diff --git a/chameo-individuals.ttl b/chameo-individuals.ttl index 8bb547a..c984488 100644 --- a/chameo-individuals.ttl +++ b/chameo-individuals.ttl @@ -1,4 +1,4 @@ -@prefix : . +@prefix : . @prefix owl: . @prefix rdf: . @prefix xml: . @@ -6,48 +6,48 @@ @prefix emmo: . @prefix rdfs: . @prefix skos: . -@prefix chameo: . -@base . +@prefix chameo: . +@base . ################################################################# # Individuals ################################################################# -### https://w3id.org/emmo/domain/chameo/chameo#Agent1 +### https://w3id.org/emmo/domain/chameo#Agent1 chameo:Agent1 rdf:type owl:NamedIndividual , chameo:Operator . -### https://w3id.org/emmo/domain/chameo/chameo#CalibrationProcess1 +### https://w3id.org/emmo/domain/chameo#CalibrationProcess1 chameo:CalibrationProcess1 rdf:type owl:NamedIndividual , chameo:CalibrationProcess . -### https://w3id.org/emmo/domain/chameo/chameo#ChMeasProc1 +### https://w3id.org/emmo/domain/chameo#ChMeasProc1 chameo:ChMeasProc1 rdf:type owl:NamedIndividual , chameo:CharacterisationMeasurementProcess . -### https://w3id.org/emmo/domain/chameo/chameo#Determination1 +### https://w3id.org/emmo/domain/chameo#Determination1 chameo:Determination1 rdf:type owl:NamedIndividual , emmo:EMMO_10a5fd39_06aa_4648_9e70_f962a9cb2069 ; emmo:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 chameo:InferredChMethod1 . -### https://w3id.org/emmo/domain/chameo/chameo#InferredChMethod1 +### https://w3id.org/emmo/domain/chameo#InferredChMethod1 chameo:InferredChMethod1 rdf:type owl:NamedIndividual ; emmo:EMMO_70da982d_1810_4b01_9630_a28e216ecd9a chameo:ChMeasProc1 ; chameo:hasOperator chameo:Agent1 . -### https://w3id.org/emmo/domain/chameo/chameo#hasChValid1 +### https://w3id.org/emmo/domain/chameo#hasChValid1 chameo:hasChValid1 rdf:type owl:NamedIndividual ; chameo:hasCharacterisationProcedureValidation chameo:hasChValid2 . -### https://w3id.org/emmo/domain/chameo/chameo#hasChValid2 +### https://w3id.org/emmo/domain/chameo#hasChValid2 chameo:hasChValid2 rdf:type owl:NamedIndividual . -### https://w3id.org/emmo/domain/chameo/chameo#hasChValidProp +### https://w3id.org/emmo/domain/chameo#hasChValidProp chameo:hasChValidProp rdf:type owl:NamedIndividual . \ No newline at end of file diff --git a/chameo.ttl b/chameo.ttl index 55c2124..2ca4374 100644 --- a/chameo.ttl +++ b/chameo.ttl @@ -1,4 +1,4 @@ -@prefix : . +@prefix : . @prefix owl: . @prefix rdf: . @prefix xml: . @@ -9,13 +9,13 @@ @prefix rdfs: . @prefix skos: . @prefix vann: . -@prefix chameo: . +@prefix chameo: . @prefix dcterms: . @prefix datacite: . -@base . +@base . - rdf:type owl:Ontology ; - owl:versionIRI ; + rdf:type owl:Ontology ; + owl:versionIRI ; owl:imports , , , @@ -39,7 +39,7 @@ "Pierluigi Del Nostro" ; dcterms:description "Characterisation Methodology Ontology"@en ; dcterms:hasFormat ; - dcterms:identifier "http://w3id.org/emmo-chameo/chameo" ; + dcterms:identifier "https://w3id.org/emmo/domain/chameo" ; dcterms:issued "" ; dcterms:license "https://creativecommons.org/licenses/by/4.0/legalcode" ; dcterms:modified "2023-10-23T15:00:00Z" ; @@ -49,7 +49,7 @@ bibo:doi "" ; "" ; vann:preferredNamespacePrefix "chameo"@en ; - vann:preferredNamespaceUri "http://w3id.org/emmo-chameo/chameo" ; + vann:preferredNamespaceUri "https://w3id.org/emmo/domain/chameo" ; rdfs:comment """Contacts: Gerhard Goldbeck Goldbeck Consulting Ltd (UK) @@ -130,7 +130,7 @@ foaf:page rdf:type owl:AnnotationProperty . # Object Properties ################################################################# -### http://w3id.org/emmo-chameo/chameo#characterisationProcedureHasSubProcedure +### https://w3id.org/emmo/domain/chameo#characterisationProcedureHasSubProcedure chameo:characterisationProcedureHasSubProcedure rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_d43af210_f854_4432_a891_ce3022e3b558 ; rdfs:comment "" ; @@ -138,7 +138,7 @@ chameo:characterisationProcedureHasSubProcedure rdf:type owl:ObjectProperty ; skos:prefLabel "characterisationProcedureHasSubProcedure"@en . -### http://w3id.org/emmo-chameo/chameo#hasAccessConditions +### https://w3id.org/emmo/domain/chameo#hasAccessConditions chameo:hasAccessConditions rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:domain chameo:CharacterisationMethod ; @@ -148,7 +148,7 @@ chameo:hasAccessConditions rdf:type owl:ObjectProperty ; skos:prefLabel "hasAccessConditions"@en . -### http://w3id.org/emmo-chameo/chameo#hasCharacterisationEnvironment +### https://w3id.org/emmo/domain/chameo#hasCharacterisationEnvironment chameo:hasCharacterisationEnvironment rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:range chameo:CharacterisationEnvironment ; @@ -157,7 +157,7 @@ chameo:hasCharacterisationEnvironment rdf:type owl:ObjectProperty ; skos:prefLabel "hasCharacterisationEnvironment"@en . -### http://w3id.org/emmo-chameo/chameo#hasCharacterisationEnvironmentProperty +### https://w3id.org/emmo/domain/chameo#hasCharacterisationEnvironmentProperty chameo:hasCharacterisationEnvironmentProperty rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:domain chameo:CharacterisationEnvironment ; @@ -167,7 +167,7 @@ chameo:hasCharacterisationEnvironmentProperty rdf:type owl:ObjectProperty ; skos:prefLabel "hasCharacterisationEnvironmentProperty"@en . -### http://w3id.org/emmo-chameo/chameo#hasCharacterisationProcedureValidation +### https://w3id.org/emmo/domain/chameo#hasCharacterisationProcedureValidation chameo:hasCharacterisationProcedureValidation rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:domain chameo:CharacterisationMethod ; @@ -177,7 +177,7 @@ chameo:hasCharacterisationProcedureValidation rdf:type owl:ObjectProperty ; skos:prefLabel "hasCharacterisationProcedureValidation"@en . -### http://w3id.org/emmo-chameo/chameo#hasCharacterisationProperty +### https://w3id.org/emmo/domain/chameo#hasCharacterisationProperty chameo:hasCharacterisationProperty rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_fd689787_31b0_41cf_bf03_0d69af76469d ; rdfs:domain chameo:Sample ; @@ -187,7 +187,7 @@ chameo:hasCharacterisationProperty rdf:type owl:ObjectProperty ; skos:prefLabel "hasCharacterisationProperty"@en . -### http://w3id.org/emmo-chameo/chameo#hasCharacterisationSoftware +### https://w3id.org/emmo/domain/chameo#hasCharacterisationSoftware chameo:hasCharacterisationSoftware rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; rdfs:range chameo:CharacterisationSoftware ; @@ -196,7 +196,7 @@ chameo:hasCharacterisationSoftware rdf:type owl:ObjectProperty ; skos:prefLabel "hasCharacterisationSoftware"@en . -### http://w3id.org/emmo-chameo/chameo#hasDataAcquisitionRate +### https://w3id.org/emmo/domain/chameo#hasDataAcquisitionRate chameo:hasDataAcquisitionRate rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:domain chameo:RawData ; @@ -206,7 +206,7 @@ chameo:hasDataAcquisitionRate rdf:type owl:ObjectProperty ; skos:prefLabel "hasDataAcquisitionRate"@en . -### http://w3id.org/emmo-chameo/chameo#hasDataProcessingThroughCalibration +### https://w3id.org/emmo/domain/chameo#hasDataProcessingThroughCalibration chameo:hasDataProcessingThroughCalibration rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:domain chameo:CharacterisationMeasurementProcess ; @@ -216,7 +216,7 @@ chameo:hasDataProcessingThroughCalibration rdf:type owl:ObjectProperty ; skos:prefLabel "hasDataProcessingThroughCalibration"@en . -### http://w3id.org/emmo-chameo/chameo#hasDataQuality +### https://w3id.org/emmo/domain/chameo#hasDataQuality chameo:hasDataQuality rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:domain chameo:MeasurementDataPostProcessing ; @@ -226,7 +226,7 @@ chameo:hasDataQuality rdf:type owl:ObjectProperty ; skos:prefLabel "hasDataQuality"@en . -### http://w3id.org/emmo-chameo/chameo#hasDataset +### https://w3id.org/emmo/domain/chameo#hasDataset chameo:hasDataset rdf:type owl:ObjectProperty ; rdfs:subPropertyOf owl:topObjectProperty ; rdfs:range emmo:EMMO_194e367c_9783_4bf5_96d0_9ad597d48d9a ; @@ -235,7 +235,7 @@ chameo:hasDataset rdf:type owl:ObjectProperty ; skos:prefLabel "hasDataset"@en . -### http://w3id.org/emmo-chameo/chameo#hasHardwareSpecification +### https://w3id.org/emmo/domain/chameo#hasHardwareSpecification chameo:hasHardwareSpecification rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:domain chameo:CharacterisationHardware ; @@ -245,7 +245,7 @@ chameo:hasHardwareSpecification rdf:type owl:ObjectProperty ; skos:prefLabel "hasHardwareSpecification"@en . -### http://w3id.org/emmo-chameo/chameo#hasHazard +### https://w3id.org/emmo/domain/chameo#hasHazard chameo:hasHazard rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:range chameo:Hazard ; @@ -254,7 +254,7 @@ chameo:hasHazard rdf:type owl:ObjectProperty ; skos:prefLabel "hasHazard"@en . -### http://w3id.org/emmo-chameo/chameo#hasHolder +### https://w3id.org/emmo/domain/chameo#hasHolder chameo:hasHolder rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; rdfs:domain chameo:SamplePreparation ; @@ -264,7 +264,7 @@ chameo:hasHolder rdf:type owl:ObjectProperty ; skos:prefLabel "hasHolder"@en . -### http://w3id.org/emmo-chameo/chameo#hasInteractionVolume +### https://w3id.org/emmo/domain/chameo#hasInteractionVolume chameo:hasInteractionVolume rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_ae2d1a96_bfa1_409a_a7d2_03d69e8a125a ; rdfs:domain chameo:ProbeSampleInteraction ; @@ -274,7 +274,7 @@ chameo:hasInteractionVolume rdf:type owl:ObjectProperty ; skos:prefLabel "hasInteractionVolume"@en . -### http://w3id.org/emmo-chameo/chameo#hasInteractionWithProbe +### https://w3id.org/emmo/domain/chameo#hasInteractionWithProbe chameo:hasInteractionWithProbe rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_ae2d1a96_bfa1_409a_a7d2_03d69e8a125a ; rdfs:domain chameo:ProbeSampleInteraction ; @@ -284,7 +284,7 @@ chameo:hasInteractionWithProbe rdf:type owl:ObjectProperty ; skos:prefLabel "hasInteractionWithProbe"@en . -### http://w3id.org/emmo-chameo/chameo#hasInteractionWithSample +### https://w3id.org/emmo/domain/chameo#hasInteractionWithSample chameo:hasInteractionWithSample rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; rdfs:domain chameo:ProbeSampleInteraction ; @@ -294,7 +294,7 @@ chameo:hasInteractionWithSample rdf:type owl:ObjectProperty ; skos:prefLabel "hasInteractionWithSample"@en . -### http://w3id.org/emmo-chameo/chameo#hasLab +### https://w3id.org/emmo/domain/chameo#hasLab chameo:hasLab rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; rdfs:range chameo:Laboratory ; @@ -303,7 +303,7 @@ chameo:hasLab rdf:type owl:ObjectProperty ; skos:prefLabel "hasLab"@en . -### http://w3id.org/emmo-chameo/chameo#hasLevelOfAutomation +### https://w3id.org/emmo/domain/chameo#hasLevelOfAutomation chameo:hasLevelOfAutomation rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:domain chameo:CharacterisationMethod ; @@ -313,7 +313,7 @@ chameo:hasLevelOfAutomation rdf:type owl:ObjectProperty ; skos:prefLabel "hasLevelOfAutomation"@en . -### http://w3id.org/emmo-chameo/chameo#hasMeasurementDetector +### https://w3id.org/emmo/domain/chameo#hasMeasurementDetector chameo:hasMeasurementDetector rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; rdfs:range chameo:Detector ; @@ -322,7 +322,7 @@ chameo:hasMeasurementDetector rdf:type owl:ObjectProperty ; skos:prefLabel "hasMeasurementDetector"@en . -### http://w3id.org/emmo-chameo/chameo#hasMeasurementParameter +### https://w3id.org/emmo/domain/chameo#hasMeasurementParameter chameo:hasMeasurementParameter rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_36e69413_8c59_4799_946c_10b05d266e22 ; rdfs:domain chameo:CharacterisationMeasurementProcess ; @@ -332,7 +332,7 @@ chameo:hasMeasurementParameter rdf:type owl:ObjectProperty ; skos:prefLabel "hasMeasurementParameter"@en . -### http://w3id.org/emmo-chameo/chameo#hasMeasurementProbe +### https://w3id.org/emmo/domain/chameo#hasMeasurementProbe chameo:hasMeasurementProbe rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; rdfs:range chameo:Probe ; @@ -341,7 +341,7 @@ chameo:hasMeasurementProbe rdf:type owl:ObjectProperty ; skos:prefLabel "hasMeasurementProbe"@en . -### http://w3id.org/emmo-chameo/chameo#hasMeasurementSample +### https://w3id.org/emmo/domain/chameo#hasMeasurementSample chameo:hasMeasurementSample rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; rdfs:domain chameo:CharacterisationMeasurementProcess ; @@ -351,7 +351,7 @@ chameo:hasMeasurementSample rdf:type owl:ObjectProperty ; skos:prefLabel "hasMeasurementSample"@en . -### http://w3id.org/emmo-chameo/chameo#hasMeasurementTime +### https://w3id.org/emmo/domain/chameo#hasMeasurementTime chameo:hasMeasurementTime rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:domain emmo:EMMO_463bcfda_867b_41d9_a967_211d4d437cfb ; @@ -361,7 +361,7 @@ chameo:hasMeasurementTime rdf:type owl:ObjectProperty ; skos:prefLabel "hasMeasurementTime"@en . -### http://w3id.org/emmo-chameo/chameo#hasOperator +### https://w3id.org/emmo/domain/chameo#hasOperator chameo:hasOperator rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_cd24eb82_a11c_4a31_96ea_32f870c5580a ; rdfs:range chameo:Operator ; @@ -370,7 +370,7 @@ chameo:hasOperator rdf:type owl:ObjectProperty ; skos:prefLabel "hasOperator"@en . -### http://w3id.org/emmo-chameo/chameo#hasPeerReviewedArticle +### https://w3id.org/emmo/domain/chameo#hasPeerReviewedArticle chameo:hasPeerReviewedArticle rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_39c3815d_8cae_4c8f_b2ff_eeba24bec455 ; rdfs:domain chameo:CharacterisationProcedureValidation ; @@ -380,7 +380,7 @@ chameo:hasPeerReviewedArticle rdf:type owl:ObjectProperty ; skos:prefLabel "hasPeerReviewedArticle"@en . -### http://w3id.org/emmo-chameo/chameo#hasPhysicsOfInteraction +### https://w3id.org/emmo/domain/chameo#hasPhysicsOfInteraction chameo:hasPhysicsOfInteraction rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_24c71baf_6db6_48b9_86c8_8c70cf36db0c ; rdfs:domain chameo:ProbeSampleInteraction ; @@ -390,7 +390,7 @@ chameo:hasPhysicsOfInteraction rdf:type owl:ObjectProperty ; skos:prefLabel "hasPhysicsOfInteraction"@en . -### http://w3id.org/emmo-chameo/chameo#hasPostProcessingModel +### https://w3id.org/emmo/domain/chameo#hasPostProcessingModel chameo:hasPostProcessingModel rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; rdfs:domain chameo:MeasurementDataPostProcessing ; @@ -400,7 +400,7 @@ chameo:hasPostProcessingModel rdf:type owl:ObjectProperty ; skos:prefLabel "hasPostProcessingModel"@en . -### http://w3id.org/emmo-chameo/chameo#hasProcessingReproducibility +### https://w3id.org/emmo/domain/chameo#hasProcessingReproducibility chameo:hasProcessingReproducibility rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:domain chameo:MeasurementDataPostProcessing ; @@ -410,7 +410,7 @@ chameo:hasProcessingReproducibility rdf:type owl:ObjectProperty ; skos:prefLabel "hasProcessingReproducibility"@en . -### http://w3id.org/emmo-chameo/chameo#hasSampleBeforeSamplePreparation +### https://w3id.org/emmo/domain/chameo#hasSampleBeforeSamplePreparation chameo:hasSampleBeforeSamplePreparation rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; rdfs:domain chameo:SamplePreparation ; @@ -420,7 +420,7 @@ chameo:hasSampleBeforeSamplePreparation rdf:type owl:ObjectProperty ; skos:prefLabel "hasSampleBeforeSamplePreparation"@en . -### http://w3id.org/emmo-chameo/chameo#hasSamplePreparationHardware +### https://w3id.org/emmo/domain/chameo#hasSamplePreparationHardware chameo:hasSamplePreparationHardware rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; rdfs:comment "" ; @@ -428,7 +428,7 @@ chameo:hasSamplePreparationHardware rdf:type owl:ObjectProperty ; skos:prefLabel "hasSamplePreparationHardware"@en . -### http://w3id.org/emmo-chameo/chameo#hasSamplePreparationInput +### https://w3id.org/emmo/domain/chameo#hasSamplePreparationInput chameo:hasSamplePreparationInput rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_36e69413_8c59_4799_946c_10b05d266e22 ; rdfs:domain chameo:SamplePreparation ; @@ -438,7 +438,7 @@ chameo:hasSamplePreparationInput rdf:type owl:ObjectProperty ; skos:prefLabel "hasSamplePreparationInput"@en . -### http://w3id.org/emmo-chameo/chameo#hasSamplePreparationOutput +### https://w3id.org/emmo/domain/chameo#hasSamplePreparationOutput chameo:hasSamplePreparationOutput rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; rdfs:domain chameo:SamplePreparation ; @@ -448,7 +448,7 @@ chameo:hasSamplePreparationOutput rdf:type owl:ObjectProperty ; skos:prefLabel "hasSamplePreparationOutput"@en . -### http://w3id.org/emmo-chameo/chameo#hasSamplePreparationParameter +### https://w3id.org/emmo/domain/chameo#hasSamplePreparationParameter chameo:hasSamplePreparationParameter rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_36e69413_8c59_4799_946c_10b05d266e22 ; rdfs:domain chameo:SamplePreparation ; @@ -458,7 +458,7 @@ chameo:hasSamplePreparationParameter rdf:type owl:ObjectProperty ; skos:prefLabel "hasSamplePreparationParameter"@en . -### http://w3id.org/emmo-chameo/chameo#hasSampledSample +### https://w3id.org/emmo/domain/chameo#hasSampledSample chameo:hasSampledSample rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; rdfs:domain chameo:SamplingProcess ; @@ -468,7 +468,7 @@ chameo:hasSampledSample rdf:type owl:ObjectProperty ; skos:prefLabel "hasSampledSample"@en . -### http://w3id.org/emmo-chameo/chameo#requiresLevelOfExpertise +### https://w3id.org/emmo/domain/chameo#requiresLevelOfExpertise chameo:requiresLevelOfExpertise rdf:type owl:ObjectProperty ; rdfs:subPropertyOf emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; rdfs:range chameo:LevelOfExpertise ; @@ -481,8 +481,8 @@ chameo:requiresLevelOfExpertise rdf:type owl:ObjectProperty ; # Data properties ################################################################# -### http://w3id.org/emmo-chameo/chameo/hasDateOfCalibration - rdf:type owl:DatatypeProperty ; +### https://w3id.org/emmo/domain/chameo/hasDateOfCalibration + rdf:type owl:DatatypeProperty ; rdfs:subPropertyOf owl:topDataProperty ; rdfs:domain chameo:CharacterisationInstrument ; rdfs:range xsd:dateTime ; @@ -495,7 +495,7 @@ chameo:requiresLevelOfExpertise rdf:type owl:ObjectProperty ; # Classes ################################################################# -### http://w3id.org/emmo-chameo/chameo#ACVoltammetry +### https://w3id.org/emmo/domain/chameo#ACVoltammetry chameo:ACVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:Voltammetry ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q120895154" ; @@ -508,7 +508,7 @@ chameo:ACVoltammetry rdf:type owl:Class ; skos:prefLabel "ACVoltammetry"@en . -### http://w3id.org/emmo-chameo/chameo#AbrasiveStrippingVoltammetry +### https://w3id.org/emmo/domain/chameo#AbrasiveStrippingVoltammetry chameo:AbrasiveStrippingVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:Voltammetry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve"@en ; @@ -525,7 +525,7 @@ chameo:AbrasiveStrippingVoltammetry rdf:type owl:Class ; ] . -### http://w3id.org/emmo-chameo/chameo#AccessConditions +### https://w3id.org/emmo/domain/chameo#AccessConditions chameo:AccessConditions rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_909415d1_7c43_4d5e_bbeb_7e1910159f66 ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Describes what is needed to repeat the experiment"@en ; @@ -537,7 +537,7 @@ chameo:AccessConditions rdf:type owl:Class ; skos:prefLabel "AccessConditions"@en . -### http://w3id.org/emmo-chameo/chameo#AdsorptiveStrippingVoltammetry +### https://w3id.org/emmo/domain/chameo#AdsorptiveStrippingVoltammetry chameo:AdsorptiveStrippingVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:StrippingVoltammetry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro- chemical accumulation)."@en ; @@ -550,7 +550,7 @@ chameo:AdsorptiveStrippingVoltammetry rdf:type owl:Class ; skos:prefLabel "AdsorptiveStrippingVoltammetry"@en . -### http://w3id.org/emmo-chameo/chameo#AlphaSpectrometry +### https://w3id.org/emmo/domain/chameo#AlphaSpectrometry chameo:AlphaSpectrometry rdf:type owl:Class ; rdfs:subClassOf chameo:Spectrometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from."@en ; @@ -559,7 +559,7 @@ chameo:AlphaSpectrometry rdf:type owl:Class ; skos:prefLabel "AlphaSpectrometry"@en . -### http://w3id.org/emmo-chameo/chameo#Amperometry +### https://w3id.org/emmo/domain/chameo#Amperometry chameo:Amperometry rdf:type owl:Class ; rdfs:subClassOf chameo:Electrochemical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material."@en ; @@ -573,7 +573,7 @@ chameo:Amperometry rdf:type owl:Class ; skos:prefLabel "Amperometry"@en . -### http://w3id.org/emmo-chameo/chameo#AnalyticalElectronMicroscopy +### https://w3id.org/emmo/domain/chameo#AnalyticalElectronMicroscopy chameo:AnalyticalElectronMicroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis."@en ; @@ -582,7 +582,7 @@ chameo:AnalyticalElectronMicroscopy rdf:type owl:Class ; skos:prefLabel "AnalyticalElectronMicroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#AnodicStrippingVoltammetry +### https://w3id.org/emmo/domain/chameo#AnodicStrippingVoltammetry chameo:AnodicStrippingVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:StrippingVoltammetry ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q939328" ; @@ -595,7 +595,7 @@ chameo:AnodicStrippingVoltammetry rdf:type owl:Class ; skos:prefLabel "AnodicStrippingVoltammetry"@en . -### http://w3id.org/emmo-chameo/chameo#AtomProbeTomography +### https://w3id.org/emmo/domain/chameo#AtomProbeTomography chameo:AtomProbeTomography rdf:type owl:Class ; rdfs:subClassOf chameo:Tomography ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 """Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. @@ -608,7 +608,7 @@ The sample is prepared in the form of a very sharp tip. The cooled tip is biased skos:prefLabel "AtomProbeTomography"@en . -### http://w3id.org/emmo-chameo/chameo#AtomicForceMicroscopy +### https://w3id.org/emmo/domain/chameo#AtomicForceMicroscopy chameo:AtomicForceMicroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings."@en ; @@ -617,7 +617,7 @@ chameo:AtomicForceMicroscopy rdf:type owl:Class ; skos:prefLabel "AtomicForceMicroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#CalibrationData +### https://w3id.org/emmo/domain/chameo#CalibrationData chameo:CalibrationData rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationData ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen."@en ; @@ -626,7 +626,7 @@ chameo:CalibrationData rdf:type owl:Class ; skos:prefLabel "CalibrationData"@en . -### http://w3id.org/emmo-chameo/chameo#CalibrationDataPostProcessing +### https://w3id.org/emmo/domain/chameo#CalibrationDataPostProcessing chameo:CalibrationDataPostProcessing rdf:type owl:Class ; rdfs:subClassOf chameo:DataPostProcessing ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement."@en ; @@ -635,7 +635,7 @@ chameo:CalibrationDataPostProcessing rdf:type owl:Class ; skos:prefLabel "CalibrationDataPostProcessing"@en . -### http://w3id.org/emmo-chameo/chameo#CalibrationProcess +### https://w3id.org/emmo/domain/chameo#CalibrationProcess chameo:CalibrationProcess rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationProcedure , [ rdf:type owl:Restriction ; @@ -669,7 +669,7 @@ standards. skos:prefLabel "CalibrationProcess"@en . -### http://w3id.org/emmo-chameo/chameo#CalibrationTask +### https://w3id.org/emmo/domain/chameo#CalibrationTask chameo:CalibrationTask rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationTask , [ rdf:type owl:Restriction ; @@ -683,7 +683,7 @@ chameo:CalibrationTask rdf:type owl:Class ; skos:prefLabel "CalibrationTask" . -### http://w3id.org/emmo-chameo/chameo#Calorimetry +### https://w3id.org/emmo/domain/chameo#Calorimetry chameo:Calorimetry rdf:type owl:Class ; rdfs:subClassOf chameo:Thermochemical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter."@en ; @@ -692,7 +692,7 @@ chameo:Calorimetry rdf:type owl:Class ; skos:prefLabel "Calorimetry"@en . -### http://w3id.org/emmo-chameo/chameo#CathodicStrippingVoltammetry +### https://w3id.org/emmo/domain/chameo#CathodicStrippingVoltammetry chameo:CathodicStrippingVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:StrippingVoltammetry ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q4016325" ; @@ -705,7 +705,7 @@ chameo:CathodicStrippingVoltammetry rdf:type owl:Class ; skos:prefLabel "CathodicStrippingVoltammetry"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationData +### https://w3id.org/emmo/domain/chameo#CharacterisationData chameo:CharacterisationData rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_3e7add3d_e6ed_489a_a796_8e31fef9b490 ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Represents every type of data that is produced during a characterisation process"@en ; @@ -714,7 +714,7 @@ chameo:CharacterisationData rdf:type owl:Class ; skos:prefLabel "CharacterisationData" . -### http://w3id.org/emmo-chameo/chameo#CharacterisationDataValidation +### https://w3id.org/emmo/domain/chameo#CharacterisationDataValidation chameo:CharacterisationDataValidation rdf:type owl:Class ; rdfs:subClassOf ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Procedures to validate the characterisation data."@en ; @@ -723,7 +723,7 @@ chameo:CharacterisationDataValidation rdf:type owl:Class ; skos:prefLabel "CharacterisationDataValidation"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationEnvironment +### https://w3id.org/emmo/domain/chameo#CharacterisationEnvironment chameo:CharacterisationEnvironment rdf:type owl:Class ; rdfs:subClassOf [ rdf:type owl:Restriction ; owl:onProperty emmo:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ; @@ -736,7 +736,7 @@ chameo:CharacterisationEnvironment rdf:type owl:Class ; skos:prefLabel "CharacterisationEnvironment"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationEnvironmentProperty +### https://w3id.org/emmo/domain/chameo#CharacterisationEnvironmentProperty chameo:CharacterisationEnvironmentProperty rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba ; rdfs:comment "" ; @@ -744,7 +744,7 @@ chameo:CharacterisationEnvironmentProperty rdf:type owl:Class ; skos:prefLabel "CharacterisationEnvironmentProperty" . -### http://w3id.org/emmo-chameo/chameo#CharacterisationExperiment +### https://w3id.org/emmo/domain/chameo#CharacterisationExperiment chameo:CharacterisationExperiment rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_22522299_4091_4d1f_82a2_3890492df6db ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained."@en ; @@ -753,7 +753,7 @@ chameo:CharacterisationExperiment rdf:type owl:Class ; skos:prefLabel "CharacterisationExperiment"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationHardware +### https://w3id.org/emmo/domain/chameo#CharacterisationHardware chameo:CharacterisationHardware rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Whatever hardware is used during the characterisation process."@en ; @@ -762,7 +762,7 @@ chameo:CharacterisationHardware rdf:type owl:Class ; skos:prefLabel "CharacterisationHardware"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationHardwareManufacturer +### https://w3id.org/emmo/domain/chameo#CharacterisationHardwareManufacturer chameo:CharacterisationHardwareManufacturer rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationHardwareSpecification ; owl:disjointWith chameo:CharacterisationHardwareModel ; @@ -771,7 +771,7 @@ chameo:CharacterisationHardwareManufacturer rdf:type owl:Class ; skos:prefLabel "HardwareManufacturer"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationHardwareModel +### https://w3id.org/emmo/domain/chameo#CharacterisationHardwareModel chameo:CharacterisationHardwareModel rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationHardwareSpecification ; rdfs:comment "" ; @@ -779,7 +779,7 @@ chameo:CharacterisationHardwareModel rdf:type owl:Class ; skos:prefLabel "HardwareModel"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationHardwareSpecification +### https://w3id.org/emmo/domain/chameo#CharacterisationHardwareSpecification chameo:CharacterisationHardwareSpecification rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba ; rdfs:comment "" ; @@ -787,7 +787,7 @@ chameo:CharacterisationHardwareSpecification rdf:type owl:Class ; skos:prefLabel "CharacterisationHardwareSpecification"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationInstrument +### https://w3id.org/emmo/domain/chameo#CharacterisationInstrument chameo:CharacterisationInstrument rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_494b372c_cfdf_47d3_a4de_5e037c540de8 , emmo:EMMO_f2d5d3ad_2e00_417f_8849_686f3988d929 , @@ -812,7 +812,7 @@ NOTE 2 A measuring instrument is either an indicating measuring instrument or a skos:prefLabel "CharacterisationInstrument" . -### http://w3id.org/emmo-chameo/chameo#CharacterisationMeasurementProcess +### https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementProcess chameo:CharacterisationMeasurementProcess rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_463bcfda_867b_41d9_a967_211d4d437cfb , chameo:CharacterisationProcedure , @@ -859,7 +859,7 @@ system specifications. skos:prefLabel "CharacterisationMeasurementProcess"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationMeasurementTask +### https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementTask chameo:CharacterisationMeasurementTask rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationTask , [ rdf:type owl:Restriction ; @@ -873,7 +873,7 @@ chameo:CharacterisationMeasurementTask rdf:type owl:Class ; skos:prefLabel "CharacterisationMeasurementTask"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationMethod +### https://w3id.org/emmo/domain/chameo#CharacterisationMethod chameo:CharacterisationMethod rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_3b19eab4_79be_4b02_bdaf_ecf1f0067a68 , chameo:CharacterisationProcedure ; @@ -886,7 +886,7 @@ chameo:CharacterisationMethod rdf:type owl:Class ; skos:prefLabel "CharacterisationMethod"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationProcedure +### https://w3id.org/emmo/domain/chameo#CharacterisationProcedure chameo:CharacterisationProcedure rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_472a0ca2_58bf_4618_b561_6fe68bd9fd49 ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The process of performing characterisation by following some existing formalised operative rules."@en ; @@ -902,7 +902,7 @@ Data sampling"""@en ; skos:prefLabel "CharacterisationProcedure"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationProcedureValidation +### https://w3id.org/emmo/domain/chameo#CharacterisationProcedureValidation chameo:CharacterisationProcedureValidation rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_909415d1_7c43_4d5e_bbeb_7e1910159f66 ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Describes why the characterization procedure was chosen and deemed to be the most useful for the sample."@en ; @@ -911,7 +911,7 @@ chameo:CharacterisationProcedureValidation rdf:type owl:Class ; skos:prefLabel "CharacterisationProcedureValidation"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationProperty +### https://w3id.org/emmo/domain/chameo#CharacterisationProperty chameo:CharacterisationProperty rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_873b0ab3_88e6_4054_b901_5531e01f14a4 , chameo:SecondaryData ; @@ -921,7 +921,7 @@ chameo:CharacterisationProperty rdf:type owl:Class ; skos:prefLabel "CharacterisationProperty"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationProtocol +### https://w3id.org/emmo/domain/chameo#CharacterisationProtocol chameo:CharacterisationProtocol rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationProcedure ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories."@en ; @@ -930,7 +930,7 @@ chameo:CharacterisationProtocol rdf:type owl:Class ; skos:prefLabel "CharacterisationProtocol"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationSoftware +### https://w3id.org/emmo/domain/chameo#CharacterisationSoftware chameo:CharacterisationSoftware rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_3b031fa9_8623_4ea5_8b57_bcafb70c5c8b ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A software application to process characterisation data"@en ; @@ -940,7 +940,7 @@ chameo:CharacterisationSoftware rdf:type owl:Class ; skos:prefLabel "CharacterisationSoftware" . -### http://w3id.org/emmo-chameo/chameo#CharacterisationSystem +### https://w3id.org/emmo/domain/chameo#CharacterisationSystem chameo:CharacterisationSystem rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_7dea2572_ab42_45bd_9fd7_92448cec762a , [ rdf:type owl:Restriction ; @@ -965,7 +965,7 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; skos:prefLabel "CharacterisationSystem"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationTask +### https://w3id.org/emmo/domain/chameo#CharacterisationTask chameo:CharacterisationTask rdf:type owl:Class ; owl:equivalentClass [ owl:intersectionOf ( emmo:EMMO_4299e344_a321_4ef2_a744_bacfcce80afc chameo:CharacterisationProcedure @@ -983,7 +983,7 @@ chameo:CharacterisationTask rdf:type owl:Class ; skos:prefLabel "CharacterisationTask"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisationWorkflow +### https://w3id.org/emmo/domain/chameo#CharacterisationWorkflow chameo:CharacterisationWorkflow rdf:type owl:Class ; owl:equivalentClass [ owl:intersectionOf ( emmo:EMMO_64963ed6_39c9_4258_85e0_6466c4b5420c chameo:CharacterisationProcedure @@ -997,7 +997,7 @@ chameo:CharacterisationWorkflow rdf:type owl:Class ; skos:prefLabel "CharacterisationWorkflow"@en . -### http://w3id.org/emmo-chameo/chameo#CharacterisedSample +### https://w3id.org/emmo/domain/chameo#CharacterisedSample chameo:CharacterisedSample rdf:type owl:Class ; rdfs:subClassOf chameo:Sample ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The sample after having been subjected to a characterization process"@en ; @@ -1006,7 +1006,7 @@ chameo:CharacterisedSample rdf:type owl:Class ; skos:prefLabel "CharacterisedSample" . -### http://w3id.org/emmo-chameo/chameo#ChargeDistribution +### https://w3id.org/emmo/domain/chameo#ChargeDistribution chameo:ChargeDistribution rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; rdfs:comment "" ; @@ -1014,7 +1014,7 @@ chameo:ChargeDistribution rdf:type owl:Class ; skos:prefLabel "ChargeDistribution"@en . -### http://w3id.org/emmo-chameo/chameo#Chromatography +### https://w3id.org/emmo/domain/chameo#Chromatography chameo:Chromatography rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components."@en ; @@ -1024,7 +1024,7 @@ chameo:Chromatography rdf:type owl:Class ; skos:prefLabel "Chromatography"@en . -### http://w3id.org/emmo-chameo/chameo#Chronoamperometry +### https://w3id.org/emmo/domain/chameo#Chronoamperometry chameo:Chronoamperometry rdf:type owl:Class ; rdfs:subClassOf chameo:Amperometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "amperometry in which the current is measured as a function of time after a change in the applied potential"@en ; @@ -1037,7 +1037,7 @@ chameo:Chronoamperometry rdf:type owl:Class ; skos:prefLabel "Chronoamperometry"@en . -### http://w3id.org/emmo-chameo/chameo#Chronocoulometry +### https://w3id.org/emmo/domain/chameo#Chronocoulometry chameo:Chronocoulometry rdf:type owl:Class ; rdfs:subClassOf chameo:Coulometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve)"@en ; @@ -1048,7 +1048,7 @@ chameo:Chronocoulometry rdf:type owl:Class ; skos:prefLabel "Chronocoulometry"@en . -### http://w3id.org/emmo-chameo/chameo#Chronopotentiometry +### https://w3id.org/emmo/domain/chameo#Chronopotentiometry chameo:Chronopotentiometry rdf:type owl:Class ; rdfs:subClassOf chameo:Potentiometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "potentiometry in which the potential is measured with time following a change in applied current"@en ; @@ -1059,7 +1059,7 @@ chameo:Chronopotentiometry rdf:type owl:Class ; skos:prefLabel "Chronopotentiometry"@en . -### http://w3id.org/emmo-chameo/chameo#CompressionTest +### https://w3id.org/emmo/domain/chameo#CompressionTest chameo:CompressionTest rdf:type owl:Class ; rdfs:subClassOf chameo:Mechanical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads."@en ; @@ -1068,7 +1068,7 @@ chameo:CompressionTest rdf:type owl:Class ; skos:prefLabel "CompressionTest"@en . -### http://w3id.org/emmo-chameo/chameo#ConductometricTitration +### https://w3id.org/emmo/domain/chameo#ConductometricTitration chameo:ConductometricTitration rdf:type owl:Class ; rdfs:subClassOf chameo:Conductometry ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q11778221" ; @@ -1082,7 +1082,7 @@ chameo:ConductometricTitration rdf:type owl:Class ; skos:prefLabel "ConductometricTitration"@en . -### http://w3id.org/emmo-chameo/chameo#Conductometry +### https://w3id.org/emmo/domain/chameo#Conductometry chameo:Conductometry rdf:type owl:Class ; rdfs:subClassOf chameo:Electrochemical ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q901180" ; @@ -1096,7 +1096,7 @@ chameo:Conductometry rdf:type owl:Class ; skos:prefLabel "Conductometry"@en . -### http://w3id.org/emmo-chameo/chameo#ConfocalMicroscopy +### https://w3id.org/emmo/domain/chameo#ConfocalMicroscopy chameo:ConfocalMicroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation."@en ; @@ -1105,7 +1105,7 @@ chameo:ConfocalMicroscopy rdf:type owl:Class ; skos:prefLabel "ConfocalMicroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#CoulometricTitration +### https://w3id.org/emmo/domain/chameo#CoulometricTitration chameo:CoulometricTitration rdf:type owl:Class ; rdfs:subClassOf chameo:Coulometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point"@en ; @@ -1116,7 +1116,7 @@ chameo:CoulometricTitration rdf:type owl:Class ; skos:prefLabel "CoulometricTitration"@en . -### http://w3id.org/emmo-chameo/chameo#Coulometry +### https://w3id.org/emmo/domain/chameo#Coulometry chameo:Coulometry rdf:type owl:Class ; rdfs:subClassOf chameo:Electrochemical ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q1136979" ; @@ -1131,7 +1131,7 @@ chameo:Coulometry rdf:type owl:Class ; skos:prefLabel "Coulometry"@en . -### http://w3id.org/emmo-chameo/chameo#CreepTest +### https://w3id.org/emmo/domain/chameo#CreepTest chameo:CreepTest rdf:type owl:Class ; rdfs:subClassOf chameo:Mechanical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress."@en ; @@ -1140,7 +1140,7 @@ chameo:CreepTest rdf:type owl:Class ; skos:prefLabel "CreepTest"@en . -### http://w3id.org/emmo-chameo/chameo#CriticalAndSupercriticalChromatography +### https://w3id.org/emmo/domain/chameo#CriticalAndSupercriticalChromatography chameo:CriticalAndSupercriticalChromatography rdf:type owl:Class ; rdfs:subClassOf chameo:Chromatography ; rdfs:comment "" ; @@ -1148,7 +1148,7 @@ chameo:CriticalAndSupercriticalChromatography rdf:type owl:Class ; skos:prefLabel "CriticalAndSupercriticalChromatography"@en . -### http://w3id.org/emmo-chameo/chameo#CyclicChronopotentiometry +### https://w3id.org/emmo/domain/chameo#CyclicChronopotentiometry chameo:CyclicChronopotentiometry rdf:type owl:Class ; rdfs:subClassOf chameo:Chronopotentiometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "chronopotentiometry where the change in applied current undergoes a cyclic current reversal"@en ; @@ -1164,7 +1164,7 @@ chameo:CyclicChronopotentiometry rdf:type owl:Class ; ] . -### http://w3id.org/emmo-chameo/chameo#CyclicVoltammetry +### https://w3id.org/emmo/domain/chameo#CyclicVoltammetry chameo:CyclicVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:Voltammetry ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q1147647" ; @@ -1182,7 +1182,7 @@ chameo:CyclicVoltammetry rdf:type owl:Class ; skos:prefLabel "CyclicVoltammetry"@en . -### http://w3id.org/emmo-chameo/chameo#DCPolarography +### https://w3id.org/emmo/domain/chameo#DCPolarography chameo:DCPolarography rdf:type owl:Class ; rdfs:subClassOf chameo:Voltammetry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode"@en ; @@ -1195,7 +1195,7 @@ chameo:DCPolarography rdf:type owl:Class ; skos:prefLabel "DCPolarography"@en . -### http://w3id.org/emmo-chameo/chameo#DataAcquisitionRate +### https://w3id.org/emmo/domain/chameo#DataAcquisitionRate chameo:DataAcquisitionRate rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Quantify the raw data acquisition rate, if applicable."@en ; @@ -1204,7 +1204,7 @@ chameo:DataAcquisitionRate rdf:type owl:Class ; skos:prefLabel "DataAcquisitionRate"@en . -### http://w3id.org/emmo-chameo/chameo#DataAnalysis +### https://w3id.org/emmo/domain/chameo#DataAnalysis chameo:DataAnalysis rdf:type owl:Class ; rdfs:subClassOf ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model."