-
Notifications
You must be signed in to change notification settings - Fork 0
/
oid_dataset.py
260 lines (201 loc) · 9.35 KB
/
oid_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from __future__ import print_function, division
import csv
import json
import os
import warnings
import numpy as np
import skimage
import skimage.color
import skimage.io
import skimage.transform
from PIL import Image
from torch.utils.data import Dataset
def get_labels(metadata_dir, version='v4'):
if version == 'v4' or version == 'challenge2018':
csv_file = 'class-descriptions-boxable.csv' if version == 'v4' else 'challenge-2018-class-descriptions-500.csv'
boxable_classes_descriptions = os.path.join(metadata_dir, csv_file)
id_to_labels = {}
cls_index = {}
i = 0
with open(boxable_classes_descriptions) as f:
for row in csv.reader(f):
# make sure the csv row is not empty (usually the last one)
if len(row):
label = row[0]
description = row[1].replace("\"", "").replace("'", "").replace('`', '')
id_to_labels[i] = description
cls_index[label] = i
i += 1
else:
trainable_classes_path = os.path.join(metadata_dir, 'classes-bbox-trainable.txt')
description_path = os.path.join(metadata_dir, 'class-descriptions.csv')
description_table = {}
with open(description_path) as f:
for row in csv.reader(f):
# make sure the csv row is not empty (usually the last one)
if len(row):
description_table[row[0]] = row[1].replace("\"", "").replace("'", "").replace('`', '')
with open(trainable_classes_path, 'rb') as f:
trainable_classes = f.read().split('\n')
id_to_labels = dict([(i, description_table[c]) for i, c in enumerate(trainable_classes)])
cls_index = dict([(c, i) for i, c in enumerate(trainable_classes)])
return id_to_labels, cls_index
def generate_images_annotations_json(main_dir, metadata_dir, subset, cls_index, version='v4'):
validation_image_ids = {}
if version == 'v4':
annotations_path = os.path.join(metadata_dir, subset, '{}-annotations-bbox.csv'.format(subset))
elif version == 'challenge2018':
validation_image_ids_path = os.path.join(metadata_dir, 'challenge-2018-image-ids-valset-od.csv')
with open(validation_image_ids_path, 'r') as csv_file:
reader = csv.DictReader(csv_file, fieldnames=['ImageID'])
reader.next()
for line, row in enumerate(reader):
image_id = row['ImageID']
validation_image_ids[image_id] = True
annotations_path = os.path.join(metadata_dir, 'challenge-2018-train-annotations-bbox.csv')
else:
annotations_path = os.path.join(metadata_dir, subset, 'annotations-human-bbox.csv')
fieldnames = ['ImageID', 'Source', 'LabelName', 'Confidence',
'XMin', 'XMax', 'YMin', 'YMax',
'IsOccluded', 'IsTruncated', 'IsGroupOf', 'IsDepiction', 'IsInside']
id_annotations = dict()
with open(annotations_path, 'r') as csv_file:
reader = csv.DictReader(csv_file, fieldnames=fieldnames)
next(reader)
images_sizes = {}
for line, row in enumerate(reader):
frame = row['ImageID']
if version == 'challenge2018':
if subset == 'train':
if frame in validation_image_ids:
continue
elif subset == 'validation':
if frame not in validation_image_ids:
continue
else:
raise NotImplementedError('This generator handles only the train and validation subsets')
class_name = row['LabelName']
if class_name not in cls_index:
continue
cls_id = cls_index[class_name]
if version == 'challenge2018':
