-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvd.tex
1569 lines (1426 loc) · 60.8 KB
/
svd.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%\documentclass[11pt,a4paper,draft]{article} % Use this line if this document is a draft
\documentclass[11pt,a4paper]{article} % Use this line if this document will be released
\usepackage{ifdraft}
% Bibliography
\newcommand{\bibfile}{svd.bib} % Name of the BibTeX file.
\newcommand{\universalbib}{/home/zaikunzhang/Bureau/bibliographie/ref.bib}
\ifdraft{\IfFileExists{\universalbib}{\renewcommand{\bibfile}{\universalbib}}{}}{}
% Geometry
%\voffset=-1.5cm \hoffset=-1.4cm \textwidth=16cm \textheight=22.0cm % Luis' setting
\usepackage[a4paper, textwidth=16.0cm, textheight=22.0cm]{geometry}
% Basic packages
\usepackage{amsmath,amsthm,amssymb,amsfonts}
\usepackage{empheq}
\usepackage{lscape}
\usepackage{longtable}
\usepackage{color}
\usepackage[bbgreekl]{mathbbol}
\DeclareSymbolFontAlphabet{\mathbbm}{bbold}
\DeclareSymbolFontAlphabet{\mathbb}{AMSb}
\usepackage{bbm}
\usepackage{rotating}
\usepackage{multirow,booktabs}
\usepackage{upgreek}
\usepackage{accents}
\usepackage{xspace}
\usepackage[en-US]{datetime2}
% Graph, tikz and pgf
%\usepackage{subfigure}
\setlength{\unitlength}{1mm} %The \unitlength command is a Length command. It defines the units used in the Picture Environment.
\usepackage{graphicx}
\usepackage{tikz,tikzscale,pgf,pgfarrows,pgfnodes,filecontents,tikz-cd,}
\usetikzlibrary{arrows,arrows.meta,patterns,positioning,decorations.markings,shapes}
\usepackage{pgfplots}
\usepackage{pgfplotstable}
\usepackage[justification=centering]{caption}
\usepgfplotslibrary{fillbetween}
\pgfplotsset{compat=1.11}
\usepackage[normalem]{ulem}
\usepackage[toc,page]{appendix}
\renewcommand{\appendixpagename}{\Large{Appendix}}
\renewcommand{\appendixname}{Appendix}
\renewcommand{\appendixtocname}{Appendix}
%\usepackage{sectsty}
\setcounter{tocdepth}{2}
\numberwithin{equation}{section}
% Turn off some unharmful warnings
\usepackage{silence}
\WarningFilter{latex}{Writing or overwriting file} % Mute the warning about 'writing/overwriting file'
\WarningFilter{latex}{Writing file} % Mute the warning about 'writing/overwriting file'
\WarningFilter{latex}{Tab has} % Mute the warning about 'Tab has been converted to Blank Space'
% Enumerate and itemize
\usepackage{eqlist}
\usepackage{enumitem}
\setlist[itemize]{leftmargin=*}
\setlist[enumerate]{leftmargin=*}
% Hyperref
\definecolor{darkblue}{rgb}{0,0.1,0.5}
\definecolor{darkgreen}{rgb}{0,0.5,0.1}
\usepackage{hyperref}
\hypersetup{ colorlinks,%
linkcolor=darkblue,%
anchorcolor=darkblue,
citecolor=darkblue,%
urlcolor=darkblue}
\newcommand{\red}[1]{\textcolor{red}{#1}}
\newcommand{\blue}[1]{\textcolor{blue}{#1}}
\ifdraft{\usepackage{refcheck}}{} % Check unused labels
\usepackage{url}
% Algorithm environment
\usepackage[section]{algorithm}
\usepackage{algpseudocode,algorithmicx}
\newcommand{\INPUT}{\textbf{Input}}
\newcommand{\FOR}{\textbf{For}~}
\algrenewcommand\algorithmicrequire{\textbf{Input:}}
\algrenewcommand\algorithmicensure{\textbf{Output:}}
\algrenewcommand\alglinenumber[1]{\normalsize #1.}
\newcommand*\Let[2]{\State #1 $=$ #2}
% Theorem-like environments
\newtheorem{theorem}{Theorem}%[section]
\newtheorem{acknowledgement}{Acknowledgement}%[section]
\newtheorem{alg}{Algorithm}%[section]
\newtheorem{axiom}{Axiom}%[section]
\newtheorem{case}{Case}%[section]
\newtheorem{claim}{Claim}%[section]
\newtheorem{conclusion}{Conclusion}%[section]
\newtheorem{condition}{Condition}%[section]
\newtheorem{conjecture}{Conjecture}%[section]
\newtheorem{corollary}{Corollary}%[section]
\newtheorem{criterion}{Criterion}%[section]
\newtheorem{exercise}{Exercise}%[section]
\newtheorem{lemma}{Lemma}%[section]
\newtheorem{notation}{Notation}%[section]
\newtheorem{problem}{Problem}%[section]
\newtheorem{proposition}{Proposition}%[section]
\newtheorem{remark}{Remark}%[section]
\newtheorem{solution}{Solution}%[section]
\newtheorem{assumption}{Assumption}%[section]
\newtheorem{summary}{Summary}%[section]
\newtheorem{note}{Note}%[section]
\newtheorem{doubt}{Doubt}%[section]
\newtheorem{properties}{Properties}%[section]
\newtheorem{example}{Example}%[section]
\newtheorem{stronconv}{Strong Convergence}%[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}%[section]
% proof
\usepackage{xpatch}
\xpatchcmd{\proof}{\itshape}{\normalfont\proofnamefont}{}{}
\newcommand{\proofnamefont}{\bfseries}
% Fine tuning
\usepackage{microtype}
\usepackage[nobottomtitles*]{titlesec} % No section title at the bottom of pages
% Prevent footnote from running to the next page
\interfootnotelinepenalty=10000
% No line break in inline math
\interdisplaylinepenalty=10000
\relpenalty=10000
\binoppenalty=10000
% No widow or orphan lines
\clubpenalty = 10000
\widowpenalty = 10000
