SynthepseAI Agent is an autonomous AI agent system with self-correction capabilities. Simply by setting a goal, the agent automatically plans and executes tasks while learning from and correcting errors to achieve the objective. It is built on an extended version of the manus architecture and incorporates a learning system utilizing GraphRAG, enabling continuous improvement based on experience.
- Automated Task Planning and Execution: Decomposes complex goals into smaller tasks and automatically generates and executes Python code for each task.
- Self-Correction Ability: Detects errors during execution and attempts to automatically correct them.
- Learning from Experience: Learns from past error patterns and successful code implementations to apply to new tasks.
- Module Reuse: Extracts reusable modules from successful code to utilize in new tasks.
- Isolated Execution Environments: Each project runs in its own virtual environment to prevent dependency conflicts.
- Python 3.9 or higher
- SQLite 3.x
- Docker (required when using Weaviate)
openai>=1.0.0
weaviate-client>=3.15.0
tenacity>=8.0.0
python-dotenv>=1.0.0
sqlite3
git clone https://github.com/yourusername/SynthepseAI.git
cd SynthepseAI
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
Create a .env
file and include the following:
OPENAI_API_KEY=your_openai_api_key
OPENAI_MODEL=gpt-4-turbo
docker-compose -f docker-compose.yml up -d
# Run with a specified goal
python main.py --goal "Create a CSV file, perform data analysis, and generate graphs for the results"
# Run with a specified workspace directory
python main.py --goal "Perform web scraping to collect data" --workspace ./custom_workspace
# Run in debug mode
python main.py --goal "Process a text file and compute statistics" --debug
# Execute a sample task
python example.py
# Enable learning using GraphRAG
python main.py --goal "Extract text from image files" --weaviate-url "http://localhost:8080"
SynthepseAI/
├── main.py # Main entry point
├── example.py # Sample execution script
├── config.json # Configuration file
├── requirements.txt # Dependency list
├── docker-compose.yml # Weaviate configuration file
├── core/ # Core modules
│ ├── auto_plan_agent.py # Self-correcting agent
│ ├── base_agent.py # Base agent
│ ├── base_flow.py # Base flow
│ ├── graph_rag_manager.py # GraphRAG manager
│ ├── llm.py # LLM integration
│ ├── modular_code_manager.py # Module manager
│ ├── planning_flow.py # Planning flow
│ ├── project_environment.py # Project environment
│ ├── script_templates.py # Script templates
│ ├── task_database.py # Task database
│ ├── tool_agent.py # Tool agent
│ └── tools/ # Tool modules
│ ├── base_tool.py # Base tool
│ ├── file_tool.py # File operations
│ ├── package_manager.py # Package management
│ ├── planning_tool.py # Planning tool
│ ├── python_execute.py # Python execution
│ ├── python_project_execute.py # Project environment execution
│ ├── docker_execute.py # Docker execution
│ └── system_tool.py # System operations
└── workspace/ # Working directory
├── modules/ # Reusable modules
└── project_{plan_id}/ # Project environment
├── venv/ # Virtual environment
├── task_{task_id}.py # Task script
├── requirements.txt # Dependencies
└── installed_packages.json # Installed packages
SynthepseAI Agent is composed of the following main components:
flowchart TD
title[SynthepseAI System Architecture]
%% Main Systems
UserInput[User Input]
ExtSvc[External Services]
FlowSys[Flow System]
AgentSys[Agent System]
ToolSys[Tool System]
%% Connections
UserInput --> FlowSys
ExtSvc --> FlowSys
FlowSys --> AgentSys
AgentSys --> ToolSys
ToolSys --> ExtSvc
%% Styling
classDef default fill:#f0f0ff,stroke:#333,stroke-width:1px
classDef title fill:none,stroke:none,color:#333,font-size:18px
class title title
sequenceDiagram
participant User
participant Main
participant SynthepseAI
participant LLM
participant Tools
User->>Main: Input Prompt
Main->>SynthepseAI: run(prompt)
rect rgb(240, 240, 255)
