-
Notifications
You must be signed in to change notification settings - Fork 1
/
plot.py
463 lines (404 loc) · 15.3 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Functions for plotting Axis Neuron files.
#
# Edward Lee edl56@cornell.edu
# 2017-03-10
try:
import matplotlib.pyplot as plt
except ImportError:
print("Could not import matplotlib.")
from matplotlib import gridspec
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from numpy import sin,cos,pi
import pandas as pd
from scipy.interpolate import LSQUnivariateSpline,UnivariateSpline
import entropy.entropy as info
from scipy.signal import fftconvolve
from misc.utils import unique_rows
from .utils import rotate
from . import data_access,utils
# ------------------- #
# Plotting functions. #
# ------------------- #
def shade_windows(vis,ax,t=None,
fill_kwargs={'color':'k','alpha':.2},
set_label=True):
"""
Given axes, shade in the places where the avatar is invisible.
Parameters
----------
vis : ndarray
ax : AxesSubplot
t : ndarray,None
fill_kwargs : dict,{}
set_label : bool,True
Returns
-------
None
"""
if t is None:
t = np.arange(len(vix))
# Where invisible regions start.
startix = np.where(np.diff(vis)==-1)[0]
# and where they end
endix = np.where(np.diff(vis)==1)[0]
if endix[0]<startix[0]:
startix = np.concatenate([[0],startix])
if len(startix)>len(endix):
endix = np.concatenate([endix,[len(vis)-1]])
ylim = ax.get_ylim()
xlim = ax.get_xlim()
for t0,t1 in zip(startix,endix):
h = ax.fill_between([t[t0],t[t1]],*ylim,lw=0,**fill_kwargs)
h.set_label('Invisible')
ax.set(ylim=ylim,xlim=xlim)
def time_occlusion_trial(mbT,mbV,anT,anV,startEnd,visible,invisible,
fig=None,ax=None,
ylabel='Velocity (m/s)',
ylim=None,xlim=None):
"""
Plot the temporal occlusion trial data.
Params:
-------
mbT (ndarray of datetime)
Model that is being tracked.
mbV (ndarray)
anT (ndarray of datetime)
Axis Neuron calculation data of subject.
anV (ndarray)
visible,invisible (ndarray of datetime)
Times at which tracked object becomes visible or invisible.
"""
if fig is None:
if ax is None:
fig,ax = plt.subplots(figsize=(15,4))
else:
ax = fig.add_subplot(111)
showIx = (mbT>startEnd[0]) & (mbT<startEnd[1])
ax.plot(mbT[showIx],mbV[showIx],'b-')
showIx = (anT>startEnd[0]) & (anT<startEnd[1])
ax.plot(anT[showIx],anV[showIx],'r-')
ylim = ylim or ax.get_ylim()
for v,i in zip(visible,invisible):
ax.fill_between([i,v],ylim[0],ylim[1],color='k',alpha=.2,lw=0)
[l.set_rotation(90) for l in ax.xaxis.get_ticklabels()];
ax.legend(('Model','Subject'),fontsize='x-small',loc=0)
xlim = xlim or startEnd
ax.set(ylabel=ylabel,xlim=xlim,ylim=ylim)
return fig
def hist_dphase(delay,freq,ylim='low',laplace_counting=False):
"""
Plot histogram of delay for given frequencies.
Params:
--------
delay (ndarray)
(n_freq,n_samples) Phase distance between two trajectories.
freq (ndarray)
Frequencies that are given.
