Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

training is ok ,deploy test is ok ,but not get good result . #19

Open
LEXUSAPI opened this issue Jun 5, 2019 · 3 comments
Open

training is ok ,deploy test is ok ,but not get good result . #19

LEXUSAPI opened this issue Jun 5, 2019 · 3 comments

Comments

@LEXUSAPI
Copy link

LEXUSAPI commented Jun 5, 2019

hello ! i am use mobilenet_yolov3_lite_solver.prototxt ,mobilenet_yolov3_lite_train.prototxt and mobilenet_yolov3_lite_test.prototxt to get the caffe_model_file.

train_net: "models/yolov3/mobilenet_yolov3_lite_train.prototxt"
test_net: "models/yolov3/mobilenet_yolov3_lite_test.prototxt"
test_iter: 4952
test_interval: 1000
base_lr: 0.0005
display: 10
max_iter: 120000
lr_policy: "multistep"
gamma: 0.5
weight_decay: 0.00005
snapshot: 1000
snapshot_prefix: "models/yolov3/mobilenet_yolov3_lite_deploy"
solver_mode: GPU
debug_info: false
snapshot_after_train: true
test_initialization: false
average_loss: 10
stepvalue: 20000
stepvalue: 40000
stepvalue: 60000
iter_size: 4
type: "RMSProp"
eval_type: "detection"
ap_version: "11point"
show_per_class_result: true

name: "MobileNet-YOLO"
layer {
name: "data"
type: "AnnotatedData"
top: "data"
top: "label"
include {
phase: TRAIN
}

transform_param {
scale: 0.007843
mirror: true
mean_value: 127.5
mean_value: 127.5
mean_value: 127.5

resize_param {
  prob: 0.1
  resize_mode: WARP
  height: 608
  width: 608
  interp_mode: LINEAR
  interp_mode: AREA
  interp_mode: LANCZOS4
}
resize_param {
  prob: 0.1
  resize_mode: WARP
  height: 416
  width: 416
  interp_mode: LINEAR
  interp_mode: AREA
  interp_mode: LANCZOS4
}
resize_param {
  prob: 0.1
  resize_mode: WARP
  height: 320
  width: 320
  interp_mode: LINEAR
  interp_mode: AREA
  interp_mode: LANCZOS4
}
resize_param {
  prob: 0.1
  resize_mode: WARP
  height: 352
  width: 352
  interp_mode: LINEAR
  interp_mode: AREA
  interp_mode: LANCZOS4
}
resize_param {
  prob: 0.1
  resize_mode: WARP
  height: 384
  width: 384
  interp_mode: LINEAR
  interp_mode: AREA
  interp_mode: LANCZOS4
}
resize_param {
  prob: 0.1
  resize_mode: WARP
  height: 448
  width: 448
  interp_mode: LINEAR
  interp_mode: AREA
  interp_mode: LANCZOS4
}
resize_param {
  prob: 0.1
  resize_mode: WARP
  height: 480
  width: 480
  interp_mode: LINEAR
  interp_mode: AREA
  interp_mode: LANCZOS4
}
resize_param {
  prob: 0.1
  resize_mode: WARP
  height: 512
  width: 512
  interp_mode: LINEAR
  interp_mode: AREA
  interp_mode: LANCZOS4
}
resize_param {
  prob: 0.1
  resize_mode: WARP
  height: 544
  width: 544
  interp_mode: LINEAR
  interp_mode: AREA
  interp_mode: LANCZOS4
}
resize_param {
  prob: 0.1
  resize_mode: WARP
  height: 576
  width: 576
  interp_mode: LINEAR
  interp_mode: AREA
  interp_mode: LANCZOS4
}


emit_constraint {
  emit_type: CENTER
}
distort_param {
  brightness_prob: 0.5
  brightness_delta: 32.0
  contrast_prob: 0.5
  contrast_lower: 0.5
  contrast_upper: 1.5
  hue_prob: 0.5
  hue_delta: 18.0
  saturation_prob: 0.5
  saturation_lower: 0.5
  saturation_upper: 1.5
  random_order_prob: 0.0
}
expand_param {
  prob: 0.5
  max_expand_ratio: 3.0
}

}
data_param {
source: "examples/VOC0712/VOC0712_trainval_lmdb"
batch_size: 6
backend: LMDB
}
annotated_data_param {
yolo_data_type : 1
yolo_data_jitter : 0.3
label_map_file: "data/VOC0712/labelmap_voc.prototxt"
}
}

