-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualization.py
299 lines (263 loc) · 11.7 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
'''
Main function of overall pretraining and lstm after pretraining
'''
import numpy as np
import scipy.io
import torch
import torch.utils.data
import torch.nn as nn
import argparse
import torch.backends.cudnn as cudnn
import torch.optim as optim
from sklearn.metrics import matthews_corrcoef
from scipy import integrate
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
import os
from functools import partial
from operator import is_not
from utils import *
from PretrainModel import *
from MainModel import *
## if pretrainMode is 0, only for +(1) & -(2)
# if pretrainMode is 1, final value of each regression
pretrainMode=0
########################################################################################################################################################
# Hyper train&test parameters
#######################################################################################################################################################
subjid = 10
classId = 1
dirFileId=0
hzId=2
trainingEpoch = 150
totalTraining=20
lowestLoss=100
lowestCC=0
start_epoch = 0
LR=1e-3
batchSize=32
hiddenSize=600
minEpoch=15
best_accX=0
best_accY=0
best_accZ=0
device='cuda'
cFile=['JH_LRFB','JH_LRFBUD']
dirFile=['MI','ME','MI_less','ME_less']
hzFile=['no','[0.1 40]','[0.1 1]','[4 7]','[8 15]','[8 30]','[16 30]','[4 40]']
classes = [['Left','Right','Forward','Backward'],['Left','Right','Forward','Backward','Up','Down']]
classNum = len(classes[classId])
traindd='./'+cFile[classId]+'/'+dirFile[dirFileId]+'/train/'+hzFile[hzId]+'/sub'+str(subjid+1)
testdd='./'+cFile[classId]+'/'+dirFile[dirFileId]+'/test/'+hzFile[hzId]+'/sub'+str(subjid+1)
# load data
## the data should contain 3 domains X, Y with label, and Y with velocity
trainData=scipy.io.loadmat(traindd)
testData=scipy.io.loadmat(testdd)
trainX = np.array(trainData['trainX']) # 401 20 128
trainY = np.array(trainData['trainY']) # 300 128
testX = np.array(testData['testX']) # 301 64 32
testY = np.array(testData['testY']) # 300 32
#testLabel=np.array(testData['testLabel']) # 1 32
parser = argparse.ArgumentParser(description='EEG Reaching')
parser.add_argument('--lr',default=0.1, type=float,help='learning rate')
parser.add_argument('--resume','-r',action='store_true',help='resume from checkpoint')
args = parser.parse_args()
## trial in the front
trainX = np.transpose(trainX,(2,1,0)) # 128 20 401
testX = np.transpose(testX,(2,1,0)) # 32 20 401
trainY = np.transpose(trainY,(2,1,0)) # 128 3 301
testY = np.transpose(testY,(2,1,0)) # 32 3 301
#testLabel=np.transpose(testLabel,(1,0)) # 32 1
visualizeX=testX[:,:,:]
visualizeY=testY[:,:,:]
# nd array to torch tensor
trainX=torch.from_numpy(trainX)
testX=torch.from_numpy(testX)
trainY=torch.from_numpy(trainY)
testY=torch.from_numpy(testY)
visualizeX=torch.from_numpy(visualizeX)
visualizeY=torch.from_numpy(visualizeY)
#### pretrain ground truth construction
pretrainGT=pretrainGTConstruction(trainY,pretrainMode)
pretestGT=pretrainGTConstruction(testY,pretrainMode)
pretrainGTX,pretrainGTY,pretrainGTZ=pretrainGT[:,0],pretrainGT[:,1],pretrainGT[:,2]
pretestGTX,pretestGTY,pretestGTZ=pretestGT[:,0],pretestGT[:,1],pretestGT[:,2]
pretrainGTX=torch.from_numpy(pretrainGTX)
pretrainGTY=torch.from_numpy(pretrainGTY)
pretrainGTZ=torch.from_numpy(pretrainGTZ)
pretestGTX=torch.from_numpy(pretestGTX)
pretestGTY=torch.from_numpy(pretestGTY)
pretestGTZ=torch.from_numpy(pretestGTZ)
#######################################################################################################################################################