\displaywidowpenalty = 10000
% Operators, commands
\usepackage{relsize}
\usepackage{nccmath}
\DeclareMathOperator*{\mcap}{\medmath{\bigcap}}
\DeclareMathOperator*{\mcup}{\medmath{\bigcup}}
%\renewcommand{\cap}{\mathsmaller{\bigcap}}
%\renewcommand{\cap}{\mcap}
\def\RR{\mathbb{R}}
\def\BB{\mathcal{B}}
\def\SS{\mathbb{S}}
\def\ZZ{\mathbb{Z}}
\def\NN{\mathbb{N}}
\def\FF{\mathbb{F}}
\def\CC{\mathbb{C}}
\newcommand{\sss}[1]{{\scriptscriptstyle{#1}}}
\newcommand{\sups}[1]{{#1}}
\newcommand{\sK}{{\scriptscriptstyle{K}}}
\newcommand{\sT}{{\scriptscriptstyle{T}}}
\DeclareMathOperator{\tr}{tr}
\newcommand{\fro}{{\scriptscriptstyle{\textnormal{F}}}}
\newcommand{\trs}{{\scriptscriptstyle{\mathsf{T}}}}
\newcommand{\hmt}{{\scriptscriptstyle{{\mathsf{H}}}}}
\newcommand{\pin}{{\scriptscriptstyle{{\mathsf{+}}}}}
\newcommand{\inv}{{-1}}
\newcommand{\adj}{*}
\DeclareMathOperator{\sort}{sort}
\DeclareMathOperator*{\Argmax}{Argmax}
\DeclareMathOperator*{\Argmin}{Argmin}
\DeclareMathOperator*{\argmax}{argmax}
\DeclareMathOperator*{\argmin}{argmin}
\DeclareMathOperator{\Span}{span}
\DeclareMathOperator{\med}{med}
\DeclareMathOperator{\essinf}{essinf}
\newcommand{\rank}{\mathrm{rank}}
\newcommand{\range}{\mathrm{range}}
\newcommand{\ind}[2]{\operatorname{\mathbbm{1}}\;\!\!\!\big(#2\in#1\big)}
\newcommand{\diag}{\operatorname*{diag}}
\newcommand{\Diag}{\operatorname*{Diag}}
\newcommand{\im}{\operatorname{im}}
\newcommand{\diam}{\operatorname{diam}}
\newcommand{\dist}{\operatorname{dist}}
\newcommand{\disth}{{\operatorname{\updelta_{\sss{H}}}}}
\newcommand{\Pred}{\mathrm{Pred}}
\newcommand{\cs}{\text{c}}
\newcommand{\hp}{\circ}
\newcommand{\card}{{\rm card}}
\newcommand{\fr}{\operatorname{fr}}
\newcommand{\sg}[1]{\bf { #1 }}
\newcommand{\ceil}[1]{ {\lceil{#1}\rceil} }
\newcommand{\floor}[1]{ {\lfloor{#1}\rfloor} }
%\renewcommand{\emph}{\textbf}
%\newcommand{\ones}{\mathbbm{1}}
\newcommand{\ones}{1}
\newcommand{\cc}{\sss{\textnormal{C}}}
\newcommand{\dec}{\sss{\textnormal{D}}}
\newcommand{\cauchy}{\sss{\textnormal{C}}}
\newcommand{\scauchy}{\sss{\textnormal{S}}}
\newcommand{\etc}{{etc.}}
\newcommand{\ie}{{i.e.}}
\newcommand{\eg}{{e.g.}}
\newcommand{\etal}{{et al.}}
%\newcommand*{\defeq}{\stackrel{\mbox{\normalfont\tiny{\textnormal{def}}}}{=}}
\newcommand\defeq{\mathrel{\overset{\makebox[0pt]{\mbox{\normalfont\tiny\sffamily def}}}{=}}}
\newcommand{\crit}{\textnormal{crit}}
\newcommand{\rsg}{\hat{\partial}}
\newcommand{\gsg}{\partial}
\newcommand{\dom}{\textnormal{dom}}
\newcommand{\tf}{{\textnormal{f}}}
\newcommand{\tg}{{\textnormal{g}}}
\newcommand{\ts}{{\textnormal{s}}}
\newcommand{\st}{\textnormal{s.t.}}
\newcommand{\me}{\mathrm{e}}
\newcommand{\md}{\mathrm{d}}
\newcommand{\mi}{\mathrm{i}}
\newcommand{\lev}{\mathrm{lev}}
\newcommand{\bA}{\mathbf{A}}
\newcommand{\bx}{\mathbf{u}}
%\newcommand{\bb}{\mathbf{f}}
\newcommand{\bb}{\mathbf{r}}
\newcommand{\nov}{n_{\textnormal{o}}}
\newcommand{\MATLAB}{\textsc{Matlab}\xspace}
\newcommand{\rpss}{{SS}}
\newcommand{\rdfs}{{DF}}
\newcommand{\pfs}{{FS}}
\newcommand{\cg}{{CG}}
\newcommand{\hem}{{HEM}}
\newcommand{\prblm}{\texttt}
\DeclareMathAlphabet{\mathsfit}{T1}{\sfdefault}{\mddefault}{\sldefault}
\SetMathAlphabet{\mathsfit}{bold}{T1}{\sfdefault}{\bfdefault}{\sldefault}
\newcommand{\prbb}{\mathsfit{p}}
\newcommand{\pp}{\mathsf{p}}
\newcommand{\qq}{\mathsf{q}}
\newcommand{\ttt}{\mathsfit{t}}
\newcommand{\tol}{\varepsilon}
\newcommand{\bt}{\mathbf{t}}
\newcommand{\br}{\mathbf{r}}
\newcommand{\dd}{\mathbf{d}}
\newcommand{\ii}{\mathbf{i}}
\newcommand{\jj}{\mathbf{j}}
\newcommand{\xx}{\mathbf{x}}
\renewcommand{\pp}{\mathbf{p}}
\renewcommand{\ggg}{\mathbf{g}}
\newcommand{\GG}{\mathbf{G}}
\renewcommand{\Pr}{\mathbb{P}}
\newcommand{\iid}{\text{i.i.d.}}
\newcommand{\integer}{\textrm{I}}
\newcommand{\octave}{\mbox{GNU Octave}\xspace}
\newcommand{\gradp}{\nabla_{\!\sss{P_k}}}
\newcommand{\lims}{\mathcal{L}}
% mathlcal font
\DeclareFontFamily{U}{dutchcal}{\skewchar\font=45 }
\DeclareFontShape{U}{dutchcal}{m}{n}{<-> s*[1.0] dutchcal-r}{}
\DeclareFontShape{U}{dutchcal}{b}{n}{<-> s*[1.0] dutchcal-b}{}
\DeclareMathAlphabet{\mathlcal}{U}{dutchcal}{m}{n}
\SetMathAlphabet{\mathlcal}{bold}{U}{dutchcal}{b}{n}
% mathscr font (supporting lowercase letters)
%\usepackage[scr=dutchcal]{mathalfa}
%\usepackage[scr=esstix]{mathalfa}
%\usepackage[scr=boondox]{mathalfa}
%\usepackage[scr=boondoxo]{mathalfa}
\usepackage[scr=boondoxupr]{mathalfa}
%\newcommand{\model}{\mathscr{h}}
\newcommand{\model}{\tilde{f}}
\newcommand{\rmod}{F}
\DeclareMathOperator{\cl}{cl}
\DeclareMathOperator{\vol}{vol}
\newcommand{\Set}[1]{\mathcal{#1}}
\DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it} % The mathpzc font
\newcommand{\slv}{\mathpzc}
% mathpzc looks great, but it stops working on 19 Feb 2020 for no reason.