@en ; @@ -1213,7 +1213,7 @@ chameo:DataAnalysis rdf:type owl:Class ; skos:prefLabel "DataAnalysis"@en . -### http://w3id.org/emmo-chameo/chameo#DataFiltering +### https://w3id.org/emmo/domain/chameo#DataFiltering chameo:DataFiltering rdf:type owl:Class ; rdfs:subClassOf chameo:DataPreparation ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria." ; @@ -1222,7 +1222,7 @@ chameo:DataFiltering rdf:type owl:Class ; skos:prefLabel "DataFiltering"@en . -### http://w3id.org/emmo-chameo/chameo#DataNormalisation +### https://w3id.org/emmo/domain/chameo#DataNormalisation chameo:DataNormalisation rdf:type owl:Class ; rdfs:subClassOf chameo:DataPreparation ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Data normalization involves adjusting raw data to a notionally common scale."@en ; @@ -1232,7 +1232,7 @@ chameo:DataNormalisation rdf:type owl:Class ; skos:prefLabel "DataNormalisation"@en . -### http://w3id.org/emmo-chameo/chameo#DataPostProcessing +### https://w3id.org/emmo/domain/chameo#DataPostProcessing chameo:DataPostProcessing rdf:type owl:Class ; rdfs:subClassOf ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Analysis, that allows one to calculate the final material property from the calibrated primary data." ; @@ -1241,7 +1241,7 @@ chameo:DataPostProcessing rdf:type owl:Class ; skos:prefLabel "DataPostProcessing"@en . -### http://w3id.org/emmo-chameo/chameo#DataPreparation +### https://w3id.org/emmo/domain/chameo#DataPreparation chameo:DataPreparation rdf:type owl:Class ; rdfs:subClassOf ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis." ; @@ -1250,7 +1250,7 @@ chameo:DataPreparation rdf:type owl:Class ; skos:prefLabel "DataPreparation"@en . -### http://w3id.org/emmo-chameo/chameo#DataProcessingThroughCalibration +### https://w3id.org/emmo/domain/chameo#DataProcessingThroughCalibration chameo:DataProcessingThroughCalibration rdf:type owl:Class ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Describes how raw data are corrected and/or modified through calibrations."@en ; rdfs:comment "" ; @@ -1258,7 +1258,7 @@ chameo:DataProcessingThroughCalibration rdf:type owl:Class ; skos:prefLabel "DataProcessingThroughCalibration"@en . -### http://w3id.org/emmo-chameo/chameo#DataQuality +### https://w3id.org/emmo/domain/chameo#DataQuality chameo:DataQuality rdf:type owl:Class ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material."@en ; emmo:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis)"@en ; @@ -1267,7 +1267,7 @@ chameo:DataQuality rdf:type owl:Class ; skos:prefLabel "DataQuality"@en . -### http://w3id.org/emmo-chameo/chameo#Detector +### https://w3id.org/emmo/domain/chameo#Detector chameo:Detector rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationHardware ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample."@en ; @@ -1278,7 +1278,7 @@ chameo:Detector rdf:type owl:Class ; skos:prefLabel "Detector"@en . -### http://w3id.org/emmo-chameo/chameo#DielectricAndImpedanceSpectroscopy +### https://w3id.org/emmo/domain/chameo#DielectricAndImpedanceSpectroscopy chameo:DielectricAndImpedanceSpectroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Spectroscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS."@en ; @@ -1287,7 +1287,7 @@ chameo:DielectricAndImpedanceSpectroscopy rdf:type owl:Class ; skos:prefLabel "DielectricAndImpedanceSpectroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#Dielectrometry +### https://w3id.org/emmo/domain/chameo#Dielectrometry chameo:Dielectrometry rdf:type owl:Class ; rdfs:subClassOf chameo:Electrochemical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field"@en ; @@ -1299,7 +1299,7 @@ chameo:Dielectrometry rdf:type owl:Class ; skos:prefLabel "Dielectrometry"@en . -### http://w3id.org/emmo-chameo/chameo#DifferentialLinearPulseVoltammetry +### https://w3id.org/emmo/domain/chameo#DifferentialLinearPulseVoltammetry chameo:DifferentialLinearPulseVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:DifferentialPulseVoltammetry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential."@en ; @@ -1315,7 +1315,7 @@ chameo:DifferentialLinearPulseVoltammetry rdf:type owl:Class ; ] . -### http://w3id.org/emmo-chameo/chameo#DifferentialPulseVoltammetry +### https://w3id.org/emmo/domain/chameo#DifferentialPulseVoltammetry chameo:DifferentialPulseVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:Voltammetry ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q5275361" ; @@ -1331,7 +1331,7 @@ chameo:DifferentialPulseVoltammetry rdf:type owl:Class ; skos:prefLabel "DifferentialPulseVoltammetry"@en . -### http://w3id.org/emmo-chameo/chameo#DifferentialRefractiveIndex +### https://w3id.org/emmo/domain/chameo#DifferentialRefractiveIndex chameo:DifferentialRefractiveIndex rdf:type owl:Class ; rdfs:subClassOf chameo:Optical ; rdfs:comment "" ; @@ -1339,7 +1339,7 @@ chameo:DifferentialRefractiveIndex rdf:type owl:Class ; skos:prefLabel "DifferentialRefractiveIndex"@en . -### http://w3id.org/emmo-chameo/chameo#DifferentialScanningCalorimetry +### https://w3id.org/emmo/domain/chameo#DifferentialScanningCalorimetry chameo:DifferentialScanningCalorimetry rdf:type owl:Class ; rdfs:subClassOf chameo:Thermochemical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively."@en ; @@ -1349,7 +1349,7 @@ chameo:DifferentialScanningCalorimetry rdf:type owl:Class ; skos:prefLabel "DifferentialScanningCalorimetry"@en . -### http://w3id.org/emmo-chameo/chameo#DifferentialStaircasePulseVoltammetry +### https://w3id.org/emmo/domain/chameo#DifferentialStaircasePulseVoltammetry chameo:DifferentialStaircasePulseVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:DifferentialPulseVoltammetry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp."@en ; @@ -1365,7 +1365,7 @@ chameo:DifferentialStaircasePulseVoltammetry rdf:type owl:Class ; ] . -### http://w3id.org/emmo-chameo/chameo#DifferentialThermalAnalysis +### https://w3id.org/emmo/domain/chameo#DifferentialThermalAnalysis chameo:DifferentialThermalAnalysis rdf:type owl:Class ; rdfs:subClassOf chameo:Thermochemical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample."@en ; @@ -1375,7 +1375,7 @@ chameo:DifferentialThermalAnalysis rdf:type owl:Class ; skos:prefLabel "DifferentialThermalAnalysis"@en . -### http://w3id.org/emmo-chameo/chameo#Dilatometry +### https://w3id.org/emmo/domain/chameo#Dilatometry chameo:Dilatometry rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions."@en ; @@ -1385,7 +1385,7 @@ chameo:Dilatometry rdf:type owl:Class ; skos:prefLabel "Dilatometry"@en . -### http://w3id.org/emmo-chameo/chameo#DirectCoulometryAtControlledCurrent +### https://w3id.org/emmo/domain/chameo#DirectCoulometryAtControlledCurrent chameo:DirectCoulometryAtControlledCurrent rdf:type owl:Class ; rdfs:subClassOf chameo:Coulometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "coulometry at an imposed, constant current in the electrochemical cell"@en ; @@ -1396,7 +1396,7 @@ chameo:DirectCoulometryAtControlledCurrent rdf:type owl:Class ; skos:prefLabel "DirectCoulometryAtControlledCurrent"@en . -### http://w3id.org/emmo-chameo/chameo#DirectCoulometryAtControlledPotential +### https://w3id.org/emmo/domain/chameo#DirectCoulometryAtControlledPotential chameo:DirectCoulometryAtControlledPotential rdf:type owl:Class ; rdfs:subClassOf chameo:Coulometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "coulometry at a preselected constant potential of the working electrode"@en ; @@ -1408,7 +1408,7 @@ chameo:DirectCoulometryAtControlledPotential rdf:type owl:Class ; skos:prefLabel "DirectCoulometryAtControlledPotential"@en . -### http://w3id.org/emmo-chameo/chameo#DynamicLightScattering +### https://w3id.org/emmo/domain/chameo#DynamicLightScattering chameo:DynamicLightScattering rdf:type owl:Class ; rdfs:subClassOf chameo:Optical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS)."@en ; @@ -1418,7 +1418,7 @@ chameo:DynamicLightScattering rdf:type owl:Class ; skos:prefLabel "DynamicLightScattering"@en . -### http://w3id.org/emmo-chameo/chameo#DynamicMechanicalAnalysis +### https://w3id.org/emmo/domain/chameo#DynamicMechanicalAnalysis chameo:DynamicMechanicalAnalysis rdf:type owl:Class ; rdfs:subClassOf chameo:Mechanical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions."@en ; @@ -1427,7 +1427,7 @@ chameo:DynamicMechanicalAnalysis rdf:type owl:Class ; skos:prefLabel "DynamicMechanicalAnalysis"@en . -### http://w3id.org/emmo-chameo/chameo#DynamicMechanicalSpectroscopy +### https://w3id.org/emmo/domain/chameo#DynamicMechanicalSpectroscopy chameo:DynamicMechanicalSpectroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Spectroscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test."@en ; @@ -1437,7 +1437,7 @@ chameo:DynamicMechanicalSpectroscopy rdf:type owl:Class ; skos:prefLabel "DynamicMechanicalSpectroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#Electrochemical +### https://w3id.org/emmo/domain/chameo#Electrochemical chameo:Electrochemical rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity"@en ; @@ -1447,7 +1447,7 @@ chameo:Electrochemical rdf:type owl:Class ; skos:prefLabel "Electrochemical"@en . -### http://w3id.org/emmo-chameo/chameo#ElectrochemicalImpedanceSpectroscopy +### https://w3id.org/emmo/domain/chameo#ElectrochemicalImpedanceSpectroscopy chameo:ElectrochemicalImpedanceSpectroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Impedimetry ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q3492904"@en ; @@ -1461,7 +1461,7 @@ chameo:ElectrochemicalImpedanceSpectroscopy rdf:type owl:Class ; skos:prefLabel "ElectrochemicalImpedanceSpectroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#ElectrochemicalPiezoelectricMicrogravimetry +### https://w3id.org/emmo/domain/chameo#ElectrochemicalPiezoelectricMicrogravimetry chameo:ElectrochemicalPiezoelectricMicrogravimetry rdf:type owl:Class ; rdfs:subClassOf chameo:Electrogravimetry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Electrogravimetry using an electrochemical quartz crystal microbalance."@en ; @@ -1472,7 +1472,7 @@ chameo:ElectrochemicalPiezoelectricMicrogravimetry rdf:type owl:Class ; skos:prefLabel "ElectrochemicalPiezoelectricMicrogravimetry"@en . -### http://w3id.org/emmo-chameo/chameo#Electrogravimetry +### https://w3id.org/emmo/domain/chameo#Electrogravimetry chameo:Electrogravimetry rdf:type owl:Class ; rdfs:subClassOf chameo:Electrochemical ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q902953" ; @@ -1491,7 +1491,7 @@ chameo:Electrogravimetry rdf:type owl:Class ; ] . -### http://w3id.org/emmo-chameo/chameo#ElectronBackscatterDiffraction +### https://w3id.org/emmo/domain/chameo#ElectronBackscatterDiffraction chameo:ElectronBackscatterDiffraction rdf:type owl:Class ; rdfs:subClassOf chameo:ScanningElectronMicroscopy , chameo:ScatteringAndDiffraction ; @@ -1502,7 +1502,7 @@ chameo:ElectronBackscatterDiffraction rdf:type owl:Class ; skos:prefLabel "ElectronBackscatterDiffraction"@en . -### http://w3id.org/emmo-chameo/chameo#ElectronProbeMicroanalysis +### https://w3id.org/emmo/domain/chameo#ElectronProbeMicroanalysis chameo:ElectronProbeMicroanalysis rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers."@en ; @@ -1511,7 +1511,7 @@ chameo:ElectronProbeMicroanalysis rdf:type owl:Class ; skos:prefLabel "ElectronProbeMicroanalysis"@en . -### http://w3id.org/emmo-chameo/chameo#Ellipsometry +### https://w3id.org/emmo/domain/chameo#Ellipsometry chameo:Ellipsometry rdf:type owl:Class ; rdfs:subClassOf chameo:Optical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 """Ellipsometry is an optical technique that uses polarised light to probe the dielectric @@ -1525,7 +1525,7 @@ can probe a range of properties including layer thickness, morphology, and chemi skos:prefLabel "Ellipsometry"@en . -### http://w3id.org/emmo-chameo/chameo#EnvironmentalScanningElectronMicroscopy +### https://w3id.org/emmo/domain/chameo#EnvironmentalScanningElectronMicroscopy chameo:EnvironmentalScanningElectronMicroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber."@en ; @@ -1534,7 +1534,7 @@ chameo:EnvironmentalScanningElectronMicroscopy rdf:type owl:Class ; skos:prefLabel "EnvironmentalScanningElectronMicroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#Exafs +### https://w3id.org/emmo/domain/chameo#Exafs chameo:Exafs rdf:type owl:Class ; rdfs:subClassOf chameo:Spectroscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 """Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. @@ -1544,7 +1544,7 @@ When the incident x-ray energy matches the binding energy of an electron of an a skos:prefLabel "Exafs"@en . -### http://w3id.org/emmo-chameo/chameo#FatigueTesting +### https://w3id.org/emmo/domain/chameo#FatigueTesting chameo:FatigueTesting rdf:type owl:Class ; rdfs:subClassOf chameo:Mechanical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue."@en ; @@ -1553,7 +1553,7 @@ chameo:FatigueTesting rdf:type owl:Class ; skos:prefLabel "FatigueTesting"@en . -### http://w3id.org/emmo-chameo/chameo#FibDic +### https://w3id.org/emmo/domain/chameo#FibDic chameo:FibDic rdf:type owl:Class ; rdfs:subClassOf chameo:Mechanical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB)."@en ; @@ -1563,7 +1563,7 @@ chameo:FibDic rdf:type owl:Class ; skos:prefLabel "FibDic" . -### http://w3id.org/emmo-chameo/chameo#FieldEmissionScanningElectronMicroscopy +### https://w3id.org/emmo/domain/chameo#FieldEmissionScanningElectronMicroscopy chameo:FieldEmissionScanningElectronMicroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging."@en ; @@ -1573,7 +1573,7 @@ chameo:FieldEmissionScanningElectronMicroscopy rdf:type owl:Class ; skos:prefLabel "FieldEmissionScanningElectronMicroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#Fractography +### https://w3id.org/emmo/domain/chameo#Fractography chameo:Fractography rdf:type owl:Class ; rdfs:subClassOf chameo:Optical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture .Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog."@en ; @@ -1582,7 +1582,7 @@ chameo:Fractography rdf:type owl:Class ; skos:prefLabel "Fractography"@en . -### http://w3id.org/emmo-chameo/chameo#FreezingPointDepressionOsmometry +### https://w3id.org/emmo/domain/chameo#FreezingPointDepressionOsmometry chameo:FreezingPointDepressionOsmometry rdf:type owl:Class ; rdfs:subClassOf chameo:Osmometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point."@en ; @@ -1591,7 +1591,7 @@ chameo:FreezingPointDepressionOsmometry rdf:type owl:Class ; skos:prefLabel "FreezingPointDepressionOsmometry"@en . -### http://w3id.org/emmo-chameo/chameo#GITT +### https://w3id.org/emmo/domain/chameo#GITT chameo:GITT rdf:type owl:Class ; rdfs:subClassOf chameo:Chronopotentiometry ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q120906986" ; @@ -1602,7 +1602,7 @@ chameo:GITT rdf:type owl:Class ; skos:prefLabel "GITT"@en . -### http://w3id.org/emmo-chameo/chameo#GammaSpectrometry +### https://w3id.org/emmo/domain/chameo#GammaSpectrometry chameo:GammaSpectrometry rdf:type owl:Class ; rdfs:subClassOf chameo:Spectrometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 """Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement.[2] @@ -1615,7 +1615,7 @@ A detailed analysis of this spectrum is typically used to determine the identity skos:prefLabel "GammaSpectrometry"@en . -### http://w3id.org/emmo-chameo/chameo#HPPC +### https://w3id.org/emmo/domain/chameo#HPPC chameo:HPPC rdf:type owl:Class ; rdfs:subClassOf chameo:Chronopotentiometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "electrochemical method that measures the voltage drop of a cell resulting from a square wave current load"@en ; @@ -1626,7 +1626,7 @@ chameo:HPPC rdf:type owl:Class ; skos:prefLabel "HPPC"@en . -### http://w3id.org/emmo-chameo/chameo#HardnessTesting +### https://w3id.org/emmo/domain/chameo#HardnessTesting chameo:HardnessTesting rdf:type owl:Class ; rdfs:subClassOf chameo:Mechanical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material."@en ; @@ -1635,7 +1635,7 @@ chameo:HardnessTesting rdf:type owl:Class ; skos:prefLabel "HardnessTesting"@en . -### http://w3id.org/emmo-chameo/chameo#Hazard +### https://w3id.org/emmo/domain/chameo#Hazard chameo:Hazard rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger."@en ; @@ -1644,7 +1644,7 @@ chameo:Hazard rdf:type owl:Class ; skos:prefLabel "Hazard"@en . -### http://w3id.org/emmo-chameo/chameo#Holder +### https://w3id.org/emmo/domain/chameo#Holder chameo:Holder rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationHardware ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "An object which supports the specimen in the correct position for the characterisation process."@en ; @@ -1653,7 +1653,7 @@ chameo:Holder rdf:type owl:Class ; skos:prefLabel "Holder"@en . -### http://w3id.org/emmo-chameo/chameo#HydrodynamicVoltammetry +### https://w3id.org/emmo/domain/chameo#HydrodynamicVoltammetry chameo:HydrodynamicVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:Voltammetry ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q17028237" ; @@ -1668,7 +1668,7 @@ chameo:HydrodynamicVoltammetry rdf:type owl:Class ; skos:prefLabel "HydrodynamicVoltammetry"@en . -### http://w3id.org/emmo-chameo/chameo#ICI +### https://w3id.org/emmo/domain/chameo#ICI chameo:ICI rdf:type owl:Class ; rdfs:subClassOf chameo:Chronopotentiometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current"@en ; @@ -1678,7 +1678,7 @@ chameo:ICI rdf:type owl:Class ; skos:prefLabel "ICI"@en . -### http://w3id.org/emmo-chameo/chameo#Impedimetry +### https://w3id.org/emmo/domain/chameo#Impedimetry chameo:Impedimetry rdf:type owl:Class ; rdfs:subClassOf chameo:Electrochemical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential"@en ; @@ -1688,7 +1688,7 @@ chameo:Impedimetry rdf:type owl:Class ; skos:prefLabel "Impedimetry"@en . -### http://w3id.org/emmo-chameo/chameo#InteractionVolume +### https://w3id.org/emmo/domain/chameo#InteractionVolume chameo:InteractionVolume rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_90ae56e4_d197_49b6_be1a_0049e4756606 ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information)."@en ; @@ -1701,7 +1701,7 @@ chameo:InteractionVolume rdf:type owl:Class ; skos:prefLabel "InteractionVolume"@en . -### http://w3id.org/emmo-chameo/chameo#IntermediateSample +### https://w3id.org/emmo/domain/chameo#IntermediateSample chameo:IntermediateSample rdf:type owl:Class ; rdfs:subClassOf chameo:Sample ; rdfs:comment "" ; @@ -1709,7 +1709,7 @@ chameo:IntermediateSample rdf:type owl:Class ; skos:prefLabel "IntermediateSample"@en . -### http://w3id.org/emmo-chameo/chameo#IonChromatography +### https://w3id.org/emmo/domain/chameo#IonChromatography chameo:IonChromatography rdf:type owl:Class ; rdfs:subClassOf chameo:Chromatography ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger."@en ; @@ -1719,7 +1719,7 @@ chameo:IonChromatography rdf:type owl:Class ; skos:prefLabel "IonChromatography"@en . -### http://w3id.org/emmo-chameo/chameo#IonMobilitySpectrometry +### https://w3id.org/emmo/domain/chameo#IonMobilitySpectrometry chameo:IonMobilitySpectrometry rdf:type owl:Class ; rdfs:subClassOf chameo:Spectrometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring."@en ; @@ -1729,7 +1729,7 @@ chameo:IonMobilitySpectrometry rdf:type owl:Class ; skos:prefLabel "IonMobilitySpectrometry"@en . -### http://w3id.org/emmo-chameo/chameo#IsothermalMicrocalorimetry +### https://w3id.org/emmo/domain/chameo#IsothermalMicrocalorimetry chameo:IsothermalMicrocalorimetry rdf:type owl:Class ; rdfs:subClassOf chameo:Thermochemical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 """Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). @@ -1741,7 +1741,7 @@ IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed ti skos:prefLabel "IsothermalMicrocalorimetry"@en . -### http://w3id.org/emmo-chameo/chameo#Laboratory +### https://w3id.org/emmo/domain/chameo#Laboratory chameo:Laboratory rdf:type owl:Class ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The laboratory where the whole characterisation process or some of its stages take place." ; rdfs:comment "" ; @@ -1749,7 +1749,7 @@ chameo:Laboratory rdf:type owl:Class ; skos:prefLabel "Laboratory" . -### http://w3id.org/emmo-chameo/chameo#LevelOfAutomation +### https://w3id.org/emmo/domain/chameo#LevelOfAutomation chameo:LevelOfAutomation rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_909415d1_7c43_4d5e_bbeb_7e1910159f66 ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Describes the level of automation of the test."@en ; @@ -1758,7 +1758,7 @@ chameo:LevelOfAutomation rdf:type owl:Class ; skos:prefLabel "LevelOfAutomation"@en . -### http://w3id.org/emmo-chameo/chameo#LevelOfExpertise +### https://w3id.org/emmo/domain/chameo#LevelOfExpertise chameo:LevelOfExpertise rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_909415d1_7c43_4d5e_bbeb_7e1910159f66 ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Describes the level of expertise required to carry out a process (the entire test or the data processing)."@en ; @@ -1767,7 +1767,7 @@ chameo:LevelOfExpertise rdf:type owl:Class ; skos:prefLabel "LevelOfExpertise"@en . -### http://w3id.org/emmo-chameo/chameo#LightScattering +### https://w3id.org/emmo/domain/chameo#LightScattering chameo:LightScattering rdf:type owl:Class ; rdfs:subClassOf chameo:Optical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color."@en ; @@ -1776,7 +1776,7 @@ chameo:LightScattering rdf:type owl:Class ; skos:prefLabel "LightScattering"@en . -### http://w3id.org/emmo-chameo/chameo#LinearChronopotentiometry +### https://w3id.org/emmo/domain/chameo#LinearChronopotentiometry chameo:LinearChronopotentiometry rdf:type owl:Class ; rdfs:subClassOf chameo:Chronopotentiometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "chronopotentiometry where the applied current is changed linearly"@en ; @@ -1792,7 +1792,7 @@ chameo:LinearChronopotentiometry rdf:type owl:Class ; ] . -### http://w3id.org/emmo-chameo/chameo#LinearScanVoltammetry +### https://w3id.org/emmo/domain/chameo#LinearScanVoltammetry chameo:LinearScanVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:Voltammetry ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q620700" ; @@ -1810,7 +1810,7 @@ chameo:LinearScanVoltammetry rdf:type owl:Class ; skos:prefLabel "LinearScanVoltammetry"@en . -### http://w3id.org/emmo-chameo/chameo#MassSpectrometry +### https://w3id.org/emmo/domain/chameo#MassSpectrometry chameo:MassSpectrometry rdf:type owl:Class ; rdfs:subClassOf chameo:Spectrometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules."@en ; @@ -1819,7 +1819,7 @@ chameo:MassSpectrometry rdf:type owl:Class ; skos:prefLabel "MassSpectrometry"@en . -### http://w3id.org/emmo-chameo/chameo#MeasurementDataPostProcessing +### https://w3id.org/emmo/domain/chameo#MeasurementDataPostProcessing chameo:MeasurementDataPostProcessing rdf:type owl:Class ; rdfs:subClassOf chameo:DataPostProcessing ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Application of a post-processing model to signals through a software, in order to calculate the final characterisation property."@en ; @@ -1830,7 +1830,7 @@ chameo:MeasurementDataPostProcessing rdf:type owl:Class ; skos:prefLabel "MeasurementDataPostProcessing"@en . -### http://w3id.org/emmo-chameo/chameo#MeasurementParameter +### https://w3id.org/emmo/domain/chameo#MeasurementParameter chameo:MeasurementParameter rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_d1d436e7_72fc_49cd_863b_7bfb4ba5276a ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Describes the main input parameters that are needed to acquire the signal"@en ; @@ -1839,7 +1839,7 @@ chameo:MeasurementParameter rdf:type owl:Class ; skos:prefLabel "MeasurementParameter"@en . -### http://w3id.org/emmo-chameo/chameo#MeasurementSystemAdjustment +### https://w3id.org/emmo/domain/chameo#MeasurementSystemAdjustment chameo:MeasurementSystemAdjustment rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationProcedure ; emmo:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 """Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured @@ -1860,7 +1860,7 @@ The output of this process can be a specific measurement parameter to be used in skos:prefLabel "MeasurementSystemAdjustment" . -### http://w3id.org/emmo-chameo/chameo#MeasurementTime +### https://w3id.org/emmo/domain/chameo#MeasurementTime chameo:MeasurementTime rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The overall time needed to acquire the measurement data"@en ; @@ -1869,7 +1869,7 @@ chameo:MeasurementTime rdf:type owl:Class ; skos:prefLabel "MeasurementTime"@en . -### http://w3id.org/emmo-chameo/chameo#Mechanical +### https://w3id.org/emmo/domain/chameo#Mechanical chameo:Mechanical rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 """Mechanical testing covers a wide range of tests, which can be divided broadly into two types: @@ -1881,7 +1881,7 @@ chameo:Mechanical rdf:type owl:Class ; skos:prefLabel "Mechanical"@en . -### http://w3id.org/emmo-chameo/chameo#MembraneOsmometry +### https://w3id.org/emmo/domain/chameo#MembraneOsmometry chameo:MembraneOsmometry rdf:type owl:Class ; rdfs:subClassOf chameo:Osmometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution."@en ; @@ -1890,7 +1890,7 @@ chameo:MembraneOsmometry rdf:type owl:Class ; skos:prefLabel "MembraneOsmometry"@en . -### http://w3id.org/emmo-chameo/chameo#Microscopy +### https://w3id.org/emmo/domain/chameo#Microscopy chameo:Microscopy rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales."@en ; @@ -1899,7 +1899,7 @@ chameo:Microscopy rdf:type owl:Class ; skos:prefLabel "Microscopy"@en . -### http://w3id.org/emmo-chameo/chameo#Nanoindentation +### https://w3id.org/emmo/domain/chameo#Nanoindentation chameo:Nanoindentation rdf:type owl:Class ; rdfs:subClassOf chameo:Mechanical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation."@en ; @@ -1909,7 +1909,7 @@ chameo:Nanoindentation rdf:type owl:Class ; skos:prefLabel "Nanoindentation"@en . -### http://w3id.org/emmo-chameo/chameo#NeutronSpinEchoSpectroscopy +### https://w3id.org/emmo/domain/chameo#NeutronSpinEchoSpectroscopy chameo:NeutronSpinEchoSpectroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Spectroscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation."@en ; @@ -1919,7 +1919,7 @@ chameo:NeutronSpinEchoSpectroscopy rdf:type owl:Class ; skos:prefLabel "NeutronSpinEchoSpectroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#Nexafs +### https://w3id.org/emmo/domain/chameo#Nexafs chameo:Nexafs rdf:type owl:Class ; rdfs:subClassOf chameo:Spectroscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms."@en ; @@ -1928,7 +1928,7 @@ chameo:Nexafs rdf:type owl:Class ; skos:prefLabel "Nexafs"@en . -### http://w3id.org/emmo-chameo/chameo#NormalPulseVoltammetry +### https://w3id.org/emmo/domain/chameo#NormalPulseVoltammetry chameo:NormalPulseVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:Voltammetry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential"@en ; @@ -1944,7 +1944,7 @@ chameo:NormalPulseVoltammetry rdf:type owl:Class ; skos:prefLabel "NormalPulseVoltammetry"@en . -### http://w3id.org/emmo-chameo/chameo#NuclearMagneticResonance +### https://w3id.org/emmo/domain/chameo#NuclearMagneticResonance chameo:NuclearMagneticResonance rdf:type owl:Class ; rdfs:subClassOf chameo:Spectroscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds."@en ; @@ -1955,7 +1955,7 @@ chameo:NuclearMagneticResonance rdf:type owl:Class ; skos:prefLabel "NuclearMagneticResonance"@en . -### http://w3id.org/emmo-chameo/chameo#OpenCircuitHold +### https://w3id.org/emmo/domain/chameo#OpenCircuitHold chameo:OpenCircuitHold rdf:type owl:Class ; rdfs:subClassOf chameo:Potentiometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "a process in which the electric current is kept constant at 0 (i.e., open-circuit conditions)"@en ; @@ -1965,7 +1965,7 @@ chameo:OpenCircuitHold rdf:type owl:Class ; skos:prefLabel "OpenCircuitHold"@en . -### http://w3id.org/emmo-chameo/chameo#Operator +### https://w3id.org/emmo/domain/chameo#Operator chameo:Operator rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_c130614a_2985_476d_a7ed_8a137847703c ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The human operator who takes care of the whole characterisation method or sub-processes/stages."@en ; @@ -1974,7 +1974,7 @@ chameo:Operator rdf:type owl:Class ; skos:prefLabel "Operator"@en . -### http://w3id.org/emmo-chameo/chameo#Optical +### https://w3id.org/emmo/domain/chameo#Optical chameo:Optical rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; rdfs:comment "" ; @@ -1982,7 +1982,7 @@ chameo:Optical rdf:type owl:Class ; skos:prefLabel "Optical"@en . -### http://w3id.org/emmo-chameo/chameo#OpticalMicroscopy +### https://w3id.org/emmo/domain/chameo#OpticalMicroscopy chameo:OpticalMicroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light"@en ; @@ -1991,7 +1991,7 @@ chameo:OpticalMicroscopy rdf:type owl:Class ; skos:prefLabel "OpticalMicroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#Osmometry +### https://w3id.org/emmo/domain/chameo#Osmometry chameo:Osmometry rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg)."@en ; @@ -2000,7 +2000,7 @@ chameo:Osmometry rdf:type owl:Class ; skos:prefLabel "Osmometry"@en . -### http://w3id.org/emmo-chameo/chameo#PhotoluminescenceMicroscopy +### https://w3id.org/emmo/domain/chameo#PhotoluminescenceMicroscopy chameo:PhotoluminescenceMicroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules."@en ; @@ -2009,7 +2009,7 @@ chameo:PhotoluminescenceMicroscopy rdf:type owl:Class ; skos:prefLabel "PhotoluminescenceMicroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#PhysicsOfInteraction +### https://w3id.org/emmo/domain/chameo#PhysicsOfInteraction chameo:PhysicsOfInteraction rdf:type owl:Class ; rdfs:subClassOf [ rdf:type owl:Class ; owl:unionOf ( emmo:EMMO_27c5d8c6_8af7_4d63_beb1_ec37cd8b3fa3 @@ -2023,7 +2023,7 @@ chameo:PhysicsOfInteraction rdf:type owl:Class ; skos:prefLabel "PhysicsOfInteraction"@en . -### http://w3id.org/emmo-chameo/chameo#PostProcessingModel +### https://w3id.org/emmo/domain/chameo#PostProcessingModel chameo:PostProcessingModel rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_f7ed665b_c2e1_42bc_889b_6b42ed3a36f0 ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Mathematical model used to process data."@en ; @@ -2033,7 +2033,7 @@ chameo:PostProcessingModel rdf:type owl:Class ; skos:prefLabel "PostProcessingModel"@en . -### http://w3id.org/emmo-chameo/chameo#PotentiometricStrippingAnalysis +### https://w3id.org/emmo/domain/chameo#PotentiometricStrippingAnalysis chameo:PotentiometricStrippingAnalysis rdf:type owl:Class ; rdfs:subClassOf chameo:Voltammetry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential"@en ; @@ -2082,7 +2082,7 @@ chameo:PotentiometricStrippingAnalysis rdf:type owl:Class ; ] . -### http://w3id.org/emmo-chameo/chameo#Potentiometry +### https://w3id.org/emmo/domain/chameo#Potentiometry chameo:Potentiometry rdf:type owl:Class ; rdfs:subClassOf chameo:Electrochemical ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q900632" ; @@ -2096,7 +2096,7 @@ chameo:Potentiometry rdf:type owl:Class ; skos:prefLabel "Potentiometry"@en . -### http://w3id.org/emmo-chameo/chameo#PreparedSample +### https://w3id.org/emmo/domain/chameo#PreparedSample chameo:PreparedSample rdf:type owl:Class ; rdfs:subClassOf chameo:Sample ; owl:disjointWith chameo:ReferenceSample ; @@ -2106,7 +2106,7 @@ chameo:PreparedSample rdf:type owl:Class ; skos:prefLabel "PreparedSample" . -### http://w3id.org/emmo-chameo/chameo#PrimaryData +### https://w3id.org/emmo/domain/chameo#PrimaryData chameo:PrimaryData rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationData ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing."@en ; @@ -2118,7 +2118,7 @@ chameo:PrimaryData rdf:type owl:Class ; skos:prefLabel "PrimaryData"@en . -### http://w3id.org/emmo-chameo/chameo#Probe +### https://w3id.org/emmo/domain/chameo#Probe chameo:Probe rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationHardware ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties."@en ; @@ -2132,7 +2132,7 @@ chameo:Probe rdf:type owl:Class ; skos:prefLabel "Probe"@en . -### http://w3id.org/emmo-chameo/chameo#ProbeSampleInteraction +### https://w3id.org/emmo/domain/chameo#ProbeSampleInteraction chameo:ProbeSampleInteraction rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_43e9a05d_98af_41b4_92f6_00f79a09bfce , [ rdf:type owl:Restriction ; @@ -2145,7 +2145,7 @@ chameo:ProbeSampleInteraction rdf:type owl:Class ; skos:prefLabel "ProbeSampleInteraction"@en . -### http://w3id.org/emmo-chameo/chameo#ProcessingReproducibility +### https://w3id.org/emmo/domain/chameo#ProcessingReproducibility chameo:ProcessingReproducibility rdf:type owl:Class ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert)"@en ; rdfs:comment "" ; @@ -2153,7 +2153,7 @@ chameo:ProcessingReproducibility rdf:type owl:Class ; skos:prefLabel "ProcessingReproducibility"@en . -### http://w3id.org/emmo-chameo/chameo#Profilometry +### https://w3id.org/emmo/domain/chameo#Profilometry chameo:Profilometry rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness."@en ; @@ -2162,7 +2162,7 @@ chameo:Profilometry rdf:type owl:Class ; skos:prefLabel "Profilometry"@en . -### http://w3id.org/emmo-chameo/chameo#PulsedElectroacousticMethod +### https://w3id.org/emmo/domain/chameo#PulsedElectroacousticMethod chameo:PulsedElectroacousticMethod rdf:type owl:Class ; rdfs:subClassOf chameo:ChargeDistribution ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics."@en ; @@ -2172,7 +2172,7 @@ chameo:PulsedElectroacousticMethod rdf:type owl:Class ; skos:prefLabel "PulsedElectroacousticMethod"@en . -### http://w3id.org/emmo-chameo/chameo#RamanSpectroscopy +### https://w3id.org/emmo/domain/chameo#RamanSpectroscopy chameo:RamanSpectroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Spectroscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 """Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. @@ -2185,7 +2185,7 @@ Typically, a sample is illuminated with a laser beam. Electromagnetic radiation skos:prefLabel "RamanSpectroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#RawData +### https://w3id.org/emmo/domain/chameo#RawData chameo:RawData rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_0f6f0120_c079_4d95_bb11_4ddee05e530e , chameo:CharacterisationData ; @@ -2199,7 +2199,7 @@ chameo:RawData rdf:type owl:Class ; skos:prefLabel "RawData"@en . -### http://w3id.org/emmo-chameo/chameo#RawSample +### https://w3id.org/emmo/domain/chameo#RawSample chameo:RawSample rdf:type owl:Class ; rdfs:subClassOf chameo:Sample ; rdfs:comment "" ; @@ -2207,7 +2207,7 @@ chameo:RawSample rdf:type owl:Class ; skos:prefLabel "RawSample"@en . -### http://w3id.org/emmo-chameo/chameo#ReferenceSample +### https://w3id.org/emmo/domain/chameo#ReferenceSample chameo:ReferenceSample rdf:type owl:Class ; rdfs:subClassOf chameo:Sample ; emmo:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 """Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination @@ -2239,7 +2239,7 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure skos:prefLabel "ReferenceSample"@en . -### http://w3id.org/emmo-chameo/chameo#Sample +### https://w3id.org/emmo/domain/chameo#Sample chameo:Sample rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_90ae56e4_d197_49b6_be1a_0049e4756606 ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen."@en ; @@ -2251,7 +2251,7 @@ chameo:Sample rdf:type owl:Class ; skos:prefLabel "Sample"@en . -### http://w3id.org/emmo-chameo/chameo#SampleInspection +### https://w3id.org/emmo/domain/chameo#SampleInspection chameo:SampleInspection rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationProcedure ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Analysis of the sample in order to determine information that are relevant for the characterisation method."@en ; @@ -2261,7 +2261,7 @@ chameo:SampleInspection rdf:type owl:Class ; skos:prefLabel "SampleInspection"@en . -### http://w3id.org/emmo-chameo/chameo#SampleInspectionInstrument +### https://w3id.org/emmo/domain/chameo#SampleInspectionInstrument chameo:SampleInspectionInstrument rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationHardware ; rdfs:comment "" ; @@ -2269,7 +2269,7 @@ chameo:SampleInspectionInstrument rdf:type owl:Class ; skos:prefLabel "SampleInspectionInstrument" . -### http://w3id.org/emmo-chameo/chameo#SamplePreparation +### https://w3id.org/emmo/domain/chameo#SamplePreparation chameo:SamplePreparation rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationProcedure , [ rdf:type owl:Restriction ; @@ -2290,7 +2290,7 @@ chameo:SamplePreparation rdf:type owl:Class ; skos:prefLabel "SamplePreparation"@en . -### http://w3id.org/emmo-chameo/chameo#SamplePreparationHardware +### https://w3id.org/emmo/domain/chameo#SamplePreparationHardware chameo:SamplePreparationHardware rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Hardware used for the preparation of the sample."@en ; @@ -2299,7 +2299,7 @@ chameo:SamplePreparationHardware rdf:type owl:Class ; skos:prefLabel "SamplePreparationHardware"@en . -### http://w3id.org/emmo-chameo/chameo#SamplePreparationInstrument +### https://w3id.org/emmo/domain/chameo#SamplePreparationInstrument chameo:SamplePreparationInstrument rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationHardware ; rdfs:comment "" ; @@ -2307,7 +2307,7 @@ chameo:SamplePreparationInstrument rdf:type owl:Class ; skos:prefLabel "SamplePreparationInstrument" . -### http://w3id.org/emmo-chameo/chameo#SamplePreparationParameter +### https://w3id.org/emmo/domain/chameo#SamplePreparationParameter chameo:SamplePreparationParameter rdf:type owl:Class ; rdfs:subClassOf emmo:EMMO_d1d436e7_72fc_49cd_863b_7bfb4ba5276a ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Parameter used for the sample preparation process"@en ; @@ -2316,7 +2316,7 @@ chameo:SamplePreparationParameter rdf:type owl:Class ; skos:prefLabel "SamplePreparationParameter"@en . -### http://w3id.org/emmo-chameo/chameo#SampledDCPolarography +### https://w3id.org/emmo/domain/chameo#SampledDCPolarography chameo:SampledDCPolarography rdf:type owl:Class ; rdfs:subClassOf chameo:DCPolarography ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized."@en ; @@ -2328,7 +2328,7 @@ chameo:SampledDCPolarography rdf:type owl:Class ; skos:prefLabel "SampledDCPolarography"@en . -### http://w3id.org/emmo-chameo/chameo#SamplingProcess +### https://w3id.org/emmo/domain/chameo#SamplingProcess chameo:SamplingProcess rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationProcedure ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated."@en ; @@ -2338,7 +2338,7 @@ chameo:SamplingProcess rdf:type owl:Class ; skos:prefLabel "SamplingProcess"@en . -### http://w3id.org/emmo-chameo/chameo#ScanningAugerElectronMicroscopy +### https://w3id.org/emmo/domain/chameo#ScanningAugerElectronMicroscopy chameo:ScanningAugerElectronMicroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample."@en ; @@ -2348,7 +2348,7 @@ chameo:ScanningAugerElectronMicroscopy rdf:type owl:Class ; skos:prefLabel "ScanningAugerElectronMicroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#ScanningElectronMicroscopy +### https://w3id.org/emmo/domain/chameo#ScanningElectronMicroscopy chameo:ScanningElectronMicroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample."@en ; @@ -2358,7 +2358,7 @@ chameo:ScanningElectronMicroscopy rdf:type owl:Class ; skos:prefLabel "ScanningElectronMicroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#ScanningKelvinProbe +### https://w3id.org/emmo/domain/chameo#ScanningKelvinProbe chameo:ScanningKelvinProbe rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact."@en ; @@ -2368,7 +2368,7 @@ chameo:ScanningKelvinProbe rdf:type owl:Class ; skos:prefLabel "ScanningKelvinProbe"@en . -### http://w3id.org/emmo-chameo/chameo#ScanningProbeMicroscopy +### https://w3id.org/emmo/domain/chameo#ScanningProbeMicroscopy chameo:ScanningProbeMicroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen."@en ; @@ -2377,7 +2377,7 @@ chameo:ScanningProbeMicroscopy rdf:type owl:Class ; skos:prefLabel "ScanningProbeMicroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#ScanningTunnelingMicroscopy +### https://w3id.org/emmo/domain/chameo#ScanningTunnelingMicroscopy chameo:ScanningTunnelingMicroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams."@en ; @@ -2387,7 +2387,7 @@ chameo:ScanningTunnelingMicroscopy rdf:type owl:Class ; skos:prefLabel "ScanningTunnelingMicroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#ScatteringAndDiffraction +### https://w3id.org/emmo/domain/chameo#ScatteringAndDiffraction chameo:ScatteringAndDiffraction rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; rdfs:comment "" ; @@ -2395,7 +2395,7 @@ chameo:ScatteringAndDiffraction rdf:type owl:Class ; skos:prefLabel "ScatteringAndDiffraction"@en . -### http://w3id.org/emmo-chameo/chameo#SecondaryData +### https://w3id.org/emmo/domain/chameo#SecondaryData chameo:SecondaryData rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationData ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Data resulting from the application of post-processing or model generation to other data."