Normal FALSE #> 10998 688 0.6143148 0.131684418 fv Log-Normal Cox, Log-Normal FALSE #> 11014 689 0.6573937 0.127658438 fv Log-Normal Cox, Log-Normal FALSE #> 11030 690 0.8718297 0.179672033 fv Log-Normal Cox, Log-Normal FALSE #> 11046 691 0.7069982 0.288250138 fv Log-Normal Cox, Log-Normal TRUE #> 11062 692 0.6778167 0.148233924 fv Log-Normal Cox, Log-Normal FALSE #> 11078 693 0.5430129 0.135999915 fv Log-Normal Cox, Log-Normal FALSE #> 11094 694 0.7297001 0.140998825 fv Log-Normal Cox, Log-Normal FALSE #> 11110 695 0.6424014 0.105666649 fv Log-Normal Cox, Log-Normal FALSE #> 11126 696 0.7792619 0.119330409 fv Log-Normal Cox, Log-Normal FALSE #> 11142 697 0.8896887 0.198744409 fv Log-Normal Cox, Log-Normal FALSE #> 11158 698 0.4671205 0.106620840 fv Log-Normal Cox, Log-Normal FALSE #> 11174 699 0.7181789 0.160616129 fv Log-Normal Cox, Log-Normal FALSE #> 11190 700 0.5477280 0.108273968 fv Log-Normal Cox, Log-Normal FALSE #> 11206 701 0.8589172 0.180922288 fv Log-Normal Cox, Log-Normal FALSE #> 11222 702 0.8686646 0.196511490 fv Log-Normal Cox, Log-Normal FALSE #> 11238 703 0.7410847 0.159178375 fv Log-Normal Cox, Log-Normal FALSE #> 11254 704 0.6408199 0.125427367 fv Log-Normal Cox, Log-Normal FALSE #> 11270 705 0.7057959 0.146779535 fv Log-Normal Cox, Log-Normal FALSE #> 11286 706 0.7643511 0.148323471 fv Log-Normal Cox, Log-Normal FALSE #> 11302 707 0.9700524 0.160443888 fv Log-Normal Cox, Log-Normal FALSE #> 11318 708 0.9265933 0.149354147 fv Log-Normal Cox, Log-Normal FALSE #> 11334 709 0.6749683 0.172123684 fv Log-Normal Cox, Log-Normal FALSE #> 11350 710 0.5117771 0.091200765 fv Log-Normal Cox, Log-Normal FALSE #> 11366 711 0.6439905 0.167360644 fv Log-Normal Cox, Log-Normal FALSE #> 11382 712 0.6767084 0.108127089 fv Log-Normal Cox, Log-Normal FALSE #> 11398 713 1.0129778 0.274729370 fv Log-Normal Cox, Log-Normal TRUE #> 11414 714 0.8089406 0.174250652 fv Log-Normal Cox, Log-Normal FALSE #> 11430 715 0.8597580 0.165342420 fv Log-Normal Cox, Log-Normal FALSE #> 11446 716 0.7624100 0.134839371 fv Log-Normal Cox, Log-Normal FALSE #> 11462 717 0.8249533 0.167079927 fv Log-Normal Cox, Log-Normal FALSE #> 11478 718 0.8576847 0.162024555 fv Log-Normal Cox, Log-Normal FALSE #> 11494 719 0.9824621 0.237930201 fv Log-Normal Cox, Log-Normal TRUE #> 11510 720 0.7869505 0.125298604 fv Log-Normal Cox, Log-Normal FALSE #> 11526 721 0.6114592 0.138309040 fv Log-Normal Cox, Log-Normal FALSE #> 11542 722 0.8040976 0.146430602 fv Log-Normal Cox, Log-Normal FALSE #> 11558 723 0.6317170 0.117974648 fv Log-Normal Cox, Log-Normal FALSE #> 11574 724 0.7495479 0.173784769 fv Log-Normal Cox, Log-Normal FALSE #> 11590 725 0.7586515 0.141571771 fv Log-Normal Cox, Log-Normal FALSE #> 11606 726 0.6758165 0.142506550 fv Log-Normal Cox, Log-Normal FALSE #> 11622 727 0.7878067 0.116750587 fv Log-Normal Cox, Log-Normal FALSE #> 11638 728 1.0293747 0.182526831 fv Log-Normal Cox, Log-Normal FALSE #> 11654 729 0.7858074 0.152231699 fv Log-Normal Cox, Log-Normal FALSE #> 11670 730 0.8523065 0.177705684 fv Log-Normal Cox, Log-Normal FALSE #> 11686 731 0.5676312 0.154710463 fv Log-Normal Cox, Log-Normal FALSE #> 11702 732 0.4997332 0.136812917 fv Log-Normal Cox, Log-Normal FALSE #> 11718 733 0.9890456 0.207143362 fv Log-Normal Cox, Log-Normal FALSE #> 11734 734 0.8982896 0.180036540 fv Log-Normal Cox, Log-Normal FALSE #> 11750 735 1.0022962 0.154539597 fv Log-Normal Cox, Log-Normal FALSE #> 11766 736 0.8541157 0.183590550 fv Log-Normal Cox, Log-Normal FALSE #> 11782 737 0.7416449 0.113810433 fv Log-Normal Cox, Log-Normal FALSE #> 11798 738 0.5320803 0.105301645 fv Log-Normal Cox, Log-Normal FALSE #> 11814 739 0.6012800 0.128194651 fv Log-Normal Cox, Log-Normal FALSE #> 11830 740 0.8138247 0.152345638 fv Log-Normal Cox, Log-Normal FALSE #> 11846 741 1.0145235 0.181258293 fv Log-Normal Cox, Log-Normal FALSE #> 11862 742 0.6611129 0.120578274 fv Log-Normal Cox, Log-Normal FALSE #> 11878 743 0.7645426 0.114386181 fv Log-Normal Cox, Log-Normal FALSE #> 11894 744 0.7905449 0.201901154 fv Log-Normal Cox, Log-Normal FALSE #> 11910 745 0.7800280 0.154382410 fv Log-Normal Cox, Log-Normal FALSE #> 11926 746 0.5983568 0.171488391 fv Log-Normal Cox, Log-Normal FALSE #> 11942 747 0.6553279 0.126681997 fv Log-Normal Cox, Log-Normal FALSE #> 11958 748 0.8596291 0.190755108 fv Log-Normal Cox, Log-Normal FALSE #> 11974 749 0.9163101 0.186289412 fv Log-Normal Cox, Log-Normal FALSE #> 11990 750 0.7524690 0.142892311 fv Log-Normal Cox, Log-Normal FALSE #> 12006 751 0.8953943 0.163271302 fv Log-Normal Cox, Log-Normal FALSE #> 12022 752 0.6902168 0.167689577 fv Log-Normal Cox, Log-Normal FALSE #> 12038 753 0.4443201 0.114075408 fv Log-Normal Cox, Log-Normal FALSE #> 12054 754 0.7877421 0.145197625 fv Log-Normal Cox, Log-Normal FALSE #> 12070 755 0.6689381 0.126865509 fv Log-Normal Cox, Log-Normal FALSE #> 12086 756 0.3785131 0.082873155 fv Log-Normal Cox, Log-Normal TRUE #> 12102 757 0.6779404 0.130786163 fv Log-Normal Cox, Log-Normal FALSE #> 12118 758 0.7746253 0.163500811 fv Log-Normal Cox, Log-Normal FALSE #> 12134 759 0.6781740 0.122448396 fv Log-Normal Cox, Log-Normal FALSE #> 12150 760 0.8695697 0.184253732 fv Log-Normal Cox, Log-Normal FALSE #> 12166 761 0.6318074 0.126609451 fv Log-Normal Cox, Log-Normal FALSE #> 12182 762 0.7612468 0.155081467 fv Log-Normal Cox, Log-Normal FALSE #> 12198 763 0.5637018 0.111824322 fv Log-Normal Cox, Log-Normal FALSE #> 12214 764 0.6553212 0.114285817 fv Log-Normal Cox, Log-Normal FALSE #> 12230 765 0.9462467 0.163155624 fv Log-Normal Cox, Log-Normal FALSE #> 12246 766 0.6537097 0.106200814 fv Log-Normal Cox, Log-Normal FALSE #> 12262 767 0.8747035 0.162635548 fv Log-Normal Cox, Log-Normal FALSE #> 12278 768 0.5877160 0.115237900 fv Log-Normal Cox, Log-Normal FALSE #> 12294 769 1.0167998 0.184375254 fv Log-Normal Cox, Log-Normal FALSE #> 12310 770 0.6130030 0.145352310 fv Log-Normal Cox, Log-Normal FALSE #> 12326 771 0.5745927 0.203706310 fv Log-Normal Cox, Log-Normal FALSE #> 12342 772 0.5853131 0.110646970 fv Log-Normal Cox, Log-Normal FALSE #> 12358 773 0.5687756 0.134007492 fv Log-Normal Cox, Log-Normal FALSE #> 12374 774 0.7226932 0.149336319 fv Log-Normal Cox, Log-Normal FALSE #> 12390 775 0.6797903 0.122447722 fv Log-Normal Cox, Log-Normal FALSE #> 12406 776 0.6853206 0.109785022 fv Log-Normal Cox, Log-Normal FALSE #> 12422 777 0.6212015 0.129042772 fv Log-Normal Cox, Log-Normal FALSE #> 12438 778 0.7164382 0.234844057 fv Log-Normal Cox, Log-Normal TRUE #> 12454 779 0.6742564 0.143043418 fv Log-Normal Cox, Log-Normal FALSE #> 12470 780 0.6170242 0.105097932 fv Log-Normal Cox, Log-Normal FALSE #> 12486 781 0.7318112 0.142735071 fv Log-Normal Cox, Log-Normal FALSE #> 12502 782 0.6610061 0.135449920 fv Log-Normal Cox, Log-Normal FALSE #> 12518 783 0.6278950 0.104305213 fv Log-Normal Cox, Log-Normal FALSE #> 12534 784 0.8094113 0.169945752 fv Log-Normal Cox, Log-Normal FALSE #> 12550 785 0.4946073 0.092835822 fv Log-Normal Cox, Log-Normal FALSE #> 12566 786 0.6267274 0.128041392 fv Log-Normal Cox, Log-Normal FALSE #> 12582 787 1.0178487 0.161660428 fv Log-Normal Cox, Log-Normal FALSE #> 12598 788 0.7008192 0.129005706 fv Log-Normal Cox, Log-Normal FALSE #> 12614 789 0.9344409 0.209106923 fv Log-Normal Cox, Log-Normal FALSE #> 12630 790 0.7454167 0.158623779 fv Log-Normal Cox, Log-Normal FALSE #> 12646 791 0.4161568 0.067941163 fv Log-Normal Cox, Log-Normal TRUE #> 12662 792 0.5456873 0.127448237 fv Log-Normal Cox, Log-Normal FALSE #> 12678 793 0.8498802 0.152802063 fv Log-Normal Cox, Log-Normal FALSE #> 12694 794 0.6776564 0.170730758 fv Log-Normal Cox, Log-Normal FALSE #> 12710 795 0.6364088 0.114399391 fv Log-Normal Cox, Log-Normal FALSE #> 12726 796 0.6120280 0.123040994 fv Log-Normal Cox, Log-Normal FALSE #> 12742 797 0.6868664 0.174130114 fv Log-Normal Cox, Log-Normal FALSE #> 12758 798 0.4111110 0.073952807 fv Log-Normal Cox, Log-Normal TRUE #> 12774 799 0.7667146 0.131502219 fv Log-Normal Cox, Log-Normal FALSE #> 12790 800 0.7651482 0.172314768 fv Log-Normal Cox, Log-Normal FALSE #> 12806 801 0.9872713 0.175396964 fv Log-Normal Cox, Log-Normal FALSE #> 12822 802 0.7981148 0.154386226 fv Log-Normal Cox, Log-Normal FALSE #> 12838 803 0.6583993 0.114725176 fv Log-Normal Cox, Log-Normal FALSE #> 12854 804 0.7555532 0.134524463 fv Log-Normal Cox, Log-Normal FALSE #> 12870 805 0.8249342 0.224337487 fv Log-Normal Cox, Log-Normal TRUE #> 12886 806 0.7903732 0.194773703 fv Log-Normal Cox, Log-Normal FALSE #> 12902 807 0.6441408 0.165412856 fv Log-Normal Cox, Log-Normal FALSE #> 12918 808 0.5046575 0.080358900 fv Log-Normal Cox, Log-Normal FALSE #> 12934 809 0.6864933 0.146661840 fv Log-Normal Cox, Log-Normal FALSE #> 12950 810 0.8124512 0.154133092 fv Log-Normal Cox, Log-Normal FALSE #> 12966 811 0.4692017 0.082645886 fv Log-Normal Cox, Log-Normal FALSE #> 12982 812 0.7250259 0.147300631 fv Log-Normal Cox, Log-Normal FALSE #> 12998 813 0.8814457 0.152466669 fv Log-Normal Cox, Log-Normal FALSE #> 13014 814 0.6852626 0.133497265 fv Log-Normal Cox, Log-Normal FALSE #> 13030 815 0.5973459 0.152294373 fv Log-Normal Cox, Log-Normal FALSE #> 13046 816 0.6997353 0.136317443 fv Log-Normal Cox, Log-Normal FALSE #> 13062 817 0.4710155 0.088285645 fv Log-Normal Cox, Log-Normal FALSE #> 13078 818 0.6451949 0.153857802 fv Log-Normal Cox, Log-Normal FALSE #> 13094 819 0.8337783 0.122400350 fv Log-Normal Cox, Log-Normal FALSE #> 13110 820 0.8563875 0.184562604 fv Log-Normal Cox, Log-Normal FALSE #> 13126 821 0.5642452 0.099701124 fv Log-Normal Cox, Log-Normal FALSE #> 13142 822 0.8848165 0.173698620 fv Log-Normal Cox, Log-Normal FALSE #> 13158 823 0.9679673 0.224333994 fv Log-Normal Cox, Log-Normal TRUE #> 13174 824 0.9169811 0.190827566 fv Log-Normal Cox, Log-Normal FALSE #> 13190 825 0.7620785 0.143634398 fv Log-Normal Cox, Log-Normal FALSE #> 13206 826 0.8129126 0.187223856 fv Log-Normal Cox, Log-Normal FALSE #> 13222 827 0.8913960 0.200847045 fv Log-Normal Cox, Log-Normal FALSE #> 13238 828 0.7526682 0.217873031 fv Log-Normal Cox, Log-Normal FALSE #> 13254 829 0.7129035 0.141271513 fv Log-Normal Cox, Log-Normal FALSE #> 13270 830 0.8093686 0.161447055 fv Log-Normal Cox, Log-Normal FALSE #> 13286 831 0.8728235 0.152899961 fv Log-Normal Cox, Log-Normal FALSE #> 13302 832 0.5911143 0.140956737 fv Log-Normal Cox, Log-Normal FALSE #> 13318 833 0.8823798 0.182578061 fv Log-Normal Cox, Log-Normal FALSE #> 13334 834 0.6489802 0.138432704 fv Log-Normal Cox, Log-Normal FALSE #> 13350 835 0.6823934 0.138367545 fv Log-Normal Cox, Log-Normal FALSE #> 13366 836 0.7826148 0.163460070 fv Log-Normal Cox, Log-Normal FALSE #> 13382 837 0.7736597 0.176327722 fv Log-Normal Cox, Log-Normal FALSE #> 13398 838 0.7054494 0.122169599 fv Log-Normal Cox, Log-Normal FALSE #> 13414 839 0.5919390 0.130336343 fv Log-Normal Cox, Log-Normal FALSE #> 13430 840 0.6180481 0.108543993 fv Log-Normal Cox, Log-Normal FALSE #> 13446 841 0.9302992 0.196914198 fv Log-Normal Cox, Log-Normal FALSE #> 13462 842 0.5602323 0.109237597 fv Log-Normal Cox, Log-Normal FALSE #> 13478 843 0.6748513 0.144994565 fv Log-Normal Cox, Log-Normal FALSE #> 13494 844 0.9129811 0.159326671 fv Log-Normal Cox, Log-Normal FALSE #> 13510 845 0.9877512 0.201813260 fv Log-Normal Cox, Log-Normal FALSE #> 13526 846 0.5533760 0.112530844 fv Log-Normal Cox, Log-Normal FALSE #> 13542 847 1.0264997 0.158287594 fv Log-Normal Cox, Log-Normal FALSE #> 13558 848 0.8399707 0.148734031 fv Log-Normal Cox, Log-Normal FALSE #> 13574 849 0.6201535 0.111310526 fv Log-Normal Cox, Log-Normal FALSE #> 13590 850 0.8142559 0.145644218 fv Log-Normal Cox, Log-Normal FALSE #> 13606 851 0.7006251 0.122041091 fv Log-Normal Cox, Log-Normal FALSE #> 13622 852 0.7511030 0.133087367 fv Log-Normal Cox, Log-Normal FALSE #> 13638 853 1.0390655 0.145203301 fv Log-Normal Cox, Log-Normal FALSE #> 13654 854 0.7097626 0.174226283 fv Log-Normal Cox, Log-Normal FALSE #> 13670 855 0.6546727 0.164479144 fv Log-Normal Cox, Log-Normal FALSE #> 13686 856 0.8742938 0.176632638 fv Log-Normal Cox, Log-Normal FALSE #> 13702 857 0.8235076 0.201058874 fv Log-Normal Cox, Log-Normal FALSE #> 13718 858 1.0655379 0.200597120 fv Log-Normal Cox, Log-Normal TRUE #> 13734 859 0.9019343 0.175412623 fv Log-Normal Cox, Log-Normal FALSE #> 13750 860 0.6622603 0.126053239 fv Log-Normal Cox, Log-Normal FALSE #> 13766 861 0.4665198 0.077897819 fv Log-Normal Cox, Log-Normal FALSE #> 13782 862 0.6543993 0.124272472 fv Log-Normal Cox, Log-Normal FALSE #> 13798 863 0.6978115 0.134982065 fv Log-Normal Cox, Log-Normal FALSE #> 13814 864 0.9283803 0.173095332 fv Log-Normal Cox, Log-Normal FALSE #> 13830 865 0.9136195 0.174912207 fv Log-Normal Cox, Log-Normal FALSE #> 13846 866 0.7371495 0.158525534 fv Log-Normal Cox, Log-Normal FALSE #> 13862 867 0.6008699 0.124295016 fv Log-Normal Cox, Log-Normal FALSE #> 13878 868 0.8928902 0.189023552 fv Log-Normal Cox, Log-Normal FALSE #> 13894 869 0.5323448 0.094885987 fv Log-Normal Cox, Log-Normal FALSE #> 13910 870 0.7740212 0.153614509 fv Log-Normal Cox, Log-Normal FALSE #> 13926 871 0.5040690 0.094185702 fv Log-Normal Cox, Log-Normal FALSE #> 13942 872 0.4682306 0.082330866 fv Log-Normal Cox, Log-Normal FALSE #> 13958 873 0.8744887 0.139709149 fv Log-Normal Cox, Log-Normal FALSE #> 13974 874 0.7783567 0.192580753 fv Log-Normal Cox, Log-Normal FALSE #> 13990 875 0.6773657 0.139640942 fv Log-Normal Cox, Log-Normal FALSE #> 14006 876 0.6165045 0.121485821 fv Log-Normal Cox, Log-Normal FALSE #> 14022 877 0.5859028 0.131899842 fv Log-Normal Cox, Log-Normal FALSE #> 14038 878 0.6917847 0.157165569 fv Log-Normal Cox, Log-Normal FALSE #> 14054 879 0.6977268 0.137740612 fv Log-Normal Cox, Log-Normal FALSE #> 14070 880 0.8483322 0.141854241 fv Log-Normal Cox, Log-Normal FALSE #> 14086 881 0.5661982 0.102733370 fv Log-Normal Cox, Log-Normal FALSE #> 14102 882 0.7169868 0.152447981 fv Log-Normal Cox, Log-Normal FALSE #> 14118 883 0.6447592 0.153543953 fv Log-Normal Cox, Log-Normal FALSE #> 14134 884 0.5975498 0.128517356 fv Log-Normal Cox, Log-Normal FALSE #> 14150 885 0.7782512 0.162836252 fv Log-Normal Cox, Log-Normal FALSE #> 14166 886 0.6628296 0.148932066 fv Log-Normal Cox, Log-Normal FALSE #> 14182 887 0.3830570 0.087415331 fv Log-Normal Cox, Log-Normal TRUE #> 14198 888 0.6791310 0.150167427 fv Log-Normal Cox, Log-Normal FALSE #> 14214 889 0.7780627 0.203727025 fv Log-Normal Cox, Log-Normal FALSE #> 14230 890 0.7108866 0.125667784 fv Log-Normal Cox, Log-Normal FALSE #> 14246 891 0.7540428 0.144451491 fv Log-Normal Cox, Log-Normal FALSE #> 14262 892 1.0121293 0.224929443 fv Log-Normal Cox, Log-Normal TRUE #> 14278 893 0.4956099 0.115792086 fv Log-Normal Cox, Log-Normal FALSE #> 14294 894 0.5889320 0.111970124 fv Log-Normal Cox, Log-Normal FALSE #> 14310 895 0.8335347 0.185574046 fv Log-Normal Cox, Log-Normal FALSE #> 14326 896 0.6037923 0.156766168 fv Log-Normal Cox, Log-Normal FALSE #> 14342 897 0.6843269 0.122402774 fv Log-Normal Cox, Log-Normal FALSE #> 14358 898 0.9409321 0.285299319 fv Log-Normal Cox, Log-Normal TRUE #> 14374 899 0.9418146 0.342156384 fv Log-Normal Cox, Log-Normal TRUE #> 14390 900 0.7374075 0.157498955 fv Log-Normal Cox, Log-Normal FALSE #> 14406 901 0.7858528 0.120999175 fv Log-Normal Cox, Log-Normal FALSE #> 14422 902 0.8540252 0.162479893 fv Log-Normal Cox, Log-Normal FALSE #> 14438 903 0.5849627 0.125627421 fv Log-Normal Cox, Log-Normal FALSE #> 14454 904 0.7057806 0.149798576 fv Log-Normal Cox, Log-Normal FALSE #> 14470 905 0.7357375 0.126263556 fv Log-Normal Cox, Log-Normal FALSE #> 14486 906 0.7226696 0.143793789 fv Log-Normal Cox, Log-Normal FALSE #> 14502 907 0.6382255 0.144489887 fv Log-Normal Cox, Log-Normal FALSE #> 14518 908 0.5633960 0.116541748 fv Log-Normal Cox, Log-Normal FALSE #> 14534 909 0.9533251 0.171236085 fv Log-Normal Cox, Log-Normal FALSE #> 14550 910 0.6853516 0.148763485 fv Log-Normal Cox, Log-Normal FALSE #> 14566 911 0.6876648 0.117291524 fv Log-Normal Cox, Log-Normal FALSE #> 14582 912 0.3920258 0.067947080 fv Log-Normal Cox, Log-Normal TRUE #> 14598 913 0.6137430 0.109088353 fv Log-Normal Cox, Log-Normal FALSE #> 14614 914 0.8636100 0.164033956 fv Log-Normal Cox, Log-Normal FALSE #> 14630 915 0.6906558 0.126734273 fv Log-Normal Cox, Log-Normal FALSE #> 14646 916 0.7289457 0.129897014 fv Log-Normal Cox, Log-Normal FALSE #> 14662 917 0.5314274 0.129139130 fv Log-Normal Cox, Log-Normal FALSE #> 14678 918 0.5742138 0.121553839 fv Log-Normal Cox, Log-Normal FALSE #> 14694 919 0.6544943 0.119380355 fv Log-Normal Cox, Log-Normal FALSE #> 14710 920 0.6868399 0.113637131 fv Log-Normal Cox, Log-Normal FALSE #> 14726 921 1.1773278 0.226105941 fv Log-Normal Cox, Log-Normal TRUE #> 14742 922 0.6144325 0.114228710 fv Log-Normal Cox, Log-Normal FALSE #> 14758 923 1.0843000 0.228582600 fv Log-Normal Cox, Log-Normal TRUE #> 14774 924 0.6749561 0.128183794 fv Log-Normal Cox, Log-Normal FALSE #> 14790 925 0.7478889 0.156179177 fv Log-Normal Cox, Log-Normal FALSE #> 14806 926 0.9518760 0.174183082 fv Log-Normal Cox, Log-Normal FALSE #> 14822 927 0.8086761 0.157608442 fv Log-Normal Cox, Log-Normal FALSE #> 14838 928 0.6843932 0.138396866 fv Log-Normal Cox, Log-Normal FALSE #> 14854 929 0.7647168 0.139036563 fv Log-Normal Cox, Log-Normal FALSE #> 14870 930 0.5777332 0.125461849 fv Log-Normal Cox, Log-Normal FALSE #> 14886 931 0.8122488 0.151665716 fv Log-Normal Cox, Log-Normal FALSE #> 14902 932 0.5420925 0.116762834 fv Log-Normal Cox, Log-Normal FALSE #> 14918 933 0.5739756 0.094085379 fv Log-Normal Cox, Log-Normal FALSE #> 14934 934 0.6826506 0.151986119 fv Log-Normal Cox, Log-Normal FALSE #> 14950 935 0.8998188 0.151748807 fv Log-Normal Cox, Log-Normal FALSE #> 14966 936 0.6997538 0.130621651 fv Log-Normal Cox, Log-Normal FALSE #> 14982 937 0.8472782 0.151815981 fv Log-Normal Cox, Log-Normal FALSE #> 14998 938 0.9004974 0.178529342 fv Log-Normal Cox, Log-Normal FALSE #> 15014 939 0.5682556 0.086970214 fv Log-Normal Cox, Log-Normal FALSE #> 15030 940 0.8662010 0.228227941 fv Log-Normal Cox, Log-Normal TRUE #> 15046 941 0.4726126 0.093706557 fv Log-Normal Cox, Log-Normal FALSE #> 15062 942 0.8714100 0.165388066 fv Log-Normal Cox, Log-Normal FALSE #> 15078 943 0.5203635 0.076183783 fv Log-Normal Cox, Log-Normal FALSE #> 15094 944 0.6583700 0.114715236 fv Log-Normal Cox, Log-Normal FALSE #> 15110 945 1.0014192 0.198006785 fv Log-Normal Cox, Log-Normal FALSE #> 15126 946 0.8283976 0.138699106 fv Log-Normal Cox, Log-Normal FALSE #> 15142 947 0.8336294 0.130080513 fv Log-Normal Cox, Log-Normal FALSE #> 15158 948 0.4624278 0.106368903 fv Log-Normal Cox, Log-Normal FALSE #> 15174 949 0.7755816 0.201619990 fv Log-Normal Cox, Log-Normal FALSE #> 15190 950 0.7749094 0.131061734 fv Log-Normal Cox, Log-Normal FALSE #> 15206 951 0.5867880 0.126974333 fv Log-Normal Cox, Log-Normal FALSE #> 15222 952 0.6279933 0.113401628 fv Log-Normal Cox, Log-Normal FALSE #> 15238 953 0.6028978 0.127851761 fv Log-Normal Cox, Log-Normal FALSE #> 15254 954 0.8198247 0.196525947 fv Log-Normal Cox, Log-Normal FALSE #> 15270 955 0.7011257 0.118020695 fv Log-Normal Cox, Log-Normal FALSE #> 15286 956 0.8909384 0.147092482 fv Log-Normal Cox, Log-Normal FALSE #> 15302 957 0.6256487 0.123780844 fv Log-Normal Cox, Log-Normal FALSE #> 15318 958 0.6012760 0.127411782 fv Log-Normal Cox, Log-Normal FALSE #> 15334 959 0.6842127 0.110349251 fv Log-Normal Cox, Log-Normal FALSE #> 15350 960 0.5962401 0.132639556 fv Log-Normal Cox, Log-Normal FALSE #> 15366 961 0.8256761 0.134731038 fv Log-Normal Cox, Log-Normal FALSE #> 15382 962 0.8480599 0.146238080 fv Log-Normal Cox, Log-Normal FALSE #> 15398 963 0.8964273 0.190800209 fv Log-Normal Cox, Log-Normal FALSE #> 15414 964 0.6844403 0.155462521 fv Log-Normal Cox, Log-Normal FALSE #> 15430 965 0.5646155 0.099615793 fv Log-Normal Cox, Log-Normal FALSE #> 15446 966 1.0564302 0.173266059 fv Log-Normal Cox, Log-Normal TRUE #> 15462 967 0.8965299 0.184549026 fv Log-Normal Cox, Log-Normal FALSE #> 15478 968 0.8387679 0.191014624 fv Log-Normal Cox, Log-Normal FALSE #> 15494 969 1.0086294 0.181030289 fv Log-Normal Cox, Log-Normal FALSE #> 15510 970 0.7743469 0.160146415 fv Log-Normal Cox, Log-Normal FALSE #> 15526 971 0.9588093 0.163447254 fv Log-Normal Cox, Log-Normal FALSE #> 15542 972 0.6142044 0.129972343 fv Log-Normal Cox, Log-Normal FALSE #> 15558 973 0.9177821 0.145918328 fv Log-Normal Cox, Log-Normal FALSE #> 15574 974 0.9095060 0.166708944 fv Log-Normal Cox, Log-Normal FALSE #> 15590 975 1.0452709 0.179306204 fv Log-Normal Cox, Log-Normal TRUE #> 15606 976 0.8166536 0.248030345 fv Log-Normal Cox, Log-Normal TRUE #> 15622 977 1.1346207 0.218925064 fv Log-Normal Cox, Log-Normal TRUE #> 15638 978 0.8376048 0.216970640 fv Log-Normal Cox, Log-Normal FALSE #> 15654 979 0.6250216 0.119316195 fv Log-Normal Cox, Log-Normal FALSE #> 15670 980 0.8403925 0.203135178 fv Log-Normal Cox, Log-Normal FALSE #> 15686 981 0.6682226 0.111181799 fv Log-Normal Cox, Log-Normal FALSE #> 15702 982 0.7057857 0.165757380 fv Log-Normal Cox, Log-Normal FALSE #> 15718 983 0.7389994 0.128759268 fv Log-Normal Cox, Log-Normal FALSE #> 15734 984 0.6410471 0.118385691 fv Log-Normal Cox, Log-Normal FALSE #> 15750 985 0.8274032 0.154219628 fv Log-Normal Cox, Log-Normal FALSE #> 15766 986 0.7677255 0.160069092 fv Log-Normal Cox, Log-Normal FALSE #> 15782 987 0.6687190 0.167108475 fv Log-Normal Cox, Log-Normal FALSE #> 15798 988 0.8994325 0.141177294 fv Log-Normal Cox, Log-Normal FALSE #> 15814 989 0.9739533 0.164384471 fv Log-Normal Cox, Log-Normal FALSE #> 15830 990 0.7007834 0.125967616 fv Log-Normal Cox, Log-Normal FALSE #> 15846 991 0.7971769 0.144583688 fv Log-Normal Cox, Log-Normal FALSE #> 15862 992 0.7144825 0.127981863 fv Log-Normal Cox, Log-Normal FALSE #> 15878 993 0.7552077 0.121304392 fv Log-Normal Cox, Log-Normal FALSE #> 15894 994 0.6920912 0.164611440 fv Log-Normal Cox, Log-Normal FALSE #> 15910 995 0.6370552 0.159854672 fv Log-Normal Cox, Log-Normal FALSE #> 15926 996 0.7158013 0.157550693 fv Log-Normal Cox, Log-Normal FALSE #> 15942 997 0.7112983 0.119441114 fv Log-Normal Cox, Log-Normal FALSE #> 15958 998 0.6493443 0.159161298 fv Log-Normal Cox, Log-Normal FALSE #> 15974 999 0.8004319 0.155806429 fv Log-Normal Cox, Log-Normal FALSE #> 15990 1000 0.7192738 0.144032838 fv Log-Normal Cox, Log-Normal FALSE #> 7 1 0.6405455 0.122690524 fv Log-Normal RP(P), Gamma FALSE #> 23 2 0.6040462 0.117656180 fv Log-Normal RP(P), Gamma FALSE #> 39 3 0.8022026 0.152352601 fv Log-Normal RP(P), Gamma FALSE #> 55 4 0.5259592 0.103211324 fv Log-Normal RP(P), Gamma FALSE #> 71 5 0.7983299 0.149019874 fv Log-Normal RP(P), Gamma FALSE #> 87 6 0.6887647 0.130581125 fv Log-Normal RP(P), Gamma FALSE #> 103 7 0.5143373 0.100826891 fv Log-Normal RP(P), Gamma FALSE #> 119 8 0.7636843 0.144723641 fv Log-Normal RP(P), Gamma FALSE #> 135 9 0.6642983 0.127490449 fv Log-Normal RP(P), Gamma FALSE #> 151 10 0.8292666 0.155612348 fv Log-Normal RP(P), Gamma FALSE #> 167 11 0.7870963 0.147766260 fv Log-Normal RP(P), Gamma FALSE #> 183 12 0.5128538 0.101130755 fv Log-Normal RP(P), Gamma FALSE #> 199 13 0.7531485 0.143377407 fv Log-Normal RP(P), Gamma FALSE #> 215 14 0.6331756 0.120852213 fv Log-Normal RP(P), Gamma FALSE #> 231 15 0.6426603 0.123809994 fv Log-Normal RP(P), Gamma FALSE #> 247 16 0.5322474 0.105162595 fv Log-Normal RP(P), Gamma FALSE #> 263 17 0.6467134 0.126503719 fv Log-Normal RP(P), Gamma FALSE #> 279 18 0.6943998 0.131886091 fv Log-Normal RP(P), Gamma FALSE #> 295 19 0.7899824 0.147933146 fv Log-Normal RP(P), Gamma FALSE #> 311 20 0.5484487 0.107786986 fv Log-Normal RP(P), Gamma FALSE #> 327 21 0.6161933 0.119855712 fv Log-Normal RP(P), Gamma FALSE #> 343 22 0.5040710 0.098879998 fv Log-Normal RP(P), Gamma FALSE #> 359 23 0.8877674 0.167618206 fv Log-Normal RP(P), Gamma FALSE #> 375 24 0.6757630 0.128886073 fv Log-Normal RP(P), Gamma FALSE #> 391 25 0.5307117 0.103738093 fv Log-Normal RP(P), Gamma FALSE #> 407 26 0.6429191 0.123298527 fv Log-Normal RP(P), Gamma FALSE #> 423 27 0.4611677 0.092589138 fv Log-Normal RP(P), Gamma FALSE #> 439 28 0.6456617 0.124703184 fv Log-Normal RP(P), Gamma FALSE #> 455 29 0.9326416 0.171576792 fv Log-Normal RP(P), Gamma TRUE #> 471 30 0.5693105 0.110689741 fv Log-Normal RP(P), Gamma FALSE #> 487 31 0.5125629 0.101588852 fv Log-Normal RP(P), Gamma FALSE #> 503 32 0.5118841 0.101147723 fv Log-Normal RP(P), Gamma FALSE #> 519 33 0.6618378 0.126871990 fv Log-Normal RP(P), Gamma FALSE #> 535 34 0.8797795 0.165259342 fv Log-Normal RP(P), Gamma FALSE #> 551 35 0.5063559 0.102207355 fv Log-Normal RP(P), Gamma FALSE #> 567 36 0.4635876 0.092513305 fv Log-Normal RP(P), Gamma FALSE #> 583 37 0.6395122 0.123631418 fv Log-Normal RP(P), Gamma FALSE #> 599 38 0.6075237 0.118657265 fv Log-Normal RP(P), Gamma FALSE #> 615 39 0.7176400 0.137133349 fv Log-Normal RP(P), Gamma FALSE #> 631 40 0.5781112 0.116042341 fv Log-Normal RP(P), Gamma FALSE #> 647 41 0.6542709 0.124754965 fv Log-Normal RP(P), Gamma FALSE #> 663 42 0.5154684 0.101882146 fv Log-Normal RP(P), Gamma FALSE #> 679 43 0.4670205 0.092725837 fv Log-Normal RP(P), Gamma FALSE #> 695 44 0.6203867 0.118800155 fv Log-Normal RP(P), Gamma FALSE #> 711 45 0.5393777 0.105195798 fv Log-Normal RP(P), Gamma FALSE #> 727 46 0.3151313 0.065214531 fv Log-Normal RP(P), Gamma TRUE #> 743 47 0.7594989 0.142998177 fv Log-Normal RP(P), Gamma FALSE #> 759 48 0.8276292 0.156727119 fv Log-Normal RP(P), Gamma FALSE #> 775 49 0.8478641 0.158244438 fv Log-Normal RP(P), Gamma FALSE #> 791 50 0.5475928 0.107331065 fv Log-Normal RP(P), Gamma FALSE #> 807 51 0.6844050 0.129691061 fv Log-Normal RP(P), Gamma FALSE #> 823 52 0.4849833 0.096565419 fv Log-Normal RP(P), Gamma FALSE #> 839 53 0.8506738 0.158927483 fv Log-Normal RP(P), Gamma FALSE #> 855 54 0.6258808 0.120694285 fv Log-Normal RP(P), Gamma FALSE #> 871 55 0.8334571 0.156035069 fv Log-Normal RP(P), Gamma FALSE #> 887 56 0.7883870 0.150629653 fv Log-Normal RP(P), Gamma FALSE #> 903 57 0.8198680 0.154099203 fv Log-Normal RP(P), Gamma FALSE #> 919 58 0.7046033 0.135489320 fv Log-Normal RP(P), Gamma FALSE #> 935 59 0.6362143 0.122087484 fv Log-Normal RP(P), Gamma FALSE #> 951 60 0.8194371 0.153940246 fv Log-Normal RP(P), Gamma FALSE #> 967 61 0.7165910 0.137115513 fv Log-Normal RP(P), Gamma FALSE #> 983 62 0.6072289 0.118534620 fv Log-Normal RP(P), Gamma FALSE #> 999 63 0.7813425 0.147824198 fv Log-Normal RP(P), Gamma FALSE #> 1015 64 0.6962526 0.132885352 fv Log-Normal RP(P), Gamma FALSE #> 1031 65 0.9532066 0.179257953 fv Log-Normal RP(P), Gamma TRUE #> 1047 66 0.5446300 0.106323243 fv Log-Normal RP(P), Gamma FALSE #> 1063 67 0.5523958 0.108439867 fv Log-Normal RP(P), Gamma FALSE #> 1079 68 0.4935455 0.098591049 fv Log-Normal RP(P), Gamma FALSE #> 1095 69 0.7293272 0.138575438 fv Log-Normal RP(P), Gamma FALSE #> 1111 70 0.6433089 0.123090851 fv Log-Normal RP(P), Gamma FALSE #> 1127 71 0.8654650 0.161985674 fv Log-Normal RP(P), Gamma FALSE #> 1143 72 0.5596582 0.109600090 fv Log-Normal RP(P), Gamma FALSE #> 1159 73 0.6080334 0.117616590 fv Log-Normal RP(P), Gamma FALSE #> 1175 74 0.4192212 0.085190539 fv Log-Normal RP(P), Gamma FALSE #> 1191 75 0.6459502 0.123937508 fv Log-Normal RP(P), Gamma FALSE #> 1207 76 0.5317111 0.103568281 fv Log-Normal RP(P), Gamma FALSE #> 1223 77 0.8201123 0.155989547 fv Log-Normal RP(P), Gamma FALSE #> 1239 78 0.7324703 0.140075929 fv Log-Normal RP(P), Gamma FALSE #> 1255 79 0.9938648 0.182439175 fv Log-Normal RP(P), Gamma TRUE #> 1271 80 0.5406339 0.105944290 fv Log-Normal RP(P), Gamma FALSE #> 1287 81 0.8194269 0.152455464 fv Log-Normal RP(P), Gamma FALSE #> 1303 82 0.6005756 0.115909588 fv Log-Normal RP(P), Gamma FALSE #> 1319 83 0.6898550 0.131609094 fv Log-Normal RP(P), Gamma FALSE #> 1335 84 0.5667630 0.110642783 fv Log-Normal RP(P), Gamma FALSE #> 1351 85 0.6773712 0.132784297 fv Log-Normal RP(P), Gamma FALSE #> 1367 86 0.5699243 0.113421403 fv Log-Normal RP(P), Gamma FALSE #> 1383 87 0.6537014 0.126044444 fv Log-Normal RP(P), Gamma FALSE #> 1399 88 0.6600437 0.127234347 fv Log-Normal RP(P), Gamma FALSE #> 1415 89 0.9099395 0.169648022 fv Log-Normal RP(P), Gamma TRUE #> 1431 90 0.7941829 0.150612563 fv Log-Normal RP(P), Gamma FALSE #> 1447 91 0.7956442 0.149468843 fv Log-Normal RP(P), Gamma FALSE #> 1463 92 0.7891605 0.150545862 fv Log-Normal RP(P), Gamma FALSE #> 1479 93 0.5507555 0.107524863 fv Log-Normal RP(P), Gamma FALSE #> 1495 94 0.6893063 0.131615461 fv Log-Normal RP(P), Gamma FALSE #> 1511 95 0.6382982 0.123572285 fv Log-Normal RP(P), Gamma FALSE #> 1527 96 0.5046216 0.099786695 fv Log-Normal RP(P), Gamma FALSE #> 1543 97 0.7335341 0.140274698 fv Log-Normal RP(P), Gamma FALSE #> 1559 98 0.4142127 0.083239347 fv Log-Normal RP(P), Gamma FALSE #> 1575 99 0.6777154 0.128918607 fv Log-Normal RP(P), Gamma FALSE #> 1591 100 0.5891772 0.114720160 fv Log-Normal RP(P), Gamma FALSE #> 1607 101 0.5518648 0.107174335 fv Log-Normal RP(P), Gamma FALSE #> 1623 102 0.4756834 0.094711857 fv Log-Normal RP(P), Gamma FALSE #> 1639 103 0.7016967 0.133963829 fv Log-Normal RP(P), Gamma FALSE #> 1655 104 0.7084303 0.137263107 fv Log-Normal RP(P), Gamma FALSE #> 1671 105 0.5064685 0.102906578 fv Log-Normal RP(P), Gamma FALSE #> 1687 106 0.5857525 0.114320345 fv Log-Normal RP(P), Gamma FALSE #> 1703 107 0.6995063 0.132392724 fv Log-Normal RP(P), Gamma FALSE #> 1719 108 0.6165509 0.119326267 fv Log-Normal RP(P), Gamma FALSE #> 1735 109 0.8984590 0.168924157 fv Log-Normal RP(P), Gamma FALSE #> 1751 110 0.7971634 0.150429620 fv Log-Normal RP(P), Gamma FALSE #> 1767 111 0.6308884 0.123949462 fv Log-Normal RP(P), Gamma FALSE #> 1783 112 0.6636078 0.127316904 fv Log-Normal RP(P), Gamma FALSE #> 1799 113 0.7259975 0.136892504 fv Log-Normal RP(P), Gamma FALSE #> 1815 114 0.6262837 0.122125778 fv Log-Normal RP(P), Gamma FALSE #> 1831 115 0.6652682 0.127308897 fv Log-Normal RP(P), Gamma FALSE #> 1847 116 0.6770393 0.129129051 fv Log-Normal RP(P), Gamma FALSE #> 1863 117 0.7575098 0.143016176 fv Log-Normal RP(P), Gamma FALSE #> 1879 118 0.5399997 0.105372939 fv Log-Normal RP(P), Gamma FALSE #> 1895 119 0.5340591 0.104867540 fv Log-Normal RP(P), Gamma FALSE #> 1911 120 0.7487613 0.142422272 fv Log-Normal RP(P), Gamma FALSE #> 1927 121 0.6742231 0.129655167 fv Log-Normal RP(P), Gamma FALSE #> 1943 122 0.5368862 0.108010594 fv Log-Normal RP(P), Gamma FALSE #> 1959 123 0.4854876 0.096157026 fv Log-Normal RP(P), Gamma FALSE #> 1975 124 0.5249067 0.104010179 fv Log-Normal RP(P), Gamma FALSE #> 1991 125 0.4728895 0.093518687 fv Log-Normal RP(P), Gamma FALSE #> 2007 126 0.9488240 0.174441002 fv Log-Normal RP(P), Gamma TRUE #> 2023 127 0.4311185 0.086119704 fv Log-Normal RP(P), Gamma FALSE #> 2039 128 0.4413847 0.087730859 fv Log-Normal RP(P), Gamma FALSE #> 2055 129 NA NA fv Log-Normal RP(P), Gamma NA #> 2071 130 0.5336320 0.106231024 fv Log-Normal RP(P), Gamma FALSE #> 2087 131 0.5858983 0.113618046 fv Log-Normal RP(P), Gamma FALSE #> 2103 132 0.6742043 0.128792567 fv Log-Normal RP(P), Gamma FALSE #> 2119 133 0.8441107 0.157692189 fv Log-Normal RP(P), Gamma FALSE #> 2135 134 0.8722116 0.161293518 fv Log-Normal RP(P), Gamma FALSE #> 2151 135 0.6602743 0.128176844 fv Log-Normal RP(P), Gamma FALSE #> 2167 136 0.5612475 0.112751238 fv Log-Normal RP(P), Gamma FALSE #> 2183 137 0.4623204 0.092357534 fv Log-Normal RP(P), Gamma FALSE #> 2199 138 0.4908476 0.097235287 fv Log-Normal RP(P), Gamma FALSE #> 2215 139 0.6199716 0.119201745 fv Log-Normal RP(P), Gamma FALSE #> 2231 140 0.6891782 0.130965978 fv Log-Normal RP(P), Gamma FALSE #> 2247 141 0.4059617 0.082546224 fv Log-Normal RP(P), Gamma FALSE #> 2263 142 0.4534912 0.090599077 fv Log-Normal RP(P), Gamma FALSE #> 2279 143 0.5205738 0.101978989 fv Log-Normal RP(P), Gamma FALSE #> 2295 144 0.6658738 0.130280150 fv Log-Normal RP(P), Gamma FALSE #> 2311 145 0.4853461 0.095873172 fv Log-Normal RP(P), Gamma FALSE #> 2327 146 0.6720809 0.128706896 fv Log-Normal RP(P), Gamma FALSE #> 2343 147 0.6507118 0.128489909 fv Log-Normal RP(P), Gamma FALSE #> 2359 148 0.5095945 0.100822955 fv Log-Normal RP(P), Gamma FALSE #> 2375 149 0.3835714 0.078576851 fv Log-Normal RP(P), Gamma FALSE #> 2391 150 0.5016718 0.099016609 fv Log-Normal RP(P), Gamma FALSE #> 2407 151 0.8315877 0.156138668 fv Log-Normal RP(P), Gamma FALSE #> 2423 152 0.6110434 0.117965209 fv Log-Normal RP(P), Gamma FALSE #> 2439 153 0.7767963 0.147635467 fv Log-Normal RP(P), Gamma FALSE #> 2455 154 0.6464367 0.123675217 fv Log-Normal RP(P), Gamma FALSE #> 2471 155 0.9166992 0.171012178 fv Log-Normal RP(P), Gamma TRUE #> 2487 156 0.5371060 0.105038383 fv Log-Normal RP(P), Gamma FALSE #> 2503 157 0.5603420 0.109709264 fv Log-Normal RP(P), Gamma FALSE #> 2519 158 0.6131854 0.119373111 fv Log-Normal RP(P), Gamma FALSE #> 2535 159 0.6606685 0.127011784 fv Log-Normal RP(P), Gamma FALSE #> 2551 160 0.6082429 0.116880821 fv Log-Normal RP(P), Gamma FALSE #> 2567 161 0.8477261 0.159265826 fv Log-Normal RP(P), Gamma FALSE #> 2583 162 0.8610655 0.160638530 fv Log-Normal RP(P), Gamma FALSE #> 2599 163 0.5255327 0.102820821 fv Log-Normal RP(P), Gamma FALSE #> 2615 164 0.6363234 0.123177257 fv Log-Normal RP(P), Gamma FALSE #> 2631 165 0.4847113 0.095621852 fv Log-Normal RP(P), Gamma FALSE #> 2647 166 0.4273386 0.086136647 fv Log-Normal RP(P), Gamma FALSE #> 2663 167 0.6483222 0.124315665 fv Log-Normal RP(P), Gamma FALSE #> 2679 168 0.7464834 0.140802165 fv Log-Normal RP(P), Gamma FALSE #> 2695 169 0.6310328 0.122313242 fv Log-Normal RP(P), Gamma FALSE #> 2711 170 0.6614880 0.126258548 fv Log-Normal RP(P), Gamma FALSE #> 2727 171 0.7041851 0.133318185 fv Log-Normal RP(P), Gamma FALSE #> 2743 172 0.6398290 0.122342065 fv Log-Normal RP(P), Gamma FALSE #> 2759 173 0.7006805 0.134276835 fv Log-Normal RP(P), Gamma FALSE #> 2775 174 0.5291788 0.103456703 fv Log-Normal RP(P), Gamma FALSE #> 2791 175 0.7108273 0.135795471 fv Log-Normal RP(P), Gamma FALSE #> 2807 176 0.8661291 0.161557935 fv Log-Normal RP(P), Gamma FALSE #> 2823 177 0.6642310 0.126471594 fv Log-Normal RP(P), Gamma FALSE #> 2839 178 0.4796659 0.095097392 fv Log-Normal RP(P), Gamma FALSE #> 2855 179 0.7824077 0.146493201 fv Log-Normal RP(P), Gamma FALSE #> 2871 180 0.4968833 0.098150177 fv Log-Normal RP(P), Gamma FALSE #> 2887 181 0.6323696 0.121435745 fv Log-Normal RP(P), Gamma FALSE #> 2903 182 1.0216845 0.186453940 fv Log-Normal RP(P), Gamma TRUE #> 2919 183 0.6566254 0.127917698 fv Log-Normal RP(P), Gamma FALSE #> 2935 184 0.8214407 0.153256632 fv Log-Normal RP(P), Gamma FALSE #> 2951 185 0.7216302 0.137253976 fv Log-Normal RP(P), Gamma FALSE #> 2967 186 0.6969526 0.133055560 fv Log-Normal RP(P), Gamma FALSE #> 2983 187 0.6428409 0.124161801 fv Log-Normal RP(P), Gamma FALSE #> 2999 188 