-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathEquivalentContext.v
287 lines (259 loc) · 6.84 KB
/
EquivalentContext.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
Require Export SystemFR.ShiftOpen.
Require Export SystemFR.EquivalentStar.
Opaque loop.
Lemma equivalent_context:
forall C t1 t2,
is_erased_term C ->
wf C 1 ->
pfv C term_var = nil ->
[ t1 ≡ t2 ] ->
[ open 0 C t1 ≡ open 0 C t2 ].
Proof.
unfold equivalent_terms;
steps;
eauto with erased;
eauto with wf;
eauto with fv.
- unshelve epose proof (H9 (shift_open 0 C0 C) _ _ _);
repeat step || rewrite <- open_shift_open_zero in *;
eauto with erased;
eauto with wf;
eauto with fv.
- unshelve epose proof (H9 (shift_open 0 C0 C) _ _ _);
repeat step || rewrite <- open_shift_open_zero in *;
eauto with erased;
eauto with wf;
eauto with fv.
Qed.
Ltac equivalent_context C t1 t2 :=
unshelve epose proof (equivalent_context C t1 t2 _ _ _ _).
Ltac equivalent_terms_ok :=
unfold equivalent_terms in *; steps; eauto with wf.
Ltac find_context i :=
match goal with
| |- [ ?F ?e1 ≡ ?F ?e2 ] =>
equivalent_context (F (lvar i term_var)) e1 e2
| |- [ ?F ?e1 ?e ≡ ?F ?e2 ?e ] =>
equivalent_context (F (lvar i term_var) e) e1 e2
| |- [ ?F ?e1 ?e ?e' ≡ ?F ?e2 ?e ?e' ] =>
equivalent_context (F (lvar i term_var) e e') e1 e2
end;
repeat step || list_utils || rewrite open_none in * by equivalent_terms_ok;
try solve [ equivalent_terms_ok ].
Lemma equivalent_tsize:
forall e1 e2,
[ e1 ≡ e2 ] ->
[ tsize e1 ≡ tsize e2 ].
Proof.
intros; find_context 0; steps.
Qed.
Lemma equivalent_app_left:
forall e1 e2 e,
is_erased_term e ->
wf e 0 ->
pfv e term_var = nil ->
[ e1 ≡ e2 ] ->
[ app e1 e ≡ app e2 e ].
Proof.
intros; equivalent_context (app (lvar 0 term_var) e) e1 e2;
repeat step || rewrite open_none in *;
eauto with wf.
Qed.
Ltac find_middle_point :=
match goal with
| |- [ ?F ?e1 ?e2 ≡ ?F ?e1' ?e2' ] =>
apply equivalent_trans with (F e1 e2')
| |- [ ?F ?e1 ?e2 ?e ≡ ?F ?e1' ?e2' ?e ] =>
apply equivalent_trans with (F e1 e2' e)
| |- [ ?F ?e1 ?e2 ?e3 ≡ ?F ?e1' ?e2' ?e3' ] =>
apply equivalent_trans with (F e1 e2 e3')
end.
Lemma equivalent_app:
forall e1 e2 e1' e2',
[ e1 ≡ e1' ] ->
[ e2 ≡ e2' ] ->
[ app e1 e2 ≡ app e1' e2' ].
Proof.
intros; find_middle_point; try solve [ find_context 0 ].
Qed.
Lemma equivalent_pp:
forall e1 e2 e1' e2',
[ e1 ≡ e1' ] ->
[ e2 ≡ e2' ] ->
[ pp e1 e2 ≡ pp e1' e2' ].
Proof.
intros; find_middle_point; try solve [ find_context 0 ].
Qed.
Lemma equivalent_left:
forall e1 e2,
[ e1 ≡ e2 ] ->
[ tleft e1 ≡ tleft e2 ].
Proof.
intros; find_context 0; steps.
Qed.
Lemma equivalent_right:
forall e1 e2,
[ e1 ≡ e2 ] ->
[ tright e1 ≡ tright e2 ].
Proof.
intros; find_context 0; steps.
Qed.
Lemma equivalent_succ:
forall e1 e2,
[ e1 ≡ e2 ] ->
[ succ e1 ≡ succ e2 ].
Proof.
intros; find_context 0; steps.
Qed.
Lemma equivalent_lambda:
forall e1 e2,
[ e1 ≡ e2 ] ->
[ notype_lambda e1 ≡ notype_lambda e2 ].
Proof.
intros; find_context 1; steps.
Qed.
Lemma equivalent_pi1:
forall e1 e2,
[ e1 ≡ e2 ] ->
[ pi1 e1 ≡ pi1 e2 ].
Proof.
intros; find_context 0; steps.
Qed.
Lemma equivalent_pi2:
forall e1 e2,
[ e1 ≡ e2 ] ->
[ pi2 e1 ≡ pi2 e2 ].