%\newcommand{\slv}{\mathscr}
\newcommand{\software}{\texttt}
\DeclareMathOperator{\eff}{\mathsf{e}\;\!}
\DeclareMathOperator{\Eff}{\mathsf{E}\;\!}
\newcommand{\out}{{\text{out}}}
\DeclareMathOperator{\comp}{C}
\DeclareMathOperator{\sign}{sign}
% Commands for revision
\newcommand{\REPHRASE}[1]{{\color{blue}{#1}}}
\newcommand{\TYPO}[1]{{\color{orange}{#1}}}
\newcommand{\MISTAKE}[1]{{\color{violet}{#1}}}
\newcommand{\REVISION}[1]{{\color{blue}{#1}}}
\newcommand{\REVISIONred}[1]{{\color{red}{#1}}}
%\newcommand{\COMMENT}[1]{\textcolor{darkgreen}{(#1)}}
%\newcommand{\REVISION}[1]{#1}
%\newcommand{\REVISIONred}[1]{#1}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{Notes on Singular Value Decomposition}
\date{February 20, 2020 (revision: \DTMnow)}
\author{
Z. Zhang
\thanks{
Department of Applied Mathematics, The Hong Kong Polytechnic University,
Hong Kong, China ({\tt zaikun.zhang@polyu.edu.hk}).
}
}
\begin{document}
\maketitle
\begin{abstract}
We collect a few elementary facts about the singular value decomposition (SVD) of matrices. In
particular, we present three approaches used by different authors in the history
to establish the existence of~SVD.
\end{abstract}
\textbf{Keywords}.~Singular value decomposition, Eigenvalue decomposition, Deflation,
Jordan-Wielandt matrix
\textbf{Notation}.~Throughout this document, $m$, $n$, $k$, $i$, and~$j$ are positive integers; $r$ is a nonnegative integer.
We use $\|\cdot\|$ to denote the $2$-norm for vectors and matrices.
In inline equations, the MATLAB-style notation~$[a; b]$ stands for a vertical array
with~$a$ and~$b$ being its entries. The identity matrix is represented by~$I$, and it may take
a subscript to indicate its order when necessary. Given any matrix~$A$, we use $A_{i,j}$ to signify
its~$(i,j)$ entry.
\section{Eigenvalue decomposition}
The following theorem and definition can be found in textbooks on linear algebra.
\begin{theorem}
\label{th:evd}
For any Hermitian matrix~$A\in \CC^{n\times n}$, there exists a unitary matrix~$U\in
\CC^{n\times n}$ and a diagonal matrix~$\Lambda \in \RR^{n\times n}$ such that
\begin{equation*}
A \; = \; U\Lambda U^\hmt.
\end{equation*}
If~$A$ is real, then we can require that~$U$ is real.
Indeed,~$\Lambda_{1,1}$, $\dots$, $\Lambda_{n,n}$ are the eigenvalues of~$A$, multiplicity
included, and the~$j$-th column of~$U$ is an eigenvector of~$A$ associated with~$\Lambda_{j,j}$.
\end{theorem}
\begin{definition}
\label{def:evd}
Suppose that~$A\in \CC^{n\times n}$ is an Hermitian matrix and~$A = U\Lambda U^\hmt$.
\begin{enumerate}[leftmargin=1.5em]
\item
$U\Lambda U^\hmt$ is called an eigenvalue decomposition of~$A$, provided that~$U
\in \CC^{n\times n}$ is a unitary matrix, and~$\Lambda \in \RR^{n\times n}$ is a diagonal
matrix.
\item
$U\Lambda U^\hmt$ is called a compact eigenvalue decomposition of~$A$,
provided that~$U \in \CC^{n\times r}$ is a matrix with~$U^\hmt U = I_r$,
and~$\Lambda \in \RR^{r\times r}$ is a diagonal matrix whose diagonal entries are nonzero.
\end{enumerate}
\end{definition}
%\begin{remark}
% If~$U \Lambda U^\hmt$ is a compact eigenvalue decomposition of an Hermitian matrix~$A \in \CC^{n\times n}$,
% then~$U$ has~$r=\rank(A)$ columns. Such a decomposition can be extended to an eigenvalue
% decomposition
% \begin{equation*}
% (U \; \tilde{U})
% \begin{pmatrix}
% \Lambda & 0\\
% 0 & 0
% \end{pmatrix}
% \begin{pmatrix}
% U^\hmt\\
% \tilde{U}^\hmt
% \end{pmatrix},
% \end{equation*}
% where~$\tilde{U}\in \CC^{n\times(n-r)}$ is any matrix such that~$(U \; \tilde{U})$ is unitary.
%\end{remark}
\section{Singular value decomposition (SVD)}
\begin{definition}
\label{def:svd}
Suppose that~$A\in \CC^{m\times n}$ is a matrix with~$\rank(A) = r$, and~$A = U\Sigma V^\hmt$.
\begin{enumerate}[leftmargin=1.5em]
\item
$U\Sigma V^\hmt$ is called an singular value decomposition of~$A$,
provided that~$U \in \CC^{m\times m}$ and~$V\in\CC^{n\times n}$ are unitary matrices,
and~$\Sigma \in \RR^{m\times n}$ is a matrix whose first~$r$ diagonal entries~(if~$r\ge 1$)
are positive while all the other entries are zero.
\item
When~$r \ge 1$, $U\Sigma V^\hmt$ is called a compact singular value decomposition of~$A$,
provided that~$U \in \CC^{m\times r}$ and~$V\in \CC^{n\times r}$ satisfy~$U^\hmt U = V^\hmt V = I_r$,
and~$\Sigma \in \RR^{r\times r}$ is a diagonal matrix whose diagonal entries are positive.
\item When~$m\ge n$, $U\Sigma V^\hmt$ is called a thin (or economy-sized) singular value
decomposition of~$A$,
provided that~$U \in \CC^{m\times n}$ and~$V\in \CC^{n\times n}$ satisfy~$U^\hmt U = V^\hmt V = I_n$,
and~$\Sigma \in \RR^{m\times m}$ is a matrix whose first~$r$ diagonal entries~(if~$r\ge 1$)
are positive while all the other entries are zero.
When~$n\ge m$, a thin singular value decomposition can be defined similarly.
\end{enumerate}
\end{definition}
\begin{remark}
Let~$U\Sigma V^\hmt$ be an SVD of~$A\in \RR^{m\times n}$ and $\sigma_i
= \Sigma_{i,i}$, where $1\le i\le \min\{m,n\}$. Then~\mbox{$\sigma_1$, $\dots$, $\sigma_r$} are called the
\textnormal{(}nonzero\textnormal{)} singular values of~$A$. It is often convenient to
regard $\sigma_{r+1}=\cdots=\sigma_{\min\{m,n\}} = 0$ also as singular values of~$A$.