# We recommend participants to use the provided subset of the training set as a validation set.
# This is preferable over using the V4 val/test sets, as the training set is more densely annotated.
img_path = os.path.join(main_dir, 'images', 'train', frame + '.jpg')
else:
img_path = os.path.join(main_dir, 'images', subset, frame + '.jpg')
if frame in images_sizes:
width, height = images_sizes[frame]
else:
try:
with Image.open(img_path) as img:
width, height = img.width, img.height
images_sizes[frame] = (width, height)
except Exception as ex:
if version == 'challenge2018':
raise ex
continue
x1 = float(row['XMin'])
x2 = float(row['XMax'])
y1 = float(row['YMin'])
y2 = float(row['YMax'])
x1_int = int(round(x1 * width))
x2_int = int(round(x2 * width))
y1_int = int(round(y1 * height))
y2_int = int(round(y2 * height))
# Check that the bounding box is valid.
if x2 <= x1:
raise ValueError('line {}: x2 ({}) must be higher than x1 ({})'.format(line, x2, x1))
if y2 <= y1:
raise ValueError('line {}: y2 ({}) must be higher than y1 ({})'.format(line, y2, y1))
if y2_int == y1_int:
warnings.warn('filtering line {}: rounding y2 ({}) and y1 ({}) makes them equal'.format(line, y2, y1))
continue
if x2_int == x1_int:
warnings.warn('filtering line {}: rounding x2 ({}) and x1 ({}) makes them equal'.format(line, x2, x1))
continue
img_id = row['ImageID']
annotation = {'cls_id': cls_id, 'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2}
if img_id in id_annotations:
annotations = id_annotations[img_id]
annotations['boxes'].append(annotation)
else:
id_annotations[img_id] = {'w': width, 'h': height, 'boxes': [annotation]}
return id_annotations
class OidDataset(Dataset):
"""Oid dataset."""
def __init__(self, main_dir, subset, version='v4', annotation_cache_dir='.', transform=None):
if version == 'v4':
metadata = '2018_04'
elif version == 'challenge2018':
metadata = 'challenge2018'
elif version == 'v3':
metadata = '2017_11'
else:
raise NotImplementedError('There is currently no implementation for versions older than v3')
self.transform = transform
if version == 'challenge2018':
self.base_dir = os.path.join(main_dir, 'images', 'train')
else:
self.base_dir = os.path.join(main_dir, 'images', subset)
metadata_dir = os.path.join(main_dir, metadata)
annotation_cache_json = os.path.join(annotation_cache_dir, subset + '.json')
self.id_to_labels, cls_index = get_labels(metadata_dir, version=version)
if os.path.exists(annotation_cache_json):
with open(annotation_cache_json, 'r') as f:
self.annotations = json.loads(f.read())
else:
self.annotations = generate_images_annotations_json(main_dir, metadata_dir, subset, cls_index,
version=version)
json.dump(self.annotations, open(annotation_cache_json, "w"))
self.id_to_image_id = dict([(i, k) for i, k in enumerate(self.annotations)])
# (label -> name)
self.labels = self.id_to_labels
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
img = self.load_image(idx)
annot = self.load_annotations(idx)
sample = {'img': img, 'annot': annot}
if self.transform:
sample = self.transform(sample)
return sample
def image_path(self, image_index):
path = os.path.join(self.base_dir, self.id_to_image_id[image_index] + '.jpg')
return path
def load_image(self, image_index):
path = self.image_path(image_index)
img = skimage.io.imread(path)
if len(img.shape) == 1:
img = img[0]
if len(img.shape) == 2:
img = skimage.color.gray2rgb(img)
try:
return img.astype(np.float32) / 255.0
except Exception:
print (path)
exit(0)
def load_annotations(self, image_index):
# get ground truth annotations
image_annotations = self.annotations[self.id_to_image_id[image_index]]
labels = image_annotations['boxes']
height, width = image_annotations['h'], image_annotations['w']
boxes = np.zeros((len(labels), 5))
for idx, ann in enumerate(labels):
cls_id = ann['cls_id']
x1 = ann['x1'] * width
x2 = ann['x2'] * width
y1 = ann['y1'] * height
y2 = ann['y2'] * height
boxes[idx, 0] = x1
boxes[idx, 1] = y1
boxes[idx, 2] = x2
boxes[idx, 3] = y2
boxes[idx, 4] = cls_id
return boxes
def image_aspect_ratio(self, image_index):
img_annotations = self.annotations[self.id_to_image_id[image_index]]
height, width = img_annotations['h'], img_annotations['w']
return float(width) / float(height)
def num_classes(self):
return len(self.id_to_labels)