-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvol3d.m
255 lines (227 loc) · 7.18 KB
/
vol3d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
function [model] = vol3d(varargin)
%H = VOL3D Volume render 3-D data.
% VOL3D uses the orthogonal plane 2-D texture mapping technique for
% volume rending 3-D data in OpenGL. Use the 'texture' option to fine
% tune the texture mapping technique. This function is best used with
% fast OpenGL hardware.
%
% vol3d Provide a demo of functionality.
%
% H = vol3d('CData',data) Create volume render object from input
% 3-D data. Use interp3 on data to increase volume
% rendering resolution. Returns a struct
% encapsulating the pseudo-volume rendering object.
% XxYxZ array represents scaled colormap indices.
% XxYxZx3 array represents truecolor RGB values for
% each voxel (along the 4th dimension).
%
% vol3d(...,'Alpha',alpha) XxYxZ array of alpha values for each voxel, in
% range [0,1]. Default: data (interpreted as
% scaled alphamap indices).
%
% vol3d(...,'Parent',axH) Specify parent axes. Default: gca.
%
% vol3d(...,'XData',x) 1x2 x-axis bounds. Default: [0 size(data, 2)].
% vol3d(...,'YData',y) 1x2 y-axis bounds. Default: [0 size(data, 1)].
% vol3d(...,'ZData',z) 1x2 z-axis bounds. Default: [0 size(data, 3)].
%
% vol3d(...,'texture','2D') Only render texture planes parallel to nearest
% orthogonal viewing plane. Requires doing
% vol3d(h) to refresh if the view is rotated
% (i.e. using cameratoolbar).
%
% vol3d(...,'texture','3D') Default. Render x,y,z texture planes
% simultaneously. This avoids the need to
% refresh the view but requires faster OpenGL
% hardware peformance.
%
% vol3d(H) Refresh view. Updates rendering of texture planes
% to reduce visual aliasing when using the 'texture'='2D'
% option.
%
% NOTES
% Use vol3dtool (from the original vol3d FEX submission) for editing the
% colormap and alphamap. Adjusting these maps will allow you to explore
% your 3-D volume data at various intensity levels. See documentation on
% alphamap and colormap for more information.
%
% Use interp3 on input date to increase/decrease resolution of data
%
% Examples:
%
% % Visualizing fluid flow
% v = flow(50);
% h = vol3d('cdata',v,'texture','2D');
% view(3);
% % Update view since 'texture' = '2D'
% vol3d(h);
% alphamap('rampdown'), alphamap('decrease'), alphamap('decrease')
%
% % Visualizing MRI data
% load mri.mat
% D = squeeze(D);
% h = vol3d('cdata',D,'texture','3D');
% view(3);
% axis tight; daspect([1 1 .4])
% alphamap('rampup');
% alphamap(.06 .* alphamap);
%
% See also alphamap, colormap, opengl, isosurface
% Copyright Joe Conti, 2004
% Improvements by Oliver Woodford, 2008-2011, with permission of the
% copyright holder.
if nargin == 0
demo_vol3d;
return
end
if isstruct(varargin{1})
model = varargin{1};
if length(varargin) > 1
varargin = {varargin{2:end}};
end
else
model = localGetDefaultModel;
end
if length(varargin)>1
for n = 1:2:length(varargin)
switch(lower(varargin{n}))
case 'cdata'
model.cdata = varargin{n+1};
case 'parent'
model.parent = varargin{n+1};
case 'texture'
model.texture = varargin{n+1};
case 'alpha'
model.alpha = varargin{n+1};
case 'xdata'
model.xdata = varargin{n+1}([1 end]);
case 'ydata'
model.ydata = varargin{n+1}([1 end]);
case 'zdata'
model.zdata = varargin{n+1}([1 end]);
end
end
end
if isempty(model.parent)
model.parent = gca;
end
[model] = local_draw(model);
%------------------------------------------%
function [model] = localGetDefaultModel
model.cdata = [];
model.alpha = [];
model.xdata = [];
model.ydata = [];
model.zdata = [];
model.parent = [];
model.handles = [];
model.texture = '3D';
tag = tempname;
model.tag = ['vol3d_' tag(end-11:end)];
%------------------------------------------%
function [model,ax] = local_draw(model)
cdata = model.cdata;
siz = size(cdata);
% Define [x,y,z]data
if isempty(model.xdata)
model.xdata = [0 siz(2)];
end
if isempty(model.ydata)
model.ydata = [0 siz(1)];
end
if isempty(model.zdata)
model.zdata = [0 siz(3)];
end
try
delete(model.handles);
catch
end
ax = model.parent;
cam_dir = camtarget(ax) - campos(ax);
[m,ind] = max(abs(cam_dir));
opts = {'Parent',ax,'cdatamapping',[],'alphadatamapping',[],'facecolor','texturemap','edgealpha',0,'facealpha','texturemap','tag',model.tag};
if ndims(cdata) > 3
opts{4} = 'direct';
else
cdata = double(cdata);
opts{4} = 'scaled';
end
if isempty(model.alpha)
alpha = cdata;
if ndims(model.cdata) > 3
alpha = sqrt(sum(double(alpha).^2, 4));
alpha = alpha - min(alpha(:));
alpha = 1 - alpha / max(alpha(:));
end
opts{6} = 'scaled';
else
alpha = model.alpha;
if ~isequal(siz(1:3), size(alpha))
error('Incorrect size of alphamatte');
end
opts{6} = 'none';
end
h = findobj(ax,'type','surface','tag',model.tag);
for n = 1:length(h)
try
delete(h(n));
catch
end
end
is3DTexture = strcmpi(model.texture,'3D');
handle_ind = 1;
% Create z-slice
if(ind==3 || is3DTexture )
x = [model.xdata(1), model.xdata(2); model.xdata(1), model.xdata(2)];
y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)];
z = [model.zdata(1), model.zdata(1); model.zdata(1), model.zdata(1)];
diff = model.zdata(2)-model.zdata(1);
delta = diff/size(cdata,3);
for n = 1:size(cdata,3)
cslice = squeeze(cdata(:,:,n,:));
aslice = double(squeeze(alpha(:,:,n)));
h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:});
z = z + delta;
handle_ind = handle_ind + 1;
end
end
% Create x-slice
if (ind==1 || is3DTexture )
x = [model.xdata(1), model.xdata(1); model.xdata(1), model.xdata(1)];
y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)];
z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)];
diff = model.xdata(2)-model.xdata(1);
delta = diff/size(cdata,2);
for n = 1:size(cdata,2)
cslice = squeeze(cdata(:,n,:,:));
aslice = double(squeeze(alpha(:,n,:)));
h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:});
x = x + delta;
handle_ind = handle_ind + 1;
end
end
% Create y-slice
if (ind==2 || is3DTexture)
x = [model.xdata(1), model.xdata(1); model.xdata(2), model.xdata(2)];
y = [model.ydata(1), model.ydata(1); model.ydata(1), model.ydata(1)];
z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)];
diff = model.ydata(2)-model.ydata(1);
delta = diff/size(cdata,1);
for n = 1:size(cdata,1)
cslice = squeeze(cdata(n,:,:,:));
aslice = double(squeeze(alpha(n,:,:)));
h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:});
y = y + delta;
handle_ind = handle_ind + 1;
end
end
model.handles = h;
function demo_vol3d
figure;
load mri.mat
vol3d('cdata', squeeze(D), 'xdata', [0 1], 'ydata', [0 1], 'zdata', [0 0.7]);
colormap(bone(256));
alphamap([0 linspace(0.1, 0, 255)]);
axis equal off
set(gcf, 'color', 'w');
view(3);