0.8407790 0.159841769 fv Log-Normal RP(P), Gamma FALSE #> 3015 189 0.6289527 0.121021866 fv Log-Normal RP(P), Gamma FALSE #> 3031 190 0.6326976 0.120915735 fv Log-Normal RP(P), Gamma FALSE #> 3047 191 0.6249393 0.120592489 fv Log-Normal RP(P), Gamma FALSE #> 3063 192 0.6598537 0.128466551 fv Log-Normal RP(P), Gamma FALSE #> 3079 193 0.6102061 0.117379674 fv Log-Normal RP(P), Gamma FALSE #> 3095 194 0.8914916 0.165672989 fv Log-Normal RP(P), Gamma FALSE #> 3111 195 0.5772301 0.113864924 fv Log-Normal RP(P), Gamma FALSE #> 3127 196 0.5383756 0.105235105 fv Log-Normal RP(P), Gamma FALSE #> 3143 197 0.6041119 0.116883514 fv Log-Normal RP(P), Gamma FALSE #> 3159 198 0.7005811 0.133773352 fv Log-Normal RP(P), Gamma FALSE #> 3175 199 0.4750485 0.094149962 fv Log-Normal RP(P), Gamma FALSE #> 3191 200 0.5370248 0.105409839 fv Log-Normal RP(P), Gamma FALSE #> 3207 201 0.7905997 0.148883784 fv Log-Normal RP(P), Gamma FALSE #> 3223 202 0.6263271 0.120314826 fv Log-Normal RP(P), Gamma FALSE #> 3239 203 0.5566798 0.108533443 fv Log-Normal RP(P), Gamma FALSE #> 3255 204 0.5878622 0.114038141 fv Log-Normal RP(P), Gamma FALSE #> 3271 205 0.5479470 0.106767841 fv Log-Normal RP(P), Gamma FALSE #> 3287 206 0.6715801 0.128670374 fv Log-Normal RP(P), Gamma FALSE #> 3303 207 0.8542152 0.163744329 fv Log-Normal RP(P), Gamma FALSE #> 3319 208 0.8157609 0.151809241 fv Log-Normal RP(P), Gamma FALSE #> 3335 209 0.5728611 0.111944591 fv Log-Normal RP(P), Gamma FALSE #> 3351 210 0.5943906 0.115022190 fv Log-Normal RP(P), Gamma FALSE #> 3367 211 0.7064552 0.134382106 fv Log-Normal RP(P), Gamma FALSE #> 3383 212 0.6689386 0.127628218 fv Log-Normal RP(P), Gamma FALSE #> 3399 213 0.5688727 0.111551542 fv Log-Normal RP(P), Gamma FALSE #> 3415 214 0.5600375 0.108774437 fv Log-Normal RP(P), Gamma FALSE #> 3431 215 0.6737893 0.131910998 fv Log-Normal RP(P), Gamma FALSE #> 3447 216 0.8405789 0.157041468 fv Log-Normal RP(P), Gamma FALSE #> 3463 217 0.6564690 0.126109444 fv Log-Normal RP(P), Gamma FALSE #> 3479 218 0.6246779 0.123646184 fv Log-Normal RP(P), Gamma FALSE #> 3495 219 0.8259887 0.156771669 fv Log-Normal RP(P), Gamma FALSE #> 3511 220 0.7024489 0.133066264 fv Log-Normal RP(P), Gamma FALSE #> 3527 221 0.5596475 0.109357114 fv Log-Normal RP(P), Gamma FALSE #> 3543 222 0.3319187 0.068263082 fv Log-Normal RP(P), Gamma TRUE #> 3559 223 0.4898847 0.096767377 fv Log-Normal RP(P), Gamma FALSE #> 3575 224 0.4907177 0.096440093 fv Log-Normal RP(P), Gamma FALSE #> 3591 225 0.7652595 0.144819052 fv Log-Normal RP(P), Gamma FALSE #> 3607 226 0.8552764 0.158589758 fv Log-Normal RP(P), Gamma FALSE #> 3623 227 0.6388617 0.122214127 fv Log-Normal RP(P), Gamma FALSE #> 3639 228 0.7198722 0.136042538 fv Log-Normal RP(P), Gamma FALSE #> 3655 229 0.3795975 0.077804857 fv Log-Normal RP(P), Gamma TRUE #> 3671 230 0.5809617 0.113716968 fv Log-Normal RP(P), Gamma FALSE #> 3687 231 0.5863665 0.113707295 fv Log-Normal RP(P), Gamma FALSE #> 3703 232 0.8032751 0.151280169 fv Log-Normal RP(P), Gamma FALSE #> 3719 233 0.8531541 0.160153943 fv Log-Normal RP(P), Gamma FALSE #> 3735 234 0.8495275 0.159594009 fv Log-Normal RP(P), Gamma FALSE #> 3751 235 0.4897131 0.096464651 fv Log-Normal RP(P), Gamma FALSE #> 3767 236 0.5762813 0.112345236 fv Log-Normal RP(P), Gamma FALSE #> 3783 237 0.5286123 0.104396860 fv Log-Normal RP(P), Gamma FALSE #> 3799 238 0.7811056 0.148031077 fv Log-Normal RP(P), Gamma FALSE #> 3815 239 0.8198879 0.155297026 fv Log-Normal RP(P), Gamma FALSE #> 3831 240 0.5414650 0.105722595 fv Log-Normal RP(P), Gamma FALSE #> 3847 241 0.6511463 0.125298011 fv Log-Normal RP(P), Gamma FALSE #> 3863 242 0.4836988 0.095465475 fv Log-Normal RP(P), Gamma FALSE #> 3879 243 0.6196244 0.120104981 fv Log-Normal RP(P), Gamma FALSE #> 3895 244 0.5113606 0.100849696 fv Log-Normal RP(P), Gamma FALSE #> 3911 245 0.4278909 0.085833193 fv Log-Normal RP(P), Gamma FALSE #> 3927 246 0.7643256 0.148247377 fv Log-Normal RP(P), Gamma FALSE #> 3943 247 0.6396835 0.124646729 fv Log-Normal RP(P), Gamma FALSE #> 3959 248 0.8887262 0.165189703 fv Log-Normal RP(P), Gamma FALSE #> 3975 249 0.5107049 0.100257685 fv Log-Normal RP(P), Gamma FALSE #> 3991 250 0.7077054 0.135338727 fv Log-Normal RP(P), Gamma FALSE #> 4007 251 0.5668351 0.110779312 fv Log-Normal RP(P), Gamma FALSE #> 4023 252 0.4787966 0.096884322 fv Log-Normal RP(P), Gamma FALSE #> 4039 253 0.7726230 0.145916040 fv Log-Normal RP(P), Gamma FALSE #> 4055 254 0.6804182 0.131478555 fv Log-Normal RP(P), Gamma FALSE #> 4071 255 0.8644481 0.162650447 fv Log-Normal RP(P), Gamma FALSE #> 4087 256 0.7870450 0.149599723 fv Log-Normal RP(P), Gamma FALSE #> 4103 257 0.7192110 0.135991127 fv Log-Normal RP(P), Gamma FALSE #> 4119 258 0.4068613 0.083073788 fv Log-Normal RP(P), Gamma FALSE #> 4135 259 0.5817998 0.112751709 fv Log-Normal RP(P), Gamma FALSE #> 4151 260 0.5469431 0.106420507 fv Log-Normal RP(P), Gamma FALSE #> 4167 261 0.7080536 0.133881161 fv Log-Normal RP(P), Gamma FALSE #> 4183 262 0.5942497 0.115095777 fv Log-Normal RP(P), Gamma FALSE #> 4199 263 0.7020528 0.133587665 fv Log-Normal RP(P), Gamma FALSE #> 4215 264 0.7159177 0.137273577 fv Log-Normal RP(P), Gamma FALSE #> 4231 265 0.5643244 0.109794624 fv Log-Normal RP(P), Gamma FALSE #> 4247 266 0.5478052 0.106965318 fv Log-Normal RP(P), Gamma FALSE #> 4263 267 0.5885489 0.115653369 fv Log-Normal RP(P), Gamma FALSE #> 4279 268 0.8693749 0.161917429 fv Log-Normal RP(P), Gamma FALSE #> 4295 269 0.5582825 0.109290397 fv Log-Normal RP(P), Gamma FALSE #> 4311 270 0.5684455 0.110779055 fv Log-Normal RP(P), Gamma FALSE #> 4327 271 0.7749650 0.149141098 fv Log-Normal RP(P), Gamma FALSE #> 4343 272 0.5156209 0.101591602 fv Log-Normal RP(P), Gamma FALSE #> 4359 273 0.6159012 0.118371233 fv Log-Normal RP(P), Gamma FALSE #> 4375 274 0.7947242 0.153820357 fv Log-Normal RP(P), Gamma FALSE #> 4391 275 0.6368109 0.127096784 fv Log-Normal RP(P), Gamma FALSE #> 4407 276 0.6711689 0.127922100 fv Log-Normal RP(P), Gamma FALSE #> 4423 277 0.6940475 0.133116364 fv Log-Normal RP(P), Gamma FALSE #> 4439 278 0.5152790 0.101199568 fv Log-Normal RP(P), Gamma FALSE #> 4455 279 0.8113280 0.153290256 fv Log-Normal RP(P), Gamma FALSE #> 4471 280 0.7000853 0.133350179 fv Log-Normal RP(P), Gamma FALSE #> 4487 281 0.6962477 0.133227021 fv Log-Normal RP(P), Gamma FALSE #> 4503 282 0.5426193 0.105700649 fv Log-Normal RP(P), Gamma FALSE #> 4519 283 0.6864975 0.130397237 fv Log-Normal RP(P), Gamma FALSE #> 4535 284 0.5396176 0.105832850 fv Log-Normal RP(P), Gamma FALSE #> 4551 285 0.5913837 0.114382562 fv Log-Normal RP(P), Gamma FALSE #> 4567 286 0.6302251 0.122112449 fv Log-Normal RP(P), Gamma FALSE #> 4583 287 0.5331961 0.104369454 fv Log-Normal RP(P), Gamma FALSE #> 4599 288 0.5392503 0.105693369 fv Log-Normal RP(P), Gamma FALSE #> 4615 289 0.6092166 0.117897281 fv Log-Normal RP(P), Gamma FALSE #> 4631 290 0.6196235 0.119781773 fv Log-Normal RP(P), Gamma FALSE #> 4647 291 0.6359919 0.121775820 fv Log-Normal RP(P), Gamma FALSE #> 4663 292 0.5575946 0.109509524 fv Log-Normal RP(P), Gamma FALSE #> 4679 293 0.5651291 0.109070835 fv Log-Normal RP(P), Gamma FALSE #> 4695 294 0.6422035 0.123311702 fv Log-Normal RP(P), Gamma FALSE #> 4711 295 0.5802791 0.113172050 fv Log-Normal RP(P), Gamma FALSE #> 4727 296 0.7555790 0.143540463 fv Log-Normal RP(P), Gamma FALSE #> 4743 297 0.3852702 0.078217517 fv Log-Normal RP(P), Gamma TRUE #> 4759 298 0.5804362 0.112370909 fv Log-Normal RP(P), Gamma FALSE #> 4775 299 0.7034566 0.133837283 fv Log-Normal RP(P), Gamma FALSE #> 4791 300 0.5792017 0.112548997 fv Log-Normal RP(P), Gamma FALSE #> 4807 301 0.9200582 0.170247237 fv Log-Normal RP(P), Gamma TRUE #> 4823 302 0.7453558 0.144203963 fv Log-Normal RP(P), Gamma FALSE #> 4839 303 0.5897325 0.114210118 fv Log-Normal RP(P), Gamma FALSE #> 4855 304 0.5895917 0.114060297 fv Log-Normal RP(P), Gamma FALSE #> 4871 305 0.7011073 0.133304181 fv Log-Normal RP(P), Gamma FALSE #> 4887 306 0.5567072 0.109075590 fv Log-Normal RP(P), Gamma FALSE #> 4903 307 0.5115247 0.099800267 fv Log-Normal RP(P), Gamma FALSE #> 4919 308 0.6127341 0.118267081 fv Log-Normal RP(P), Gamma FALSE #> 4935 309 0.5241423 0.102639868 fv Log-Normal RP(P), Gamma FALSE #> 4951 310 0.5755538 0.112432453 fv Log-Normal RP(P), Gamma FALSE #> 4967 311 0.7951455 0.149340322 fv Log-Normal RP(P), Gamma FALSE #> 4983 312 0.5859886 0.113064816 fv Log-Normal RP(P), Gamma FALSE #> 4999 313 0.4372528 0.087909712 fv Log-Normal RP(P), Gamma FALSE #> 5015 314 0.6147684 0.119382806 fv Log-Normal RP(P), Gamma FALSE #> 5031 315 0.5645028 0.109393669 fv Log-Normal RP(P), Gamma FALSE #> 5047 316 0.5565989 0.109845464 fv Log-Normal RP(P), Gamma FALSE #> 5063 317 0.7191520 0.135613702 fv Log-Normal RP(P), Gamma FALSE #> 5079 318 0.5965863 0.120080385 fv Log-Normal RP(P), Gamma FALSE #> 5095 319 0.6537813 0.125979738 fv Log-Normal RP(P), Gamma FALSE #> 5111 320 0.7201799 0.136255734 fv Log-Normal RP(P), Gamma FALSE #> 5127 321 0.8328070 0.157289651 fv Log-Normal RP(P), Gamma FALSE #> 5143 322 0.4960487 0.098036056 fv Log-Normal RP(P), Gamma FALSE #> 5159 323 0.6557055 0.125129845 fv Log-Normal RP(P), Gamma FALSE #> 5175 324 0.4850376 0.096139606 fv Log-Normal RP(P), Gamma FALSE #> 5191 325 0.5705067 0.111972275 fv Log-Normal RP(P), Gamma FALSE #> 5207 326 0.7884406 0.148717603 fv Log-Normal RP(P), Gamma FALSE #> 5223 327 0.4470598 0.088883562 fv Log-Normal RP(P), Gamma FALSE #> 5239 328 0.6211920 0.118836862 fv Log-Normal RP(P), Gamma FALSE #> 5255 329 0.6073953 0.118395269 fv Log-Normal RP(P), Gamma FALSE #> 5271 330 0.4730565 0.093665743 fv Log-Normal RP(P), Gamma FALSE #> 5287 331 0.7787809 0.146186396 fv Log-Normal RP(P), Gamma FALSE #> 5303 332 0.6139570 0.118138831 fv Log-Normal RP(P), Gamma FALSE #> 5319 333 0.4885412 0.097414696 fv Log-Normal RP(P), Gamma FALSE #> 5335 334 0.4894316 0.096621925 fv Log-Normal RP(P), Gamma FALSE #> 5351 335 0.5028639 0.099176225 fv Log-Normal RP(P), Gamma FALSE #> 5367 336 0.7814231 0.148463487 fv Log-Normal RP(P), Gamma FALSE #> 5383 337 0.6035500 0.116907362 fv Log-Normal RP(P), Gamma FALSE #> 5399 338 0.6560915 0.125409466 fv Log-Normal RP(P), Gamma FALSE #> 5415 339 0.5183767 0.102142302 fv Log-Normal RP(P), Gamma FALSE #> 5431 340 0.8199144 0.154586635 fv Log-Normal RP(P), Gamma FALSE #> 5447 341 0.5944860 0.117533729 fv Log-Normal RP(P), Gamma FALSE #> 5463 342 0.5193587 0.101756311 fv Log-Normal RP(P), Gamma FALSE #> 5479 343 0.5446257 0.106850374 fv Log-Normal RP(P), Gamma FALSE #> 5495 344 0.6177256 0.119809792 fv Log-Normal RP(P), Gamma FALSE #> 5511 345 0.5759749 0.111483975 fv Log-Normal RP(P), Gamma FALSE #> 5527 346 0.4476355 0.090001470 fv Log-Normal RP(P), Gamma FALSE #> 5543 347 0.5928304 0.115552336 fv Log-Normal RP(P), Gamma FALSE #> 5559 348 0.5431772 0.107072485 fv Log-Normal RP(P), Gamma FALSE #> 5575 349 0.5982843 0.115709329 fv Log-Normal RP(P), Gamma FALSE #> 5591 350 0.7122423 0.135849723 fv Log-Normal RP(P), Gamma FALSE #> 5607 351 0.5011156 0.098603090 fv Log-Normal RP(P), Gamma FALSE #> 5623 352 0.7612241 0.144981811 fv Log-Normal RP(P), Gamma FALSE #> 5639 353 0.6852220 0.132046410 fv Log-Normal RP(P), Gamma FALSE #> 5655 354 0.5857311 0.113477028 fv Log-Normal RP(P), Gamma FALSE #> 5671 355 0.6652417 0.127193917 fv Log-Normal RP(P), Gamma FALSE #> 5687 356 0.6173133 0.120742547 fv Log-Normal RP(P), Gamma FALSE #> 5703 357 0.9043420 0.173016497 fv Log-Normal RP(P), Gamma TRUE #> 5719 358 0.6080989 0.117536852 fv Log-Normal RP(P), Gamma FALSE #> 5735 359 0.4819349 0.096115857 fv Log-Normal RP(P), Gamma FALSE #> 5751 360 0.5666892 0.109982691 fv Log-Normal RP(P), Gamma FALSE #> 5767 361 0.5681239 0.110789224 fv Log-Normal RP(P), Gamma FALSE #> 5783 362 0.6273366 0.122363810 fv Log-Normal RP(P), Gamma FALSE #> 5799 363 0.5816115 0.114102264 fv Log-Normal RP(P), Gamma FALSE #> 5815 364 0.6876475 0.130288820 fv Log-Normal RP(P), Gamma FALSE #> 5831 365 0.6489056 0.124382293 fv Log-Normal RP(P), Gamma FALSE #> 5847 366 0.5872749 0.113916746 fv Log-Normal RP(P), Gamma FALSE #> 5863 367 0.7316313 0.139986854 fv Log-Normal RP(P), Gamma FALSE #> 5879 368 0.8058332 0.151315932 fv Log-Normal RP(P), Gamma FALSE #> 5895 369 0.5094609 0.100121566 fv Log-Normal RP(P), Gamma FALSE #> 5911 370 0.6612134 0.126708507 fv Log-Normal RP(P), Gamma FALSE #> 5927 371 0.6350437 0.124249605 fv Log-Normal RP(P), Gamma FALSE #> 5943 372 0.4578136 0.091413362 fv Log-Normal RP(P), Gamma FALSE #> 5959 373 0.8627763 0.160868809 fv Log-Normal RP(P), Gamma FALSE #> 5975 374 0.5059833 0.100171027 fv Log-Normal RP(P), Gamma FALSE #> 5991 375 0.6308717 0.122756047 fv Log-Normal RP(P), Gamma FALSE #> 6007 376 0.6040654 0.116977417 fv Log-Normal RP(P), Gamma FALSE #> 6023 377 0.4763770 0.094353796 fv Log-Normal RP(P), Gamma FALSE #> 6039 378 0.5335836 0.104644051 fv Log-Normal RP(P), Gamma FALSE #> 6055 379 0.4834626 0.095929962 fv Log-Normal RP(P), Gamma FALSE #> 6071 380 0.5706786 0.110657205 fv Log-Normal RP(P), Gamma FALSE #> 6087 381 0.6870494 0.130888764 fv Log-Normal RP(P), Gamma FALSE #> 6103 382 0.6297807 0.121858418 fv Log-Normal RP(P), Gamma FALSE #> 6119 383 0.6695102 0.128506247 fv Log-Normal RP(P), Gamma FALSE #> 6135 384 0.5836747 0.112718407 fv Log-Normal RP(P), Gamma FALSE #> 6151 385 0.5061154 0.100209905 fv Log-Normal RP(P), Gamma FALSE #> 6167 386 0.7746371 0.147352863 fv Log-Normal RP(P), Gamma FALSE #> 6183 387 0.5793071 0.114012787 fv Log-Normal RP(P), Gamma FALSE #> 6199 388 0.7006456 0.132262925 fv Log-Normal RP(P), Gamma FALSE #> 6215 389 0.6591775 0.125828401 fv Log-Normal RP(P), Gamma FALSE #> 6231 390 0.5756189 0.112118694 fv Log-Normal RP(P), Gamma FALSE #> 6247 391 0.7166769 0.135906531 fv Log-Normal RP(P), Gamma FALSE #> 6263 392 0.5582759 0.109346080 fv Log-Normal RP(P), Gamma FALSE #> 6279 393 0.5188225 0.102003293 fv Log-Normal RP(P), Gamma FALSE #> 6295 394 0.8340129 0.157802893 fv Log-Normal RP(P), Gamma FALSE #> 6311 395 0.6561839 0.125677696 fv Log-Normal RP(P), Gamma FALSE #> 6327 396 0.8530720 0.159253424 fv Log-Normal RP(P), Gamma FALSE #> 6343 397 0.5767037 0.111714735 fv Log-Normal RP(P), Gamma FALSE #> 6359 398 0.5759109 0.111597778 fv Log-Normal RP(P), Gamma FALSE #> 6375 399 0.7355098 0.139897611 fv Log-Normal RP(P), Gamma FALSE #> 6391 400 0.4833498 0.096136542 fv Log-Normal RP(P), Gamma FALSE #> 6407 401 0.5287786 0.103547267 fv Log-Normal RP(P), Gamma FALSE #> 6423 402 0.4729205 0.094927871 fv Log-Normal RP(P), Gamma FALSE #> 6439 403 0.4768322 0.093865073 fv Log-Normal RP(P), Gamma FALSE #> 6455 404 0.5503689 0.108894551 fv Log-Normal RP(P), Gamma FALSE #> 6471 405 0.4675984 0.093559702 fv Log-Normal RP(P), Gamma FALSE #> 6487 406 0.5998105 0.115658274 fv Log-Normal RP(P), Gamma FALSE #> 6503 407 0.7071862 0.135917794 fv Log-Normal RP(P), Gamma FALSE #> 6519 408 0.4551711 0.092545500 fv Log-Normal RP(P), Gamma FALSE #> 6535 409 0.6003096 0.116002539 fv Log-Normal RP(P), Gamma FALSE #> 6551 410 0.7354522 0.141341112 fv Log-Normal RP(P), Gamma FALSE #> 6567 411 0.5842355 0.114276721 fv Log-Normal RP(P), Gamma FALSE #> 6583 412 0.6358926 0.123916656 fv Log-Normal RP(P), Gamma FALSE #> 6599 413 0.4809322 0.096109620 fv Log-Normal RP(P), Gamma FALSE #> 6615 414 0.8207219 0.154498864 fv Log-Normal RP(P), Gamma FALSE #> 6631 415 1.0478283 0.190504759 fv Log-Normal RP(P), Gamma TRUE #> 6647 416 0.5063546 0.100886285 fv Log-Normal RP(P), Gamma FALSE #> 6663 417 0.5075324 0.100029009 fv Log-Normal RP(P), Gamma FALSE #> 6679 418 0.7581325 0.142360888 fv Log-Normal RP(P), Gamma FALSE #> 6695 419 0.4093657 0.082325590 fv Log-Normal RP(P), Gamma FALSE #> 6711 420 0.6457404 0.124412096 fv Log-Normal RP(P), Gamma FALSE #> 6727 421 0.7234085 0.138143903 fv Log-Normal RP(P), Gamma FALSE #> 6743 422 0.5477184 0.108345673 fv Log-Normal RP(P), Gamma FALSE #> 6759 423 0.5300261 0.103870701 fv Log-Normal RP(P), Gamma FALSE #> 6775 424 0.5958915 0.115434340 fv Log-Normal RP(P), Gamma FALSE #> 6791 425 0.7100163 0.136393457 fv Log-Normal RP(P), Gamma FALSE #> 6807 426 0.7479045 0.142305623 fv Log-Normal RP(P), Gamma FALSE #> 6823 427 0.9319722 0.173864781 fv Log-Normal RP(P), Gamma TRUE #> 6839 428 0.7297775 0.139498288 fv Log-Normal RP(P), Gamma FALSE #> 6855 429 0.6427432 0.123394639 fv Log-Normal RP(P), Gamma FALSE #> 6871 430 0.7897896 0.149428903 fv Log-Normal RP(P), Gamma FALSE #> 6887 431 0.5758042 0.112117071 fv Log-Normal RP(P), Gamma FALSE #> 6903 432 0.7845424 0.148213986 fv Log-Normal RP(P), Gamma FALSE #> 6919 433 0.5083695 0.099715747 fv Log-Normal RP(P), Gamma FALSE #> 6935 434 0.5697794 0.111842649 fv Log-Normal RP(P), Gamma FALSE #> 6951 435 0.4351491 0.087346250 fv Log-Normal RP(P), Gamma FALSE #> 6967 436 0.6492604 0.124247657 fv Log-Normal RP(P), Gamma FALSE #> 6983 437 0.4988429 0.098454001 fv Log-Normal RP(P), Gamma FALSE #> 6999 438 0.7564725 0.143124263 fv Log-Normal RP(P), Gamma FALSE #> 7015 439 0.5207554 0.103025427 fv Log-Normal RP(P), Gamma FALSE #> 7031 440 0.4006907 0.082110901 fv Log-Normal RP(P), Gamma FALSE #> 7047 441 0.5223614 0.103142164 fv Log-Normal RP(P), Gamma FALSE #> 7063 442 0.6273843 0.121115548 fv Log-Normal RP(P), Gamma FALSE #> 7079 443 0.7123241 0.136178257 fv Log-Normal RP(P), Gamma FALSE #> 7095 444 0.8116075 0.154510279 fv Log-Normal RP(P), Gamma FALSE #> 7111 445 0.7520363 0.141861132 fv Log-Normal RP(P), Gamma FALSE #> 7127 446 0.5504050 0.107298726 fv Log-Normal RP(P), Gamma FALSE #> 7143 447 0.7152656 0.135495651 fv Log-Normal RP(P), Gamma FALSE #> 7159 448 0.7269417 0.137299228 fv Log-Normal RP(P), Gamma FALSE #> 7175 449 0.8130967 0.153586780 fv Log-Normal RP(P), Gamma FALSE #> 7191 450 0.5713784 0.110828743 fv Log-Normal RP(P), Gamma FALSE #> 7207 451 0.6855537 0.130631019 fv Log-Normal RP(P), Gamma FALSE #> 7223 452 0.6852773 0.130601824 fv Log-Normal RP(P), Gamma FALSE #> 7239 453 0.6419976 0.123417285 fv Log-Normal RP(P), Gamma FALSE #> 7255 454 0.5915648 0.114794688 fv Log-Normal RP(P), Gamma FALSE #> 7271 455 0.5989062 0.116767828 fv Log-Normal RP(P), Gamma FALSE #> 7287 456 0.4514905 0.090400569 fv Log-Normal RP(P), Gamma FALSE #> 7303 457 0.7626711 0.143657175 fv Log-Normal RP(P), Gamma FALSE #> 7319 458 0.6695412 0.129232733 fv Log-Normal RP(P), Gamma FALSE #> 7335 459 0.7901092 0.149271994 fv Log-Normal RP(P), Gamma FALSE #> 7351 460 0.5384375 0.104506896 fv Log-Normal RP(P), Gamma FALSE #> 7367 461 0.6738614 0.128328530 fv Log-Normal RP(P), Gamma FALSE #> 7383 462 0.5995043 0.115203166 fv Log-Normal RP(P), Gamma FALSE #> 7399 463 0.8008576 0.152482024 fv Log-Normal RP(P), Gamma FALSE #> 7415 464 0.6534097 0.124409356 fv Log-Normal RP(P), Gamma FALSE #> 7431 465 0.7405431 0.140658325 fv Log-Normal RP(P), Gamma FALSE #> 7447 466 0.7429010 0.141190155 fv Log-Normal RP(P), Gamma FALSE #> 7463 467 0.6592663 0.127357206 fv Log-Normal RP(P), Gamma FALSE #> 7479 468 0.7478064 0.140591623 fv Log-Normal RP(P), Gamma FALSE #> 7495 469 0.7980469 0.151851588 fv Log-Normal RP(P), Gamma FALSE #> 7511 470 0.6707510 0.129109794 fv Log-Normal RP(P), Gamma FALSE #> 7527 471 0.5195360 0.101809578 fv Log-Normal RP(P), Gamma FALSE #> 7543 472 0.7761691 0.146491082 fv Log-Normal RP(P), Gamma FALSE #> 7559 473 0.6077641 0.117774706 fv Log-Normal RP(P), Gamma FALSE #> 7575 474 0.8208932 0.153749136 fv Log-Normal RP(P), Gamma FALSE #> 7591 475 0.5398973 0.105059599 fv Log-Normal RP(P), Gamma FALSE #> 7607 476 0.4413755 0.088778916 fv Log-Normal RP(P), Gamma FALSE #> 7623 477 0.4970617 0.099301281 fv Log-Normal RP(P), Gamma FALSE #> 7639 478 0.6622706 0.125773445 fv Log-Normal RP(P), Gamma FALSE #> 7655 479 0.6789292 0.129891752 fv Log-Normal RP(P), Gamma FALSE #> 7671 480 0.9229350 0.172022096 fv Log-Normal RP(P), Gamma TRUE #> 7687 481 0.8684971 0.161812769 fv Log-Normal RP(P), Gamma FALSE #> 7703 482 0.6084379 0.117279552 fv Log-Normal RP(P), Gamma FALSE #> 7719 483 0.7379684 0.139763885 fv Log-Normal RP(P), Gamma FALSE #> 7735 484 0.7328743 0.138984469 fv Log-Normal RP(P), Gamma FALSE #> 7751 485 0.5262836 0.103060594 fv Log-Normal RP(P), Gamma FALSE #> 7767 486 0.3908574 0.078920916 fv Log-Normal RP(P), Gamma FALSE #> 7783 487 0.7438818 0.140375079 fv Log-Normal RP(P), Gamma FALSE #> 7799 488 0.3983944 0.080663557 fv Log-Normal RP(P), Gamma FALSE #> 7815 489 0.6557783 0.126320270 fv Log-Normal RP(P), Gamma FALSE #> 7831 490 0.6026455 0.116547326 fv Log-Normal RP(P), Gamma FALSE #> 7847 491 0.6247174 0.121016263 fv Log-Normal RP(P), Gamma FALSE #> 7863 492 0.4832708 0.095096379 fv Log-Normal RP(P), Gamma FALSE #> 7879 493 0.9574865 0.177139532 fv Log-Normal RP(P), Gamma TRUE #> 7895 494 0.6006230 0.115956493 fv Log-Normal RP(P), Gamma FALSE #> 7911 495 0.7155432 0.135390082 fv Log-Normal RP(P), Gamma FALSE #> 7927 496 0.8779148 0.162996545 fv Log-Normal RP(P), Gamma FALSE #> 7943 497 0.5217565 0.102371859 fv Log-Normal RP(P), Gamma FALSE #> 7959 498 0.6078818 0.118535765 fv Log-Normal RP(P), Gamma FALSE #> 7975 499 0.7589340 0.144470802 fv Log-Normal RP(P), Gamma FALSE #> 7991 500 0.6576165 0.127056728 fv Log-Normal RP(P), Gamma FALSE #> 8007 501 1.1934506 0.215189767 fv Log-Normal RP(P), Gamma TRUE #> 8023 502 0.7026905 0.134449675 fv Log-Normal RP(P), Gamma FALSE #> 8039 503 0.6461175 0.123792245 fv Log-Normal RP(P), Gamma FALSE #> 8055 504 0.7780519 0.146498296 fv Log-Normal RP(P), Gamma FALSE #> 8071 505 0.6050506 0.116115429 fv Log-Normal RP(P), Gamma FALSE #> 8087 506 0.8133249 0.152842454 fv Log-Normal RP(P), Gamma FALSE #> 8103 507 0.5879703 0.113085205 fv Log-Normal RP(P), Gamma FALSE #> 8119 508 0.5068504 0.101178044 fv Log-Normal RP(P), Gamma FALSE #> 8135 509 0.5746260 0.111451015 fv Log-Normal RP(P), Gamma FALSE #> 8151 510 0.5602904 0.108703773 fv Log-Normal RP(P), Gamma FALSE #> 8167 511 0.4046575 0.081300884 fv Log-Normal RP(P), Gamma FALSE #> 8183 512 0.5938522 0.114988561 fv Log-Normal RP(P), Gamma FALSE #> 8199 513 0.6468916 0.123938467 fv Log-Normal RP(P), Gamma FALSE #> 8215 514 0.6397314 0.123893154 fv Log-Normal RP(P), Gamma FALSE #> 8231 515 0.5028497 0.099639884 fv Log-Normal RP(P), Gamma FALSE #> 8247 516 0.6476726 0.124767612 fv Log-Normal RP(P), Gamma FALSE #> 8263 517 0.3325667 0.068670557 fv Log-Normal RP(P), Gamma TRUE #> 8279 518 0.6558678 0.125826549 fv Log-Normal RP(P), Gamma FALSE #> 8295 519 0.6732987 0.128685268 fv Log-Normal RP(P), Gamma FALSE #> 8311 520 0.6850792 0.130179158 fv Log-Normal RP(P), Gamma FALSE #> 8327 521 0.6370219 0.122012074 fv Log-Normal RP(P), Gamma FALSE #> 8343 522 0.4885136 0.096484117 fv Log-Normal RP(P), Gamma FALSE #> 8359 523 0.6496220 0.124197298 fv Log-Normal RP(P), Gamma FALSE #> 8375 524 0.5234049 0.104270802 fv Log-Normal RP(P), Gamma FALSE #> 8391 525 0.6765518 0.130414457 fv Log-Normal RP(P), Gamma FALSE #> 8407 526 0.5584063 0.109625927 fv Log-Normal RP(P), Gamma FALSE #> 8423 527 0.6834322 0.132081427 fv Log-Normal RP(P), Gamma FALSE #> 8439 528 0.7426000 0.140512963 fv Log-Normal RP(P), Gamma FALSE #> 8455 529 0.7934196 0.148789101 fv Log-Normal RP(P), Gamma FALSE #> 8471 530 0.3948235 0.080023161 fv Log-Normal RP(P), Gamma FALSE #> 8487 531 0.7875890 0.147558495 fv Log-Normal RP(P), Gamma FALSE #> 8503 532 0.6135217 0.117702935 fv Log-Normal RP(P), Gamma FALSE #> 8519 533 0.6120718 0.118048211 fv Log-Normal RP(P), Gamma FALSE #> 8535 534 0.6716551 0.129306507 fv Log-Normal RP(P), Gamma FALSE #> 8551 535 0.7335196 0.138512829 fv Log-Normal RP(P), Gamma FALSE #> 8567 536 0.5204424 0.102465629 fv Log-Normal RP(P), Gamma FALSE #> 8583 537 1.0379600 0.188908964 fv Log-Normal RP(P), Gamma TRUE #> 8599 538 0.4548943 0.090692268 fv Log-Normal RP(P), Gamma FALSE #> 8615 539 0.6713151 0.130815161 fv Log-Normal RP(P), Gamma FALSE #> 8631 540 0.5523580 0.107988775 fv Log-Normal RP(P), Gamma FALSE #> 8647 541 0.8042797 0.150903144 fv Log-Normal RP(P), Gamma FALSE #> 8663 542 0.6949027 0.132583092 fv Log-Normal RP(P), Gamma FALSE #> 8679 543 0.7476093 0.142469608 fv Log-Normal RP(P), Gamma FALSE #> 8695 544 0.6774908 0.129791800 fv Log-Normal RP(P), Gamma FALSE #> 8711 545 0.5143813 0.100902954 fv Log-Normal RP(P), Gamma FALSE #> 8727 546 0.8312447 0.156455946 fv Log-Normal RP(P), Gamma FALSE #> 8743 547 0.6121114 0.118650971 fv Log-Normal RP(P), Gamma FALSE #> 8759 548 0.5140565 0.102068375 fv Log-Normal RP(P), Gamma FALSE #> 8775 549 0.7348816 0.138826062 fv Log-Normal RP(P), Gamma FALSE #> 8791 550 0.5090552 0.102033236 fv Log-Normal RP(P), Gamma FALSE #> 8807 551 0.6688984 0.127755112 fv Log-Normal RP(P), Gamma FALSE #> 8823 552 0.6265386 0.120777429 fv Log-Normal RP(P), Gamma FALSE #> 8839 553 0.7047650 0.132991368 fv Log-Normal RP(P), Gamma FALSE #> 8855 554 0.8291163 0.157127475 fv Log-Normal RP(P), Gamma FALSE #> 8871 555 0.6850161 0.130269138 fv Log-Normal RP(P), Gamma FALSE #> 8887 556 0.7538022 0.142279468 fv Log-Normal RP(P), Gamma FALSE #> 8903 557 0.6250217 0.120230852 fv Log-Normal RP(P), Gamma FALSE #> 8919 558 0.6063746 0.117061554 fv Log-Normal RP(P), Gamma FALSE #> 8935 559 0.5429581 0.106505362 fv Log-Normal RP(P), Gamma FALSE #> 8951 560 0.7137899 0.135857490 fv Log-Normal RP(P), Gamma FALSE #> 8967 561 1.0273063 0.187917372 fv Log-Normal RP(P), Gamma TRUE #> 8983 562 0.7434955 0.141140034 fv Log-Normal RP(P), Gamma FALSE #> 8999 563 0.6801410 0.129591934 fv Log-Normal RP(P), Gamma FALSE #> 9015 564 0.5086320 0.099547959 fv Log-Normal RP(P), Gamma FALSE #> 9031 565 0.5188484 0.102466411 fv Log-Normal RP(P), Gamma FALSE #> 9047 566 0.6244033 0.120264371 fv Log-Normal RP(P), Gamma FALSE #> 9063 567 0.5979873 0.115359367 fv Log-Normal RP(P), Gamma FALSE #> 9079 568 0.4721114 0.093701853 fv Log-Normal RP(P), Gamma FALSE #> 9095 569 0.7965129 0.150098223 fv Log-Normal RP(P), Gamma FALSE #> 9111 570 0.4628960 0.091470885 fv Log-Normal RP(P), Gamma FALSE #> 9127 571 0.5842951 0.112728421 fv Log-Normal RP(P), Gamma FALSE #> 9143 572 0.5708745 0.111699420 fv Log-Normal RP(P), Gamma FALSE #> 9159 573 0.5750242 0.111902694 fv Log-Normal RP(P), Gamma FALSE #> 9175 574 0.6440778 0.123736426 fv Log-Normal RP(P), Gamma FALSE #> 9191 575 0.5468114 0.107030650 fv Log-Normal RP(P), Gamma FALSE #> 9207 576 0.5554273 0.108360345 fv Log-Normal RP(P), Gamma FALSE #> 9223 577 0.9266912 0.174564789 fv Log-Normal RP(P), Gamma TRUE #> 9239 578 0.5261017 0.103127649 fv Log-Normal RP(P), Gamma FALSE #> 9255 579 0.5387574 0.106274310 fv Log-Normal RP(P), Gamma FALSE #> 9271 580 0.4707019 0.094408535 fv Log-Normal RP(P), Gamma FALSE #> 9287 581 0.6504271 0.124298433 fv Log-Normal RP(P), Gamma FALSE #> 9303 582 0.6775845 0.129556677 fv Log-Normal RP(P), Gamma FALSE #> 9319 583 0.8861042 0.163642549 fv Log-Normal RP(P), Gamma FALSE #> 9335 584 0.5002307 0.099003587 fv Log-Normal RP(P), Gamma FALSE #> 9351 585 0.6170829 0.118479185 fv Log-Normal RP(P), Gamma FALSE #> 9367 586 0.6901922 0.132247790 fv Log-Normal RP(P), Gamma FALSE #> 9383 587 0.8271364 0.156625337 fv Log-Normal RP(P), Gamma FALSE #> 9399 588 0.4991248 0.098354530 fv Log-Normal RP(P), Gamma FALSE #> 9415 589 0.5658254 0.110527743 fv Log-Normal RP(P), Gamma FALSE #> 9431 590 0.6760460 0.129168104 fv Log-Normal RP(P), Gamma FALSE #> 9447 591 0.7096084 0.134844438 fv Log-Normal RP(P), Gamma FALSE #> 9463 592 0.6397263 0.122142964 fv Log-Normal RP(P), Gamma FALSE #> 9479 593 0.8485950 0.159290802 fv Log-Normal RP(P), Gamma FALSE #> 9495 594 0.5980829 0.115005110 fv Log-Normal RP(P), Gamma FALSE #> 9511 595 0.4900971 0.096783028 fv Log-Normal RP(P), Gamma FALSE #> 9527 596 0.7574788 0.147358757 fv Log-Normal RP(P), Gamma FALSE #> 9543 597 0.5555007 0.108764648 fv Log-Normal RP(P), Gamma FALSE #> 9559 598 0.8869603 0.164652912 fv Log-Normal RP(P), Gamma FALSE #> 9575 599 0.7172531 0.139602364 fv Log-Normal RP(P), Gamma FALSE #> 9591 600 0.4875005 0.096751810 fv Log-Normal RP(P), Gamma FALSE #> 9607 601 1.0034908 0.185067542 fv Log-Normal RP(P), Gamma TRUE #> 9623 602 0.9315667 0.173569567 fv Log-Normal RP(P), Gamma TRUE #> 9639 603 0.3891561 0.079134558 fv Log-Normal RP(P), Gamma FALSE #> 9655 604 0.6831090 0.130655727 fv Log-Normal RP(P), Gamma FALSE #> 9671 605 1.2021178 0.217657229 fv Log-Normal RP(P), Gamma TRUE #> 9687 606 0.6513685 0.125714802 fv Log-Normal RP(P), Gamma FALSE #> 9703 607 0.5322629 0.105264233 fv Log-Normal RP(P), Gamma FALSE #> 9719 608 0.3897829 0.078912911 fv Log-Normal RP(P), Gamma FALSE #> 9735 609 0.7388302 0.139633573 fv Log-Normal RP(P), Gamma FALSE #> 9751 610 0.5779827 0.112718737 fv Log-Normal RP(P), Gamma FALSE #> 9767 611 0.7309416 0.140033806 fv Log-Normal RP(P), Gamma FALSE #> 9783 612 0.4843671 0.095423699 fv Log-Normal RP(P), Gamma FALSE #> 9799 613 0.6706920 0.127546045 fv Log-Normal RP(P), Gamma FALSE #> 9815 614 0.6183168 0.118772783 fv Log-Normal RP(P), Gamma FALSE #> 9831 615 0.7045260 0.133355951 fv Log-Normal RP(P), Gamma FALSE #> 9847 616 0.6489493 0.123879789 fv Log-Normal RP(P), Gamma FALSE #> 9863 617 0.6632689 0.126921727 fv Log-Normal RP(P), Gamma FALSE #> 9879 618 0.6334784 0.123145460 fv Log-Normal RP(P), Gamma FALSE #> 9895 619 0.7035638 0.133736565 fv Log-Normal RP(P), Gamma FALSE #> 9911 620 0.7020430 0.134210585 fv Log-Normal RP(P), Gamma FALSE #> 9927 621 0.4819005 0.094952770 fv Log-Normal RP(P), Gamma FALSE #> 9943 622 0.5397034 0.105579639 fv Log-Normal RP(P), Gamma FALSE #> 9959 623 0.7881921 0.149884077 fv Log-Normal RP(P), Gamma FALSE #> 9975 624 0.5203504 0.102733074 fv Log-Normal RP(P), Gamma FALSE #> 9991 625 0.6837447 0.131406762 fv Log-Normal RP(P), Gamma FALSE #> 10007 626 0.5549372 0.108180877 fv Log-Normal RP(P), Gamma FALSE #> 10023 627 0.5179683 0.101178304 fv Log-Normal RP(P), Gamma FALSE #> 10039 628 0.6020692 0.118086101 fv Log-Normal RP(P), Gamma FALSE #> 10055 629 0.6000282 0.116646938 fv Log-Normal RP(P), Gamma FALSE #> 10071 630 0.7279731 0.137843137 fv Log-Normal RP(P), Gamma FALSE #> 10087 631 0.6027202 0.116593410 fv Log-Normal RP(P), Gamma FALSE #> 10103 632 0.6537910 0.125818670 fv Log-Normal RP(P), Gamma FALSE #> 10119 633 0.4513900 0.090185550 fv Log-Normal RP(P), Gamma FALSE #> 10135 634 0.5375152 0.105208433 fv Log-Normal RP(P), Gamma FALSE #> 10151 635 0.7997065 0.151945464 fv Log-Normal RP(P), Gamma FALSE #> 10167 636 0.3688985 0.074968576 fv Log-Normal RP(P), Gamma TRUE #> 10183 637 0.8181358 0.153742550 fv Log-Normal RP(P), Gamma FALSE #> 10199 638 0.6190300 0.120041647 fv Log-Normal RP(P), Gamma FALSE #> 10215 639 0.4075020 0.082684708 fv Log-Normal RP(P), Gamma FALSE #> 10231 640 0.6079183 0.117406864 fv Log-Normal RP(P), Gamma FALSE #> 10247 641 0.5327102 0.105110772 fv Log-Normal RP(P), Gamma FALSE #> 10263 642 0.5627774 0.109736079 fv Log-Normal RP(P), Gamma FALSE #> 10279 643 0.6140868 0.118512864 fv Log-Normal RP(P), Gamma FALSE #> 10295 644 0.5859136 0.113867905 fv Log-Normal RP(P), Gamma FALSE #> 10311 645 0.7201751 0.137426049 fv Log-Normal RP(P), Gamma FALSE #> 10327 646 NA NA fv Log-Normal RP(P), Gamma NA #> 10343 647 0.5681908 0.110136754 fv Log-Normal RP(P), Gamma FALSE #> 10359 648 0.9305917 0.172374754 fv Log-Normal RP(P), Gamma TRUE #> 10375 649 0.5485075 0.107764779 fv Log-Normal RP(P), Gamma FALSE #> 10391 650 0.7601556 0.143756671 fv Log-Normal RP(P), Gamma FALSE #> 10407 651 0.6466322 0.123731016 fv Log-Normal RP(P), Gamma FALSE #> 10423 652 1.0102019 0.184233698 fv Log-Normal RP(P), Gamma TRUE #> 10439 653 0.4677185 0.093001021 fv Log-Normal RP(P), Gamma FALSE #> 10455 654 0.5012781 0.099290261 fv Log-Normal RP(P), Gamma FALSE #> 10471 655 0.6184514 0.119322143 fv Log-Normal RP(P), Gamma FALSE #> 10487 656 0.5893034 0.114337156 fv Log-Normal RP(P), Gamma FALSE #> 10503 657 0.4700947 0.093330712 fv Log-Normal RP(P), Gamma FALSE #> 10519 658 0.9548714 0.176352345 fv Log-Normal RP(P), Gamma TRUE #> 10535 659 0.9221158 0.172214444 fv Log-Normal RP(P), Gamma TRUE #> 10551 660 0.6906597 0.131068552 fv Log-Normal RP(P), Gamma FALSE #> 10567 661 0.4580311 0.090771001 fv Log-Normal RP(P), Gamma FALSE #> 10583 662 0.5164133 0.101474521 fv Log-Normal RP(P), Gamma FALSE #> 10599 663 0.5910451 0.114456254 fv Log-Normal RP(P), Gamma FALSE #> 10615 664 0.6069571 0.116792001 fv Log-Normal RP(P), Gamma FALSE #> 10631 665 0.7872832 0.148967481 fv Log-Normal RP(P), Gamma FALSE #> 10647 666 0.9872431 0.180995966 fv Log-Normal RP(P), Gamma TRUE #> 10663 667 0.5861609 0.113728094 fv Log-Normal RP(P), Gamma FALSE #> 10679 668 0.5965077 0.116224148 fv Log-Normal RP(P), Gamma FALSE #> 10695 669 0.7858658 0.148111774 fv Log-Normal RP(P), Gamma FALSE #> 10711 670 0.5644456 0.111070175 fv Log-Normal RP(P), Gamma FALSE #> 10727 671 0.7257817 0.138317915 fv Log-Normal RP(P), Gamma FALSE #> 10743 672 0.8699537 0.162873189 fv Log-Normal RP(P), Gamma FALSE #> 10759 673 NA NA fv Log-Normal RP(P), Gamma NA #> 10775 674 0.7477157 0.142416167 fv Log-Normal RP(P), Gamma FALSE #> 10791 675 0.5433898 0.107245880 fv Log-Normal RP(P), Gamma FALSE #> 10807 676 0.8399640 0.157547560 fv Log-Normal RP(P), Gamma FALSE #> 10823 677 0.6227503 0.120604554 fv Log-Normal RP(P), Gamma FALSE #> 10839 678 0.5245707 0.103511296 fv Log-Normal RP(P), Gamma FALSE #> 10855 679 0.5837353 0.114105618 fv Log-Normal RP(P), Gamma FALSE #> 10871 680 0.6687400 0.128093769 fv Log-Normal RP(P), Gamma FALSE #> 10887 681 0.8689437 0.162084794 fv Log-Normal RP(P), Gamma FALSE #> 10903 682 0.5411130 0.105287312 fv Log-Normal RP(P), Gamma FALSE #> 10919 683 0.7576341 0.145307823 fv Log-Normal RP(P), Gamma FALSE #> 10935 684 0.9589529 0.177509901 fv Log-Normal RP(P), Gamma TRUE #> 10951 685 0.5633214 0.109342344 fv Log-Normal RP(P), Gamma FALSE #> 10967 686 0.8200752 0.154050410 fv Log-Normal RP(P), Gamma FALSE #> 10983 687 0.5295936 0.103602159 fv Log-Normal RP(P), Gamma FALSE #> 10999 688 0.5361570 0.105208722 fv Log-Normal RP(P), Gamma FALSE #> 11015 689 0.5920704 0.115501697 fv Log-Normal RP(P), Gamma FALSE #> 11031 690 0.7275334 0.138140884 fv Log-Normal RP(P), Gamma FALSE #> 11047 691 0.7479373 0.145837123 fv Log-Normal RP(P), Gamma FALSE #> 11063 692 0.5492636 0.106737488 fv Log-Normal RP(P), Gamma FALSE #> 11079 693 0.4530186 0.090401153 fv Log-Normal RP(P), Gamma FALSE #> 11095 694 0.6821877 0.130885389 fv Log-Normal RP(P), Gamma FALSE #> 11111 695 0.5561848 0.108503923 fv Log-Normal RP(P), Gamma FALSE #> 11127 696 0.6698984 0.127785352 fv Log-Normal RP(P), Gamma FALSE #> 11143 697 0.8044238 0.152341904 fv Log-Normal RP(P), Gamma FALSE #> 11159 698 0.4029591 0.081215489 fv Log-Normal RP(P), Gamma FALSE #> 11175 699 0.6220318 0.120794862 fv Log-Normal RP(P), Gamma FALSE #> 11191 700 0.4838667 0.095650738 fv Log-Normal RP(P), Gamma FALSE #> 11207 701 0.7141305 0.135782693 fv Log-Normal RP(P), Gamma FALSE #> 11223 702 0.7876228 0.150480099 fv Log-Normal RP(P), Gamma FALSE #> 11239 703 0.6834653 0.131044510 fv Log-Normal