# encapsulate into a tensordataset
train=torch.utils.data.TensorDataset(trainX,trainY)
test=torch.utils.data.TensorDataset(testX,testY)
pretrainX=torch.utils.data.TensorDataset(trainX,pretrainGTX)
pretrainY=torch.utils.data.TensorDataset(trainX,pretrainGTY)
pretrainZ=torch.utils.data.TensorDataset(trainX,pretrainGTZ)
pretestX=torch.utils.data.TensorDataset(testX,pretestGTX)
pretestY=torch.utils.data.TensorDataset(testX,pretestGTY)
pretestZ=torch.utils.data.TensorDataset(testX,pretestGTZ)
visual=torch.utils.data.TensorDataset(visualizeX,visualizeY)
trainloader=torch.utils.data.DataLoader(train,batch_size=batchSize,shuffle=True)
testloader=torch.utils.data.DataLoader(test,batch_size=batchSize,shuffle=True)
visualoader=torch.utils.data.DataLoader(visual,batch_size=visualizeX.size(0),shuffle=True)
pretrainloaderX=torch.utils.data.DataLoader(pretrainX,batch_size=batchSize,shuffle=True)
pretrainloaderY=torch.utils.data.DataLoader(pretrainY,batch_size=batchSize,shuffle=True)
pretrainloaderZ=torch.utils.data.DataLoader(pretrainZ,batch_size=batchSize,shuffle=True)
pretestloaderX=torch.utils.data.DataLoader(pretestX,batch_size=batchSize,shuffle=True)
pretestloaderY=torch.utils.data.DataLoader(pretestY,batch_size=batchSize,shuffle=True)
pretestloaderZ=torch.utils.data.DataLoader(pretestZ,batch_size=batchSize,shuffle=True)
###################################################################################################################################################
# load pretrained model
modelX=schirrmeister(2)
modelY=schirrmeister(2)
modelZ=schirrmeister(2)
checkpointX=torch.load('./ckptPretrain/ckptX'+'_class'+str(classId)+'_subj'+str(subjid)+'_'+hzFile[hzId]+'.t7')
checkpointY=torch.load('./ckptPretrain/ckptY'+'_class'+str(classId)+'_subj'+str(subjid)+'_'+hzFile[hzId]+'.t7')
checkpointZ=torch.load('./ckptPretrain/ckptZ'+'_class'+str(classId)+'_subj'+str(subjid)+'_'+hzFile[hzId]+'.t7')
modelX.load_state_dict(checkpointX['net'])
modelY.load_state_dict(checkpointY['net'])
modelZ.load_state_dict(checkpointZ['net'])
modelX=nn.Sequential(*list(modelX.children())[:-1]).cuda()
modelY=nn.Sequential(*list(modelY.children())[:-1]).cuda()
modelZ=nn.Sequential(*list(modelZ.children())[:-1]).cuda()
#### get the last
# getting the components of trainset
def train(epoch):
print('\nEpoch: %d' %epoch)
modelX.eval()
modelY.eval()
modelZ.eval()
rnn.train()
trainLoss=0
for batch_idx,(inputs,targets) in enumerate(trainloader):
inputs=inputs[:,np.newaxis,:,:]
inputs,targets=inputs.to(device,dtype=torch.float),targets.to(device,dtype=torch.float)
aftPretrainedX=modelX(inputs)
aftPretrainedY=modelY(inputs)
aftPretrainedZ=modelZ(inputs)
trainedInputs=torch.squeeze(torch.cat([aftPretrainedX,aftPretrainedY,aftPretrainedZ],2))
trainedInputs=trainedInputs.permute(0,2,1)
optimizer.zero_grad()
outputs=rnn(trainedInputs)
loss=lossFunc(outputs,targets)
loss.backward()
optimizer.step()
trainLoss+=loss.item()
def test(epoch):
global lowestLoss,trainingEpoch
modelX.eval()
modelY.eval()
modelZ.eval()
rnn.eval()
testLoss=0
with torch.no_grad():
for batchIdx, (inputs,targets) in enumerate(testloader):
inputs=inputs[:,np.newaxis,:,:]
inputs,targets=inputs.to(device,dtype=torch.float),targets.to(device,dtype=torch.float)
aftPretestX=modelX(inputs)
aftPretestY=modelY(inputs)
aftPretestZ=modelZ(inputs)
trainedInputsTest=torch.squeeze(torch.cat([aftPretestX,aftPretestY,aftPretestZ],2))
trainedInputsTest=trainedInputsTest.permute(0,2,1)
outputs=rnn(trainedInputsTest)
loss=lossFunc(outputs,targets)
testLoss+=loss.item()
print(testLoss)
if lowestLoss>testLoss and epoch>minEpoch:
print('Saving...')