@en ; @@ -2408,7 +2408,7 @@ chameo:SecondaryData rdf:type owl:Class ; skos:prefLabel "SecondaryData"@en . -### http://w3id.org/emmo-chameo/chameo#SecondaryIonMassSpectrometry +### https://w3id.org/emmo/domain/chameo#SecondaryIonMassSpectrometry chameo:SecondaryIonMassSpectrometry rdf:type owl:Class ; rdfs:subClassOf chameo:Spectrometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions."@en ; @@ -2418,7 +2418,7 @@ chameo:SecondaryIonMassSpectrometry rdf:type owl:Class ; skos:prefLabel "SecondaryIonMassSpectrometry"@en . -### http://w3id.org/emmo-chameo/chameo#ShearOrTorsionTests +### https://w3id.org/emmo/domain/chameo#ShearOrTorsionTests chameo:ShearOrTorsionTests rdf:type owl:Class ; rdfs:subClassOf chameo:Mechanical ; rdfs:comment "" ; @@ -2426,7 +2426,7 @@ chameo:ShearOrTorsionTests rdf:type owl:Class ; skos:prefLabel "ShearOrTorsionTest"@en . -### http://w3id.org/emmo-chameo/chameo#Signal +### https://w3id.org/emmo/domain/chameo#Signal chameo:Signal rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationData ; emmo:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 "According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 )."@en ; @@ -2437,7 +2437,7 @@ chameo:Signal rdf:type owl:Class ; skos:prefLabel "Signal"@en . -### http://w3id.org/emmo-chameo/chameo#Spectrometry +### https://w3id.org/emmo/domain/chameo#Spectrometry chameo:Spectrometry rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample."@en ; @@ -2446,7 +2446,7 @@ chameo:Spectrometry rdf:type owl:Class ; skos:prefLabel "Spectrometry"@en . -### http://w3id.org/emmo-chameo/chameo#Spectroscopy +### https://w3id.org/emmo/domain/chameo#Spectroscopy chameo:Spectroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials."@en ; @@ -2455,7 +2455,7 @@ chameo:Spectroscopy rdf:type owl:Class ; skos:prefLabel "Spectroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#SquareWaveVoltammetry +### https://w3id.org/emmo/domain/chameo#SquareWaveVoltammetry chameo:SquareWaveVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:Voltammetry ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q4016323" ; @@ -2473,7 +2473,7 @@ chameo:SquareWaveVoltammetry rdf:type owl:Class ; skos:prefLabel "SquareWaveVoltammetry"@en . -### http://w3id.org/emmo-chameo/chameo#StepChronopotentiometry +### https://w3id.org/emmo/domain/chameo#StepChronopotentiometry chameo:StepChronopotentiometry rdf:type owl:Class ; rdfs:subClassOf chameo:Chronopotentiometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "chronopotentiometry where the applied current is changed in steps"@en ; @@ -2489,7 +2489,7 @@ chameo:StepChronopotentiometry rdf:type owl:Class ; ] . -### http://w3id.org/emmo-chameo/chameo#StrippingVoltammetry +### https://w3id.org/emmo/domain/chameo#StrippingVoltammetry chameo:StrippingVoltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:Voltammetry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration."@en ; @@ -2505,7 +2505,7 @@ chameo:StrippingVoltammetry rdf:type owl:Class ; skos:prefLabel "StrippingVoltammetry"@en . -### http://w3id.org/emmo-chameo/chameo#Synchrotron +### https://w3id.org/emmo/domain/chameo#Synchrotron chameo:Synchrotron rdf:type owl:Class ; rdfs:subClassOf chameo:ScatteringAndDiffraction ; rdfs:comment "" ; @@ -2513,7 +2513,7 @@ chameo:Synchrotron rdf:type owl:Class ; skos:prefLabel "Synchrotron"@en . -### http://w3id.org/emmo-chameo/chameo#TensileTest +### https://w3id.org/emmo/domain/chameo#TensileTest chameo:TensileTest rdf:type owl:Class ; rdfs:subClassOf chameo:Mechanical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials."@en ; @@ -2523,7 +2523,7 @@ chameo:TensileTest rdf:type owl:Class ; skos:prefLabel "TensileTest"@en . -### http://w3id.org/emmo-chameo/chameo#Thermochemical +### https://w3id.org/emmo/domain/chameo#Thermochemical chameo:Thermochemical rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature."@en ; @@ -2533,7 +2533,7 @@ chameo:Thermochemical rdf:type owl:Class ; skos:prefLabel "Thermochemical"@en . -### http://w3id.org/emmo-chameo/chameo#Thermogravimetry +### https://w3id.org/emmo/domain/chameo#Thermogravimetry chameo:Thermogravimetry rdf:type owl:Class ; rdfs:subClassOf chameo:Thermochemical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction)."@en ; @@ -2543,7 +2543,7 @@ chameo:Thermogravimetry rdf:type owl:Class ; skos:prefLabel "Thermogravimetry"@en . -### http://w3id.org/emmo-chameo/chameo#Tomography +### https://w3id.org/emmo/domain/chameo#Tomography chameo:Tomography rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, \"slice, section\" and γράφω graphō, \"to write\" or, in this context as well, \"to describe.\" A device used in tomography is called a tomograph, while the image produced is a tomogram."@en ; @@ -2552,7 +2552,7 @@ chameo:Tomography rdf:type owl:Class ; skos:prefLabel "Tomography"@en . -### http://w3id.org/emmo-chameo/chameo#TransmissionElectronMicroscopy +### https://w3id.org/emmo/domain/chameo#TransmissionElectronMicroscopy chameo:TransmissionElectronMicroscopy rdf:type owl:Class ; rdfs:subClassOf chameo:Microscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device."@en ; @@ -2562,7 +2562,7 @@ chameo:TransmissionElectronMicroscopy rdf:type owl:Class ; skos:prefLabel "TransmissionElectronMicroscopy"@en . -### http://w3id.org/emmo-chameo/chameo#Ultrasonic +### https://w3id.org/emmo/domain/chameo#Ultrasonic chameo:Ultrasonic rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 """Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. @@ -2573,7 +2573,7 @@ Ultrasonic testing is often performed on steel and other metals and alloys, thou skos:prefLabel "Ultrasonic"@en . -### http://w3id.org/emmo-chameo/chameo#VaporPressureDepressionOsmometry +### https://w3id.org/emmo/domain/chameo#VaporPressureDepressionOsmometry chameo:VaporPressureDepressionOsmometry rdf:type owl:Class ; rdfs:subClassOf chameo:Osmometry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect."@en ; @@ -2583,7 +2583,7 @@ chameo:VaporPressureDepressionOsmometry rdf:type owl:Class ; skos:prefLabel "VaporPressureDepressionOsmometry"@en . -### http://w3id.org/emmo-chameo/chameo#Viscometry +### https://w3id.org/emmo/domain/chameo#Viscometry chameo:Viscometry rdf:type owl:Class ; rdfs:subClassOf chameo:CharacterisationMethod ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities."@en ; @@ -2593,7 +2593,7 @@ chameo:Viscometry rdf:type owl:Class ; skos:prefLabel "Viscometry"@en . -### http://w3id.org/emmo-chameo/chameo#Voltammetry +### https://w3id.org/emmo/domain/chameo#Voltammetry chameo:Voltammetry rdf:type owl:Class ; rdfs:subClassOf chameo:Electrochemical ; emmo:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q904093" ; @@ -2607,7 +2607,7 @@ chameo:Voltammetry rdf:type owl:Class ; skos:prefLabel "Voltammetry"@en . -### http://w3id.org/emmo-chameo/chameo#VoltammetryAtARotatingDiskElectrode +### https://w3id.org/emmo/domain/chameo#VoltammetryAtARotatingDiskElectrode chameo:VoltammetryAtARotatingDiskElectrode rdf:type owl:Class ; rdfs:subClassOf chameo:HydrodynamicVoltammetry ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation"@en ; @@ -2617,7 +2617,7 @@ chameo:VoltammetryAtARotatingDiskElectrode rdf:type owl:Class ; skos:prefLabel "VoltammetryAtARotatingDiskElectrode"@en . -### http://w3id.org/emmo-chameo/chameo#WearTest +### https://w3id.org/emmo/domain/chameo#WearTest chameo:WearTest rdf:type owl:Class ; rdfs:subClassOf chameo:Mechanical ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 """A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. @@ -2627,7 +2627,7 @@ Wear is defined as the progressive removal of the material from a solid surface skos:prefLabel "WearTest"@en . -### http://w3id.org/emmo-chameo/chameo#XpsVariableKinetic +### https://w3id.org/emmo/domain/chameo#XpsVariableKinetic chameo:XpsVariableKinetic rdf:type owl:Class ; rdfs:subClassOf chameo:Spectroscopy ; emmo:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background."@en ; @@ -2638,7 +2638,7 @@ chameo:XpsVariableKinetic rdf:type owl:Class ; skos:prefLabel "XpsVariableKinetic"@en . -### http://w3id.org/emmo-chameo/chameo#XrdGrazingIncidence +### https://w3id.org/emmo/domain/chameo#XrdGrazingIncidence chameo:XrdGrazingIncidence rdf:type owl:Class ; rdfs:subClassOf chameo:ScatteringAndDiffraction ; rdfs:comment "" ; diff --git a/documentation/ontology.jsonld b/documentation/ontology.jsonld index 58e74c2..e40e22e 100644 --- a/documentation/ontology.jsonld +++ b/documentation/ontology.jsonld @@ -5,7 +5,7 @@ "@id" : "https://w3id.org/emmo#EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CalibrationData" + "@id" : "https://w3id.org/emmo/domain/chameo#CalibrationData" } ] }, { "@id" : "_:genid10", @@ -14,7 +14,7 @@ "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ] }, { "@id" : "_:genid11", @@ -23,7 +23,7 @@ "@id" : "https://w3id.org/emmo#EMMO_36e69413_8c59_4799_946c_10b05d266e22" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#MeasurementParameter" + "@id" : "https://w3id.org/emmo/domain/chameo#MeasurementParameter" } ] }, { "@id" : "_:genid12", @@ -32,7 +32,7 @@ "@id" : "https://w3id.org/emmo#EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationData" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationData" } ] }, { "@id" : "_:genid13", @@ -41,7 +41,7 @@ "@id" : "_:genid14" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMeasurementProcess" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementProcess" } ] }, { "@id" : "_:genid14", @@ -55,7 +55,7 @@ "@id" : "https://w3id.org/emmo#EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationInstrument" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationInstrument" } ] }, { "@id" : "_:genid16", @@ -74,13 +74,13 @@ "@id" : "https://w3id.org/emmo#EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Signal" + "@id" : "https://w3id.org/emmo/domain/chameo#Signal" } ] }, { "@id" : "_:genid2", "@type" : [ "http://www.w3.org/2002/07/owl#Restriction" ], "http://www.w3.org/2002/07/owl#onClass" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationInstrument" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationInstrument" } ], "http://www.w3.org/2002/07/owl#onProperty" : [ { "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" @@ -96,7 +96,7 @@ "@id" : "https://w3id.org/emmo#EMMO_36e69413_8c59_4799_946c_10b05d266e22" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ] }, { "@id" : "_:genid21", @@ -105,7 +105,7 @@ "@id" : "https://w3id.org/emmo#EMMO_36e69413_8c59_4799_946c_10b05d266e22" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplePreparationParameter" + "@id" : "https://w3id.org/emmo/domain/chameo#SamplePreparationParameter" } ] }, { "@id" : "_:genid22", @@ -114,30 +114,30 @@ "@id" : "https://w3id.org/emmo#EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ] }, { "@id" : "_:genid23", "@type" : [ "http://www.w3.org/2002/07/owl#AllDisjointClasses" ], "http://www.w3.org/2002/07/owl#members" : [ { "@list" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CalibrationProcess" + "@id" : "https://w3id.org/emmo/domain/chameo#CalibrationProcess" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationDataValidation" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationDataValidation" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMeasurementProcess" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementProcess" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataAnalysis" + "@id" : "https://w3id.org/emmo/domain/chameo#DataAnalysis" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataPostProcessing" + "@id" : "https://w3id.org/emmo/domain/chameo#DataPostProcessing" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataPreparation" + "@id" : "https://w3id.org/emmo/domain/chameo#DataPreparation" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SampleInspection" + "@id" : "https://w3id.org/emmo/domain/chameo#SampleInspection" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplePreparation" + "@id" : "https://w3id.org/emmo/domain/chameo#SamplePreparation" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplingProcess" + "@id" : "https://w3id.org/emmo/domain/chameo#SamplingProcess" } ] } ] }, { @@ -147,32 +147,32 @@ "@id" : "_:genid4" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CalibrationProcess" + "@id" : "https://w3id.org/emmo/domain/chameo#CalibrationProcess" } ] }, { "@id" : "_:genid33", "@type" : [ "http://www.w3.org/2002/07/owl#AllDisjointClasses" ], "http://www.w3.org/2002/07/owl#members" : [ { "@list" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CompressionTest" + "@id" : "https://w3id.org/emmo/domain/chameo#CompressionTest" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CreepTest" + "@id" : "https://w3id.org/emmo/domain/chameo#CreepTest" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DynamicMechanicalAnalysis" + "@id" : "https://w3id.org/emmo/domain/chameo#DynamicMechanicalAnalysis" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#FatigueTesting" + "@id" : "https://w3id.org/emmo/domain/chameo#FatigueTesting" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#FibDic" + "@id" : "https://w3id.org/emmo/domain/chameo#FibDic" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#HardnessTesting" + "@id" : "https://w3id.org/emmo/domain/chameo#HardnessTesting" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Nanoindentation" + "@id" : "https://w3id.org/emmo/domain/chameo#Nanoindentation" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ShearOrTorsionTests" + "@id" : "https://w3id.org/emmo/domain/chameo#ShearOrTorsionTests" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#TensileTest" + "@id" : "https://w3id.org/emmo/domain/chameo#TensileTest" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#WearTest" + "@id" : "https://w3id.org/emmo/domain/chameo#WearTest" } ] } ] }, { @@ -187,7 +187,7 @@ "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationEnvironmentProperty" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationEnvironmentProperty" } ] }, { "@id" : "_:genid6", @@ -196,7 +196,7 @@ "@id" : "https://w3id.org/emmo#EMMO_8e52c42b_e879_4473_9fa1_4b23428b392b" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Detector" + "@id" : "https://w3id.org/emmo/domain/chameo#Detector" } ] }, { "@id" : "_:genid7", @@ -205,7 +205,7 @@ "@id" : "https://w3id.org/emmo#EMMO_8e52c42b_e879_4473_9fa1_4b23428b392b" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Probe" + "@id" : "https://w3id.org/emmo/domain/chameo#Probe" } ] }, { "@id" : "_:genid8", @@ -214,7 +214,7 @@ "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationEnvironment" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationEnvironment" } ] }, { "@id" : "_:genid9", @@ -223,7 +223,7 @@ "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" } ], "http://www.w3.org/2002/07/owl#someValuesFrom" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationInstrument" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationInstrument" } ] }, { "@id" : "https://w3id.org/emmo#EMMO_43e9a05d_98af_41b4_92f6_00f79a09bfce", @@ -231,7 +231,7 @@ "@id" : "https://w3id.org/emmo#EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo", + "@id" : "https://w3id.org/emmo/domain/chameo", "@type" : [ "http://www.w3.org/2002/07/owl#Ontology" ], "http://purl.org/dc/terms/abstract" : [ { "@language" : "en", @@ -264,7 +264,7 @@ "@id" : "https://www.w3.org/TR/turtle/" } ], "http://purl.org/dc/terms/identifier" : [ { - "@value" : "https://w3id.org/emmo/domain/chameo/chameo" + "@value" : "https://w3id.org/emmo/domain/chameo" } ], "http://purl.org/dc/terms/issued" : [ { "@value" : "" @@ -293,7 +293,7 @@ "@value" : "chameo" } ], "http://purl.org/vocab/vann/preferredNamespaceUri" : [ { - "@value" : "https://w3id.org/emmo/domain/chameo/chameo" + "@value" : "https://w3id.org/emmo/domain/chameo" } ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@language" : "en", @@ -349,7 +349,7 @@ "@id" : "https://github.com/emmo-repo/domain-characterisation-methodology" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#AccessConditions", + "@id" : "https://w3id.org/emmo/domain/chameo#AccessConditions", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -376,62 +376,62 @@ "@value" : "AccessConditions" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Agent1", + "@id" : "https://w3id.org/emmo/domain/chameo#Agent1", "@type" : [ "http://www.w3.org/2002/07/owl#NamedIndividual" ], "http://www.w3.org/1999/02/22-rdf-syntax-ns#type" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Operator" + "@id" : "https://w3id.org/emmo/domain/chameo#Operator" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#AlphaSpectrometry", + "@id" : "https://w3id.org/emmo/domain/chameo#AlphaSpectrometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectrometry" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectrometry" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "AlphaSpectrometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Amperometry", + "@id" : "https://w3id.org/emmo/domain/chameo#Amperometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Electrochemical" + "@id" : "https://w3id.org/emmo/domain/chameo#Electrochemical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Amperometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#AnalyticalElectronMicroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#AnalyticalElectronMicroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "AnalyticalElectronMicroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#AtomProbeTomography", + "@id" : "https://w3id.org/emmo/domain/chameo#AtomProbeTomography", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science.\n\nThe sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Tomography" + "@id" : "https://w3id.org/emmo/domain/chameo#Tomography" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "3D Atom Probe" @@ -443,21 +443,21 @@ "@value" : "AtomProbeTomography" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#AtomicForceMicroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#AtomicForceMicroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "AtomicForceMicroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CalibrationData", + "@id" : "https://w3id.org/emmo/domain/chameo#CalibrationData", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -467,14 +467,14 @@ "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationData" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationData" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "CalibrationData" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CalibrationDataPostProcessing", + "@id" : "https://w3id.org/emmo/domain/chameo#CalibrationDataPostProcessing", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -484,14 +484,14 @@ "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataPostProcessing" + "@id" : "https://w3id.org/emmo/domain/chameo#DataPostProcessing" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "CalibrationDataPostProcessing" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CalibrationProcess", + "@id" : "https://w3id.org/emmo/domain/chameo#CalibrationProcess", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84" : [ { "@language" : "en", @@ -521,13 +521,13 @@ "@value" : "CalibrationProcess" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CalibrationProcess1", + "@id" : "https://w3id.org/emmo/domain/chameo#CalibrationProcess1", "@type" : [ "http://www.w3.org/2002/07/owl#NamedIndividual" ], "http://www.w3.org/1999/02/22-rdf-syntax-ns#type" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CalibrationProcess" + "@id" : "https://w3id.org/emmo/domain/chameo#CalibrationProcess" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CalibrationTask", + "@id" : "https://w3id.org/emmo/domain/chameo#CalibrationTask", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -542,27 +542,27 @@ "@value" : "CalibrationTask" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Calorimetry", + "@id" : "https://w3id.org/emmo/domain/chameo#Calorimetry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Thermochemical" + "@id" : "https://w3id.org/emmo/domain/chameo#Thermochemical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Calorimetry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ChMeasProc1", + "@id" : "https://w3id.org/emmo/domain/chameo#ChMeasProc1", "@type" : [ "http://www.w3.org/2002/07/owl#NamedIndividual" ], "http://www.w3.org/1999/02/22-rdf-syntax-ns#type" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMeasurementProcess" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementProcess" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationData", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationData", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -578,7 +578,7 @@ "@value" : "CharacterisationData" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationDataValidation", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationDataValidation", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -592,7 +592,7 @@ "@value" : "CharacterisationDataValidation" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationEnvironment", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationEnvironment", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -613,7 +613,7 @@ "@value" : "CharacterisationEnvironment" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationEnvironmentProperty", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationEnvironmentProperty", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba" @@ -622,7 +622,7 @@ "@value" : "CharacterisationEnvironmentProperty" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationExperiment", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationExperiment", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -636,7 +636,7 @@ "@value" : "CharacterisationExperiment" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationHardware", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationHardware", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -653,7 +653,7 @@ "@value" : "CharacterisationHardware" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationHardwareSpecification", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationHardwareSpecification", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba" @@ -663,7 +663,7 @@ "@value" : "CharacterisationHardwareSpecification" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationInstrument", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationInstrument", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84" : [ { "@language" : "en", @@ -688,7 +688,7 @@ }, { "@id" : "https://w3id.org/emmo#EMMO_f2d5d3ad_2e00_417f_8849_686f3988d929" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationHardware" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationHardware" }, { "@id" : "_:genid6" }, { @@ -698,7 +698,7 @@ "@value" : "CharacterisationInstrument" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMeasurementProcess", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementProcess", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84" : [ { "@language" : "en", @@ -733,7 +733,7 @@ "@value" : "CharacterisationMeasurementProcess" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMeasurementTask", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementTask", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -749,7 +749,7 @@ "@value" : "CharacterisationMeasurementTask" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -775,7 +775,7 @@ "@value" : "CharacterisationMethod" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationProcedureValidation", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationProcedureValidation", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -792,7 +792,7 @@ "@value" : "CharacterisationProcedureValidation" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationProperty", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationProperty", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -804,14 +804,14 @@ "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_873b0ab3_88e6_4054_b901_5531e01f14a4" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SecondaryData" + "@id" : "https://w3id.org/emmo/domain/chameo#SecondaryData" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "CharacterisationProperty" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationProtocol", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationProtocol", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -825,7 +825,7 @@ "@value" : "CharacterisationProtocol" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationSoftware", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationSoftware", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -844,7 +844,7 @@ "@value" : "CharacterisationSoftware" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationSystem", + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationSystem", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84" : [ { "@language" : "en", @@ -868,83 +868,83 @@ "@value" : "CharacterisationSystem" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ChargeDistribution", + "@id" : "https://w3id.org/emmo/domain/chameo#ChargeDistribution", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "ChargeDistribution" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Chromatography", + "@id" : "https://w3id.org/emmo/domain/chameo#Chromatography", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Chromatography is a laboratory technique for the separation of a mixture into its components." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Chromatography" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CompressionTest", + "@id" : "https://w3id.org/emmo/domain/chameo#CompressionTest", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Mechanical" + "@id" : "https://w3id.org/emmo/domain/chameo#Mechanical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "CompressionTest" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ConfocalMicroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#ConfocalMicroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "ConfocalMicroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CreepTest", + "@id" : "https://w3id.org/emmo/domain/chameo#CreepTest", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Mechanical" + "@id" : "https://w3id.org/emmo/domain/chameo#Mechanical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "CreepTest" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CriticalAndSupercriticalChromatography", + "@id" : "https://w3id.org/emmo/domain/chameo#CriticalAndSupercriticalChromatography", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Chromatography" + "@id" : "https://w3id.org/emmo/domain/chameo#Chromatography" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "CriticalAndSupercriticalChromatography" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataAcquisitionRate", + "@id" : "https://w3id.org/emmo/domain/chameo#DataAcquisitionRate", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -961,7 +961,7 @@ "@value" : "DataAcquisitionRate" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataAnalysis", + "@id" : "https://w3id.org/emmo/domain/chameo#DataAnalysis", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -975,7 +975,7 @@ "@value" : "DataAnalysis" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataFiltering", + "@id" : "https://w3id.org/emmo/domain/chameo#DataFiltering", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@value" : "Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria." @@ -984,14 +984,14 @@ "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataPreparation" + "@id" : "https://w3id.org/emmo/domain/chameo#DataPreparation" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "DataFiltering" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataNormalisation", + "@id" : "https://w3id.org/emmo/domain/chameo#DataNormalisation", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1005,14 +1005,14 @@ "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataPreparation" + "@id" : "https://w3id.org/emmo/domain/chameo#DataPreparation" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "DataNormalisation" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataPostProcessing", + "@id" : "https://w3id.org/emmo/domain/chameo#DataPostProcessing", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@value" : "Analysis, that allows one to calculate the final material property from the calibrated primary data." @@ -1028,7 +1028,7 @@ "@value" : "DataPostProcessing" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataPreparation", + "@id" : "https://w3id.org/emmo/domain/chameo#DataPreparation", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@value" : "Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis." @@ -1044,7 +1044,7 @@ "@value" : "DataPreparation" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataProcessingThroughCalibration", + "@id" : "https://w3id.org/emmo/domain/chameo#DataProcessingThroughCalibration", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1058,7 +1058,7 @@ "@value" : "DataProcessingThroughCalibration" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataQuality", + "@id" : "https://w3id.org/emmo/domain/chameo#DataQuality", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1076,7 +1076,7 @@ "@value" : "DataQuality" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Detector", + "@id" : "https://w3id.org/emmo/domain/chameo#Detector", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1093,51 +1093,51 @@ "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationHardware" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationHardware" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Detector" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Determination1", + "@id" : "https://w3id.org/emmo/domain/chameo#Determination1", "@type" : [ "http://www.w3.org/2002/07/owl#NamedIndividual", "https://w3id.org/emmo#EMMO_10a5fd39_06aa_4648_9e70_f962a9cb2069" ], "https://w3id.org/emmo#EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#InferredChMethod1" + "@id" : "https://w3id.org/emmo/domain/chameo#InferredChMethod1" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DielectricAndImpedanceSpectroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#DielectricAndImpedanceSpectroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectroscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectroscopy" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "DielectricAndImpedanceSpectroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DifferentialRefractiveIndex", + "@id" : "https://w3id.org/emmo/domain/chameo#DifferentialRefractiveIndex", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Optical" + "@id" : "https://w3id.org/emmo/domain/chameo#Optical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "DifferentialRefractiveIndex" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DifferentialScanningCalorimetry", + "@id" : "https://w3id.org/emmo/domain/chameo#DifferentialScanningCalorimetry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Thermochemical" + "@id" : "https://w3id.org/emmo/domain/chameo#Thermochemical" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "DSC" @@ -1147,14 +1147,14 @@ "@value" : "DifferentialScanningCalorimetry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DifferentialThermalAnalysis", + "@id" : "https://w3id.org/emmo/domain/chameo#DifferentialThermalAnalysis", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Thermochemical" + "@id" : "https://w3id.org/emmo/domain/chameo#Thermochemical" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "DTA" @@ -1164,28 +1164,28 @@ "@value" : "DifferentialThermalAnalysis" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Dilatometry", + "@id" : "https://w3id.org/emmo/domain/chameo#Dilatometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Dilatometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DynamicLightScattering", + "@id" : "https://w3id.org/emmo/domain/chameo#DynamicLightScattering", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS)." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Optical" + "@id" : "https://w3id.org/emmo/domain/chameo#Optical" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "DLS" @@ -1195,28 +1195,28 @@ "@value" : "DynamicLightScattering" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DynamicMechanicalAnalysis", + "@id" : "https://w3id.org/emmo/domain/chameo#DynamicMechanicalAnalysis", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Mechanical" + "@id" : "https://w3id.org/emmo/domain/chameo#Mechanical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "DynamicMechanicalAnalysis" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DynamicMechanicalSpectroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#DynamicMechanicalSpectroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectroscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectroscopy" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "DMA" @@ -1226,30 +1226,30 @@ "@value" : "DynamicMechanicalSpectroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Electrochemical", + "@id" : "https://w3id.org/emmo/domain/chameo#Electrochemical", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Electrochemical" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ElectronBackscatterDiffraction", + "@id" : "https://w3id.org/emmo/domain/chameo#ElectronBackscatterDiffraction", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ScanningElectronMicroscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#ScanningElectronMicroscopy" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ScatteringAndDiffraction" + "@id" : "https://w3id.org/emmo/domain/chameo#ScatteringAndDiffraction" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "EBSD" @@ -1259,84 +1259,84 @@ "@value" : "ElectronBackscatterDiffraction" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ElectronProbeMicroanalysis", + "@id" : "https://w3id.org/emmo/domain/chameo#ElectronProbeMicroanalysis", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "ElectronProbeMicroanalysis" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Ellipsometry", + "@id" : "https://w3id.org/emmo/domain/chameo#Ellipsometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Ellipsometry is an optical technique that uses polarised light to probe the dielectric\nproperties of a sample (optical system). The common application of ellipsometry is\nthe analysis of thin films. Through the analysis of the state of polarisation of the\nlight that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic\nlayer or less. Depending on what is already known about the sample, the technique\ncan probe a range of properties including layer thickness, morphology, and chemical composition." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Optical" + "@id" : "https://w3id.org/emmo/domain/chameo#Optical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Ellipsometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#EnvironmentalScanningElectronMicroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#EnvironmentalScanningElectronMicroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "EnvironmentalScanningElectronMicroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Exafs", + "@id" : "https://w3id.org/emmo/domain/chameo#Exafs", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented.\nWhen the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectroscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectroscopy" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Exafs" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#FatigueTesting", + "@id" : "https://w3id.org/emmo/domain/chameo#FatigueTesting", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Mechanical" + "@id" : "https://w3id.org/emmo/domain/chameo#Mechanical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "FatigueTesting" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#FibDic", + "@id" : "https://w3id.org/emmo/domain/chameo#FibDic", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB)." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Mechanical" + "@id" : "https://w3id.org/emmo/domain/chameo#Mechanical" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "FIBDICResidualStressAnalysis" @@ -1345,14 +1345,14 @@ "@value" : "FibDic" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#FieldEmissionScanningElectronMicroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#FieldEmissionScanningElectronMicroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "FE-SEM" @@ -1362,63 +1362,63 @@ "@value" : "FieldEmissionScanningElectronMicroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Fractography", + "@id" : "https://w3id.org/emmo/domain/chameo#Fractography", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture .Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Optical" + "@id" : "https://w3id.org/emmo/domain/chameo#Optical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Fractography" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#FreezingPointDepressionOsmometry", + "@id" : "https://w3id.org/emmo/domain/chameo#FreezingPointDepressionOsmometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Osmometry" + "@id" : "https://w3id.org/emmo/domain/chameo#Osmometry" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "FreezingPointDepressionOsmometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#GammaSpectrometry", + "@id" : "https://w3id.org/emmo/domain/chameo#GammaSpectrometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement.[2]\n\nMost radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced.\n\nA detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectrometry" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectrometry" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "GammaSpectrometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#HardnessTesting", + "@id" : "https://w3id.org/emmo/domain/chameo#HardnessTesting", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Mechanical" + "@id" : "https://w3id.org/emmo/domain/chameo#Mechanical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "HardnessTesting" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Hazard", + "@id" : "https://w3id.org/emmo/domain/chameo#Hazard", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1435,7 +1435,7 @@ "@value" : "Hazard" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Holder", + "@id" : "https://w3id.org/emmo/domain/chameo#Holder", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1445,23 +1445,23 @@ "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationHardware" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationHardware" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Holder" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#InferredChMethod1", + "@id" : "https://w3id.org/emmo/domain/chameo#InferredChMethod1", "@type" : [ "http://www.w3.org/2002/07/owl#NamedIndividual" ], "https://w3id.org/emmo#EMMO_70da982d_1810_4b01_9630_a28e216ecd9a" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ChMeasProc1" + "@id" : "https://w3id.org/emmo/domain/chameo#ChMeasProc1" } ], - "https://w3id.org/emmo/domain/chameo/chameo#hasOperator" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Agent1" + "https://w3id.org/emmo/domain/chameo#hasOperator" : [ { + "@id" : "https://w3id.org/emmo/domain/chameo#Agent1" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#InteractionVolume", + "@id" : "https://w3id.org/emmo/domain/chameo#InteractionVolume", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1492,38 +1492,38 @@ "@value" : "InteractionVolume" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#IntermediateSample", + "@id" : "https://w3id.org/emmo/domain/chameo#IntermediateSample", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "IntermediateSample" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#IonChromatography", + "@id" : "https://w3id.org/emmo/domain/chameo#IonChromatography", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Chromatography" + "@id" : "https://w3id.org/emmo/domain/chameo#Chromatography" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "IonChromatography" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#IonMobilitySpectrometry", + "@id" : "https://w3id.org/emmo/domain/chameo#IonMobilitySpectrometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectrometry" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectrometry" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "IMS" @@ -1533,14 +1533,14 @@ "@value" : "IonMobilitySpectrometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#IsothermalMicrocalorimetry", + "@id" : "https://w3id.org/emmo/domain/chameo#IsothermalMicrocalorimetry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C).