Skip to content

Latest commit

 

History

History
302 lines (266 loc) · 9.54 KB

README.md

File metadata and controls

302 lines (266 loc) · 9.54 KB

pytorch-deepFEPE

This repo is the official implementation of the paper:

Deep Keypoint-Based Camera Pose Estimation with Geometric Constraints.

You-Yi Jau*, Rui Zhu*, Hao Su, Manmohan Chandraker (*equal contribution)

IROS 2020

See our arxiv, paper and video for more details.

pipeline

Installation

Clone repo and submodules

# please clone without git lfs and download from google drive if possible
# "This repository is over its data quota. Purchase more data packs to restore access."
export GIT_LFS_SKIP_SMUDGE=1
git clone https://github.com/eric-yyjau/pytorch-deepFEPE.git
git pull --recurse-submodules

Requirements

  • python == 3.6
  • pytorch >= 1.1 (tested in 1.3.1)
  • torchvision >= 0.3.0 (tested in 0.4.2)
  • cuda (tested in cuda10)
conda create --name py36-deepfepe python=3.6
conda activate py36-deepfepe
pip install -r requirements.txt
pip install -r requirements_torch.txt # install pytorch

Pull and link Superpoint model

git clone https://github.com/eric-yyjau/pytorch-superpoint.git
cd pytorch-superpoint
git checkout module_20200707
# install
pip install --upgrade setuptools wheel
python setup.py bdist_wheel
pip install -e .
  • if ascii error
export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8
export LANGUAGE=en_US.UTF-8

Dataset

  • Data preprocessing
cd deepFEPE_data
  • Follow the instructions in the README.
  • Process KITTI dataset for training or testing.
  • Process ApolloScape dataset for testing.

Config file

  • Key items
dump_root: '[your dumped dataset]' # apollo or kitti
if_qt_loss: true # use pose-loss and F-loss (true) or only F-loss (false)
if_SP: true (use superpoint instead of SIFT)/ false (SIFT)
# deepF
retrain: true (new deepF model)/ false (use pretrained deepF)
train: true (train the model)/ false (freeze weights)
pretrained: [Path to pretrained deepF]
# superpoint
retrain_SP: true (new superpoint model)/ false (use pretrained_SP)
train_SP: true (train SP model)/ false (freeze SP weights)
pretrained_SP: [Path to pretrained SP]

Run the code - Training

Prepare the dataset. Use training commands following steps 1 to 3 (skip step 0). Visualize training and validation with Tensorboard.

Training commands

  • KITTI
python deepFEPE/train_good.py train_good deepFEPE/configs/kitti_corr_baseline.yaml test_kitti --eval
  • ApolloScape
python deepFEPE/train_good.py train_good deepFEPE/configs/apollo_train_corr_baseline.yaml test_apo --eval

0) Baseline: Train deepF model with SIFT features

  • config file: deepFEPE/configs/kitti_corr_baseline.yaml
  • config:
    • set dump_root to [your dataset path]
    • set if_SP to False
  • run training script

1) Prepare SuperPoint model

  • Follow the instruction in pytorch-superpoint.
  • Or use the pretrained models.
  • git lfs file: deepFEPE/logs/superpoint_models.zip
    • KITTI: deepFEPE/logs/superpoint_kitti_heat2_0/checkpoints/superPointNet_50000_checkpoint.pth.tar
    • Apollo: deepFEPE/logs/superpoint_apollo_v1/checkpoints/superPointNet_40000_checkpoint.pth.tar

2) Train deepF model with SuperPoint pretrained models

  • config:
    • Set if_SP to True.
    • Add pretrained_SP path.

3) End-to-end training

  • config:
    • Set train to True
    • Set train_SP to True
    • Set the pretrained paths in pretrained and pretrained_SP.
    • Set if_qt_loss: true for pose-loss.

Run the code - Testing

  • KITTI: use kitti_corr_baselineEval.yaml
python deepFEPE/train_good.py eval_good deepFEPE/configs/kitti_corr_baselineEval.yaml eval_kitti --test --eval # use testing set (seq 09, 10)
  • ApolloScape: use apollo_train_corr_baselineEval.yaml
python deepFEPE/train_good.py eval_good deepFEPE/configs/apollo_train_corr_baselineEval.yaml eval_apo --test --eval

You can use our pretrained models for testing. Just put the paths in the config file.