RP(P), Gamma FALSE #> 11255 704 0.6006202 0.117032734 fv Log-Normal RP(P), Gamma FALSE #> 11271 705 0.5825614 0.112553700 fv Log-Normal RP(P), Gamma FALSE #> 11287 706 0.6462783 0.123967447 fv Log-Normal RP(P), Gamma FALSE #> 11303 707 0.7719009 0.144912433 fv Log-Normal RP(P), Gamma FALSE #> 11319 708 0.7589118 0.142597681 fv Log-Normal RP(P), Gamma FALSE #> 11335 709 0.7050173 0.137776068 fv Log-Normal RP(P), Gamma FALSE #> 11351 710 0.4858904 0.096616911 fv Log-Normal RP(P), Gamma FALSE #> 11367 711 0.6714817 0.132119633 fv Log-Normal RP(P), Gamma FALSE #> 11383 712 0.6359158 0.122551215 fv Log-Normal RP(P), Gamma FALSE #> 11399 713 0.8791749 0.164312628 fv Log-Normal RP(P), Gamma FALSE #> 11415 714 0.7282695 0.139130739 fv Log-Normal RP(P), Gamma FALSE #> 11431 715 0.6771839 0.128896557 fv Log-Normal RP(P), Gamma FALSE #> 11447 716 0.6207014 0.118958633 fv Log-Normal RP(P), Gamma FALSE #> 11463 717 0.6726106 0.128777566 fv Log-Normal RP(P), Gamma FALSE #> 11479 718 0.7884210 0.149205688 fv Log-Normal RP(P), Gamma FALSE #> 11495 719 0.9354300 0.174953745 fv Log-Normal RP(P), Gamma TRUE #> 11511 720 0.6328266 0.120907672 fv Log-Normal RP(P), Gamma FALSE #> 11527 721 0.5089454 0.100114135 fv Log-Normal RP(P), Gamma FALSE #> 11543 722 0.7041724 0.133806495 fv Log-Normal RP(P), Gamma FALSE #> 11559 723 0.5814509 0.113499196 fv Log-Normal RP(P), Gamma FALSE #> 11575 724 0.6792830 0.131396754 fv Log-Normal RP(P), Gamma FALSE #> 11591 725 0.6745890 0.128900101 fv Log-Normal RP(P), Gamma FALSE #> 11607 726 0.5696167 0.111100388 fv Log-Normal RP(P), Gamma FALSE #> 11623 727 0.6978610 0.132614516 fv Log-Normal RP(P), Gamma FALSE #> 11639 728 0.9034155 0.167348520 fv Log-Normal RP(P), Gamma FALSE #> 11655 729 0.6633172 0.127045130 fv Log-Normal RP(P), Gamma FALSE #> 11671 730 0.7354073 0.139683994 fv Log-Normal RP(P), Gamma FALSE #> 11687 731 0.4588272 0.091441953 fv Log-Normal RP(P), Gamma FALSE #> 11703 732 0.3973257 0.079866721 fv Log-Normal RP(P), Gamma FALSE #> 11719 733 0.7814645 0.146827178 fv Log-Normal RP(P), Gamma FALSE #> 11735 734 0.7249903 0.137092513 fv Log-Normal RP(P), Gamma FALSE #> 11751 735 0.8071961 0.150405379 fv Log-Normal RP(P), Gamma FALSE #> 11767 736 0.7304049 0.138624944 fv Log-Normal RP(P), Gamma FALSE #> 11783 737 0.6499469 0.124179968 fv Log-Normal RP(P), Gamma FALSE #> 11799 738 0.5145282 0.102065122 fv Log-Normal RP(P), Gamma FALSE #> 11815 739 0.5378257 0.105378663 fv Log-Normal RP(P), Gamma FALSE #> 11831 740 0.7258771 0.138116188 fv Log-Normal RP(P), Gamma FALSE #> 11847 741 0.7920583 0.148213635 fv Log-Normal RP(P), Gamma FALSE #> 11863 742 0.5970828 0.115587617 fv Log-Normal RP(P), Gamma FALSE #> 11879 743 0.6394701 0.122627568 fv Log-Normal RP(P), Gamma FALSE #> 11895 744 0.6091485 0.117450392 fv Log-Normal RP(P), Gamma FALSE #> 11911 745 0.6261920 0.120351132 fv Log-Normal RP(P), Gamma FALSE #> 11927 746 0.6135938 0.122447852 fv Log-Normal RP(P), Gamma FALSE #> 11943 747 0.5673960 0.110262652 fv Log-Normal RP(P), Gamma FALSE #> 11959 748 0.8174448 0.154866402 fv Log-Normal RP(P), Gamma FALSE #> 11975 749 0.8885850 0.166289328 fv Log-Normal RP(P), Gamma FALSE #> 11991 750 0.6699179 0.128164911 fv Log-Normal RP(P), Gamma FALSE #> 12007 751 0.7705349 0.145197488 fv Log-Normal RP(P), Gamma FALSE #> 12023 752 0.6450425 0.126445127 fv Log-Normal RP(P), Gamma FALSE #> 12039 753 0.4026709 0.081871038 fv Log-Normal RP(P), Gamma FALSE #> 12055 754 0.6467650 0.123887308 fv Log-Normal RP(P), Gamma FALSE #> 12071 755 0.5962017 0.115578760 fv Log-Normal RP(P), Gamma FALSE #> 12087 756 0.3445761 0.070995077 fv Log-Normal RP(P), Gamma TRUE #> 12103 757 0.6404506 0.123358322 fv Log-Normal RP(P), Gamma FALSE #> 12119 758 0.6790225 0.129965624 fv Log-Normal RP(P), Gamma FALSE #> 12135 759 0.5793013 0.112522796 fv Log-Normal RP(P), Gamma FALSE #> 12151 760 0.8538180 0.161150772 fv Log-Normal RP(P), Gamma FALSE #> 12167 761 0.5461966 0.107166035 fv Log-Normal RP(P), Gamma FALSE #> 12183 762 0.7113599 0.136036958 fv Log-Normal RP(P), Gamma FALSE #> 12199 763 0.5127570 0.101335906 fv Log-Normal RP(P), Gamma FALSE #> 12215 764 0.5758858 0.111788456 fv Log-Normal RP(P), Gamma FALSE #> 12231 765 0.7675959 0.144097832 fv Log-Normal RP(P), Gamma FALSE #> 12247 766 0.5609105 0.108690460 fv Log-Normal RP(P), Gamma FALSE #> 12263 767 0.7365808 0.139483235 fv Log-Normal RP(P), Gamma FALSE #> 12279 768 0.4824173 0.095129579 fv Log-Normal RP(P), Gamma FALSE #> 12295 769 0.8394776 0.157050045 fv Log-Normal RP(P), Gamma FALSE #> 12311 770 0.5206753 0.102467205 fv Log-Normal RP(P), Gamma FALSE #> 12327 771 0.5324155 0.106859081 fv Log-Normal RP(P), Gamma FALSE #> 12343 772 0.5028216 0.098894975 fv Log-Normal RP(P), Gamma FALSE #> 12359 773 0.5634591 0.111361709 fv Log-Normal RP(P), Gamma FALSE #> 12375 774 0.6726680 0.129487861 fv Log-Normal RP(P), Gamma FALSE #> 12391 775 0.6117312 0.118219973 fv Log-Normal RP(P), Gamma FALSE #> 12407 776 0.5611248 0.108670367 fv Log-Normal RP(P), Gamma FALSE #> 12423 777 0.5629907 0.109897969 fv Log-Normal RP(P), Gamma FALSE #> 12439 778 0.5298195 0.103885618 fv Log-Normal RP(P), Gamma FALSE #> 12455 779 0.5462480 0.106788201 fv Log-Normal RP(P), Gamma FALSE #> 12471 780 0.5444594 0.106379957 fv Log-Normal RP(P), Gamma FALSE #> 12487 781 0.6444463 0.124004297 fv Log-Normal RP(P), Gamma FALSE #> 12503 782 0.5443616 0.106294312 fv Log-Normal RP(P), Gamma FALSE #> 12519 783 0.5651637 0.110239835 fv Log-Normal RP(P), Gamma FALSE #> 12535 784 0.7141628 0.136152496 fv Log-Normal RP(P), Gamma FALSE #> 12551 785 0.4331883 0.086467176 fv Log-Normal RP(P), Gamma FALSE #> 12567 786 0.5881396 0.114710602 fv Log-Normal RP(P), Gamma FALSE #> 12583 787 0.8314603 0.155149305 fv Log-Normal RP(P), Gamma FALSE #> 12599 788 0.6241300 0.120299910 fv Log-Normal RP(P), Gamma FALSE #> 12615 789 0.7653722 0.144630922 fv Log-Normal RP(P), Gamma FALSE #> 12631 790 0.6111340 0.117710305 fv Log-Normal RP(P), Gamma FALSE #> 12647 791 0.3753609 0.075903655 fv Log-Normal RP(P), Gamma TRUE #> 12663 792 0.5553672 0.110018225 fv Log-Normal RP(P), Gamma FALSE #> 12679 793 0.7380648 0.139320411 fv Log-Normal RP(P), Gamma FALSE #> 12695 794 0.6753683 0.133256274 fv Log-Normal RP(P), Gamma FALSE #> 12711 795 0.5768839 0.112455428 fv Log-Normal RP(P), Gamma FALSE #> 12727 796 0.5128957 0.100971449 fv Log-Normal RP(P), Gamma FALSE #> 12743 797 0.5171431 0.101337411 fv Log-Normal RP(P), Gamma FALSE #> 12759 798 0.4026960 0.081677375 fv Log-Normal RP(P), Gamma FALSE #> 12775 799 0.6303514 0.120628692 fv Log-Normal RP(P), Gamma FALSE #> 12791 800 0.6501893 0.125184344 fv Log-Normal RP(P), Gamma FALSE #> 12807 801 0.9250278 0.172573485 fv Log-Normal RP(P), Gamma TRUE #> 12823 802 0.6252328 0.119546062 fv Log-Normal RP(P), Gamma FALSE #> 12839 803 0.6134816 0.118753122 fv Log-Normal RP(P), Gamma FALSE #> 12855 804 0.6678647 0.127903390 fv Log-Normal RP(P), Gamma FALSE #> 12871 805 0.8631726 0.164708763 fv Log-Normal RP(P), Gamma FALSE #> 12887 806 0.8331630 0.159110944 fv Log-Normal RP(P), Gamma FALSE #> 12903 807 0.6846960 0.136036587 fv Log-Normal RP(P), Gamma FALSE #> 12919 808 0.4612360 0.091479967 fv Log-Normal RP(P), Gamma FALSE #> 12935 809 0.5738387 0.111513989 fv Log-Normal RP(P), Gamma FALSE #> 12951 810 0.6283526 0.120695686 fv Log-Normal RP(P), Gamma FALSE #> 12967 811 0.4109691 0.082520063 fv Log-Normal RP(P), Gamma FALSE #> 12983 812 0.6375459 0.123083940 fv Log-Normal RP(P), Gamma FALSE #> 12999 813 0.7069596 0.133763426 fv Log-Normal RP(P), Gamma FALSE #> 13015 814 0.6129295 0.118654574 fv Log-Normal RP(P), Gamma FALSE #> 13031 815 0.5429190 0.107859435 fv Log-Normal RP(P), Gamma FALSE #> 13047 816 0.5861718 0.113598258 fv Log-Normal RP(P), Gamma FALSE #> 13063 817 0.4079590 0.082085894 fv Log-Normal RP(P), Gamma FALSE #> 13079 818 0.6366459 0.124630856 fv Log-Normal RP(P), Gamma FALSE #> 13095 819 0.7049751 0.133589547 fv Log-Normal RP(P), Gamma FALSE #> 13111 820 0.8116920 0.153995715 fv Log-Normal RP(P), Gamma FALSE #> 13127 821 0.4937436 0.097102999 fv Log-Normal RP(P), Gamma FALSE #> 13143 822 0.8114681 0.152991774 fv Log-Normal RP(P), Gamma FALSE #> 13159 823 0.9386106 0.175718415 fv Log-Normal RP(P), Gamma TRUE #> 13175 824 0.7808530 0.147394509 fv Log-Normal RP(P), Gamma FALSE #> 13191 825 0.7047845 0.134917093 fv Log-Normal RP(P), Gamma FALSE #> 13207 826 0.7088981 0.135782107 fv Log-Normal RP(P), Gamma FALSE #> 13223 827 0.8137925 0.154712370 fv Log-Normal RP(P), Gamma FALSE #> 13239 828 0.5961539 0.116832078 fv Log-Normal RP(P), Gamma FALSE #> 13255 829 0.6508909 0.125234317 fv Log-Normal RP(P), Gamma FALSE #> 13271 830 0.7521623 0.142500178 fv Log-Normal RP(P), Gamma FALSE #> 13287 831 0.6926346 0.131352292 fv Log-Normal RP(P), Gamma FALSE #> 13303 832 0.4914520 0.097328337 fv Log-Normal RP(P), Gamma FALSE #> 13319 833 0.7543088 0.142866110 fv Log-Normal RP(P), Gamma FALSE #> 13335 834 0.5803865 0.113194461 fv Log-Normal RP(P), Gamma FALSE #> 13351 835 0.6213117 0.120310790 fv Log-Normal RP(P), Gamma FALSE #> 13367 836 0.6794638 0.130019762 fv Log-Normal RP(P), Gamma FALSE #> 13383 837 0.7571700 0.144029552 fv Log-Normal RP(P), Gamma FALSE #> 13399 838 0.6022522 0.116527948 fv Log-Normal RP(P), Gamma FALSE #> 13415 839 0.5678387 0.111762360 fv Log-Normal RP(P), Gamma FALSE #> 13431 840 0.5794574 0.112732652 fv Log-Normal RP(P), Gamma FALSE #> 13447 841 0.9027367 0.169264440 fv Log-Normal RP(P), Gamma TRUE #> 13463 842 0.4945054 0.097465716 fv Log-Normal RP(P), Gamma FALSE #> 13479 843 0.6164251 0.120453087 fv Log-Normal RP(P), Gamma FALSE #> 13495 844 0.7770622 0.145721886 fv Log-Normal RP(P), Gamma FALSE #> 13511 845 0.8054185 0.151160755 fv Log-Normal RP(P), Gamma FALSE #> 13527 846 0.4947152 0.097800871 fv Log-Normal RP(P), Gamma FALSE #> 13543 847 0.8873520 0.164465959 fv Log-Normal RP(P), Gamma FALSE #> 13559 848 0.6732286 0.128419353 fv Log-Normal RP(P), Gamma FALSE #> 13575 849 0.5501974 0.107615525 fv Log-Normal RP(P), Gamma FALSE #> 13591 850 0.7657343 0.145271938 fv Log-Normal RP(P), Gamma FALSE #> 13607 851 0.5838296 0.112816077 fv Log-Normal RP(P), Gamma FALSE #> 13623 852 0.6089890 0.117360510 fv Log-Normal RP(P), Gamma FALSE #> 13639 853 0.8570792 0.158811310 fv Log-Normal RP(P), Gamma FALSE #> 13655 854 0.6181706 0.120058291 fv Log-Normal RP(P), Gamma FALSE #> 13671 855 0.5443013 0.106559331 fv Log-Normal RP(P), Gamma FALSE #> 13687 856 0.7619340 0.144167343 fv Log-Normal RP(P), Gamma FALSE #> 13703 857 0.7054784 0.134681813 fv Log-Normal RP(P), Gamma FALSE #> 13719 858 0.8737770 0.162469522 fv Log-Normal RP(P), Gamma FALSE #> 13735 859 0.8436609 0.158355957 fv Log-Normal RP(P), Gamma FALSE #> 13751 860 0.6203294 0.120462203 fv Log-Normal RP(P), Gamma FALSE #> 13767 861 0.4246650 0.085201724 fv Log-Normal RP(P), Gamma FALSE #> 13783 862 0.5717094 0.110974928 fv Log-Normal RP(P), Gamma FALSE #> 13799 863 0.5930878 0.114981994 fv Log-Normal RP(P), Gamma FALSE #> 13815 864 0.7889726 0.148845738 fv Log-Normal RP(P), Gamma FALSE #> 13831 865 0.8396676 0.157504805 fv Log-Normal RP(P), Gamma FALSE #> 13847 866 0.7315134 0.140372989 fv Log-Normal RP(P), Gamma FALSE #> 13863 867 0.5339683 0.105161674 fv Log-Normal RP(P), Gamma FALSE #> 13879 868 0.8342745 0.157649889 fv Log-Normal RP(P), Gamma FALSE #> 13895 869 0.4553345 0.090508558 fv Log-Normal RP(P), Gamma FALSE #> 13911 870 0.7264093 0.138973381 fv Log-Normal RP(P), Gamma FALSE #> 13927 871 0.4569173 0.091103928 fv Log-Normal RP(P), Gamma FALSE #> 13943 872 0.4280552 0.086058153 fv Log-Normal RP(P), Gamma FALSE #> 13959 873 0.7410597 0.139690887 fv Log-Normal RP(P), Gamma FALSE #> 13975 874 0.6408185 0.123644052 fv Log-Normal RP(P), Gamma FALSE #> 13991 875 0.5388062 0.104971339 fv Log-Normal RP(P), Gamma FALSE #> 14007 876 0.5538235 0.108515653 fv Log-Normal RP(P), Gamma FALSE #> 14023 877 0.5173804 0.102558125 fv Log-Normal RP(P), Gamma FALSE #> 14039 878 0.6131328 0.119010688 fv Log-Normal RP(P), Gamma FALSE #> 14055 879 0.6097417 0.118099906 fv Log-Normal RP(P), Gamma FALSE #> 14071 880 0.7281233 0.137755819 fv Log-Normal RP(P), Gamma FALSE #> 14087 881 0.4819108 0.095257938 fv Log-Normal RP(P), Gamma FALSE #> 14103 882 0.6543178 0.126842054 fv Log-Normal RP(P), Gamma FALSE #> 14119 883 0.5607813 0.109303367 fv Log-Normal RP(P), Gamma FALSE #> 14135 884 0.4932391 0.097437433 fv Log-Normal RP(P), Gamma FALSE #> 14151 885 0.6588153 0.126232716 fv Log-Normal RP(P), Gamma FALSE #> 14167 886 0.5743023 0.112137457 fv Log-Normal RP(P), Gamma FALSE #> 14183 887 0.3462275 0.071202207 fv Log-Normal RP(P), Gamma TRUE #> 14199 888 0.5389566 0.105124924 fv Log-Normal RP(P), Gamma FALSE #> 14215 889 0.6030921 0.116845053 fv Log-Normal RP(P), Gamma FALSE #> 14231 890 0.6118626 0.117833825 fv Log-Normal RP(P), Gamma FALSE #> 14247 891 0.6524154 0.124896117 fv Log-Normal RP(P), Gamma FALSE #> 14263 892 0.9531941 0.178350481 fv Log-Normal RP(P), Gamma TRUE #> 14279 893 0.4343296 0.087215814 fv Log-Normal RP(P), Gamma FALSE #> 14295 894 0.5594749 0.110073852 fv Log-Normal RP(P), Gamma FALSE #> 14311 895 0.7014979 0.134457311 fv Log-Normal RP(P), Gamma FALSE #> 14327 896 0.4731205 0.093660204 fv Log-Normal RP(P), Gamma FALSE #> 14343 897 0.5714472 0.110989910 fv Log-Normal RP(P), Gamma FALSE #> 14359 898 0.6785190 0.129913470 fv Log-Normal RP(P), Gamma FALSE #> 14375 899 0.7737308 0.149258753 fv Log-Normal RP(P), Gamma FALSE #> 14391 900 0.6258468 0.120819485 fv Log-Normal RP(P), Gamma FALSE #> 14407 901 0.6898911 0.131170243 fv Log-Normal RP(P), Gamma FALSE #> 14423 902 0.7154328 0.135521156 fv Log-Normal RP(P), Gamma FALSE #> 14439 903 0.5104288 0.100779991 fv Log-Normal RP(P), Gamma FALSE #> 14455 904 0.5856834 0.113572720 fv Log-Normal RP(P), Gamma FALSE #> 14471 905 0.6004749 0.115324014 fv Log-Normal RP(P), Gamma FALSE #> 14487 906 0.6359688 0.122586572 fv Log-Normal RP(P), Gamma FALSE #> 14503 907 0.5900934 0.115657031 fv Log-Normal RP(P), Gamma FALSE #> 14519 908 0.4540465 0.090511303 fv Log-Normal RP(P), Gamma FALSE #> 14535 909 0.7511004 0.141521670 fv Log-Normal RP(P), Gamma FALSE #> 14551 910 0.5658137 0.110268564 fv Log-Normal RP(P), Gamma FALSE #> 14567 911 0.6072191 0.117365255 fv Log-Normal RP(P), Gamma FALSE #> 14583 912 0.3616722 0.073972649 fv Log-Normal RP(P), Gamma TRUE #> 14599 913 0.5503152 0.107431667 fv Log-Normal RP(P), Gamma FALSE #> 14615 914 0.7685300 0.145147343 fv Log-Normal RP(P), Gamma FALSE #> 14631 915 0.5856077 0.113156906 fv Log-Normal RP(P), Gamma FALSE #> 14647 916 0.6230510 0.119988154 fv Log-Normal RP(P), Gamma FALSE #> 14663 917 0.4810465 0.096021894 fv Log-Normal RP(P), Gamma FALSE #> 14679 918 0.5535167 0.109209013 fv Log-Normal RP(P), Gamma FALSE #> 14695 919 0.6199536 0.120122996 fv Log-Normal RP(P), Gamma FALSE #> 14711 920 0.5967302 0.115422824 fv Log-Normal RP(P), Gamma FALSE #> 14727 921 0.9743057 0.178872657 fv Log-Normal RP(P), Gamma TRUE #> 14743 922 0.5749685 0.112106133 fv Log-Normal RP(P), Gamma FALSE #> 14759 923 0.8627857 0.160537625 fv Log-Normal RP(P), Gamma FALSE #> 14775 924 0.6123826 0.118440207 fv Log-Normal RP(P), Gamma FALSE #> 14791 925 0.6977269 0.134168790 fv Log-Normal RP(P), Gamma FALSE #> 14807 926 0.7560266 0.142158465 fv Log-Normal RP(P), Gamma FALSE #> 14823 927 0.7244242 0.137428355 fv Log-Normal RP(P), Gamma FALSE #> 14839 928 0.6414165 0.123785383 fv Log-Normal RP(P), Gamma FALSE #> 14855 929 0.6732490 0.128390941 fv Log-Normal RP(P), Gamma FALSE #> 14871 930 0.5125839 0.101497596 fv Log-Normal RP(P), Gamma FALSE #> 14887 931 0.7127123 0.136040162 fv Log-Normal RP(P), Gamma FALSE #> 14903 932 0.5071163 0.100658331 fv Log-Normal RP(P), Gamma FALSE #> 14919 933 0.4956539 0.097351924 fv Log-Normal RP(P), Gamma FALSE #> 14935 934 0.6492066 0.125778769 fv Log-Normal RP(P), Gamma FALSE #> 14951 935 0.7579194 0.142654366 fv Log-Normal RP(P), Gamma FALSE #> 14967 936 0.6662641 0.128059082 fv Log-Normal RP(P), Gamma FALSE #> 14983 937 0.6552375 0.124704511 fv Log-Normal RP(P), Gamma FALSE #> 14999 938 0.6935610 0.131635443 fv Log-Normal RP(P), Gamma FALSE #> 15015 939 0.5076373 0.099638563 fv Log-Normal RP(P), Gamma FALSE #> 15031 940 0.6941711 0.133443392 fv Log-Normal RP(P), Gamma FALSE #> 15047 941 0.4272667 0.085962338 fv Log-Normal RP(P), Gamma FALSE #> 15063 942 0.7084198 0.133980596 fv Log-Normal RP(P), Gamma FALSE #> 15079 943 0.4592534 0.091044580 fv Log-Normal RP(P), Gamma FALSE #> 15095 944 0.5670107 0.110185647 fv Log-Normal RP(P), Gamma FALSE #> 15111 945 0.9419069 0.175234747 fv Log-Normal RP(P), Gamma TRUE #> 15127 946 0.7159091 0.136177032 fv Log-Normal RP(P), Gamma FALSE #> 15143 947 0.7179454 0.135868745 fv Log-Normal RP(P), Gamma FALSE #> 15159 948 0.4495258 0.091309189 fv Log-Normal RP(P), Gamma FALSE #> 15175 949 0.5815352 0.112460379 fv Log-Normal RP(P), Gamma FALSE #> 15191 950 0.6932335 0.132488165 fv Log-Normal RP(P), Gamma FALSE #> 15207 951 0.4666819 0.092380052 fv Log-Normal RP(P), Gamma FALSE #> 15223 952 0.5314269 0.103829685 fv Log-Normal RP(P), Gamma FALSE #> 15239 953 0.5565247 0.109149397 fv Log-Normal RP(P), Gamma FALSE #> 15255 954 0.7841108 0.150127737 fv Log-Normal RP(P), Gamma FALSE #> 15271 955 0.6303305 0.121517200 fv Log-Normal RP(P), Gamma FALSE #> 15287 956 0.7256964 0.136703077 fv Log-Normal RP(P), Gamma FALSE #> 15303 957 0.5263540 0.102902469 fv Log-Normal RP(P), Gamma FALSE #> 15319 958 0.5512942 0.108239740 fv Log-Normal RP(P), Gamma FALSE #> 15335 959 0.6362485 0.122428233 fv Log-Normal RP(P), Gamma FALSE #> 15351 960 0.4981004 0.097951714 fv Log-Normal RP(P), Gamma FALSE #> 15367 961 0.7240723 0.136822170 fv Log-Normal RP(P), Gamma FALSE #> 15383 962 0.6738336 0.128430099 fv Log-Normal RP(P), Gamma FALSE #> 15399 963 0.8590658 0.161400634 fv Log-Normal RP(P), Gamma FALSE #> 15415 964 0.6778286 0.131550538 fv Log-Normal RP(P), Gamma FALSE #> 15431 965 0.4974168 0.098176690 fv Log-Normal RP(P), Gamma FALSE #> 15447 966 0.8272373 0.153861102 fv Log-Normal RP(P), Gamma FALSE #> 15463 967 0.8021231 0.151700494 fv Log-Normal RP(P), Gamma FALSE #> 15479 968 0.7554846 0.144617670 fv Log-Normal RP(P), Gamma FALSE #> 15495 969 0.9243088 0.170805922 fv Log-Normal RP(P), Gamma TRUE #> 15511 970 0.7071617 0.135442111 fv Log-Normal RP(P), Gamma FALSE #> 15527 971 0.7640821 0.143246252 fv Log-Normal RP(P), Gamma FALSE #> 15543 972 0.5395954 0.105794951 fv Log-Normal RP(P), Gamma FALSE #> 15559 973 0.7931946 0.148915324 fv Log-Normal RP(P), Gamma FALSE #> 15575 974 0.8197008 0.153760685 fv Log-Normal RP(P), Gamma FALSE #> 15591 975 0.8907927 0.164905062 fv Log-Normal RP(P), Gamma FALSE #> 15607 976 0.7038651 0.135980149 fv Log-Normal RP(P), Gamma FALSE #> 15623 977 0.9187497 0.170234899 fv Log-Normal RP(P), Gamma TRUE #> 15639 978 0.7007673 0.133951052 fv Log-Normal RP(P), Gamma FALSE #> 15655 979 0.5554255 0.108409573 fv Log-Normal RP(P), Gamma FALSE #> 15671 980 0.6745765 0.129438354 fv Log-Normal RP(P), Gamma FALSE #> 15687 981 0.5670618 0.109771497 fv Log-Normal RP(P), Gamma FALSE #> 15703 982 0.5361854 0.104634937 fv Log-Normal RP(P), Gamma FALSE #> 15719 983 0.6498347 0.124437335 fv Log-Normal RP(P), Gamma FALSE #> 15735 984 0.6185397 0.120212982 fv Log-Normal RP(P), Gamma FALSE #> 15751 985 0.7716535 0.145635881 fv Log-Normal RP(P), Gamma FALSE #> 15767 986 0.6954360 0.133693819 fv Log-Normal RP(P), Gamma FALSE #> 15783 987 0.6610757 0.128995735 fv Log-Normal RP(P), Gamma FALSE #> 15799 988 0.7090702 0.134191221 fv Log-Normal RP(P), Gamma FALSE #> 15815 989 0.7499270 0.140913712 fv Log-Normal RP(P), Gamma FALSE #> 15831 990 0.6791009 0.130402853 fv Log-Normal RP(P), Gamma FALSE #> 15847 991 0.7486170 0.141785330 fv Log-Normal RP(P), Gamma FALSE #> 15863 992 0.6478979 0.124552181 fv Log-Normal RP(P), Gamma FALSE #> 15879 993 0.6378838 0.121975666 fv Log-Normal RP(P), Gamma FALSE #> 15895 994 0.6296675 0.123056122 fv Log-Normal RP(P), Gamma FALSE #> 15911 995 0.5297010 0.103909524 fv Log-Normal RP(P), Gamma FALSE #> 15927 996 0.6733473 0.130527337 fv Log-Normal RP(P), Gamma FALSE #> 15943 997 0.5759983 0.111233442 fv Log-Normal RP(P), Gamma FALSE #> 15959 998 0.5520605 0.108023635 fv Log-Normal RP(P), Gamma FALSE #> 15975 999 0.6755070 0.129234930 fv Log-Normal RP(P), Gamma FALSE #> 15991 1000 0.5820900 0.112838328 fv Log-Normal RP(P), Gamma FALSE #> 8 1 0.7587269 0.160310074 fv Log-Normal RP(P), Log-Normal FALSE #> 24 2 0.6427095 0.136481613 fv Log-Normal RP(P), Log-Normal FALSE #> 40 3 0.8272743 0.174133172 fv Log-Normal RP(P), Log-Normal FALSE #> 56 4 0.6154492 0.132224678 fv Log-Normal RP(P), Log-Normal FALSE #> 72 5 1.0040595 0.212010663 fv Log-Normal RP(P), Log-Normal FALSE #> 88 6 0.8839655 0.187498893 fv Log-Normal RP(P), Log-Normal FALSE #> 104 7 0.5927076 0.126010284 fv Log-Normal RP(P), Log-Normal FALSE #> 120 8 0.8303076 0.176094173 fv Log-Normal RP(P), Log-Normal FALSE #> 136 9 0.7248036 0.153480938 fv Log-Normal RP(P), Log-Normal FALSE #> 152 10 1.0116901 0.215026028 fv Log-Normal RP(P), Log-Normal FALSE #> 168 11 0.9163779 0.192812176 fv Log-Normal RP(P), Log-Normal FALSE #> 184 12 0.5531775 0.117536667 fv Log-Normal RP(P), Log-Normal FALSE #> 200 13 0.8309998 0.174965974 fv Log-Normal RP(P), Log-Normal FALSE #> 216 14 0.8142702 0.172262423 fv Log-Normal RP(P), Log-Normal FALSE #> 232 15 0.7403548 0.157621039 fv Log-Normal RP(P), Log-Normal FALSE #> 248 16 0.5815212 0.124702775 fv Log-Normal RP(P), Log-Normal FALSE #> 264 17 0.6448992 0.136415060 fv Log-Normal RP(P), Log-Normal FALSE #> 280 18 0.8723504 0.185445247 fv Log-Normal RP(P), Log-Normal FALSE #> 296 19 0.9424444 0.197979689 fv Log-Normal RP(P), Log-Normal FALSE #> 312 20 0.6112837 0.130269558 fv Log-Normal RP(P), Log-Normal FALSE #> 328 21 0.7055255 0.150812066 fv Log-Normal RP(P), Log-Normal FALSE #> 344 22 0.6008341 0.128261543 fv Log-Normal RP(P), Log-Normal FALSE #> 360 23 0.8761728 0.183388185 fv Log-Normal RP(P), Log-Normal FALSE #> 376 24 0.8105771 0.171983797 fv Log-Normal RP(P), Log-Normal FALSE #> 392 25 0.6233797 0.132823464 fv Log-Normal RP(P), Log-Normal FALSE #> 408 26 0.7552494 0.159767947 fv Log-Normal RP(P), Log-Normal FALSE #> 424 27 0.5365736 0.118347519 fv Log-Normal RP(P), Log-Normal FALSE #> 440 28 0.7291543 0.155121274 fv Log-Normal RP(P), Log-Normal FALSE #> 456 29 1.0757698 0.224219202 fv Log-Normal RP(P), Log-Normal TRUE #> 472 30 0.7238761 0.156782077 fv Log-Normal RP(P), Log-Normal FALSE #> 488 31 0.5599923 0.120185524 fv Log-Normal RP(P), Log-Normal FALSE #> 504 32 0.5305952 0.112891465 fv Log-Normal RP(P), Log-Normal FALSE #> 520 33 0.7705200 0.164509859 fv Log-Normal RP(P), Log-Normal FALSE #> 536 34 0.9181142 0.193544815 fv Log-Normal RP(P), Log-Normal FALSE #> 552 35 0.5262293 0.112984685 fv Log-Normal RP(P), Log-Normal FALSE #> 568 36 0.5191213 0.111910048 fv Log-Normal RP(P), Log-Normal FALSE #> 584 37 0.7019126 0.149573895 fv Log-Normal RP(P), Log-Normal FALSE #> 600 38 0.6378678 0.135525656 fv Log-Normal RP(P), Log-Normal FALSE #> 616 39 0.8017794 0.170404386 fv Log-Normal RP(P), Log-Normal FALSE #> 632 40 0.5714472 0.121859157 fv Log-Normal RP(P), Log-Normal FALSE #> 648 41 0.8335074 0.177134554 fv Log-Normal RP(P), Log-Normal FALSE #> 664 42 0.5632683 0.120257577 fv Log-Normal RP(P), Log-Normal FALSE #> 680 43 0.5641544 0.122123217 fv Log-Normal RP(P), Log-Normal FALSE #> 696 44 0.7949684 0.169464289 fv Log-Normal RP(P), Log-Normal FALSE #> 712 45 0.6326050 0.134725078 fv Log-Normal RP(P), Log-Normal FALSE #> 728 46 0.3403314 0.074346940 fv Log-Normal RP(P), Log-Normal TRUE #> 744 47 0.9563960 0.202431253 fv Log-Normal RP(P), Log-Normal FALSE #> 760 48 0.8868588 0.187192828 fv Log-Normal RP(P), Log-Normal FALSE #> 776 49 0.9689607 0.202879027 fv Log-Normal RP(P), Log-Normal FALSE #> 792 50 0.6034856 0.129155376 fv Log-Normal RP(P), Log-Normal FALSE #> 808 51 0.8875662 0.188455833 fv Log-Normal RP(P), Log-Normal FALSE #> 824 52 0.5304852 0.114409866 fv Log-Normal RP(P), Log-Normal FALSE #> 840 53 0.9347285 0.195611763 fv Log-Normal RP(P), Log-Normal FALSE #> 856 54 0.7253010 0.153848983 fv Log-Normal RP(P), Log-Normal FALSE #> 872 55 0.9365095 0.197246816 fv Log-Normal RP(P), Log-Normal FALSE #> 888 56 0.7698460 0.161108352 fv Log-Normal RP(P), Log-Normal FALSE #> 904 57 0.9240850 0.195363045 fv Log-Normal RP(P), Log-Normal FALSE #> 920 58 0.7679395 0.161928888 fv Log-Normal RP(P), Log-Normal FALSE #> 936 59 0.7182305 0.151499862 fv Log-Normal RP(P), Log-Normal FALSE #> 952 60 1.0058746 0.216721875 fv Log-Normal RP(P), Log-Normal FALSE #> 968 61 0.7566231 0.160366843 fv Log-Normal RP(P), Log-Normal FALSE #> 984 62 0.6235933 0.132341918 fv Log-Normal RP(P), Log-Normal FALSE #> 1000 63 0.8330331 0.174751715 fv Log-Normal RP(P), Log-Normal FALSE #> 1016 64 0.7372343 0.154560392 fv Log-Normal RP(P), Log-Normal FALSE #> 1032 65 0.9324597 0.196214421 fv Log-Normal RP(P), Log-Normal FALSE #> 1048 66 0.6556111 0.140836763 fv Log-Normal RP(P), Log-Normal FALSE #> 1064 67 0.6283832 0.133766573 fv Log-Normal RP(P), Log-Normal FALSE #> 1080 68 0.5259450 0.113787629 fv Log-Normal RP(P), Log-Normal FALSE #> 1096 69 0.8150040 0.171983367 fv Log-Normal RP(P), Log-Normal FALSE #> 1112 70 0.7752526 0.163616805 fv Log-Normal RP(P), Log-Normal FALSE #> 1128 71 1.0256382 0.217584719 fv Log-Normal RP(P), Log-Normal FALSE #> 1144 72 0.6090315 0.129986511 fv Log-Normal RP(P), Log-Normal FALSE #> 1160 73 0.7378555 0.157540359 fv Log-Normal RP(P), Log-Normal FALSE #> 1176 74 0.4266073 0.091598299 fv Log-Normal RP(P), Log-Normal FALSE #> 1192 75 0.7264828 0.153774539 fv Log-Normal RP(P), Log-Normal FALSE #> 1208 76 0.6558995 0.140177692 fv Log-Normal RP(P), Log-Normal FALSE #> 1224 77 0.8527293 0.179762381 fv Log-Normal RP(P), Log-Normal FALSE #> 1240 78 0.7870716 0.165681047 fv Log-Normal RP(P), Log-Normal FALSE #> 1256 79 1.0961721 0.229344262 fv Log-Normal RP(P), Log-Normal TRUE #> 1272 80 0.5928102 0.126126879 fv Log-Normal RP(P), Log-Normal FALSE #> 1288 81 1.0116718 0.212214328 fv Log-Normal RP(P), Log-Normal FALSE #> 1304 82 0.6932804 0.146529625 fv Log-Normal RP(P), Log-Normal FALSE #> 1320 83 0.8128450 0.173169547 fv Log-Normal RP(P), Log-Normal FALSE #> 1336 84 0.6546543 0.140338914 fv Log-Normal RP(P), Log-Normal FALSE #> 1352 85 0.6580420 0.139756530 fv Log-Normal RP(P), Log-Normal FALSE #> 1368 86 0.5651574 0.120395675 fv Log-Normal RP(P), Log-Normal FALSE #> 1384 87 0.7739794 0.164331266 fv Log-Normal RP(P), Log-Normal FALSE #> 1400 88 0.7745832 0.167238556 fv Log-Normal RP(P), Log-Normal FALSE #> 1416 89 1.0368143 0.217170812 fv Log-Normal RP(P), Log-Normal FALSE #> 1432 90 0.8166873 0.170720378 fv Log-Normal RP(P), Log-Normal FALSE #> 1448 91 0.9071331 0.190130518 fv Log-Normal RP(P), Log-Normal FALSE #> 1464 92 0.8923346 0.189677791 fv Log-Normal RP(P), Log-Normal FALSE #> 1480 93 0.6132879 0.130286551 fv Log-Normal RP(P), Log-Normal FALSE #> 1496 94 0.8505242 0.181240095 fv Log-Normal RP(P), Log-Normal FALSE #> 1512 95 0.6782855 0.143566528 fv Log-Normal RP(P), Log-Normal FALSE #> 1528 96 0.5793421 0.124444915 fv Log-Normal RP(P), Log-Normal FALSE #> 1544 97 0.8184744 0.172217358 fv Log-Normal RP(P), Log-Normal FALSE #> 1560 98 0.4638964 0.100253533 fv Log-Normal RP(P), Log-Normal FALSE #> 1576 99 0.9303806 0.199727243 fv Log-Normal RP(P), Log-Normal FALSE #> 1592 100 0.6869339 0.148166559 fv Log-Normal RP(P), Log-Normal FALSE #> 1608 101 0.6467181 0.136969509 fv Log-Normal RP(P), Log-Normal FALSE #> 1624 102 0.4957626 0.105808839 fv Log-Normal RP(P), Log-Normal FALSE #> 1640 103 0.7884881 0.166125050 fv Log-Normal RP(P), Log-Normal FALSE #> 1656 104 0.7369302 0.156103668 fv Log-Normal RP(P), Log-Normal FALSE #> 1672 105 0.4680770 0.100530696 fv Log-Normal RP(P), Log-Normal FALSE #> 1688 106 0.6814912 0.146176406 fv Log-Normal RP(P), Log-Normal FALSE #> 1704 107 0.8653450 0.182292080 fv Log-Normal RP(P), Log-Normal FALSE #> 1720 108 0.7160621 0.153662080 fv Log-Normal RP(P), Log-Normal FALSE #> 1736 109 0.9318352 0.195104641 fv Log-Normal RP(P), Log-Normal FALSE #> 1752 110 0.9333831 0.197785385 fv Log-Normal RP(P), Log-Normal FALSE #> 1768 111 0.6395728 0.135269065 fv Log-Normal RP(P), Log-Normal FALSE #> 1784 112 0.7016627 0.147545888 fv Log-Normal RP(P), Log-Normal FALSE #> 1800 113 0.8576238 0.179983637 fv Log-Normal RP(P), Log-Normal FALSE #> 1816 114 0.6710954 0.142328711 fv Log-Normal RP(P), Log-Normal FALSE #> 1832 115 0.7820406 0.166205449 fv Log-Normal RP(P), Log-Normal FALSE #> 1848 116 0.7939534 0.167711038 fv Log-Normal RP(P), Log-Normal FALSE #> 1864 117 0.8430940 0.176684051 fv Log-Normal RP(P), Log-Normal FALSE #> 1880 118 0.6212618 0.132330606 fv Log-Normal RP(P), Log-Normal FALSE #> 1896 119 0.5727404 0.121504334 fv Log-Normal RP(P), Log-Normal FALSE #> 1912 120 0.8243130 0.174444030 fv Log-Normal RP(P), Log-Normal FALSE #> 1928 121 0.7202072 0.152475354 fv Log-Normal RP(P), Log-Normal FALSE #> 1944 122 0.5561335 0.119749873 fv Log-Normal RP(P), Log-Normal FALSE #> 1960 123 0.5294622 0.113195261 fv Log-Normal RP(P), Log-Normal FALSE #> 1976 124 0.5606144 0.119830783 fv Log-Normal RP(P), Log-Normal FALSE #> 1992 125 0.5467464 0.117088993 fv Log-Normal RP(P), Log-Normal FALSE #> 2008 126 1.2215715 0.256569950 fv Log-Normal RP(P), Log-Normal TRUE #> 2024 127 0.5218994 0.113209374 fv Log-Normal RP(P), Log-Normal FALSE #> 2040 128 0.5216607 0.111937164 fv Log-Normal RP(P), Log-Normal FALSE #> 2056 129 0.7174736 0.154534528 fv Log-Normal RP(P), Log-Normal FALSE #> 2072 130 0.5770054 0.123890286 fv Log-Normal RP(P), Log-Normal FALSE #> 2088 131 0.6689280 0.142266715 fv Log-Normal RP(P), Log-Normal FALSE #> 2104 132 0.7957550 0.170120599 fv Log-Normal RP(P), Log-Normal FALSE #> 2120 133 0.9412438 0.196855270 fv Log-Normal RP(P), Log-Normal FALSE #> 2136 134 1.0838532 0.226912038 fv Log-Normal RP(P), Log-Normal TRUE #> 2152 135 0.6648603 0.140092983 fv Log-Normal RP(P), Log-Normal FALSE #> 2168 136 0.5492014 0.117363787 fv Log-Normal RP(P), Log-Normal FALSE #> 2184 137 0.5291266 0.115402392 fv Log-Normal RP(P), Log-Normal FALSE #> 2200 138 0.5264330 0.112494837 fv Log-Normal RP(P), Log-Normal FALSE #> 2216 139 0.7533269 0.160159857 fv Log-Normal RP(P), Log-Normal FALSE #> 2232 140 0.8110847 0.171158128 fv Log-Normal RP(P), Log-Normal FALSE #> 2248 141 0.4367489 0.094597121 fv Log-Normal RP(P), Log-Normal FALSE #> 2264 142 0.4940670 0.106169645 fv Log-Normal RP(P), Log-Normal FALSE #> 2280 143 0.5794493 0.122951278 fv Log-Normal RP(P), Log-Normal FALSE #> 2296 144 0.6778027 0.143521271 fv Log-Normal RP(P), Log-Normal FALSE #> 2312 145 0.5837892 0.125941371 fv Log-Normal RP(P), Log-Normal FALSE #> 2328 146 0.7325227 0.154220307 fv Log-Normal RP(P), Log-Normal FALSE #> 2344 147 0.6357226 0.135958395 fv Log-Normal RP(P), Log-Normal FALSE #> 2360 148 0.5487951 0.117138970 fv Log-Normal RP(P), Log-Normal FALSE #> 2376 149 0.4091531 0.089138976 fv Log-Normal RP(P), Log-Normal TRUE #> 2392 150 0.5623525 0.119787569 fv Log-Normal RP(P), Log-Normal FALSE #> 2408 151 0.9870081 0.207968406 fv Log-Normal RP(P), Log-Normal FALSE #> 2424 152 0.7257533 0.155576929 fv Log-Normal RP(P), Log-Normal FALSE #> 2440 153 0.7938888 0.166001332 fv Log-Normal RP(P), Log-Normal FALSE #> 2456 154 0.7543676 0.159096926 fv Log-Normal RP(P), Log-Normal FALSE #> 2472 155 1.0111457 0.212971620 fv Log-Normal RP(P), Log-Normal FALSE #> 2488 156 0.6544524 0.141043356 fv Log-Normal RP(P), Log-Normal FALSE #> 2504 157 0.6432003 0.138898907 fv Log-Normal RP(P), Log-Normal FALSE #> 2520 158 0.6411141 0.135716820 fv Log-Normal RP(P), Log-Normal FALSE #> 2536 159 0.8229442 0.176716197 fv Log-Normal RP(P), Log-Normal FALSE #> 2552 160 0.8120361 0.174187032 fv Log-Normal RP(P), Log-Normal FALSE #> 2568 161 0.9019813 0.188117850 fv Log-Normal RP(P), Log-Normal FALSE #> 2584 162 1.0499623 0.220400899 fv Log-Normal RP(P), Log-Normal TRUE #> 2600 163 0.6371458 0.137262190 fv Log-Normal RP(P), Log-Normal FALSE #> 2616 164 0.6859633 0.145451105 fv Log-Normal RP(P), Log-Normal FALSE #> 2632 165 0.5519135 0.117940756 fv Log-Normal RP(P), Log-Normal FALSE #> 2648 166 0.4479469 0.095793295 fv Log-Normal RP(P), Log-Normal FALSE #> 2664 167 0.7613875 0.161975639 fv Log-Normal RP(P), Log-Normal FALSE #> 2680 168 0.8959044 0.188861131 fv Log-Normal RP(P), Log-Normal FALSE #> 2696 169 0.6531845 0.138023079 fv Log-Normal RP(P), Log-Normal FALSE #> 2712 170 0.7664620 0.162066953 fv Log-Normal RP(P), Log-Normal FALSE #> 2728 171 0.8455567 0.178186955 fv Log-Normal RP(P), Log-Normal FALSE #> 2744 172 0.7766548 0.164499182 fv Log-Normal RP(P), Log-Normal FALSE #> 2760 173 0.7349752 0.154532530 fv Log-Normal RP(P), Log-Normal FALSE #> 2776 174 0.6099624 0.129739699 fv Log-Normal RP(P), Log-Normal FALSE #> 2792 175 0.8046287 0.169421952 fv Log-Normal RP(P), Log-Normal FALSE #> 2808 176 1.0156282 0.214174421 fv Log-Normal RP(P), Log-Normal FALSE #> 2824 177 0.8256876 0.175175875 fv Log-Normal RP(P), Log-Normal FALSE #> 2840 178 0.5414903 0.116046912 fv Log-Normal RP(P), Log-Normal FALSE #> 2856 179 0.9627749 0.202015293 fv Log-Normal RP(P), Log-Normal FALSE #> 2872 180 0.5801914 0.124401399 fv Log-Normal RP(P), Log-Normal FALSE #> 2888 181 0.7554494 0.159701514 fv Log-Normal RP(P), Log-Normal FALSE #> 2904 182 1.2537245 0.262312759 fv Log-Normal RP(P), Log-Normal TRUE #> 2920 183 0.7659203 0.165867012 fv Log-Normal RP(P), Log-Normal FALSE #> 2936 184 0.9738310 0.203471702 fv Log-Normal RP(P), Log-Normal FALSE #> 2952 185 0.8121692 0.171028940 fv Log-Normal RP(P), Log-Normal FALSE #> 2968 186 0.7982599 0.168832783 fv Log-Normal RP(P), Log-Normal FALSE #> 2984 187 0.6883828 0.145342853 fv Log-Normal RP(P), Log-Normal FALSE #> 3000 188 0.8374741 0.176193562 fv Log-Normal RP(P), Log-Normal FALSE #> 3016 189 0.6993496 0.147808847 fv Log-Normal RP(P), Log-Normal FALSE #> 3032 190 0.8064399 0.170804825 fv Log-Normal RP(P), Log-Normal FALSE #> 3048 191 0.8008227 0.173861583 fv Log-Normal RP(P), Log-Normal FALSE #> 3064 192 0.6525505 0.137788950 fv Log-Normal RP(P), Log-Normal FALSE #> 3080 193 0.7916083 0.170491952 fv Log-Normal RP(P), Log-Normal FALSE #> 3096 194 0.9988075 0.209353233 fv Log-Normal RP(P), Log-Normal FALSE #> 3112 195 0.5880564 0.124916660 fv Log-Normal RP(P), Log-Normal FALSE #> 3128 196 0.6367192 0.135928623 fv Log-Normal RP(P), Log-Normal FALSE #> 3144 197 0.6587380 0.139314113 fv Log-Normal RP(P), Log-Normal FALSE #> 3160 198 0.7988690 0.168411544 fv Log-Normal RP(P), Log-Normal FALSE #> 3176 199 0.5340730 0.114133322 fv Log-Normal RP(P), Log-Normal FALSE #> 3192 200 0.6108400 0.131066750 fv Log-Normal RP(P), Log-Normal FALSE #> 3208 201 0.8908497 0.188126967 fv Log-Normal RP(P), Log-Normal FALSE #> 3224 202 0.7243823 0.152769551 fv Log-Normal RP(P), Log-Normal