\n\nIMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Thermochemical" + "@id" : "https://w3id.org/emmo/domain/chameo#Thermochemical" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "IMC" @@ -1550,7 +1550,7 @@ "@value" : "IsothermalMicrocalorimetry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Laboratory", + "@id" : "https://w3id.org/emmo/domain/chameo#Laboratory", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@value" : "The laboratory where the whole characterisation process or some of its stages take place." @@ -1562,7 +1562,7 @@ "@value" : "Laboratory" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#LevelOfAutomation", + "@id" : "https://w3id.org/emmo/domain/chameo#LevelOfAutomation", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1579,7 +1579,7 @@ "@value" : "LevelOfAutomation" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#LevelOfExpertise", + "@id" : "https://w3id.org/emmo/domain/chameo#LevelOfExpertise", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1596,35 +1596,35 @@ "@value" : "LevelOfExpertise" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#LightScattering", + "@id" : "https://w3id.org/emmo/domain/chameo#LightScattering", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Optical" + "@id" : "https://w3id.org/emmo/domain/chameo#Optical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "LightScattering" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#MassSpectrometry", + "@id" : "https://w3id.org/emmo/domain/chameo#MassSpectrometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectrometry" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectrometry" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "MassSpectrometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#MeasurementDataPostProcessing", + "@id" : "https://w3id.org/emmo/domain/chameo#MeasurementDataPostProcessing", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1641,14 +1641,14 @@ "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataPostProcessing" + "@id" : "https://w3id.org/emmo/domain/chameo#DataPostProcessing" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "MeasurementDataPostProcessing" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#MeasurementParameter", + "@id" : "https://w3id.org/emmo/domain/chameo#MeasurementParameter", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1665,7 +1665,7 @@ "@value" : "MeasurementParameter" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#MeasurementSystemAdjustment", + "@id" : "https://w3id.org/emmo/domain/chameo#MeasurementSystemAdjustment", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84" : [ { "@language" : "en", @@ -1686,7 +1686,7 @@ "@value" : "MeasurementSystemAdjustment" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#MeasurementTime", + "@id" : "https://w3id.org/emmo/domain/chameo#MeasurementTime", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1703,49 +1703,49 @@ "@value" : "MeasurementTime" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Mechanical", + "@id" : "https://w3id.org/emmo/domain/chameo#Mechanical", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Mechanical testing covers a wide range of tests, which can be divided broadly into two types:\n1. those that aim to determine a material's mechanical properties, independent of geometry.\n2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Mechanical" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#MembraneOsmometry", + "@id" : "https://w3id.org/emmo/domain/chameo#MembraneOsmometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Osmometry" + "@id" : "https://w3id.org/emmo/domain/chameo#Osmometry" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "MembraneOsmometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Microscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Nanoindentation", + "@id" : "https://w3id.org/emmo/domain/chameo#Nanoindentation", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1756,21 +1756,21 @@ "@value" : "By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter someone can usually perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which might also some times refer as nanoindentation, because they are measurements, which are conducted using an nanoindenter." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Mechanical" + "@id" : "https://w3id.org/emmo/domain/chameo#Mechanical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Nanoindentation" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#NeutronSpinEchoSpectroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#NeutronSpinEchoSpectroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectroscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectroscopy" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "NSE" @@ -1780,28 +1780,28 @@ "@value" : "NeutronSpinEchoSpectroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Nexafs", + "@id" : "https://w3id.org/emmo/domain/chameo#Nexafs", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectroscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectroscopy" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Nexafs" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#NuclearMagneticResonance", + "@id" : "https://w3id.org/emmo/domain/chameo#NuclearMagneticResonance", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectroscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectroscopy" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "Magnetic resonance spectroscopy (MRS)" @@ -1813,7 +1813,7 @@ "@value" : "NuclearMagneticResonance" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Operator", + "@id" : "https://w3id.org/emmo/domain/chameo#Operator", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1830,59 +1830,59 @@ "@value" : "Operator" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Optical", + "@id" : "https://w3id.org/emmo/domain/chameo#Optical", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Optical" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#OpticalMicroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#OpticalMicroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "OpticalMicroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Osmometry", + "@id" : "https://w3id.org/emmo/domain/chameo#Osmometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg)." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Osmometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#PhotoluminescenceMicroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#PhotoluminescenceMicroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "PhotoluminescenceMicroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#PhysicsOfInteraction", + "@id" : "https://w3id.org/emmo/domain/chameo#PhysicsOfInteraction", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1903,7 +1903,7 @@ "@value" : "PhysicsOfInteraction" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#PostProcessingModel", + "@id" : "https://w3id.org/emmo/domain/chameo#PostProcessingModel", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1924,37 +1924,37 @@ "@value" : "PostProcessingModel" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Potentiometry", + "@id" : "https://w3id.org/emmo/domain/chameo#Potentiometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Electrochemical" + "@id" : "https://w3id.org/emmo/domain/chameo#Electrochemical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Potentiometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#PreparedSample", + "@id" : "https://w3id.org/emmo/domain/chameo#PreparedSample", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "The sample after a preparation process." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ], "http://www.w3.org/2002/07/owl#disjointWith" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ReferenceSample" + "@id" : "https://w3id.org/emmo/domain/chameo#ReferenceSample" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@value" : "PreparedSample" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#PrimaryData", + "@id" : "https://w3id.org/emmo/domain/chameo#PrimaryData", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -1974,14 +1974,14 @@ "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationData" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationData" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "PrimaryData" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Probe", + "@id" : "https://w3id.org/emmo/domain/chameo#Probe", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -2007,14 +2007,14 @@ "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationHardware" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationHardware" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Probe" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ProbeSampleInteraction", + "@id" : "https://w3id.org/emmo/domain/chameo#ProbeSampleInteraction", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -2033,7 +2033,7 @@ "@value" : "ProbeSampleInteraction" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ProcessingReproducibility", + "@id" : "https://w3id.org/emmo/domain/chameo#ProcessingReproducibility", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -2047,49 +2047,49 @@ "@value" : "ProcessingReproducibility" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Profilometry", + "@id" : "https://w3id.org/emmo/domain/chameo#Profilometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Profilometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#PulsedElectroacousticMethod", + "@id" : "https://w3id.org/emmo/domain/chameo#PulsedElectroacousticMethod", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ChargeDistribution" + "@id" : "https://w3id.org/emmo/domain/chameo#ChargeDistribution" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "PulsedElectroacousticMethod" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#RamanSpectroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#RamanSpectroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.\n\nRaman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information.\n\nTypically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectroscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectroscopy" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "RamanSpectroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#RawData", + "@id" : "https://w3id.org/emmo/domain/chameo#RawData", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -2115,24 +2115,24 @@ "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_0f6f0120_c079_4d95_bb11_4ddee05e530e" }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationData" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationData" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "RawData" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#RawSample", + "@id" : "https://w3id.org/emmo/domain/chameo#RawSample", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "RawSample" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ReferenceSample", + "@id" : "https://w3id.org/emmo/domain/chameo#ReferenceSample", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84" : [ { "@language" : "en", @@ -2153,7 +2153,7 @@ "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@language" : "en", @@ -2169,7 +2169,7 @@ "@value" : "ReferenceSample" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample", + "@id" : "https://w3id.org/emmo/domain/chameo#Sample", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -2192,7 +2192,7 @@ "@value" : "Sample" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SampleInspection", + "@id" : "https://w3id.org/emmo/domain/chameo#SampleInspection", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -2210,7 +2210,7 @@ "@value" : "SampleInspection" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplePreparation", + "@id" : "https://w3id.org/emmo/domain/chameo#SamplePreparation", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -2233,7 +2233,7 @@ "@value" : "SamplePreparation" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplePreparationHardware", + "@id" : "https://w3id.org/emmo/domain/chameo#SamplePreparationHardware", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -2250,7 +2250,7 @@ "@value" : "SamplePreparationHardware" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplePreparationParameter", + "@id" : "https://w3id.org/emmo/domain/chameo#SamplePreparationParameter", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -2264,7 +2264,7 @@ "@value" : "SamplePreparationParameter" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplingProcess", + "@id" : "https://w3id.org/emmo/domain/chameo#SamplingProcess", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -2285,14 +2285,14 @@ "@value" : "SamplingProcess" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ScanningAugerElectronMicroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#ScanningAugerElectronMicroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "AES" @@ -2302,14 +2302,14 @@ "@value" : "ScanningAugerElectronMicroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ScanningElectronMicroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#ScanningElectronMicroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "SEM" @@ -2319,14 +2319,14 @@ "@value" : "ScanningElectronMicroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ScanningKelvinProbe", + "@id" : "https://w3id.org/emmo/domain/chameo#ScanningKelvinProbe", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "SKB" @@ -2336,28 +2336,28 @@ "@value" : "ScanningKelvinProbe" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ScanningProbeMicroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#ScanningProbeMicroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "ScanningProbeMicroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ScanningTunnelingMicroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#ScanningTunnelingMicroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "STM" @@ -2367,17 +2367,17 @@ "@value" : "ScanningTunnelingMicroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ScatteringAndDiffraction", + "@id" : "https://w3id.org/emmo/domain/chameo#ScatteringAndDiffraction", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "ScatteringAndDiffraction" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SecondaryData", + "@id" : "https://w3id.org/emmo/domain/chameo#SecondaryData", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", @@ -2394,7 +2394,7 @@ "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationData" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationData" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@language" : "en", @@ -2405,14 +2405,14 @@ "@value" : "SecondaryData" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SecondaryIonMassSpectrometry", + "@id" : "https://w3id.org/emmo/domain/chameo#SecondaryIonMassSpectrometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectrometry" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectrometry" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "SIMS" @@ -2422,17 +2422,17 @@ "@value" : "SecondaryIonMassSpectrometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ShearOrTorsionTests", + "@id" : "https://w3id.org/emmo/domain/chameo#ShearOrTorsionTests", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Mechanical" + "@id" : "https://w3id.org/emmo/domain/chameo#Mechanical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "ShearOrTorsionTest" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Signal", + "@id" : "https://w3id.org/emmo/domain/chameo#Signal", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84" : [ { "@language" : "en", @@ -2450,59 +2450,59 @@ "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationData" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationData" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Signal" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectrometry", + "@id" : "https://w3id.org/emmo/domain/chameo#Spectrometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Spectrometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#Spectroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Spectroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Synchrotron", + "@id" : "https://w3id.org/emmo/domain/chameo#Synchrotron", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ScatteringAndDiffraction" + "@id" : "https://w3id.org/emmo/domain/chameo#ScatteringAndDiffraction" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Synchrotron" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#TensileTest", + "@id" : "https://w3id.org/emmo/domain/chameo#TensileTest", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Mechanical" + "@id" : "https://w3id.org/emmo/domain/chameo#Mechanical" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "TensionTest" @@ -2512,14 +2512,14 @@ "@value" : "TensileTest" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Thermochemical", + "@id" : "https://w3id.org/emmo/domain/chameo#Thermochemical", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "TMA" @@ -2529,14 +2529,14 @@ "@value" : "Thermochemical" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Thermogravimetry", + "@id" : "https://w3id.org/emmo/domain/chameo#Thermogravimetry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction)." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Thermochemical" + "@id" : "https://w3id.org/emmo/domain/chameo#Thermochemical" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "TGA" @@ -2546,28 +2546,28 @@ "@value" : "Thermogravimetry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Tomography", + "@id" : "https://w3id.org/emmo/domain/chameo#Tomography", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, \"slice, section\" and γράφω graphō, \"to write\" or, in this context as well, \"to describe.\" A device used in tomography is called a tomograph, while the image produced is a tomogram." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Tomography" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#TransmissionElectronMicroscopy", + "@id" : "https://w3id.org/emmo/domain/chameo#TransmissionElectronMicroscopy", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Microscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Microscopy" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "TEM" @@ -2577,28 +2577,28 @@ "@value" : "TransmissionElectronMicroscopy" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Ultrasonic", + "@id" : "https://w3id.org/emmo/domain/chameo#Ultrasonic", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion.\n\nUltrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Ultrasonic" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#VaporPressureDepressionOsmometry", + "@id" : "https://w3id.org/emmo/domain/chameo#VaporPressureDepressionOsmometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Osmometry" + "@id" : "https://w3id.org/emmo/domain/chameo#Osmometry" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "VPO" @@ -2608,14 +2608,14 @@ "@value" : "VaporPressureDepressionOsmometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Viscometry", + "@id" : "https://w3id.org/emmo/domain/chameo#Viscometry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "Viscosity" @@ -2625,42 +2625,42 @@ "@value" : "Viscometry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Voltammetry", + "@id" : "https://w3id.org/emmo/domain/chameo#Voltammetry", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Electrochemical" + "@id" : "https://w3id.org/emmo/domain/chameo#Electrochemical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "Voltammetry" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#WearTest", + "@id" : "https://w3id.org/emmo/domain/chameo#WearTest", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces.\nWear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Mechanical" + "@id" : "https://w3id.org/emmo/domain/chameo#Mechanical" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "WearTest" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#XpsVariableKinetic", + "@id" : "https://w3id.org/emmo/domain/chameo#XpsVariableKinetic", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "https://w3id.org/emmo#EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9" : [ { "@language" : "en", "@value" : "X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background." } ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Spectroscopy" + "@id" : "https://w3id.org/emmo/domain/chameo#Spectroscopy" } ], "http://www.w3.org/2004/02/skos/core#altLabel" : [ { "@value" : "Electron spectroscopy for chemical analysis (ESCA)" @@ -2672,17 +2672,17 @@ "@value" : "XpsVariableKinetic" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#XrdGrazingIncidence", + "@id" : "https://w3id.org/emmo/domain/chameo#XrdGrazingIncidence", "@type" : [ "http://www.w3.org/2002/07/owl#Class" ], "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ScatteringAndDiffraction" + "@id" : "https://w3id.org/emmo/domain/chameo#ScatteringAndDiffraction" } ], "http://www.w3.org/2004/02/skos/core#prefLabel" : [ { "@language" : "en", "@value" : "XrdGrazingIncidence" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#characterisationProcedureHasSubProcedure", + "@id" : "https://w3id.org/emmo/domain/chameo#characterisationProcedureHasSubProcedure", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_d43af210_f854_4432_a891_ce3022e3b558" @@ -2692,16 +2692,16 @@ "@value" : "characterisationProcedureHasSubProcedure" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasAccessConditions", + "@id" : "https://w3id.org/emmo/domain/chameo#hasAccessConditions", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#AccessConditions" + "@id" : "https://w3id.org/emmo/domain/chameo#AccessConditions" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -2711,25 +2711,25 @@ "@value" : "hasAccessConditions" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasChValid1", + "@id" : "https://w3id.org/emmo/domain/chameo#hasChValid1", "@type" : [ "http://www.w3.org/2002/07/owl#NamedIndividual" ], - "https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationProcedureValidation" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasChValid2" + "https://w3id.org/emmo/domain/chameo#hasCharacterisationProcedureValidation" : [ { + "@id" : "https://w3id.org/emmo/domain/chameo#hasChValid2" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasChValid2", + "@id" : "https://w3id.org/emmo/domain/chameo#hasChValid2", "@type" : [ "http://www.w3.org/2002/07/owl#NamedIndividual" ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasChValidProp", + "@id" : "https://w3id.org/emmo/domain/chameo#hasChValidProp", "@type" : [ "http://www.w3.org/2002/07/owl#NamedIndividual" ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationEnvironment", + "@id" : "https://w3id.org/emmo/domain/chameo#hasCharacterisationEnvironment", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationEnvironment" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationEnvironment" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -2739,13 +2739,13 @@ "@value" : "hasCharacterisationEnvironment" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationEnvironmentProperty", + "@id" : "https://w3id.org/emmo/domain/chameo#hasCharacterisationEnvironmentProperty", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationEnvironment" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationEnvironment" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationEnvironmentProperty" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationEnvironmentProperty" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -2755,16 +2755,16 @@ "@value" : "hasCharacterisationEnvironmentProperty" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationProcedureValidation", + "@id" : "https://w3id.org/emmo/domain/chameo#hasCharacterisationProcedureValidation", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationProcedureValidation" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationProcedureValidation" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -2774,13 +2774,13 @@ "@value" : "hasCharacterisationProcedureValidation" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationProperty", + "@id" : "https://w3id.org/emmo/domain/chameo#hasCharacterisationProperty", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationProperty" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationProperty" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_fd689787_31b0_41cf_bf03_0d69af76469d" @@ -2790,10 +2790,10 @@ "@value" : "hasCharacterisationProperty" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationSoftware", + "@id" : "https://w3id.org/emmo/domain/chameo#hasCharacterisationSoftware", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationSoftware" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationSoftware" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" @@ -2803,16 +2803,16 @@ "@value" : "hasCharacterisationSoftware" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasDataAcquisitionRate", + "@id" : "https://w3id.org/emmo/domain/chameo#hasDataAcquisitionRate", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#RawData" + "@id" : "https://w3id.org/emmo/domain/chameo#RawData" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataAcquisitionRate" + "@id" : "https://w3id.org/emmo/domain/chameo#DataAcquisitionRate" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -2822,16 +2822,16 @@ "@value" : "hasDataAcquisitionRate" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasDataProcessingThroughCalibration", + "@id" : "https://w3id.org/emmo/domain/chameo#hasDataProcessingThroughCalibration", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMeasurementProcess" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementProcess" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataProcessingThroughCalibration" + "@id" : "https://w3id.org/emmo/domain/chameo#DataProcessingThroughCalibration" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -2841,16 +2841,16 @@ "@value" : "hasDataProcessingThroughCalibration" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasDataQuality", + "@id" : "https://w3id.org/emmo/domain/chameo#hasDataQuality", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#MeasurementDataPostProcessing" + "@id" : "https://w3id.org/emmo/domain/chameo#MeasurementDataPostProcessing" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#DataQuality" + "@id" : "https://w3id.org/emmo/domain/chameo#DataQuality" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -2860,7 +2860,7 @@ "@value" : "hasDataQuality" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasDataset", + "@id" : "https://w3id.org/emmo/domain/chameo#hasDataset", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { "@id" : "https://w3id.org/emmo#EMMO_194e367c_9783_4bf5_96d0_9ad597d48d9a" @@ -2873,13 +2873,13 @@ "@value" : "hasDataset" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasHardwareSpecification", + "@id" : "https://w3id.org/emmo/domain/chameo#hasHardwareSpecification", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationHardware" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationHardware" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationHardwareSpecification" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationHardwareSpecification" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -2889,13 +2889,13 @@ "@value" : "hasHardwareSpecification" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasHazard", + "@id" : "https://w3id.org/emmo/domain/chameo#hasHazard", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Hazard" + "@id" : "https://w3id.org/emmo/domain/chameo#Hazard" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -2905,16 +2905,16 @@ "@value" : "hasHazard" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasHolder", + "@id" : "https://w3id.org/emmo/domain/chameo#hasHolder", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplePreparation" + "@id" : "https://w3id.org/emmo/domain/chameo#SamplePreparation" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Holder" + "@id" : "https://w3id.org/emmo/domain/chameo#Holder" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" @@ -2924,16 +2924,16 @@ "@value" : "hasHolder" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasInteractionVolume", + "@id" : "https://w3id.org/emmo/domain/chameo#hasInteractionVolume", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ProbeSampleInteraction" + "@id" : "https://w3id.org/emmo/domain/chameo#ProbeSampleInteraction" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#InteractionVolume" + "@id" : "https://w3id.org/emmo/domain/chameo#InteractionVolume" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_ae2d1a96_bfa1_409a_a7d2_03d69e8a125a" @@ -2943,16 +2943,16 @@ "@value" : "hasInteractionVolume" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasInteractionWithProbe", + "@id" : "https://w3id.org/emmo/domain/chameo#hasInteractionWithProbe", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ProbeSampleInteraction" + "@id" : "https://w3id.org/emmo/domain/chameo#ProbeSampleInteraction" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Probe" + "@id" : "https://w3id.org/emmo/domain/chameo#Probe" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_ae2d1a96_bfa1_409a_a7d2_03d69e8a125a" @@ -2962,16 +2962,16 @@ "@value" : "hasInteractionWithProbe" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasInteractionWithSample", + "@id" : "https://w3id.org/emmo/domain/chameo#hasInteractionWithSample", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ProbeSampleInteraction" + "@id" : "https://w3id.org/emmo/domain/chameo#ProbeSampleInteraction" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" @@ -2981,10 +2981,10 @@ "@value" : "hasInteractionWithSample" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasLab", + "@id" : "https://w3id.org/emmo/domain/chameo#hasLab", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Laboratory" + "@id" : "https://w3id.org/emmo/domain/chameo#Laboratory" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" @@ -2994,16 +2994,16 @@ "@value" : "hasLab" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasLevelOfAutomation", + "@id" : "https://w3id.org/emmo/domain/chameo#hasLevelOfAutomation", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMethod" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#LevelOfAutomation" + "@id" : "https://w3id.org/emmo/domain/chameo#LevelOfAutomation" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -3013,13 +3013,13 @@ "@value" : "hasLevelOfAutomation" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementDetector", + "@id" : "https://w3id.org/emmo/domain/chameo#hasMeasurementDetector", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Detector" + "@id" : "https://w3id.org/emmo/domain/chameo#Detector" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" @@ -3029,16 +3029,16 @@ "@value" : "hasMeasurementDetector" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementParameter", + "@id" : "https://w3id.org/emmo/domain/chameo#hasMeasurementParameter", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMeasurementProcess" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementProcess" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#MeasurementParameter" + "@id" : "https://w3id.org/emmo/domain/chameo#MeasurementParameter" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_36e69413_8c59_4799_946c_10b05d266e22" @@ -3048,13 +3048,13 @@ "@value" : "hasMeasurementParameter" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementProbe", + "@id" : "https://w3id.org/emmo/domain/chameo#hasMeasurementProbe", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Probe" + "@id" : "https://w3id.org/emmo/domain/chameo#Probe" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" @@ -3064,16 +3064,16 @@ "@value" : "hasMeasurementProbe" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementSample", + "@id" : "https://w3id.org/emmo/domain/chameo#hasMeasurementSample", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMeasurementProcess" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementProcess" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" @@ -3083,7 +3083,7 @@ "@value" : "hasMeasurementSample" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementTime", + "@id" : "https://w3id.org/emmo/domain/chameo#hasMeasurementTime", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" @@ -3092,7 +3092,7 @@ "@id" : "https://w3id.org/emmo#EMMO_463bcfda_867b_41d9_a967_211d4d437cfb" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#MeasurementTime" + "@id" : "https://w3id.org/emmo/domain/chameo#MeasurementTime" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -3102,13 +3102,13 @@ "@value" : "hasMeasurementTime" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasOperator", + "@id" : "https://w3id.org/emmo/domain/chameo#hasOperator", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Operator" + "@id" : "https://w3id.org/emmo/domain/chameo#Operator" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_cd24eb82_a11c_4a31_96ea_32f870c5580a" @@ -3118,10 +3118,10 @@ "@value" : "hasOperator" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasPeerReviewedArticle", + "@id" : "https://w3id.org/emmo/domain/chameo#hasPeerReviewedArticle", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationProcedureValidation" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationProcedureValidation" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { "@id" : "http://purl.org/spar/datacite/ResourceIdentifier" @@ -3134,13 +3134,13 @@ "@value" : "hasPeerReviewedArticle" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasPhysicsOfInteraction", + "@id" : "https://w3id.org/emmo/domain/chameo#hasPhysicsOfInteraction", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ProbeSampleInteraction" + "@id" : "https://w3id.org/emmo/domain/chameo#ProbeSampleInteraction" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#PhysicsOfInteraction" + "@id" : "https://w3id.org/emmo/domain/chameo#PhysicsOfInteraction" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_24c71baf_6db6_48b9_86c8_8c70cf36db0c" @@ -3150,16 +3150,16 @@ "@value" : "hasPhysicsOfInteraction" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasPostProcessingModel", + "@id" : "https://w3id.org/emmo/domain/chameo#hasPostProcessingModel", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#MeasurementDataPostProcessing" + "@id" : "https://w3id.org/emmo/domain/chameo#MeasurementDataPostProcessing" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#PostProcessingModel" + "@id" : "https://w3id.org/emmo/domain/chameo#PostProcessingModel" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" @@ -3169,16 +3169,16 @@ "@value" : "hasPostProcessingModel" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasProcessingReproducibility", + "@id" : "https://w3id.org/emmo/domain/chameo#hasProcessingReproducibility", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#MeasurementDataPostProcessing" + "@id" : "https://w3id.org/emmo/domain/chameo#MeasurementDataPostProcessing" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#ProcessingReproducibility" + "@id" : "https://w3id.org/emmo/domain/chameo#ProcessingReproducibility" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -3188,13 +3188,13 @@ "@value" : "hasProcessingReproducibility" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasSampleBeforeSamplePreparation", + "@id" : "https://w3id.org/emmo/domain/chameo#hasSampleBeforeSamplePreparation", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplePreparation" + "@id" : "https://w3id.org/emmo/domain/chameo#SamplePreparation" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" @@ -3204,7 +3204,7 @@ "@value" : "hasSampleBeforeSamplePreparation" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasSamplePreparationHardware", + "@id" : "https://w3id.org/emmo/domain/chameo#hasSamplePreparationHardware", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77" @@ -3214,13 +3214,13 @@ "@value" : "hasSamplePreparationHardware" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasSamplePreparationInput", + "@id" : "https://w3id.org/emmo/domain/chameo#hasSamplePreparationInput", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplePreparation" + "@id" : "https://w3id.org/emmo/domain/chameo#SamplePreparation" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_36e69413_8c59_4799_946c_10b05d266e22" @@ -3230,16 +3230,16 @@ "@value" : "hasSamplePreparationInput" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasSamplePreparationOutput", + "@id" : "https://w3id.org/emmo/domain/chameo#hasSamplePreparationOutput", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplePreparation" + "@id" : "https://w3id.org/emmo/domain/chameo#SamplePreparation" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840" @@ -3249,13 +3249,13 @@ "@value" : "hasSamplePreparationOutput" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasSamplePreparationParameter", + "@id" : "https://w3id.org/emmo/domain/chameo#hasSamplePreparationParameter", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplePreparation" + "@id" : "https://w3id.org/emmo/domain/chameo#SamplePreparation" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplePreparationParameter" + "@id" : "https://w3id.org/emmo/domain/chameo#SamplePreparationParameter" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_36e69413_8c59_4799_946c_10b05d266e22" @@ -3265,16 +3265,16 @@ "@value" : "hasSamplePreparationParameter" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#hasSampledSample", + "@id" : "https://w3id.org/emmo/domain/chameo#hasSampledSample", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#SamplingProcess" + "@id" : "https://w3id.org/emmo/domain/chameo#SamplingProcess" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#Sample" + "@id" : "https://w3id.org/emmo/domain/chameo#Sample" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840" @@ -3284,13 +3284,13 @@ "@value" : "hasSampledSample" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#requiresLevelOfExpertise", + "@id" : "https://w3id.org/emmo/domain/chameo#requiresLevelOfExpertise", "@type" : [ "http://www.w3.org/2002/07/owl#ObjectProperty" ], "http://www.w3.org/2000/01/rdf-schema#comment" : [ { "@value" : "" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#LevelOfExpertise" + "@id" : "https://w3id.org/emmo/domain/chameo#LevelOfExpertise" } ], "http://www.w3.org/2000/01/rdf-schema#subPropertyOf" : [ { "@id" : "https://w3id.org/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204" @@ -3300,10 +3300,10 @@ "@value" : "requiresLevelOfExpertise" } ] }, { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo/hasDateOfCalibration", + "@id" : "https://w3id.org/emmo/domain/chameo/hasDateOfCalibration", "@type" : [ "http://www.w3.org/2002/07/owl#DatatypeProperty" ], "http://www.w3.org/2000/01/rdf-schema#domain" : [ { - "@id" : "https://w3id.org/emmo/domain/chameo/chameo#CharacterisationInstrument" + "@id" : "https://w3id.org/emmo/domain/chameo#CharacterisationInstrument" } ], "http://www.w3.org/2000/01/rdf-schema#range" : [ { "@id" : "http://www.w3.org/2001/XMLSchema#dateTime" diff --git a/documentation/ontology.nt b/documentation/ontology.nt index d484901..62b3051 100644 --- a/documentation/ontology.nt +++ b/documentation/ontology.nt @@ -1,45 +1,45 @@ - . - . - . - . - . - . - . - . - . - . - . - . - . - . - "CHAMEO is a domain ontology designed to model the common aspects across the different characterisation methodologies."@en . - "CHAMEO" . - "Work under review - not available yet" . - "Goldbeck Consulting Ltd (UK)" . - "2022-03-03" . - "Daniele Toti" . - "Gerhard Goldbeck" . - "Pierluigi Del Nostro" . - "Characterisation Methodology Ontology"@en . - . - "https://w3id.org/emmo/domain/chameo/chameo" . - "" . - "https://creativecommons.org/licenses/by/4.0/legalcode" . - "2023-10-23T15:00:00Z" . - "EMMC ASBL" . - "" . - "CHAracterisation MEthodology Ontology"@en . - "" . - "chameo"@en . - "https://w3id.org/emmo/domain/chameo/chameo" . - "Contacts:\n\t\t\t\t\t\t\t\t\t\t\t\t\tGerhard Goldbeck\n\t\t\t\t\t\t\t\t\t\t\t\t\tGoldbeck Consulting Ltd (UK)\n\t\t\t\t\t\t\t\t\t\t\t\t\temail: gerhard@goldbeck-consulting.com"@en . - "" . - "1.0.0-beta2" . - "1.0.0-beta3" . - "CHAMEO" . - . - "https://raw.githubusercontent.com/emmo-repo/domain-characterisation-methodology/main/images/chameo_logo_small.png" . - . + . + . + . + . + . + . + . + . + . + . + . + . + . + . + "CHAMEO is a domain ontology designed to model the common aspects across the different characterisation methodologies."