-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_feature_matrix.m
42 lines (29 loc) · 1.18 KB
/
make_feature_matrix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function [feature_matrix, feature_weights] = make_feature_matrix(ics, im_data)
% [feature_matrix, feature_weights] = make_feature_matrix(icp): creates a
% feature matrix of all the components.
%
% @author: Paxon Frady
% @created: 12/11/2013
rois = calc_rois_from_components(im_data);
feature_matrix = [];
for i = 1:size(ics, 2)
%%
[c, phi, s12, s1, s2, f] = coherencyc(repmat(ics(:,i), 1, size(ics, 2)), ics);
% Get rid of the same component
c(:,i) = 0;
% Normalize
c = norm_range(c ./ repmat(mean(c, 2), 1, size(c, 2)));
% We only want correlations that are in phase
c(phi > pi/6 | phi < -pi/6) = 0;
cc_r = zeros(size(c));
cc_r = medfilt2(c, [3, 1]);
cc_count = sum(cc_r > 0.5) ./ length(cc_r);
cc_mean = mean(cc_r);
centroid_dist = (rois(i,1) - rois(:,1)).^2 + (rois(i,2) - rois(:,2)).^2;
centroid_close = 1 ./ (1 + 0.1 * sqrt(centroid_dist));
centroid_close2 = 1 ./ (1 + 0.1 * centroid_dist);
centroid_close(i) = 0;
centroid_close2(i) = 0;
feature_matrix(i,:,:) = [cc_count(:), cc_mean(:), centroid_close(:), centroid_close2(:)];
end
feature_weights = ones(1,1,size(feature_matrix, 3));