FALSE #> 3240 203 0.6371139 0.135630072 fv Log-Normal RP(P), Log-Normal FALSE #> 3256 204 0.6812425 0.144876357 fv Log-Normal RP(P), Log-Normal FALSE #> 3272 205 0.6640707 0.142647914 fv Log-Normal RP(P), Log-Normal FALSE #> 3288 206 0.7955822 0.169584226 fv Log-Normal RP(P), Log-Normal FALSE #> 3304 207 0.8122343 0.171305716 fv Log-Normal RP(P), Log-Normal FALSE #> 3320 208 1.0716857 0.225174141 fv Log-Normal RP(P), Log-Normal TRUE #> 3336 209 0.6729434 0.145634249 fv Log-Normal RP(P), Log-Normal FALSE #> 3352 210 0.7233139 0.155217656 fv Log-Normal RP(P), Log-Normal FALSE #> 3368 211 0.8224261 0.173753257 fv Log-Normal RP(P), Log-Normal FALSE #> 3384 212 0.8106002 0.171929743 fv Log-Normal RP(P), Log-Normal FALSE #> 3400 213 0.6209349 0.132488452 fv Log-Normal RP(P), Log-Normal FALSE #> 3416 214 0.6651939 0.141701897 fv Log-Normal RP(P), Log-Normal FALSE #> 3432 215 0.6681925 0.142692548 fv Log-Normal RP(P), Log-Normal FALSE #> 3448 216 0.9718383 0.203611298 fv Log-Normal RP(P), Log-Normal FALSE #> 3464 217 0.7615306 0.161592701 fv Log-Normal RP(P), Log-Normal FALSE #> 3480 218 0.5932685 0.126182039 fv Log-Normal RP(P), Log-Normal FALSE #> 3496 219 0.8440250 0.177280275 fv Log-Normal RP(P), Log-Normal FALSE #> 3512 220 0.9111737 0.193577494 fv Log-Normal RP(P), Log-Normal FALSE #> 3528 221 0.6454833 0.139083353 fv Log-Normal RP(P), Log-Normal FALSE #> 3544 222 0.3710342 0.081236086 fv Log-Normal RP(P), Log-Normal TRUE #> 3560 223 0.5463579 0.116226442 fv Log-Normal RP(P), Log-Normal FALSE #> 3576 224 0.5958494 0.127390309 fv Log-Normal RP(P), Log-Normal FALSE #> 3592 225 0.8256615 0.173178721 fv Log-Normal RP(P), Log-Normal FALSE #> 3608 226 1.0751549 0.225902510 fv Log-Normal RP(P), Log-Normal TRUE #> 3624 227 0.7671138 0.162589102 fv Log-Normal RP(P), Log-Normal FALSE #> 3640 228 0.8685262 0.182915069 fv Log-Normal RP(P), Log-Normal FALSE #> 3656 229 0.4077865 0.089309434 fv Log-Normal RP(P), Log-Normal TRUE #> 3672 230 0.6142203 0.130122245 fv Log-Normal RP(P), Log-Normal FALSE #> 3688 231 0.6568914 0.139096135 fv Log-Normal RP(P), Log-Normal FALSE #> 3704 232 0.9518400 0.200405291 fv Log-Normal RP(P), Log-Normal FALSE #> 3720 233 0.9620535 0.203495174 fv Log-Normal RP(P), Log-Normal FALSE #> 3736 234 0.9386042 0.197203991 fv Log-Normal RP(P), Log-Normal FALSE #> 3752 235 0.5533993 0.117867348 fv Log-Normal RP(P), Log-Normal FALSE #> 3768 236 0.6340348 0.134447642 fv Log-Normal RP(P), Log-Normal FALSE #> 3784 237 0.5453294 0.115930957 fv Log-Normal RP(P), Log-Normal FALSE #> 3800 238 0.8944895 0.191484666 fv Log-Normal RP(P), Log-Normal FALSE #> 3816 239 0.9288279 0.195513931 fv Log-Normal RP(P), Log-Normal FALSE #> 3832 240 0.6350098 0.135823593 fv Log-Normal RP(P), Log-Normal FALSE #> 3848 241 0.7685612 0.163948020 fv Log-Normal RP(P), Log-Normal FALSE #> 3864 242 0.5467803 0.117102138 fv Log-Normal RP(P), Log-Normal FALSE #> 3880 243 0.6730960 0.142931552 fv Log-Normal RP(P), Log-Normal FALSE #> 3896 244 0.6142116 0.131941975 fv Log-Normal RP(P), Log-Normal FALSE #> 3912 245 0.5020462 0.109122006 fv Log-Normal RP(P), Log-Normal FALSE #> 3928 246 0.7921927 0.168021380 fv Log-Normal RP(P), Log-Normal FALSE #> 3944 247 0.6592181 0.139530433 fv Log-Normal RP(P), Log-Normal FALSE #> 3960 248 1.1777612 0.254244197 fv Log-Normal RP(P), Log-Normal TRUE #> 3976 249 0.5943575 0.127544821 fv Log-Normal RP(P), Log-Normal FALSE #> 3992 250 0.7502168 0.158141093 fv Log-Normal RP(P), Log-Normal FALSE #> 4008 251 0.6268527 0.133734241 fv Log-Normal RP(P), Log-Normal FALSE #> 4024 252 0.4776854 0.102284469 fv Log-Normal RP(P), Log-Normal FALSE #> 4040 253 0.8681536 0.183500004 fv Log-Normal RP(P), Log-Normal FALSE #> 4056 254 0.7439174 0.156041861 fv Log-Normal RP(P), Log-Normal FALSE #> 4072 255 0.9441697 0.201330530 fv Log-Normal RP(P), Log-Normal FALSE #> 4088 256 0.8607312 0.182317109 fv Log-Normal RP(P), Log-Normal FALSE #> 4104 257 0.8369787 0.175261357 fv Log-Normal RP(P), Log-Normal FALSE #> 4120 258 0.4171869 0.089856660 fv Log-Normal RP(P), Log-Normal TRUE #> 4136 259 0.6676815 0.141483812 fv Log-Normal RP(P), Log-Normal FALSE #> 4152 260 0.6884486 0.147931703 fv Log-Normal RP(P), Log-Normal FALSE #> 4168 261 0.8876474 0.187002433 fv Log-Normal RP(P), Log-Normal FALSE #> 4184 262 0.6886344 0.145893409 fv Log-Normal RP(P), Log-Normal FALSE #> 4200 263 0.8769823 0.186762641 fv Log-Normal RP(P), Log-Normal FALSE #> 4216 264 0.7973775 0.168952281 fv Log-Normal RP(P), Log-Normal FALSE #> 4232 265 0.6224204 0.131746513 fv Log-Normal RP(P), Log-Normal FALSE #> 4248 266 0.6649661 0.143208152 fv Log-Normal RP(P), Log-Normal FALSE #> 4264 267 0.6170590 0.130985777 fv Log-Normal RP(P), Log-Normal FALSE #> 4280 268 0.9638015 0.201609273 fv Log-Normal RP(P), Log-Normal FALSE #> 4296 269 0.6192713 0.132297670 fv Log-Normal RP(P), Log-Normal FALSE #> 4312 270 0.6272993 0.133300944 fv Log-Normal RP(P), Log-Normal FALSE #> 4328 271 0.7800909 0.164123810 fv Log-Normal RP(P), Log-Normal FALSE #> 4344 272 0.5661606 0.121060836 fv Log-Normal RP(P), Log-Normal FALSE #> 4360 273 0.7588228 0.161878411 fv Log-Normal RP(P), Log-Normal FALSE #> 4376 274 0.7671855 0.161327099 fv Log-Normal RP(P), Log-Normal FALSE #> 4392 275 0.6394525 0.136719057 fv Log-Normal RP(P), Log-Normal FALSE #> 4408 276 0.7903120 0.166291219 fv Log-Normal RP(P), Log-Normal FALSE #> 4424 277 0.7234781 0.152518392 fv Log-Normal RP(P), Log-Normal FALSE #> 4440 278 0.6278358 0.135101300 fv Log-Normal RP(P), Log-Normal FALSE #> 4456 279 0.8158385 0.171062766 fv Log-Normal RP(P), Log-Normal FALSE #> 4472 280 0.8400655 0.178662425 fv Log-Normal RP(P), Log-Normal FALSE #> 4488 281 0.7252124 0.152822320 fv Log-Normal RP(P), Log-Normal FALSE #> 4504 282 0.6556109 0.140682373 fv Log-Normal RP(P), Log-Normal FALSE #> 4520 283 0.8872840 0.188990041 fv Log-Normal RP(P), Log-Normal FALSE #> 4536 284 0.6237917 0.133109411 fv Log-Normal RP(P), Log-Normal FALSE #> 4552 285 0.7104471 0.150620789 fv Log-Normal RP(P), Log-Normal FALSE #> 4568 286 0.7010266 0.148553607 fv Log-Normal RP(P), Log-Normal FALSE #> 4584 287 0.5983036 0.127533893 fv Log-Normal RP(P), Log-Normal FALSE #> 4600 288 0.6194319 0.132300120 fv Log-Normal RP(P), Log-Normal FALSE #> 4616 289 0.6953902 0.147668888 fv Log-Normal RP(P), Log-Normal FALSE #> 4632 290 0.6789570 0.143987778 fv Log-Normal RP(P), Log-Normal FALSE #> 4648 291 0.7671789 0.162019778 fv Log-Normal RP(P), Log-Normal FALSE #> 4664 292 0.6671205 0.145690555 fv Log-Normal RP(P), Log-Normal FALSE #> 4680 293 0.6823554 0.144154584 fv Log-Normal RP(P), Log-Normal FALSE #> 4696 294 0.7332624 0.154464681 fv Log-Normal RP(P), Log-Normal FALSE #> 4712 295 0.6404999 0.135858256 fv Log-Normal RP(P), Log-Normal FALSE #> 4728 296 0.8064440 0.169134786 fv Log-Normal RP(P), Log-Normal FALSE #> 4744 297 0.4154099 0.089707885 fv Log-Normal RP(P), Log-Normal TRUE #> 4760 298 0.7001526 0.148958370 fv Log-Normal RP(P), Log-Normal FALSE #> 4776 299 0.7901542 0.166005499 fv Log-Normal RP(P), Log-Normal FALSE #> 4792 300 0.6383931 0.135316588 fv Log-Normal RP(P), Log-Normal FALSE #> 4808 301 1.0797894 0.226631922 fv Log-Normal RP(P), Log-Normal TRUE #> 4824 302 0.7333982 0.154129270 fv Log-Normal RP(P), Log-Normal FALSE #> 4840 303 0.6448902 0.136135374 fv Log-Normal RP(P), Log-Normal FALSE #> 4856 304 0.6874369 0.145600025 fv Log-Normal RP(P), Log-Normal FALSE #> 4872 305 0.8473673 0.180072933 fv Log-Normal RP(P), Log-Normal FALSE #> 4888 306 0.5855319 0.124660389 fv Log-Normal RP(P), Log-Normal FALSE #> 4904 307 0.6260604 0.133351831 fv Log-Normal RP(P), Log-Normal FALSE #> 4920 308 0.7265619 0.155227234 fv Log-Normal RP(P), Log-Normal FALSE #> 4936 309 0.6165858 0.131736323 fv Log-Normal RP(P), Log-Normal FALSE #> 4952 310 0.6669932 0.143636364 fv Log-Normal RP(P), Log-Normal FALSE #> 4968 311 0.8948024 0.187518922 fv Log-Normal RP(P), Log-Normal FALSE #> 4984 312 0.7340584 0.156045396 fv Log-Normal RP(P), Log-Normal FALSE #> 5000 313 0.5098630 0.110514496 fv Log-Normal RP(P), Log-Normal FALSE #> 5016 314 0.7006581 0.149757043 fv Log-Normal RP(P), Log-Normal FALSE #> 5032 315 0.6800828 0.144554310 fv Log-Normal RP(P), Log-Normal FALSE #> 5048 316 0.5944615 0.126393843 fv Log-Normal RP(P), Log-Normal FALSE #> 5064 317 0.8636833 0.180934577 fv Log-Normal RP(P), Log-Normal FALSE #> 5080 318 0.5483091 0.116304349 fv Log-Normal RP(P), Log-Normal FALSE #> 5096 319 0.7523237 0.160342794 fv Log-Normal RP(P), Log-Normal FALSE #> 5112 320 0.8391743 0.176178376 fv Log-Normal RP(P), Log-Normal FALSE #> 5128 321 0.9163775 0.194154288 fv Log-Normal RP(P), Log-Normal FALSE #> 5144 322 0.5894324 0.127298736 fv Log-Normal RP(P), Log-Normal FALSE #> 5160 323 0.8114798 0.171935681 fv Log-Normal RP(P), Log-Normal FALSE #> 5176 324 0.5338577 0.114284662 fv Log-Normal RP(P), Log-Normal FALSE #> 5192 325 0.6217815 0.132298631 fv Log-Normal RP(P), Log-Normal FALSE #> 5208 326 1.0836512 0.235917887 fv Log-Normal RP(P), Log-Normal TRUE #> 5224 327 0.5334750 0.115076500 fv Log-Normal RP(P), Log-Normal FALSE #> 5240 328 0.7989732 0.169468715 fv Log-Normal RP(P), Log-Normal FALSE #> 5256 329 0.6360385 0.134479974 fv Log-Normal RP(P), Log-Normal FALSE #> 5272 330 0.5875593 0.128101031 fv Log-Normal RP(P), Log-Normal FALSE #> 5288 331 0.9377907 0.197762013 fv Log-Normal RP(P), Log-Normal FALSE #> 5304 332 0.6885284 0.145055687 fv Log-Normal RP(P), Log-Normal FALSE #> 5320 333 0.5064415 0.108148237 fv Log-Normal RP(P), Log-Normal FALSE #> 5336 334 0.5541498 0.118443759 fv Log-Normal RP(P), Log-Normal FALSE #> 5352 335 0.5482213 0.116736851 fv Log-Normal RP(P), Log-Normal FALSE #> 5368 336 0.7934025 0.166004228 fv Log-Normal RP(P), Log-Normal FALSE #> 5384 337 0.6571731 0.138502229 fv Log-Normal RP(P), Log-Normal FALSE #> 5400 338 0.7728687 0.163033764 fv Log-Normal RP(P), Log-Normal FALSE #> 5416 339 0.5965669 0.128341597 fv Log-Normal RP(P), Log-Normal FALSE #> 5432 340 0.9275768 0.195141879 fv Log-Normal RP(P), Log-Normal FALSE #> 5448 341 0.6692119 0.145172381 fv Log-Normal RP(P), Log-Normal FALSE #> 5464 342 0.5902572 0.125475073 fv Log-Normal RP(P), Log-Normal FALSE #> 5480 343 0.5801466 0.123098768 fv Log-Normal RP(P), Log-Normal FALSE #> 5496 344 0.6785553 0.144580820 fv Log-Normal RP(P), Log-Normal FALSE #> 5512 345 0.6981478 0.149010321 fv Log-Normal RP(P), Log-Normal FALSE #> 5528 346 0.5238796 0.114762954 fv Log-Normal RP(P), Log-Normal FALSE #> 5544 347 0.6274841 0.133216940 fv Log-Normal RP(P), Log-Normal FALSE #> 5560 348 0.6138076 0.132661263 fv Log-Normal RP(P), Log-Normal FALSE #> 5576 349 0.7089060 0.151241295 fv Log-Normal RP(P), Log-Normal FALSE #> 5592 350 0.7922423 0.166710243 fv Log-Normal RP(P), Log-Normal FALSE #> 5608 351 0.6095110 0.131638592 fv Log-Normal RP(P), Log-Normal FALSE #> 5624 352 0.8227668 0.174673506 fv Log-Normal RP(P), Log-Normal FALSE #> 5640 353 0.7124254 0.149873339 fv Log-Normal RP(P), Log-Normal FALSE #> 5656 354 0.6746969 0.142588109 fv Log-Normal RP(P), Log-Normal FALSE #> 5672 355 0.7436915 0.155836291 fv Log-Normal RP(P), Log-Normal FALSE #> 5688 356 0.6364339 0.135095851 fv Log-Normal RP(P), Log-Normal FALSE #> 5704 357 0.9283883 0.195684960 fv Log-Normal RP(P), Log-Normal FALSE #> 5720 358 0.6779987 0.143013219 fv Log-Normal RP(P), Log-Normal FALSE #> 5736 359 0.5223231 0.112182424 fv Log-Normal RP(P), Log-Normal FALSE #> 5752 360 0.6818928 0.145867770 fv Log-Normal RP(P), Log-Normal FALSE #> 5768 361 0.6438289 0.136908189 fv Log-Normal RP(P), Log-Normal FALSE #> 5784 362 0.6308484 0.133550798 fv Log-Normal RP(P), Log-Normal FALSE #> 5800 363 0.6184552 0.131494207 fv Log-Normal RP(P), Log-Normal FALSE #> 5816 364 0.9020074 0.191480398 fv Log-Normal RP(P), Log-Normal FALSE #> 5832 365 0.8085743 0.174120700 fv Log-Normal RP(P), Log-Normal FALSE #> 5848 366 0.6868125 0.146863645 fv Log-Normal RP(P), Log-Normal FALSE #> 5864 367 0.8043925 0.169415489 fv Log-Normal RP(P), Log-Normal FALSE #> 5880 368 0.9940984 0.211797215 fv Log-Normal RP(P), Log-Normal FALSE #> 5896 369 0.6067818 0.130133487 fv Log-Normal RP(P), Log-Normal FALSE #> 5912 370 0.7791594 0.164610115 fv Log-Normal RP(P), Log-Normal FALSE #> 5928 371 0.6579660 0.139290440 fv Log-Normal RP(P), Log-Normal FALSE #> 5944 372 0.4998593 0.107079991 fv Log-Normal RP(P), Log-Normal FALSE #> 5960 373 1.1187507 0.239669973 fv Log-Normal RP(P), Log-Normal TRUE #> 5976 374 0.5445436 0.116192907 fv Log-Normal RP(P), Log-Normal FALSE #> 5992 375 0.6589562 0.140315215 fv Log-Normal RP(P), Log-Normal FALSE #> 6008 376 0.7039143 0.151300247 fv Log-Normal RP(P), Log-Normal FALSE #> 6024 377 0.5442462 0.116958497 fv Log-Normal RP(P), Log-Normal FALSE #> 6040 378 0.6207517 0.133000762 fv Log-Normal RP(P), Log-Normal FALSE #> 6056 379 0.5070180 0.108149121 fv Log-Normal RP(P), Log-Normal FALSE #> 6072 380 0.6588885 0.139471825 fv Log-Normal RP(P), Log-Normal FALSE #> 6088 381 0.8548545 0.181832063 fv Log-Normal RP(P), Log-Normal FALSE #> 6104 382 0.7335509 0.156313750 fv Log-Normal RP(P), Log-Normal FALSE #> 6120 383 0.7137172 0.150203860 fv Log-Normal RP(P), Log-Normal FALSE #> 6136 384 0.7104134 0.150412373 fv Log-Normal RP(P), Log-Normal FALSE #> 6152 385 0.5935099 0.129534784 fv Log-Normal RP(P), Log-Normal FALSE #> 6168 386 0.9411797 0.201815466 fv Log-Normal RP(P), Log-Normal FALSE #> 6184 387 0.5892174 0.125279876 fv Log-Normal RP(P), Log-Normal FALSE #> 6200 388 0.9310919 0.196820097 fv Log-Normal RP(P), Log-Normal FALSE #> 6216 389 0.8066429 0.170511534 fv Log-Normal RP(P), Log-Normal FALSE #> 6232 390 0.6786750 0.144396146 fv Log-Normal RP(P), Log-Normal FALSE #> 6248 391 0.8198229 0.172515332 fv Log-Normal RP(P), Log-Normal FALSE #> 6264 392 0.6270577 0.133542272 fv Log-Normal RP(P), Log-Normal FALSE #> 6280 393 0.5605416 0.119072930 fv Log-Normal RP(P), Log-Normal FALSE #> 6296 394 0.8810824 0.186080625 fv Log-Normal RP(P), Log-Normal FALSE #> 6312 395 0.7626802 0.161748237 fv Log-Normal RP(P), Log-Normal FALSE #> 6328 396 1.0186980 0.215519936 fv Log-Normal RP(P), Log-Normal FALSE #> 6344 397 0.7136712 0.152808078 fv Log-Normal RP(P), Log-Normal FALSE #> 6360 398 0.6724088 0.142879285 fv Log-Normal RP(P), Log-Normal FALSE #> 6376 399 0.8200587 0.173443890 fv Log-Normal RP(P), Log-Normal FALSE #> 6392 400 0.5373662 0.114719406 fv Log-Normal RP(P), Log-Normal FALSE #> 6408 401 0.6198081 0.133051510 fv Log-Normal RP(P), Log-Normal FALSE #> 6424 402 0.5456393 0.120676593 fv Log-Normal RP(P), Log-Normal FALSE #> 6440 403 0.6242481 0.134826074 fv Log-Normal RP(P), Log-Normal FALSE #> 6456 404 0.5789455 0.124683392 fv Log-Normal RP(P), Log-Normal FALSE #> 6472 405 0.4740742 0.101148159 fv Log-Normal RP(P), Log-Normal FALSE #> 6488 406 0.7363722 0.157413363 fv Log-Normal RP(P), Log-Normal FALSE #> 6504 407 0.7570074 0.160550534 fv Log-Normal RP(P), Log-Normal FALSE #> 6520 408 0.4959259 0.108490225 fv Log-Normal RP(P), Log-Normal FALSE #> 6536 409 0.7356424 0.157765466 fv Log-Normal RP(P), Log-Normal FALSE #> 6552 410 0.7712851 0.162320795 fv Log-Normal RP(P), Log-Normal FALSE #> 6568 411 0.6541786 0.140317219 fv Log-Normal RP(P), Log-Normal FALSE #> 6584 412 0.6661183 0.143455097 fv Log-Normal RP(P), Log-Normal FALSE #> 6600 413 0.5350439 0.115753646 fv Log-Normal RP(P), Log-Normal FALSE #> 6616 414 0.8643640 0.180317810 fv Log-Normal RP(P), Log-Normal FALSE #> 6632 415 1.2739619 0.266898773 fv Log-Normal RP(P), Log-Normal TRUE #> 6648 416 0.5686275 0.124459667 fv Log-Normal RP(P), Log-Normal FALSE #> 6664 417 0.5516460 0.117282911 fv Log-Normal RP(P), Log-Normal FALSE #> 6680 418 0.8937930 0.187628969 fv Log-Normal RP(P), Log-Normal FALSE #> 6696 419 0.4939313 0.107958764 fv Log-Normal RP(P), Log-Normal FALSE #> 6712 420 0.7618818 0.162553523 fv Log-Normal RP(P), Log-Normal FALSE #> 6728 421 0.7941336 0.166611656 fv Log-Normal RP(P), Log-Normal FALSE #> 6744 422 0.5760020 0.123123483 fv Log-Normal RP(P), Log-Normal FALSE #> 6760 423 0.5860742 0.124560347 fv Log-Normal RP(P), Log-Normal FALSE #> 6776 424 0.6808656 0.144707278 fv Log-Normal RP(P), Log-Normal FALSE #> 6792 425 0.7515341 0.158171202 fv Log-Normal RP(P), Log-Normal FALSE #> 6808 426 0.8278194 0.174409626 fv Log-Normal RP(P), Log-Normal FALSE #> 6824 427 0.9565671 0.199453527 fv Log-Normal RP(P), Log-Normal FALSE #> 6840 428 0.8208074 0.173449828 fv Log-Normal RP(P), Log-Normal FALSE #> 6856 429 0.7261118 0.153860717 fv Log-Normal RP(P), Log-Normal FALSE #> 6872 430 0.8154937 0.170888139 fv Log-Normal RP(P), Log-Normal FALSE #> 6888 431 0.6854336 0.147503360 fv Log-Normal RP(P), Log-Normal FALSE #> 6904 432 0.8698979 0.183151737 fv Log-Normal RP(P), Log-Normal FALSE #> 6920 433 0.5932630 0.126716505 fv Log-Normal RP(P), Log-Normal FALSE #> 6936 434 0.5884706 0.124621858 fv Log-Normal RP(P), Log-Normal FALSE #> 6952 435 0.4976009 0.107213878 fv Log-Normal RP(P), Log-Normal FALSE #> 6968 436 0.7641928 0.161595804 fv Log-Normal RP(P), Log-Normal FALSE #> 6984 437 0.5831031 0.126014583 fv Log-Normal RP(P), Log-Normal FALSE #> 7000 438 0.8816506 0.185159712 fv Log-Normal RP(P), Log-Normal FALSE #> 7016 439 0.5992139 0.129551688 fv Log-Normal RP(P), Log-Normal FALSE #> 7032 440 0.4173110 0.090549796 fv Log-Normal RP(P), Log-Normal TRUE #> 7048 441 0.5608792 0.120279561 fv Log-Normal RP(P), Log-Normal FALSE #> 7064 442 0.7522919 0.160420421 fv Log-Normal RP(P), Log-Normal FALSE #> 7080 443 0.8041542 0.170485517 fv Log-Normal RP(P), Log-Normal FALSE #> 7096 444 0.8333665 0.174907941 fv Log-Normal RP(P), Log-Normal FALSE #> 7112 445 0.9032992 0.190709150 fv Log-Normal RP(P), Log-Normal FALSE #> 7128 446 0.6382998 0.136039454 fv Log-Normal RP(P), Log-Normal FALSE #> 7144 447 0.8913664 0.188101809 fv Log-Normal RP(P), Log-Normal FALSE #> 7160 448 0.9185656 0.194708815 fv Log-Normal RP(P), Log-Normal FALSE #> 7176 449 0.9114504 0.192914583 fv Log-Normal RP(P), Log-Normal FALSE #> 7192 450 0.7040628 0.150193038 fv Log-Normal RP(P), Log-Normal FALSE #> 7208 451 0.7951696 0.168085049 fv Log-Normal RP(P), Log-Normal FALSE #> 7224 452 0.7822380 0.164962493 fv Log-Normal RP(P), Log-Normal FALSE #> 7240 453 0.6990982 0.147390463 fv Log-Normal RP(P), Log-Normal FALSE #> 7256 454 0.6810218 0.145335768 fv Log-Normal RP(P), Log-Normal FALSE #> 7272 455 0.6300676 0.133453170 fv Log-Normal RP(P), Log-Normal FALSE #> 7288 456 0.4863927 0.104457276 fv Log-Normal RP(P), Log-Normal FALSE #> 7304 457 0.9178214 0.193997798 fv Log-Normal RP(P), Log-Normal FALSE #> 7320 458 0.7946535 0.172717509 fv Log-Normal RP(P), Log-Normal FALSE #> 7336 459 0.9718512 0.208815317 fv Log-Normal RP(P), Log-Normal FALSE #> 7352 460 0.6861966 0.146417539 fv Log-Normal RP(P), Log-Normal FALSE #> 7368 461 0.7851648 0.165669430 fv Log-Normal RP(P), Log-Normal FALSE #> 7384 462 0.7271394 0.153568596 fv Log-Normal RP(P), Log-Normal FALSE #> 7400 463 0.8837419 0.187918773 fv Log-Normal RP(P), Log-Normal FALSE #> 7416 464 0.8135415 0.171708945 fv Log-Normal RP(P), Log-Normal FALSE #> 7432 465 0.8182940 0.172522261 fv Log-Normal RP(P), Log-Normal FALSE #> 7448 466 0.8493356 0.179784542 fv Log-Normal RP(P), Log-Normal FALSE #> 7464 467 0.7431155 0.158019881 fv Log-Normal RP(P), Log-Normal FALSE #> 7480 468 0.9245746 0.194819936 fv Log-Normal RP(P), Log-Normal FALSE #> 7496 469 0.8093364 0.169629324 fv Log-Normal RP(P), Log-Normal FALSE #> 7512 470 0.7536124 0.160736238 fv Log-Normal RP(P), Log-Normal FALSE #> 7528 471 0.6319489 0.135425252 fv Log-Normal RP(P), Log-Normal FALSE #> 7544 472 0.8705816 0.183151533 fv Log-Normal RP(P), Log-Normal FALSE #> 7560 473 0.6939116 0.147277985 fv Log-Normal RP(P), Log-Normal FALSE #> 7576 474 1.0226695 0.218679643 fv Log-Normal RP(P), Log-Normal FALSE #> 7592 475 0.6441230 0.137039433 fv Log-Normal RP(P), Log-Normal FALSE #> 7608 476 0.4760739 0.102644848 fv Log-Normal RP(P), Log-Normal FALSE #> 7624 477 0.5102537 0.108874669 fv Log-Normal RP(P), Log-Normal FALSE #> 7640 478 0.8094600 0.170268803 fv Log-Normal RP(P), Log-Normal FALSE #> 7656 479 0.7402423 0.155742727 fv Log-Normal RP(P), Log-Normal FALSE #> 7672 480 1.0188028 0.213534164 fv Log-Normal RP(P), Log-Normal FALSE #> 7688 481 1.0312072 0.216978595 fv Log-Normal RP(P), Log-Normal FALSE #> 7704 482 0.7865807 0.168666058 fv Log-Normal RP(P), Log-Normal FALSE #> 7720 483 0.9423222 0.201963450 fv Log-Normal RP(P), Log-Normal FALSE #> 7736 484 0.8973102 0.192445828 fv Log-Normal RP(P), Log-Normal FALSE #> 7752 485 0.5963984 0.127055639 fv Log-Normal RP(P), Log-Normal FALSE #> 7768 486 0.4671000 0.102302527 fv Log-Normal RP(P), Log-Normal FALSE #> 7784 487 0.8902634 0.188247313 fv Log-Normal RP(P), Log-Normal FALSE #> 7800 488 0.4450478 0.096615368 fv Log-Normal RP(P), Log-Normal FALSE #> 7816 489 0.8021624 0.173231327 fv Log-Normal RP(P), Log-Normal FALSE #> 7832 490 0.7137305 0.152534661 fv Log-Normal RP(P), Log-Normal FALSE #> 7848 491 0.6903608 0.146100755 fv Log-Normal RP(P), Log-Normal FALSE #> 7864 492 0.5592670 0.118971312 fv Log-Normal RP(P), Log-Normal FALSE #> 7880 493 1.0805007 0.228198880 fv Log-Normal RP(P), Log-Normal TRUE #> 7896 494 0.6613173 0.139508951 fv Log-Normal RP(P), Log-Normal FALSE #> 7912 495 0.8229525 0.172706856 fv Log-Normal RP(P), Log-Normal FALSE #> 7928 496 1.0935848 0.231781117 fv Log-Normal RP(P), Log-Normal TRUE #> 7944 497 0.5926421 0.126095802 fv Log-Normal RP(P), Log-Normal FALSE #> 7960 498 0.6349464 0.134880116 fv Log-Normal RP(P), Log-Normal FALSE #> 7976 499 0.9057009 0.193169237 fv Log-Normal RP(P), Log-Normal FALSE #> 7992 500 0.6787804 0.143590515 fv Log-Normal RP(P), Log-Normal FALSE #> 8008 501 1.3525305 0.283084001 fv Log-Normal RP(P), Log-Normal TRUE #> 8024 502 0.7740755 0.163786111 fv Log-Normal RP(P), Log-Normal FALSE #> 8040 503 0.7478861 0.158084965 fv Log-Normal RP(P), Log-Normal FALSE #> 8056 504 0.8826810 0.185135409 fv Log-Normal RP(P), Log-Normal FALSE #> 8072 505 0.7557309 0.160151723 fv Log-Normal RP(P), Log-Normal FALSE #> 8088 506 1.0247701 0.219285990 fv Log-Normal RP(P), Log-Normal FALSE #> 8104 507 0.7332673 0.155458606 fv Log-Normal RP(P), Log-Normal FALSE #> 8120 508 0.5395012 0.115690840 fv Log-Normal RP(P), Log-Normal FALSE #> 8136 509 0.6787263 0.144817990 fv Log-Normal RP(P), Log-Normal FALSE #> 8152 510 0.6847482 0.146363988 fv Log-Normal RP(P), Log-Normal FALSE #> 8168 511 0.4605915 0.099150023 fv Log-Normal RP(P), Log-Normal FALSE #> 8184 512 0.7265371 0.156046468 fv Log-Normal RP(P), Log-Normal FALSE #> 8200 513 0.8072477 0.171715037 fv Log-Normal RP(P), Log-Normal FALSE #> 8216 514 0.7180859 0.151783993 fv Log-Normal RP(P), Log-Normal FALSE #> 8232 515 0.5582958 0.119831433 fv Log-Normal RP(P), Log-Normal FALSE #> 8248 516 0.7381316 0.155789374 fv Log-Normal RP(P), Log-Normal FALSE #> 8264 517 0.3674411 0.080541276 fv Log-Normal RP(P), Log-Normal TRUE #> 8280 518 0.7450873 0.157554369 fv Log-Normal RP(P), Log-Normal FALSE #> 8296 519 0.7681291 0.162465401 fv Log-Normal RP(P), Log-Normal FALSE #> 8312 520 0.8008281 0.168852756 fv Log-Normal RP(P), Log-Normal FALSE #> 8328 521 0.7998675 0.170293482 fv Log-Normal RP(P), Log-Normal FALSE #> 8344 522 0.5387534 0.114980391 fv Log-Normal RP(P), Log-Normal FALSE #> 8360 523 0.7672604 0.162198321 fv Log-Normal RP(P), Log-Normal FALSE #> 8376 524 0.5280884 0.112519890 fv Log-Normal RP(P), Log-Normal FALSE #> 8392 525 0.7053708 0.149423744 fv Log-Normal RP(P), Log-Normal FALSE #> 8408 526 0.6066376 0.129241961 fv Log-Normal RP(P), Log-Normal FALSE #> 8424 527 0.7129661 0.150656058 fv Log-Normal RP(P), Log-Normal FALSE #> 8440 528 0.9281260 0.195995962 fv Log-Normal RP(P), Log-Normal FALSE #> 8456 529 0.9355893 0.196208641 fv Log-Normal RP(P), Log-Normal FALSE #> 8472 530 0.4504997 0.097884739 fv Log-Normal RP(P), Log-Normal FALSE #> 8488 531 1.0001840 0.211155769 fv Log-Normal RP(P), Log-Normal FALSE #> 8504 532 0.7216514 0.152077098 fv Log-Normal RP(P), Log-Normal FALSE #> 8520 533 0.6905167 0.145804123 fv Log-Normal RP(P), Log-Normal FALSE #> 8536 534 0.7425754 0.157498257 fv Log-Normal RP(P), Log-Normal FALSE #> 8552 535 0.8638945 0.181911550 fv Log-Normal RP(P), Log-Normal FALSE #> 8568 536 0.5969459 0.128825659 fv Log-Normal RP(P), Log-Normal FALSE #> 8584 537 1.2497526 0.261387193 fv Log-Normal RP(P), Log-Normal TRUE #> 8600 538 0.5072017 0.109014290 fv Log-Normal RP(P), Log-Normal FALSE #> 8616 539 0.6856868 0.144442198 fv Log-Normal RP(P), Log-Normal FALSE #> 8632 540 0.6145395 0.130947333 fv Log-Normal RP(P), Log-Normal FALSE #> 8648 541 0.9003393 0.188467630 fv Log-Normal RP(P), Log-Normal FALSE #> 8664 542 0.8263942 0.175286712 fv Log-Normal RP(P), Log-Normal FALSE #> 8680 543 0.7581448 0.159106779 fv Log-Normal RP(P), Log-Normal FALSE #> 8696 544 0.7628214 0.161333872 fv Log-Normal RP(P), Log-Normal FALSE #> 8712 545 0.5729157 0.121622886 fv Log-Normal RP(P), Log-Normal FALSE #> 8728 546 0.9048540 0.189585012 fv Log-Normal RP(P), Log-Normal FALSE #> 8744 547 0.6888985 0.146237060 fv Log-Normal RP(P), Log-Normal FALSE #> 8760 548 0.5388485 0.114867872 fv Log-Normal RP(P), Log-Normal FALSE #> 8776 549 0.8844165 0.187783761 fv Log-Normal RP(P), Log-Normal FALSE #> 8792 550 0.5216935 0.112325747 fv Log-Normal RP(P), Log-Normal FALSE #> 8808 551 0.7981204 0.168826559 fv Log-Normal RP(P), Log-Normal FALSE #> 8824 552 0.7043843 0.148695174 fv Log-Normal RP(P), Log-Normal FALSE #> 8840 553 0.8456647 0.176887854 fv Log-Normal RP(P), Log-Normal FALSE #> 8856 554 0.9029274 0.189275208 fv Log-Normal RP(P), Log-Normal FALSE #> 8872 555 0.8338211 0.176687000 fv Log-Normal RP(P), Log-Normal FALSE #> 8888 556 0.8771735 0.184240708 fv Log-Normal RP(P), Log-Normal FALSE #> 8904 557 0.6994326 0.147519245 fv Log-Normal RP(P), Log-Normal FALSE #> 8920 558 0.6675003 0.140850673 fv Log-Normal RP(P), Log-Normal FALSE #> 8936 559 0.6142336 0.132089175 fv Log-Normal RP(P), Log-Normal FALSE #> 8952 560 0.7787745 0.163344772 fv Log-Normal RP(P), Log-Normal FALSE #> 8968 561 1.2512491 0.263068744 fv Log-Normal RP(P), Log-Normal TRUE #> 8984 562 0.8979502 0.193680428 fv Log-Normal RP(P), Log-Normal FALSE #> 9000 563 0.7952133 0.167695091 fv Log-Normal RP(P), Log-Normal FALSE #> 9016 564 0.6546188 0.141378883 fv Log-Normal RP(P), Log-Normal FALSE #> 9032 565 0.5562875 0.118568595 fv Log-Normal RP(P), Log-Normal FALSE #> 9048 566 0.7792219 0.167873773 fv Log-Normal RP(P), Log-Normal FALSE #> 9064 567 0.7419551 0.158352827 fv Log-Normal RP(P), Log-Normal FALSE #> 9080 568 0.5379826 0.115223660 fv Log-Normal RP(P), Log-Normal FALSE #> 9096 569 0.8461880 0.177143809 fv Log-Normal RP(P), Log-Normal FALSE #> 9112 570 0.5799163 0.126002183 fv Log-Normal RP(P), Log-Normal FALSE #> 9128 571 0.6983018 0.147992860 fv Log-Normal RP(P), Log-Normal FALSE #> 9144 572 0.6094856 0.128898875 fv Log-Normal RP(P), Log-Normal FALSE #> 9160 573 0.6552102 0.139040826 fv Log-Normal RP(P), Log-Normal FALSE #> 9176 574 0.7370159 0.156124757 fv Log-Normal RP(P), Log-Normal FALSE #> 9192 575 0.6652785 0.143329039 fv Log-Normal RP(P), Log-Normal FALSE #> 9208 576 0.7048646 0.153254428 fv Log-Normal RP(P), Log-Normal FALSE #> 9224 577 0.9167098 0.191907050 fv Log-Normal RP(P), Log-Normal FALSE #> 9240 578 0.5877871 0.124960960 fv Log-Normal RP(P), Log-Normal FALSE #> 9256 579 0.6016587 0.129835840 fv Log-Normal RP(P), Log-Normal FALSE #> 9272 580 0.4967792 0.106638664 fv Log-Normal RP(P), Log-Normal FALSE #> 9288 581 0.7942713 0.168013813 fv Log-Normal RP(P), Log-Normal FALSE #> 9304 582 0.7758947 0.163986474 fv Log-Normal RP(P), Log-Normal FALSE #> 9320 583 1.0340860 0.215440480 fv Log-Normal RP(P), Log-Normal FALSE #> 9336 584 0.5415647 0.114993075 fv Log-Normal RP(P), Log-Normal FALSE #> 9352 585 0.7207829 0.152475876 fv Log-Normal RP(P), Log-Normal FALSE #> 9368 586 0.7453476 0.156907193 fv Log-Normal RP(P), Log-Normal FALSE #> 9384 587 0.9381973 0.198355658 fv Log-Normal RP(P), Log-Normal FALSE #> 9400 588 0.5818223 0.125118084 fv Log-Normal RP(P), Log-Normal FALSE #> 9416 589 0.6031015 0.127799852 fv Log-Normal RP(P), Log-Normal FALSE #> 9432 590 0.8243606 0.175362711 fv Log-Normal RP(P), Log-Normal FALSE #> 9448 591 0.8454856 0.179386646 fv Log-Normal RP(P), Log-Normal FALSE #> 9464 592 0.8293279 0.176428804 fv Log-Normal RP(P), Log-Normal FALSE #> 9480 593 0.9311402 0.195578453 fv Log-Normal RP(P), Log-Normal FALSE #> 9496 594 0.7218285 0.152965863 fv Log-Normal RP(P), Log-Normal FALSE #> 9512 595 0.5446728 0.116520386 fv Log-Normal RP(P), Log-Normal FALSE #> 9528 596 0.7359036 0.154479518 fv Log-Normal RP(P), Log-Normal FALSE #> 9544 597 0.6073041 0.128691128 fv Log-Normal RP(P), Log-Normal FALSE #> 9560 598 1.0738637 0.225311791 fv Log-Normal RP(P), Log-Normal TRUE #> 9576 599 0.7532017 0.160702035 fv Log-Normal RP(P), Log-Normal FALSE #> 9592 600 0.5313748 0.113456443 fv Log-Normal RP(P), Log-Normal FALSE #> 9608 601 1.1762696 0.247690829 fv Log-Normal RP(P), Log-Normal TRUE #> 9624 602 0.9869736 0.208165567 fv Log-Normal RP(P), Log-Normal FALSE #> 9640 603 0.4156015 0.089856898 fv Log-Normal RP(P), Log-Normal TRUE #> 9656 604 0.7562236 0.159112332 fv Log-Normal RP(P), Log-Normal FALSE #> 9672 605 1.2356747 0.256716135 fv Log-Normal RP(P), Log-Normal TRUE #> 9688 606 0.6753278 0.142231678 fv Log-Normal RP(P), Log-Normal FALSE #> 9704 607 0.6100967 0.131469811 fv Log-Normal RP(P), Log-Normal FALSE #> 9720 608 0.4384887 0.095081321 fv Log-Normal RP(P), Log-Normal FALSE #> 9736 609 0.8299211 0.173601960 fv Log-Normal RP(P), Log-Normal FALSE #> 9752 610 0.6332973 0.134588006 fv Log-Normal RP(P), Log-Normal FALSE #> 9768 611 0.8122094 0.173499710 fv Log-Normal RP(P), Log-Normal FALSE #> 9784 612 0.5912979 0.127198194 fv Log-Normal RP(P), Log-Normal FALSE #> 9800 613 0.8186354 0.172772228 fv Log-Normal RP(P), Log-Normal FALSE #> 9816 614 0.7847640 0.167841517 fv Log-Normal RP(P), Log-Normal FALSE #> 9832 615 0.8697196 0.183433952 fv Log-Normal RP(P), Log-Normal FALSE #> 9848 616 0.7828021 0.165439563 fv Log-Normal RP(P), Log-Normal FALSE #> 9864 617 0.7846758 0.165990375 fv Log-Normal RP(P), Log-Normal FALSE #> 9880 618 0.6823886 0.144285111 fv Log-Normal RP(P), Log-Normal FALSE #> 9896 619 0.8198467 0.172557735 fv Log-Normal RP(P), Log-Normal FALSE #> 9912 620 0.8185053 0.173878169 fv Log-Normal RP(P), Log-Normal FALSE #> 9928 621 0.5663070 0.121246532 fv Log-Normal RP(P), Log-Normal FALSE #> 9944 622 0.6302051 0.135303879 fv Log-Normal RP(P), Log-Normal FALSE #> 9960 623 0.8783656 0.185679970 fv Log-Normal RP(P), Log-Normal FALSE #> 9976 624 0.5837145 0.125580529 fv Log-Normal RP(P), Log-Normal FALSE #> 9992 625 0.7638096 0.162639813 fv Log-Normal RP(P), Log-Normal FALSE #> 10008 626 0.6378765 0.135851705 fv Log-Normal RP(P), Log-Normal FALSE #> 10024 627 0.6253581 0.133238137 fv Log-Normal RP(P), Log-Normal FALSE #> 10040 628 0.6694660 0.143767320 fv Log-Normal RP(P), Log-Normal FALSE #> 10056 629 0.6392508 0.134956518 fv Log-Normal RP(P), Log-Normal FALSE #> 10072 630 0.8351055 0.175262379 fv Log-Normal RP(P), Log-Normal FALSE #> 10088 631 0.6715506 0.142213889 fv Log-Normal RP(P), Log-Normal FALSE #> 10104 632 0.7776511 0.166721548 fv Log-Normal RP(P), Log-Normal FALSE #> 10120 633 0.4910653 0.105740740 fv Log-Normal RP(P), Log-Normal FALSE #> 10136 634 0.6757272 0.146378271 fv Log-Normal RP(P), Log-Normal FALSE #> 10152 635 0.9063761 0.191682174 fv Log-Normal RP(P), Log-Normal FALSE #> 10168 636 0.4196552 0.091166924 fv Log-Normal RP(P), Log-Normal TRUE #> 10184 637 0.8757533 0.183031296 fv Log-Normal RP(P), Log-Normal FALSE #> 10200 638 0.6839210 0.145657493 fv Log-Normal RP(P), Log-Normal FALSE #> 10216 639 0.4323877 0.093765125 fv Log-Normal RP(P), Log-Normal FALSE #> 10232 640 0.7235325 0.154259737 fv Log-Normal RP(P), Log-Normal FALSE #> 10248 641 0.5858835 0.125271208 fv Log-Normal RP(P), Log-Normal FALSE #> 10264 642 0.6400015 0.136631265 fv Log-Normal RP(P), Log-Normal FALSE #> 10280 643 0.6645860 0.140296010 fv Log-Normal RP(P), Log-Normal FALSE #> 10296 644 0.6198370 0.131300536 fv Log-Normal RP(P), Log-Normal FALSE #> 10312 645 0.7546684 0.158768904 fv Log-Normal RP(P), Log-Normal FALSE #> 10328 646 0.8385785 0.177475226 fv Log-Normal RP(P), Log-Normal FALSE #> 10344 647 0.6580940 0.139159678 fv Log-Normal RP(P), Log-Normal FALSE #> 10360 648 1.0746985 0.225177802 fv Log-Normal RP(P), Log-Normal TRUE #> 10376 649 0.6308988 0.136195814 fv Log-Normal RP(P), Log-Normal FALSE #> 10392 650 0.8130078 0.170621264 fv Log-Normal RP(P), Log-Normal FALSE #> 10408 651 0.7933222 0.168885503 fv Log-Normal RP(P), Log-Normal FALSE #> 10424 652 1.2738896 0.266494041 fv Log-Normal RP(P), Log-Normal TRUE #> 10440 653 0.5448666 0.117388941 fv Log-Normal RP(P), Log-Normal FALSE #> 10456 654 0.5869671 0.127309334 fv Log-Normal RP(P), Log-Normal FALSE #> 10472 655 0.7057334 0.149997780 fv Log-Normal RP(P), Log-Normal FALSE #> 10488 656 0.7129275 0.153121486 fv Log-Normal RP(P), Log-Normal FALSE #> 10504 657 0.5353386 0.115029010 fv Log-Normal RP(P), Log-Normal FALSE #> 10520 658 1.1549453 0.246231092 fv Log-Normal RP(P), Log-Normal TRUE #> 10536 659 1.0576571 0.224338275 fv Log-Normal RP(P), Log-Normal TRUE #> 10552 660 0.8581929 0.181070027 fv Log-Normal RP(P), Log-Normal FALSE #> 10568 661 0.5674477 0.122688388 fv Log-Normal RP(P), Log-Normal FALSE #> 10584 662 0.5904257 0.125804978 fv Log-Normal RP(P), Log-Normal FALSE #> 10600 663 0.7041159 0.150024604 fv Log-Normal RP(P), Log-Normal FALSE #> 10616 664 0.7043639 0.148712478 fv Log-Normal RP(P), Log-Normal FALSE #> 10632 665 0.8841932 0.186280285 fv Log-Normal RP(P), Log-Normal FALSE #> 10648 666 1.1689748 0.244131156 fv Log-Normal RP(P), Log-Normal TRUE #> 10664 667 0.6492794 0.137535848 fv Log-Normal RP(P), Log-Normal FALSE #> 10680 668 0.6326668 0.134054761 fv Log-Normal RP(P), Log-Normal FALSE #> 10696 669 0.9185632 0.194052341 fv Log-Normal RP(P), Log-Normal FALSE #> 10712 670 0.6207600 0.134223983 fv Log-Normal RP(P), Log-Normal FALSE #> 10728 671 0.7991586 0.168309558 fv Log-Normal RP(P), Log-Normal FALSE #> 10744 672 0.9575733 0.201175273 fv Log-Normal RP(P), Log-Normal FALSE #> 10760 673 0.6513651 0.137218194 fv Log-Normal RP(P), Log-Normal FALSE #> 10776 674 0.8220483 0.172548799 fv Log-Normal RP(P), Log-Normal FALSE #> 10792 675 0.6542018 0.144640287 fv Log-Normal RP(P), Log-Normal FALSE #> 10808 676 0.8790873 0.184291598 fv Log-Normal RP(P), Log-Normal FALSE #> 10824 677 0.6809257 0.143968265 fv Log-Normal RP(P), Log-Normal FALSE #> 10840 678 0.5718382 0.122834126 fv Log-Normal RP(P), Log-Normal FALSE #> 10856 679 0.6114109 0.129944256 fv Log-Normal RP(P), Log-Normal FALSE #> 10872 680 0.7505338 0.159061609 fv Log-Normal RP(P), Log-Normal FALSE #> 10888 681 1.0280511 0.216051309 fv Log-Normal RP(P), Log-Normal FALSE #> 10904 682 0.6922360 