\end{remark}
\begin{remark}
If~$U\Sigma V^\hmt$ is a \textnormal{(}compact\textnormal{)} SVD
of~$A$, then~$AV = U\Sigma$ and~$A^\hmt U = V\Sigma$.
Let~$\sigma_i=\Sigma_{i,i}$, $u_i$ be the~$i$-th column of~$U$,
and~$v_i$ be the~$i$-th column of~$V$.
Then~$A v_i = \sigma_i u_i$ and~$A^\hmt u_i = \sigma_i v_i$; $u_i$ and~$v_i$
are called a pair of left and right singular vectors of~$A$ associated with the
singular value~$\sigma_{i}$.
\end{remark}
\begin{remark}
If~$U \Sigma V^\hmt$ is a compact SVD of~$A \in \CC^{m\times n}$,
then we can extend it to an SVD
\begin{equation*}
(U \; \tilde{U})
\begin{pmatrix}
\Sigma & 0\\
0 & 0
\end{pmatrix}
\begin{pmatrix}
V^\hmt\\
\tilde{V}^\hmt
\end{pmatrix},
\end{equation*}
where~$\tilde{U}\in \CC^{m\times(m-r)}$ is any matrix such that~$(U \; \tilde{U})$ is unitary,
and~$\tilde{V} \in \CC^{n\times (n-r)}$ is any matrix such that~$(V \; \tilde{V})$ is unitary.
Conversely, if~$U\Sigma V^\hmt$ is an SVD of~$A\neq 0$, we can obtain a compact
SVD by dropping the zero diagonal entries of~$\Sigma$ and the
corresponding columns of~$U$ and~$V$.
\end{remark}
\begin{remark}
The names \emph{thin} SVD, \emph{economy-sized} SVD, and \emph{compact} SVD are adopted
from~\cite[Section~6.1]{Bai_etal_2000}.
Other names exist.
In~\cite[Lecture~4]{Trefethen_Bau_1997}, a thin SVD is called a \emph{reduced} SVD instead.
In~\cite[Theorem~7.3.2.]{Horn_Johnson_2012}, ``thin SVD'' means what we call ``compact SVD''
here.
\end{remark}
\subsection{Uniqueness of (compact) SVD}
\begin{theorem}
Suppose that~$U\Sigma V^\hmt$ is a compact SVD of a matrix~$A$.
\begin{enumerate}[leftmargin=1.5em]
\item $U\Sigma^2 U^\hmt$ is a compact eigenvalue decomposition of~$AA^\hmt$,
and hence the diagonal entries of~$\Sigma^2$ are the positive eigenvalues of~$AA^\hmt$, multiplicity included.
\item $V\Sigma^2 V^\hmt$ is a compact eigenvalue decomposition of~$A^\hmt A$,
and hence the diagonal entries of~$\Sigma^2$ are the positive eigenvalues of~$A^\hmt A$, multiplicity included.
\end{enumerate}
\end{theorem}
\begin{lemma}
\label{lem:commute}
Consider matrices~$A \in \CC^{n\times n}$ and $\Lambda \in \CC^{n\times n}$ with~$\Lambda$ being diagonal.
\begin{enumerate}[leftmargin=1.5em]
\item $\Lambda A = A\Lambda$ if and only if~$A_{i,j} = 0$ for any~$i$ and~$j$ such that~$\Lambda_{i,i}\neq \Lambda_{j,j}$.
\item If~$\Lambda$ is nonnegative and~$\Lambda A = A\Lambda$, then~$\Lambda^p A = A \Lambda^p$ for
any~$p\ge 0$.
\end{enumerate}
\end{lemma}
\begin{proof} Because
$\Lambda A = A \Lambda$ if and only if
$\Lambda_{i,i} A_{i,j} = A_{i,j} \Lambda_{j,j}$ for any $i,j\in\{1, \dots, n\}$.
\end{proof}
\begin{lemma}
\label{lem:unitary}
Let~$U_1$,~$U_2 \in \CC^{n\times r}$ satisfy~$U_1^\hmt U_1 = U_2^\hmt U_2
= I_r$ and~$\range(U_1) = \range(U_2)$.
\begin{enumerate}[leftmargin=1.5em]
\item $U_1U_1^\hmt = U_2U_2^\hmt$, both being the orthogonal projection onto~$\range(U_1)
= \range(U_2)$.
\item $W=U_1^\hmt U_2$ is a unitary matrix and~$U_1W = U_2$.
\end{enumerate}
\end{lemma}
\begin{proof}
Since~$U_1^\hmt U_1 = I_r$, $U_1U_1^\hmt$ is the orthogonal projection onto~$\range(U_1)
= \range(U_2)$ (see, \eg, \cite{Han_Neumann_2013}). In addition,
$U_1 W = U_1 U_1^\hmt U_2 = U_2$, and $W^\hmt W = U_2^\hmt U_1 W = U_2^\hmt U_2 = I_r$.
\end{proof}
\begin{theorem}
\label{th:svdunique}
Let~$U_i\in \CC^{m\times r}$ and $V_i\in \CC^{n\times r}$ satisfy~$U_i^\hmt
U_i=V_i^{\hmt} V_i = I_r$ \textnormal{(}$i=1,2$\textnormal{)}, and
$\Sigma \in \CC^{r\times r}$ be a diagonal matrix whose diagonal entries are positive.
Then~$U_1 \Sigma V_1^{\hmt} = U_2 \Sigma V_2^{\hmt}$ if and only if there exists
a unitary matrix~$W\in\CC^{r\times r}$ such that~$U_2=U_1 W$, $V_2 = V_1 W$, and~$\Sigma
W = W\Sigma$.
\end{theorem}
\begin{proof}
We will focus on the ``only if'' part since the~``if'' part is trivial.
Assuming that $U_1\Sigma V_1^\hmt = U_2\Sigma V_2^\hmt$,
we will show that~$W = U_1^\hmt U_2\in \CC^{r\times r}$ fulfills all the desired requirements.
Observe that both~$\Sigma V_1^\hmt$ and~$\Sigma V_2^\hmt$ have full column rank. Hence
\begin{equation*}
\range(U_1) \;=\; \range(U_1\Sigma V_1^\hmt)
\;=\; \range(U_2\Sigma V_2^\hmt) \;=\; \range(U_2).
\end{equation*}
By Lemma~\ref{lem:unitary},~$W$ is a unitary matrix and~$U_1W = U_2$.
It remains to show that~$\Sigma W = W\Sigma$ and~$V_2 = WV_1$.