"""
from misc.plot import set_ticks_radian,colorcycle
phaseLagPeaks = []
fig,ax = plt.subplots(figsize=(7,4))
c = colorcycle(len(freq))
for freqix in range(len(freq)):
n,x = np.histogram( delay[freqix],np.linspace(-pi,pi,30) )
if laplace_counting:
n += 1
p = n/n.sum()
ax.plot( x[:-1]+(x[1]-x[0])/2,n/n.sum(),'o-',alpha=1,c=next(c) )
phaseLagPeaks.append( x[np.argmax(n)]+(x[1]-x[0])/2 )
if ylim=='high':
ylim = [0,1]
elif ylim=='low':
ylim = [0,.15]
ax.set(xlim=[-pi,pi],xticks=[-pi,pi/2,0,pi/2,pi],ylim=ylim,
xlabel='Phase lag',ylabel='Relative frequency',
title='Histogram of phase lag')
set_ticks_radian(ax,axis='x')
ax.legend(freq,numpoints=1,title='Frequency',fontsize='small',
bbox_to_anchor=[1.4,1.03])
return fig,ax,phaseLagPeaks
def cdf_dphase(delay,freq,title='Histogram of phase lag',xscale='f'):
"""
Plot cdf of delay for given frequencies.
Params:
--------
delay (ndarray)
(n_freq,n_samples) Phase distance between two trajectories.
freq (ndarray)
Frequencies that are given.
title (str)
xscale (str)
'f' means frequency scale and 't' means time scale
"""
from misc.plot import set_ticks_radian,colorcycle
from statsmodels.distributions import ECDF
fig,ax = plt.subplots(figsize=(7,4))
c = colorcycle(len(freq))
for freqix in range(len(freq)):
ecdf = ECDF( delay[freqix] )
if xscale=='t':
ax.plot( ecdf.x/(2*np.pi)/freq[freqix],ecdf.y,'-',alpha=1,c=next(c),lw=2 )
else:
ax.plot( ecdf.x,ecdf.y,'-',alpha=1,c=next(c),lw=2 )
if xscale=='t':
xlim = [-1/freq[0],1/freq[0]]
xticks = np.arange(*xlim)
else:
xlim = [-pi,pi]
xticks = [-pi,pi/2,0,pi/2,pi]
ax.set(xlim=xlim,xticks=xticks,
xlabel='Phase lag',ylabel='CDF',
title=title)
set_ticks_radian(ax,axis='x')
ax.legend(['%1.1f Hz'%f for f in freq],numpoints=1,title='Frequency',fontsize='small',
bbox_to_anchor=[1.4,1.03],labelspacing=.1)
ax.grid()
return fig,ax
def phase(T,v1,v2,phase,phasexyz,title='',maxshift=60,windowlength=100):
"""
Plot normalized velocity phase lag graphs.
Params:
-------
T,v1,v2
phase
phasexyz
title
maxshift (int=60)
windowlength (int=100)
"""
fig = plt.figure(figsize=(15,16))
gs = gridspec.GridSpec(7,1)
ax = [fig.add_subplot(gs[i]) for i in range(7)]
# Velocity plots.
h = []
h.append( ax[0].plot(T,v1[:,0],'b-')[0] )
h.append( ax[0].plot(T,v2[:,0],'r-')[0] )
ax[0].set(ylabel=r'$v_x$',xticklabels=[],
title=title)
ax[0].legend(h,('Leader','Follower'),fontsize='xx-small',loc=0)
ax[0].grid()
ax[1].plot(T,v1[:,1],'b-')
ax[1].plot(T,v2[:,1],'r-')
ax[1].set(ylabel=r'$v_y$',xticklabels=[])
ax[1].grid()
ax[2].plot(T,v1[:,2],'b-')
ax[2].plot(T,v2[:,2],'r-')
ax[2].set(ylabel=r'$v_z$',xticklabels=[])
ax[2].grid()