@en . + "CHAMEO" . + "Work under review - not available yet" . + "Goldbeck Consulting Ltd (UK)" . + "2022-03-03" . + "Daniele Toti" . + "Gerhard Goldbeck" . + "Pierluigi Del Nostro" . + "Characterisation Methodology Ontology"@en . + . + "https://w3id.org/emmo/domain/chameo" . + "" . + "https://creativecommons.org/licenses/by/4.0/legalcode" . + "2023-10-23T15:00:00Z" . + "EMMC ASBL" . + "" . + "CHAracterisation MEthodology Ontology"@en . + "" . + "chameo"@en . + "https://w3id.org/emmo/domain/chameo" . + "Contacts:\n\t\t\t\t\t\t\t\t\t\t\t\t\tGerhard Goldbeck\n\t\t\t\t\t\t\t\t\t\t\t\t\tGoldbeck Consulting Ltd (UK)\n\t\t\t\t\t\t\t\t\t\t\t\t\temail: gerhard@goldbeck-consulting.com"@en . + "" . + "1.0.0-beta2" . + "1.0.0-beta3" . + "CHAMEO" . + . + "https://raw.githubusercontent.com/emmo-repo/domain-characterisation-methodology/main/images/chameo_logo_small.png" . + . # # # ################################################################# @@ -103,267 +103,267 @@ # ################################################################# # # -# https://w3id.org/emmo/domain/chameo/chameo#characterisationProcedureHasSubProcedure - . - . - "characterisationProcedureHasSubProcedure"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasAccessConditions - . - . - . - . - "" . - "hasAccessConditions"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationEnvironment - . - . - . - "" . - "hasCharacterisationEnvironment"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationEnvironmentProperty - . - . - . - . - "hasCharacterisationEnvironmentProperty"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationProcedureValidation - . - . - . - . - "" . - "hasCharacterisationProcedureValidation"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationProperty - . - . - . - . - "hasCharacterisationProperty"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationSoftware - . - . - . - "hasCharacterisationSoftware"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasDataAcquisitionRate - . - . - . - . - "" . - "hasDataAcquisitionRate"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasDataProcessingThroughCalibration - . - . - . - . - "" . - "hasDataProcessingThroughCalibration"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasDataQuality - . - . - . - . - "" . - "hasDataQuality"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasDataset - . - . - . - "hasDataset"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasHardwareSpecification - . - . - . - . - "hasHardwareSpecification"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasHazard - . - . - . - "" . - "hasHazard"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasHolder - . - . - . - . - "" . - "hasHolder"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasInteractionVolume - . - . - . - . - "" . - "hasInteractionVolume"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasInteractionWithProbe - . - . - . - . - "" . - "hasInteractionWithProbe"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasInteractionWithSample - . - . - . - . - "" . - "hasInteractionWithSample"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasLab - . - . - . - "hasLab"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasLevelOfAutomation - . - . - . - . - "" . - "hasLevelOfAutomation"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementDetector - . - . - . - "" . - "hasMeasurementDetector"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementParameter - . - . - . - . - "" . - "hasMeasurementParameter"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementProbe - . - . - . - "" . - "hasMeasurementProbe"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementSample - . - . - . - . - "" . - "hasMeasurementSample"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementTime - . - . - . - . - "" . - "hasMeasurementTime"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasOperator - . - . - . - "" . - "hasOperator"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasPeerReviewedArticle - . - . - . - . - "hasPeerReviewedArticle"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasPhysicsOfInteraction - . - . - . - . - "hasPhysicsOfInteraction"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasPostProcessingModel - . - . - . - . - "" . - "hasPostProcessingModel"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasProcessingReproducibility - . - . - . - . - "" . - "hasProcessingReproducibility"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasSampleBeforeSamplePreparation - . - . - . - . - "hasSampleBeforeSamplePreparation"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasSamplePreparationHardware - . - . - "hasSamplePreparationHardware"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasSamplePreparationInput - . - . - . - . - "hasSamplePreparationInput"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasSamplePreparationOutput - . - . - . - . - "" . - "hasSamplePreparationOutput"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasSamplePreparationParameter - . - . - . - . - "hasSamplePreparationParameter"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#hasSampledSample - . - . - . - . - "" . - "hasSampledSample"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#requiresLevelOfExpertise - . - . - . - "" . - "requiresLevelOfExpertise"@en . +# https://w3id.org/emmo/domain/chameo#characterisationProcedureHasSubProcedure + . + . + "characterisationProcedureHasSubProcedure"@en . +# +# https://w3id.org/emmo/domain/chameo#hasAccessConditions + . + . + . + . + "" . + "hasAccessConditions"@en . +# +# https://w3id.org/emmo/domain/chameo#hasCharacterisationEnvironment + . + . + . + "" . + "hasCharacterisationEnvironment"@en . +# +# https://w3id.org/emmo/domain/chameo#hasCharacterisationEnvironmentProperty + . + . + . + . + "hasCharacterisationEnvironmentProperty"@en . +# +# https://w3id.org/emmo/domain/chameo#hasCharacterisationProcedureValidation + . + . + . + . + "" . + "hasCharacterisationProcedureValidation"@en . +# +# https://w3id.org/emmo/domain/chameo#hasCharacterisationProperty + . + . + . + . + "hasCharacterisationProperty"@en . +# +# https://w3id.org/emmo/domain/chameo#hasCharacterisationSoftware + . + . + . + "hasCharacterisationSoftware"@en . +# +# https://w3id.org/emmo/domain/chameo#hasDataAcquisitionRate + . + . + . + . + "" . + "hasDataAcquisitionRate"@en . +# +# https://w3id.org/emmo/domain/chameo#hasDataProcessingThroughCalibration + . + . + . + . + "" . + "hasDataProcessingThroughCalibration"@en . +# +# https://w3id.org/emmo/domain/chameo#hasDataQuality + . + . + . + . + "" . + "hasDataQuality"@en . +# +# https://w3id.org/emmo/domain/chameo#hasDataset + . + . + . + "hasDataset"@en . +# +# https://w3id.org/emmo/domain/chameo#hasHardwareSpecification + . + . + . + . + "hasHardwareSpecification"@en . +# +# https://w3id.org/emmo/domain/chameo#hasHazard + . + . + . + "" . + "hasHazard"@en . +# +# https://w3id.org/emmo/domain/chameo#hasHolder + . + . + . + . + "" . + "hasHolder"@en . +# +# https://w3id.org/emmo/domain/chameo#hasInteractionVolume + . + . + . + . + "" . + "hasInteractionVolume"@en . +# +# https://w3id.org/emmo/domain/chameo#hasInteractionWithProbe + . + . + . + . + "" . + "hasInteractionWithProbe"@en . +# +# https://w3id.org/emmo/domain/chameo#hasInteractionWithSample + . + . + . + . + "" . + "hasInteractionWithSample"@en . +# +# https://w3id.org/emmo/domain/chameo#hasLab + . + . + . + "hasLab"@en . +# +# https://w3id.org/emmo/domain/chameo#hasLevelOfAutomation + . + . + . + . + "" . + "hasLevelOfAutomation"@en . +# +# https://w3id.org/emmo/domain/chameo#hasMeasurementDetector + . + . + . + "" . + "hasMeasurementDetector"@en . +# +# https://w3id.org/emmo/domain/chameo#hasMeasurementParameter + . + . + . + . + "" . + "hasMeasurementParameter"@en . +# +# https://w3id.org/emmo/domain/chameo#hasMeasurementProbe + . + . + . + "" . + "hasMeasurementProbe"@en . +# +# https://w3id.org/emmo/domain/chameo#hasMeasurementSample + . + . + . + . + "" . + "hasMeasurementSample"@en . +# +# https://w3id.org/emmo/domain/chameo#hasMeasurementTime + . + . + . + . + "" . + "hasMeasurementTime"@en . +# +# https://w3id.org/emmo/domain/chameo#hasOperator + . + . + . + "" . + "hasOperator"@en . +# +# https://w3id.org/emmo/domain/chameo#hasPeerReviewedArticle + . + . + . + . + "hasPeerReviewedArticle"@en . +# +# https://w3id.org/emmo/domain/chameo#hasPhysicsOfInteraction + . + . + . + . + "hasPhysicsOfInteraction"@en . +# +# https://w3id.org/emmo/domain/chameo#hasPostProcessingModel + . + . + . + . + "" . + "hasPostProcessingModel"@en . +# +# https://w3id.org/emmo/domain/chameo#hasProcessingReproducibility + . + . + . + . + "" . + "hasProcessingReproducibility"@en . +# +# https://w3id.org/emmo/domain/chameo#hasSampleBeforeSamplePreparation + . + . + . + . + "hasSampleBeforeSamplePreparation"@en . +# +# https://w3id.org/emmo/domain/chameo#hasSamplePreparationHardware + . + . + "hasSamplePreparationHardware"@en . +# +# https://w3id.org/emmo/domain/chameo#hasSamplePreparationInput + . + . + . + . + "hasSamplePreparationInput"@en . +# +# https://w3id.org/emmo/domain/chameo#hasSamplePreparationOutput + . + . + . + . + "" . + "hasSamplePreparationOutput"@en . +# +# https://w3id.org/emmo/domain/chameo#hasSamplePreparationParameter + . + . + . + . + "hasSamplePreparationParameter"@en . +# +# https://w3id.org/emmo/domain/chameo#hasSampledSample + . + . + . + . + "" . + "hasSampledSample"@en . +# +# https://w3id.org/emmo/domain/chameo#requiresLevelOfExpertise + . + . + . + "" . + "requiresLevelOfExpertise"@en . # # # @@ -374,12 +374,12 @@ # ################################################################# # # -# https://w3id.org/emmo/domain/chameo/chameo/hasDateOfCalibration - . - . - . - . - "hasDateOfCalibration"@en . +# https://w3id.org/emmo/domain/chameo/hasDateOfCalibration + . + . + . + . + "hasDateOfCalibration"@en . # # # @@ -393,678 +393,678 @@ # https://w3id.org/emmo#EMMO_43e9a05d_98af_41b4_92f6_00f79a09bfce . # -# https://w3id.org/emmo/domain/chameo/chameo#AccessConditions - . - . - "Describes what is needed to repeat the experiment"@en . - "In case of national or international facilities such as synchrotrons describe the programme that enabled you to access these."@en . - "Was the access to your characterisation tool an inhouse routine or required a 3rd party service?"@en . - "Was the access to your sample preparation an inhouse routine or required a 3rd party service?"@en . - "" . - "AccessConditions"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#AlphaSpectrometry - . - . - "Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from."@en . - "AlphaSpectrometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Amperometry - . - . - "The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material."@en . - "Amperometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#AnalyticalElectronMicroscopy - . - . - "Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis."@en . - "AnalyticalElectronMicroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#AtomProbeTomography - . - . - "Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science.\n\nThe sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy."@en . - "3D Atom Probe" . - "APT" . - "AtomProbeTomography"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#AtomicForceMicroscopy - . - . - "Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings."@en . - "AtomicForceMicroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CalibrationData - . - . - "Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen."@en . - "" . - "CalibrationData"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CalibrationDataPostProcessing - . - . - "Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement."@en . - "" . - "CalibrationDataPostProcessing"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CalibrationProcess - . - . - _:genid1 . -_:genid1 . +# https://w3id.org/emmo/domain/chameo#AccessConditions + . + . + "Describes what is needed to repeat the experiment"@en . + "In case of national or international facilities such as synchrotrons describe the programme that enabled you to access these."@en . + "Was the access to your characterisation tool an inhouse routine or required a 3rd party service?"@en . + "Was the access to your sample preparation an inhouse routine or required a 3rd party service?"@en . + "" . + "AccessConditions"@en . +# +# https://w3id.org/emmo/domain/chameo#AlphaSpectrometry + . + . + "Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from."@en . + "AlphaSpectrometry"@en . +# +# https://w3id.org/emmo/domain/chameo#Amperometry + . + . + "The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material."@en . + "Amperometry"@en . +# +# https://w3id.org/emmo/domain/chameo#AnalyticalElectronMicroscopy + . + . + "Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis."@en . + "AnalyticalElectronMicroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#AtomProbeTomography + . + . + "Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science.\n\nThe sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy."@en . + "3D Atom Probe" . + "APT" . + "AtomProbeTomography"@en . +# +# https://w3id.org/emmo/domain/chameo#AtomicForceMicroscopy + . + . + "Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings."@en . + "AtomicForceMicroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#CalibrationData + . + . + "Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen."@en . + "" . + "CalibrationData"@en . +# +# https://w3id.org/emmo/domain/chameo#CalibrationDataPostProcessing + . + . + "Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement."@en . + "" . + "CalibrationDataPostProcessing"@en . +# +# https://w3id.org/emmo/domain/chameo#CalibrationProcess + . + . + _:genid1 . +_:genid1 . _:genid1 . _:genid1 . - _:genid2 . -_:genid2 . + _:genid2 . +_:genid2 . _:genid2 "1"^^ . _:genid2 . _:genid2 . - "Operation performed on a measuring instrument or a measuring system that, under specified conditions\n1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and\n2. uses this information to establish a relation for obtaining a measurement result from an indication\nNOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system.\nNOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty.\nNOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from\nmeasurement standards.\nNOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty\nfor the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the\npast the second step was usually considered to occur after the calibration.\nNOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement\nstandards.\n\n-- International Vocabulary of Metrology(VIM)"@en . - "Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data."@en . - "In nanoindentation, the electrical signal coming from capacitive displacement gauge is converted into a real raw-displacement signal after using a proper calibration function (as obtained by the equipment manufacturer). Then, additional calibration procedures are applied to define the point of initial contact and to correct for instrument compliance, thermal drift, and indenter area function to obtain the real useable displacement data."@en . - "Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed."@en . - "CalibrationProcess"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CalibrationTask - . - . - _:genid3 . -_:genid3 . + "Operation performed on a measuring instrument or a measuring system that, under specified conditions\n1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and\n2. uses this information to establish a relation for obtaining a measurement result from an indication\nNOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system.\nNOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty.\nNOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from\nmeasurement standards.\nNOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty\nfor the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the\npast the second step was usually considered to occur after the calibration.\nNOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement\nstandards.\n\n-- International Vocabulary of Metrology(VIM)"@en . + "Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data."@en . + "In nanoindentation, the electrical signal coming from capacitive displacement gauge is converted into a real raw-displacement signal after using a proper calibration function (as obtained by the equipment manufacturer). Then, additional calibration procedures are applied to define the point of initial contact and to correct for instrument compliance, thermal drift, and indenter area function to obtain the real useable displacement data."@en . + "Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed."@en . + "CalibrationProcess"@en . +# +# https://w3id.org/emmo/domain/chameo#CalibrationTask + . + . + _:genid3 . +_:genid3 . _:genid3 _:genid4 . _:genid4 . _:genid3 . - "Single calibration Task that is part of a Calibration Process Workflow."@en . - "CalibrationTask" . -# -# https://w3id.org/emmo/domain/chameo/chameo#Calorimetry - . - . - "In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter."@en . - "Calorimetry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationData - . - . - "Represents every type of data that is produced during a characterisation process"@en . - "" . - "CharacterisationData" . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationDataValidation - . - . - "Procedures to validate the characterisation data."@en . - "CharacterisationDataValidation"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationEnvironment - . - _:genid5 . -_:genid5 . + "Single calibration Task that is part of a Calibration Process Workflow."@en . + "CalibrationTask" . +# +# https://w3id.org/emmo/domain/chameo#Calorimetry + . + . + "In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter."@en . + "Calorimetry"@en . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationData + . + . + "Represents every type of data that is produced during a characterisation process"@en . + "" . + "CharacterisationData" . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationDataValidation + . + . + "Procedures to validate the characterisation data."@en . + "CharacterisationDataValidation"@en . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationEnvironment + . + _:genid5 . +_:genid5 . _:genid5 . _:genid5 . - "Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment."@en . - "Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc."@en . - "" . - "CharacterisationEnvironment"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationEnvironmentProperty - . - . - "CharacterisationEnvironmentProperty" . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationExperiment - . - . - "A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained."@en . - "CharacterisationExperiment"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationHardware - . - . - "Whatever hardware is used during the characterisation process."@en . - "" . - "CharacterisationHardware"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationHardwareSpecification - . - . - "CharacterisationHardwareSpecification"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationInstrument - . - . - . - . - _:genid6 . -_:genid6 . + "Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment."@en . + "Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc."@en . + "" . + "CharacterisationEnvironment"@en . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationEnvironmentProperty + . + . + "CharacterisationEnvironmentProperty" . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationExperiment + . + . + "A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained."@en . + "CharacterisationExperiment"@en . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationHardware + . + . + "Whatever hardware is used during the characterisation process."@en . + "" . + "CharacterisationHardware"@en . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationHardwareSpecification + . + . + "CharacterisationHardwareSpecification"@en . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationInstrument + . + . + . + . + _:genid6 . +_:genid6 . _:genid6 . _:genid6 . - _:genid7 . -_:genid7 . + _:genid7 . +_:genid7 . _:genid7 . _:genid7 . - "Device used for making measurements, alone or in conjunction with one or more supplementary\ndevices\nNOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system.\nNOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure."@en . - "The instrument used for characterising a material, which usually has a probe and a detector as parts."@en . - "In nanoindentation is the nanoindenter" . - "Measuring instrument"@en . - "" . - "CharacterisationInstrument" . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMeasurementProcess - . - . - _:genid8 . -_:genid8 . + "Device used for making measurements, alone or in conjunction with one or more supplementary\ndevices\nNOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system.\nNOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure."@en . + "The instrument used for characterising a material, which usually has a probe and a detector as parts."@en . + "In nanoindentation is the nanoindenter" . + "Measuring instrument"@en . + "" . + "CharacterisationInstrument" . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementProcess + . + . + _:genid8 . +_:genid8 . _:genid8 . _:genid8 . - _:genid9 . -_:genid9 . + _:genid9 . +_:genid9 . _:genid9 . _:genid9 . - _:genid10 . -_:genid10 . + _:genid10 . +_:genid10 . _:genid10 . _:genid10 . - _:genid11 . -_:genid11 . + _:genid11 . +_:genid11 . _:genid11 . _:genid11 . - _:genid12 . -_:genid12 . + _:genid12 . +_:genid12 . _:genid12 . _:genid12 . - "Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information\nNOTE 1 The quantity mentioned in the definition is an individual quantity.\nNOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement,\nsuch that some may be more representative of the measurand than others.\nNOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the\nprocess of obtaining values of nominal properties is called “examination”.\nNOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at\nsome step of the process and the use of models and calculations that are based on conceptual considerations.\nNOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the\nquantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated\nmeasuring system operating according to the specified measurement procedure, including the measurement\nconditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the\nmeasurement procedure and the measuring system should then be chosen in order not to exceed these measuring\nsystem specifications.\n\n-- International Vocabulary of Metrology(VIM)"@en . - "The measurement process associates raw data to the sample through a probe and a detector."@en . - "Measurement"@en . - "" . - "CharacterisationMeasurementProcess"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMeasurementTask - . - . - _:genid13 . -_:genid13 . + "Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information\nNOTE 1 The quantity mentioned in the definition is an individual quantity.\nNOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement,\nsuch that some may be more representative of the measurand than others.\nNOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the\nprocess of obtaining values of nominal properties is called “examination”.\nNOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at\nsome step of the process and the use of models and calculations that are based on conceptual considerations.\nNOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the\nquantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated\nmeasuring system operating according to the specified measurement procedure, including the measurement\nconditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the\nmeasurement procedure and the measuring system should then be chosen in order not to exceed these measuring\nsystem specifications.\n\n-- International Vocabulary of Metrology(VIM)"@en . + "The measurement process associates raw data to the sample through a probe and a detector."@en . + "Measurement"@en . + "" . + "CharacterisationMeasurementProcess"@en . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementTask + . + . + _:genid13 . +_:genid13 . _:genid13 _:genid14 . _:genid14 . _:genid13 . - "Single calibration Task that is part of a Characterisation Measurement Process Workflow."@en . - "CharacterisationMeasurementTask"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod - . - . - . - "The description of the overall characterisation method. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing)."@en . - "A characterisation method is not only related to the measurement process which can be one of its steps." . - "Characterisation procedure"@en . - "Characterisation technique"@en . - "CharacterisationMethod"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationProcedureValidation - . - . - "Describes why the characterization procedure was chosen and deemed to be the most useful for the sample."@en . - "" . - "CharacterisationProcedureValidation"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationProperty - . - . - . - "The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model)."@en . - "" . - "CharacterisationProperty"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationProtocol - . - . - "A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories."@en . - "CharacterisationProtocol"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationSoftware - . - . - "A software application to process characterisation data"@en . - "In Nanoindentation post-processing the software used to apply the Oliver-Pharr to calculate the characterisation properties (i.e. elastic modulus, hardness) from load and depth data." . - "" . - "CharacterisationSoftware" . -# -# https://w3id.org/emmo/domain/chameo/chameo#CharacterisationSystem - . - . - _:genid15 . -_:genid15 . + "Single calibration Task that is part of a Characterisation Measurement Process Workflow."@en . + "CharacterisationMeasurementTask"@en . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationMethod + . + . + . + "The description of the overall characterisation method. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing)."@en . + "A characterisation method is not only related to the measurement process which can be one of its steps." . + "Characterisation procedure"@en . + "Characterisation technique"@en . + "CharacterisationMethod"@en . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationProcedureValidation + . + . + "Describes why the characterization procedure was chosen and deemed to be the most useful for the sample."@en . + "" . + "CharacterisationProcedureValidation"@en . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationProperty + . + . + . + "The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model)."@en . + "" . + "CharacterisationProperty"@en . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationProtocol + . + . + "A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories."@en . + "CharacterisationProtocol"@en . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationSoftware + . + . + "A software application to process characterisation data"@en . + "In Nanoindentation post-processing the software used to apply the Oliver-Pharr to calculate the characterisation properties (i.e. elastic modulus, hardness) from load and depth data." . + "" . + "CharacterisationSoftware" . +# +# https://w3id.org/emmo/domain/chameo#CharacterisationSystem + . + . + _:genid15 . +_:genid15 . _:genid15 . _:genid15 . - "Set of one or more measuring instruments and often other components, assembled and\nadapted to give information used to generate measured values within specified intervals for\nquantities of specified kinds\nNOTE 1 The components mentioned in the definition may be devices, reagents, and supplies.\nNOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012,\nMeasurement management systems – Requirements for measurement processes and measuring equipment and ISO\n17025, General requirements for the competence of testing and calibration laboratories.\nNOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the\nlatter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement,\nincluding the object under measurement and the person(s) performing the measurement.\nNOTE 4 A measuring system can be used as a measurement standard."@en . - "A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds."@en . - "Measuring system"@en . - "CharacterisationSystem"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ChargeDistribution - . - . - "ChargeDistribution"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Chromatography - . - . - "Chromatography is a laboratory technique for the separation of a mixture into its components."@en . - "Chromatography"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CompressionTest - . - . - "Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads."@en . - "CompressionTest"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ConfocalMicroscopy - . - . - "Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation."@en . - "ConfocalMicroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CreepTest - . - . - "The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress."@en . - "CreepTest"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#CriticalAndSupercriticalChromatography - . - . - "CriticalAndSupercriticalChromatography"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DataAcquisitionRate - . - . - "Quantify the raw data acquisition rate, if applicable."@en . - "" . - "DataAcquisitionRate"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DataAnalysis - . - . - "Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model."@en . - "DataAnalysis"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DataFiltering - . - . - "Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria." . - "" . - "DataFiltering"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DataNormalisation - . - . - "Data normalization involves adjusting raw data to a notionally common scale."@en . - "It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction."@en . - "" . - "DataNormalisation"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DataPostProcessing - . - . - "Analysis, that allows one to calculate the final material property from the calibrated primary data." . - "" . - "DataPostProcessing"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DataPreparation - . - . - "Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis." . - "" . - "DataPreparation"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DataProcessingThroughCalibration - . - "Describes how raw data are corrected and/or modified through calibrations."@en . - "" . - "DataProcessingThroughCalibration"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DataQuality - . - "Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material."@en . - "Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis)"@en . - "" . - "DataQuality"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Detector - . - . - "Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample."@en . - "Back Scattered Electrons (BSE) and Secondary Electrons (SE) detectors for SEM"@en . - "Displacement and force sensors for mechanical testing"@en . - "" . - "Detector"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DielectricAndImpedanceSpectroscopy - . - . - "Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS."@en . - "DielectricAndImpedanceSpectroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DifferentialRefractiveIndex - . - . - "DifferentialRefractiveIndex"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DifferentialScanningCalorimetry - . - . - "Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively."@en . - "DSC" . - "DifferentialScanningCalorimetry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DifferentialThermalAnalysis - . - . - "Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample."@en . - "DTA" . - "DifferentialThermalAnalysis"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Dilatometry - . - . - "Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions."@en . - "Dilatometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DynamicLightScattering - . - . - "Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS)."@en . - "DLS" . - "DynamicLightScattering"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DynamicMechanicalAnalysis - . - . - "Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions."@en . - "DynamicMechanicalAnalysis"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#DynamicMechanicalSpectroscopy - . - . - "Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test."@en . - "DMA" . - "DynamicMechanicalSpectroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Electrochemical - . - . - "In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity"@en . - "Electrochemical"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ElectronBackscatterDiffraction - . - . - . - "Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery."@en . - "EBSD" . - "ElectronBackscatterDiffraction"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ElectronProbeMicroanalysis - . - . - "Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers."@en . - "ElectronProbeMicroanalysis"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Ellipsometry - . - . - "Ellipsometry is an optical technique that uses polarised light to probe the dielectric\nproperties of a sample (optical system). The common application of ellipsometry is\nthe analysis of thin films. Through the analysis of the state of polarisation of the\nlight that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic\nlayer or less. Depending on what is already known about the sample, the technique\ncan probe a range of properties including layer thickness, morphology, and chemical composition."@en . - "Ellipsometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#EnvironmentalScanningElectronMicroscopy - . - . - "The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber."@en . - "EnvironmentalScanningElectronMicroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Exafs - . - . - "Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented.\nWhen the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids."@en . - "Exafs"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#FatigueTesting - . - . - "Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue."@en . - "FatigueTesting"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#FibDic - . - . - "The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB)."@en . - "FIBDICResidualStressAnalysis" . - "FibDic" . -# -# https://w3id.org/emmo/domain/chameo/chameo#FieldEmissionScanningElectronMicroscopy - . - . - "Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging."@en . - "FE-SEM" . - "FieldEmissionScanningElectronMicroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Fractography - . - . - "Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture .Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog."@en . - "Fractography"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#FreezingPointDepressionOsmometry - . - . - "The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point."@en . - "FreezingPointDepressionOsmometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#GammaSpectrometry - . - . - "Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement.[2]\n\nMost radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced.\n\nA detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample."@en . - "GammaSpectrometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#HardnessTesting - . - . - "A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material."@en . - "HardnessTesting"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Hazard - . - . - "Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger."@en . - "" . - "Hazard"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Holder - . - . - "An object which supports the specimen in the correct position for the characterisation process."@en . - "" . - "Holder"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#InteractionVolume - . - . - "The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information)."@en . - "In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc."@en . - "In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress, …)."@en . - "In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem."@en . - "It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal."@en . - "" . - "InteractionVolume"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#IntermediateSample - . - . - "IntermediateSample"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#IonChromatography - . - . - "Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger."@en . - "IonChromatography"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#IonMobilitySpectrometry - . - . - "Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring."@en . - "IMS" . - "IonMobilitySpectrometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#IsothermalMicrocalorimetry - . - . - "Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C).\n\nIMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced."@en . - "IMC" . - "IsothermalMicrocalorimetry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Laboratory - . - "The laboratory where the whole characterisation process or some of its stages take place." . - "" . - "Laboratory" . -# -# https://w3id.org/emmo/domain/chameo/chameo#LevelOfAutomation - . - . - "Describes the level of automation of the test."@en . - "" . - "LevelOfAutomation"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#LevelOfExpertise - . - . - "Describes the level of expertise required to carry out a process (the entire test or the data processing)."@en . - "" . - "LevelOfExpertise"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#LightScattering - . - . - "Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color."@en . - "LightScattering"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#MassSpectrometry - . - . - "Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules."@en . - "MassSpectrometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#MeasurementDataPostProcessing - . - . - "Application of a post-processing model to signals through a software, in order to calculate the final characterisation property."@en . - "Analysis of SEM (or optical) images to gain additional information (image filtering/integration/averaging, microstructural analysis, grain size evaluation, Digital Image Correlation procedures, etc.)"@en . - "In nanoindentation testing, this is the Oliver-Pharr method, which allows calculating the elastic modulus and hardness of the sample by using the load and depth measured signals."@en . - "" . - "MeasurementDataPostProcessing"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#MeasurementParameter - . - . - "Describes the main input parameters that are needed to acquire the signal"@en . - "" . - "MeasurementParameter"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#MeasurementSystemAdjustment - . - . - "Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured\nNOTE 1 If there is any doubt that the context in which the term is being used is that of metrology, the long form\n“adjustment of a measuring system” might be used.\nNOTE 2 Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment\n(sometimes called “gain adjustment”).\nNOTE 3 Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite\nfor adjustment.\nNOTE 4 After an adjustment of a measuring system, the measuring system must usually be recalibrated.\n\n-- International Vocabulary of Metrology(VIM)"@en . - "Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration).\nThe output of this process can be a specific measurement parameter to be used in the characteriasation measurement process."