Recalling that~$V_1^\hmt V_1 = V_2^\hmt V_2= I_r$, we have
\begin{equation}
%\label{eq:us2u}
\nonumber
U_1\Sigma^2 U_1^\hmt
\;=\; (U_1\Sigma V_1^\hmt) (U_1 \Sigma V_1^\hmt)^\hmt
\;=\; (U_2\Sigma V_2^\hmt) (U_2 \Sigma V_2^\hmt)^\hmt
\;=\; U_2\Sigma^2 U_2^\hmt.
\end{equation}
Hence
\begin{equation*}
\Sigma^2W
\;=\;\Sigma^2U_1^\hmt U_2
\;=\; U_1^\hmt(U_1 \Sigma^2 U_1^\hmt) U_2
\;=\; U_1^\hmt(U_2 \Sigma^2 U_2^\hmt) U_2
\;=\; U_1^\hmt U_2 \Sigma^2
\;=\; W\Sigma^2
\end{equation*}
Thus~$\Sigma W=W\Sigma$ by Lemma~\ref{lem:commute}.
Finally, since~$V_1 \Sigma U_1^\hmt =(U_1\Sigma V_1^\hmt)^\hmt = (U_2\Sigma V_2^\hmt)^\hmt= V_2 \Sigma
U_2^\hmt$,
\begin{equation*}
V_2
\;=\;(V_2\Sigma U_2^\hmt)(U_2 \Sigma^{-1})
\;=\;(V_1\Sigma U_1^\hmt)(U_2 \Sigma^{-1})
\;=\; V_1 \Sigma W \Sigma^{-1}
\;=\; V_1 W \Sigma \Sigma^{-1}
\;=\; V_1W.
\end{equation*}
The proof is complete.
\end{proof}
\subsection{Existence of SVD}
Here we present three independent ways of establishing the existence of
SVD~(see~Theorems~\ref{th:svd}, \ref{th:ey}, \ref{th:lanczos}).
They were used by different authors in the history~\cite{Stewart_1993}.
Among these three approaches, Jordan's method does not depend on eigenvalue decomposition, but the
other two do.
Note that it suffices to prove the existence of the compact SVD, from which an SVD can be constructed easily.
\subsubsection{Jordan's deflation approach~\cite{Jordan_1874}}
\begin{lemma}
\label{lem:jordan}
Given a nonzero matrix~$A\in\CC^{m\times n}$, let~$(u,v)\in \CC^{m}\times \CC^{n}$ be a solution of
\begin{equation}
\nonumber
%\label{eq:jordan}
\max\; \{\Re(x^\hmt A y) \mathrel{:} \|x\|=\|y\|=1, \; x \in \CC^{m}, \; y\in\CC^{n}\},
\end{equation}
and~${\sigma} = \Re(u^\hmt Av)$. Then~$Av = \sigma u$,~$A^\hmt u
= \sigma v$, and~$\sigma>0$.
\end{lemma}
\begin{proof}
Since~$A\neq 0$, it is obvious that~$\sigma >0$. Hence~$Av \neq 0$. According to the definition
of~$u$,
\begin{equation*}
\Re(u^\hmt Av)\ge \Re(\left({Av}/{\|Av\|}\right)^\hmt Av) \;=\;
\|Av\|\;=\;\|u\|\|Av\|.
\end{equation*}
By the Cauchy-Schwarz inequality, there exists a scalar~$\lambda>0$ such
that~$\lambda u = Av$. Hence%
\begin{equation*}
\sigma \;=\; \Re(u^\hmt Av) \;=\; \Re(\lambda \|u\|^2) \;=\; \lambda.
\end{equation*}
Thus~$Av = \sigma u$. Similarly, we can prove~$A^\hmt u = \sigma v$ using the fact that
\begin{equation*}
\Re(u^\hmt A v)\;\ge\; \Re(u^\hmt A\left( A^\hmt u/\|A^\hmt
u\|\right)) \;=\; \|A^\hmt u\| = \|A^\hmt u\|\|v\|.
\end{equation*}
\end{proof}
%\begin{remark}
% Indeed, the~$\sigma$ in Lemma~\ref{lem:jordan} is the largest singular value of~$A$, because
% \begin{equation*}
% \max_{\|x\|=\|y\|=1} \Re(x^\hmt A y) \;=\; \max_{\|y\|=1}\max_{\|x\|=1}\Re(x^\hmt Ay)
% \;=\;\max_{\|y\|=1}\|Ay\| \;=\; \|A\|\;=\;\sigma_{\max}(A).
% \end{equation*}
% Similarly, we can see that
% \begin{equation*}
% \max_{\|x\|=\|y\|=1}|x^\hmt A y| \;=\; \sigma_{\max}(A).
% \end{equation*}
% See~\cite{Cao_Feng_2003} for more about variational representations for singular values of matrices.
%\end{remark}
\begin{remark}
When Lemma~\ref{lem:jordan} is applied in the proof of Theorem~\ref{th:svd} later, we only need
the existence of unit vectors~$u\in\CC^{m}$, $v\in\CC^{n}$, and a scalar~$\sigma>0$
such that~$Av = \sigma u$ and~$A^\hmt u = \sigma v$. The existence can be established in other
ways. Here are two examples.
\begin{enumerate}[leftmargin=1.5em]
\item Let~$\sigma = (\lambda_{\max}(AA^\hmt))^{\frac{1}{2}}$, $u\in\CC^{m\times m}$ be an eigenvector
of~$AA^\hmt$ associated with~$\lambda_{\max}(AA^\hmt)$, and~$v\;=\;A^\hmt u/\sigma$.
Then~$Av = AA^\hmt u/\sigma = \sigma^2 u/\sigma=\sigma u$, and~$A^\hmt u = \sigma v$.
This is the approach used
in the proofs of~\cite[Theorem~4.1]{Trefethen_Bau_1997} and~\cite[Theorem~1]{Koranyi_2001}.
\item Let~$\sigma = \lambda_{\max}(J)$ with~$J$ being the Jordan-Wielandt form of~$A$
\textnormal{(}see~\eqref{eq:JW}\textnormal{)}, $w\in\CC^{m+n}$ be an eigenvector associated with~$\sigma$,
$x\in\CC^{m}$ consist of the first~$m$ entries of~$w$, and~$y\in\CC^{n}$ consist of the
last~$n$. Then we can verify that~$Ay=\sigma x$ and~$A^\hmt x=\sigma y$.
Meanwhile, $A(-y) = -\sigma x$, and~$A^\hmt x = -\sigma (-y)$, making~$[x; -y]$
an eigenvector of~$J$ associated with~$-\sigma \neq \sigma$. Since~$J$ is Hermitian,
we know that~$w$ and~$[x; -y]$ are orthogonal, and hence~$x^\hmt x - y^\hmt y= 0$. Thus~$\|x\|=\|y\|$,
which are nonzero since~$w\neq 0$. Finally, let~$u = x/\|x\|$ and~$v = y/\|y\|$.