# Phase lag plots.
for i in range(3):
ax[i+3].plot(T[maxshift:-maxshift-windowlength],phasexyz[i])
ax[i+3].fill_between([T[0],T[-1]],-.25,.25,color='k',alpha=.1)
ax[i+3].hlines(0,0,T[-1])
ax[i+3].set(ylim=[-1,1],ylabel=['x phase','y phase','z phase'][i],xticklabels=[])
ax[-1].plot(T[maxshift:-maxshift-windowlength],phase)
ax[-1].set(ylim=[-1,1])
ax[-1].fill_between([T[0],T[-1]],-.25,.25,color='k',alpha=.1)
ax[-1].hlines(0,0,T[-1])
# phasethreshold = .8
# phase_ = phase.copy()
# phase_[overlapcost<=phasethreshold] = nan
# ax[4].plot(T[maxshift:-maxshift-windowlength],phase_,'b-',lw=2)
# phase_ = phase.copy()
# phase_[overlapcost>phasethreshold] = nan
# ax[4].plot(T[maxshift:-maxshift-windowlength],phase_,'b-',alpha=.3)
# # ax[4].fill_between(T[maxshift*2:-2*maxshift], phase-(1-overlapcost), phase+(1-overlapcost),
# # color='b',alpha=.2)
# smoothedPhase = fftconvolve(phase,ones((smoothingwindow))/smoothingwindow,mode='same')
# ax[4].plot(T[maxshift:-maxshift-windowlength],
# smoothedPhase,'k-',lw=2,alpha=.5)
# ax[4].fill_between([T[0],T[-1]],-.25,.25,color='k',alpha=.1)
# ax[4].hlines(0,0,T[-1])
# ax[4].set(xlabel='Time',ylabel='Phase lag',ylim=[-dt*maxshift,dt*maxshift])
# ax[4].legend(('Raw phase lag','Moving avg','Below human rxn time'),loc=0,fontsize='xx-small')
# ax[4].grid()
for ax_ in ax:
ax_.set(xlim=[T[0],T[-1]])
def a_of_t(t,v1,v2,fig=None,ax=None):
"""
Plot acceleration as a function of time for each axis independently to compare leader and follower.
Params:
-------
t
v1
v2
fig (None)
ax (None)
"""
if ax is None:
fig,ax = plt.subplots(figsize=(15,8),sharex=True,sharey=True,nrows=3)
for i in range(3):
if i==2:
ax[i].plot(t,v1[:,i]-1,'b-')
ax[i].plot(t,v2[:,i]-1,'r-')
ax[i].set(ylabel='Acc')
else:
ax[i].plot(t,v1[:,i],'b-')
ax[i].plot(t,v2[:,i],'r-')
ax[i].set(ylabel='Acc')
ax[0].set(xlim=[t[0],t[-1]])
ymx = max(np.abs(ax[0].get_ylim()))
ax[-1].set(xlabel='Time (s)',ylim=[-ymx,ymx])
fig.subplots_adjust(hspace=0)
return fig,ax
def v_of_t(t,v1,v2,fig=None,ax=None):
"""
Plot velocity as a function of time for each axis independently to compare leader and follower.
Params:
-------
t
v1
v2
fig (None)
ax (None)
"""
if ax is None:
fig,ax = plt.subplots(figsize=(15,8),sharex=True,sharey=True,nrows=3)
for i in range(3):
ax[i].plot(t,v1[:,i],'b-')
ax[i].plot(t,v2[:,i],'r-')
ax[i].set(ylabel='Vel')
ax[0].set(xlim=[t[0],t[-1]])
ymx = max(np.abs(ax[0].get_ylim()))
ax[-1].set(xlabel='Time (s)',ylim=[-ymx,ymx])
fig.subplots_adjust(hspace=0)
return fig,ax
def plot_xva_comparison(fig,ax,x1,x2,v1,v2,a1,a2,aOffset=0.,title=''):
"""
Plot XVA comparison plots. Three rows of comparison.