@en . - "Adjustment"@en . - "MeasurementSystemAdjustment" . -# -# https://w3id.org/emmo/domain/chameo/chameo#MeasurementTime - . - . - "The overall time needed to acquire the measurement data"@en . - "" . - "MeasurementTime"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Mechanical - . - . - "Mechanical testing covers a wide range of tests, which can be divided broadly into two types:\n1. those that aim to determine a material's mechanical properties, independent of geometry.\n2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc."@en . - "Mechanical"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#MembraneOsmometry - . - . - "In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution."@en . - "MembraneOsmometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Microscopy - . - . - "Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales."@en . - "Microscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Nanoindentation - . - . - "Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation."@en . - "By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter someone can usually perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which might also some times refer as nanoindentation, because they are measurements, which are conducted using an nanoindenter."@en . - "Nanoindentation"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#NeutronSpinEchoSpectroscopy - . - . - "Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation."@en . - "NSE" . - "NeutronSpinEchoSpectroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Nexafs - . - . - "Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms."@en . - "Nexafs"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#NuclearMagneticResonance - . - . - "Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds."@en . - "Magnetic resonance spectroscopy (MRS)" . - "NMR" . - "NuclearMagneticResonance"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Operator - . - . - "The human operator who takes care of the whole characterisation method or sub-processes/stages."@en . - "" . - "Operator"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Optical - . - . - "Optical"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#OpticalMicroscopy - . - . - "Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light"@en . - "OpticalMicroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Osmometry - . - . - "Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg)."@en . - "Osmometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#PhotoluminescenceMicroscopy - . - . - "Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules."@en . - "PhotoluminescenceMicroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#PhysicsOfInteraction - . - _:genid16 . + "Set of one or more measuring instruments and often other components, assembled and\nadapted to give information used to generate measured values within specified intervals for\nquantities of specified kinds\nNOTE 1 The components mentioned in the definition may be devices, reagents, and supplies.\nNOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012,\nMeasurement management systems – Requirements for measurement processes and measuring equipment and ISO\n17025, General requirements for the competence of testing and calibration laboratories.\nNOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the\nlatter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement,\nincluding the object under measurement and the person(s) performing the measurement.\nNOTE 4 A measuring system can be used as a measurement standard."@en . + "A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds."@en . + "Measuring system"@en . + "CharacterisationSystem"@en . +# +# https://w3id.org/emmo/domain/chameo#ChargeDistribution + . + . + "ChargeDistribution"@en . +# +# https://w3id.org/emmo/domain/chameo#Chromatography + . + . + "Chromatography is a laboratory technique for the separation of a mixture into its components."@en . + "Chromatography"@en . +# +# https://w3id.org/emmo/domain/chameo#CompressionTest + . + . + "Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads."@en . + "CompressionTest"@en . +# +# https://w3id.org/emmo/domain/chameo#ConfocalMicroscopy + . + . + "Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation."@en . + "ConfocalMicroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#CreepTest + . + . + "The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress."@en . + "CreepTest"@en . +# +# https://w3id.org/emmo/domain/chameo#CriticalAndSupercriticalChromatography + . + . + "CriticalAndSupercriticalChromatography"@en . +# +# https://w3id.org/emmo/domain/chameo#DataAcquisitionRate + . + . + "Quantify the raw data acquisition rate, if applicable."@en . + "" . + "DataAcquisitionRate"@en . +# +# https://w3id.org/emmo/domain/chameo#DataAnalysis + . + . + "Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model."@en . + "DataAnalysis"@en . +# +# https://w3id.org/emmo/domain/chameo#DataFiltering + . + . + "Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria." . + "" . + "DataFiltering"@en . +# +# https://w3id.org/emmo/domain/chameo#DataNormalisation + . + . + "Data normalization involves adjusting raw data to a notionally common scale."@en . + "It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction."@en . + "" . + "DataNormalisation"@en . +# +# https://w3id.org/emmo/domain/chameo#DataPostProcessing + . + . + "Analysis, that allows one to calculate the final material property from the calibrated primary data." . + "" . + "DataPostProcessing"@en . +# +# https://w3id.org/emmo/domain/chameo#DataPreparation + . + . + "Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis." . + "" . + "DataPreparation"@en . +# +# https://w3id.org/emmo/domain/chameo#DataProcessingThroughCalibration + . + "Describes how raw data are corrected and/or modified through calibrations."@en . + "" . + "DataProcessingThroughCalibration"@en . +# +# https://w3id.org/emmo/domain/chameo#DataQuality + . + "Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material."@en . + "Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis)"@en . + "" . + "DataQuality"@en . +# +# https://w3id.org/emmo/domain/chameo#Detector + . + . + "Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample."@en . + "Back Scattered Electrons (BSE) and Secondary Electrons (SE) detectors for SEM"@en . + "Displacement and force sensors for mechanical testing"@en . + "" . + "Detector"@en . +# +# https://w3id.org/emmo/domain/chameo#DielectricAndImpedanceSpectroscopy + . + . + "Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS."@en . + "DielectricAndImpedanceSpectroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#DifferentialRefractiveIndex + . + . + "DifferentialRefractiveIndex"@en . +# +# https://w3id.org/emmo/domain/chameo#DifferentialScanningCalorimetry + . + . + "Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively."@en . + "DSC" . + "DifferentialScanningCalorimetry"@en . +# +# https://w3id.org/emmo/domain/chameo#DifferentialThermalAnalysis + . + . + "Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample."@en . + "DTA" . + "DifferentialThermalAnalysis"@en . +# +# https://w3id.org/emmo/domain/chameo#Dilatometry + . + . + "Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions."@en . + "Dilatometry"@en . +# +# https://w3id.org/emmo/domain/chameo#DynamicLightScattering + . + . + "Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS)."@en . + "DLS" . + "DynamicLightScattering"@en . +# +# https://w3id.org/emmo/domain/chameo#DynamicMechanicalAnalysis + . + . + "Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions."@en . + "DynamicMechanicalAnalysis"@en . +# +# https://w3id.org/emmo/domain/chameo#DynamicMechanicalSpectroscopy + . + . + "Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test."@en . + "DMA" . + "DynamicMechanicalSpectroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#Electrochemical + . + . + "In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity"@en . + "Electrochemical"@en . +# +# https://w3id.org/emmo/domain/chameo#ElectronBackscatterDiffraction + . + . + . + "Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery."@en . + "EBSD" . + "ElectronBackscatterDiffraction"@en . +# +# https://w3id.org/emmo/domain/chameo#ElectronProbeMicroanalysis + . + . + "Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers."@en . + "ElectronProbeMicroanalysis"@en . +# +# https://w3id.org/emmo/domain/chameo#Ellipsometry + . + . + "Ellipsometry is an optical technique that uses polarised light to probe the dielectric\nproperties of a sample (optical system). The common application of ellipsometry is\nthe analysis of thin films. Through the analysis of the state of polarisation of the\nlight that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic\nlayer or less. Depending on what is already known about the sample, the technique\ncan probe a range of properties including layer thickness, morphology, and chemical composition."@en . + "Ellipsometry"@en . +# +# https://w3id.org/emmo/domain/chameo#EnvironmentalScanningElectronMicroscopy + . + . + "The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber."@en . + "EnvironmentalScanningElectronMicroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#Exafs + . + . + "Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented.\nWhen the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids."@en . + "Exafs"@en . +# +# https://w3id.org/emmo/domain/chameo#FatigueTesting + . + . + "Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue."@en . + "FatigueTesting"@en . +# +# https://w3id.org/emmo/domain/chameo#FibDic + . + . + "The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB)."@en . + "FIBDICResidualStressAnalysis" . + "FibDic" . +# +# https://w3id.org/emmo/domain/chameo#FieldEmissionScanningElectronMicroscopy + . + . + "Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging."@en . + "FE-SEM" . + "FieldEmissionScanningElectronMicroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#Fractography + . + . + "Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture .Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog."@en . + "Fractography"@en . +# +# https://w3id.org/emmo/domain/chameo#FreezingPointDepressionOsmometry + . + . + "The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point."@en . + "FreezingPointDepressionOsmometry"@en . +# +# https://w3id.org/emmo/domain/chameo#GammaSpectrometry + . + . + "Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement.[2]\n\nMost radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced.\n\nA detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample."@en . + "GammaSpectrometry"@en . +# +# https://w3id.org/emmo/domain/chameo#HardnessTesting + . + . + "A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material."@en . + "HardnessTesting"@en . +# +# https://w3id.org/emmo/domain/chameo#Hazard + . + . + "Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger."@en . + "" . + "Hazard"@en . +# +# https://w3id.org/emmo/domain/chameo#Holder + . + . + "An object which supports the specimen in the correct position for the characterisation process."@en . + "" . + "Holder"@en . +# +# https://w3id.org/emmo/domain/chameo#InteractionVolume + . + . + "The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information)."@en . + "In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc."@en . + "In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress, …)."@en . + "In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem."@en . + "It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal."@en . + "" . + "InteractionVolume"@en . +# +# https://w3id.org/emmo/domain/chameo#IntermediateSample + . + . + "IntermediateSample"@en . +# +# https://w3id.org/emmo/domain/chameo#IonChromatography + . + . + "Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger."@en . + "IonChromatography"@en . +# +# https://w3id.org/emmo/domain/chameo#IonMobilitySpectrometry + . + . + "Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring."@en . + "IMS" . + "IonMobilitySpectrometry"@en . +# +# https://w3id.org/emmo/domain/chameo#IsothermalMicrocalorimetry + . + . + "Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C).\n\nIMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced."@en . + "IMC" . + "IsothermalMicrocalorimetry"@en . +# +# https://w3id.org/emmo/domain/chameo#Laboratory + . + "The laboratory where the whole characterisation process or some of its stages take place." . + "" . + "Laboratory" . +# +# https://w3id.org/emmo/domain/chameo#LevelOfAutomation + . + . + "Describes the level of automation of the test."@en . + "" . + "LevelOfAutomation"@en . +# +# https://w3id.org/emmo/domain/chameo#LevelOfExpertise + . + . + "Describes the level of expertise required to carry out a process (the entire test or the data processing)."@en . + "" . + "LevelOfExpertise"@en . +# +# https://w3id.org/emmo/domain/chameo#LightScattering + . + . + "Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color."@en . + "LightScattering"@en . +# +# https://w3id.org/emmo/domain/chameo#MassSpectrometry + . + . + "Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules."@en . + "MassSpectrometry"@en . +# +# https://w3id.org/emmo/domain/chameo#MeasurementDataPostProcessing + . + . + "Application of a post-processing model to signals through a software, in order to calculate the final characterisation property."@en . + "Analysis of SEM (or optical) images to gain additional information (image filtering/integration/averaging, microstructural analysis, grain size evaluation, Digital Image Correlation procedures, etc.)"@en . + "In nanoindentation testing, this is the Oliver-Pharr method, which allows calculating the elastic modulus and hardness of the sample by using the load and depth measured signals."@en . + "" . + "MeasurementDataPostProcessing"@en . +# +# https://w3id.org/emmo/domain/chameo#MeasurementParameter + . + . + "Describes the main input parameters that are needed to acquire the signal"@en . + "" . + "MeasurementParameter"@en . +# +# https://w3id.org/emmo/domain/chameo#MeasurementSystemAdjustment + . + . + "Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured\nNOTE 1 If there is any doubt that the context in which the term is being used is that of metrology, the long form\n“adjustment of a measuring system” might be used.\nNOTE 2 Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment\n(sometimes called “gain adjustment”).\nNOTE 3 Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite\nfor adjustment.\nNOTE 4 After an adjustment of a measuring system, the measuring system must usually be recalibrated.\n\n-- International Vocabulary of Metrology(VIM)"@en . + "Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration).\nThe output of this process can be a specific measurement parameter to be used in the characteriasation measurement process."@en . + "Adjustment"@en . + "MeasurementSystemAdjustment" . +# +# https://w3id.org/emmo/domain/chameo#MeasurementTime + . + . + "The overall time needed to acquire the measurement data"@en . + "" . + "MeasurementTime"@en . +# +# https://w3id.org/emmo/domain/chameo#Mechanical + . + . + "Mechanical testing covers a wide range of tests, which can be divided broadly into two types:\n1. those that aim to determine a material's mechanical properties, independent of geometry.\n2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc."@en . + "Mechanical"@en . +# +# https://w3id.org/emmo/domain/chameo#MembraneOsmometry + . + . + "In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution."@en . + "MembraneOsmometry"@en . +# +# https://w3id.org/emmo/domain/chameo#Microscopy + . + . + "Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales."@en . + "Microscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#Nanoindentation + . + . + "Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation."@en . + "By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter someone can usually perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which might also some times refer as nanoindentation, because they are measurements, which are conducted using an nanoindenter."@en . + "Nanoindentation"@en . +# +# https://w3id.org/emmo/domain/chameo#NeutronSpinEchoSpectroscopy + . + . + "Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation."@en . + "NSE" . + "NeutronSpinEchoSpectroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#Nexafs + . + . + "Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms."@en . + "Nexafs"@en . +# +# https://w3id.org/emmo/domain/chameo#NuclearMagneticResonance + . + . + "Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds."@en . + "Magnetic resonance spectroscopy (MRS)" . + "NMR" . + "NuclearMagneticResonance"@en . +# +# https://w3id.org/emmo/domain/chameo#Operator + . + . + "The human operator who takes care of the whole characterisation method or sub-processes/stages."@en . + "" . + "Operator"@en . +# +# https://w3id.org/emmo/domain/chameo#Optical + . + . + "Optical"@en . +# +# https://w3id.org/emmo/domain/chameo#OpticalMicroscopy + . + . + "Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light"@en . + "OpticalMicroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#Osmometry + . + . + "Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg)."@en . + "Osmometry"@en . +# +# https://w3id.org/emmo/domain/chameo#PhotoluminescenceMicroscopy + . + . + "Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules."@en . + "PhotoluminescenceMicroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#PhysicsOfInteraction + . + _:genid16 . _:genid16 _:genid18 . _:genid18 _:genid17 . _:genid17 . @@ -1073,340 +1073,340 @@ _:genid17 . _:genid18 . _:genid16 . - "Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe."@en . - "In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law)."@en . - "" . - "PhysicsOfInteraction"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#PostProcessingModel - . - . - "Mathematical model used to process data."@en . - "The PostProcessingModel use is mainly intended to get secondary data from primary data."@en . - "" . - "PostProcessingModel"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Potentiometry - . - . - "Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment."@en . - "Potentiometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#PreparedSample - . - . - . - "The sample after a preparation process."@en . - "PreparedSample" . -# -# https://w3id.org/emmo/domain/chameo/chameo#PrimaryData - . - . - "Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing."@en . - "Baseline subtraction"@en . - "Noise reduction"@en . - "X and Y axes correction"@en . - "" . - "PrimaryData"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Probe - . - . - "Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties."@en . - "In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics."@en . - "In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm."@en . - "In mechanical testing, the probe is a the tip plus a force actuator, which is designed to apply a force over-time on a sample. Many variants can be defined depending on way the force is applied (tensile/compressive uniaxial tests, bending test, indentation test) and its variation with time (static tests, dynamic/cyclic tests, impact tests, etc…)"@en . - "In spectroscopic methods, the probe is a beam of light with pre-defined energy (for example in the case of laser beam for Raman measurements) or pre-defined polarization (for example in the case of light beam for Spectroscopic Ellipsometry methods), that will be properly focused on the sample’s surface with a welldefined geometry (specific angle of incidence)."@en . - "In x-ray diffraction, the probe is a beam of x-rays with known energy that is properly focused on the sample’s surface with a well-defined geometry"@en . - "" . - "Probe"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ProbeSampleInteraction - . - . - _:genid19 . -_:genid19 . + "Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe."@en . + "In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law)."@en . + "" . + "PhysicsOfInteraction"@en . +# +# https://w3id.org/emmo/domain/chameo#PostProcessingModel + . + . + "Mathematical model used to process data."@en . + "The PostProcessingModel use is mainly intended to get secondary data from primary data."@en . + "" . + "PostProcessingModel"@en . +# +# https://w3id.org/emmo/domain/chameo#Potentiometry + . + . + "Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment."@en . + "Potentiometry"@en . +# +# https://w3id.org/emmo/domain/chameo#PreparedSample + . + . + . + "The sample after a preparation process."@en . + "PreparedSample" . +# +# https://w3id.org/emmo/domain/chameo#PrimaryData + . + . + "Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing."@en . + "Baseline subtraction"@en . + "Noise reduction"@en . + "X and Y axes correction"@en . + "" . + "PrimaryData"@en . +# +# https://w3id.org/emmo/domain/chameo#Probe + . + . + "Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties."@en . + "In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics."@en . + "In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm."@en . + "In mechanical testing, the probe is a the tip plus a force actuator, which is designed to apply a force over-time on a sample. Many variants can be defined depending on way the force is applied (tensile/compressive uniaxial tests, bending test, indentation test) and its variation with time (static tests, dynamic/cyclic tests, impact tests, etc…)"@en . + "In spectroscopic methods, the probe is a beam of light with pre-defined energy (for example in the case of laser beam for Raman measurements) or pre-defined polarization (for example in the case of light beam for Spectroscopic Ellipsometry methods), that will be properly focused on the sample’s surface with a welldefined geometry (specific angle of incidence)."@en . + "In x-ray diffraction, the probe is a beam of x-rays with known energy that is properly focused on the sample’s surface with a well-defined geometry"@en . + "" . + "Probe"@en . +# +# https://w3id.org/emmo/domain/chameo#ProbeSampleInteraction + . + . + _:genid19 . +_:genid19 . _:genid19 . _:genid19 . - "Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal"@en . - "" . - "ProbeSampleInteraction"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ProcessingReproducibility - . - "Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert)"@en . - "" . - "ProcessingReproducibility"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Profilometry - . - . - "Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness."@en . - "Profilometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#PulsedElectroacousticMethod - . - . - "The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics."@en . - "PulsedElectroacousticMethod"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#RamanSpectroscopy - . - . - "Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.\n\nRaman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information.\n\nTypically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector."@en . - "RamanSpectroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#RawData - . - . - . - "Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated."@en . - "The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy."@en . - "In mechanical testing, examples of raw data are raw-force, raw-displacement, coordinates as function of time."@en . - "In spectroscopic testing, the raw data are light intensity, or refractive index, or optical absorption as a function of the energy (or wavelength) of the incident light beam."@en . - "In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector."@en . - "" . - "RawData"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#RawSample - . - . - "RawSample"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ReferenceSample - . - . - "Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination\nNOTE 1 Reference materials can be certified reference materials or reference materials without a certified property\nvalue.\nNOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material.\nNOTE 3 Reference materials can be used for measurement precision evaluation and quality control.\nEXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control.\nNOTE 4 Properties of reference materials can be quantities or nominal properties.\nNOTE 5 A reference material is sometimes incorporated into a specially fabricated device.\nEXAMPLE Spheres of uniform size mounted on a microscope slide.\nNOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to\nwhich International Units (IU) have been assigned by the World Health Organization.\nNOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality\ncontrol, but not both.\nNOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference\nmaterials – Selected terms and definitions, definition 2.1.1) for both measurement and examination.\n\n-- International Vocabulary of Metrology(VIM)"@en . - "Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007]"@en . - "Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”."@en . - "Reference material"@en . - "" . - "Certified Reference Material"@en . - "Reference material"@en . - "ReferenceSpecimen" . - "ReferenceSample"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Sample - . - . - "Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen."@en . - "Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero." . - "" . - "Specimen" . - "Sample"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#SampleInspection - . - . - "Analysis of the sample in order to determine information that are relevant for the characterisation method."@en . - "In the Nanoindentation method the Scanning Electron Microscope to determine the indentation area."@en . - "SampleInspection"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#SamplePreparation - . - . - _:genid20 . -_:genid20 . + "Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal"@en . + "" . + "ProbeSampleInteraction"@en . +# +# https://w3id.org/emmo/domain/chameo#ProcessingReproducibility + . + "Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert)"@en . + "" . + "ProcessingReproducibility"@en . +# +# https://w3id.org/emmo/domain/chameo#Profilometry + . + . + "Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness."@en . + "Profilometry"@en . +# +# https://w3id.org/emmo/domain/chameo#PulsedElectroacousticMethod + . + . + "The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics."@en . + "PulsedElectroacousticMethod"@en . +# +# https://w3id.org/emmo/domain/chameo#RamanSpectroscopy + . + . + "Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.\n\nRaman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information.\n\nTypically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector."@en . + "RamanSpectroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#RawData + . + . + . + "Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated."@en . + "The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy."@en . + "In mechanical testing, examples of raw data are raw-force, raw-displacement, coordinates as function of time."@en . + "In spectroscopic testing, the raw data are light intensity, or refractive index, or optical absorption as a function of the energy (or wavelength) of the incident light beam."@en . + "In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector."@en . + "" . + "RawData"@en . +# +# https://w3id.org/emmo/domain/chameo#RawSample + . + . + "RawSample"@en . +# +# https://w3id.org/emmo/domain/chameo#ReferenceSample + . + . + "Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination\nNOTE 1 Reference materials can be certified reference materials or reference materials without a certified property\nvalue.\nNOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material.\nNOTE 3 Reference materials can be used for measurement precision evaluation and quality control.\nEXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control.\nNOTE 4 Properties of reference materials can be quantities or nominal properties.\nNOTE 5 A reference material is sometimes incorporated into a specially fabricated device.\nEXAMPLE Spheres of uniform size mounted on a microscope slide.\nNOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to\nwhich International Units (IU) have been assigned by the World Health Organization.\nNOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality\ncontrol, but not both.\nNOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference\nmaterials – Selected terms and definitions, definition 2.1.1) for both measurement and examination.\n\n-- International Vocabulary of Metrology(VIM)"@en . + "Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007]"@en . + "Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”."@en . + "Reference material"@en . + "" . + "Certified Reference Material"@en . + "Reference material"@en . + "ReferenceSpecimen" . + "ReferenceSample"@en . +# +# https://w3id.org/emmo/domain/chameo#Sample + . + . + "Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen."@en . + "Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero." . + "" . + "Specimen" . + "Sample"@en . +# +# https://w3id.org/emmo/domain/chameo#SampleInspection + . + . + "Analysis of the sample in order to determine information that are relevant for the characterisation method."@en . + "In the Nanoindentation method the Scanning Electron Microscope to determine the indentation area."@en . + "SampleInspection"@en . +# +# https://w3id.org/emmo/domain/chameo#SamplePreparation + . + . + _:genid20 . +_:genid20 . _:genid20 . _:genid20 . - _:genid21 . -_:genid21 . + _:genid21 . +_:genid21 . _:genid21 . _:genid21 . - _:genid22 . -_:genid22 . + _:genid22 . +_:genid22 . _:genid22 . _:genid22 . - "Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement."@en . - "" . - "SamplePreparation"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#SamplePreparationHardware - . - . - "Hardware used for the preparation of the sample."@en . - "" . - "SamplePreparationHardware"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#SamplePreparationParameter - . - . - "Parameter used for the sample preparation process"@en . - "SamplePreparationParameter"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#SamplingProcess - . - . - "Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated."@en . - "The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken."@en . - "" . - "SamplingProcess"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ScanningAugerElectronMicroscopy - . - . - "Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample."@en . - "AES" . - "ScanningAugerElectronMicroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ScanningElectronMicroscopy - . - . - "The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample."@en . - "SEM" . - "ScanningElectronMicroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ScanningKelvinProbe - . - . - "Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact."@en . - "SKB" . - "ScanningKelvinProbe"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ScanningProbeMicroscopy - . - . - "Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen."@en . - "ScanningProbeMicroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ScanningTunnelingMicroscopy - . - . - "Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams."@en . - "STM" . - "ScanningTunnelingMicroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ScatteringAndDiffraction - . - . - "ScatteringAndDiffraction"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#SecondaryData - . - . - "Data resulting from the application of post-processing or model generation to other data."@en . - "Deconvoluted curves"@en . - "Intensity maps"@en . - "" . - "Elaborated data"@en . - "SecondaryData"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#SecondaryIonMassSpectrometry - . - . - "Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions."@en . - "SIMS" . - "SecondaryIonMassSpectrometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#ShearOrTorsionTests - . - . - "ShearOrTorsionTest"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Signal - . - . - "According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 )."@en . - "Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity."@en . - "Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms."@en . - "" . - "Signal"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Spectrometry - . - . - "Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample."@en . - "Spectrometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Spectroscopy - . - . - "Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials."@en . - "Spectroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Synchrotron - . - . - "Synchrotron"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#TensileTest - . - . - "Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials."@en . - "TensionTest" . - "TensileTest"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Thermochemical - . - . - "Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature."@en . - "TMA" . - "Thermochemical"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Thermogravimetry - . - . - "Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction)."@en . - "TGA" . - "Thermogravimetry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Tomography - . - . - "Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, \"slice, section\" and γράφω graphō, \"to write\" or, in this context as well, \"to describe.\" A device used in tomography is called a tomograph, while the image produced is a tomogram."@en . - "Tomography"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#TransmissionElectronMicroscopy - . - . - "Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device."@en . - "TEM" . - "TransmissionElectronMicroscopy"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Ultrasonic - . - . - "Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion.\n\nUltrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors."@en . - "Ultrasonic"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#VaporPressureDepressionOsmometry - . - . - "Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect."@en . - "VPO" . - "VaporPressureDepressionOsmometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Viscometry - . - . - "Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities."@en . - "Viscosity" . - "Viscometry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#Voltammetry - . - . - "Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it."@en . - "Voltammetry"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#WearTest - . - . - "A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces.\nWear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface."@en . - "WearTest"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#XpsVariableKinetic - . - . - "X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background."@en . - "Electron spectroscopy for chemical analysis (ESCA)" . - "X-ray photoelectron spectroscopy (XPS)" . - "XpsVariableKinetic"@en . -# -# https://w3id.org/emmo/domain/chameo/chameo#XrdGrazingIncidence - . - . - "XrdGrazingIncidence"@en . + "Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement."@en . + "" . + "SamplePreparation"@en . +# +# https://w3id.org/emmo/domain/chameo#SamplePreparationHardware + . + . + "Hardware used for the preparation of the sample."@en . + "" . + "SamplePreparationHardware"@en . +# +# https://w3id.org/emmo/domain/chameo#SamplePreparationParameter + . + . + "Parameter used for the sample preparation process"@en . + "SamplePreparationParameter"@en . +# +# https://w3id.org/emmo/domain/chameo#SamplingProcess + . + . + "Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated."@en . + "The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken."@en . + "" . + "SamplingProcess"@en . +# +# https://w3id.org/emmo/domain/chameo#ScanningAugerElectronMicroscopy + . + . + "Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample."@en . + "AES" . + "ScanningAugerElectronMicroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#ScanningElectronMicroscopy + . + . + "The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample."@en . + "SEM" . + "ScanningElectronMicroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#ScanningKelvinProbe + . + . + "Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact."@en . + "SKB" . + "ScanningKelvinProbe"@en . +# +# https://w3id.org/emmo/domain/chameo#ScanningProbeMicroscopy + . + . + "Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen."@en . + "ScanningProbeMicroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#ScanningTunnelingMicroscopy + . + . + "Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams."@en . + "STM" . + "ScanningTunnelingMicroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#ScatteringAndDiffraction + . + . + "ScatteringAndDiffraction"@en . +# +# https://w3id.org/emmo/domain/chameo#SecondaryData + . + . + "Data resulting from the application of post-processing or model generation to other data."@en . + "Deconvoluted curves"@en . + "Intensity maps"@en . + "" . + "Elaborated data"@en . + "SecondaryData"@en . +# +# https://w3id.org/emmo/domain/chameo#SecondaryIonMassSpectrometry + . + . + "Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions."@en . + "SIMS" . + "SecondaryIonMassSpectrometry"@en . +# +# https://w3id.org/emmo/domain/chameo#ShearOrTorsionTests + . + . + "ShearOrTorsionTest"@en . +# +# https://w3id.org/emmo/domain/chameo#Signal + . + . + "According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 )."@en . + "Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity."@en . + "Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms."@en . + "" . + "Signal"@en . +# +# https://w3id.org/emmo/domain/chameo#Spectrometry + . + . + "Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample."@en . + "Spectrometry"@en . +# +# https://w3id.org/emmo/domain/chameo#Spectroscopy + . + . + "Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials."@en . + "Spectroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#Synchrotron + . + . + "Synchrotron"@en . +# +# https://w3id.org/emmo/domain/chameo#TensileTest + . + . + "Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials."@en . + "TensionTest" . + "TensileTest"@en . +# +# https://w3id.org/emmo/domain/chameo#Thermochemical + . + . + "Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature."@en . + "TMA" . + "Thermochemical"@en . +# +# https://w3id.org/emmo/domain/chameo#Thermogravimetry + . + . + "Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction)."@en . + "TGA" . + "Thermogravimetry"@en . +# +# https://w3id.org/emmo/domain/chameo#Tomography + . + . + "Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, \"slice, section\" and γράφω graphō, \"to write\" or, in this context as well, \"to describe.\" A device used in tomography is called a tomograph, while the image produced is a tomogram."@en . + "Tomography"@en . +# +# https://w3id.org/emmo/domain/chameo#TransmissionElectronMicroscopy + . + . + "Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device."@en . + "TEM" . + "TransmissionElectronMicroscopy"@en . +# +# https://w3id.org/emmo/domain/chameo#Ultrasonic + . + . + "Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion.\n\nUltrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors."@en . + "Ultrasonic"@en . +# +# https://w3id.org/emmo/domain/chameo#VaporPressureDepressionOsmometry + . + . + "Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect."@en . + "VPO" . + "VaporPressureDepressionOsmometry"@en . +# +# https://w3id.org/emmo/domain/chameo#Viscometry + . + . + "Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities."@en . + "Viscosity" . + "Viscometry"@en . +# +# https://w3id.org/emmo/domain/chameo#Voltammetry + . + . + "Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it."@en . + "Voltammetry"@en . +# +# https://w3id.org/emmo/domain/chameo#WearTest + . + . + "A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces.\nWear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface."@en . + "WearTest"@en . +# +# https://w3id.org/emmo/domain/chameo#XpsVariableKinetic + . + . + "X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background."