\end{enumerate}
\end{remark}
\begin{theorem}
\label{th:svd}
Any~$A\in\CC^{m\times n}$ has an SVD~$U\Sigma V^\hmt$
as defined in Definition~\ref{def:svd}.
\end{theorem}
\begin{proof}
Assume without loss of generality that~$A\neq 0$. We prove by an induction on~$\min\{m,n\}$.
1.~If~$\min\{m, n\} = 1$, then~$A$ is either a row or a column. If~$A$ is a column, let
$U$ be a unitary matrix whose first column is~$A/\|A\|$, $\Sigma = e_1$ (\ie, the first canonical
coordinate vector), and~$V = \|A\|$. Then~$U\Sigma V^\hmt$ is an SVD
of~$A$. If~$A$ is a row, the decomposition can be found similarly.
2.~Assume that the conclusion holds when~$\min\{m,n\}= k$. Let us consider the scenario where
$\min\{m,n\} = k+1$. Let~$A$ be a matrix in~$\CC^{m\times n}$.
%Without loss of generality, suppose that~$A\neq0$.
By Lemma~\ref{lem:jordan},
there exist unit vectors~$u\in\CC^{m}$, $v\in\CC^{n}$, and a scalar~$\sigma>0$ such that
\begin{equation}
\label{eq:jordan}
Av \;=\; \sigma u, \quad A^\hmt u\;=\;\sigma v.
\end{equation}
Let~$U\in \CC^{m\times m}$ be a unitary matrix whose first column is~$u$, and~$V\in\CC^{n\times n}$
be a unitary matrix whose first column is~$v$. It is then straightforward to check that
\begin{equation}
\label{eq:aind1}
U^\hmt A V \;=\;
\begin{pmatrix}
\sigma & 0\\
0 & \hat{A}
\end{pmatrix},
\end{equation}
where~$\hat{A}$ is a matrix in~$\CC^{(m-1)\times (n-1)}$. If~$\hat{A} = 0$, then~\eqref{eq:aind1}
provides an SVD of~$A$.
Otherwise, since~$\min\{m-1, n-1\} = \min\{m,n\}-1$, we
know from the induction hypothesis that~$\hat{A}$ has an SVD~$\hat{U}\hat{\Sigma} \hat{V}^\hmt$.
Consequently,
\begin{equation}
\label{eq:aind2}
A \;=\; U (U^\hmt A V)V^\hmt
\;=\;
U
\begin{pmatrix}
\sigma & 0\\
0 & \hat{U}\hat{\Sigma} \hat{V}^\hmt
\end{pmatrix}
V^\hmt
\;=\;
\left[
U
\begin{pmatrix}
1 & 0\\
0 & \hat{U}
\end{pmatrix}
\right]
\begin{pmatrix}
\sigma & 0\\
0 & \hat{\Sigma}
\end{pmatrix}
\left[
\begin{pmatrix}
1 & 0\\
0 & \hat{V}
\end{pmatrix}^{\!\hmt}
\,V^\hmt
\right].
\end{equation}
It is easy to verify that the right-hand side of~\eqref{eq:aind2} provides an SVD of~$A$.
This completes the induction.
\end{proof}
\begin{remark}
We can also prove Theorem~\ref{th:svd} by an induction on~$\rank(A)$. When~$\rank(A) \!= 0$,
the desired conclusion is trivial. Assume that the conclusion holds when~$\rank(A) \le k$. Let us consider
the scenario with~$\rank(A) = k+1$. By Lemma~\ref{lem:jordan}, there exists unit
vectors~$u\in\CC^{m}$, $v\in\CC^{n}$, and a scalar ~$\sigma>0$ fulfilling~\eqref{eq:jordan}.
Define~$\hat{A} = A-\sigma uv^\hmt$. Then it is easy to check that~$\ker(A)\subset
\ker(\hat{A})$ and~$v\in\ker(\hat{A})$. Since~$v\in\range(A^\hmt)\perp \ker(A)$, we know
that~$\dim\ker(\hat{A})\ge \dim\ker(A)+1$. Thus~$\rank(\hat{A}) \le \rank(A)-1$.
If~$\hat{A} = 0$, we are done. Otherwise, by the induction
hypothesis,~$\hat{A}$ has a compact SVD~$\hat{U}\hat{\Sigma}\hat{V}^\hmt$.
Consequently,
\begin{equation}
\label{eq:aind3}
A\;=\; \sigma uv^\hmt + \hat{A} \;=\;
\sigma uv^\hmt + \hat{U}\hat{\Sigma} \hat{V}^\hmt \;=\;
(u\,\; \hat{U})
\begin{pmatrix}
\sigma & 0\\
0 &\hat{\Sigma}
\end{pmatrix}
(v\,\; \hat{V})^\hmt.
\end{equation}
Noting that~$\hat{A}v = 0$, $\hat{A}^\hmt u = 0$, and~$\hat{\Sigma}$ is nonsingular, we can see
that~$\hat{V}^\hmt v = 0$ and~$\hat{U}^\hmt u = 0$. Thus the columns of~$(u\,\;\hat{U})$ are
orthonormal, and so are those of~$(v\,\; \hat{V})$. Hence~\eqref{eq:aind3} provides a compact
SVD for~$A$, which can be extended to an SVD. The induction is complete.
\end{remark}
\subsubsection{The Eckart-Young approach~\cite{Eckart_Young_1939}}
\begin{lemma}
\label{lem:fro2}
Suppose that~$A \in \CC^{m\times n}$ and~$B \in \CC^{n\times k}$.
\begin{enumerate}[leftmargin=1.5em]
\item $\|AB\|_\fro \le \|A\| \|B\|_\fro$, and the equality holds if and only if~$A^\hmt A B = \|A\|^2 B$.
\item $\|AB\|_\fro \le \|A\|_\fro\|B\|$, and the equality holds if and only if~$ABB^\hmt = \|B\|^2 A$.
\end{enumerate}
\end{lemma}
\begin{remark}
Recall that~$\|\cdot\|$ denotes the~$2$-norm for matrices.
\end{remark}
\begin{proof}
Let~$C\in\CC^{n\times n}=(\|A\|^2 I - A^\hmt A)^\frac{1}{2}$, which is well defined since~$\|A\|^2
I - A^\hmt A$ is positive semidefinite.~Then%
\begin{equation*}
\|A\|^2\|B\|_\fro^2 - \|AB\|_\fro^2 \;=\; \tr(\|A\|^2 B^\hmt B) - \tr(B^\hmt A^\hmt A B)\;=\; \tr(B^\hmt C^2 B)\;\ge\; 0.
