-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeploy_ray.py
202 lines (139 loc) · 5.96 KB
/
deploy_ray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from ray import serve
import requests
from pymedext_eds.extract.utils import load_config
import ray
#from pymedext_eds.med import Annotator
#from pymedextcore.document import Document
from pymedextcore.annotators import Annotation
import datetime
import pandas as pd
import pkg_resources
from glob import glob
import click
from tqdm import tqdm
from ray.serve.utils import _get_logger
logger = _get_logger()
from pymedext_eds.med import Pipeline
from ray.serve.utils import _get_logger
import time
import datetime
import pandas as pd
import math
from pymedext_eds.db import get_engine, get_from_omop_note, get_note_ids, convert_notes_to_doc, load_processed_ids, chunk_to_omop, dump_omop_to_csv
from pymedext_eds.utils import timer, to_chunks
from pymedextcore.document import Document
from pymedext_eds.med import MedicationAnnotator
@ray.remote
def put_request(docs, host = '127.0.0.1', port = '8000', endpoint = 'annotator'):
docs = [x for x in docs if len(x.raw_text()) > 50]
if docs == []:
return []
#doc += [Document(raw_text= '', ID = '0')]
# json_doc = [
# {'note_id': d.source_ID,
# 'note_text': d.raw_text()} for d in doc
# ]
json_doc = [doc.to_dict() for doc in docs]
res = requests.post(f"http://127.0.0.1:8000/annotator", json = json_doc)
if res.status_code != 200:
logger.error(res.status_code)
logger.error(res.text)
logger.error([x['note_id'] for x in json_doc])
#logger.error([x['note_text'] for x in json_doc])
with open('notes_errors_ray.txt', 'a') as f:
for note in json_doc:
f.write(f"{note['note_id']}\n")
#res.raise_for_status()
return []
res = res.json()['result']
docs = [Document.from_dict(doc) for doc in res ]
# for i in range(len(res)):
# for annot in res[i]['annotations'][1:]:
# doc[i].annotations.append(Annotation(type=annot["type"],
# value=annot["value"],
# source_ID=annot["source_ID"],
# ID=annot["id"],
# source=annot["source"],
# span=annot["span"],
# attributes=annot["attributes"],
# isEntity=annot["isEntity"]))
return docs
@timer
def process_chunk(i, engine, min_date, note_ids, replica_chunk_size = 10, note_nlp_file = None, processed_file = None):
notes = get_from_omop_note(engine, min_date = min_date, note_ids = note_ids)
docs = convert_notes_to_doc(notes)
try:
res = ray.get([put_request.remote(c) for c in to_chunks(docs, replica_chunk_size)])
except Exception as e:
print(f"Error: {e}")
res = None
if res is not None:
flat_res = [item for sublist in res for item in sublist]
note_nlp = chunk_to_omop(flat_res)
logger.info(f'Extracted {note_nlp.shape[0]} rows from chunk {i}')
if note_nlp_file is not None:
dump_omop_to_csv(note_nlp, note_nlp_file )
logger.info(f'Appended {note_nlp.shape[0]} rows to {note_nlp_file}')
if processed_file is not None:
with open(processed_file, 'a') as f:
for ID in note_ids:
f.write(f"{ID}\n")
else:
logger.error('res empty')
return pd.DataFrame.from_records({})
return note_nlp
@timer
def main_process(limit =1000, chunk_size = 100, min_date = '2020-03-01', replica_chunk_size=10, note_nlp_file = None, processed_file = None):
engine = get_engine()
note_ids = get_note_ids(engine, min_date = min_date)
processed_ids = []
if processed_file is not None:
processed_ids = load_processed_ids(filename = processed_file)
to_process = list(set(note_ids) - set(processed_ids))
to_process.sort()
if limit is not None:
to_process = to_process[:limit]
id_chunks = to_chunks(to_process, chunk_size)
n_chunks = len(id_chunks)
logger.info(f'number of chunks to process : {n_chunks}')
start_time = datetime.datetime.now()
nrows = 0
for i, ids in enumerate(id_chunks):
i+=1
tmp = process_chunk(i, engine, min_date, ids, replica_chunk_size, note_nlp_file, processed_file)
nrows += tmp.shape[0]
time_to_current_chunk = datetime.datetime.now() - start_time
mean_time = time_to_current_chunk / i
ETA = mean_time * (n_chunks-i)
logger.info(f'Processed {i}/{n_chunks} chunks. ETA: {ETA}')
logger.info(f'Process done in {datetime.datetime.now()-start_time}, extracted {nrows} rows')
engine.dispose()
return nrows
if __name__ == '__main__':
logger = _get_logger()
num_replicas = 10
num_gpus = .3
limit = -1
chunk_size = 1000
replica_chunk_size= chunk_size // num_replicas
note_nlp_file = '../data/omop_tables/test_note_nlp_new.csv'
processed_file = '../data/omop_tables/notes_processed_med_new.txt'
min_date='2019-01-01'
client = serve.start()
# ray server
config = {"num_replicas": num_replicas}
actor_options = { "num_gpus": num_gpus}
client.create_backend('annotator',
Pipeline,
# params,
# postprocess_params,
config=config,
ray_actor_options=actor_options)
client.create_endpoint("annotator", backend="annotator", route="/annotator", methods = ['POST'])
# launch client
main_process(limit =limit,
chunk_size = chunk_size,
replica_chunk_size = replica_chunk_size,
min_date = min_date,
note_nlp_file =note_nlp_file,
processed_file = processed_file)