@en . + "Electron spectroscopy for chemical analysis (ESCA)" . + "X-ray photoelectron spectroscopy (XPS)" . + "XpsVariableKinetic"@en . +# +# https://w3id.org/emmo/domain/chameo#XrdGrazingIncidence + . + . + "XrdGrazingIncidence"@en . # # http://purl.org/spar/datacite/ResourceIdentifier . @@ -1421,37 +1421,37 @@ _:genid22 . - . +# https://w3id.org/emmo/domain/chameo#Agent1 + . + . # -# https://w3id.org/emmo/domain/chameo/chameo#CalibrationProcess1 - . - . +# https://w3id.org/emmo/domain/chameo#CalibrationProcess1 + . + . # -# https://w3id.org/emmo/domain/chameo/chameo#ChMeasProc1 - . - . +# https://w3id.org/emmo/domain/chameo#ChMeasProc1 + . + . # -# https://w3id.org/emmo/domain/chameo/chameo#Determination1 - . - . - . +# https://w3id.org/emmo/domain/chameo#Determination1 + . + . + . # -# https://w3id.org/emmo/domain/chameo/chameo#InferredChMethod1 - . - . - . +# https://w3id.org/emmo/domain/chameo#InferredChMethod1 + . + . + . # -# https://w3id.org/emmo/domain/chameo/chameo#hasChValid1 - . - . +# https://w3id.org/emmo/domain/chameo#hasChValid1 + . + . # -# https://w3id.org/emmo/domain/chameo/chameo#hasChValid2 - . +# https://w3id.org/emmo/domain/chameo#hasChValid2 + . # -# https://w3id.org/emmo/domain/chameo/chameo#hasChValidProp - . +# https://w3id.org/emmo/domain/chameo#hasChValidProp + . # # # @@ -1473,23 +1473,23 @@ _:genid27 _:genid26 . _:genid26 _:genid25 . _:genid25 _:genid24 . _:genid24 . -_:genid24 . +_:genid24 . _:genid24 . -_:genid25 . +_:genid25 . _:genid25 . -_:genid26 . +_:genid26 . _:genid26 . -_:genid27 . +_:genid27 . _:genid27 . -_:genid28 . +_:genid28 . _:genid28 . -_:genid29 . +_:genid29 . _:genid29 . -_:genid30 . +_:genid30 . _:genid30 . -_:genid31 . +_:genid31 . _:genid31 . -_:genid32 . +_:genid32 . _:genid32 . # _:genid33 . @@ -1504,25 +1504,25 @@ _:genid37 _:genid36 . _:genid36 _:genid35 . _:genid35 _:genid34 . _:genid34 . -_:genid34 . +_:genid34 . _:genid34 . -_:genid35 . +_:genid35 . _:genid35 . -_:genid36 . +_:genid36 . _:genid36 . -_:genid37 . +_:genid37 . _:genid37 . -_:genid38 . +_:genid38 . _:genid38 . -_:genid39 . +_:genid39 . _:genid39 . -_:genid40 . +_:genid40 . _:genid40 . -_:genid41 . +_:genid41 . _:genid41 . -_:genid42 . +_:genid42 . _:genid42 . -_:genid43 . +_:genid43 . _:genid43 . # # Generated by the OWL API (version 5.1.18.2021-07-30T21:49:07Z) https://github.com/owlcs/owlapi/ diff --git a/documentation/ontology.owl b/documentation/ontology.owl index 31309ea..ee9c54e 100644 --- a/documentation/ontology.owl +++ b/documentation/ontology.owl @@ -1,6 +1,6 @@ - - + xmlns:chameo="https://w3id.org/emmo/domain/chameo#"> + @@ -39,7 +39,7 @@ Pierluigi Del Nostro Characterisation Methodology Ontology - https://w3id.org/emmo/domain/chameo/chameo + https://w3id.org/emmo/domain/chameo https://creativecommons.org/licenses/by/4.0/legalcode 2023-10-23T15:00:00Z @@ -48,7 +48,7 @@ CHAracterisation MEthodology Ontology chameo - https://w3id.org/emmo/domain/chameo/chameo + https://w3id.org/emmo/domain/chameo Contacts: Gerhard Goldbeck Goldbeck Consulting Ltd (UK) @@ -193,132 +193,132 @@ - + - + characterisationProcedureHasSubProcedure - + - + - - + + hasAccessConditions - + - + - + hasCharacterisationEnvironment - + - + - - + + hasCharacterisationEnvironmentProperty - + - + - - + + hasCharacterisationProcedureValidation - + - + - - + + hasCharacterisationProperty - + - + - + hasCharacterisationSoftware - + - + - - + + hasDataAcquisitionRate - + - + - - + + hasDataProcessingThroughCalibration - + - + - - + + hasDataQuality - + - + hasDataset @@ -326,309 +326,309 @@ - + - + - - + + hasHardwareSpecification - + - + - + hasHazard - + - + - - + + hasHolder - + - + - - + + hasInteractionVolume - + - + - - + + hasInteractionWithProbe - + - + - - + + hasInteractionWithSample - + - + - + hasLab - + - + - - + + hasLevelOfAutomation - + - + - + hasMeasurementDetector - + - + - - + + hasMeasurementParameter - + - + - + hasMeasurementProbe - + - + - - + + hasMeasurementSample - + - + - + hasMeasurementTime - + - + - + hasOperator - + - + - + hasPeerReviewedArticle - + - + - - + + hasPhysicsOfInteraction - + - + - - + + hasPostProcessingModel - + - + - - + + hasProcessingReproducibility - + - + - - + + hasSampleBeforeSamplePreparation - + - + hasSamplePreparationHardware - + - + - - + + hasSamplePreparationInput - + - + - - + + hasSamplePreparationOutput - + - + - - + + hasSamplePreparationParameter - + - + - - + + hasSampledSample - + - + - + requiresLevelOfExpertise @@ -647,12 +647,12 @@ - + - + - + hasDateOfCalibration @@ -680,10 +680,10 @@ - + - + Describes what is needed to repeat the experiment In case of national or international facilities such as synchrotrons describe the programme that enabled you to access these. @@ -695,44 +695,44 @@ - + - - + + Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. AlphaSpectrometry - + - - + + The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. Amperometry - + - - + + Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. AnalyticalElectronMicroscopy - + - - + + Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. @@ -743,22 +743,22 @@ The sample is prepared in the form of a very sharp tip. The cooled tip is biased - + - - + + Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. AtomicForceMicroscopy - + - - + + Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. CalibrationData @@ -766,11 +766,11 @@ The sample is prepared in the form of a very sharp tip. The cooled tip is biased - + - - + + Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement. CalibrationDataPostProcessing @@ -778,22 +778,22 @@ The sample is prepared in the form of a very sharp tip. The cooled tip is biased - + - + - + 1 - + Operation performed on a measuring instrument or a measuring system that, under specified conditions @@ -818,10 +818,10 @@ standards. - + - + @@ -830,7 +830,7 @@ standards. - + Single calibration Task that is part of a Calibration Process Workflow. @@ -839,21 +839,21 @@ standards. - + - - + + In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. Calorimetry - + - + Represents every type of data that is produced during a characterisation process @@ -862,10 +862,10 @@ standards. - + - + Procedures to validate the characterisation data. CharacterisationDataValidation @@ -873,14 +873,14 @@ standards. - + - + - + Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. @@ -891,20 +891,20 @@ standards. - + - + CharacterisationEnvironmentProperty - + - + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. CharacterisationExperiment @@ -912,10 +912,10 @@ standards. - + - + Whatever hardware is used during the characterisation process. @@ -924,33 +924,33 @@ standards. - + - + CharacterisationHardwareSpecification - + - + - + - + - + Device used for making measurements, alone or in conjunction with one or more supplementary @@ -966,39 +966,39 @@ NOTE 2 A measuring instrument is either an indicating measuring instrument or a - + - + - + - + - + - + - + Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information @@ -1025,10 +1025,10 @@ system specifications. - + - + @@ -1037,7 +1037,7 @@ system specifications. - + Single calibration Task that is part of a Characterisation Measurement Process Workflow. @@ -1046,10 +1046,10 @@ system specifications. - + - + The description of the overall characterisation method. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). @@ -1061,10 +1061,10 @@ system specifications. - + - + Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. @@ -1073,12 +1073,12 @@ system specifications. - + - + - + The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). CharacterisationProperty @@ -1086,10 +1086,10 @@ system specifications. - + - + A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. CharacterisationProtocol @@ -1097,10 +1097,10 @@ system specifications. - + - + A software application to process characterisation data In Nanoindentation post-processing the software used to apply the Oliver-Pharr to calculate the characterisation properties (i.e. elastic modulus, hardness) from load and depth data. @@ -1110,15 +1110,15 @@ system specifications. - + - + - + Set of one or more measuring instruments and often other components, assembled and @@ -1139,74 +1139,74 @@ NOTE 4 A measuring system can be used as a measurement standard. + - - + + ChargeDistribution - + - - + + Chromatography is a laboratory technique for the separation of a mixture into its components. Chromatography - + - - + + Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. CompressionTest - + - - + + Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. ConfocalMicroscopy - + - - + + The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. CreepTest - + - - + + CriticalAndSupercriticalChromatography - + - + Quantify the raw data acquisition rate, if applicable. @@ -1215,10 +1215,10 @@ NOTE 4 A measuring system can be used as a measurement standard. + - + Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. DataAnalysis @@ -1226,11 +1226,11 @@ NOTE 4 A measuring system can be used as a measurement standard. + - - + + Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. DataFiltering @@ -1238,11 +1238,11 @@ NOTE 4 A measuring system can be used as a measurement standard. + - - + + Data normalization involves adjusting raw data to a notionally common scale. It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. @@ -1251,10 +1251,10 @@ NOTE 4 A measuring system can be used as a measurement standard. + - + Analysis, that allows one to calculate the final material property from the calibrated primary data. @@ -1263,10 +1263,10 @@ NOTE 4 A measuring system can be used as a measurement standard. + - + Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. @@ -1275,10 +1275,10 @@ NOTE 4 A measuring system can be used as a measurement standard. + - + Describes how raw data are corrected and/or modified through calibrations. DataProcessingThroughCalibration @@ -1286,10 +1286,10 @@ NOTE 4 A measuring system can be used as a measurement standard. + - + Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis) @@ -1298,11 +1298,11 @@ NOTE 4 A measuring system can be used as a measurement standard. + - - + + Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. Back Scattered Electrons (BSE) and Secondary Electrons (SE) detectors for SEM Displacement and force sensors for mechanical testing @@ -1312,32 +1312,32 @@ NOTE 4 A measuring system can be used as a measurement standard. + - - + + Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. DielectricAndImpedanceSpectroscopy - + - - + + DifferentialRefractiveIndex - + - - + + Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. DSC DifferentialScanningCalorimetry @@ -1345,11 +1345,11 @@ NOTE 4 A measuring system can be used as a measurement standard. + - - + + Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. DTA DifferentialThermalAnalysis @@ -1357,22 +1357,22 @@ NOTE 4 A measuring system can be used as a measurement standard. + - - + + Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. Dilatometry - + - - + + Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). DLS DynamicLightScattering @@ -1380,22 +1380,22 @@ NOTE 4 A measuring system can be used as a measurement standard. + - - + + Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. DynamicMechanicalAnalysis - + - - + + Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. DMA DynamicMechanicalSpectroscopy @@ -1403,23 +1403,23 @@ NOTE 4 A measuring system can be used as a measurement standard. + - - + + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity Electrochemical - + - - - + + + Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. EBSD ElectronBackscatterDiffraction @@ -1427,22 +1427,22 @@ NOTE 4 A measuring system can be used as a measurement standard. + - - + + Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. ElectronProbeMicroanalysis - + - - + + Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the @@ -1454,22 +1454,22 @@ can probe a range of properties including layer thickness, morphology, and chemi - + - - + + The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. EnvironmentalScanningElectronMicroscopy - + - - + + Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. Exafs @@ -1477,22 +1477,22 @@ When the incident x-ray energy matches the binding energy of an electron of an a - + - - + + Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. FatigueTesting - + - - + + The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). FIBDICResidualStressAnalysis FibDic @@ -1500,11 +1500,11 @@ When the incident x-ray energy matches the binding energy of an electron of an a - + - - + + Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. FE-SEM FieldEmissionScanningElectronMicroscopy @@ -1512,33 +1512,33 @@ When the incident x-ray energy matches the binding energy of an electron of an a - + - - + + Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture .Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. Fractography - + - - + + The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. FreezingPointDepressionOsmometry - + - - + + Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement.[2] Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. @@ -1549,21 +1549,21 @@ A detailed analysis of this spectrum is typically used to determine the identity - + - - + + A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. HardnessTesting - + - + Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. @@ -1572,11 +1572,11 @@ A detailed analysis of this spectrum is typically used to determine the identity - + - - + + An object which supports the specimen in the correct position for the characterisation process. Holder @@ -1584,10 +1584,10 @@ A detailed analysis of this spectrum is typically used to determine the identity - + - + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. @@ -1600,32 +1600,32 @@ A detailed analysis of this spectrum is typically used to determine the identity - + - - + + IntermediateSample - + - - + + Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. IonChromatography - + - - + + Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. IMS IonMobilitySpectrometry @@ -1633,11 +1633,11 @@ A detailed analysis of this spectrum is typically used to determine the identity - + - - + + Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. @@ -1647,10 +1647,10 @@ IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed ti - + - + The laboratory where the whole characterisation process or some of its stages take place. Laboratory @@ -1658,10 +1658,10 @@ IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed ti - + - + Describes the level of automation of the test. @@ -1670,10 +1670,10 @@ IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed ti - + - + Describes the level of expertise required to carry out a process (the entire test or the data processing). @@ -1682,33 +1682,33 @@ IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed ti - + - - + + Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. LightScattering - + - - + + Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. MassSpectrometry - + - - + + Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. Analysis of SEM (or optical) images to gain additional information (image filtering/integration/averaging, microstructural analysis, grain size evaluation, Digital Image Correlation procedures, etc.) In nanoindentation testing, this is the Oliver-Pharr method, which allows calculating the elastic modulus and hardness of the sample by using the load and depth measured signals. @@ -1718,10 +1718,10 @@ IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed ti - + - + Describes the main input parameters that are needed to acquire the signal @@ -1730,10 +1730,10 @@ IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed ti - + - + Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured NOTE 1 If there is any doubt that the context in which the term is being used is that of metrology, the long form @@ -1753,10 +1753,10 @@ The output of this process can be a specific measurement parameter to be used in - + - + The overall time needed to acquire the measurement data @@ -1765,11 +1765,11 @@ The output of this process can be a specific measurement parameter to be used in - + - - + + Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry. 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. @@ -1778,33 +1778,33 @@ The output of this process can be a specific measurement parameter to be used in - + - - + + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. MembraneOsmometry - + - - + + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. Microscopy - + - - + + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter someone can usually perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which might also some times refer as nanoindentation, because they are measurements, which are conducted using an nanoindenter. Nanoindentation @@ -1812,11 +1812,11 @@ The output of this process can be a specific measurement parameter to be used in - + - - + + Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. NSE NeutronSpinEchoSpectroscopy @@ -1824,22 +1824,22 @@ The output of this process can be a specific measurement parameter to be used in - + - - + + Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. Nexafs - + - - + + Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. Magnetic resonance spectroscopy (MRS) NMR @@ -1848,10 +1848,10 @@ The output of this process can be a specific measurement parameter to be used in - + - + The human operator who takes care of the whole characterisation method or sub-processes/stages. @@ -1860,53 +1860,53 @@ The output of this process can be a specific measurement parameter to be used in - + - - + + Optical - + - - + + Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light OpticalMicroscopy - + - - + + Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). Osmometry - + - - + + Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. PhotoluminescenceMicroscopy - + - + @@ -1923,10 +1923,10 @@ The output of this process can be a specific measurement parameter to be used in - + - + Mathematical model used to process data. The PostProcessingModel use is mainly intended to get secondary data from primary data. @@ -1936,34 +1936,34 @@ The output of this process can be a specific measurement parameter to be used in - + - - + + Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. Potentiometry - + - - - + + + The sample after a preparation process. PreparedSample - + - - + + Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. Baseline subtraction Noise reduction @@ -1974,11 +1974,11 @@ The output of this process can be a specific measurement parameter to be used in - + - - + + Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics. In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm. @@ -1991,15 +1991,15 @@ The output of this process can be a specific measurement parameter to be used in - + - + - + Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal @@ -2009,10 +2009,10 @@ The output of this process can be a specific measurement parameter to be used in - + - + Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) ProcessingReproducibility @@ -2020,33 +2020,33 @@ The output of this process can be a specific measurement parameter to be used in - + - - + + Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. Profilometry - + - - + + The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. PulsedElectroacousticMethod - + - - + + Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. @@ -2057,12 +2057,12 @@ Typically, a sample is illuminated with a laser beam. Electromagnetic radiation - + - + - + Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. In mechanical testing, examples of raw data are raw-force, raw-displacement, coordinates as function of time. @@ -2074,21 +2074,21 @@ Typically, a sample is illuminated with a laser beam. Electromagnetic radiation - + - - + + RawSample - + - - + + Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property value. @@ -2118,10 +2118,10 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - + Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen. Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. @@ -2132,10 +2132,10 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - + Analysis of the sample in order to determine information that are relevant for the characterisation method. In the Nanoindentation method the Scanning Electron Microscope to determine the indentation area. @@ -2144,27 +2144,27 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - + - + - + - + Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. @@ -2174,10 +2174,10 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - + Hardware used for the preparation of the sample. @@ -2186,10 +2186,10 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - + Parameter used for the sample preparation process SamplePreparationParameter @@ -2197,10 +2197,10 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - + Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. @@ -2210,11 +2210,11 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - - + + Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. AES ScanningAugerElectronMicroscopy @@ -2222,11 +2222,11 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - - + + The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. SEM ScanningElectronMicroscopy @@ -2234,11 +2234,11 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - - + + Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. SKB ScanningKelvinProbe @@ -2246,22 +2246,22 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - - + + Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. ScanningProbeMicroscopy - + - - + + Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. STM ScanningTunnelingMicroscopy @@ -2269,21 +2269,21 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - - + + ScatteringAndDiffraction - + - - + + Data resulting from the application of post-processing or model generation to other data. Deconvoluted curves Intensity maps @@ -2294,11 +2294,11 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - - + + Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. SIMS SecondaryIonMassSpectrometry @@ -2306,21 +2306,21 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - - + + ShearOrTorsionTest - + - - + + According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. @@ -2330,43 +2330,43 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - - + + Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. Spectrometry - + - - + + Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. Spectroscopy - + - - + + Synchrotron - + - - + + Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. TensionTest TensileTest @@ -2374,11 +2374,11 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - - + + Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. TMA Thermochemical @@ -2386,11 +2386,11 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - - + + Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). TGA Thermogravimetry @@ -2398,22 +2398,22 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - - + + Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. Tomography - + - - + + Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. TEM TransmissionElectronMicroscopy @@ -2421,11 +2421,11 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - + - - + + Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. @@ -2434,11 +2434,11 @@ Ultrasonic testing is often performed on steel and other metals and alloys, thou - + - - + + Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. VPO VaporPressureDepressionOsmometry @@ -2446,11 +2446,11 @@ Ultrasonic testing is often performed on steel and other metals and alloys, thou - + - - + + Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. Viscosity Viscometry @@ -2458,22 +2458,22 @@ Ultrasonic testing is often performed on steel and other metals and alloys, thou - + - - + + Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. Voltammetry - + - - + + A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. WearTest @@ -2481,11 +2481,11 @@ Wear is defined as the progressive removal of the material from a solid surface - + - - + + X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. Electron spectroscopy for chemical analysis (ESCA) X-ray photoelectron spectroscopy (XPS) @@ -2494,11 +2494,11 @@ Wear is defined as the progressive removal of the material from a solid surface - + - - + + XrdGrazingIncidence @@ -2525,73 +2525,73 @@ Wear is defined as the progressive removal of the material from a solid surface - + - - + + - + - - + + - + - - + + - + - + - + - + - - - + + + - + - - + + - + - + - + - + @@ -2607,30 +2607,30 @@ Wear is defined as the progressive removal of the material from a solid surface - - - - - - - - - + + + + + + + + + - - - - - - - - - - + + + + + + + + + + diff --git a/documentation/ontology.ttl b/documentation/ontology.ttl index c86680f..392b228 100644 --- a/documentation/ontology.ttl +++ b/documentation/ontology.ttl @@ -1,12 +1,12 @@ -@prefix : . +@prefix : . @prefix owl: . @prefix rdf: . @prefix xml: . @prefix xsd: . @prefix rdfs: . -@base . +@base . - rdf:type owl:Ontology ; + rdf:type owl:Ontology ; owl:versionIRI ; owl:imports , , @@ -30,7 +30,7 @@ "Pierluigi Del Nostro" ; "Characterisation Methodology Ontology"@en ; ; - "https://w3id.org/emmo/domain/chameo/chameo" ; + "https://w3id.org/emmo/domain/chameo" ; "" ; "https://creativecommons.org/licenses/by/4.0/legalcode" ; "2023-10-23T15:00:00Z" ; @@ -39,7 +39,7 @@ "CHAracterisation MEthodology Ontology"@en ; "" ; "chameo"@en ; - "https://w3id.org/emmo/domain/chameo/chameo" ; + "https://w3id.org/emmo/domain/chameo" ; rdfs:comment """Contacts: Gerhard Goldbeck Goldbeck Consulting Ltd (UK) @@ -120,13 +120,13 @@ # Object Properties ################################################################# -### https://w3id.org/emmo/domain/chameo/chameo#characterisationProcedureHasSubProcedure +### https://w3id.org/emmo/domain/chameo#characterisationProcedureHasSubProcedure :characterisationProcedureHasSubProcedure rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; "characterisationProcedureHasSubProcedure"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasAccessConditions +### https://w3id.org/emmo/domain/chameo#hasAccessConditions :hasAccessConditions rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :CharacterisationMethod ; @@ -135,7 +135,7 @@ "hasAccessConditions"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationEnvironment +### https://w3id.org/emmo/domain/chameo#hasCharacterisationEnvironment :hasCharacterisationEnvironment rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:range :CharacterisationEnvironment ; @@ -143,7 +143,7 @@ "hasCharacterisationEnvironment"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationEnvironmentProperty +### https://w3id.org/emmo/domain/chameo#hasCharacterisationEnvironmentProperty :hasCharacterisationEnvironmentProperty rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :CharacterisationEnvironment ; @@ -151,7 +151,7 @@ "hasCharacterisationEnvironmentProperty"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationProcedureValidation +### https://w3id.org/emmo/domain/chameo#hasCharacterisationProcedureValidation :hasCharacterisationProcedureValidation rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :CharacterisationMethod ; @@ -160,7 +160,7 @@ "hasCharacterisationProcedureValidation"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationProperty +### https://w3id.org/emmo/domain/chameo#hasCharacterisationProperty :hasCharacterisationProperty rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :Sample ; @@ -168,14 +168,14 @@ "hasCharacterisationProperty"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasCharacterisationSoftware +### https://w3id.org/emmo/domain/chameo#hasCharacterisationSoftware :hasCharacterisationSoftware rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:range :CharacterisationSoftware ; "hasCharacterisationSoftware"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasDataAcquisitionRate +### https://w3id.org/emmo/domain/chameo#hasDataAcquisitionRate :hasDataAcquisitionRate rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :RawData ; @@ -184,7 +184,7 @@ "hasDataAcquisitionRate"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasDataProcessingThroughCalibration +### https://w3id.org/emmo/domain/chameo#hasDataProcessingThroughCalibration :hasDataProcessingThroughCalibration rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :CharacterisationMeasurementProcess ; @@ -193,7 +193,7 @@ "hasDataProcessingThroughCalibration"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasDataQuality +### https://w3id.org/emmo/domain/chameo#hasDataQuality :hasDataQuality rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :MeasurementDataPostProcessing ; @@ -202,14 +202,14 @@ "hasDataQuality"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasDataset +### https://w3id.org/emmo/domain/chameo#hasDataset :hasDataset rdf:type owl:ObjectProperty ; rdfs:subPropertyOf owl:topObjectProperty ; rdfs:range ; "hasDataset"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasHardwareSpecification +### https://w3id.org/emmo/domain/chameo#hasHardwareSpecification :hasHardwareSpecification rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :CharacterisationHardware ; @@ -217,7 +217,7 @@ "hasHardwareSpecification"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasHazard +### https://w3id.org/emmo/domain/chameo#hasHazard :hasHazard rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:range :Hazard ; @@ -225,7 +225,7 @@ "hasHazard"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasHolder +### https://w3id.org/emmo/domain/chameo#hasHolder :hasHolder rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :SamplePreparation ; @@ -234,7 +234,7 @@ "hasHolder"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasInteractionVolume +### https://w3id.org/emmo/domain/chameo#hasInteractionVolume :hasInteractionVolume rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :ProbeSampleInteraction ; @@ -243,7 +243,7 @@ "hasInteractionVolume"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasInteractionWithProbe +### https://w3id.org/emmo/domain/chameo#hasInteractionWithProbe :hasInteractionWithProbe rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :ProbeSampleInteraction ; @@ -252,7 +252,7 @@ "hasInteractionWithProbe"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasInteractionWithSample +### https://w3id.org/emmo/domain/chameo#hasInteractionWithSample :hasInteractionWithSample rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :ProbeSampleInteraction ; @@ -261,14 +261,14 @@ "hasInteractionWithSample"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasLab +### https://w3id.org/emmo/domain/chameo#hasLab :hasLab rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:range :Laboratory ; "hasLab"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasLevelOfAutomation +### https://w3id.org/emmo/domain/chameo#hasLevelOfAutomation :hasLevelOfAutomation rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :CharacterisationMethod ; @@ -277,7 +277,7 @@ "hasLevelOfAutomation"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementDetector +### https://w3id.org/emmo/domain/chameo#hasMeasurementDetector :hasMeasurementDetector rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:range :Detector ; @@ -285,7 +285,7 @@ "hasMeasurementDetector"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementParameter +### https://w3id.org/emmo/domain/chameo#hasMeasurementParameter :hasMeasurementParameter rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :CharacterisationMeasurementProcess ; @@ -294,7 +294,7 @@ "hasMeasurementParameter"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementProbe +### https://w3id.org/emmo/domain/chameo#hasMeasurementProbe :hasMeasurementProbe rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:range :Probe ; @@ -302,7 +302,7 @@ "hasMeasurementProbe"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementSample +### https://w3id.org/emmo/domain/chameo#hasMeasurementSample :hasMeasurementSample rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :CharacterisationMeasurementProcess ; @@ -311,7 +311,7 @@ "hasMeasurementSample"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasMeasurementTime +### https://w3id.org/emmo/domain/chameo#hasMeasurementTime :hasMeasurementTime rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain ; @@ -320,7 +320,7 @@ "hasMeasurementTime"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasOperator +### https://w3id.org/emmo/domain/chameo#hasOperator :hasOperator rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:range :Operator ; @@ -328,7 +328,7 @@ "hasOperator"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasPeerReviewedArticle +### https://w3id.org/emmo/domain/chameo#hasPeerReviewedArticle :hasPeerReviewedArticle rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :CharacterisationProcedureValidation ; @@ -336,7 +336,7 @@ "hasPeerReviewedArticle"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasPhysicsOfInteraction +### https://w3id.org/emmo/domain/chameo#hasPhysicsOfInteraction :hasPhysicsOfInteraction rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :ProbeSampleInteraction ; @@ -344,7 +344,7 @@ "hasPhysicsOfInteraction"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasPostProcessingModel +### https://w3id.org/emmo/domain/chameo#hasPostProcessingModel :hasPostProcessingModel rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :MeasurementDataPostProcessing ; @@ -353,7 +353,7 @@ "hasPostProcessingModel"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasProcessingReproducibility +### https://w3id.org/emmo/domain/chameo#hasProcessingReproducibility :hasProcessingReproducibility rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :MeasurementDataPostProcessing ; @@ -362,7 +362,7 @@ "hasProcessingReproducibility"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasSampleBeforeSamplePreparation +### https://w3id.org/emmo/domain/chameo#hasSampleBeforeSamplePreparation :hasSampleBeforeSamplePreparation rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :SamplePreparation ; @@ -370,13 +370,13 @@ "hasSampleBeforeSamplePreparation"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasSamplePreparationHardware +### https://w3id.org/emmo/domain/chameo#hasSamplePreparationHardware :hasSamplePreparationHardware rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; "hasSamplePreparationHardware"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasSamplePreparationInput +### https://w3id.org/emmo/domain/chameo#hasSamplePreparationInput :hasSamplePreparationInput rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :SamplePreparation ; @@ -384,7 +384,7 @@ "hasSamplePreparationInput"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasSamplePreparationOutput +### https://w3id.org/emmo/domain/chameo#hasSamplePreparationOutput :hasSamplePreparationOutput rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :SamplePreparation ; @@ -393,7 +393,7 @@ "hasSamplePreparationOutput"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasSamplePreparationParameter +### https://w3id.org/emmo/domain/chameo#hasSamplePreparationParameter :hasSamplePreparationParameter rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :SamplePreparation ; @@ -401,7 +401,7 @@ "hasSamplePreparationParameter"@en . -### https://w3id.org/emmo/domain/chameo/chameo#hasSampledSample +### https://w3id.org/emmo/domain/chameo#hasSampledSample :hasSampledSample rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:domain :SamplingProcess ; @@ -410,7 +410,7 @@ "hasSampledSample"@en . -### https://w3id.org/emmo/domain/chameo/chameo#requiresLevelOfExpertise +### https://w3id.org/emmo/domain/chameo#requiresLevelOfExpertise :requiresLevelOfExpertise rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ; rdfs:range :LevelOfExpertise ; @@ -422,8 +422,8 @@ # Data properties ################################################################# -### https://w3id.org/emmo/domain/chameo/chameo/hasDateOfCalibration - rdf:type owl:DatatypeProperty ; +### https://w3id.org/emmo/domain/chameo/hasDateOfCalibration + rdf:type owl:DatatypeProperty ; rdfs:subPropertyOf owl:topDataProperty ; rdfs:domain :CharacterisationInstrument ; rdfs:range xsd:dateTime ; @@ -438,7 +438,7 @@ rdfs:subClassOf . -### https://w3id.org/emmo/domain/chameo/chameo#AccessConditions +### https://w3id.org/emmo/domain/chameo#AccessConditions :AccessConditions rdf:type owl:Class ; rdfs:subClassOf ; "Describes what is needed to repeat the experiment"@en ; @@ -449,28 +449,28 @@ "AccessConditions"@en . -### https://w3id.org/emmo/domain/chameo/chameo#AlphaSpectrometry +### https://w3id.org/emmo/domain/chameo#AlphaSpectrometry :AlphaSpectrometry rdf:type owl:Class ; rdfs:subClassOf :Spectrometry ; "Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from."@en ; "AlphaSpectrometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Amperometry +### https://w3id.org/emmo/domain/chameo#Amperometry :Amperometry rdf:type owl:Class ; rdfs:subClassOf :Electrochemical ; "The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material."@en ; "Amperometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#AnalyticalElectronMicroscopy +### https://w3id.org/emmo/domain/chameo#AnalyticalElectronMicroscopy :AnalyticalElectronMicroscopy rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis."@en ; "AnalyticalElectronMicroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#AtomProbeTomography +### https://w3id.org/emmo/domain/chameo#AtomProbeTomography :AtomProbeTomography rdf:type owl:Class ; rdfs:subClassOf :Tomography ; """Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. @@ -481,14 +481,14 @@ The sample is prepared in the form of a very sharp tip. The cooled tip is biased "AtomProbeTomography"@en . -### https://w3id.org/emmo/domain/chameo/chameo#AtomicForceMicroscopy +### https://w3id.org/emmo/domain/chameo#AtomicForceMicroscopy :AtomicForceMicroscopy rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings."@en ; "AtomicForceMicroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CalibrationData +### https://w3id.org/emmo/domain/chameo#CalibrationData :CalibrationData rdf:type owl:Class ; rdfs:subClassOf :CharacterisationData ; "Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen."@en ; @@ -496,7 +496,7 @@ The sample is prepared in the form of a very sharp tip. The cooled tip is biased "CalibrationData"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CalibrationDataPostProcessing +### https://w3id.org/emmo/domain/chameo#CalibrationDataPostProcessing :CalibrationDataPostProcessing rdf:type owl:Class ; rdfs:subClassOf :DataPostProcessing ; "Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement."@en ; @@ -504,7 +504,7 @@ The sample is prepared in the form of a very sharp tip. The cooled tip is biased "CalibrationDataPostProcessing"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CalibrationProcess +### https://w3id.org/emmo/domain/chameo#CalibrationProcess :CalibrationProcess rdf:type owl:Class ; rdfs:subClassOf , [ rdf:type owl:Restriction ; @@ -536,7 +536,7 @@ standards. "CalibrationProcess"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CalibrationTask +### https://w3id.org/emmo/domain/chameo#CalibrationTask :CalibrationTask rdf:type owl:Class ; rdfs:subClassOf , [ rdf:type owl:Restriction ; @@ -548,14 +548,14 @@ standards. "CalibrationTask" . -### https://w3id.org/emmo/domain/chameo/chameo#Calorimetry +### https://w3id.org/emmo/domain/chameo#Calorimetry :Calorimetry rdf:type owl:Class ; rdfs:subClassOf :Thermochemical ; "In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter."@en ; "Calorimetry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationData +### https://w3id.org/emmo/domain/chameo#CharacterisationData :CharacterisationData rdf:type owl:Class ; rdfs:subClassOf ; "Represents every type of data that is produced during a characterisation process"@en ; @@ -563,14 +563,14 @@ standards. "CharacterisationData" . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationDataValidation +### https://w3id.org/emmo/domain/chameo#CharacterisationDataValidation :CharacterisationDataValidation rdf:type owl:Class ; rdfs:subClassOf ; "Procedures to validate the characterisation data."@en ; "CharacterisationDataValidation"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationEnvironment +### https://w3id.org/emmo/domain/chameo#CharacterisationEnvironment :CharacterisationEnvironment rdf:type owl:Class ; rdfs:subClassOf [ rdf:type owl:Restriction ; owl:onProperty ; @@ -582,20 +582,20 @@ standards. "CharacterisationEnvironment"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationEnvironmentProperty +### https://w3id.org/emmo/domain/chameo#CharacterisationEnvironmentProperty :CharacterisationEnvironmentProperty rdf:type owl:Class ; rdfs:subClassOf ; "CharacterisationEnvironmentProperty" . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationExperiment +### https://w3id.org/emmo/domain/chameo#CharacterisationExperiment :CharacterisationExperiment rdf:type owl:Class ; rdfs:subClassOf ; "A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained."@en ; "CharacterisationExperiment"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationHardware +### https://w3id.org/emmo/domain/chameo#CharacterisationHardware :CharacterisationHardware rdf:type owl:Class ; rdfs:subClassOf ; "Whatever hardware is used during the characterisation process."@en ; @@ -603,13 +603,13 @@ standards. "CharacterisationHardware"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationHardwareSpecification +### https://w3id.org/emmo/domain/chameo#CharacterisationHardwareSpecification :CharacterisationHardwareSpecification rdf:type owl:Class ; rdfs:subClassOf ; "CharacterisationHardwareSpecification"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationInstrument +### https://w3id.org/emmo/domain/chameo#CharacterisationInstrument :CharacterisationInstrument rdf:type owl:Class ; rdfs:subClassOf , , @@ -633,7 +633,7 @@ NOTE 2 A measuring instrument is either an indicating measuring instrument or a "CharacterisationInstrument" . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMeasurementProcess +### https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementProcess :CharacterisationMeasurementProcess rdf:type owl:Class ; rdfs:subClassOf , [ rdf:type owl:Restriction ; @@ -678,7 +678,7 @@ system specifications. "CharacterisationMeasurementProcess"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMeasurementTask +### https://w3id.org/emmo/domain/chameo#CharacterisationMeasurementTask :CharacterisationMeasurementTask rdf:type owl:Class ; rdfs:subClassOf , [ rdf:type owl:Restriction ; @@ -690,7 +690,7 @@ system specifications. "CharacterisationMeasurementTask"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationMethod +### https://w3id.org/emmo/domain/chameo#CharacterisationMethod :CharacterisationMethod rdf:type owl:Class ; rdfs:subClassOf , ; @@ -701,7 +701,7 @@ system specifications. "CharacterisationMethod"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationProcedureValidation +### https://w3id.org/emmo/domain/chameo#CharacterisationProcedureValidation :CharacterisationProcedureValidation rdf:type owl:Class ; rdfs:subClassOf ; "Describes why the characterization procedure was chosen and deemed to be the most useful for the sample."@en ; @@ -709,7 +709,7 @@ system specifications. "CharacterisationProcedureValidation"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationProperty +### https://w3id.org/emmo/domain/chameo#CharacterisationProperty :CharacterisationProperty rdf:type owl:Class ; rdfs:subClassOf , :SecondaryData ; @@ -718,14 +718,14 @@ system specifications. "CharacterisationProperty"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationProtocol +### https://w3id.org/emmo/domain/chameo#CharacterisationProtocol :CharacterisationProtocol rdf:type owl:Class ; rdfs:subClassOf ; "A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories."@en ; "CharacterisationProtocol"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationSoftware +### https://w3id.org/emmo/domain/chameo#CharacterisationSoftware :CharacterisationSoftware rdf:type owl:Class ; rdfs:subClassOf ; "A software application to process characterisation data"@en ; @@ -734,7 +734,7 @@ system specifications. "CharacterisationSoftware" . -### https://w3id.org/emmo/domain/chameo/chameo#CharacterisationSystem +### https://w3id.org/emmo/domain/chameo#CharacterisationSystem :CharacterisationSystem rdf:type owl:Class ; rdfs:subClassOf , [ rdf:type owl:Restriction ; @@ -757,47 +757,47 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "CharacterisationSystem"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ChargeDistribution +### https://w3id.org/emmo/domain/chameo#ChargeDistribution :ChargeDistribution rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "ChargeDistribution"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Chromatography +### https://w3id.org/emmo/domain/chameo#Chromatography :Chromatography rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "Chromatography is a laboratory technique for the separation of a mixture into its components."@en ; "Chromatography"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CompressionTest +### https://w3id.org/emmo/domain/chameo#CompressionTest :CompressionTest rdf:type owl:Class ; rdfs:subClassOf :Mechanical ; "Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads."@en ; "CompressionTest"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ConfocalMicroscopy +### https://w3id.org/emmo/domain/chameo#ConfocalMicroscopy :ConfocalMicroscopy rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation."@en ; "ConfocalMicroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CreepTest +### https://w3id.org/emmo/domain/chameo#CreepTest :CreepTest rdf:type owl:Class ; rdfs:subClassOf :Mechanical ; "The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress."@en ; "CreepTest"@en . -### https://w3id.org/emmo/domain/chameo/chameo#CriticalAndSupercriticalChromatography +### https://w3id.org/emmo/domain/chameo#CriticalAndSupercriticalChromatography :CriticalAndSupercriticalChromatography rdf:type owl:Class ; rdfs:subClassOf :Chromatography ; "CriticalAndSupercriticalChromatography"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DataAcquisitionRate +### https://w3id.org/emmo/domain/chameo#DataAcquisitionRate :DataAcquisitionRate rdf:type owl:Class ; rdfs:subClassOf ; "Quantify the raw data acquisition rate, if applicable."@en ; @@ -805,14 +805,14 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "DataAcquisitionRate"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DataAnalysis +### https://w3id.org/emmo/domain/chameo#DataAnalysis :DataAnalysis rdf:type owl:Class ; rdfs:subClassOf ; "Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model."@en ; "DataAnalysis"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DataFiltering +### https://w3id.org/emmo/domain/chameo#DataFiltering :DataFiltering rdf:type owl:Class ; rdfs:subClassOf :DataPreparation ; "Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria." ; @@ -820,7 +820,7 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "DataFiltering"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DataNormalisation +### https://w3id.org/emmo/domain/chameo#DataNormalisation :DataNormalisation rdf:type owl:Class ; rdfs:subClassOf :DataPreparation ; "Data normalization involves adjusting raw data to a notionally common scale."@en ; @@ -829,7 +829,7 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "DataNormalisation"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DataPostProcessing +### https://w3id.org/emmo/domain/chameo#DataPostProcessing :DataPostProcessing rdf:type owl:Class ; rdfs:subClassOf ; "Analysis, that allows one to calculate the final material property from the calibrated primary data." ; @@ -837,7 +837,7 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "DataPostProcessing"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DataPreparation +### https://w3id.org/emmo/domain/chameo#DataPreparation :DataPreparation rdf:type owl:Class ; rdfs:subClassOf ; "Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis." ; @@ -845,14 +845,14 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "DataPreparation"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DataProcessingThroughCalibration +### https://w3id.org/emmo/domain/chameo#DataProcessingThroughCalibration :DataProcessingThroughCalibration rdf:type owl:Class ; "Describes how raw data are corrected and/or modified through calibrations."@en ; rdfs:comment "" ; "DataProcessingThroughCalibration"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DataQuality +### https://w3id.org/emmo/domain/chameo#DataQuality :DataQuality rdf:type owl:Class ; "Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material."@en ; "Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis)"@en ; @@ -860,7 +860,7 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "DataQuality"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Detector +### https://w3id.org/emmo/domain/chameo#Detector :Detector rdf:type owl:Class ; rdfs:subClassOf :CharacterisationHardware ; "Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample."@en ; @@ -870,20 +870,20 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "Detector"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DielectricAndImpedanceSpectroscopy +### https://w3id.org/emmo/domain/chameo#DielectricAndImpedanceSpectroscopy :DielectricAndImpedanceSpectroscopy rdf:type owl:Class ; rdfs:subClassOf :Spectroscopy ; "Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS."@en ; "DielectricAndImpedanceSpectroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DifferentialRefractiveIndex +### https://w3id.org/emmo/domain/chameo#DifferentialRefractiveIndex :DifferentialRefractiveIndex rdf:type owl:Class ; rdfs:subClassOf :Optical ; "DifferentialRefractiveIndex"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DifferentialScanningCalorimetry +### https://w3id.org/emmo/domain/chameo#DifferentialScanningCalorimetry :DifferentialScanningCalorimetry rdf:type owl:Class ; rdfs:subClassOf :Thermochemical ; "Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively."@en ; @@ -891,7 +891,7 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "DifferentialScanningCalorimetry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DifferentialThermalAnalysis +### https://w3id.org/emmo/domain/chameo#DifferentialThermalAnalysis :DifferentialThermalAnalysis rdf:type owl:Class ; rdfs:subClassOf :Thermochemical ; "Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample."@en ; @@ -899,14 +899,14 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "DifferentialThermalAnalysis"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Dilatometry +### https://w3id.org/emmo/domain/chameo#Dilatometry :Dilatometry rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions."@en ; "Dilatometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DynamicLightScattering +### https://w3id.org/emmo/domain/chameo#DynamicLightScattering :DynamicLightScattering rdf:type owl:Class ; rdfs:subClassOf :Optical ; "Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS)."@en ; @@ -914,14 +914,14 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "DynamicLightScattering"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DynamicMechanicalAnalysis +### https://w3id.org/emmo/domain/chameo#DynamicMechanicalAnalysis :DynamicMechanicalAnalysis rdf:type owl:Class ; rdfs:subClassOf :Mechanical ; "Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions."@en ; "DynamicMechanicalAnalysis"@en . -### https://w3id.org/emmo/domain/chameo/chameo#DynamicMechanicalSpectroscopy +### https://w3id.org/emmo/domain/chameo#DynamicMechanicalSpectroscopy :DynamicMechanicalSpectroscopy rdf:type owl:Class ; rdfs:subClassOf :Spectroscopy ; "Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test."@en ; @@ -929,14 +929,14 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "DynamicMechanicalSpectroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Electrochemical +### https://w3id.org/emmo/domain/chameo#Electrochemical :Electrochemical rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity"@en ; "Electrochemical"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ElectronBackscatterDiffraction +### https://w3id.org/emmo/domain/chameo#ElectronBackscatterDiffraction :ElectronBackscatterDiffraction rdf:type owl:Class ; rdfs:subClassOf :ScanningElectronMicroscopy , :ScatteringAndDiffraction ; @@ -945,14 +945,14 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "ElectronBackscatterDiffraction"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ElectronProbeMicroanalysis +### https://w3id.org/emmo/domain/chameo#ElectronProbeMicroanalysis :ElectronProbeMicroanalysis rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers."@en ; "ElectronProbeMicroanalysis"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Ellipsometry +### https://w3id.org/emmo/domain/chameo#Ellipsometry :Ellipsometry rdf:type owl:Class ; rdfs:subClassOf :Optical ; """Ellipsometry is an optical technique that uses polarised light to probe the dielectric @@ -964,14 +964,14 @@ can probe a range of properties including layer thickness, morphology, and chemi "Ellipsometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#EnvironmentalScanningElectronMicroscopy +### https://w3id.org/emmo/domain/chameo#EnvironmentalScanningElectronMicroscopy :EnvironmentalScanningElectronMicroscopy rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber."@en ; "EnvironmentalScanningElectronMicroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Exafs +### https://w3id.org/emmo/domain/chameo#Exafs :Exafs rdf:type owl:Class ; rdfs:subClassOf :Spectroscopy ; """Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. @@ -979,14 +979,14 @@ When the incident x-ray energy matches the binding energy of an electron of an a "Exafs"@en . -### https://w3id.org/emmo/domain/chameo/chameo#FatigueTesting +### https://w3id.org/emmo/domain/chameo#FatigueTesting :FatigueTesting rdf:type owl:Class ; rdfs:subClassOf :Mechanical ; "Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue."@en ; "FatigueTesting"@en . -### https://w3id.org/emmo/domain/chameo/chameo#FibDic +### https://w3id.org/emmo/domain/chameo#FibDic :FibDic rdf:type owl:Class ; rdfs:subClassOf :Mechanical ; "The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB)."@en ; @@ -994,7 +994,7 @@ When the incident x-ray energy matches the binding energy of an electron of an a "FibDic" . -### https://w3id.org/emmo/domain/chameo/chameo#FieldEmissionScanningElectronMicroscopy +### https://w3id.org/emmo/domain/chameo#FieldEmissionScanningElectronMicroscopy :FieldEmissionScanningElectronMicroscopy rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging."@en ; @@ -1002,21 +1002,21 @@ When the incident x-ray energy matches the binding energy of an electron of an a "FieldEmissionScanningElectronMicroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Fractography +### https://w3id.org/emmo/domain/chameo#Fractography :Fractography rdf:type owl:Class ; rdfs:subClassOf :Optical ; "Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture .Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog."@en ; "Fractography"@en . -### https://w3id.org/emmo/domain/chameo/chameo#FreezingPointDepressionOsmometry +### https://w3id.org/emmo/domain/chameo#FreezingPointDepressionOsmometry :FreezingPointDepressionOsmometry rdf:type owl:Class ; rdfs:subClassOf :Osmometry ; "The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point."@en ; "FreezingPointDepressionOsmometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#GammaSpectrometry +### https://w3id.org/emmo/domain/chameo#GammaSpectrometry :GammaSpectrometry rdf:type owl:Class ; rdfs:subClassOf :Spectrometry ; """Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement.[2] @@ -1027,14 +1027,14 @@ A detailed analysis of this spectrum is typically used to determine the identity "GammaSpectrometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#HardnessTesting +### https://w3id.org/emmo/domain/chameo#HardnessTesting :HardnessTesting rdf:type owl:Class ; rdfs:subClassOf :Mechanical ; "A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material."@en ; "HardnessTesting"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Hazard +### https://w3id.org/emmo/domain/chameo#Hazard :Hazard rdf:type owl:Class ; rdfs:subClassOf ; "Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger."@en ; @@ -1042,7 +1042,7 @@ A detailed analysis of this spectrum is typically used to determine the identity "Hazard"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Holder +### https://w3id.org/emmo/domain/chameo#Holder :Holder rdf:type owl:Class ; rdfs:subClassOf :CharacterisationHardware ; "An object which supports the specimen in the correct position for the characterisation process."@en ; @@ -1050,7 +1050,7 @@ A detailed analysis of this spectrum is typically used to determine the identity "Holder"@en . -### https://w3id.org/emmo/domain/chameo/chameo#InteractionVolume +### https://w3id.org/emmo/domain/chameo#InteractionVolume :InteractionVolume rdf:type owl:Class ; rdfs:subClassOf ; "The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information)."@en ; @@ -1062,20 +1062,20 @@ A detailed analysis of this spectrum is typically used to determine the identity "InteractionVolume"@en . -### https://w3id.org/emmo/domain/chameo/chameo#IntermediateSample +### https://w3id.org/emmo/domain/chameo#IntermediateSample :IntermediateSample rdf:type owl:Class ; rdfs:subClassOf :Sample ; "IntermediateSample"@en . -### https://w3id.org/emmo/domain/chameo/chameo#IonChromatography +### https://w3id.org/emmo/domain/chameo#IonChromatography :IonChromatography rdf:type owl:Class ; rdfs:subClassOf :Chromatography ; "Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger."@en ; "IonChromatography"@en . -### https://w3id.org/emmo/domain/chameo/chameo#IonMobilitySpectrometry +### https://w3id.org/emmo/domain/chameo#IonMobilitySpectrometry :IonMobilitySpectrometry rdf:type owl:Class ; rdfs:subClassOf :Spectrometry ; "Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring."@en ; @@ -1083,7 +1083,7 @@ A detailed analysis of this spectrum is typically used to determine the identity "IonMobilitySpectrometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#IsothermalMicrocalorimetry +### https://w3id.org/emmo/domain/chameo#IsothermalMicrocalorimetry :IsothermalMicrocalorimetry rdf:type owl:Class ; rdfs:subClassOf :Thermochemical ; """Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). @@ -1093,14 +1093,14 @@ IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed ti "IsothermalMicrocalorimetry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Laboratory +### https://w3id.org/emmo/domain/chameo#Laboratory :Laboratory rdf:type owl:Class ; "The laboratory where the whole characterisation process or some of its stages take place." ; rdfs:comment "" ; "Laboratory" . -### https://w3id.org/emmo/domain/chameo/chameo#LevelOfAutomation +### https://w3id.org/emmo/domain/chameo#LevelOfAutomation :LevelOfAutomation rdf:type owl:Class ; rdfs:subClassOf ; "Describes the level of automation of the test."@en ; @@ -1108,7 +1108,7 @@ IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed ti "LevelOfAutomation"@en . -### https://w3id.org/emmo/domain/chameo/chameo#LevelOfExpertise +### https://w3id.org/emmo/domain/chameo#LevelOfExpertise :LevelOfExpertise rdf:type owl:Class ; rdfs:subClassOf ; "Describes the level of expertise required to carry out a process (the entire test or the data processing)."@en ; @@ -1116,21 +1116,21 @@ IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed ti "LevelOfExpertise"@en . -### https://w3id.org/emmo/domain/chameo/chameo#LightScattering +### https://w3id.org/emmo/domain/chameo#LightScattering :LightScattering rdf:type owl:Class ; rdfs:subClassOf :Optical ; "Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color."@en ; "LightScattering"@en . -### https://w3id.org/emmo/domain/chameo/chameo#MassSpectrometry +### https://w3id.org/emmo/domain/chameo#MassSpectrometry :MassSpectrometry rdf:type owl:Class ; rdfs:subClassOf :Spectrometry ; "Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules."@en ; "MassSpectrometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#MeasurementDataPostProcessing +### https://w3id.org/emmo/domain/chameo#MeasurementDataPostProcessing :MeasurementDataPostProcessing rdf:type owl:Class ; rdfs:subClassOf :DataPostProcessing ; "Application of a post-processing model to signals through a software, in order to calculate the final characterisation property."@en ; @@ -1140,7 +1140,7 @@ IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed ti "MeasurementDataPostProcessing"@en . -### https://w3id.org/emmo/domain/chameo/chameo#MeasurementParameter +### https://w3id.org/emmo/domain/chameo#MeasurementParameter :MeasurementParameter rdf:type owl:Class ; rdfs:subClassOf ; "Describes the main input parameters that are needed to acquire the signal"@en ; @@ -1148,7 +1148,7 @@ IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed ti "MeasurementParameter"@en . -### https://w3id.org/emmo/domain/chameo/chameo#MeasurementSystemAdjustment +### https://w3id.org/emmo/domain/chameo#MeasurementSystemAdjustment :MeasurementSystemAdjustment rdf:type owl:Class ; rdfs:subClassOf ; """Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured @@ -1167,7 +1167,7 @@ The output of this process can be a specific measurement parameter to be used in "MeasurementSystemAdjustment" . -### https://w3id.org/emmo/domain/chameo/chameo#MeasurementTime +### https://w3id.org/emmo/domain/chameo#MeasurementTime :MeasurementTime rdf:type owl:Class ; rdfs:subClassOf ; "The overall time needed to acquire the measurement data"@en ; @@ -1175,7 +1175,7 @@ The output of this process can be a specific measurement parameter to be used in "MeasurementTime"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Mechanical +### https://w3id.org/emmo/domain/chameo#Mechanical :Mechanical rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; """Mechanical testing covers a wide range of tests, which can be divided broadly into two types: @@ -1184,21 +1184,21 @@ The output of this process can be a specific measurement parameter to be used in "Mechanical"@en . -### https://w3id.org/emmo/domain/chameo/chameo#MembraneOsmometry +### https://w3id.org/emmo/domain/chameo#MembraneOsmometry :MembraneOsmometry rdf:type owl:Class ; rdfs:subClassOf :Osmometry ; "In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution."@en ; "MembraneOsmometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Microscopy +### https://w3id.org/emmo/domain/chameo#Microscopy :Microscopy rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales."@en ; "Microscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Nanoindentation +### https://w3id.org/emmo/domain/chameo#Nanoindentation :Nanoindentation rdf:type owl:Class ; rdfs:subClassOf :Mechanical ; "Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation."@en ; @@ -1206,7 +1206,7 @@ The output of this process can be a specific measurement parameter to be used in "Nanoindentation"@en . -### https://w3id.org/emmo/domain/chameo/chameo#NeutronSpinEchoSpectroscopy +### https://w3id.org/emmo/domain/chameo#NeutronSpinEchoSpectroscopy :NeutronSpinEchoSpectroscopy rdf:type owl:Class ; rdfs:subClassOf :Spectroscopy ; "Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation."@en ; @@ -1214,14 +1214,14 @@ The output of this process can be a specific measurement parameter to be used in "NeutronSpinEchoSpectroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Nexafs +### https://w3id.org/emmo/domain/chameo#Nexafs :Nexafs rdf:type owl:Class ; rdfs:subClassOf :Spectroscopy ; "Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms."@en ; "Nexafs"@en . -### https://w3id.org/emmo/domain/chameo/chameo#NuclearMagneticResonance +### https://w3id.org/emmo/domain/chameo#NuclearMagneticResonance :NuclearMagneticResonance rdf:type owl:Class ; rdfs:subClassOf :Spectroscopy ; "Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds."@en ; @@ -1230,7 +1230,7 @@ The output of this process can be a specific measurement parameter to be used in "NuclearMagneticResonance"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Operator +### https://w3id.org/emmo/domain/chameo#Operator :Operator rdf:type owl:Class ; rdfs:subClassOf ; "The human operator who takes care of the whole characterisation method or sub-processes/stages."@en ; @@ -1238,34 +1238,34 @@ The output of this process can be a specific measurement parameter to be used in "Operator"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Optical +### https://w3id.org/emmo/domain/chameo#Optical :Optical rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "Optical"@en . -### https://w3id.org/emmo/domain/chameo/chameo#OpticalMicroscopy +### https://w3id.org/emmo/domain/chameo#OpticalMicroscopy :OpticalMicroscopy rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light"@en ; "OpticalMicroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Osmometry +### https://w3id.org/emmo/domain/chameo#Osmometry :Osmometry rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg)."@en ; "Osmometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#PhotoluminescenceMicroscopy +### https://w3id.org/emmo/domain/chameo#PhotoluminescenceMicroscopy :PhotoluminescenceMicroscopy rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules."@en ; "PhotoluminescenceMicroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#PhysicsOfInteraction +### https://w3id.org/emmo/domain/chameo#PhysicsOfInteraction :PhysicsOfInteraction rdf:type owl:Class ; rdfs:subClassOf [ rdf:type owl:Class ; owl:unionOf ( @@ -1278,7 +1278,7 @@ The output of this process can be a specific measurement parameter to be used in "PhysicsOfInteraction"@en . -### https://w3id.org/emmo/domain/chameo/chameo#PostProcessingModel +### https://w3id.org/emmo/domain/chameo#PostProcessingModel :PostProcessingModel rdf:type owl:Class ; rdfs:subClassOf ; "Mathematical model used to process data."@en ; @@ -1287,14 +1287,14 @@ The output of this process can be a specific measurement parameter to be used in "PostProcessingModel"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Potentiometry +### https://w3id.org/emmo/domain/chameo#Potentiometry :Potentiometry rdf:type owl:Class ; rdfs:subClassOf :Electrochemical ; "Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment."@en ; "Potentiometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#PreparedSample +### https://w3id.org/emmo/domain/chameo#PreparedSample :PreparedSample rdf:type owl:Class ; rdfs:subClassOf :Sample ; owl:disjointWith :ReferenceSample ; @@ -1302,7 +1302,7 @@ The output of this process can be a specific measurement parameter to be used in "PreparedSample" . -### https://w3id.org/emmo/domain/chameo/chameo#PrimaryData +### https://w3id.org/emmo/domain/chameo#PrimaryData :PrimaryData rdf:type owl:Class ; rdfs:subClassOf :CharacterisationData ; "Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing."@en ; @@ -1313,7 +1313,7 @@ The output of this process can be a specific measurement parameter to be used in "PrimaryData"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Probe +### https://w3id.org/emmo/domain/chameo#Probe :Probe rdf:type owl:Class ; rdfs:subClassOf :CharacterisationHardware ; "Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties."@en ; @@ -1326,7 +1326,7 @@ The output of this process can be a specific measurement parameter to be used in "Probe"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ProbeSampleInteraction +### https://w3id.org/emmo/domain/chameo#ProbeSampleInteraction :ProbeSampleInteraction rdf:type owl:Class ; rdfs:subClassOf , [ rdf:type owl:Restriction ; @@ -1338,28 +1338,28 @@ The output of this process can be a specific measurement parameter to be used in "ProbeSampleInteraction"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ProcessingReproducibility +### https://w3id.org/emmo/domain/chameo#ProcessingReproducibility :ProcessingReproducibility rdf:type owl:Class ; "Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert)"@en ; rdfs:comment "" ; "ProcessingReproducibility"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Profilometry +### https://w3id.org/emmo/domain/chameo#Profilometry :Profilometry rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness."@en ; "Profilometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#PulsedElectroacousticMethod +### https://w3id.org/emmo/domain/chameo#PulsedElectroacousticMethod :PulsedElectroacousticMethod rdf:type owl:Class ; rdfs:subClassOf :ChargeDistribution ; "The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics."@en ; "PulsedElectroacousticMethod"@en . -### https://w3id.org/emmo/domain/chameo/chameo#RamanSpectroscopy +### https://w3id.org/emmo/domain/chameo#RamanSpectroscopy :RamanSpectroscopy rdf:type owl:Class ; rdfs:subClassOf :Spectroscopy ; """Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. @@ -1370,7 +1370,7 @@ Typically, a sample is illuminated with a laser beam. Electromagnetic radiation "RamanSpectroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#RawData +### https://w3id.org/emmo/domain/chameo#RawData :RawData rdf:type owl:Class ; rdfs:subClassOf , :CharacterisationData ; @@ -1383,13 +1383,13 @@ Typically, a sample is illuminated with a laser beam. Electromagnetic radiation "RawData"@en . -### https://w3id.org/emmo/domain/chameo/chameo#RawSample +### https://w3id.org/emmo/domain/chameo#RawSample :RawSample rdf:type owl:Class ; rdfs:subClassOf :Sample ; "RawSample"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ReferenceSample +### https://w3id.org/emmo/domain/chameo#ReferenceSample :ReferenceSample rdf:type owl:Class ; rdfs:subClassOf :Sample ; """Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination @@ -1419,7 +1419,7 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "ReferenceSample"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Sample +### https://w3id.org/emmo/domain/chameo#Sample :Sample rdf:type owl:Class ; rdfs:subClassOf ; "Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen."@en ; @@ -1429,7 +1429,7 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "Sample"@en . -### https://w3id.org/emmo/domain/chameo/chameo#SampleInspection +### https://w3id.org/emmo/domain/chameo#SampleInspection :SampleInspection rdf:type owl:Class ; rdfs:subClassOf ; "Analysis of the sample in order to determine information that are relevant for the characterisation method."@en ; @@ -1437,7 +1437,7 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "SampleInspection"@en . -### https://w3id.org/emmo/domain/chameo/chameo#SamplePreparation +### https://w3id.org/emmo/domain/chameo#SamplePreparation :SamplePreparation rdf:type owl:Class ; rdfs:subClassOf , [ rdf:type owl:Restriction ; @@ -1457,7 +1457,7 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "SamplePreparation"@en . -### https://w3id.org/emmo/domain/chameo/chameo#SamplePreparationHardware +### https://w3id.org/emmo/domain/chameo#SamplePreparationHardware :SamplePreparationHardware rdf:type owl:Class ; rdfs:subClassOf ; "Hardware used for the preparation of the sample."@en ; @@ -1465,14 +1465,14 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "SamplePreparationHardware"@en . -### https://w3id.org/emmo/domain/chameo/chameo#SamplePreparationParameter +### https://w3id.org/emmo/domain/chameo#SamplePreparationParameter :SamplePreparationParameter rdf:type owl:Class ; rdfs:subClassOf ; "Parameter used for the sample preparation process"@en ; "SamplePreparationParameter"@en . -### https://w3id.org/emmo/domain/chameo/chameo#SamplingProcess +### https://w3id.org/emmo/domain/chameo#SamplingProcess :SamplingProcess rdf:type owl:Class ; rdfs:subClassOf ; "Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated."@en ; @@ -1481,7 +1481,7 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "SamplingProcess"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ScanningAugerElectronMicroscopy +### https://w3id.org/emmo/domain/chameo#ScanningAugerElectronMicroscopy :ScanningAugerElectronMicroscopy rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample."@en ; @@ -1489,7 +1489,7 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "ScanningAugerElectronMicroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ScanningElectronMicroscopy +### https://w3id.org/emmo/domain/chameo#ScanningElectronMicroscopy :ScanningElectronMicroscopy rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample."@en ; @@ -1497,7 +1497,7 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "ScanningElectronMicroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ScanningKelvinProbe +### https://w3id.org/emmo/domain/chameo#ScanningKelvinProbe :ScanningKelvinProbe rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact."@en ; @@ -1505,14 +1505,14 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "ScanningKelvinProbe"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ScanningProbeMicroscopy +### https://w3id.org/emmo/domain/chameo#ScanningProbeMicroscopy :ScanningProbeMicroscopy rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen."@en ; "ScanningProbeMicroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ScanningTunnelingMicroscopy +### https://w3id.org/emmo/domain/chameo#ScanningTunnelingMicroscopy :ScanningTunnelingMicroscopy rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams."@en ; @@ -1520,13 +1520,13 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "ScanningTunnelingMicroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ScatteringAndDiffraction +### https://w3id.org/emmo/domain/chameo#ScatteringAndDiffraction :ScatteringAndDiffraction rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "ScatteringAndDiffraction"@en . -### https://w3id.org/emmo/domain/chameo/chameo#SecondaryData +### https://w3id.org/emmo/domain/chameo#SecondaryData :SecondaryData rdf:type owl:Class ; rdfs:subClassOf :CharacterisationData ; "Data resulting from the application of post-processing or model generation to other data."@en ; @@ -1537,7 +1537,7 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "SecondaryData"@en . -### https://w3id.org/emmo/domain/chameo/chameo#SecondaryIonMassSpectrometry +### https://w3id.org/emmo/domain/chameo#SecondaryIonMassSpectrometry :SecondaryIonMassSpectrometry rdf:type owl:Class ; rdfs:subClassOf :Spectrometry ; "Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions."@en ; @@ -1545,13 +1545,13 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "SecondaryIonMassSpectrometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#ShearOrTorsionTests +### https://w3id.org/emmo/domain/chameo#ShearOrTorsionTests :ShearOrTorsionTests rdf:type owl:Class ; rdfs:subClassOf :Mechanical ; "ShearOrTorsionTest"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Signal +### https://w3id.org/emmo/domain/chameo#Signal :Signal rdf:type owl:Class ; rdfs:subClassOf :CharacterisationData ; "According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 )."@en ; @@ -1561,27 +1561,27 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "Signal"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Spectrometry +### https://w3id.org/emmo/domain/chameo#Spectrometry :Spectrometry rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample."@en ; "Spectrometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Spectroscopy +### https://w3id.org/emmo/domain/chameo#Spectroscopy :Spectroscopy rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials."@en ; "Spectroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Synchrotron +### https://w3id.org/emmo/domain/chameo#Synchrotron :Synchrotron rdf:type owl:Class ; rdfs:subClassOf :ScatteringAndDiffraction ; "Synchrotron"@en . -### https://w3id.org/emmo/domain/chameo/chameo#TensileTest +### https://w3id.org/emmo/domain/chameo#TensileTest :TensileTest rdf:type owl:Class ; rdfs:subClassOf :Mechanical ; "Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials."@en ; @@ -1589,7 +1589,7 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "TensileTest"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Thermochemical +### https://w3id.org/emmo/domain/chameo#Thermochemical :Thermochemical rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature."@en ; @@ -1597,7 +1597,7 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "Thermochemical"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Thermogravimetry +### https://w3id.org/emmo/domain/chameo#Thermogravimetry :Thermogravimetry rdf:type owl:Class ; rdfs:subClassOf :Thermochemical ; "Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction)."@en ; @@ -1605,14 +1605,14 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "Thermogravimetry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Tomography +### https://w3id.org/emmo/domain/chameo#Tomography :Tomography rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, \"slice, section\" and γράφω graphō, \"to write\" or, in this context as well, \"to describe.\" A device used in tomography is called a tomograph, while the image produced is a tomogram."@en ; "Tomography"@en . -### https://w3id.org/emmo/domain/chameo/chameo#TransmissionElectronMicroscopy +### https://w3id.org/emmo/domain/chameo#TransmissionElectronMicroscopy :TransmissionElectronMicroscopy rdf:type owl:Class ; rdfs:subClassOf :Microscopy ; "Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device."@en ; @@ -1620,7 +1620,7 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure "TransmissionElectronMicroscopy"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Ultrasonic +### https://w3id.org/emmo/domain/chameo#Ultrasonic :Ultrasonic rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; """Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. @@ -1629,7 +1629,7 @@ Ultrasonic testing is often performed on steel and other metals and alloys, thou "Ultrasonic"@en . -### https://w3id.org/emmo/domain/chameo/chameo#VaporPressureDepressionOsmometry +### https://w3id.org/emmo/domain/chameo#VaporPressureDepressionOsmometry :VaporPressureDepressionOsmometry rdf:type owl:Class ; rdfs:subClassOf :Osmometry ; "Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect."@en ; @@ -1637,7 +1637,7 @@ Ultrasonic testing is often performed on steel and other metals and alloys, thou "VaporPressureDepressionOsmometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Viscometry +### https://w3id.org/emmo/domain/chameo#Viscometry :Viscometry rdf:type owl:Class ; rdfs:subClassOf :CharacterisationMethod ; "Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities."@en ; @@ -1645,14 +1645,14 @@ Ultrasonic testing is often performed on steel and other metals and alloys, thou "Viscometry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#Voltammetry +### https://w3id.org/emmo/domain/chameo#Voltammetry :Voltammetry rdf:type owl:Class ; rdfs:subClassOf :Electrochemical ; "Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it."@en ; "Voltammetry"@en . -### https://w3id.org/emmo/domain/chameo/chameo#WearTest +### https://w3id.org/emmo/domain/chameo#WearTest :WearTest rdf:type owl:Class ; rdfs:subClassOf :Mechanical ; """A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. @@ -1660,7 +1660,7 @@ Wear is defined as the progressive removal of the material from a solid surface "WearTest"@en . -### https://w3id.org/emmo/domain/chameo/chameo#XpsVariableKinetic +### https://w3id.org/emmo/domain/chameo#XpsVariableKinetic :XpsVariableKinetic rdf:type owl:Class ; rdfs:subClassOf :Spectroscopy ; "X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background."@en ; @@ -1669,7 +1669,7 @@ Wear is defined as the progressive removal of the material from a solid surface "XpsVariableKinetic"@en . -### https://w3id.org/emmo/domain/chameo/chameo#XrdGrazingIncidence +### https://w3id.org/emmo/domain/chameo#XrdGrazingIncidence :XrdGrazingIncidence rdf:type owl:Class ; rdfs:subClassOf :ScatteringAndDiffraction ; "XrdGrazingIncidence"@en . @@ -1684,43 +1684,43 @@ Wear is defined as the progressive removal of the material from a solid surface # Individuals ################################################################# -### https://w3id.org/emmo/domain/chameo/chameo#Agent1 +### https://w3id.org/emmo/domain/chameo#Agent1 :Agent1 rdf:type owl:NamedIndividual , :Operator . -### https://w3id.org/emmo/domain/chameo/chameo#CalibrationProcess1 +### https://w3id.org/emmo/domain/chameo#CalibrationProcess1 :CalibrationProcess1 rdf:type owl:NamedIndividual , :CalibrationProcess . -### https://w3id.org/emmo/domain/chameo/chameo#ChMeasProc1 +### https://w3id.org/emmo/domain/chameo#ChMeasProc1 :ChMeasProc1 rdf:type owl:NamedIndividual , :CharacterisationMeasurementProcess . -### https://w3id.org/emmo/domain/chameo/chameo#Determination1 +### https://w3id.org/emmo/domain/chameo#Determination1 :Determination1 rdf:type owl:NamedIndividual , ; :InferredChMethod1 . -### https://w3id.org/emmo/domain/chameo/chameo#InferredChMethod1 +### https://w3id.org/emmo/domain/chameo#InferredChMethod1 :InferredChMethod1 rdf:type owl:NamedIndividual ; :ChMeasProc1 ; :hasOperator :Agent1 . -### https://w3id.org/emmo/domain/chameo/chameo#hasChValid1 +### https://w3id.org/emmo/domain/chameo#hasChValid1 :hasChValid1 rdf:type owl:NamedIndividual ; :hasCharacterisationProcedureValidation :hasChValid2 . -### https://w3id.org/emmo/domain/chameo/chameo#hasChValid2 +### https://w3id.org/emmo/domain/chameo#hasChValid2 :hasChValid2 rdf:type owl:NamedIndividual . -### https://w3id.org/emmo/domain/chameo/chameo#hasChValidProp +### https://w3id.org/emmo/domain/chameo#hasChValidProp :hasChValidProp rdf:type owl:NamedIndividual .