Our pretrained models:

git lfs ls-files # check the files
git lfs fetch 
git lfs pull # get the files
git pull

(Refer to the config.yml and checkpoints/ in the folder)

  • KITTI models (trained on KITTI):
    • git lfs file: deepFEPE/logs/kitti_models.zip
    • SIFT Baselines:
      • baselineTrain_deepF_kitti_fLoss_v1
      • baselineTrain_sift_deepF_kittiPoseLoss_v1
      • baselineTrain_sift_deepF_poseLoss_v0
    • SuperPoint baselines:
      • baselineTrain_kittiSp_deepF_kittiFLoss_v0
      • baselineTrain_kittiSp_deepF_kittiPoseLoss_v1
    • DeepFEPE:
      • baselineTrain_kittiSp_deepF_end_kittiFLoss_freezeSp_v1
      • baselineTrain_kittiSp_deepF_end_kittiFLossPoseLoss_v1_freezeSp
      • baselineTrain_kittiSp_kittiDeepF_end_kittiPoseLoss_v0
  • Apollo models (trained on Apollo, under apollo/):
    • git lfs file: deepFEPE/logs/apollo_models.zip
    • SIFT baselines:
      • baselineTrain_sift_deepF_fLoss_apolloseq2_v1
      • baselineTrain_sift_deepF_poseLoss_apolloseq2_v0
      • baselineTrain_sift_deepF_apolloFLossPoseLoss_v0
    • SuperPoint baselines:
      • baselineTrain_apolloSp_deepF_fLoss_apolloseq2_v0
      • baselineTrain_apolloSp_deepF_poseLoss_apolloseq2_v0
    • DeepFEPE:
      • baselineTrain_apolloSp_deepF_fLoss_apolloseq2_end_v0_freezeSp_fLoss
      • baselineTrain_apolloSp_deepF_poseLoss_apolloseq2_end_v0
      • baselineTrain_apolloSp_deepF_fLossPoseLoss_apolloseq2_end_v0_freezeSp_fLoss

Run the code - batch testing and evaluation

Run the evaluation

cd deepFEPE/
python run_eval_good.py --help
  • update your dataset path in configs/kitti_corr_baselineEval.yaml and configs/apollo_train_corr_baselineEval.yaml
  • set the model names in deepFEPE/run_eval_good.py
def get_sequences(...):
    kitti_ablation = { ... }
    apollo_ablation = { ... }
  • check if the models exist
# kitti models on kitti dataset
python run_eval_good.py --dataset kitti --model_base kitti --exper_path logs --check_exist
# kitti models on apollo dataset
python run_eval_good.py --dataset apollo --model_base kitti --exper_path logs --check_exist

# apollo models
python run_eval_good.py --dataset kitti --model_base apollo --exper_path logs/apollo --check_exist
  • run the evaluation (dataset should be ready)
python run_eval_good.py -dataset kitti --model_base kitti --exper_path logs --runEval

Read out the results

  • open jupyter notebook
  • read the sequences from the config file: table_trans_rot_kitti_apollo.yaml
base_path: '/home/yoyee/Documents/deepSfm/logs/' # set the base path for checkpoints
seq_dict_test:
    Si-D.k: ['eval_kitti', 'DeepF_err_ratio.npz', '07/29/2020']
  • print out the numbers based on the setting in the config file
jupyter notebook
# navigate to `notebooks/exp_process_table.ipynb`

Download the results

git lfs ls-files # check the files
git lfs fetch 
git lfs pull # get the files
  • unzip
cd deepFEPE/logs/results/ 
unzip 1107.zip 
unzip 1114.zip 
unzip new_1119.zip
  • put to the same folder
ln -s 1114/* . # do the same for the other folders
  • Then, you can follow the instructions in Read out the results.

  • Trajectory results are in deepFEPE/logs/results/trajectory.zip.

Evaluate visual odometry

jupyter notebook
# navigate to `notebooks/exp_process_table.ipynb`
  • convert the relative_pose_body to absoluted poses
  • export the poses to two files for sequence 09 and 10.
  • use kitti-odom-eval for evaluation.

Tensorboard

tensorboard --logdir=runs/train_good
  • visualization
    • Ex: Train SIFT + DeepF
      • check loss: gt should always be 1 tb-loss
      • check R, t inlier ratio:
      rotation: q, angle: 0.01 to 180
      translation: t, angle: 0.01 to 180
      # (higher the better)
      # pick the checkpoints through inlier ration 
      tb-loss

Citations

Please cite the following papers.

  • DeepFEPE
@INPROCEEDINGS{2020_jau_zhu_deepFEPE,
  author={Y. -Y. {Jau} and R. {Zhu} and H. {Su} and M. {Chandraker}},
  booktitle={2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, 
  title={Deep Keypoint-Based Camera Pose Estimation with Geometric Constraints}, 
  year={2020},
  volume={},
  number={},
  pages={4950-4957},
  doi={10.1109/IROS45743.2020.9341229}}
  • SuperPoint
@inproceedings{detone2018superpoint,
  title={Superpoint: Self-supervised interest point detection and description},
  author={DeTone, Daniel and Malisiewicz, Tomasz and Rabinovich, Andrew},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops},
  pages={224--236},
  year={2018}
}
  • DeepF
@inproceedings{ranftl2018deep,
  title={Deep fundamental matrix estimation},
  author={Ranftl, Ren{\'e} and Koltun, Vladlen},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={284--299},
  year={2018}
}

Credits

This implementation is developed by You-Yi Jau and Rui Zhu. Please contact You-Yi for any problems.

License

DeepFEPE is released under the MIT License.