-
Notifications
You must be signed in to change notification settings - Fork 145
/
Krusal.java
88 lines (76 loc) · 1.48 KB
/
Krusal.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import java.util.*;
class Krusal
{
static int V = 5;
static int[] parent = new int[V];
static int INF = Integer.MAX_VALUE;
// Find set of vertex i
static int find(int i)
{
while (parent[i] != i)
i = parent[i];
return i;
}
// Does union of i and j. It returns
// false if i and j are already in same
// set.
static void union1(int i, int j)
{
int a = find(i);
int b = find(j);
parent[a] = b;
}
// Finds MST using Kruskal's algorithm
static void kruskalMST(int cost[][])
{
int mincost = 0; // Cost of min MST.
// Initialize sets of disjoint sets.
for (int i = 0; i < V; i++)
parent[i] = i;
// Include minimum weight edges one by one
int edge_count = 0;
while (edge_count < V - 1)
{
int min = INF, a = -1, b = -1;
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
{
if (find(i) != find(j) && cost[i][j] < min)
{
min = cost[i][j];
a = i;
b = j;
}
}
}
union1(a, b);
System.out.printf("Edge %d:(%d, %d) cost:%d \n",
edge_count++, a, b, min);
mincost += min;
}
System.out.printf("\n Minimum cost= %d \n", mincost);
}
// Driver code
public static void main(String[] args)
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
int cost[][] = {
{ INF, 2, INF, 6, INF },
{ 2, INF, 3, 8, 5 },
{ INF, 3, INF, INF, 7 },
{ 6, 8, INF, INF, 9 },
{ INF, 5, 7, 9, INF },
};
// Print the solution
kruskalMST(cost);
}
}
// This code contributed by Ehtesham Khursheed