-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmainPretraining.py
221 lines (196 loc) · 8.08 KB
/
mainPretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
'''
Main function of overall pretraining and lstm after pretraining
'''
import numpy as np
import scipy.io
import torch
import torch.utils.data
import torch.nn as nn
import argparse
import torch.backends.cudnn as cudnn
import torch.optim as optim
from sklearn.metrics import matthews_corrcoef
import os
from utils import *
from PretrainModel import *
## if pretrainMode is 0, only for +(1) & -(2)
# if pretrainMode is 1, final value of each regression
pretrainMode=0
########################################################################################################################################################
# Hyper train&test parameters
#######################################################################################################################################################
subjid =17
classId = 1
dirFileId=1
hzId=7
device='cuda'
trainingEpoch = 500
totalTraining=50
lowestLoss=100
lowestCC=0
start_epoch = 0
LR=1e-3
batchSize=32
hiddenSize=600
minEpoch=15
best_accX=0
best_accY=0
best_accZ=0
cFile=['JH_LRFB','JH_LRFBUD']
dirFile=['MI','ME','MI_less','ME_less']
hzFile=['no','[0.1 40]','[0.1 1]','[4 7]','[8 15]','[8 30]','[16 30]','[4 40]']
classes = [['Left','Right','Forward','Backward'],['Left','Right','Forward','Backward','Up','Down']]
classNum = len(classes[classId])
traindd='./'+cFile[classId]+'/'+dirFile[dirFileId]+'/train/'+hzFile[hzId]+'/sub'+str(subjid+1)
testdd='./'+cFile[classId]+'/'+dirFile[dirFileId]+'/test/'+hzFile[hzId]+'/sub'+str(subjid+1)
# load data
## the data should contain 3 domains X, Y with label, and Y with velocity
trainData=scipy.io.loadmat(traindd)
testData=scipy.io.loadmat(testdd)
trainX = np.array(trainData['trainX']) # 401 20 128
trainY = np.array(trainData['trainY']) # 300 128
testX = np.array(testData['testX']) # 301 64 32
testY = np.array(testData['testY']) # 300 32
#testLabel=np.array(testData['testLabel']) # 1 32
parser = argparse.ArgumentParser(description='EEG Reaching')
parser.add_argument('--lr',default=0.1, type=float,help='learning rate')
parser.add_argument('--resume','-r',action='store_true',help='resume from checkpoint')
args = parser.parse_args()
## trial in the front
trainX = np.transpose(trainX,(2,1,0)) # 128 20 401
testX = np.transpose(testX,(2,1,0)) # 32 20 401
trainY = np.transpose(trainY,(2,1,0)) # 128 3 301
testY = np.transpose(testY,(2,1,0)) # 32 3 301
#testLabel=np.transpose(testLabel,(1,0)) # 32 1
visualizeX=testX[:,:,:]
visualizeY=testY[:,:,:]
# nd array to torch tensor
trainX=torch.from_numpy(trainX)
testX=torch.from_numpy(testX)
trainY=torch.from_numpy(trainY)
testY=torch.from_numpy(testY)
visualizeX=torch.from_numpy(visualizeX)
visualizeY=torch.from_numpy(visualizeY)
#### pretrain ground truth construction
pretrainGT=pretrainGTConstruction(trainY,pretrainMode)
pretestGT=pretrainGTConstruction(testY,pretrainMode)
pretrainGTX,pretrainGTY,pretrainGTZ=pretrainGT[:,0],pretrainGT[:,1],pretrainGT[:,2]
pretestGTX,pretestGTY,pretestGTZ=pretestGT[:,0],pretestGT[:,1],pretestGT[:,2]
pretrainGTX=torch.from_numpy(pretrainGTX)
pretrainGTY=torch.from_numpy(pretrainGTY)
pretrainGTZ=torch.from_numpy(pretrainGTZ)
pretestGTX=torch.from_numpy(pretestGTX)
pretestGTY=torch.from_numpy(pretestGTY)
pretestGTZ=torch.from_numpy(pretestGTZ)
#######################################################################################################################################################
# encapsulate into a tensordataset
train=torch.utils.data.TensorDataset(trainX,trainY)
test=torch.utils.data.TensorDataset(testX,testY)
pretrainX=torch.utils.data.TensorDataset(trainX,pretrainGTX)
pretrainY=torch.utils.data.TensorDataset(trainX,pretrainGTY)
pretrainZ=torch.utils.data.TensorDataset(trainX,pretrainGTZ)