0.148686633 fv Log-Normal RP(P), Log-Normal FALSE #> 10920 683 0.8160459 0.173021939 fv Log-Normal RP(P), Log-Normal FALSE #> 10936 684 1.0630183 0.223385225 fv Log-Normal RP(P), Log-Normal TRUE #> 10952 685 0.6666902 0.142274967 fv Log-Normal RP(P), Log-Normal FALSE #> 10968 686 0.8987511 0.188963362 fv Log-Normal RP(P), Log-Normal FALSE #> 10984 687 0.5852340 0.124061916 fv Log-Normal RP(P), Log-Normal FALSE #> 11000 688 0.6144874 0.131917388 fv Log-Normal RP(P), Log-Normal FALSE #> 11016 689 0.6590173 0.140975370 fv Log-Normal RP(P), Log-Normal FALSE #> 11032 690 0.8739728 0.185496227 fv Log-Normal RP(P), Log-Normal FALSE #> 11048 691 0.8872853 0.197067546 fv Log-Normal RP(P), Log-Normal FALSE #> 11064 692 0.6787807 0.144806881 fv Log-Normal RP(P), Log-Normal FALSE #> 11080 693 0.5443873 0.119028846 fv Log-Normal RP(P), Log-Normal FALSE #> 11096 694 0.7311672 0.154007226 fv Log-Normal RP(P), Log-Normal FALSE #> 11112 695 0.6437481 0.137433283 fv Log-Normal RP(P), Log-Normal FALSE #> 11128 696 0.7796264 0.164444138 fv Log-Normal RP(P), Log-Normal FALSE #> 11144 697 0.8935000 0.188433606 fv Log-Normal RP(P), Log-Normal FALSE #> 11160 698 0.4678461 0.101556136 fv Log-Normal RP(P), Log-Normal FALSE #> 11176 699 0.7196923 0.155980475 fv Log-Normal RP(P), Log-Normal FALSE #> 11192 700 0.5476779 0.117221047 fv Log-Normal RP(P), Log-Normal FALSE #> 11208 701 0.8599958 0.182880781 fv Log-Normal RP(P), Log-Normal FALSE #> 11224 702 0.8684833 0.183468073 fv Log-Normal RP(P), Log-Normal FALSE #> 11240 703 0.7419362 0.157049016 fv Log-Normal RP(P), Log-Normal FALSE #> 11256 704 0.6422867 0.136115231 fv Log-Normal RP(P), Log-Normal FALSE #> 11272 705 0.7063944 0.150466188 fv Log-Normal RP(P), Log-Normal FALSE #> 11288 706 0.7662985 0.163581974 fv Log-Normal RP(P), Log-Normal FALSE #> 11304 707 0.9691335 0.204225294 fv Log-Normal RP(P), Log-Normal FALSE #> 11320 708 0.9287081 0.195346367 fv Log-Normal RP(P), Log-Normal FALSE #> 11336 709 0.6754008 0.142370655 fv Log-Normal RP(P), Log-Normal FALSE #> 11352 710 0.5128397 0.109458719 fv Log-Normal RP(P), Log-Normal FALSE #> 11368 711 0.6479967 0.136748161 fv Log-Normal RP(P), Log-Normal FALSE #> 11384 712 0.6760885 0.143146392 fv Log-Normal RP(P), Log-Normal FALSE #> 11400 713 1.0587777 0.226926537 fv Log-Normal RP(P), Log-Normal TRUE #> 11416 714 0.8103874 0.172391443 fv Log-Normal RP(P), Log-Normal FALSE #> 11432 715 0.8616532 0.183384192 fv Log-Normal RP(P), Log-Normal FALSE #> 11448 716 0.7627301 0.161883444 fv Log-Normal RP(P), Log-Normal FALSE #> 11464 717 0.8267358 0.177301411 fv Log-Normal RP(P), Log-Normal FALSE #> 11480 718 0.8593514 0.180603036 fv Log-Normal RP(P), Log-Normal FALSE #> 11496 719 0.9936252 0.208990822 fv Log-Normal RP(P), Log-Normal FALSE #> 11512 720 0.7871392 0.166350119 fv Log-Normal RP(P), Log-Normal FALSE #> 11528 721 0.6135418 0.132430075 fv Log-Normal RP(P), Log-Normal FALSE #> 11544 722 0.8048205 0.169138187 fv Log-Normal RP(P), Log-Normal FALSE #> 11560 723 0.6336888 0.133709011 fv Log-Normal RP(P), Log-Normal FALSE #> 11576 724 0.7570649 0.162435404 fv Log-Normal RP(P), Log-Normal FALSE #> 11592 725 0.7604770 0.159995583 fv Log-Normal RP(P), Log-Normal FALSE #> 11608 726 0.6782080 0.145809322 fv Log-Normal RP(P), Log-Normal FALSE #> 11624 727 0.7886025 0.166038605 fv Log-Normal RP(P), Log-Normal FALSE #> 11640 728 1.0345666 0.216064658 fv Log-Normal RP(P), Log-Normal FALSE #> 11656 729 0.7882665 0.167027116 fv Log-Normal RP(P), Log-Normal FALSE #> 11672 730 0.8534764 0.181349873 fv Log-Normal RP(P), Log-Normal FALSE #> 11688 731 0.5696950 0.125642912 fv Log-Normal RP(P), Log-Normal FALSE #> 11704 732 0.5007401 0.109484333 fv Log-Normal RP(P), Log-Normal FALSE #> 11720 733 0.9913558 0.210293324 fv Log-Normal RP(P), Log-Normal FALSE #> 11736 734 0.8984254 0.190596960 fv Log-Normal RP(P), Log-Normal FALSE #> 11752 735 1.0045821 0.209748742 fv Log-Normal RP(P), Log-Normal FALSE #> 11768 736 0.8546730 0.181624950 fv Log-Normal RP(P), Log-Normal FALSE #> 11784 737 0.7414317 0.156044397 fv Log-Normal RP(P), Log-Normal FALSE #> 11800 738 0.5333088 0.113415989 fv Log-Normal RP(P), Log-Normal FALSE #> 11816 739 0.6038187 0.128465242 fv Log-Normal RP(P), Log-Normal FALSE #> 11832 740 0.8191753 0.172172004 fv Log-Normal RP(P), Log-Normal FALSE #> 11848 741 1.0159289 0.214617959 fv Log-Normal RP(P), Log-Normal FALSE #> 11864 742 0.6619821 0.140186802 fv Log-Normal RP(P), Log-Normal FALSE #> 11880 743 0.7680557 0.163357348 fv Log-Normal RP(P), Log-Normal FALSE #> 11896 744 0.7937786 0.169514194 fv Log-Normal RP(P), Log-Normal FALSE #> 11912 745 0.7812691 0.167323224 fv Log-Normal RP(P), Log-Normal FALSE #> 11928 746 0.5998087 0.127989709 fv Log-Normal RP(P), Log-Normal FALSE #> 11944 747 0.6568120 0.139744765 fv Log-Normal RP(P), Log-Normal FALSE #> 11960 748 0.8625290 0.182461742 fv Log-Normal RP(P), Log-Normal FALSE #> 11976 749 0.9144162 0.190862281 fv Log-Normal RP(P), Log-Normal FALSE #> 11992 750 0.7515278 0.158912889 fv Log-Normal RP(P), Log-Normal FALSE #> 12008 751 0.8962423 0.188510336 fv Log-Normal RP(P), Log-Normal FALSE #> 12024 752 0.6919608 0.146949221 fv Log-Normal RP(P), Log-Normal FALSE #> 12040 753 0.4449890 0.097148812 fv Log-Normal RP(P), Log-Normal FALSE #> 12056 754 0.7894919 0.168720623 fv Log-Normal RP(P), Log-Normal FALSE #> 12072 755 0.6692060 0.141962729 fv Log-Normal RP(P), Log-Normal FALSE #> 12088 756 0.3791451 0.083307800 fv Log-Normal RP(P), Log-Normal TRUE #> 12104 757 0.6778335 0.142766228 fv Log-Normal RP(P), Log-Normal FALSE #> 12120 758 0.7767465 0.163788353 fv Log-Normal RP(P), Log-Normal FALSE #> 12136 759 0.6789998 0.145162056 fv Log-Normal RP(P), Log-Normal FALSE #> 12152 760 0.8683342 0.182144862 fv Log-Normal RP(P), Log-Normal FALSE #> 12168 761 0.6313595 0.135984337 fv Log-Normal RP(P), Log-Normal FALSE #> 12184 762 0.7627906 0.160815382 fv Log-Normal RP(P), Log-Normal FALSE #> 12200 763 0.5636338 0.120435542 fv Log-Normal RP(P), Log-Normal FALSE #> 12216 764 0.6550750 0.139154314 fv Log-Normal RP(P), Log-Normal FALSE #> 12232 765 0.9488338 0.199510616 fv Log-Normal RP(P), Log-Normal FALSE #> 12248 766 0.6551717 0.138803758 fv Log-Normal RP(P), Log-Normal FALSE #> 12264 767 0.8757343 0.184959715 fv Log-Normal RP(P), Log-Normal FALSE #> 12280 768 0.5887793 0.126819926 fv Log-Normal RP(P), Log-Normal FALSE #> 12296 769 1.0171618 0.215500452 fv Log-Normal RP(P), Log-Normal FALSE #> 12312 770 0.6148654 0.132775036 fv Log-Normal RP(P), Log-Normal FALSE #> 12328 771 0.5976970 0.132295735 fv Log-Normal RP(P), Log-Normal FALSE #> 12344 772 0.5871158 0.125960628 fv Log-Normal RP(P), Log-Normal FALSE #> 12360 773 0.5685788 0.121516270 fv Log-Normal RP(P), Log-Normal FALSE #> 12376 774 0.7244019 0.153578398 fv Log-Normal RP(P), Log-Normal FALSE #> 12392 775 0.6802586 0.143831811 fv Log-Normal RP(P), Log-Normal FALSE #> 12408 776 0.6866827 0.146032205 fv Log-Normal RP(P), Log-Normal FALSE #> 12424 777 0.6203969 0.132172613 fv Log-Normal RP(P), Log-Normal FALSE #> 12440 778 0.7183854 0.158574836 fv Log-Normal RP(P), Log-Normal FALSE #> 12456 779 0.6753122 0.144883399 fv Log-Normal RP(P), Log-Normal FALSE #> 12472 780 0.6160541 0.131106508 fv Log-Normal RP(P), Log-Normal FALSE #> 12488 781 0.7326720 0.155116377 fv Log-Normal RP(P), Log-Normal FALSE #> 12504 782 0.6621541 0.142738346 fv Log-Normal RP(P), Log-Normal FALSE #> 12520 783 0.6287083 0.133979151 fv Log-Normal RP(P), Log-Normal FALSE #> 12536 784 0.8098296 0.172015664 fv Log-Normal RP(P), Log-Normal FALSE #> 12552 785 0.4960243 0.106711922 fv Log-Normal RP(P), Log-Normal FALSE #> 12568 786 0.6282832 0.132700908 fv Log-Normal RP(P), Log-Normal FALSE #> 12584 787 1.0193503 0.214991602 fv Log-Normal RP(P), Log-Normal FALSE #> 12600 788 0.7023544 0.148436749 fv Log-Normal RP(P), Log-Normal FALSE #> 12616 789 0.9366437 0.198809199 fv Log-Normal RP(P), Log-Normal FALSE #> 12632 790 0.7471967 0.159328647 fv Log-Normal RP(P), Log-Normal FALSE #> 12648 791 0.4173760 0.089707369 fv Log-Normal RP(P), Log-Normal TRUE #> 12664 792 0.5457081 0.116097924 fv Log-Normal RP(P), Log-Normal FALSE #> 12680 793 0.8483324 0.177748663 fv Log-Normal RP(P), Log-Normal FALSE #> 12696 794 0.6784384 0.143937841 fv Log-Normal RP(P), Log-Normal FALSE #> 12712 795 0.6359556 0.134828170 fv Log-Normal RP(P), Log-Normal FALSE #> 12728 796 0.6165200 0.132435256 fv Log-Normal RP(P), Log-Normal FALSE #> 12744 797 0.6907832 0.150317886 fv Log-Normal RP(P), Log-Normal FALSE #> 12760 798 0.4117881 0.088709883 fv Log-Normal RP(P), Log-Normal TRUE #> 12776 799 0.7682074 0.162286568 fv Log-Normal RP(P), Log-Normal FALSE #> 12792 800 0.7651115 0.163718433 fv Log-Normal RP(P), Log-Normal FALSE #> 12808 801 0.9873650 0.205793074 fv Log-Normal RP(P), Log-Normal FALSE #> 12824 802 0.8000314 0.169900579 fv Log-Normal RP(P), Log-Normal FALSE #> 12840 803 0.6589400 0.139023748 fv Log-Normal RP(P), Log-Normal FALSE #> 12856 804 0.7561575 0.159117690 fv Log-Normal RP(P), Log-Normal FALSE #> 12872 805 0.8335457 0.177422828 fv Log-Normal RP(P), Log-Normal FALSE #> 12888 806 0.7948196 0.167169091 fv Log-Normal RP(P), Log-Normal FALSE #> 12904 807 0.6478946 0.137327899 fv Log-Normal RP(P), Log-Normal FALSE #> 12920 808 0.5049294 0.107753449 fv Log-Normal RP(P), Log-Normal FALSE #> 12936 809 0.6866783 0.146444220 fv Log-Normal RP(P), Log-Normal FALSE #> 12952 810 0.8176093 0.175570535 fv Log-Normal RP(P), Log-Normal FALSE #> 12968 811 0.4701681 0.101472086 fv Log-Normal RP(P), Log-Normal FALSE #> 12984 812 0.7254187 0.154409760 fv Log-Normal RP(P), Log-Normal FALSE #> 13000 813 0.8822935 0.186603747 fv Log-Normal RP(P), Log-Normal FALSE #> 13016 814 0.6854783 0.145765097 fv Log-Normal RP(P), Log-Normal FALSE #> 13032 815 0.6016377 0.128446956 fv Log-Normal RP(P), Log-Normal FALSE #> 13048 816 0.7010985 0.149468580 fv Log-Normal RP(P), Log-Normal FALSE #> 13064 817 0.4708990 0.102155376 fv Log-Normal RP(P), Log-Normal FALSE #> 13080 818 0.6450147 0.137380618 fv Log-Normal RP(P), Log-Normal FALSE #> 13096 819 0.8378345 0.176970921 fv Log-Normal RP(P), Log-Normal FALSE #> 13112 820 0.8576343 0.180150135 fv Log-Normal RP(P), Log-Normal FALSE #> 13128 821 0.5662469 0.120721140 fv Log-Normal RP(P), Log-Normal FALSE #> 13144 822 0.8889136 0.187187876 fv Log-Normal RP(P), Log-Normal FALSE #> 13160 823 0.9775185 0.205187695 fv Log-Normal RP(P), Log-Normal FALSE #> 13176 824 0.9211403 0.195513547 fv Log-Normal RP(P), Log-Normal FALSE #> 13192 825 0.7635747 0.160829429 fv Log-Normal RP(P), Log-Normal FALSE #> 13208 826 0.8164489 0.174414205 fv Log-Normal RP(P), Log-Normal FALSE #> 13224 827 0.8926966 0.188893449 fv Log-Normal RP(P), Log-Normal FALSE #> 13240 828 0.7527147 0.166002735 fv Log-Normal RP(P), Log-Normal FALSE #> 13256 829 0.7122050 0.151290715 fv Log-Normal RP(P), Log-Normal FALSE #> 13272 830 0.8138187 0.170842420 fv Log-Normal RP(P), Log-Normal FALSE #> 13288 831 0.8730454 0.184519785 fv Log-Normal RP(P), Log-Normal FALSE #> 13304 832 0.5916892 0.128420243 fv Log-Normal RP(P), Log-Normal FALSE #> 13320 833 0.8830502 0.188067591 fv Log-Normal RP(P), Log-Normal FALSE #> 13336 834 0.6506210 0.138700701 fv Log-Normal RP(P), Log-Normal FALSE #> 13352 835 0.6835081 0.144988682 fv Log-Normal RP(P), Log-Normal FALSE #> 13368 836 0.7839667 0.166049829 fv Log-Normal RP(P), Log-Normal FALSE #> 13384 837 0.7779566 0.164337100 fv Log-Normal RP(P), Log-Normal FALSE #> 13400 838 0.7060874 0.150748480 fv Log-Normal RP(P), Log-Normal FALSE #> 13416 839 0.5924718 0.126535761 fv Log-Normal RP(P), Log-Normal FALSE #> 13432 840 0.6193618 0.130899012 fv Log-Normal RP(P), Log-Normal FALSE #> 13448 841 0.9297818 0.194868377 fv Log-Normal RP(P), Log-Normal FALSE #> 13464 842 0.5606622 0.119736556 fv Log-Normal RP(P), Log-Normal FALSE #> 13480 843 0.6762162 0.144251070 fv Log-Normal RP(P), Log-Normal FALSE #> 13496 844 0.9144180 0.191981506 fv Log-Normal RP(P), Log-Normal FALSE #> 13512 845 0.9881628 0.211034090 fv Log-Normal RP(P), Log-Normal FALSE #> 13528 846 0.5534972 0.118336281 fv Log-Normal RP(P), Log-Normal FALSE #> 13544 847 1.0290028 0.214054040 fv Log-Normal RP(P), Log-Normal FALSE #> 13560 848 0.8411118 0.179136575 fv Log-Normal RP(P), Log-Normal FALSE #> 13576 849 0.6203488 0.132377496 fv Log-Normal RP(P), Log-Normal FALSE #> 13592 850 0.8147564 0.170744905 fv Log-Normal RP(P), Log-Normal FALSE #> 13608 851 0.6998219 0.148832242 fv Log-Normal RP(P), Log-Normal FALSE #> 13624 852 0.7564399 0.162157304 fv Log-Normal RP(P), Log-Normal FALSE #> 13640 853 1.0395607 0.217703991 fv Log-Normal RP(P), Log-Normal FALSE #> 13656 854 0.7111847 0.153481986 fv Log-Normal RP(P), Log-Normal FALSE #> 13672 855 0.6556235 0.141046741 fv Log-Normal RP(P), Log-Normal FALSE #> 13688 856 0.8817583 0.185649134 fv Log-Normal RP(P), Log-Normal FALSE #> 13704 857 0.8236771 0.176693971 fv Log-Normal RP(P), Log-Normal FALSE #> 13720 858 1.0746228 0.225811089 fv Log-Normal RP(P), Log-Normal TRUE #> 13736 859 0.9032464 0.189257870 fv Log-Normal RP(P), Log-Normal FALSE #> 13752 860 0.6669187 0.140695981 fv Log-Normal RP(P), Log-Normal FALSE #> 13768 861 0.4674381 0.100584211 fv Log-Normal RP(P), Log-Normal FALSE #> 13784 862 0.6539350 0.139109487 fv Log-Normal RP(P), Log-Normal FALSE #> 13800 863 0.6985242 0.149374254 fv Log-Normal RP(P), Log-Normal FALSE #> 13816 864 0.9300939 0.195732499 fv Log-Normal RP(P), Log-Normal FALSE #> 13832 865 0.9147309 0.192068804 fv Log-Normal RP(P), Log-Normal FALSE #> 13848 866 0.7371777 0.155715515 fv Log-Normal RP(P), Log-Normal FALSE #> 13864 867 0.6011364 0.129343485 fv Log-Normal RP(P), Log-Normal FALSE #> 13880 868 0.9004135 0.190191869 fv Log-Normal RP(P), Log-Normal FALSE #> 13896 869 0.5327774 0.115070470 fv Log-Normal RP(P), Log-Normal FALSE #> 13912 870 0.7729887 0.162396364 fv Log-Normal RP(P), Log-Normal FALSE #> 13928 871 0.5056960 0.108030427 fv Log-Normal RP(P), Log-Normal FALSE #> 13944 872 0.4679061 0.100976748 fv Log-Normal RP(P), Log-Normal FALSE #> 13960 873 0.8761508 0.183471906 fv Log-Normal RP(P), Log-Normal FALSE #> 13976 874 0.7799599 0.169034662 fv Log-Normal RP(P), Log-Normal FALSE #> 13992 875 0.6787270 0.145232289 fv Log-Normal RP(P), Log-Normal FALSE #> 14008 876 0.6180641 0.132265443 fv Log-Normal RP(P), Log-Normal FALSE #> 14024 877 0.5860993 0.126704444 fv Log-Normal RP(P), Log-Normal FALSE #> 14040 878 0.6935008 0.147945921 fv Log-Normal RP(P), Log-Normal FALSE #> 14056 879 0.6991619 0.148966789 fv Log-Normal RP(P), Log-Normal FALSE #> 14072 880 0.8484464 0.178825011 fv Log-Normal RP(P), Log-Normal FALSE #> 14088 881 0.5680401 0.122215485 fv Log-Normal RP(P), Log-Normal FALSE #> 14104 882 0.7194115 0.152466317 fv Log-Normal RP(P), Log-Normal FALSE #> 14120 883 0.6455610 0.138335850 fv Log-Normal RP(P), Log-Normal FALSE #> 14136 884 0.5987946 0.129856482 fv Log-Normal RP(P), Log-Normal FALSE #> 14152 885 0.7790563 0.165257741 fv Log-Normal RP(P), Log-Normal FALSE #> 14168 886 0.6659939 0.143104558 fv Log-Normal RP(P), Log-Normal FALSE #> 14184 887 0.3835719 0.083984835 fv Log-Normal RP(P), Log-Normal TRUE #> 14200 888 0.6800915 0.145916762 fv Log-Normal RP(P), Log-Normal FALSE #> 14216 889 0.7790675 0.168710053 fv Log-Normal RP(P), Log-Normal FALSE #> 14232 890 0.7112296 0.150790256 fv Log-Normal RP(P), Log-Normal FALSE #> 14248 891 0.7533556 0.158934342 fv Log-Normal RP(P), Log-Normal FALSE #> 14264 892 1.0280236 0.216825888 fv Log-Normal RP(P), Log-Normal FALSE #> 14280 893 0.4979805 0.108875811 fv Log-Normal RP(P), Log-Normal FALSE #> 14296 894 0.5899637 0.125759510 fv Log-Normal RP(P), Log-Normal FALSE #> 14312 895 0.8458281 0.181512736 fv Log-Normal RP(P), Log-Normal FALSE #> 14328 896 0.6045651 0.132440253 fv Log-Normal RP(P), Log-Normal FALSE #> 14344 897 0.6866283 0.146988855 fv Log-Normal RP(P), Log-Normal FALSE #> 14360 898 0.9461391 0.207475067 fv Log-Normal RP(P), Log-Normal FALSE #> 14376 899 0.9445390 0.209309102 fv Log-Normal RP(P), Log-Normal FALSE #> 14392 900 0.7393498 0.158497566 fv Log-Normal RP(P), Log-Normal FALSE #> 14408 901 0.7860897 0.165549053 fv Log-Normal RP(P), Log-Normal FALSE #> 14424 902 0.8546871 0.180690608 fv Log-Normal RP(P), Log-Normal FALSE #> 14440 903 0.5857383 0.126360181 fv Log-Normal RP(P), Log-Normal FALSE #> 14456 904 0.7061914 0.151616081 fv Log-Normal RP(P), Log-Normal FALSE #> 14472 905 0.7376254 0.156073478 fv Log-Normal RP(P), Log-Normal FALSE #> 14488 906 0.7232913 0.153209296 fv Log-Normal RP(P), Log-Normal FALSE #> 14504 907 0.6382404 0.136709915 fv Log-Normal RP(P), Log-Normal FALSE #> 14520 908 0.5651374 0.123783693 fv Log-Normal RP(P), Log-Normal FALSE #> 14536 909 0.9548552 0.202591456 fv Log-Normal RP(P), Log-Normal FALSE #> 14552 910 0.6873823 0.148859446 fv Log-Normal RP(P), Log-Normal FALSE #> 14568 911 0.6891131 0.146179957 fv Log-Normal RP(P), Log-Normal FALSE #> 14584 912 0.3917437 0.085173152 fv Log-Normal RP(P), Log-Normal TRUE #> 14600 913 0.6144485 0.130166853 fv Log-Normal RP(P), Log-Normal FALSE #> 14616 914 0.8656710 0.182025187 fv Log-Normal RP(P), Log-Normal FALSE #> 14632 915 0.6897622 0.146139260 fv Log-Normal RP(P), Log-Normal FALSE #> 14648 916 0.7306908 0.154546332 fv Log-Normal RP(P), Log-Normal FALSE #> 14664 917 0.5319260 0.114753494 fv Log-Normal RP(P), Log-Normal FALSE #> 14680 918 0.5755386 0.122888377 fv Log-Normal RP(P), Log-Normal FALSE #> 14696 919 0.6552902 0.138537843 fv Log-Normal RP(P), Log-Normal FALSE #> 14712 920 0.6870121 0.145734240 fv Log-Normal RP(P), Log-Normal FALSE #> 14728 921 1.1915721 0.250004473 fv Log-Normal RP(P), Log-Normal TRUE #> 14744 922 0.6152027 0.130501228 fv Log-Normal RP(P), Log-Normal FALSE #> 14760 923 1.0916553 0.230692777 fv Log-Normal RP(P), Log-Normal TRUE #> 14776 924 0.6760298 0.142944236 fv Log-Normal RP(P), Log-Normal FALSE #> 14792 925 0.7494020 0.158189841 fv Log-Normal RP(P), Log-Normal FALSE #> 14808 926 0.9539570 0.201126456 fv Log-Normal RP(P), Log-Normal FALSE #> 14824 927 0.8094500 0.170148180 fv Log-Normal RP(P), Log-Normal FALSE #> 14840 928 0.6872926 0.144714385 fv Log-Normal RP(P), Log-Normal FALSE #> 14856 929 0.7639833 0.160366801 fv Log-Normal RP(P), Log-Normal FALSE #> 14872 930 0.5785785 0.123893681 fv Log-Normal RP(P), Log-Normal FALSE #> 14888 931 0.8122490 0.171642861 fv Log-Normal RP(P), Log-Normal FALSE #> 14904 932 0.5424141 0.116670467 fv Log-Normal RP(P), Log-Normal FALSE #> 14920 933 0.5758885 0.122632998 fv Log-Normal RP(P), Log-Normal FALSE #> 14936 934 0.6847454 0.144785290 fv Log-Normal RP(P), Log-Normal FALSE #> 14952 935 0.8990435 0.189337431 fv Log-Normal RP(P), Log-Normal FALSE #> 14968 936 0.7029922 0.148015811 fv Log-Normal RP(P), Log-Normal FALSE #> 14984 937 0.8511214 0.180869991 fv Log-Normal RP(P), Log-Normal FALSE #> 15000 938 0.9018481 0.192865935 fv Log-Normal RP(P), Log-Normal FALSE #> 15016 939 0.5681631 0.120827024 fv Log-Normal RP(P), Log-Normal FALSE #> 15032 940 0.8683425 0.190570808 fv Log-Normal RP(P), Log-Normal FALSE #> 15048 941 0.4731799 0.101370652 fv Log-Normal RP(P), Log-Normal FALSE #> 15064 942 0.8718579 0.184619662 fv Log-Normal RP(P), Log-Normal FALSE #> 15080 943 0.5215956 0.111687693 fv Log-Normal RP(P), Log-Normal FALSE #> 15096 944 0.6585742 0.139791246 fv Log-Normal RP(P), Log-Normal FALSE #> 15112 945 0.9998814 0.208886842 fv Log-Normal RP(P), Log-Normal FALSE #> 15128 946 0.8286117 0.174615350 fv Log-Normal RP(P), Log-Normal FALSE #> 15144 947 0.8353904 0.175679093 fv Log-Normal RP(P), Log-Normal FALSE #> 15160 948 0.4626225 0.099317399 fv Log-Normal RP(P), Log-Normal FALSE #> 15176 949 0.7781009 0.168477774 fv Log-Normal RP(P), Log-Normal FALSE #> 15192 950 0.7759783 0.163272466 fv Log-Normal RP(P), Log-Normal FALSE #> 15208 951 0.5897491 0.127953505 fv Log-Normal RP(P), Log-Normal FALSE #> 15224 952 0.6290545 0.134915562 fv Log-Normal RP(P), Log-Normal FALSE #> 15240 953 0.6030549 0.128014906 fv Log-Normal RP(P), Log-Normal FALSE #> 15256 954 0.8211460 0.173732484 fv Log-Normal RP(P), Log-Normal FALSE #> 15272 955 0.7009093 0.148157664 fv Log-Normal RP(P), Log-Normal FALSE #> 15288 956 0.8915759 0.187676590 fv Log-Normal RP(P), Log-Normal FALSE #> 15304 957 0.6267329 0.133922808 fv Log-Normal RP(P), Log-Normal FALSE #> 15320 958 0.6016424 0.128035145 fv Log-Normal RP(P), Log-Normal FALSE #> 15336 959 0.6840954 0.143990005 fv Log-Normal RP(P), Log-Normal FALSE #> 15352 960 0.5972503 0.128658505 fv Log-Normal RP(P), Log-Normal FALSE #> 15368 961 0.8240171 0.173195111 fv Log-Normal RP(P), Log-Normal FALSE #> 15384 962 0.8506117 0.181056393 fv Log-Normal RP(P), Log-Normal FALSE #> 15400 963 0.8979819 0.188022071 fv Log-Normal RP(P), Log-Normal FALSE #> 15416 964 0.6863717 0.145397560 fv Log-Normal RP(P), Log-Normal FALSE #> 15432 965 0.5656577 0.120857677 fv Log-Normal RP(P), Log-Normal FALSE #> 15448 966 1.0575889 0.222503361 fv Log-Normal RP(P), Log-Normal TRUE #> 15464 967 0.9055166 0.192117872 fv Log-Normal RP(P), Log-Normal FALSE #> 15480 968 0.8399767 0.178050315 fv Log-Normal RP(P), Log-Normal FALSE #> 15496 969 1.0258198 0.213819100 fv Log-Normal RP(P), Log-Normal FALSE #> 15512 970 0.7745776 0.163833552 fv Log-Normal RP(P), Log-Normal FALSE #> 15528 971 0.9605636 0.200926578 fv Log-Normal RP(P), Log-Normal FALSE #> 15544 972 0.6146916 0.130993578 fv Log-Normal RP(P), Log-Normal FALSE #> 15560 973 0.9199785 0.192746059 fv Log-Normal RP(P), Log-Normal FALSE #> 15576 974 0.9125999 0.192011883 fv Log-Normal RP(P), Log-Normal FALSE #> 15592 975 1.0480335 0.219730800 fv Log-Normal RP(P), Log-Normal FALSE #> 15608 976 0.8193862 0.179589718 fv Log-Normal RP(P), Log-Normal FALSE #> 15624 977 1.1556586 0.244268056 fv Log-Normal RP(P), Log-Normal TRUE #> 15640 978 0.8382332 0.180255798 fv Log-Normal RP(P), Log-Normal FALSE #> 15656 979 0.6259659 0.132736866 fv Log-Normal RP(P), Log-Normal FALSE #> 15672 980 0.8406804 0.182112889 fv Log-Normal RP(P), Log-Normal FALSE #> 15688 981 0.6702017 0.142022616 fv Log-Normal RP(P), Log-Normal FALSE #> 15704 982 0.7070367 0.153212663 fv Log-Normal RP(P), Log-Normal FALSE #> 15720 983 0.7404223 0.156213950 fv Log-Normal RP(P), Log-Normal FALSE #> 15736 984 0.6419067 0.135852588 fv Log-Normal RP(P), Log-Normal FALSE #> 15752 985 0.8310183 0.173870127 fv Log-Normal RP(P), Log-Normal FALSE #> 15768 986 0.7701285 0.162750927 fv Log-Normal RP(P), Log-Normal FALSE #> 15784 987 0.6682787 0.141252244 fv Log-Normal RP(P), Log-Normal FALSE #> 15800 988 0.9022389 0.190619051 fv Log-Normal RP(P), Log-Normal FALSE #> 15816 989 0.9754269 0.206348524 fv Log-Normal RP(P), Log-Normal FALSE #> 15832 990 0.7016794 0.147600528 fv Log-Normal RP(P), Log-Normal FALSE #> 15848 991 0.7990861 0.167185785 fv Log-Normal RP(P), Log-Normal FALSE #> 15864 992 0.7155265 0.151583447 fv Log-Normal RP(P), Log-Normal FALSE #> 15880 993 0.7555724 0.158552064 fv Log-Normal RP(P), Log-Normal FALSE #> 15896 994 0.7013507 0.151341125 fv Log-Normal RP(P), Log-Normal FALSE #> 15912 995 0.6369622 0.137876294 fv Log-Normal RP(P), Log-Normal FALSE #> 15928 996 0.7173666 0.152233112 fv Log-Normal RP(P), Log-Normal FALSE #> 15944 997 0.7181560 0.152642728 fv Log-Normal RP(P), Log-Normal FALSE #> 15960 998 0.6523091 0.140451142 fv Log-Normal RP(P), Log-Normal FALSE #> 15976 999 0.8016289 0.171180170 fv Log-Normal RP(P), Log-Normal FALSE #> 15992 1000 0.7201794 0.155276856 fv Log-Normal RP(P), Log-Normal FALSE"},{"path":"https://ellessenne.github.io/rsimsum/reference/frailty.html","id":null,"dir":"Reference","previous_headings":"","what":"Example of a simulation study on frailty survival models — frailty","title":"Example of a simulation study on frailty survival models — frailty","text":"dataset simulation study comparing frailty flexible parametric models fitted using penalised likelihood semiparametric frailty models. models fitted assuming Gamma log-Normal frailty. One thousand datasets simulated, containing binary treatment variable log-hazard ratio -0.50. Clustered survival data simulated assuming 50 clusters 50 individuals , mixture Weibull baseline hazard function frailty following either Gamma Log-Normal distribution. comparison involves estimates log-treatment effect, estimates heterogeneity (.e. estimated frailty variance).","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/frailty.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example of a simulation study on frailty survival models — frailty","text":"","code":"frailty frailty2"},{"path":"https://ellessenne.github.io/rsimsum/reference/frailty.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example of a simulation study on frailty survival models — frailty","text":"data frame 16,000 rows 6 variables: Simulated dataset number. b Point estimate. se Standard error point estimate. par estimand. trt log-treatment effect, fv variance frailty. fv_dist true frailty distribution. model Method used (Cox, Gamma, Cox, Log-Normal, RP(P), Gamma, RP(P), Log-Normal). object class data.frame 16000 rows 7 columns.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/frailty.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Example of a simulation study on frailty survival models — frailty","text":"frailty2 version dataset model column split two columns, m_baseline m_frailty.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/frailty.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Example of a simulation study on frailty survival models — frailty","text":"","code":"data(\"frailty\", package = \"rsimsum\") data(\"frailty2\", package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/reference/get_data.html","id":null,"dir":"Reference","previous_headings":"","what":"get_data — get_data","title":"get_data — get_data","text":"Extract data slots object class simsum, summary.simsum, multisimsum, summary.multisimsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/get_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"get_data — get_data","text":"","code":"get_data(x, stats = NULL, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/get_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"get_data — get_data","text":"x object class simsum. stats Summary statistics include; can scalar value vector. Possible choices : nsim, number replications non-missing point estimates standard error. thetamean, average point estimate. thetamedian, median point estimate. se2mean, average standard error. se2median, median standard error. bias, bias point estimate. empse, empirical standard error. mse, mean squared error. relprec, percentage gain precision relative reference method. modelse, model-based standard error. relerror, relative percentage error standard error. cover, coverage nominal level\\ becover, bias-eliminated coverage nominal level\\ power, power (1 - level)\\ Defaults NULL, case summary statistics returned. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/get_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"get_data — get_data","text":"data.frame containing summary statistics simulation study.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/get_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"get_data — get_data","text":"","code":"data(MIsim) x <- simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\" ) #> 'ref' method was not specified, CC set as the reference get_data(x) #> Warning: `get_data()` was deprecated in rsimsum 0.10.0. #> ℹ Please use `tidy()` instead. #> stat est mcse method #> 1 nsim 1.000000e+03 NA CC #> 2 thetamean 5.167662e-01 NA CC #> 3 thetamedian 5.069935e-01 NA CC #> 4 se2mean 2.163731e-02 NA CC #> 5 se2median 2.114245e-02 NA CC #> 6 bias 1.676616e-02 0.0047786757 CC #> 7 rbias 3.353232e-02 0.0095573514 CC #> 8 empse 1.511150e-01 0.0033807248 CC #> 9 mse 2.309401e-02 0.0011338389 CC #> 10 relprec 0.000000e+00 0.0000000000 CC #> 11 modelse 1.470963e-01 0.0005274099 CC #> 12 relerror -2.659384e+00 2.2054817330 CC #> 13 cover 9.430000e-01 0.0073315073 CC #> 14 becover 9.400000e-01 0.0075099933 CC #> 15 power 9.460000e-01 0.0071473072 CC #> 16 nsim 1.000000e+03 NA MI_LOGT #> 17 thetamean 5.009231e-01 NA MI_LOGT #> 18 thetamedian 4.969223e-01 NA MI_LOGT #> 19 se2mean 1.820915e-02 NA MI_LOGT #> 20 se2median 1.721574e-02 NA MI_LOGT #> 21 bias 9.230987e-04 0.0041744101 MI_LOGT #> 22 rbias 1.846197e-03 0.0083488201 MI_LOGT #> 23 empse 1.320064e-01 0.0029532306 MI_LOGT #> 24 mse 1.740913e-02 0.0008812805 MI_LOGT #> 25 relprec 3.104634e+01 3.9374726448 MI_LOGT #> 26 modelse 1.349413e-01 0.0006046041 MI_LOGT #> 27 relerror 2.223259e+00 2.3323382138 MI_LOGT #> 28 cover 9.490000e-01 0.0069569390 MI_LOGT #> 29 becover 9.490000e-01 0.0069569390 MI_LOGT #> 30 power 9.690000e-01 0.0054807846 MI_LOGT #> 31 nsim 1.000000e+03 NA MI_T #> 32 thetamean 4.988092e-01 NA MI_T #> 33 thetamedian 4.939111e-01 NA MI_T #> 34 se2mean 1.791169e-02 NA MI_T #> 35 se2median 1.693191e-02 NA MI_T #> 36 bias -1.190835e-03 0.0042509767 MI_T #> 37 rbias -2.381670e-03 0.0085019534 MI_T #> 38 empse 1.344277e-01 0.0030073985 MI_T #> 39 mse 1.805415e-02 0.0009112249 MI_T #> 40 relprec 2.636816e+01 3.8423791135 MI_T #> 41 modelse 1.338346e-01 0.0005856362 MI_T #> 42 relerror -4.412233e-01 2.2695215740 MI_T #> 43 cover 9.430000e-01 0.0073315073 MI_T #> 44 becover 9.430000e-01 0.0073315073 MI_T #> 45 power 9.630000e-01 0.0059691708 MI_T # Extracting only bias and coverage: get_data(x, stats = c(\"bias\", \"cover\")) #> stat est mcse method #> 1 bias 0.0167661608 0.004778676 CC #> 2 cover 0.9430000000 0.007331507 CC #> 3 bias 0.0009230987 0.004174410 MI_LOGT #> 4 cover 0.9490000000 0.006956939 MI_LOGT #> 5 bias -0.0011908351 0.004250977 MI_T #> 6 cover 0.9430000000 0.007331507 MI_T xs <- summary(x) get_data(xs) #> stat est mcse method lower upper #> 1 nsim 1.000000e+03 NA CC NA NA #> 2 thetamean 5.167662e-01 NA CC NA NA #> 3 thetamedian 5.069935e-01 NA CC NA NA #> 4 se2mean 2.163731e-02 NA CC NA NA #> 5 se2median 2.114245e-02 NA CC NA NA #> 6 bias 1.676616e-02 0.0047786757 CC 0.007400129 0.026132193 #> 7 rbias 3.353232e-02 0.0095573514 CC 0.014800257 0.052264386 #> 8 empse 1.511150e-01 0.0033807248 CC 0.144488895 0.157741093 #> 9 mse 2.309401e-02 0.0011338389 CC 0.020871727 0.025316293 #> 10 relprec 0.000000e+00 0.0000000000 CC 0.000000000 0.000000000 #> 11 modelse 1.470963e-01 0.0005274099 CC 0.146062561 0.148129970 #> 12 relerror -2.659384e+00 2.2054817330 CC -6.982048962 1.663280569 #> 13 cover 9.430000e-01 0.0073315073 CC 0.928630510 0.957369490 #> 14 becover 9.400000e-01 0.0075099933 CC 0.925280684 0.954719316 #> 15 power 9.460000e-01 0.0071473072 CC 0.931991535 0.960008465 #> 16 nsim 1.000000e+03 NA MI_LOGT NA NA #> 17 thetamean 5.009231e-01 NA MI_LOGT NA NA #> 18 thetamedian 4.969223e-01 NA MI_LOGT NA NA #> 19 se2mean 1.820915e-02 NA MI_LOGT NA NA #> 20 se2median 1.721574e-02 NA MI_LOGT NA NA #> 21 bias 9.230987e-04 0.0041744101 MI_LOGT -0.007258595 0.009104792 #> 22 rbias 1.846197e-03 0.0083488201 MI_LOGT -0.014517189 0.018209584 #> 23 empse 1.320064e-01 0.0029532306 MI_LOGT 0.126218211 0.137794663 #> 24 mse 1.740913e-02 0.0008812805 MI_LOGT 0.015681848 0.019136404 #> 25 relprec 3.104634e+01 3.9374726448 MI_LOGT 23.329036439 38.763645587 #> 26 modelse 1.349413e-01 0.0006046041 MI_LOGT 0.133756280 0.136126285 #> 27 relerror 2.223259e+00 2.3323382138 MI_LOGT -2.348039558 6.794558240 #> 28 cover 9.490000e-01 0.0069569390 MI_LOGT 0.935364650 0.962635350 #> 29 becover 9.490000e-01 0.0069569390 MI_LOGT 0.935364650 0.962635350 #> 30 power 9.690000e-01 0.0054807846 MI_LOGT 0.958257860 0.979742140 #> 31 nsim 1.000000e+03 NA MI_T NA NA #> 32 thetamean 4.988092e-01 NA MI_T NA NA #> 33 thetamedian 4.939111e-01 NA MI_T NA NA #> 34 se2mean 1.791169e-02 NA MI_T NA NA #> 35 se2median 1.693191e-02 NA MI_T NA NA #> 36 bias -1.190835e-03 0.0042509767 MI_T -0.009522596 0.007140926 #> 37 rbias -2.381670e-03 0.0085019534 MI_T -0.019045193 0.014281852 #> 38 empse 1.344277e-01 0.0030073985 MI_T 0.128533294 0.140322080 #> 39 mse 1.805415e-02 0.0009112249 MI_T 0.016268182 0.019840118 #> 40 relprec 2.636816e+01 3.8423791135 MI_T 18.837236583 33.899085938 #> 41 modelse 1.338346e-01 0.0005856362 MI_T 0.132686735 0.134982387 #> 42 relerror -4.412233e-01 2.2695215740 MI_T -4.889403808 4.006957286 #> 43 cover 9.430000e-01 0.0073315073 MI_T 0.928630510 0.957369490 #> 44 becover 9.430000e-01 0.0073315073 MI_T 0.928630510 0.957369490 #> 45 power 9.630000e-01 0.0059691708 MI_T 0.951300640 0.974699360"},{"path":"https://ellessenne.github.io/rsimsum/reference/is.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"is.multisimsum — is.multisimsum","title":"is.multisimsum — is.multisimsum","text":"Reports whether x multisimsum object","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"is.multisimsum — is.multisimsum","text":"","code":"is.multisimsum(x)"},{"path":"https://ellessenne.github.io/rsimsum/reference/is.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"is.multisimsum — is.multisimsum","text":"x object test.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"is.simsum — is.simsum","title":"is.simsum — is.simsum","text":"Reports whether x simsum object","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"is.simsum — is.simsum","text":"","code":"is.simsum(x)"},{"path":"https://ellessenne.github.io/rsimsum/reference/is.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"is.simsum — is.simsum","text":"x object test.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.summary.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"is.summary.multisimsum — is.summary.multisimsum","title":"is.summary.multisimsum — is.summary.multisimsum","text":"Reports whether x summary.multisimsum object","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.summary.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"is.summary.multisimsum — is.summary.multisimsum","text":"","code":"is.summary.multisimsum(x)"},{"path":"https://ellessenne.github.io/rsimsum/reference/is.summary.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"is.summary.multisimsum — is.summary.multisimsum","text":"x object test.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.summary.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"is.summary.simsum — is.summary.simsum","title":"is.summary.simsum — is.summary.simsum","text":"Reports whether x summary.simsum object","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/is.summary.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"is.summary.simsum — is.summary.simsum","text":"","code":"is.summary.simsum(x)"},{"path":"https://ellessenne.github.io/rsimsum/reference/is.summary.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"is.summary.simsum — is.summary.simsum","text":"x object test.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/kable.