-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer_decoder.py
119 lines (88 loc) · 3.69 KB
/
transformer_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import torch
import torch.nn as nn
import torch.nn.functional as F
class Head(nn.Module):
def __init__(self, head_size, n_emd_dim, block_size, drop_rate):
super().__init__()
self.key = nn.Linear(n_emd_dim, head_size, bias=False)
self.query = nn.Linear(n_emd_dim, head_size, bias=False)
self.value = nn.Linear(n_emd_dim, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones((block_size, block_size))))
self.dropout = nn.Dropout(drop_rate)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2, -1) * C**-0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
x = wei @ v
return x
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, head_size, n_emd_dim, block_size, drop_rate):
super().__init__()
self.heads = nn.ModuleList([Head(head_size, n_emd_dim, block_size, drop_rate) for _ in range(n_heads)])
self.projection = nn.Linear(n_heads * head_size, n_emd_dim)
def forward(self, x):
out = torch.cat([head(x) for head in self.heads], dim=-1)
return self.projection(out)
class FeedForward(nn.Module):
def __init__(self, n_emd_dim, drop_rate):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_emd_dim, 4 * n_emd_dim),
nn.ReLU(),
nn.Linear(4 * n_emd_dim, n_emd_dim),
nn.Dropout(drop_rate),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, n_emd_dim, n_head, block_size, drop_rate):
super().__init__()
head_size = n_emd_dim // n_head
self.attention_head = MultiHeadAttention(n_head, head_size, n_emd_dim, block_size, drop_rate)
self.feed_forward = FeedForward(n_emd_dim, drop_rate)
self.ln1 = nn.LayerNorm(n_emd_dim)
self.ln2 = nn.LayerNorm(n_emd_dim)
def forward(self, x):
x = x + self.attention_head(self.ln1(x))
x = x + self.feed_forward(self.ln2(x))
return x
class LanguageModel(nn.Module):
def __init__(self, vocab_size, n_emd_dim, block_size, n_layer, n_head, drop_rate):
super().__init__()
self.block_size = block_size
self.embedding_table = nn.Embedding(vocab_size, n_emd_dim)
self.positional_embedding = nn.Embedding(block_size, n_emd_dim)
self.blocks = nn.Sequential(*[Block(n_emd_dim, n_head, block_size, drop_rate) for _ in range(n_layer)],
)
self.ln = nn.LayerNorm(n_emd_dim)
self.lm_head = nn.Linear(n_emd_dim, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
token_emb = self.embedding_table(idx)
position_emb = self.positional_embedding(torch.arange(T))
x_emb = token_emb + position_emb
x = self.blocks(x_emb)
x = self.ln(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_tokens=100):
for i in range(max_tokens):
idx_cond = idx[:, -self.block_size:]
logits, loss = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat([idx, idx_next], dim=-1)
return idx