Proof.
intros; find_context 0; steps.
Qed.
Lemma equivalent_ite:
forall e1 e2 e3 e1' e2' e3',
[ e1 ≡ e1' ] ->
[ e2 ≡ e2' ] ->
[ e3 ≡ e3' ] ->
[ ite e1 e2 e3 ≡ ite e1' e2' e3' ].
Proof.
intros.
find_middle_point; try solve [ find_context 0 ].
find_middle_point; try solve [ find_context 0 ].
Qed.
Lemma equivalent_recognizer:
forall e1 e2 r,
[ e1 ≡ e2 ] ->
[ boolean_recognizer r e1 ≡ boolean_recognizer r e2 ].
Proof.
intros; find_context 0; steps.
Qed.
Lemma equivalent_fix:
forall e1 e2,
[ e1 ≡ e2 ] ->
[ notype_tfix e1 ≡ notype_tfix e2 ].
Proof.
intros; find_context 2; steps.
Qed.
Lemma equivalent_match:
forall e1 e2 e3 e1' e2' e3',
[ e1 ≡ e1' ] ->
[ e2 ≡ e2' ] ->
[ e3 ≡ e3' ] ->
[ tmatch e1 e2 e3 ≡ tmatch e1' e2' e3' ].
Proof.
intros.
find_middle_point; try solve [ find_context 1 ].
find_middle_point; try solve [ find_context 0 ].
Qed.
Lemma equivalent_sum_match:
forall e1 e2 e3 e1' e2' e3',
[ e1 ≡ e1' ] ->
[ e2 ≡ e2' ] ->
[ e3 ≡ e3' ] ->
[ sum_match e1 e2 e3 ≡ sum_match e1' e2' e3' ].
Proof.
intros.
find_middle_point; try solve [ find_context 1 ].
find_middle_point; try solve [ find_context 0 ]; try solve [ find_context 1 ].
Qed.
Lemma equivalent_value_pair:
forall v1 v2 v',
[ pp v1 v2 ≡ v' ] ->
cbv_value v1 ->
cbv_value v2 ->
cbv_value v' ->
exists v1' v2',
cbv_value v1' /\
cbv_value v2' /\
[ v1 ≡ v1' ] /\
[ v2 ≡ v2' ] /\
v' = pp v1' v2'.
Proof.
intros.
unshelve epose proof (equivalent_context (pi1 (lvar 0 term_var)) _ _ _ _ _ H) as HH1;
steps.
unshelve epose proof (equivalent_context (pi2 (lvar 0 term_var)) _ _ _ _ _ H) as HH2;
steps.
eapply equivalent_normalizing in HH1;
eauto using star_one with smallstep;
repeat step || t_invert_star.
eapply equivalent_normalizing in HH2;
eauto using star_one with smallstep;
repeat step || t_invert_star;
eauto with step_tactic.
Qed.
Lemma equivalent_value_left:
forall v v',
[ tleft v ≡ v' ] ->
cbv_value v ->
cbv_value v' ->
exists v'',
cbv_value v'' /\
[ v ≡ v'' ] /\
v' = tleft v''.
Proof.
intros.
unshelve epose proof (equivalent_context (sum_match (lvar 0 term_var) (lvar 0 term_var) notype_err)
_ _ _ _ _ H) as HH1;
steps.
unshelve epose proof (equivalent_normalizing _ _ v HH1 _ _);
eauto using scbv_step_same, star_one with smallstep;
repeat step || t_invert_star || step_inversion cbv_value;
try solve [ eexists; steps ].
Qed.
Lemma equivalent_value_right:
forall v v',
[ tright v ≡ v' ] ->
cbv_value v ->
cbv_value v' ->
exists v'',
cbv_value v'' /\
[ v ≡ v'' ] /\
v' = tright v''.
Proof.
intros.
unshelve epose proof (equivalent_context (sum_match (lvar 0 term_var) notype_err (lvar 0 term_var))
_ _ _ _ _ H) as HH1;
steps.
unshelve epose proof (equivalent_normalizing _ _ v HH1 _ _);
eauto using scbv_step_same, star_one with smallstep;
repeat step || t_invert_star || step_inversion cbv_value;
try solve [ eexists; steps ].
Qed.
Lemma equivalent_beta:
forall f t v,
is_erased_term t ->
is_erased_term f ->
pfv t term_var = nil ->
pfv f term_var = nil ->
wf t 0 ->
wf f 1 ->
t ~>* v ->
cbv_value v ->
[ app (notype_lambda f) t ≡ open 0 f t ].
Proof.
intros.
eapply equivalent_trans with (app (notype_lambda f) v);
try solve [ equivalent_star ].
eapply equivalent_trans with (open 0 f v);
try solve [ equivalent_star ].
apply equivalent_context; steps.
apply equivalent_sym; equivalent_star.
Qed.