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"Create 'kable's — kable.simsum","title":"Create 'kable's — kable.simsum","text":"Create tables LaTeX, HTML, Markdown, reStructuredText objects class simsum, summary.simsum, multisimsum, summary.multisimsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/kable.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create 'kable's — kable.simsum","text":"","code":"# S3 method for simsum kable(x, stats = NULL, digits = max(3, getOption(\"digits\") - 3), ...) # S3 method for summary.simsum kable(x, stats = NULL, digits = max(3, getOption(\"digits\") - 3), ...) # S3 method for multisimsum kable(x, stats = NULL, digits = max(3, getOption(\"digits\") - 3), ...) # S3 method for summary.multisimsum kable(x, stats = NULL, digits = max(3, getOption(\"digits\") - 3), ...) kable(x, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/kable.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create 'kable's — kable.simsum","text":"x object class simsum, summary.simsum, multisimsum, summary.multisimsum; stats Summary statistics include. See tidy() details; digits Maximum number digits numeric columns; ... arguments passed knitr::kable().","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/reference/multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","title":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","text":"multisimsum extension simsum() can handle multiple estimated parameters . multisimsum calls simsum() internally, estimands . one new argument must set calling multisimsum: par, string representing column data identifies different estimands. Additionally, multisimsum argument true can named vector, names correspond estimand (see examples). Otherwise, constant values (values identified column data) utilised. See vignette(\"E-custom-inputs\", package = \"rsimsum\") details.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","text":"","code":"multisimsum( data, par, estvarname, se = NULL, true = NULL, methodvar = NULL, ref = NULL, by = NULL, ci.limits = NULL, df = NULL, dropbig = FALSE, x = FALSE, control = list() )"},{"path":"https://ellessenne.github.io/rsimsum/reference/multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","text":"data data.frame variable names interpreted. tidy format, e.g. variable forms column observation forms row. par name variable containing methods compare. Can NULL. estvarname name variable containing point estimates. Note column names forbidden: listed Details section. se name variable containing standard errors point estimates. Note column names forbidden: listed Details section. true true value parameter; used calculations bias, relative bias, coverage, mean squared error required whenever performance measures requested. true can numeric value string identifies column data. former setting, simsum assume value replications; conversely, replication use distinct value true identified row data. See vignette(\"E-custom-inputs\", package = \"rsimsum\") details. Note column names forbidden: listed Details section. methodvar name variable containing methods compare. instance, methods models compared within simulation study. Can NULL. vector column names passed simsum(), columns combined single column named :methodvar using base::interaction() function computing performance measures. Note column names forbidden: listed Details section. ref Specifies reference method relative precision calculated. useful methodvar specified. vector variable names compute performance measures list factors. Factors listed (potentially several) data-generating mechanisms used simulate data different scenarios (e.g. sample size, true distribution variable, etc.). Can NULL. Note column names forbidden: listed Details section. ci.limits Can used specify limits (lower upper) confidence intervals used calculate coverage bias-eliminated coverage. Useful non-Wald type estimators (e.g. bootstrap). Defaults NULL, Wald-type confidence intervals based provided SEs calculated coverage; otherwise, can numeric vector (fixed confidence intervals) vector strings identify columns data replication-specific lower upper limits. See vignette(\"E-custom-inputs\", package = \"rsimsum\") details. Note column names forbidden: listed Details section. df Can used specify column containing replication-specific number degrees freedom used calculate confidence intervals coverage (bias-eliminated coverage) assuming t-distributed critical values (rather normal theory intervals). See vignette(\"E-custom-inputs\", package = \"rsimsum\") details. Note column names forbidden: listed Details section. dropbig Specifies point estimates standard errors beyond maximum acceptable values dropped. Defaults FALSE. x Set TRUE include data argument used calculate summary statistics (.e. pre-processing input dataset e.g. removing values deemed large via dropbig argument) slot. Calling simsum x = TRUE required produce zipper plots. downside size returned object increases considerably, therefore set FALSE default. control list parameters control behaviour simsum. Possible values : mcse, whether calculate Monte Carlo standard errors. Defaults TRUE; level, significance level used coverage, bias-eliminated coverage, power. Defaults 0.95; power_df, whether use robust critical values t distribution power_df degrees freedom calculating power. Defaults NULL, case Gaussian distribution used; na.rm, whether remove point estimates standard errors either () missing. Defaults TRUE; char.sep, character utilised splitting input dataset data. Generally, changed; dropbig.max, specifies maximum acceptable absolute value point estimates, standardisation. Defaults 10; dropbig.semax, specifies maximum acceptable absolute value standard error, standardisation. Defaults 100 dropbig.robust, specifies whether use robust standardisation (using median inter-quartile range) rather normal standardisation (using mean standard deviation). Defaults TRUE, case robust standardisation used dropbig.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/multisimsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","text":"object class multisimsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/multisimsum.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","text":"following names allowed estvarname, se, methodvar, , par: stat, est, mcse, lower, upper, :methodvar.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/multisimsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Analyses of simulation studies with multiple estimands at once, including Monte Carlo error — multisimsum","text":"","code":"data(\"frailty\", package = \"rsimsum\") ms <- multisimsum( data = frailty, par = \"par\", true = c(trt = -0.50, fv = 0.75), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\" ) #> 'ref' method was not specified, Cox, Gamma set as the reference ms #> #> Estimands variable: par #> \tUnique estimands: fv, trt #> \tTrue values: fv = -0.5, trt = 0.75 #> #> Method variable: model #> \tUnique methods: Cox, Gamma, Cox, Log-Normal, RP(P), Gamma, RP(P), Log-Normal #> \tReference method: Cox, Gamma #> #> By factors: fv_dist #> #> Monte Carlo standard errors were computed."},{"path":"https://ellessenne.github.io/rsimsum/reference/nlp.html","id":null,"dir":"Reference","previous_headings":"","what":"Example of a simulation study on survival modelling — nlp","title":"Example of a simulation study on survival modelling — nlp","text":"dataset simulation study 150 data-generating mechanisms, useful illustrate nested loop plots. simulation study aims compare Cox model flexible parametric models variety scenarios: different baseline hazard functions, sample size, varying amount heterogeneity unaccounted model (simulated white noise given variance). Cox model Royston-Parmar model 5 degrees freedom fit replication.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nlp.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example of a simulation study on survival modelling — nlp","text":"","code":"nlp"},{"path":"https://ellessenne.github.io/rsimsum/reference/nlp.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example of a simulation study on survival modelling — nlp","text":"data frame 30,000 rows 10 variables: dgm Data-generating mechanism, 1 150. Simulated dataset number. model Method used, 1 Cox model 2 RP(5) model. b Point estimate log-hazard ratio. se Standard error point estimate. baseline Baseline hazard function simulated dataset. ss Sample size simulated dataset. esigma Standard deviation white noise. pars (Ancillary) Parameters baseline hazard function.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nlp.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Example of a simulation study on survival modelling — nlp","text":"details simulation study can found R script used generate dataset, available GitHub: https://github.com/ellessenne/rsimsum/blob/master/data-raw/nlp-data.R","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nlp.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Example of a simulation study on survival modelling — nlp","text":"Cox D.R. 1972. Regression models life-tables. Journal Royal Statistical Society, Series B (Methodological) 34(2):187-220. doi:10.1007/978-1-4612-4380-9_37 Royston, P. Parmar, M.K. 2002. Flexible parametric proportional-hazards proportional-odds models censored survival data, application prognostic modelling estimation treatment effects. Statistics Medicine 21(15):2175-2197 doi:10.1002/sim.1203 Rücker, G. Schwarzer, G. 2014. Presenting simulation results nested loop plot. BMC Medical Research Methodology 14:129 doi:10.1186/1471-2288-14-129","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nlp.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Example of a simulation study on survival modelling — nlp","text":"","code":"data(\"nlp\", package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/reference/nsim.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute number of simulations required — nsim","title":"Compute number of simulations required — nsim","text":"function nsim computes number simulations \\(B\\) perform based accuracy estimate interest, using following equation: $$B = \\left( \\frac{(Z_{1 - \\alpha / 2} + Z_{1 - theta}) \\sigma}{\\delta} \\right) ^ 2,$$ \\(\\delta\\) specified level accuracy estimate interest willing accept (.e. permissible difference true value \\(\\beta\\)), \\(Z_{1 - \\alpha / 2}\\) \\((1 - \\alpha / 2)\\) quantile standard normal distribution, \\(Z_{1 - \\theta}\\) \\((1 - \\theta)\\) quantile standard normal distribution \\((1 - \\theta)\\) power detect specific difference true value significant, \\(\\sigma ^ 2\\) variance parameter interest.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nsim.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute number of simulations required — nsim","text":"","code":"nsim(alpha, sigma, delta, power = 0.5)"},{"path":"https://ellessenne.github.io/rsimsum/reference/nsim.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute number of simulations required — nsim","text":"alpha Significance level. Must value 0 1. sigma Variance parameter interest. Must greater 0. delta Specified level accuracy estimate interest willing accept. Must greater 0. power Power detect specific difference true value significant. Must value 0 1. Defaults 0.5, e.g. power 50%.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nsim.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute number of simulations required — nsim","text":"scalar value \\(B\\) representing number simulations perform based accuracy required.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nsim.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Compute number of simulations required — nsim","text":"Burton, ., Douglas G. Altman, P. Royston. et al. 2006. design simulation studies medical statistics. Statistics Medicine 25: 4279-4292 doi:10.1002/sim.2673","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/nsim.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute number of simulations required — nsim","text":"","code":"# Number of simulations required to produce an estimate to within 5% # accuracy of the true coefficient of 0.349 with a 5% significance level, # assuming the variance of the estimate is 0.0166 and 50% power: nsim(alpha = 0.05, sigma = sqrt(0.0166), delta = 0.349 * 5 / 100, power = 0.5) #> [1] 209.4177 # Number of simulations required to produce an estimate to within 1% # accuracy of the true coefficient of 0.349 with a 5% significance level, # assuming the variance of the estimate is 0.0166 and 50% power: nsim(alpha = 0.05, sigma = sqrt(0.0166), delta = 0.349 * 1 / 100, power = 0.5) #> [1] 5235.443"},{"path":"https://ellessenne.github.io/rsimsum/reference/print.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"print.multisimsum — print.multisimsum","title":"print.multisimsum — print.multisimsum","text":"Print method multisimsum objects","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"print.multisimsum — print.multisimsum","text":"","code":"# S3 method for multisimsum print(x, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/print.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"print.multisimsum — print.multisimsum","text":"x object class multisimsum. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.multisimsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"print.multisimsum — print.multisimsum","text":"","code":"data(frailty) ms <- multisimsum( data = frailty, par = \"par\", true = c( trt = -0.50, fv = 0.75 ), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\" ) #> 'ref' method was not specified, Cox, Gamma set as the reference ms #> #> Estimands variable: par #> \tUnique estimands: fv, trt #> \tTrue values: fv = -0.5, trt = 0.75 #> #> Method variable: model #> \tUnique methods: Cox, Gamma, Cox, Log-Normal, RP(P), Gamma, RP(P), Log-Normal #> \tReference method: Cox, Gamma #> #> By factors: fv_dist #> #> Monte Carlo standard errors were computed. data(\"frailty\", package = \"rsimsum\") frailty$true <- ifelse(frailty$par == \"trt\", -0.50, 0.75) ms <- multisimsum(data = frailty, par = \"par\", estvarname = \"b\", true = \"true\") ms #> #> Estimands variable: par #> \tUnique estimands: fv, trt #> \tTrue values from column 'true' #> #> Method variable: none #> #> By factors: none #> #> Monte Carlo standard errors were computed."},{"path":"https://ellessenne.github.io/rsimsum/reference/print.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"print.simsum — print.simsum","title":"print.simsum — print.simsum","text":"Print method simsum objects","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"print.simsum — print.simsum","text":"","code":"# S3 method for simsum print(x, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/print.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"print.simsum — print.simsum","text":"x object class simsum. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.simsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"print.simsum — print.simsum","text":"","code":"data(\"MIsim\") x <- simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\" ) #> 'ref' method was not specified, CC set as the reference x #> Summary of a simulation study with a single estimand. #> True value of the estimand: 0.5 #> #> Method variable: method #> \tUnique methods: CC, MI_LOGT, MI_T #> \tReference method: CC #> #> By factors: none #> #> Monte Carlo standard errors were computed. MIsim$true <- 0.5 x <- simsum(data = MIsim, estvarname = \"b\", true = \"true\", se = \"se\") x #> Summary of a simulation study with a single estimand. #> True value of the estimand from column 'true' #> #> Method variable: none #> #> By factors: none #> #> Monte Carlo standard errors were computed."},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"print.summary.multisimsum — print.summary.multisimsum","title":"print.summary.multisimsum — print.summary.multisimsum","text":"Print method summary.multisimsum objects","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"print.summary.multisimsum — print.summary.multisimsum","text":"","code":"# S3 method for summary.multisimsum print(x, digits = 4, mcse = TRUE, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"print.summary.multisimsum — print.summary.multisimsum","text":"x object class summary.multisimsum. digits Number significant digits used printing. Defaults 4. mcse Monte Carlo standard errors reported? mcse = FALSE, confidence intervals based Monte Carlo standard errors reported instead, see summary.multisimsum(). NULL value passed, point estimates printed regardless whether Monte Carlo standard errors computed . Defaults TRUE. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.multisimsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"print.summary.multisimsum — print.summary.multisimsum","text":"","code":"data(frailty) ms <- multisimsum( data = frailty, par = \"par\", true = c( trt = -0.50, fv = 0.75 ), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\" ) #> 'ref' method was not specified, Cox, Gamma set as the reference sms <- summary(ms, stats = c(\"bias\", \"cover\", \"mse\")) sms #> Values are: #> \tPoint Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma -0.0124 (0.0045) 0.2299 (0.0076) -0.0179 (0.0044) #> Log-Normal -0.1064 (0.0043) -0.0175 (0.0049) -0.1066 (0.0041) #> RP(P), Log-Normal #> 0.2347 (0.0077) #> -0.0152 (0.0050) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0203 (0.0010) 0.1107 (0.0055) 0.0195 (0.0009) 0.1145 (0.0057) #> Log-Normal 0.0287 (0.0010) 0.0244 (0.0011) 0.0284 (0.0010) 0.0248 (0.0012) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9201 (0.0087) 0.9220 (0.0085) 0.9300 (0.0082) 0.9030 (0.0094) #> Log-Normal 0.7503 (0.0140) 0.9020 (0.0094) 0.7683 (0.0134) 0.9280 (0.0082) #> #> -------------------------------------------------------------------------------- #> #> Parameter: trt #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma -0.0006 (0.0016) -0.0013 (0.0016) -0.0003 (0.0016) #> Log-Normal -0.0006 (0.0015) -0.0014 (0.0015) -0.0006 (0.0015) #> RP(P), Log-Normal #> -0.0015 (0.0016) #> -0.0016 (0.0015) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0026 (0.0001) 0.0026 (0.0001) 0.0026 (0.0001) 0.0026 (0.0001) #> Log-Normal 0.0022 (0.0001) 0.0022 (0.0001) 0.0022 (0.0001) 0.0022 (0.0001) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9500 (0.0069) 0.9490 (0.0070) 0.9506 (0.0070) 0.9500 (0.0069) #> Log-Normal 0.9410 (0.0075) 0.9420 (0.0074) 0.9428 (0.0074) 0.9430 (0.0073) # Printing less significant digits: print(sms, digits = 3) #> Values are: #> \tPoint Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.012 (0.005) 0.230 (0.008) -0.018 (0.004) 0.235 (0.008) #> Log-Normal -0.106 (0.004) -0.017 (0.005) -0.107 (0.004) -0.015 (0.005) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.020 (0.001) 0.111 (0.005) 0.020 (0.001) 0.114 (0.006) #> Log-Normal 0.029 (0.001) 0.024 (0.001) 0.028 (0.001) 0.025 (0.001) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.920 (0.009) 0.922 (0.008) 0.930 (0.008) 0.903 (0.009) #> Log-Normal 0.750 (0.014) 0.902 (0.009) 0.768 (0.013) 0.928 (0.008) #> #> -------------------------------------------------------------------------------- #> #> Parameter: trt #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.001 (0.002) -0.001 (0.002) -0.000 (0.002) -0.002 (0.002) #> Log-Normal -0.001 (0.001) -0.001 (0.001) -0.001 (0.001) -0.002 (0.001) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.003 (0.000) 0.003 (0.000) 0.003 (0.000) 0.003 (0.000) #> Log-Normal 0.002 (0.000) 0.002 (0.000) 0.002 (0.000) 0.002 (0.000) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.950 (0.007) 0.949 (0.007) 0.951 (0.007) 0.950 (0.007) #> Log-Normal 0.941 (0.007) 0.942 (0.007) 0.943 (0.007) 0.943 (0.007) # Printing confidence intervals: print(sms, digits = 3, mcse = FALSE) #> Values are: #> \tPoint Estimate (95% Confidence Interval based on Monte Carlo Standard Errors) #> #> #> Parameter: fv #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal #> Gamma -0.012 (-0.021, -0.003) 0.230 (0.215, 0.245) #> Log-Normal -0.106 (-0.115, -0.098) -0.017 (-0.027, -0.008) #> RP(P), Gamma RP(P), Log-Normal #> -0.018 (-0.027, -0.009) 0.235 (0.220, 0.250) #> -0.107 (-0.115, -0.098) -0.015 (-0.025, -0.006) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma 0.020 (0.018, 0.022) 0.111 (0.100, 0.121) 0.020 (0.018, 0.021) #> Log-Normal 0.029 (0.027, 0.031) 0.024 (0.022, 0.027) 0.028 (0.026, 0.030) #> RP(P), Log-Normal #> 0.114 (0.103, 0.126) #> 0.025 (0.023, 0.027) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma 0.920 (0.903, 0.937) 0.922 (0.905, 0.939) 0.930 (0.914, 0.946) #> Log-Normal 0.750 (0.723, 0.778) 0.902 (0.884, 0.920) 0.768 (0.742, 0.794) #> RP(P), Log-Normal #> 0.903 (0.885, 0.921) #> 0.928 (0.912, 0.944) #> #> -------------------------------------------------------------------------------- #> #> Parameter: trt #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal #> Gamma -0.001 (-0.004, 0.003) -0.001 (-0.004, 0.002) #> Log-Normal -0.001 (-0.004, 0.002) -0.001 (-0.004, 0.002) #> RP(P), Gamma RP(P), Log-Normal #> -0.000 (-0.003, 0.003) -0.002 (-0.005, 0.002) #> -0.001 (-0.004, 0.002) -0.002 (-0.005, 0.001) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma 0.003 (0.002, 0.003) 0.003 (0.002, 0.003) 0.003 (0.002, 0.003) #> Log-Normal 0.002 (0.002, 0.002) 0.002 (0.002, 0.002) 0.002 (0.002, 0.002) #> RP(P), Log-Normal #> 0.003 (0.002, 0.003) #> 0.002 (0.002, 0.002) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma 0.950 (0.936, 0.964) 0.949 (0.935, 0.963) 0.951 (0.937, 0.964) #> Log-Normal 0.941 (0.926, 0.956) 0.942 (0.928, 0.956) 0.943 (0.928, 0.957) #> RP(P), Log-Normal #> 0.950 (0.936, 0.964) #> 0.943 (0.929, 0.957) # Printing values only: print(sms, mcse = NULL) #> Values are: #> \tPoint Estimate #> #> #> Parameter: fv #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0124 0.2299 -0.0179 0.2347 #> Log-Normal -0.1064 -0.0175 -0.1066 -0.0152 #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0203 0.1107 0.0195 0.1145 #> Log-Normal 0.0287 0.0244 0.0284 0.0248 #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9201 0.9220 0.9300 0.9030 #> Log-Normal 0.7503 0.9020 0.7683 0.9280 #> #> -------------------------------------------------------------------------------- #> #> Parameter: trt #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0006 -0.0013 -0.0003 -0.0015 #> Log-Normal -0.0006 -0.0014 -0.0006 -0.0016 #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0026 0.0026 0.0026 0.0026 #> Log-Normal 0.0022 0.0022 0.0022 0.0022 #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9500 0.9490 0.9506 0.9500 #> Log-Normal 0.9410 0.9420 0.9428 0.9430"},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"print.summary.simsum — print.summary.simsum","title":"print.summary.simsum — print.summary.simsum","text":"Print method summary.simsum objects","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"print.summary.simsum — print.summary.simsum","text":"","code":"# S3 method for summary.simsum print(x, digits = 4, mcse = TRUE, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"print.summary.simsum — print.summary.simsum","text":"x object class summary.simsum. digits Number significant digits used printing. Defaults 4. mcse Monte Carlo standard errors reported? mcse = FALSE, confidence intervals based Monte Carlo standard errors reported instead, see summary.simsum(). NULL value passed, point estimates printed regardless whether Monte Carlo standard errors computed . Defaults TRUE. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/print.summary.simsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"print.summary.simsum — print.summary.simsum","text":"","code":"data(\"MIsim\") x <- simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\" ) #> 'ref' method was not specified, CC set as the reference xs <- summary(x) xs #> Values are: #> \tPoint Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 (0.0048) 0.0009 (0.0042) -0.0012 (0.0043) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 (0.0096) 0.0018 (0.0083) -0.0024 (0.0085) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 (0.0034) 0.1320 (0.0030) 0.1344 (0.0030) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000) 31.0463 (3.9375) 26.3682 (3.8424) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 (0.0011) 0.0174 (0.0009) 0.0181 (0.0009) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 (0.0005) 0.1349 (0.0006) 0.1338 (0.0006) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 (2.2055) 2.2233 (2.3323) -0.4412 (2.2695) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 (0.0073) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 (0.0075) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 (0.0071) 0.9690 (0.0055) 0.9630 (0.0060) # Printing less significant digits: print(xs, digits = 2) #> Values are: #> \tPoint Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.52 0.50 0.50 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.51 0.50 0.49 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.02 0.02 0.02 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.02 0.02 0.02 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.02 (0.00) 0.00 (0.00) -0.00 (0.00) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.03 (0.01) 0.00 (0.01) -0.00 (0.01) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.15 (0.00) 0.13 (0.00) 0.13 (0.00) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.00 (0.00) 31.05 (3.94) 26.37 (3.84) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.15 (0.00) 0.13 (0.00) 0.13 (0.00) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.66 (2.21) 2.22 (2.33) -0.44 (2.27) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.94 (0.01) 0.95 (0.01) 0.94 (0.01) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.94 (0.01) 0.95 (0.01) 0.94 (0.01) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.95 (0.01) 0.97 (0.01) 0.96 (0.01) # Printing confidence intervals: print(xs, mcse = FALSE) #> Values are: #> \tPoint Estimate (95% Confidence Interval based on Monte Carlo Standard Errors) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 (0.0074, 0.0261) 0.0009 (-0.0073, 0.0091) -0.0012 (-0.0095, 0.0071) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 (0.0148, 0.0523) 0.0018 (-0.0145, 0.0182) -0.0024 (-0.0190, 0.0143) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 (0.1445, 0.1577) 0.1320 (0.1262, 0.1378) 0.1344 (0.1285, 0.1403) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000, 0.0000) 31.0463 (23.3290, 38.7636) 26.3682 (18.8372, 33.8991) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 (0.0209, 0.0253) 0.0174 (0.0157, 0.0191) 0.0181 (0.0163, 0.0198) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 (0.1461, 0.1481) 0.1349 (0.1338, 0.1361) 0.1338 (0.1327, 0.1350) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 (-6.9820, 1.6633) 2.2233 (-2.3480, 6.7946) -0.4412 (-4.8894, 4.0070) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 (0.9286, 0.9574) 0.9490 (0.9354, 0.9626) 0.9430 (0.9286, 0.9574) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 (0.9253, 0.9547) 0.9490 (0.9354, 0.9626) 0.9430 (0.9286, 0.9574) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 (0.9320, 0.9600) 0.9690 (0.9583, 0.9797) 0.9630 (0.9513, 0.9747) # Printing values only: print(xs, mcse = NULL) #> Values are: #> \tPoint Estimate #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 0.0009 -0.0012 #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 0.0018 -0.0024 #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 0.1320 0.1344 #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 31.0463 26.3682 #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 0.0174 0.0181 #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 0.1349 0.1338 #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 2.2233 -0.4412 #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 0.9490 0.9430 #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 0.9490 0.9430 #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 0.9690 0.9630"},{"path":"https://ellessenne.github.io/rsimsum/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. generics tidy","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/relhaz.html","id":null,"dir":"Reference","previous_headings":"","what":"Example of a simulation study on survival modelling — relhaz","title":"Example of a simulation study on survival modelling — relhaz","text":"dataset simulation study assessing impact misspecifying baseline hazard survival models regression coefficients. One thousand datasets simulated, containing binary treatment variable log-hazard ratio -0.50. Survival data simulated two different sample sizes, 50 250 individuals, two different baseline hazard functions, exponential Weibull. Consequently, Cox model (Cox, 1972), fully parametric exponential model, Royston-Parmar (Royston Parmar, 2002) model two degrees freedom fit simulated dataset. See vignette(\"B-relhaz\", package = \"rsimsum\") information.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/relhaz.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example of a simulation study on survival modelling — relhaz","text":"","code":"relhaz"},{"path":"https://ellessenne.github.io/rsimsum/reference/relhaz.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example of a simulation study on survival modelling — relhaz","text":"data frame 1,200 rows 6 variables: dataset Simulated dataset number. n Sample size simulate dataset. baseline Baseline hazard function simulated dataset. model Method used (Cox, Exp, RP(2)). theta Point estimate log-hazard ratio. se Standard error point estimate.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/relhaz.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Example of a simulation study on survival modelling — relhaz","text":"Cox D.R. 1972. Regression models life-tables. Journal Royal Statistical Society, Series B (Methodological) 34(2):187-220. doi:10.1007/978-1-4612-4380-9_37 Royston, P. Parmar, M.K. 2002. Flexible parametric proportional-hazards proportional-odds models censored survival data, application prognostic modelling estimation treatment effects. Statistics Medicine 21(15):2175-2197 doi:10.1002/sim.1203","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/relhaz.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Example of a simulation study on survival modelling — relhaz","text":"","code":"data(\"relhaz\", package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/reference/rsimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"Analysis of Simulation Studies Including Monte Carlo Error — rsimsum","title":"Analysis of Simulation Studies Including Monte Carlo Error — rsimsum","text":"Summarise results simulation studies compute Monte Carlo standard errors commonly used summary statistics. package modelled 'simsum' user-written command 'Stata' (See White .R., 2010 https://www.stata-journal.com/article.html?article=st0200).","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/rsimsum.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Analysis of Simulation Studies Including Monte Carlo Error — rsimsum","text":"Alessandro Gasparini (alessandro.gasparini@ki.se)","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"Analyses of simulation studies including Monte Carlo error — simsum","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"simsum() computes performance measures simulation studies simulated data set yields point estimates one analysis methods. Bias, relative bias, empirical standard error precision relative reference method can computed method. , addition, model-based standard errors available simsum() can compute average model-based standard error, relative error model-based standard error, coverage nominal confidence intervals, coverage assumption bias (bias-eliminated coverage), power reject null hypothesis. Monte Carlo errors available estimated quantities.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"","code":"simsum( data, estvarname, se = NULL, true = NULL, methodvar = NULL, ref = NULL, by = NULL, ci.limits = NULL, df = NULL, dropbig = FALSE, x = FALSE, control = list() )"},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"data data.frame variable names interpreted. tidy format, e.g. variable forms column observation forms row. estvarname name variable containing point estimates. Note column names forbidden: listed Details section. se name variable containing standard errors point estimates. Note column names forbidden: listed Details section. true true value parameter; used calculations bias, relative bias, coverage, mean squared error required whenever performance measures requested. true can numeric value string identifies column data. former setting, simsum assume value replications; conversely, replication use distinct value true identified row data. See vignette(\"E-custom-inputs\", package = \"rsimsum\") details. Note column names forbidden: listed Details section. methodvar name variable containing methods compare. instance, methods models compared within simulation study. Can NULL. vector column names passed simsum(), columns combined single column named :methodvar using base::interaction() function computing performance measures. Note column names forbidden: listed Details section. ref Specifies reference method relative precision calculated. useful methodvar specified. vector variable names compute performance measures list factors. Factors listed (potentially several) data-generating mechanisms used simulate data different scenarios (e.g. sample size, true distribution variable, etc.). Can NULL. Note column names forbidden: listed Details section. ci.limits Can used specify limits (lower upper) confidence intervals used calculate coverage bias-eliminated coverage. Useful non-Wald type estimators (e.g. bootstrap). Defaults NULL, Wald-type confidence intervals based provided SEs calculated coverage; otherwise, can numeric vector (fixed confidence intervals) vector strings identify columns data replication-specific lower upper limits. See vignette(\"E-custom-inputs\", package = \"rsimsum\") details. Note column names forbidden: listed Details section. df Can used specify column containing replication-specific number degrees freedom used calculate confidence intervals coverage (bias-eliminated coverage) assuming t-distributed critical values (rather normal theory intervals). See vignette(\"E-custom-inputs\", package = \"rsimsum\") details. Note column names forbidden: listed Details section. dropbig Specifies point estimates standard errors beyond maximum acceptable values dropped. Defaults FALSE. x Set TRUE include data argument used calculate summary statistics (.e. pre-processing input dataset e.g. removing values deemed large via dropbig argument) slot. Calling simsum x = TRUE required produce zipper plots. downside size returned object increases considerably, therefore set FALSE default. control list parameters control behaviour simsum. Possible values : mcse, whether calculate Monte Carlo standard errors. Defaults TRUE; level, significance level used coverage, bias-eliminated coverage, power. Defaults 0.95; power_df, whether use robust critical values t distribution power_df degrees freedom calculating power. Defaults NULL, case Gaussian distribution used; na.rm, whether remove point estimates standard errors either () missing. Defaults TRUE; char.sep, character utilised splitting input dataset data. Generally, changed; dropbig.max, specifies maximum acceptable absolute value point estimates, standardisation. Defaults 10; dropbig.semax, specifies maximum acceptable absolute value standard error, standardisation. Defaults 100 dropbig.robust, specifies whether use robust standardisation (using median inter-quartile range) rather normal standardisation (using mean standard deviation). Defaults TRUE, case robust standardisation used dropbig.