Note over SynthepseAI,LLM: Loop [Until max steps]
SynthepseAI->>LLM: Execute Step
LLM-->>SynthepseAI: Next Action
alt Tool Execution
SynthepseAI->>Tools: Tool Invocation
Tools-->>SynthepseAI: Result
end
end
SynthepseAI->>SynthepseAI: Generate Response
SynthepseAI-->>Main: Final Result
Main-->>User: Output
sequenceDiagram
participant User
participant PlanningFlow
participant PlanningTool
participant Executor
participant LLM
User->>PlanningFlow: execute(input_text)
PlanningFlow->>PlanningTool: Create Plan
PlanningTool-->>PlanningFlow: Plan Information
rect rgb(240, 240, 255)
Note over PlanningFlow,LLM: Loop [For each step]
PlanningFlow->>PlanningFlow: Get Current Step Info
PlanningFlow->>Executor: Execute Step
Executor->>LLM: Execute Task
LLM-->>Executor: Result
Executor-->>PlanningFlow: Execution Result
PlanningFlow->>PlanningTool: Mark Step Complete
end
PlanningFlow->>PlanningFlow: Process Plan Completion
PlanningFlow-->>User: Final Result
classDiagram
class BaseFlow {
+agents: Dict[str, BaseAgent]
+primary_agent_key: str
+primary_agent: BaseAgent
+execute(input_text: str) : str
+get_agent(key: str) : BaseAgent
+add_agent(key: str, agent: BaseAgent) : void
}
class PlanningFlow {
+llm: LLM
+planning_tool: PlanningTool
+executor_keys: List[str]
+active_plan_id: str
+current_step_index: int
+execute(input_text: str) : str
+get_executor(step_type: str) : BaseAgent
}
class BaseAgent {
+name: str
+description: str
+system_prompt: str
+next_step_prompt: str
+llm: LLM
+memory: Memory
+state: AgentState
+run(request: str) : str
+step() : str
}
class ToolCallAgent {
+available_tools: ToolCollection
+step() : str
+handle_tool_calls(tool_calls) : str
}
class SynthepseAI {
+name: str = "SynthepseAI"
+description: str
+system_prompt: str
+next_step_prompt: str
+available_tools: ToolCollection
}
class BaseTool {
+name: str
+description: str
+parameters: dict
+execute(**kwargs) : Any
+to_param() : Dict
}
class PlanningTool {
+name: str = "planning"
+description: str
+parameters: dict
+plans: dict
+_current_plan_id: str
+execute(command, plan_id, ...) : ToolResult
}
BaseFlow <|-- PlanningFlow
BaseAgent <|-- ToolCallAgent
ToolCallAgent <|-- SynthepseAI
BaseTool <|-- PlanningTool
PlanningFlow --> BaseAgent
ToolCallAgent --> BaseTool
flowchart TD
UserInput[User Input] --> Agent[Agent]
Agent --> ActionDecision{Action Decision}
ActionDecision -->|Tool Execution| ToolInvocation[Tool Invocation]
ActionDecision -->|Direct Response| ResponseGen[Response Generation]
ToolInvocation --> ToolCall[Tool Call]
ToolCall --> ResultProc[Result Processing]
ResultProc --> Agent
ResponseGen --> FinalResponse[Final Response]
%% Styling
classDef default fill:#f0f0ff,stroke:#333,stroke-width:1px
classDef decision fill:#f5f5ff,stroke:#333,stroke-width:1px,shape:diamond
class ActionDecision decision
flowchart TD
UserReq[User Request] --> PlanCreation[Plan Creation]
PlanCreation --> StepList[Step List Creation]
StepList --> GetCurrent[Get Current Step]
GetCurrent --> AgentSelect[Select Appropriate Agent]
AgentSelect --> ExecStep[Execute Step]
ExecStep --> Complete{Completed?}
Complete -->|No| GetCurrent
Complete -->|Yes| FinalResult[Generate Final Result]
%% Styling
classDef default fill:#f0f0ff,stroke:#333,stroke-width:1px
classDef decision fill:#f5f5ff,stroke:#333,stroke-width:1px,shape:diamond
class Complete decision
flowchart TD
Agent[Agent] --> ToolColl[Tool Collection]
ToolColl --> ToolSelect{Tool Selection}
ToolSelect --> PythonExec[Python Execution]
ToolSelect --> WebBrowsing[Web Browsing]
ToolSelect --> GoogleSearch[Google Search]
ToolSelect --> FileOps[File Operations]
ToolSelect --> Planning[Planning]
PythonExec --> Result[Result]
WebBrowsing --> Result
GoogleSearch --> Result
FileOps --> Result
Planning --> Result
Result --> Agent
%% Styling
classDef default fill:#f0f0ff,stroke:#333,stroke-width:1px
classDef decision fill:#f5f5ff,stroke:#333,stroke-width:1px,shape:diamond
class ToolSelect decision
- BaseAgent: The base class for all agents.