state={
'net':rnn.state_dict(),
'loss':testLoss,
'epoch':epoch,
}
if not os.path.isdir('ckptMain'):
os.mkdir('ckptMain')
torch.save(state,'./ckptMain/ckpt_class'+str(classId)+'_subj'+str(subjid)+'_'+hzFile[hzId]+'.t7')
lowestLoss=testLoss
return testLoss
def visualize():
assert os.path.isdir('ckptMain'),'Error: no checkpoint directory found'
checkpoint=torch.load('./ckptMain/ckpt_class'+str(classId)+'_subj'+str(subjid)+'_'+hzFile[hzId]+'.t7')
rnn.load_state_dict(checkpoint['net'])
modelX.eval()
modelY.eval()
modelZ.eval()
with torch.no_grad():
for batchIdx,(inputs,targets) in enumerate(visualoader):
inputs=inputs[:,np.newaxis,:,:]
inputs,targets=inputs.to(device,dtype=torch.float),targets.to(device,dtype=torch.float)
aftVisX=modelX(inputs)
aftVisY=modelY(inputs)
aftVisZ=modelZ(inputs)
trainedVis=torch.squeeze(torch.cat([aftVisX,aftVisY,aftVisZ],2))
trainedVis=trainedVis.permute(0,2,1)
outputs=rnn(trainedVis) # 48 3 401
visList=outputs.view(outputs.size(1),-1) # 3 9600
xPred=outputs[:,0,:]
yPred=outputs[:,1,:]
zPred=outputs[:,2,:]
xTar = targets[:, 0, :]
yTar = targets[:, 1, :]
zTar = targets[:, 2, :]
xR=[];yR=[];zR=[]
for tIdx,xtar in enumerate(xTar):
xR=np.append(xR,np.corrcoef(xtar,xPred[tIdx,:])[0,1])
yR=np.append(yR,np.corrcoef(yTar[tIdx,:],yPred[tIdx,:])[0,1])
zR=np.append(zR,np.corrcoef(zTar[tIdx,:],zPred[tIdx,:])[0,1])
steps = np.asarray(range(visList.size(1)))
xPred=visList[0,:]
yPred=visList[1,:]
zPred=visList[2,:]
plt.figure(1)
plt.plot(steps, xTar.data.cpu().numpy().flatten(), 'r-')
plt.plot(steps, xPred.data.cpu().numpy().flatten(), 'b-')
plt.figure(2)
plt.plot(steps, yTar.data.cpu().numpy().flatten(), 'r-')
plt.plot(steps, yPred.data.cpu().numpy().flatten(), 'b-')
plt.figure(3)
plt.plot(steps, zTar.data.cpu().numpy().flatten(), 'r-')
plt.plot(steps, zPred.data.cpu().numpy().flatten(), 'b-')
print('Average R-Value of X for each Trials: ',np.average(xR))
print('Average R-Value of Y for each Trials: ',np.average(yR))
print('Average R-Value of Z for each Trials: ',np.average(zR))
plt.show()
return outputs,targets
#return targets.data.cpu().numpy()
def posVisualization(predVel):
predVel=predVel.data.cpu().numpy()
steps=np.asarray(range(len(predVel[0][0])))
ax=plt.figure().gca(projection='3d')
gtArray=scipy.io.loadmat('./gtArray.mat')
posArray=np.array(gtArray['gtArray'])
for cIdx in range(len(posArray)):
ax.plot(posArray[cIdx][0],posArray[cIdx][1],posArray[cIdx][2],'blue')
for trialIdx in range(len(predVel)):
if trialIdx==0:
tarIntegX = integrate.cumtrapz(predVel[trialIdx][0], steps)
tarIntegY = integrate.cumtrapz(predVel[trialIdx][1], steps)
tarIntegZ = integrate.cumtrapz(predVel[trialIdx][2], steps)
tarIntegX=tarIntegX[np.newaxis,:]
tarIntegY=tarIntegY[np.newaxis,:]
tarIntegZ=tarIntegZ[np.newaxis,:]
else:
tmpX=integrate.cumtrapz(predVel[trialIdx][0],steps)
tmpY=integrate.cumtrapz(predVel[trialIdx][1],steps)
tmpZ=integrate.cumtrapz(predVel[trialIdx][2],steps)
tmpX=tmpX[np.newaxis,:]
tmpY=tmpY[np.newaxis,:]
tmpZ=tmpZ[np.newaxis,:]
tarIntegX=np.append(tarIntegX,tmpX,axis=0)
tarIntegY=np.append(tarIntegY,tmpY,axis=0)
tarIntegZ=np.append(tarIntegZ,tmpZ,axis=0)
ax.plot(tarIntegX[trialIdx,:],tarIntegY[trialIdx,:],tarIntegZ[trialIdx,:],'red')
plt.show()
## Visualizing only
rnn=lstmV2(301,600)
rnn=rnn.to(device)
predVelo,target=visualize()
target=target.data.cpu().numpy()
predVelo=predVelo.data.cpu().numpy()
scipy.io.savemat('./Visualization/Pred_sub'+str(subjid)+'_hz'+str(hzId)+'.mat',{'predVelo':predVelo})
scipy.io.savemat('./Visualization/Target_sub'+str(subjid)+'_hz'+str(hzId)+'.mat',{'targetVelo':target})