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"object class simsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"following names allowed column data passed simsum(): stat, est, mcse, lower, upper, :methodvar, :true.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"White, .R. 2010. simsum: Analyses simulation studies including Monte Carlo error. Stata Journal 10(3): 369-385. https://www.stata-journal.com/article.html?article=st0200 Morris, T.P., White, .R. Crowther, M.J. 2019. Using simulation studies evaluate statistical methods. Statistics Medicine, doi:10.1002/sim.8086 Gasparini, . 2018. rsimsum: Summarise results Monte Carlo simulation studies. Journal Open Source Software 3(26):739, doi:10.21105/joss.00739","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/simsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Analyses of simulation studies including Monte Carlo error — simsum","text":"","code":"data(\"MIsim\", package = \"rsimsum\") s <- simsum(data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\", ref = \"CC\") # If 'ref' is not specified, the reference method is inferred s <- simsum(data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\") #> 'ref' method was not specified, CC set as the reference"},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.multisimsum.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarising multisimsum objects — summary.multisimsum","title":"Summarising multisimsum objects — summary.multisimsum","text":"summary() method objects class multisimsum returns confidence intervals performance measures based Monte Carlo standard errors.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.multisimsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarising multisimsum objects — summary.multisimsum","text":"","code":"# S3 method for multisimsum summary(object, ci_level = 0.95, df = NULL, stats = NULL, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.multisimsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarising multisimsum objects — summary.multisimsum","text":"object object class multisimsum. ci_level Significance level confidence intervals based Monte Carlo standard errors. Ignored multisimsum object control parameter mcse = FALSE passed. df Degrees freedom t distribution used calculate confidence intervals based Monte Carlo standard errors. NULL (default), quantiles Normal distribution used instead. stats Summary statistics include; can scalar value vector (multiple summary statistics ). Possible choices : nsim, number replications non-missing point estimates standard error. thetamean, average point estimate. thetamedian, median point estimate. se2mean, average standard error. se2median, median standard error. bias, bias point estimate. rbias, relative (true value) bias point estimate. empse, empirical standard error. mse, mean squared error. relprec, percentage gain precision relative reference method. modelse, model-based standard error. relerror, relative percentage error standard error. cover, coverage nominal level\\ becover, bias corrected coverage nominal level\\ power, power (1 - level)\\ Defaults NULL, case possible summary statistics included. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.multisimsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarising multisimsum objects — summary.multisimsum","text":"object class summary.multisimsum.","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.multisimsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summarising multisimsum objects — summary.multisimsum","text":"","code":"data(frailty) ms <- multisimsum( data = frailty, par = \"par\", true = c( trt = -0.50, fv = 0.75 ), estvarname = \"b\", se = \"se\", methodvar = \"model\", by = \"fv_dist\" ) #> 'ref' method was not specified, Cox, Gamma set as the reference sms <- summary(ms) sms #> Values are: #> \tPoint Estimate (Monte Carlo Standard Error) #> #> #> Parameter: fv #> #> Non-missing point estimates/standard errors: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 976 1000 971 1000 #> Log-Normal 957 1000 997 1000 #> #> Average point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.7376 0.9799 0.7321 0.9847 #> Log-Normal 0.6436 0.7325 0.6434 0.7348 #> #> Median point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.7271 0.9566 0.7225 0.9597 #> Log-Normal 0.6365 0.7182 0.6324 0.7199 #> #> Average variance: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0203 0.0600 0.0202 0.0498 #> Log-Normal 0.0156 0.0230 0.0158 0.0254 #> #> Median variance: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0193 0.0483 0.0191 0.0442 #> Log-Normal 0.0149 0.0206 0.0149 0.0235 #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma -0.0124 (0.0045) 0.2299 (0.0076) -0.0179 (0.0044) #> Log-Normal -0.1064 (0.0043) -0.0175 (0.0049) -0.1066 (0.0041) #> RP(P), Log-Normal #> 0.2347 (0.0077) #> -0.0152 (0.0050) #> #> Relative bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.0165 (NA) 0.3066 (0.0101) -0.0239 (NA) 0.3130 (0.0103) #> Log-Normal -0.1419 (NA) -0.0233 (0.0066) -0.1421 (NA) -0.0203 (0.0066) #> #> Empirical standard error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.1421 (0.0032) 0.2406 (0.0054) 0.1387 (0.0031) 0.2438 (0.0055) #> Log-Normal 0.1320 (0.0030) 0.1554 (0.0035) 0.1307 (0.0029) 0.1570 (0.0035) #> #> % gain in precision relative to method Cox, Gamma: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0000 (0.0000) -65.1290 (0.6149) 5.0048 (0.0507) -66.0342 (0.5911) #> Log-Normal 0.0000 (0.0000) -27.8283 (1.5037) 2.0492 (0.0466) -29.3058 (1.4591) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0203 (0.0010) 0.1107 (0.0055) 0.0195 (0.0009) 0.1145 (0.0057) #> Log-Normal 0.0287 (0.0010) 0.0244 (0.0011) 0.0284 (0.0010) 0.0248 (0.0012) #> #> Model-based standard error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.1426 (0.0008) 0.2449 (0.0027) 0.1420 (0.0008) 0.2232 (0.0019) #> Log-Normal 0.1249 (0.0008) 0.1517 (0.0013) 0.1258 (0.0007) 0.1594 (0.0011) #> #> Relative % error in standard error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma 0.3574 (2.3463) 1.7896 (2.5449) 2.3922 (2.3950) #> Log-Normal -5.3912 (2.2452) -2.3382 (2.3301) -3.7112 (2.2300) #> RP(P), Log-Normal #> -8.4531 (2.1890) #> 1.5422 (2.3713) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9201 (0.0087) 0.9220 (0.0085) 0.9300 (0.0082) 0.9030 (0.0094) #> Log-Normal 0.7503 (0.0140) 0.9020 (0.0094) 0.7683 (0.0134) 0.9280 (0.0082) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9334 (0.0080) 0.8980 (0.0096) 0.9434 (0.0074) 0.8930 (0.0098) #> Log-Normal 0.9164 (0.0089) 0.9130 (0.0089) 0.9308 (0.0080) 0.9360 (0.0077) #> #> Power of 5% level test: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) #> Log-Normal 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) #> #> -------------------------------------------------------------------------------- #> #> Parameter: trt #> #> Non-missing point estimates/standard errors: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 1000 1000 971 1000 #> Log-Normal 1000 1000 997 1000 #> #> Average point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.5006 -0.5013 -0.5003 -0.5015 #> Log-Normal -0.5006 -0.5014 -0.5006 -0.5016 #> #> Median point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma -0.5011 -0.5021 -0.5010 -0.5025 #> Log-Normal -0.5014 -0.5021 -0.5014 -0.5022 #> #> Average variance: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0026 0.0026 0.0026 0.0026 #> Log-Normal 0.0023 0.0023 0.0023 0.0023 #> #> Median variance: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0026 0.0026 0.0026 0.0026 #> Log-Normal 0.0022 0.0022 0.0022 0.0022 #> #> Bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma -0.0006 (0.0016) -0.0013 (0.0016) -0.0003 (0.0016) #> Log-Normal -0.0006 (0.0015) -0.0014 (0.0015) -0.0006 (0.0015) #> RP(P), Log-Normal #> -0.0015 (0.0016) #> -0.0016 (0.0015) #> #> Relative bias in point estimate: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0011 (0.0032) 0.0027 (0.0032) 0.0006 (NA) 0.0031 (0.0032) #> Log-Normal 0.0012 (0.0030) 0.0028 (0.0030) 0.0013 (NA) 0.0032 (0.0030) #> #> Empirical standard error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0508 (0.0011) 0.0509 (0.0011) 0.0506 (0.0011) 0.0509 (0.0011) #> Log-Normal 0.0474 (0.0011) 0.0474 (0.0011) 0.0473 (0.0011) 0.0474 (0.0011) #> #> % gain in precision relative to method Cox, Gamma: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0000 (0.0000) -0.4457 (0.1133) 0.4394 (0.0845) -0.5782 (0.1641) #> Log-Normal 0.0000 (0.0000) -0.1417 (0.1367) 0.0918 (0.0853) -0.2078 (0.1589) #> #> Mean squared error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0026 (0.0001) 0.0026 (0.0001) 0.0026 (0.0001) 0.0026 (0.0001) #> Log-Normal 0.0022 (0.0001) 0.0022 (0.0001) 0.0022 (0.0001) 0.0022 (0.0001) #> #> Model-based standard error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.0506 (0.0000) 0.0507 (0.0000) 0.0506 (0.0000) 0.0507 (0.0000) #> Log-Normal 0.0475 (0.0000) 0.0475 (0.0000) 0.0475 (0.0000) 0.0475 (0.0000) #> #> Relative % error in standard error: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma #> Gamma -0.2017 (2.2346) -0.3890 (2.2304) -0.0544 (2.2710) #> Log-Normal 0.2507 (2.2438) 0.1815 (2.2423) 0.3319 (2.2490) #> RP(P), Log-Normal #> -0.4330 (2.2294) #> 0.2101 (2.2429) #> #> Coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9500 (0.0069) 0.9490 (0.0070) 0.9506 (0.0070) 0.9500 (0.0069) #> Log-Normal 0.9410 (0.0075) 0.9420 (0.0074) 0.9428 (0.0074) 0.9430 (0.0073) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 0.9500 (0.0069) 0.9500 (0.0069) 0.9506 (0.0070) 0.9490 (0.0070) #> Log-Normal 0.9420 (0.0074) 0.9400 (0.0075) 0.9428 (0.0074) 0.9410 (0.0075) #> #> Power of 5% level test: #> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal #> Gamma 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) #> Log-Normal 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)"},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.simsum.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarising simsum objects — summary.simsum","title":"Summarising simsum objects — summary.simsum","text":"summary() method objects class simsum returns confidence intervals performance measures based Monte Carlo standard errors.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.simsum.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarising simsum objects — summary.simsum","text":"","code":"# S3 method for simsum summary(object, ci_level = 0.95, df = NULL, stats = NULL, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.simsum.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarising simsum objects — summary.simsum","text":"object object class simsum. ci_level Significance level confidence intervals based Monte Carlo standard errors. Ignored simsum object control parameter mcse = FALSE passed. df Degrees freedom t distribution used calculate confidence intervals based Monte Carlo standard errors. NULL (default), quantiles Normal distribution used instead. However, using Z-based t-based confidence intervals valid summary statistics bias coverage. Confidence intervals quantities may appropriate, therefore usage recommended. stats Summary statistics include; can scalar value vector (multiple summary statistics ). Possible choices : nsim, number replications non-missing point estimates standard error. thetamean, average point estimate. thetamedian, median point estimate. se2mean, average variance. se2median, median variance. bias, bias point estimate. rbias, relative (true value) bias point estimate. empse, empirical standard error. mse, mean squared error. relprec, percentage gain precision relative reference method. modelse, model-based standard error. relerror, relative percentage error standard error. cover, coverage nominal level\\ becover, bias corrected coverage nominal level\\ power, power (1 - level)\\ Defaults NULL, case possible summary statistics included. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.simsum.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarising simsum objects — summary.simsum","text":"object class summary.simsum.","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/reference/summary.simsum.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summarising simsum objects — summary.simsum","text":"","code":"data(\"MIsim\") object <- simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\" ) #> 'ref' method was not specified, CC set as the reference xs <- summary(object) xs #> Values are: #> \tPoint Estimate (Monte Carlo Standard Error) #> #> Non-missing point estimates/standard errors: #> CC MI_LOGT MI_T #> 1000 1000 1000 #> #> Average point estimate: #> CC MI_LOGT MI_T #> 0.5168 0.5009 0.4988 #> #> Median point estimate: #> CC MI_LOGT MI_T #> 0.5070 0.4969 0.4939 #> #> Average variance: #> CC MI_LOGT MI_T #> 0.0216 0.0182 0.0179 #> #> Median variance: #> CC MI_LOGT MI_T #> 0.0211 0.0172 0.0169 #> #> Bias in point estimate: #> CC MI_LOGT MI_T #> 0.0168 (0.0048) 0.0009 (0.0042) -0.0012 (0.0043) #> #> Relative bias in point estimate: #> CC MI_LOGT MI_T #> 0.0335 (0.0096) 0.0018 (0.0083) -0.0024 (0.0085) #> #> Empirical standard error: #> CC MI_LOGT MI_T #> 0.1511 (0.0034) 0.1320 (0.0030) 0.1344 (0.0030) #> #> % gain in precision relative to method CC: #> CC MI_LOGT MI_T #> 0.0000 (0.0000) 31.0463 (3.9375) 26.3682 (3.8424) #> #> Mean squared error: #> CC MI_LOGT MI_T #> 0.0231 (0.0011) 0.0174 (0.0009) 0.0181 (0.0009) #> #> Model-based standard error: #> CC MI_LOGT MI_T #> 0.1471 (0.0005) 0.1349 (0.0006) 0.1338 (0.0006) #> #> Relative % error in standard error: #> CC MI_LOGT MI_T #> -2.6594 (2.2055) 2.2233 (2.3323) -0.4412 (2.2695) #> #> Coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9430 (0.0073) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Bias-eliminated coverage of nominal 95% confidence interval: #> CC MI_LOGT MI_T #> 0.9400 (0.0075) 0.9490 (0.0070) 0.9430 (0.0073) #> #> Power of 5% level test: #> CC MI_LOGT MI_T #> 0.9460 (0.0071) 0.9690 (0.0055) 0.9630 (0.0060)"},{"path":"https://ellessenne.github.io/rsimsum/reference/tidy.html","id":null,"dir":"Reference","previous_headings":"","what":"Turn an object into a tidy dataset — tidy.simsum","title":"Turn an object into a tidy dataset — tidy.simsum","text":"Extract tidy dataset results object class simsum, summary.simsum, multisimsum, summary.multisimsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/tidy.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Turn an object into a tidy dataset — tidy.simsum","text":"","code":"# S3 method for simsum tidy(x, stats = NULL, ...) # S3 method for summary.simsum tidy(x, stats = NULL, ...) # S3 method for multisimsum tidy(x, stats = NULL, ...) # S3 method for summary.multisimsum tidy(x, stats = NULL, ...)"},{"path":"https://ellessenne.github.io/rsimsum/reference/tidy.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Turn an object into a tidy dataset — tidy.simsum","text":"x object class simsum. stats Summary statistics include; can scalar value vector. Possible choices : nsim, number replications non-missing point estimates standard error. thetamean, average point estimate. thetamedian, median point estimate. se2mean, average standard error. se2median, median standard error. bias, bias point estimate. rbias, relative (true value) bias point estimate. empse, empirical standard error. mse, mean squared error. relprec, percentage gain precision relative reference method. modelse, model-based standard error. relerror, relative percentage error standard error. cover, coverage nominal level\\ becover, bias-eliminated coverage nominal level\\ power, power (1 - level)\\ Defaults NULL, case summary statistics returned. ... Ignored.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/tidy.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Turn an object into a tidy dataset — tidy.simsum","text":"data.frame containing summary statistics simulation study.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/tidy.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Turn an object into a tidy dataset — tidy.simsum","text":"","code":"data(MIsim) x <- simsum( data = MIsim, estvarname = \"b\", true = 0.5, se = \"se\", methodvar = \"method\" ) #> 'ref' method was not specified, CC set as the reference tidy(x) #> stat est mcse method #> 1 nsim 1.000000e+03 NA CC #> 2 thetamean 5.167662e-01 NA CC #> 3 thetamedian 5.069935e-01 NA CC #> 4 se2mean 2.163731e-02 NA CC #> 5 se2median 2.114245e-02 NA CC #> 6 bias 1.676616e-02 0.0047786757 CC #> 7 rbias 3.353232e-02 0.0095573514 CC #> 8 empse 1.511150e-01 0.0033807248 CC #> 9 mse 2.309401e-02 0.0011338389 CC #> 10 relprec 0.000000e+00 0.0000000000 CC #> 11 modelse 1.470963e-01 0.0005274099 CC #> 12 relerror -2.659384e+00 2.2054817330 CC #> 13 cover 9.430000e-01 0.0073315073 CC #> 14 becover 9.400000e-01 0.0075099933 CC #> 15 power 9.460000e-01 0.0071473072 CC #> 16 nsim 1.000000e+03 NA MI_LOGT #> 17 thetamean 5.009231e-01 NA MI_LOGT #> 18 thetamedian 4.969223e-01 NA MI_LOGT #> 19 se2mean 1.820915e-02 NA MI_LOGT #> 20 se2median 1.721574e-02 NA MI_LOGT #> 21 bias 9.230987e-04 0.0041744101 MI_LOGT #> 22 rbias 1.846197e-03 0.0083488201 MI_LOGT #> 23 empse 1.320064e-01 0.0029532306 MI_LOGT #> 24 mse 1.740913e-02 0.0008812805 MI_LOGT #> 25 relprec 3.104634e+01 3.9374726448 MI_LOGT #> 26 modelse 1.349413e-01 0.0006046041 MI_LOGT #> 27 relerror 2.223259e+00 2.3323382138 MI_LOGT #> 28 cover 9.490000e-01 0.0069569390 MI_LOGT #> 29 becover 9.490000e-01 0.0069569390 MI_LOGT #> 30 power 9.690000e-01 0.0054807846 MI_LOGT #> 31 nsim 1.000000e+03 NA MI_T #> 32 thetamean 4.988092e-01 NA MI_T #> 33 thetamedian 4.939111e-01 NA MI_T #> 34 se2mean 1.791169e-02 NA MI_T #> 35 se2median 1.693191e-02 NA MI_T #> 36 bias -1.190835e-03 0.0042509767 MI_T #> 37 rbias -2.381670e-03 0.0085019534 MI_T #> 38 empse 1.344277e-01 0.0030073985 MI_T #> 39 mse 1.805415e-02 0.0009112249 MI_T #> 40 relprec 2.636816e+01 3.8423791135 MI_T #> 41 modelse 1.338346e-01 0.0005856362 MI_T #> 42 relerror -4.412233e-01 2.2695215740 MI_T #> 43 cover 9.430000e-01 0.0073315073 MI_T #> 44 becover 9.430000e-01 0.0073315073 MI_T #> 45 power 9.630000e-01 0.0059691708 MI_T # Extracting only bias and coverage: tidy(x, stats = c(\"bias\", \"cover\")) #> stat est mcse method #> 1 bias 0.0167661608 0.004778676 CC #> 2 cover 0.9430000000 0.007331507 CC #> 3 bias 0.0009230987 0.004174410 MI_LOGT #> 4 cover 0.9490000000 0.006956939 MI_LOGT #> 5 bias -0.0011908351 0.004250977 MI_T #> 6 cover 0.9430000000 0.007331507 MI_T xs <- summary(x) tidy(xs) #> stat est mcse method lower upper #> 1 nsim 1.000000e+03 NA CC NA NA #> 2 thetamean 5.167662e-01 NA CC NA NA #> 3 thetamedian 5.069935e-01 NA CC NA NA #> 4 se2mean 2.163731e-02 NA CC NA NA #> 5 se2median 2.114245e-02 NA CC NA NA #> 6 bias 1.676616e-02 0.0047786757 CC 0.007400129 0.026132193 #> 7 rbias 3.353232e-02 0.0095573514 CC 0.014800257 0.052264386 #> 8 empse 1.511150e-01 0.0033807248 CC 0.144488895 0.157741093 #> 9 mse 2.309401e-02 0.0011338389 CC 0.020871727 0.025316293 #> 10 relprec 0.000000e+00 0.0000000000 CC 0.000000000 0.000000000 #> 11 modelse 1.470963e-01 0.0005274099 CC 0.146062561 0.148129970 #> 12 relerror -2.659384e+00 2.2054817330 CC -6.982048962 1.663280569 #> 13 cover 9.430000e-01 0.0073315073 CC 0.928630510 0.957369490 #> 14 becover 9.400000e-01 0.0075099933 CC 0.925280684 0.954719316 #> 15 power 9.460000e-01 0.0071473072 CC 0.931991535 0.960008465 #> 16 nsim 1.000000e+03 NA MI_LOGT NA NA #> 17 thetamean 5.009231e-01 NA MI_LOGT NA NA #> 18 thetamedian 4.969223e-01 NA MI_LOGT NA NA #> 19 se2mean 1.820915e-02 NA MI_LOGT NA NA #> 20 se2median 1.721574e-02 NA MI_LOGT NA NA #> 21 bias 9.230987e-04 0.0041744101 MI_LOGT -0.007258595 0.009104792 #> 22 rbias 1.846197e-03 0.0083488201 MI_LOGT -0.014517189 0.018209584 #> 23 empse 1.320064e-01 0.0029532306 MI_LOGT 0.126218211 0.137794663 #> 24 mse 1.740913e-02 0.0008812805 MI_LOGT 0.015681848 0.019136404 #> 25 relprec 3.104634e+01 3.9374726448 MI_LOGT 23.329036439 38.763645587 #> 26 modelse 1.349413e-01 0.0006046041 MI_LOGT 0.133756280 0.136126285 #> 27 relerror 2.223259e+00 2.3323382138 MI_LOGT -2.348039558 6.794558240 #> 28 cover 9.490000e-01 0.0069569390 MI_LOGT 0.935364650 0.962635350 #> 29 becover 9.490000e-01 0.0069569390 MI_LOGT 0.935364650 0.962635350 #> 30 power 9.690000e-01 0.0054807846 MI_LOGT 0.958257860 0.979742140 #> 31 nsim 1.000000e+03 NA MI_T NA NA #> 32 thetamean 4.988092e-01 NA MI_T NA NA #> 33 thetamedian 4.939111e-01 NA MI_T NA NA #> 34 se2mean 1.791169e-02 NA MI_T NA NA #> 35 se2median 1.693191e-02 NA MI_T NA NA #> 36 bias -1.190835e-03 0.0042509767 MI_T -0.009522596 0.007140926 #> 37 rbias -2.381670e-03 0.0085019534 MI_T -0.019045193 0.014281852 #> 38 empse 1.344277e-01 0.0030073985 MI_T 0.128533294 0.140322080 #> 39 mse 1.805415e-02 0.0009112249 MI_T 0.016268182 0.019840118 #> 40 relprec 2.636816e+01 3.8423791135 MI_T 18.837236583 33.899085938 #> 41 modelse 1.338346e-01 0.0005856362 MI_T 0.132686735 0.134982387 #> 42 relerror -4.412233e-01 2.2695215740 MI_T -4.889403808 4.006957286 #> 43 cover 9.430000e-01 0.0073315073 MI_T 0.928630510 0.957369490 #> 44 becover 9.430000e-01 0.0073315073 MI_T 0.928630510 0.957369490 #> 45 power 9.630000e-01 0.0059691708 MI_T 0.951300640 0.974699360"},{"path":"https://ellessenne.github.io/rsimsum/reference/tt.html","id":null,"dir":"Reference","previous_headings":"","what":"Example of a simulation study on the t-test — tt","title":"Example of a simulation study on the t-test — tt","text":"dataset simulation study 4 data-generating mechanisms, useful illustrate custom input confidence intervals calculate coverage probability. simulation study aims compare t-test assuming pooled unpooled variance violation () t-test assumptions: normality data, equality () variance groups. true value difference groups -1.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/tt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example of a simulation study on the t-test — tt","text":"","code":"tt"},{"path":"https://ellessenne.github.io/rsimsum/reference/tt.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example of a simulation study on the t-test — tt","text":"data frame 4,000 rows 8 variables: diff difference mean groups estimated t-test; se Standard error estimated difference; conf.low, conf.high Confidence interval difference mean reported t-test; df number degrees freedom assumed t-test; repno Identifies replication, 1 500; dgm Identifies data-generating mechanism: 1 corresponds normal data equal variance groups, 2 normal data unequal variance, 3 4 skewed data (simulated Gamma distribution) equal unequal variance groups, respectively; method Analysis method: 1 represents t-test pooled variance, 2 represents t-test unpooled variance.","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/tt.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Example of a simulation study on the t-test — tt","text":"details simulation study can found R script used generate dataset, available GitHub: https://github.com/ellessenne/rsimsum/blob/master/data-raw/tt-data.R","code":""},{"path":"https://ellessenne.github.io/rsimsum/reference/tt.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Example of a simulation study on the t-test — tt","text":"","code":"data(\"tt\", package = \"rsimsum\")"},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-development-version","dir":"Changelog","previous_headings":"","what":"rsimsum (development version)","title":"rsimsum (development version)","text":"Fixed issues nested loop plot simulation design fully-factorial (#47, thanks @mikesweeting); Fixed wrong calculations column used true elsewhere (#48, thanks @mikesweeting); Updated columns names confidence intervals tt dataset; Updated documentation regarding column names allowed calling simsum() multisimsum().","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0120","dir":"Changelog","previous_headings":"","what":"rsimsum 0.12.0","title":"rsimsum 0.12.0","text":"new performance measure, relative bias, can now calculated along Monte Carlo error (#41). details formulae introductory vignette, updated accordingly. Fixed issues stat(level), deprecated {ggplot2} 3.4.0 (#44). Fixed error calculation Monte Carlo standard error relative % error ModSE (#45, thanks @LaurenSamuels reporting ). Several improvements package documentation.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0113","dir":"Changelog","previous_headings":"","what":"rsimsum 0.11.3","title":"rsimsum 0.11.3","text":"CRAN release: 2022-08-17 minor release, following changes: Updated hex sticker. Updated maintainer e-mail.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0112","dir":"Changelog","previous_headings":"","what":"rsimsum 0.11.2","title":"rsimsum 0.11.2","text":"CRAN release: 2022-03-22","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-11-2","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.11.2","text":"Fixed issues overlapping/missing intervals zip plots (#40, thanks @ge-li reporting ).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0111","dir":"Changelog","previous_headings":"","what":"rsimsum 0.11.1","title":"rsimsum 0.11.1","text":"CRAN release: 2022-01-04","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-11-1","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.11.1","text":"Fixed conflicts tidy() function {broom} package {broom} {rsimsum} loaded time. lead error kind: Thanks Theodosia Salika reporting . {pkgdown} website documentation updated use Bootstrap 5 ({pkgdown} ≥ 2.0.0). new site can found : https://ellessenne.github.io/rsimsum/ Updated DOI returning HTTP Error 503.","code":"#> Error: No tidy method recognized for this list."},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0110","dir":"Changelog","previous_headings":"","what":"rsimsum 0.11.0","title":"rsimsum 0.11.0","text":"CRAN release: 2021-10-20","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"new-features-0-11-0","dir":"Changelog","previous_headings":"","what":"New features:","title":"rsimsum 0.11.0","text":"print.summary.simsum() now return (invisibly) list section output, e.g. performance measure. useful printing small sections output, e.g. using kable() (thanks @ge-li, see discussion #22): implemented print.summary.multisimsum() well, additional level nesting (parameter).","code":"library(rsimsum) s2 <- simsum(data = relhaz, estvarname = \"theta\", true = -0.50, se = \"se\", methodvar = \"model\", by = c(\"baseline\", \"n\")) out <- print(summary(s2, stats = \"bias\")) library(knitr) kable(out[[1]], caption = names(out)[1], align = \"r\")"},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bux-fixes-0-11-0","dir":"Changelog","previous_headings":"","what":"Bux fixes:","title":"rsimsum 0.11.0","text":"Fixed broken links vignettes (introduced bunch time ago renaming .Rmd files), thanks @remlapmot reporting (#36).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0101","dir":"Changelog","previous_headings":"","what":"rsimsum 0.10.1","title":"rsimsum 0.10.1","text":"CRAN release: 2021-07-05","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-10-1","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.10.1","text":"Even power_df passed control argument, used (regression introduced {rsimsum} 0.9.0). Now fixed, thanks @Kaladani (#33).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-0100","dir":"Changelog","previous_headings":"","what":"rsimsum 0.10.0","title":"rsimsum 0.10.0","text":"CRAN release: 2021-05-21","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"breaking-changes-0-10-0","dir":"Changelog","previous_headings":"","what":"Breaking changes:","title":"rsimsum 0.10.0","text":"get_data() now deprecated favour tidy(); get_data() still works (fully tested), now throws warning fully removed time future.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"new-features-0-10-0","dir":"Changelog","previous_headings":"","what":"New features:","title":"rsimsum 0.10.0","text":"simsum() multisimsum() now accept multiple column inputs identify unique methods (see e.g. #24, #30). Internally, combines unique values column factorially using interaction() function; , methods analysed reported . See vignette(\"E-custom-inputs\", package = \"rsimsum\") examples. Two new datasets, MIsim2 frailty2, now bundled rsimsum test new functionality introduced . correspond MIsim frailty, respectively, difference (single) column identifying methods now split two distinct columns.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-091","dir":"Changelog","previous_headings":"","what":"rsimsum 0.9.1","title":"rsimsum 0.9.1","text":"CRAN release: 2020-09-03","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-9-1","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.9.1","text":"Improved printing simulation studies ‘non-standard’ way passing true values (see e.g. #28 GitHub); Fixed typo introductory vignette; internal housekeeping.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-090","dir":"Changelog","previous_headings":"","what":"rsimsum 0.9.0","title":"rsimsum 0.9.0","text":"CRAN release: 2020-04-15","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"breaking-changes-0-9-0","dir":"Changelog","previous_headings":"","what":"Breaking changes:","title":"rsimsum 0.9.0","text":"control argument df renamed power_df, now affects power calculations .","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"new-features-0-9-0","dir":"Changelog","previous_headings":"","what":"New features:","title":"rsimsum 0.9.0","text":"New df argument, simsum multisimum now accept column data containing number degrees freedom used calculate confidence intervals coverage (bias-eliminated coverage) t critical values (instead normal-theory intervals, default behaviour). Notably, zip plots behave accordingly calculating ranking confidence intervals; Calculations zip plots noticeably faster now; Added simple kable method objects class simsum, summary.simsum, multisimsum, summary.multisimsum ease creation LaTeX/HTML/Markdown/reStructuredText tables.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-9-0","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.9.0","text":"Fixed bug prevented zip plots factors plotted.","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"changes-to-default-behaviour-0-8-1","dir":"Changelog","previous_headings":"","what":"Changes to default behaviour:","title":"rsimsum 0.8.1","text":"autoplot methods now plot number non-missing point estimates/SEs default (stat argument set user). previous default plot bias, might always available anymore since rsimsum 0.8.0.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"improvements-0-8-1","dir":"Changelog","previous_headings":"","what":"Improvements:","title":"rsimsum 0.8.1","text":"Handling plotting edge cases, instance standard errors true values available; Improved multisimsum example vignette custom inputs.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-8-1","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.8.1","text":"Fixed typo vignette formulae (#25, thanks @samperochkin).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-080","dir":"Changelog","previous_headings":"","what":"rsimsum 0.8.0","title":"rsimsum 0.8.0","text":"CRAN release: 2020-02-29","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"improvements-0-8-0","dir":"Changelog","previous_headings":"","what":"Improvements:","title":"rsimsum 0.8.0","text":"Added new argument zoom autoplot methods: now possible zoom top x% zip plot improve readability; Added new example dataset toy simulation study assessing robustness t-test. See ?\"tt\" details; true argument rsimsum multisimsum now accepts string identifies column data. especially useful settings true value varies across replications, e.g. depends characteristics simulated data. See vignette(\"E-custom-inputs\", package = \"rsimsum\") details examples; Analogously, ci.limits argument now accepts vector strings identifies lower upper limits custom-defined confidence intervals columns data. , details included vignette(\"E-custom-inputs\", package = \"rsimsum\"); rsimsum now correctly uses inherits(obj, \"someclass\") instead class(obj) == \"someclass\" (#20); Fixed bugs errors appeared auto-plotting results simulation studies methods compared (#23).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-071","dir":"Changelog","previous_headings":"","what":"rsimsum 0.7.1","title":"rsimsum 0.7.1","text":"autoplot supports two new visualisations: contour plots hexbin plots, either point estimates standard errors. can obtained selecting argument type = \"est_density\", type = \"se_density\", type = \"est_hex\", type = \"se_hex\".","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-070","dir":"Changelog","previous_headings":"","what":"rsimsum 0.7.0","title":"rsimsum 0.7.0","text":"CRAN release: 2019-11-12","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"improvements-0-7-0","dir":"Changelog","previous_headings":"","what":"Improvements:","title":"rsimsum 0.7.0","text":"Passing true value estimand (true argument) longer required; true passed simsum multisimsum, bias, coverage, mean squared error computed; Passing estimated standard errors per replication (se argument) longer required; , average median variances, model-based standard errors, relative error, coverage probability, bias-eliminated coverage probability, power computed.","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-6-2","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.6.2","text":"Fixed bug introduced rsimsum 0.6.1 (average median variances printed).