- ToolAgent: An agent with tool invocation capabilities.
- AutoPlanAgent: An agent capable of automatic planning, execution, and self-repair.
- BaseFlow: The base class for flows.
- PlanningFlow: Manages planning and execution flows.
- PlanningTool: For planning and managing tasks.
- PythonExecuteTool: For executing Python code.
- PythonProjectExecuteTool: For executing Python code in a project environment.
- FileTool: For file operations.
- DockerExecuteTool: For executing Docker commands.
- SystemTool: For system operations.
- GraphRAGManager: For learning and retrieving error and code patterns.
- ModularCodeManager: For managing reusable code modules.
- TaskDatabase: An SQLite-based task and plan manager.
- ProjectEnvironment: Manages virtual environments on a per-project basis.
- Goal Input: The user inputs the goal to be achieved.
- Plan Generation: The goal is broken down into smaller tasks.
- Code Generation: Python code is automatically generated for each task.
- Environment Setup: An isolated environment is prepared for task execution.
- Task Execution: Tasks are executed sequentially with dependency management.
- Error Handling: Failed tasks are automatically corrected.
- Learning: Successful patterns are recorded for future tasks.
- Result Reporting: A summary of the execution results is generated and returned.
SynthepseAI Agent incorporates two learning mechanisms:
- Error Pattern Learning: Records encountered errors and successful fixes.
- Task Template Learning: Accumulates successful code patterns for each task type.
- Contextual Retrieval: Uses similar task resolutions to enhance prompt performance.
- Module Extraction: Extracts reusable code from successful tasks.
- Dependency Management: Maintains dependencies between modules.
- Contextual Application: Automatically incorporates relevant modules into new tasks.
- Create a new tool class in the
core/tools/
directory. - Inherit from
BaseTool
and implement the necessary methods. - Register the new tool with
AutoPlanAgent
.
# Example of creating a new tool
class NewTool(BaseTool):
def __init__(self):
super().__init__("new_tool", "Description of the new tool")
self.parameters = {...}
def execute(self, **kwargs) -> ToolResult:
# Implementation...
return ToolResult(...)
# Registering the tool
agent.available_tools.add_tool(new_tool)
- Add new search and storage methods to
GraphRAGManager
. - Extend the Weaviate schema to store new data types.
Error: OpenAI API connection failed...
Solution: Verify that the API key is correctly set. Also, check your network connection and the status of the OpenAI API.
ModuleNotFoundError: No module named 'some_module'
Solution: Manually install the required package or use the --debug
flag for more details.
sqlite3.OperationalError: no such table...
Solution: Ensure that the database file exists. If necessary, delete it and create a new database.
Error connecting to Weaviate...
Solution: Verify that the Weaviate container is running by executing docker-compose -f weaviate-docker-compose.yml ps
to check its status.
MIT License
- Fork the repository.
- Create a new branch (
git checkout -b feature/amazing-feature
). - Commit your changes (
git commit -m 'Add amazing feature'
). - Push the branch (
git push origin feature/amazing-feature
). - Create a Pull Request.
- Adheres to PEP 8 coding style.
- Docstrings are required for all classes and public methods.
- Code formatting follows the Black style.
# Run tests
python -m unittest discover tests
# Generate API documentation
sphinx-build -b html docs/source docs/build
Note: This system is under development and may behave unexpectedly. Please create backups of any critical data before processing.
Version: 0.1.0