\end{equation*}
Thus~$\|AB\|_\fro \le \|A\|\|B\|_\fro$, and
\begin{equation*}
\|AB\|_\fro = \|A\|\|B\|_\fro
\;\Longleftrightarrow \; B^\hmt C^2 B =0
\;\Longleftrightarrow \; C^2 B =0
\;\Longleftrightarrow \; A^\hmt A B = \|A\|^2 B.
\end{equation*}
The proof concerning~$\|AB\|_\fro \le \|A\|_\fro\|B\|$ is similar.
\end{proof}
\begin{lemma}
\label{lem:uav}
Let~$A$, $B$, $U$, and~$V$ be complex matrices such that both~$U^\hmt AV$
and~$UBV^\hmt$ are well defined.
If~$\|A\|_\fro=\|B\|_\fro$ and~$\|U\|\|V\|=1$, then $A = UBV^\hmt$ if and only if
$B = U^\hmt A V$.
\end{lemma}
\begin{proof}
Without loss of generality, we suppose that~$\|U\|=\|V\|=1$. Otherwise, consider~$U/\|U\|$
and~$V/\|V\|$ instead of~$U$ and~$V$ respectively.
Assume that~$A = UBV^\hmt$. Since~$\|U\|=\|V\|=1$ and~$\|A\|_\fro=\|B\|_\fro$, we have
\begin{equation*}
\min\{\|UB\|_\fro,\; \|BV^\hmt\|_\fro\}\;\ge\;\|UBV^\hmt\|_\fro\;=\;\|A\|_\fro = \|B\|_\fro.
\end{equation*}
Hence Lemma~\ref{lem:fro2} ensures
\begin{equation*}
U^\hmt U B \;=\; B, \quad BV^\hmt V \;=\; B.
\end{equation*}
Therefore,
\begin{equation*}
U^\hmt A V \;=\; U^\hmt U B V^\hmt V \;=\; B V^\hmt V \;=\; B.
\end{equation*}
In the same way, $B=U^\hmt A V$ implies~$A = UBV^\hmt$.
\end{proof}
\begin{theorem}
\label{th:ey}
Let~$A \in \CC^{m\times n}$ be a matrix.
\begin{enumerate}[leftmargin=1.5em]
\item If~$V\Lambda V^\hmt$ is a compact eigenvalue decomposition of~$A^\hmt A$ and~$U = AV\Lambda^{-\frac{1}{2}}$,
then~$U\Lambda^\frac{1}{2} V^\hmt$ is a compact SVD of~$A$.
\item If~$U\Lambda U^\hmt$ is a compact eigenvalue decomposition of~$AA^\hmt$ and~$V = A^\hmt U\Lambda^{-\frac{1}{2}}$,
then~$U\Lambda^\frac{1}{2} V^\hmt$ is a compact SVD of~$A$.
\end{enumerate}
\end{theorem}
\begin{proof}
We only prove 1. By assumption,~$V^\hmt V=I$,~$A^\hmt A = V\Lambda V^\hmt$,
and~$U = A V\Lambda^{-\frac{1}{2}}$. Hence
\begin{equation}
\label{eq:uhu}
U^\hmt U \;=\; (A V\Lambda^{-\frac{1}{2}})^\hmt (AV\Lambda^{-\frac{1}{2}})
\;=\; \Lambda^{-\frac{1}{2}}(V^\hmt A^\hmt A V)\Lambda^{-\frac{1}{2}}
\;=\; \Lambda^{-\frac{1}{2}}\Lambda\Lambda^{-\frac{1}{2}} \;=\; I.
\end{equation}
Thus
\begin{equation*}
U^\hmt A V \;=\; U^\hmt (U\Lambda^{\frac{1}{2}}) \;=\; \Lambda^{\frac{1}{2}}.
\end{equation*}
Meanwhile, $\|U\|=1$ by~\eqref{eq:uhu}, $\|V\|=1$ because~$V^\hmt V = I$, and
\begin{equation*}
\|A\|_\fro^2 \;=\; \tr(A^\hmt A) \;=\; \tr(\Lambda) \;=\; \|\Lambda^{\frac{1}{2}}\|_\fro^2.
\end{equation*}
Therefore, Lemma~\ref{lem:uav} ensures
\begin{equation}
\nonumber
%\label{eq:Adec}
A \;=\; U\Lambda^{\frac{1}{2}}V^\hmt.
\end{equation}
Hence~$U\Lambda^{\frac{1}{2}}V^\hmt$ is a compact SVD of~$A$.
\end{proof}
\begin{remark}
The major point of the proof is to show that~$U\Lambda^{\frac{1}{2}}V^\hmt =A$. Here we use
Lemma~\ref{lem:uav}, but there are other ways to prove it.
\end{remark}
\begin{corollary}
\label{coro:eyfull}
Let~$A \in \CC^{m\times n}$ be a matrix.
\begin{enumerate}[leftmargin=1.5em]
\item If~$V\Lambda V^\hmt$ is an eigenvalue decomposition of~$A^\hmt A$ such
that the diagonal entries of~$\Lambda$ are descending. The there exist~$U\in \CC^{m\times m}$
and~$\Sigma \in \RR^{m\times n}$ such that~$U\Sigma V^\hmt$ is an SVD of~$A$.
\item If~$U\Lambda U^\hmt$ is an eigenvalue decomposition of~$AA^\hmt$ such
that the diagonal entries of~$\Lambda$ are descending. The there exist~$V\in \CC^{n\times n}$
and~$\Sigma \in \RR^{m\times n}$ such that~$U\Sigma V^\hmt$ is an SVD of~$A$.
\end{enumerate}
\end{corollary}
\begin{proof}
We only prove 1. Suppose that~$\rank(A) = r$. Let~$\hat{\Lambda} = \diag(\Lambda_{1,1}, \dots,
\Lambda_{r,r})$ and~$\hat{V}$ be the first~$r$ columns of~$V$. Then~$\hat{V} \hat{\Lambda}
\hat{V}^\hmt$ is a compact eigenvalue decomposition of~$A^\hmt A$. With~$\hat{U}
= A\hat{V}\hat{\Lambda}^{-\frac{1}{2}}$, we know from Theorem~\ref{th:ey} that~$\hat{U}\hat{\Lambda}^{\frac{1}{2}}\hat{V}^\hmt$ is
a compact SVD of~$A$.
Let~$\tilde{U}\in \CC^{m\times(m-r)}$ be any matrix such that~$(\hat{U}\; \tilde{U})$ is
unitary. Then
\begin{equation*}
(\hat{U}\; \tilde{U})
\begin{pmatrix}
\hat{\Lambda}^{\frac{1}{2}} & 0\\
0 & 0
\end{pmatrix}
V^\hmt
\end{equation*}
is an SVD of~$A$.