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-061","dir":"Changelog","previous_headings":"","what":"rsimsum 0.6.1","title":"rsimsum 0.6.1","text":"CRAN release: 2019-09-12","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-6-1","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.6.1","text":"Fixed labelling bug zipper plots (thanks @syriop-elisa reporting ); Clarified simsum multisimsum report average (median) estimated variances, standard errors (thanks Ian R. White reporting ).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-060","dir":"Changelog","previous_headings":"","what":"rsimsum 0.6.0","title":"rsimsum 0.6.0","text":"CRAN release: 2019-07-15","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"improvements-0-6-0","dir":"Changelog","previous_headings":"","what":"Improvements:","title":"rsimsum 0.6.0","text":"Implemented fully automated nested loop plots simulation studies several data-generating mechanisms: autoplot(object, type = \"nlp\"); Added data(\"nlp\", package = \"rsimsum\"), dataset simulation study 150 data-generating. particularly useful illustrate nested loop plots; Added new vignette nested loop plots; Improved ordering vignettes.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-6-0","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.6.0","text":"Updated unquoting compatibility rlang 0.4.0; Fixed missing details options documentation autoplot.multisimsum autoplot.summary.multisimsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-052","dir":"Changelog","previous_headings":"","what":"rsimsum 0.5.2","title":"rsimsum 0.5.2","text":"CRAN release: 2019-04-25","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-5-2","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.5.2","text":"Fixed labelling facetting plot types, now defaults ggplot2::label_both ‘’ factors (included).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-051","dir":"Changelog","previous_headings":"","what":"rsimsum 0.5.1","title":"rsimsum 0.5.1","text":"CRAN release: 2019-03-15","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-5-1","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.5.1","text":"Fixed calculations “Relative % increase precision” (thanks Ian R. White reporting ).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-050","dir":"Changelog","previous_headings":"","what":"rsimsum 0.5.0","title":"rsimsum 0.5.0","text":"CRAN release: 2019-02-21","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"improvements-0-5-0","dir":"Changelog","previous_headings":"","what":"Improvements:","title":"rsimsum 0.5.0","text":"Implemented autoplot method multisimsum summary.multisimsum objects; Implemented heat plot types simsum multisimsum objects; autoplot methods pick value true passed simsum, multisimsum inferring target value stats = (thetamean, thetamedian) target = NULL. plain English, true value estimand picked target value plotting mean (median) estimated value; Updated vignettes references; Updated pkgdown website, published https://ellessenne.github.io/rsimsum/; Improved code coverage.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"bug-fixes-0-5-0","dir":"Changelog","previous_headings":"","what":"Bug fixes:","title":"rsimsum 0.5.0","text":"Fixed bug autoplot caused premature slicing arguments, arguments included.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-042","dir":"Changelog","previous_headings":"","what":"rsimsum 0.4.2","title":"rsimsum 0.4.2","text":"Implemented autoplot method simsum summary.simsum objects; calling autoplot summary.simsum objects, confidence intervals based Monte Carlo standard errors included well (sensible). Supported plot types : forest plot estimated summary statistics; lolly plot summary statistics; zip plot coverage probability; scatter plot methods-wise comparison (e.g. X vs Y) point estimates standard errors, per replication; , implemented Bland-Altman type plot; ridgeline plot estimates, standard errors compare distribution estimates, standard errors method. Several options customise behaviour autoplot, see ?autoplot.simsum ?autoplot.summary.simsum details.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-041","dir":"Changelog","previous_headings":"","what":"rsimsum 0.4.1","title":"rsimsum 0.4.1","text":"Fixed bug dropbig related internal function returning standardised values instead actual observed values.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-040","dir":"Changelog","previous_headings":"","what":"rsimsum 0.4.0","title":"rsimsum 0.4.0","text":"rsimsum 0.4.0 large refactoring rsimsum. several improvements breaking changes, outlined .","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"improvements-0-4-0","dir":"Changelog","previous_headings":"","what":"Improvements","title":"rsimsum 0.4.0","text":"rsimsum robust using factor variables (e.g. methodvar factor), ordering preserved defined dataset passed simsum (multisimsum); Confidence intervals based Monte Carlo standard errors can now computed using quantiles t distribution; see help(summary.simsum) details; Added comparison results Stata’s simsum testing purposes - differences negligible, calculations simsum wrong (already reported). differences can attributed calculations (conversions, comparison) different scales.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"breaking-changes-0-4-0","dir":"Changelog","previous_headings":"","what":"Breaking changes","title":"rsimsum 0.4.0","text":"syntax simsum multisimsum slightly changed, arguments removed others moved control list several tuning parameters. Please check updated examples details; dropbig longer S3 method simsum multisimsum objects. Now, dropbig exported function can used identify rows input data.frame dropped simsum (multisimsum); Point estimates standard errors dropped simsum (multisimsum) dropbig = TRUE) longer included returned object; therefore, S3 method miss removed; get_data longer S3 method, still requires object class simsum, summary.simsum, multisimsum, summary.multisimsum passed input; plotting methods removed preparation complete overhaul planned rsimsum 0.5.0.","code":""},{"path":[]},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"breaking-changes-0-3-5","dir":"Changelog","previous_headings":"","what":"Breaking changes","title":"rsimsum 0.3.5","text":"zip method renamed zipper() avoid name collision utils::zip().","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-034","dir":"Changelog","previous_headings":"","what":"rsimsum 0.3.4","title":"rsimsum 0.3.4","text":"Added ability define custom confidence interval limits calculating coverage via ci.limits argument (#6, @MvanSmeden). functionality considered experimental, hence feedback much appreciated; Updated Simulating simulation study vignette therefore relhaz dataset bundled rsimsum.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-033","dir":"Changelog","previous_headings":"","what":"rsimsum 0.3.3","title":"rsimsum 0.3.3","text":"CRAN release: 2018-06-20 rsimsum 0.3.3 focuses improving documentation package. Improvements: * Improved printing confidence intervals summary statistics based Monte Carlo standard errors; * Added description argument get_data method, append column description summary statistics exported; defaults FALSE; * Improved documentation introductory vignette clarify several points (#3, @lebebr01); * Improved plotting vignette document customise plots (#4, @lebebr01). New: * Added CITATION file references paper JOSS.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-032","dir":"Changelog","previous_headings":"","what":"rsimsum 0.3.2","title":"rsimsum 0.3.2","text":"rsimsum 0.3.2 small maintenance release: * Merged pull request #1 @mllg adapting new version checkmate package; * Fixed bug automatic labels bar() forest() selected properly.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-031","dir":"Changelog","previous_headings":"","what":"rsimsum 0.3.1","title":"rsimsum 0.3.1","text":"CRAN release: 2018-04-04 Bug fixes: * bar(), forest(), lolly(), heat() now appropriately pick discrete X (Y) axis scale methods (defined) method variable numeric; * simsum() multisimsum() coerce methodvar variable string format (specified already string); * fixed typos empirical standard errors documentation . Updated code conduct (CONDUCT.md) contributing guidelines (CONTRIBUTING.md). Removed dependency tidyverse package (thanks Mara Averick).","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-030","dir":"Changelog","previous_headings":"","what":"rsimsum 0.3.0","title":"rsimsum 0.3.0","text":"CRAN release: 2018-02-22 Bug fixes: * pattern() now appropriately pick discrete colour scale methods (defined) method variable numeric. New plots supported: * forest(), forest plots; * bar(), bar plots. Changes existing functionality: * par argument lolly.multisimsum now required; provided, plots faceted estimand (well factor); * updated Visualising results rsimsum vignette. Added CONTRIBUTING.md CONDUCT.md.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-020","dir":"Changelog","previous_headings":"","what":"rsimsum 0.2.0","title":"rsimsum 0.2.0","text":"CRAN release: 2018-02-15 Internal housekeeping. Added S3 methods simsum multisimsum objects visualise results: * lolly(), lolly plots; * zip(), zip plots; * heat(), heat plots; * pattern(), scatter plots estimates vs SEs. Added new vignette Visualising results rsimsum introduce -mentioned plots. Added x argument simsum multisimsum include original dataset slot returned object. Added miss function obtaining basic information missingness simulation results. miss methods print get_data.","code":""},{"path":"https://ellessenne.github.io/rsimsum/news/index.html","id":"rsimsum-010","dir":"Changelog","previous_headings":"","what":"rsimsum 0.1.0","title":"rsimsum 0.1.0","text":"CRAN release: 2018-02-05 First submission CRAN. rsimsum can handle: simulation studies single estimand simulation studies multiple estimands simulation studies multiple methods compare simulation studies multiple data-generating mechanisms (e.g. ‘’ factors) Summary statistics can computed : bias, empirical standard error, mean squared error, percentage gain precision relative reference method, model-based standard error, coverage, bias-corrected coverage, power. Monte Carlo standard errors summary statistic can computed well.","code":""}] diff --git a/man/multisimsum.Rd b/man/multisimsum.Rd index 1485a77..c9ac179 100644 --- a/man/multisimsum.Rd +++ b/man/multisimsum.Rd @@ -27,33 +27,40 @@ It has to be in tidy format, e.g. each variable forms a column and each observat \item{par}{The name of the variable containing the methods to compare. Can be \code{NULL}.} -\item{estvarname}{The name of the variable containing the point estimates.} +\item{estvarname}{The name of the variable containing the point estimates. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} -\item{se}{The name of the variable containing the standard errors of the point estimates.} +\item{se}{The name of the variable containing the standard errors of the point estimates. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} \item{true}{The true value of the parameter; this is used in calculations of bias, relative bias, coverage, and mean squared error and is required whenever these performance measures are requested. \code{true} can be a numeric value or a string that identifies a column in \code{data}. In the former setting, \code{simsum} will assume the same value for all replications; conversely, each replication will use a distinct value for \code{true} as identified by each row of \code{data}. -See \code{vignette("E-custom-inputs", package = "rsimsum")} for more details.} +See \code{vignette("E-custom-inputs", package = "rsimsum")} for more details. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} \item{methodvar}{The name of the variable containing the methods to compare. For instance, methods could be the models compared within a simulation study. Can be \code{NULL}. -If a vector of column names is passed to \code{simsum()}, those columns will be combined into a single column named \verb{:methodvar} using the \code{\link[base:interaction]{base::interaction()}} function before computing all performance measures.} +If a vector of column names is passed to \code{simsum()}, those columns will be combined into a single column named \verb{:methodvar} using the \code{\link[base:interaction]{base::interaction()}} function before computing all performance measures. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} \item{ref}{Specifies the reference method against which relative precision will be calculated. Only useful if \code{methodvar} is specified.} \item{by}{A vector of variable names to compute performance measures by a list of factors. Factors listed here are the (potentially several) data-generating mechanisms used to simulate data under different scenarios (e.g. sample size, true distribution of a variable, etc.). -Can be \code{NULL}.} +Can be \code{NULL}. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} \item{ci.limits}{Can be used to specify the limits (lower and upper) of confidence intervals used to calculate coverage and bias-eliminated coverage. Useful for non-Wald type estimators (e.g. bootstrap). Defaults to \code{NULL}, where Wald-type confidence intervals based on the provided SEs are calculated for coverage; otherwise, it can be a numeric vector (for fixed confidence intervals) or a vector of strings that identify columns in \code{data} with replication-specific lower and upper limits. -See \code{vignette("E-custom-inputs", package = "rsimsum")} for more details.} +See \code{vignette("E-custom-inputs", package = "rsimsum")} for more details. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} \item{df}{Can be used to specify that a column containing the replication-specific number of degrees of freedom that will be used to calculate confidence intervals for coverage (and bias-eliminated coverage) assuming t-distributed critical values (rather than normal theory intervals). -See \code{vignette("E-custom-inputs", package = "rsimsum")} for more details.} +See \code{vignette("E-custom-inputs", package = "rsimsum")} for more details. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} \item{dropbig}{Specifies that point estimates or standard errors beyond the maximum acceptable values should be dropped. Defaults to \code{FALSE}.} diff --git a/man/simsum.Rd b/man/simsum.Rd index ac14786..672e582 100644 --- a/man/simsum.Rd +++ b/man/simsum.Rd @@ -23,33 +23,40 @@ simsum( \item{data}{A \code{data.frame} in which variable names are interpreted. It has to be in tidy format, e.g. each variable forms a column and each observation forms a row.} -\item{estvarname}{The name of the variable containing the point estimates.} +\item{estvarname}{The name of the variable containing the point estimates. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} -\item{se}{The name of the variable containing the standard errors of the point estimates.} +\item{se}{The name of the variable containing the standard errors of the point estimates. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} \item{true}{The true value of the parameter; this is used in calculations of bias, relative bias, coverage, and mean squared error and is required whenever these performance measures are requested. \code{true} can be a numeric value or a string that identifies a column in \code{data}. In the former setting, \code{simsum} will assume the same value for all replications; conversely, each replication will use a distinct value for \code{true} as identified by each row of \code{data}. -See \code{vignette("E-custom-inputs", package = "rsimsum")} for more details.} +See \code{vignette("E-custom-inputs", package = "rsimsum")} for more details. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} \item{methodvar}{The name of the variable containing the methods to compare. For instance, methods could be the models compared within a simulation study. Can be \code{NULL}. -If a vector of column names is passed to \code{simsum()}, those columns will be combined into a single column named \verb{:methodvar} using the \code{\link[base:interaction]{base::interaction()}} function before computing all performance measures.} +If a vector of column names is passed to \code{simsum()}, those columns will be combined into a single column named \verb{:methodvar} using the \code{\link[base:interaction]{base::interaction()}} function before computing all performance measures. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} \item{ref}{Specifies the reference method against which relative precision will be calculated. Only useful if \code{methodvar} is specified.} \item{by}{A vector of variable names to compute performance measures by a list of factors. Factors listed here are the (potentially several) data-generating mechanisms used to simulate data under different scenarios (e.g. sample size, true distribution of a variable, etc.). -Can be \code{NULL}.} +Can be \code{NULL}. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} \item{ci.limits}{Can be used to specify the limits (lower and upper) of confidence intervals used to calculate coverage and bias-eliminated coverage. Useful for non-Wald type estimators (e.g. bootstrap). Defaults to \code{NULL}, where Wald-type confidence intervals based on the provided SEs are calculated for coverage; otherwise, it can be a numeric vector (for fixed confidence intervals) or a vector of strings that identify columns in \code{data} with replication-specific lower and upper limits. -See \code{vignette("E-custom-inputs", package = "rsimsum")} for more details.} +See \code{vignette("E-custom-inputs", package = "rsimsum")} for more details. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} \item{df}{Can be used to specify that a column containing the replication-specific number of degrees of freedom that will be used to calculate confidence intervals for coverage (and bias-eliminated coverage) assuming t-distributed critical values (rather than normal theory intervals). -See \code{vignette("E-custom-inputs", package = "rsimsum")} for more details.} +See \code{vignette("E-custom-inputs", package = "rsimsum")} for more details. +Note that some column names are forbidden: these are listed below in the \emph{Details} section.} \item{dropbig}{Specifies that point estimates or standard errors beyond the maximum acceptable values should be dropped. Defaults to \code{FALSE}.} @@ -78,7 +85,7 @@ If, in addition, model-based standard errors are available then \code{simsum()} Monte Carlo errors are available for all estimated quantities. } \details{ -The following names are not allowed for \code{estvarname}, \code{se}, \code{methodvar}, \code{by}: \code{stat}, \code{est}, \code{mcse}, \code{lower}, \code{upper}, \verb{:methodvar}. +The following names are not allowed for any column in \code{data} that is passed to \code{\link[=simsum]{simsum()}}: \code{stat}, \code{est}, \code{mcse}, \code{lower}, \code{upper}, \verb{:methodvar}, \verb{:true}. } \examples{ data("MIsim", package = "rsimsum") diff --git a/man/tt.Rd b/man/tt.Rd index 2dfbd38..009cd29 100644 --- a/man/tt.Rd +++ b/man/tt.Rd @@ -9,7 +9,7 @@ A data frame with 4,000 rows and 8 variables: \itemize{ \item \code{diff} The difference in mean between groups estimated by the t-test; \item \code{se} Standard error of the estimated difference; -\item \code{lower}, \code{upper} Confidence interval for the difference in mean as reported by the t-test; +\item \code{conf.low}, \code{conf.high} Confidence interval for the difference in mean as reported by the t-test; \item \code{df} The number of degrees of freedom assumed by the t-test; \item \code{repno} Identifies each replication, between 1 and 500; \item \code{dgm} Identifies each data-generating mechanism: 1 corresponds to normal data with equal variance between the groups, 2 is normal data with unequal variance, 3 and 4 are skewed data (simulated from a Gamma distribution) with equal and unequal variance between groups, respectively; diff --git a/testing.R b/testing.R index 3240518..57df378 100644 --- a/testing.R +++ b/testing.R @@ -1,34 +1,50 @@ library(tidyverse) devtools::load_all() -data("nlp", package = "rsimsum") - -nlp.subset <- nlp %>% - dplyr::filter(!(ss == 100 & esigma == 2)) -s.nlp.subset <- rsimsum::simsum( - data = nlp.subset, - estvarname = "b", - true = 0, - se = "se", - methodvar = "model", - by = c("baseline", "ss", "esigma") +# #48 +library(rsimsum) +s.nlp.true <- rsimsum::simsum( + data = nlp, estvarname = "b", true = "esigma", se = "se", + methodvar = "model", by = c("baseline", "ss", "esigma") ) -# Okay - -# But this is not okay: -autoplot(s.nlp.subset, stats = "bias", type = "nlp") +autoplot(s.nlp.true, stats = "bias", type = "nlp") +nlp$esigma.copy <- nlp$esigma +s.nlp.true2 <- rsimsum::simsum( + data = nlp, estvarname = "b", true = "esigma.copy", se = "se", + methodvar = "model", by = c("baseline", "ss", "esigma") +) +autoplot(s.nlp.true2, stats = "bias", type = "nlp") -# -data("MIsim", package = "rsimsum") -s <- simsum(data = MIsim, estvarname = "b", true = 0.5, se = "se", methodvar = "method", ref = "CC", x = TRUE) +# #49 +library(dplyr) +devtools::load_all() +data("nlp", package = "rsimsum") +# estvarname: +rsimsum::simsum( + data = rename(nlp, est = b), estvarname = "est", true = 0, se = "se", + methodvar = "model", by = c("baseline", "ss", "esigma") +) +# se: +rsimsum::simsum( + data = rename(nlp, est = se), estvarname = "b", true = 0, se = "est", + methodvar = "model", by = c("baseline", "ss", "esigma") +) +# methodvar: +rsimsum::simsum( + data = rename(nlp, est = model), estvarname = "b", true = 0, se = "se", + methodvar = "est", by = c("baseline", "ss", "esigma") +) +# by: +rsimsum::simsum( + data = rename(nlp, est = ss), estvarname = "b", true = 0, se = "se", + methodvar = "model", by = c("baseline", "est", "esigma") +) -data("frailty", package = "rsimsum") -ms <- multisimsum( - data = frailty, - par = "par", true = c(trt = -0.50, fv = 0.75), - estvarname = "b", se = "se", methodvar = "model", - by = "fv_dist", - x = TRUE +# #48 +devtools::load_all() +library(ggplot2) +s.nlp.true <- rsimsum::simsum( + data = nlp, estvarname = "b", true = "esigma", se = "se", + methodvar = "model", by = c("baseline", "ss", "esigma") ) -ms -autoplot(ms, par = "trt", type = "zip", zip_ci_colours = c("green", "red", "yellow")) +autoplot(s.nlp.true, stats = "bias", type = "nlp") diff --git a/tests/testthat/test-#15.R b/tests/testthat/test-#15.R index d68bbae..95594ad 100644 --- a/tests/testthat/test-#15.R +++ b/tests/testthat/test-#15.R @@ -5,8 +5,8 @@ testthat::test_that("simsum with 'true' as a column returns the same results as data(tt, package = "rsimsum") tt$true <- -1 - s1 <- simsum(data = tt, estvarname = "diff", true = "true", se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm") - s2 <- simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm") + s1 <- simsum(data = tt, estvarname = "diff", true = "true", se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm") + s2 <- simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm") testthat::expect_identical(object = tidy(s1), expected = tidy(s2)) s1 <- simsum(data = tt, estvarname = "diff", true = "true", se = "se", methodvar = "method", by = "dgm") @@ -22,8 +22,8 @@ testthat::test_that("simsum with 'true' as a column returns different results co data(tt, package = "rsimsum") tt$true <- stats::rnorm(n = nrow(tt), mean = -1, sd = 1) - s1 <- simsum(data = tt, estvarname = "diff", true = "true", se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm") - s2 <- simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm") + s1 <- simsum(data = tt, estvarname = "diff", true = "true", se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm") + s2 <- simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm") testthat::expect_false(object = identical(tidy(s1), tidy(s2))) s1 <- simsum(data = tt, estvarname = "diff", true = "true", se = "se", methodvar = "method", by = "dgm") @@ -43,8 +43,8 @@ testthat::test_that("multisimsum with 'true' as a column returns the same result dplyr::mutate(tt, diff = diff + 1, true = true + 1, par = "diff2") ) - m1 <- multisimsum(data = tt, estvarname = "diff", par = "par", true = c(diff1 = -1, diff2 = 0), se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm") - m2 <- multisimsum(data = tt, estvarname = "diff", par = "par", true = "true", se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm") + m1 <- multisimsum(data = tt, estvarname = "diff", par = "par", true = c(diff1 = -1, diff2 = 0), se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm") + m2 <- multisimsum(data = tt, estvarname = "diff", par = "par", true = "true", se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm") testthat::expect_identical(object = tidy(m1), expected = tidy(m2)) }) @@ -56,7 +56,7 @@ testthat::test_that("multisimsum with 'true' as a column returns different resul dplyr::mutate(tt, diff = diff + 1, true = true + 1, par = "diff2") ) - m1 <- multisimsum(data = tt, estvarname = "diff", par = "par", true = c(diff1 = -1, diff2 = 0), se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm") - m2 <- multisimsum(data = tt, estvarname = "diff", par = "par", true = "true", se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm") + m1 <- multisimsum(data = tt, estvarname = "diff", par = "par", true = c(diff1 = -1, diff2 = 0), se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm") + m2 <- multisimsum(data = tt, estvarname = "diff", par = "par", true = "true", se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm") testthat::expect_false(object = identical(tidy(m1), tidy(m2))) }) diff --git a/tests/testthat/test-#26.R b/tests/testthat/test-#26.R index 760edb4..c10f15e 100644 --- a/tests/testthat/test-#26.R +++ b/tests/testthat/test-#26.R @@ -14,14 +14,14 @@ testthat::test_that("expect equivalent values when passing lower, upper (based o data("tt", package = "rsimsum") s6 <- simsum(data = tt, estvarname = "diff", se = "se", df = "df", true = -1) - s7 <- simsum(data = tt, estvarname = "diff", se = "se", ci.limits = c("lower", "upper"), true = -1) + s7 <- simsum(data = tt, estvarname = "diff", se = "se", ci.limits = c("conf.low", "conf.high"), true = -1) testthat::expect_equal(object = tidy(s6), expected = tidy(s7)) s6 <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", df = "df", true = -1) - s7 <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", ci.limits = c("lower", "upper"), true = -1) + s7 <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", ci.limits = c("conf.low", "conf.high"), true = -1) testthat::expect_equal(object = tidy(s6), expected = tidy(s7)) s6 <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", by = "dgm", df = "df", true = -1) - s7 <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", by = "dgm", ci.limits = c("lower", "upper"), true = -1) + s7 <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", by = "dgm", ci.limits = c("conf.low", "conf.high"), true = -1) testthat::expect_equal(object = tidy(s6), expected = tidy(s7)) }) diff --git a/tests/testthat/test-autoplot.R b/tests/testthat/test-autoplot.R index a3af1a7..b42483f 100644 --- a/tests/testthat/test-autoplot.R +++ b/tests/testthat/test-autoplot.R @@ -583,28 +583,28 @@ testthat::test_that("Testing more zip plot cases", { testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) s <- simsum(data = tt, estvarname = "diff", se = "se", df = "df", true = -1, x = TRUE) testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) - s <- simsum(data = tt, estvarname = "diff", se = "se", ci.limits = c("lower", "upper"), true = -1, x = TRUE) + s <- simsum(data = tt, estvarname = "diff", se = "se", ci.limits = c("conf.low", "conf.high"), true = -1, x = TRUE) testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) s <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", true = -1, x = TRUE) testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) s <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", df = "df", true = -1, x = TRUE) testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) - s <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", ci.limits = c("lower", "upper"), true = -1, x = TRUE) + s <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", ci.limits = c("conf.low", "conf.high"), true = -1, x = TRUE) testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) s <- simsum(data = tt, estvarname = "diff", se = "se", by = "dgm", true = -1, x = TRUE) testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) s <- simsum(data = tt, estvarname = "diff", se = "se", by = "dgm", df = "df", true = -1, x = TRUE) testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) - s <- simsum(data = tt, estvarname = "diff", se = "se", by = "dgm", ci.limits = c("lower", "upper"), true = -1, x = TRUE) + s <- simsum(data = tt, estvarname = "diff", se = "se", by = "dgm", ci.limits = c("conf.low", "conf.high"), true = -1, x = TRUE) testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) s <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", by = "dgm", true = -1, x = TRUE) testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) s <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", by = "dgm", df = "df", true = -1, x = TRUE) testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) - s <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", by = "dgm", ci.limits = c("lower", "upper"), true = -1, x = TRUE) + s <- simsum(data = tt, estvarname = "diff", se = "se", methodvar = "method", by = "dgm", ci.limits = c("conf.low", "conf.high"), true = -1, x = TRUE) testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) testthat::expect_s3_class(object = autoplot(s, type = "zip"), class = c("gg", "ggplot")) diff --git a/tests/testthat/test-ci.limits.R b/tests/testthat/test-ci.limits.R index 9ceaf28..119049e 100644 --- a/tests/testthat/test-ci.limits.R +++ b/tests/testthat/test-ci.limits.R @@ -10,12 +10,12 @@ testthat::test_that("ci.limits breaks if logic vector", { }) testthat::test_that("ci.limits works ok with string or numeric vectors", { - testthat::expect_s3_class(object = rsimsum::simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm"), class = "simsum") + testthat::expect_s3_class(object = rsimsum::simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm"), class = "simsum") testthat::expect_s3_class(object = rsimsum::simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c(-2, 0), methodvar = "method", by = "dgm"), class = "simsum") }) testthat::test_that("ci.limits with string vector yields different values of coverage than the default", { - s <- rsimsum::simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm") + s <- rsimsum::simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm") s <- tidy(s, stats = "cover") sdef <- rsimsum::simsum(data = tt, estvarname = "diff", true = -1, se = "se", methodvar = "method", by = "dgm") sdef <- tidy(sdef, stats = "cover") diff --git a/vignettes/E-custom-inputs.Rmd b/vignettes/E-custom-inputs.Rmd index db73d39..96b3912 100644 --- a/vignettes/E-custom-inputs.Rmd +++ b/vignettes/E-custom-inputs.Rmd @@ -44,7 +44,7 @@ t.test(extra ~ group, data = sleep) We can incorporate custom confidence intervals by passing the name of two columns in `data` as the `ci.limits` argument: ```{r} -s1 <- simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm") +s1 <- simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm") summary(s1, stats = "cover") ``` @@ -65,7 +65,7 @@ s3 <- simsum(data = tt, estvarname = "diff", true = -1, se = "se", ci.limits = c summary(s3, stats = "cover") ``` -If you have a better example of the utility of this method please [get in touch](https://twitter.com/ellessenne) - I'd love to hear from you! +If you have a better example of the utility of this method please get in touch: I'd love to hear from you! By default, `simsum` will calculate confidence intervals using normal-theory, Wald-type intervals. It is possible to use t-based critical values by providing a column for the (replication-specific) degrees of freedom (analogously as passing confidence bounds to `ci.limits`): @@ -74,7 +74,7 @@ It is possible to use t-based critical values by providing a column for the (rep s4 <- simsum(data = tt, estvarname = "diff", true = -1, se = "se", df = "df", methodvar = "method", by = "dgm") ``` -Given that the confidence intervals in (`lower`, `upper`) are obtained by using critical values from a t distribution, the results of `s4` will be equivalent to the results of `s1`: +Given that the confidence intervals in (`conf.low`, `conf.high`) are obtained by using critical values from a t distribution, the results of `s4` will be equivalent to the results of `s1`: ```{r} all.equal(tidy(s1), tidy(s4)) @@ -84,7 +84,7 @@ We can pass a column of values for `true` as well: ```{r} tt$true <- -1 -s5 <- simsum(data = tt, estvarname = "diff", true = "true", se = "se", ci.limits = c("lower", "upper"), methodvar = "method", by = "dgm") +s5 <- simsum(data = tt, estvarname = "diff", true = "true", se = "se", ci.limits = c("conf.low", "conf.high"), methodvar = "method", by = "dgm") summary(s5, stats = "cover") ``` @@ -172,15 +172,15 @@ This approach is particularly useful when the true value might vary across repli Of course, it can be combined with custom confidence interval limits for coverage as well: ```{r} -frailty$lower <- frailty$b - qt(1 - 0.05 / 2, df = 10) * frailty$se -frailty$upper <- frailty$b + qt(1 - 0.05 / 2, df = 10) * frailty$se +frailty$conf.low <- frailty$b - qt(1 - 0.05 / 2, df = 10) * frailty$se +frailty$conf.high <- frailty$b + qt(1 - 0.05 / 2, df = 10) * frailty$se ms3 <- multisimsum( data = frailty, par = "par", true = "true", estvarname = "b", se = "se", methodvar = "model", by = "fv_dist", - ci.limits = c("lower", "upper") + ci.limits = c("conf.low", "conf.high") ) summary(ms3, stats = "cover") ```