-
Notifications
You must be signed in to change notification settings - Fork 1
/
curriculum_benchmark.py
226 lines (185 loc) · 8.3 KB
/
curriculum_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Lint as: python3
"""CURRICULUM Benchmark"""
import json
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@misc{https://doi.org/10.48550/arxiv.2204.06283,
doi = {10.48550/ARXIV.2204.06283},
url = {https://arxiv.org/abs/2204.06283},
author = {Chen, Zeming and Gao, Qiyue},
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Curriculum: A Broad-Coverage Benchmark for Linguistic Phenomena in Natural Language Understanding},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
"""
_DESCRIPTION = """\
We introduce Curriculum as a new format of NLI benchmark for evaluation of broad-coverage linguistic phenomena.
Curriculum contains a collection of datasets that covers 36 types of major linguistic phenomena and an evaluation procedure
for diagnosing how well a language model captures reasoning skills for distinct types of linguistic phenomena.
We show that this linguistic-phenomena-driven benchmark can serve as an effective tool for diagnosing
model behavior and verifying model learning quality.
"""
_HOMEPAGE = "https://github.com/eric11eca/curriculum-ling"
_LICENSE = "CC BY-SA 3.0"
_URL = "https://github.com/eric11eca/curriculum-ling/blob/main/benchmark/tasks/"
_DESCRIPTION_MAP = {
"analytic": "analytical thinking.",
"atomic": "reasoning on commonsense knowledge graph.",
}
_TAKS_NAMES = ["analytic", "defeasible", "boolean", "comparative",
"conditional", "context_align", "control", "coreference",
"cosmoqa", "counterfactual", "counting", "drop",
"entailment_tree", "ester", "hellaswag", "hypernymy",
"hyponymy", "kg_relations", "lexical", "logiqa",
"monotonicity_infer", "negation", "ner", "physicalqa",
"puns", "quantifier", "sentiment", "socialqa",
"spatial", "sprl", "syntactic_alternation", "syntactic_variation",
"temporal", "transitive", "verbcorner", "verbnet"]
task_label_dict = {
"lexical": ["entailed", "not-entailed"],
"transitive": ["entailed", "not-entailed"],
"hypernymy": ["entailed", "not-entailed"],
"hyponymy": ["entailed", "not-entailed"],
"ner": ["entailed", "not-entailed"],
"verbnet": ["entailed", "not-entailed"],
"verbcorner": ["entailed", "not-entailed"],
"syntactic_alternation": ["entailed", "not-entailed"],
"syntactic_variation": ["entailed", "not-entailed"],
"boolean": ["entailment", "contradiction", "neutral"],
"comparative": ["entailment", "contradiction", "neutral"],
"conditional": ["entailment", "contradiction", "neutral"],
"counting": ["entailment", "contradiction", "neutral"],
"negation": ["entailment", "contradiction", "neutral"],
"quantifier": ["entailment", "contradiction", "neutral"],
"monotonicity_infer": ["entailed", "not-entailed"],
"sentiment": ["entailed", "not-entailed"],
"kg_relations": ["entailed", "not-entailed"],
"puns": ["entailed", "not-entailed"],
"coreference": ["entailed", "not-entailed"],
"context_align": ["entailed", "not-entailed"],
"sprl": ["entailed", "not-entailed"],
"analytic": ["entailed", "not-entailed"],
"entailment_tree": ["entailed", "not-entailed"],
"socialqa": ["entailed", "not-entailed"],
"physicalqa": ["entailed", "not-entailed"],
"hellaswag": ["entailed", "not-entailed"],
"cosmoqa": ["entailed", "not-entailed"],
"logiqa": ["entailed", "not-entailed"],
"ester": ["entailed", "not-entailed"],
"drop": ["entailed", "not-entailed"],
"control": ["entailment", "contradiction", "neutral"],
"spatial": ["entailed", "not-entailed"],
"temporal": ["entailed", "not-entailed"],
"defeasible": ["entailed", "not-entailed"],
"counterfactual": ["entailed", "not-entailed"]
}
def read_file(path, mode="r", **kwargs):
with open(path, mode=mode, **kwargs) as f:
return f.read()
def write_file(data, path, mode="w", **kwargs):
with open(path, mode=mode, **kwargs) as f:
f.write(data)
def read_json(path, mode="r", **kwargs):
return json.loads(read_file(path, mode=mode, **kwargs))
def write_json(data, path):
return write_file(json.dumps(data, indent=2), path)
def read_jsonl(path, mode="r", **kwargs):
# Manually open because .splitlines is different from iterating over lines
ls = []
with open(path, mode, **kwargs) as f:
for line in f:
ls.append(json.loads(line))
return ls
def write_jsonl(data, path):
assert isinstance(data, list)
lines = [to_jsonl(elem) for elem in data]
write_file("\n".join(lines), path)
def to_jsonl(data):
return json.dumps(data).replace("\n", "")
class CurriculumConfig(datasets.BuilderConfig):
"""BuilderConfig for Curriculum."""
def __init__(self, features, data_url, citation, url, label_classes=["entailed", "not-entailed"], **kwargs):
"""BuilderConfig for Curriculum.
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
data_url: `string`, url to download the zip file from.
citation: `string`, citation for the data set.
url: `string`, url for information about the data set.
label_classes: `list[string]`, the list of classes for the label if the
label is present as a string. Non-string labels will be cast to either
'False' or 'True'.
**kwargs: keyword arguments forwarded to super.
"""
# Version history:
# 1.0.0: Initial version.
super(CurriculumConfig, self).__init__(
version=datasets.Version("1.0.0"), **kwargs)
self.features = features
self.label_classes = label_classes
self.data_url = data_url
self.citation = citation
self.url = url
class CurriculumBenchmark(datasets.GeneratorBasedBuilder):
"""Curriculum Benchmark. Version 1.0.0"""
BUILDER_CONFIGS = [
CurriculumConfig(
name=task_name,
description=_DESCRIPTION,
label_classes=task_label_dict[task_name],
features=["premise", "hypothesis", "idx", "gold_label"],
data_url=f"https://github.com/eric11eca/curriculum-ling/raw/main/benchmark/tasks/{task_name}.zip",
citation=_CITATION,
url="https://github.com/eric11eca/curriculum-ling/",
) for task_name in _TAKS_NAMES
]
def _info(self):
features = {feature: datasets.Value(
"string") for feature in self.config.features}
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
@staticmethod
def _get_filepath(dl_dir, split):
return os.path.join(dl_dir, split + ".jsonl")
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
task_name = _get_task_name_from_data_url(self.config.data_url)
dl_dir = os.path.join(dl_dir, task_name)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(dl_dir, "train.jsonl"),
"split": datasets.Split.TRAIN,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": os.path.join(dl_dir, "val.jsonl"),
"split": datasets.Split.VALIDATION,
},
)
]
def _generate_examples(self, data_file, split):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", data_file)
dataset = read_jsonl(data_file)
for id_, data in enumerate(dataset):
yield id_, {
"premise": data["premise"],
"hypothesis": data["hypothesis"],
"gold_label": data["gold_label"],
"idx": id_
}
def _get_task_name_from_data_url(data_url):
return data_url.split("/")[-1].split(".")[0]