\end{proof}
\subsubsection{The Wielandt-Lanczos approach~\cite{Lanczos_1958}}
\begin{lemma}
\label{lem:lanczos}
Given a matrix~$A \in \CC^{m\times n}$, define its Jordan-Wielandt form~\cite{Mathias_2013} to be
\begin{equation}
\label{eq:JW}
J =
\begin{pmatrix}
0 & A \\
A^\hmt & 0
\end{pmatrix}.
\end{equation}
Then the characteristic polynomial of~$J$ is
\begin{equation}
\label{eq:chp}
p(\sigma) \;=\; \sigma^{m-n}\det(\sigma^2 I_n - A^\hmt A) \;=\; \sigma^{n-m}\det(\sigma^2 I_m
- A A^\hmt).
\end{equation}
If the nonzero eigenvalues of~$AA^\hmt$ \textnormal{(}i.e., those of~$A^\hmt A$\textnormal{)}
are~$\lambda_1$, $\dots$, $\lambda_r$, multiplicity included, then
the nonzero eigenvalues of~$J$ are~$\sqrt{\lambda_1}$, $-\sqrt{\lambda_1}$, $\dots$, $\sqrt{\lambda_r}$,
$-\sqrt{\lambda_r}$, multiplicity included.
%\begin{enumerate}
% \item
% The characteristic polynomial of~$J$ is
% \begin{equation}
% \label{eq:eig}
% p(\sigma) \;=\; \sigma^{m-n}\det(\sigma^2 I_n - A^\hmt A) \;=\; \sigma^{n-m}\det(\sigma^2 I_m
% - A A^\hmt).
% \end{equation}
% If the nonzero eigenvalues of~$AA^\hmt$ (i.e., those of~$A^\hmt A$) are~$\lambda_1 \ge \cdots \ge \lambda_r > 0$, then
% the nonzero eigenvalues of~$J$ are~$\sqrt{\lambda_1}$, $-\sqrt{\lambda_1}$, $\dots$, $\sqrt{\lambda_r}$,
% $-\sqrt{\lambda_r}$, multiplicity included.
% \item The eigenspace of~$J$ associated with an eigenvalue~$\sigma$ is
% \begin{equation}
% \label{eq:eigs}
% \{[u; v]\in\CC^{m+n} \mathrel{:} A^\hmt u = \sigma v, Av = \sigma u, u\in \CC^{m}, v\in
% \CC^n\}.
% \end{equation}
% If~$\sigma \neq 0$, then the eigenspace can be further specified as
% \begin{equation*}
% \left\{ [u; A^\hmt u/\sigma] \mathrel{:} A A^\hmt u = \sigma^2 u, u\in \CC^{m} \right\}
% \;=\;
% \left\{ [Av/\sigma; v] \mathrel{:} A^\hmt A v = \sigma^2 v, v\in \CC^{n} \right\};
% \end{equation*}
% if~$\sigma = 0$, then it is
% \begin{equation*}
% \left\{ [u; v] \mathrel{:} A^\hmt u = 0, A v = 0 \right\} \;=\; \ker(A^\hmt) \times \ker(A).
% \end{equation*}
% \item If~$U\Lambda U^\hmt$ is a compact eigenvalue decomposition of~$AA^\hmt$ and~$V = A^\hmt U\Lambda^{-\frac{1}{2}}$,
% or~$V\Lambda V^\hmt$ is a compact eigenvalue decomposition of~$A^\hmt A$ and~$U = A U\Lambda^{-\frac{1}{2}}$,
% then
% \begin{equation*}
% \left[
% \frac{1}{\sqrt{2}}
% \begin{pmatrix}
% U & -U\\
% V & V
% \end{pmatrix}
% \right]
% \begin{pmatrix}
% \Lambda^{\frac{1}{2}} & 0\\
% 0 & -\Lambda^{\frac{1}{2}}
% \end{pmatrix}
% \left[
% \frac{1}{\sqrt{2}}
% \begin{pmatrix}
% U^\hmt & V^\hmt\\
% -U^\hmt & V^\hmt
% \end{pmatrix}
% \right]
% \end{equation*}
% is a compact eigenvalue decomposition of~$J$. Consequently, $U\Lambda^{\frac{1}{2}} V^\hmt$ is
% a compact singular value decomposition of~$A$.
%\end{enumerate}
\end{lemma}
\begin{proof}
We only prove the first equality in~\eqref{eq:chp}. For any~$\sigma \neq 0$,
\begin{equation*}
\begin{pmatrix}
I_m & 0 \\
\sigma^{-1}A^\hmt & I_n
\end{pmatrix}
\begin{pmatrix}
\sigma I_m & -A \\
-A^\hmt & \sigma I_n
\end{pmatrix}
=
\begin{pmatrix}
\sigma I_m & -A\\
0 & \sigma I_n - \sigma^{-1}A^\hmt A
\end{pmatrix}.
\end{equation*}
Taking determinants, we have
\begin{equation}
\label{eq:rational}
\det(\sigma I - J) \;=\; \det(\sigma I_m) \det(\sigma I_n - \sigma^{-1}A^\hmt A) \;=\;
\sigma^{m-n} \det(\sigma^2 I_n -A^\hmt A).
\end{equation}
In~\eqref{eq:rational}, two rational functions are equal for all~$\sigma \neq 0$.
Hence they are indeed identical.
\end{proof}
\begin{theorem}
\label{th:lanczos}
Consider matrices~$A\in \CC^{m\times n}$, $\Sigma \in \RR^{r\times r}$, $U_i \in
\CC^{m\times r}$, and $V_i \in \CC^{n\times r}$ \textnormal{(}$i=1,2$\textnormal{)}.
Suppose that~$\Sigma$ is a diagonal matrix
whose diagonal entries are positive. Then
\begin{equation}
\label{eq:evdJ}
\begin{pmatrix}
U_1 & U_2 \\
V_1 & V_2
\end{pmatrix}
\begin{pmatrix}
\Sigma & 0\\
0 & -\Sigma
\end{pmatrix}
\begin{pmatrix}
U_1 & U_2 \\
V_1 & V_2
\end{pmatrix}^\hmt
\end{equation}
is a compact eigenvalue decomposition of the Jordan-Wielandt matrix~$J$ in~\eqref{eq:JW}
if and only if both~$(\sqrt{2} U_1)\Sigma (\sqrt{2} V_1)^\hmt$ and~$(-\sqrt{2}U_2)\Sigma (\sqrt{2}V_2)^\hmt$ are
compact SVDs of~$A$.
\end{theorem}
\begin{proof} 1.~Assume that~\eqref{eq:evdJ} is a compact eigenvalue decomposition of~$J$.
We will prove that $(\sqrt{2} U_1)\Sigma (\sqrt{2} V_1)^\hmt$ is a
compact SVD~of~$A$, and the other one can be discussed similarly.