2016-12-14
"""
ax[0].plot(x1,x2,'.',alpha=.2)
ax[0].plot([-1,1],[-1,1],'k-')
ax[0].set(xlabel='Leader pos',ylabel='Follower pos',
xlim=[-1,1],ylim=[-1,1])
[l.set_rotation(75) for l in ax[0].xaxis.get_ticklabels()]
ax[0].text(-.95,.85,"%1.2f"%np.corrcoef(x1,x2)[0,1],fontsize='x-small')
ax[1].plot(v1,v2,'.',alpha=.2)
ax[1].plot([-1,1],[-1,1],'k-')
ax[1].set(xlabel='Leader vel',ylabel='Follower vel',
xlim=[-1,1],ylim=[-1,1])
[l.set_rotation(75) for l in ax[1].xaxis.get_ticklabels()]
ax[1].text(-.95,.85,"%1.2f"%np.corrcoef(v1,v2)[0,1],fontsize='x-small')
ax[2].plot(a1,a2,'.',alpha=.2)
ax[2].plot([-1.5,1.5],[-1.5,1.5],'k-')
ax[2].set(xlim=[-.4+aOffset,.4+aOffset],ylim=[-.4+aOffset,.4+aOffset])
ax[2].set(xlabel='Leader acc',ylabel='Follower acc')
[l.set_rotation(75) for l in ax[2].xaxis.get_ticklabels()]
ax[2].text(-.35+aOffset,.35+aOffset,"%1.2f"%np.corrcoef(a1,a2)[0,1],fontsize='x-small')
fig.subplots_adjust(wspace=.5)
fig.text(.3,.95,title)
def plot_va_comparison(fig,ax,v1,v2,a1,a2,aOffset=0.,title=''):
"""
Plot velocity and acceleration points against each other in two plots.
"""
ax[0].plot(v1,v2,'.',alpha=.2)
ax[0].plot([-1,1],[-1,1],'k-')
ax[0].set(xlabel='Leader vel',ylabel='Follower vel',
xlim=[-1,1],ylim=[-1,1])
[l.set_rotation(75) for l in ax[0].xaxis.get_ticklabels()]
ax[1].plot(a1,a2,'.',alpha=.2)
ax[1].plot([-1.5,1.5],[-1.5,1.5],'k-')
ax[1].set(xlim=[-.4+aOffset,.4+aOffset],ylim=[-.4+aOffset,.4+aOffset])
ax[1].set(xlabel='Leader acc',ylabel='Follower acc')
[l.set_rotation(75) for l in ax[1].xaxis.get_ticklabels()]
fig.subplots_adjust(wspace=.5)
fig.text(.3,.95,title)
def plot_hips_drift(hips,dt):
gs = gridspec.GridSpec(2,3,wspace=.3)
gs.update(wspace=.4)
fig = plt.figure(figsize=(12,4))
ax = [fig.add_subplot(gs[:,:-1]),fig.add_subplot(gs[0,-1]),fig.add_subplot(gs[1,-1])]
# Draw map as if I were looking down from above. The front faces to the left.
ax[0].plot(hips['xx']/100,-hips['zz']/100,'.',alpha=.3)
ax[0].plot(hips['xx'].iloc[0]/100,-hips['zz'].iloc[0]/100,'ro',ms=15)
ax[0].plot(hips['xx'].iloc[-1]/100,-hips['zz'].iloc[-1]/100,'r+',ms=15,mew=4)
ax[0].set(xlabel='front-back (m)',ylabel='sideways (m)')
tmax = len(hips['xx'])*dt
ax[1].plot(np.arange(len(hips['xx']))*dt,hips['xx']/100)
ax[1].set(xticklabels=[],xlim=[0,tmax],ylabel='front-back')
[l.set_fontsize(10) for l in ax[1].get_yticklabels()]
ax[2].plot(np.arange(len(hips['xx']))*dt,-hips['zz']/100)
ax[2].set(xlabel='time (s)',xlim=[0,tmax],ylabel='sideways')
[l.set_fontsize(10) for l in ax[2].get_yticklabels()]
print("Drift front-back: %1.3f m"%( (hips['xx'].iloc[-1]-hips['xx'].iloc[0])/100 ))
print("Drift sideways: %1.3f m"%( -(hips['zz'].iloc[-1]-hips['zz'].iloc[0])/100 ))
return fig
def plot_positions(bp):
"""
Plot the 3D positions of a particular body part. The default measurement in Perception Neuron ignores the displacement except for the hips.