pretestX=torch.utils.data.TensorDataset(testX,pretestGTX)
pretestY=torch.utils.data.TensorDataset(testX,pretestGTY)
pretestZ=torch.utils.data.TensorDataset(testX,pretestGTZ)
visual=torch.utils.data.TensorDataset(visualizeX,visualizeY)
trainloader=torch.utils.data.DataLoader(train,batch_size=batchSize,shuffle=True)
testloader=torch.utils.data.DataLoader(test,batch_size=batchSize,shuffle=True)
visualoader=torch.utils.data.DataLoader(visual,batch_size=batchSize,shuffle=True)
pretrainloaderX=torch.utils.data.DataLoader(pretrainX,batch_size=batchSize,shuffle=True)
pretrainloaderY=torch.utils.data.DataLoader(pretrainY,batch_size=batchSize,shuffle=True)
pretrainloaderZ=torch.utils.data.DataLoader(pretrainZ,batch_size=batchSize,shuffle=True)
pretestloaderX=torch.utils.data.DataLoader(pretestX,batch_size=batchSize,shuffle=True)
pretestloaderY=torch.utils.data.DataLoader(pretestY,batch_size=batchSize,shuffle=True)
pretestloaderZ=torch.utils.data.DataLoader(pretestZ,batch_size=batchSize,shuffle=True)
def preTrainX(epoch,loader):
print('\nEpoch: %d' %epoch)
net.train()
trainLoss=0
correct=0
total=0
for batchIdx,(inputs,targets) in enumerate(loader):
inputs=inputs[:,np.newaxis,:,:]
inputs,targets=inputs.to(device,dtype=torch.float),targets.to(device,dtype=torch.long)
optimizer.zero_grad()
outputs=net(inputs)
loss=criterion(outputs,targets)
loss.backward()
optimizer.step()
trainLoss+=loss.item()
_,predicted=outputs.max(1)
total+=targets.size(0)
correct+=predicted.eq(targets).sum().item()
def preTestX(epoch,loader,best,ver):
global trainingEpoch
net.eval()
testLoss=0
correct=0
total=0
with torch.no_grad():
for batchIdx,(inputs,targets) in enumerate(loader):
inputs=inputs[:,np.newaxis,:,:]
inputs,targets=inputs.to(device,dtype=torch.float),targets.to(device,dtype=torch.long)
outputs=net(inputs)
loss=criterion(outputs,targets)
testLoss+=loss.item()
_,predicted=outputs.max(1)
total+=targets.size(0)
correct+=predicted.eq(targets).sum().item()
acc=100*correct/total
print(acc)
if acc>best and epoch>minEpoch:
print('Saving...')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('ckptPretrain'):
os.mkdir('ckptPretrain')
torch.save(state,'./ckptPretrain/ckpt'+ver+'_class'+str(classId)+'_subj'+str(subjid)+'_'+hzFile[hzId]+'.t7')
best=acc
return best
net='hi'
for trainingIdx in range(totalTraining):
del net
print(str(trainingIdx)+'th training')
print('==> Building Model...')
net=schirrmeister(2)
net=net.to(device)
if 'cuda'==device:
cudnn.benchmark=True
criterion=nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.0001, momentum=0.9, weight_decay=5e-4)
for epoch in range(start_epoch,start_epoch+trainingEpoch):
preTrainX(epoch,pretrainloaderX)
best_accX=preTestX(epoch,pretestloaderX,best_accX,'X')
print('current best acc for X axis is: ',best_accX)
for trainingIdx in range(totalTraining):
del net
print(str(trainingIdx)+'th training')
print('==> Building Model...')
net=schirrmeister(2)
net=net.to(device)
cudnn.benchmark=True
criterion=nn.CrossEntropyLoss()
optimizer=optim.SGD(net.parameters(),lr=0.0001, momentum=0.9, weight_decay=5e-4)
for epoch in range(start_epoch,start_epoch+trainingEpoch):
preTrainX(epoch,pretrainloaderY)
best_accY=preTestX(epoch,pretestloaderY,best_accY,'Y')
print('current best acc for Y axis is: ',best_accY)
for trainingIdx in range(totalTraining):
del net
print(str(trainingIdx)+'th training')
print('==> Building Model...')
net=schirrmeister(2)
net=net.to(device)
cudnn.benchmark=True
criterion=nn.CrossEntropyLoss()
optimizer=optim.SGD(net.parameters(),lr=0.0001, momentum=0.9, weight_decay=5e-4)
for epoch in range(start_epoch,start_epoch+trainingEpoch):
preTrainX(epoch,pretrainloaderZ)
best_accZ=preTestX(epoch,pretestloaderZ,best_accZ,'Z')
print('current best acc for Z axis is: ', best_accZ)
print('best acc for X is : ',best_accX)
print('best acc for Y is : ',best_accY)
print('best acc for Z is : ',best_accZ)