2016-08-11
Params:
-------
bp (pd.DataFrame)
"""
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111,projection='3d')
ax.plot(bp['xx']/100,bp['zz']/100,bp['yy']/100,'o',alpha=.3)
ax.set(xlim=[bp['xx'].min()/100,bp['xx'].max()/100],
ylim=[bp['zz'].min()/100,bp['zz'].max()/100],
zlim=[bp['yy'].min()/100,bp['yy'].max()/100])
return fig
def plot_euler_angles(t,angles,setkwargs={},linestyles=['-','--','-.']):
"""
2016-10-28
"""
fig,ax = plt.subplots(figsize=(12,4))
for i,a in enumerate(angles):
ax.plot(t,a[:,0],'b'+linestyles[i])
ax.plot(t,a[:,1],'g'+linestyles[i])
ax.plot(t,a[:,2],'r'+linestyles[i])
ax.set(xlim=[t[0],t[-1]],ylim=[-np.pi,np.pi],xlabel='Time',ylabel='Euler angle',
yticks=[-np.pi,-np.pi/2,0,np.pi/2,np.pi],yticklabels=[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$\pi/2$',r'$\pi$'])
ax.set(**setkwargs)
ax.legend(('y','x','z'),fontsize='small',bbox_to_anchor=[1.15,1])
return fig
def plot_polar_angles(phis,thetas,dt):
"""
2016-08-12
Params:
-------
phis (ndarray)
Azimuthal angles
thetas (ndarray)
Polar angles
dt (float)
Timestep between phi and theta data points.
"""
gs = gridspec.GridSpec(2,2,height_ratios=(1,3),wspace=.2,hspace=.4)
fig = plt.figure(figsize=(10,4))
ax = [fig.add_subplot(gs[0,0]),fig.add_subplot(gs[0,1]),fig.add_subplot(gs[1,:])]
ax[0].plot(dt*np.arange(len(phis)),phis)
ax[0].set(xlim=[0,len(phis)*dt],ylim=[-np.pi,np.pi],
xlabel='time (s)',ylabel=r'$\phi$',
yticks=[-np.pi,0,np.pi],yticklabels=[r'$-\pi$',r'$0$',r'$\pi$'])
[l.set_fontsize(10) for l in ax[0].get_yticklabels()]
[l.set_fontsize(10) for l in ax[0].get_xticklabels()]
ax[0].xaxis.get_label().set_fontsize(10)
ax[1].plot(dt*np.arange(len(phis)),thetas)
ax[1].set(xlim=[0,len(phis)*dt],ylim=[0,np.pi],
xlabel='time (s)',ylabel=r'$\theta$',
yticks=[0,np.pi/2,np.pi],yticklabels=[r'$0$',r'$\pi/2$',r'$\pi$'])
[l.set_fontsize(10) for l in ax[1].get_yticklabels()]
[l.set_fontsize(10) for l in ax[1].get_xticklabels()]
ax[1].xaxis.get_label().set_fontsize(10)
ax[1].plot(dt*np.arange(len(phis)),thetas)
ax[2].plot(phis,thetas,'.',alpha=.2)
ax[2].set(xlim=[-np.pi,np.pi],ylim=[0,np.pi],xlabel=r'$\phi$',ylabel=r'$\theta$');
return fig
def plot_unit_trajectory(*angles):
"""
Extract phase given the Euler angles as output by BVH. Phase is defined as the xy angle in the
plane of the average vector.
2016-10-23
"""
x = euler_to_vectors(*angles)
fig = plt.figure()
ax = fig.add_subplot(111,projection='3d')
ax.plot(x[:,0],x[:,1],x[:,2],alpha=.8,lw=10)
# ax.scatter(x[:,0],x[:,1],x[:,2],alpha=.8,lw=0,s=1000,
# c=[plt.cm.copper(i/len(x)) for i in xrange(len(x))])
ax.plot(x[:,0],x[:,1],np.zeros((len(x))),alpha=.7,lw=10)
ax.quiver(0,0,0,0,0,1,pivot='tail',lw=5)
return fig