layer {
name: "conv0"
type: "Convolution"
bottom: "data"
top: "conv0"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv0/bn"
type: "BatchNorm"
bottom: "conv0"
top: "conv0"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv0/scale"
type: "Scale"
bottom: "conv0"
top: "conv0"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv0/relu"
type: "ReLU"
bottom: "conv0"
top: "conv0"
}
layer {
name: "conv1/dw"
type: "DepthwiseConvolution"
bottom: "conv0"
top: "conv1/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
group: 32
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/dw/bn"
type: "BatchNorm"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/dw/scale"
type: "Scale"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/dw/relu"
type: "ReLU"
bottom: "conv1/dw"
top: "conv1/dw"
}
layer {
name: "conv1"
type: "Convolution"
bottom: "conv1/dw"
top: "conv1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/scale"
type: "Scale"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/relu"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv2/dw"
type: "DepthwiseConvolution"
bottom: "conv1"
top: "conv2/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 64
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/dw/bn"
type: "BatchNorm"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/dw/scale"
type: "Scale"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/dw/relu"
type: "ReLU"
bottom: "conv2/dw"
top: "conv2/dw"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "conv2/dw"
top: "conv2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/bn"
type: "BatchNorm"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/scale"
type: "Scale"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/relu"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "conv3/dw"
type: "DepthwiseConvolution"
bottom: "conv2"
top: "conv3/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
group: 128
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/dw/bn"
type: "BatchNorm"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/dw/scale"
type: "Scale"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/dw/relu"
type: "ReLU"
bottom: "conv3/dw"
top: "conv3/dw"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "conv3/dw"
top: "conv3"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/bn"
type: "BatchNorm"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/scale"
type: "Scale"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/relu"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4/dw"
type: "DepthwiseConvolution"
bottom: "conv3"
top: "conv4/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 128
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/dw/bn"
type: "BatchNorm"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/dw/scale"
type: "Scale"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/dw/relu"
type: "ReLU"
bottom: "conv4/dw"
top: "conv4/dw"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv4/dw"
top: "conv4"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/bn"
type: "BatchNorm"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/scale"
type: "Scale"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/relu"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5/dw"
type: "DepthwiseConvolution"
bottom: "conv4"
top: "conv5/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
group: 256
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/dw/bn"
type: "BatchNorm"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/dw/scale"
type: "Scale"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/dw/relu"
type: "ReLU"
bottom: "conv5/dw"
top: "conv5/dw"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv5/dw"
top: "conv5"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/bn"
type: "BatchNorm"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/scale"
type: "Scale"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/relu"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "conv6/dw"
type: "DepthwiseConvolution"
bottom: "conv5"
top: "conv6/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 256
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/dw/bn"
type: "BatchNorm"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/dw/scale"
type: "Scale"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/dw/relu"
type: "ReLU"
bottom: "conv6/dw"
top: "conv6/dw"
}
layer {
name: "conv6"
type: "Convolution"
bottom: "conv6/dw"
top: "conv6"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/bn"
type: "BatchNorm"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/scale"
type: "Scale"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/relu"
type: "ReLU"
bottom: "conv6"
top: "conv6"
}
layer {
name: "conv7/dw"
type: "DepthwiseConvolution"
bottom: "conv6"
top: "conv7/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/dw/bn"
type: "BatchNorm"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/dw/scale"
type: "Scale"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/dw/relu"
type: "ReLU"
bottom: "conv7/dw"
top: "conv7/dw"
}
layer {
name: "conv7"
type: "Convolution"
bottom: "conv7/dw"
top: "conv7"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/bn"
type: "BatchNorm"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/scale"
type: "Scale"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/relu"
type: "ReLU"
bottom: "conv7"
top: "conv7"
}
layer {
name: "conv8/dw"
type: "DepthwiseConvolution"
bottom: "conv7"
top: "conv8/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/dw/bn"
type: "BatchNorm"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/dw/scale"
type: "Scale"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/dw/relu"
type: "ReLU"
bottom: "conv8/dw"
top: "conv8/dw"
}
layer {
name: "conv8"
type: "Convolution"
bottom: "conv8/dw"
top: "conv8"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/bn"
type: "BatchNorm"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/scale"
type: "Scale"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/relu"
type: "ReLU"
bottom: "conv8"
top: "conv8"
}
layer {
name: "conv9/dw"
type: "DepthwiseConvolution"
bottom: "conv8"
top: "conv9/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/dw/bn"
type: "BatchNorm"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/dw/scale"
type: "Scale"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/dw/relu"
type: "ReLU"
bottom: "conv9/dw"
top: "conv9/dw"
}
layer {
name: "conv9"
type: "Convolution"
bottom: "conv9/dw"
top: "conv9"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/bn"
type: "BatchNorm"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/scale"
type: "Scale"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/relu"
type: "ReLU"
bottom: "conv9"
top: "conv9"
}
layer {
name: "conv10/dw"
type: "DepthwiseConvolution"
bottom: "conv9"
top: "conv10/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/dw/bn"
type: "BatchNorm"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/dw/scale"
type: "Scale"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/dw/relu"
type: "ReLU"
bottom: "conv10/dw"
top: "conv10/dw"
}
layer {
name: "conv10"
type: "Convolution"
bottom: "conv10/dw"
top: "conv10"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/bn"
type: "BatchNorm"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/scale"
type: "Scale"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/relu"
type: "ReLU"
bottom: "conv10"
top: "conv10"
}
layer {
name: "conv11/dw"
type: "DepthwiseConvolution"
bottom: "conv10"
top: "conv11/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/dw/bn"
type: "BatchNorm"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/dw/scale"
type: "Scale"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/dw/relu"
type: "ReLU"
bottom: "conv11/dw"
top: "conv11/dw"
}
layer {
name: "conv11"
type: "Convolution"
bottom: "conv11/dw"
top: "conv11"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/bn"
type: "BatchNorm"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/scale"
type: "Scale"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/relu"
type: "ReLU"
bottom: "conv11"
top: "conv11"
}
layer {
name: "conv12/dw"
type: "DepthwiseConvolution"
bottom: "conv11"
top: "conv12/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/dw/bn"
type: "BatchNorm"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/dw/scale"
type: "Scale"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/dw/relu"
type: "ReLU"
bottom: "conv12/dw"
top: "conv12/dw"
}
layer {
name: "conv12"
type: "Convolution"
bottom: "conv12/dw"
top: "conv12"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/bn"
type: "BatchNorm"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/scale"
type: "Scale"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/relu"
type: "ReLU"
bottom: "conv12"
top: "conv12"
}
layer {
name: "conv13/dw"
type: "DepthwiseConvolution"
bottom: "conv12"
top: "conv13/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
group: 1024
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/dw/bn"
type: "BatchNorm"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/dw/scale"
type: "Scale"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/dw/relu"
type: "ReLU"
bottom: "conv13/dw"
top: "conv13/dw"
}
layer {
name: "conv13"
type: "Convolution"
bottom: "conv13/dw"
top: "conv13"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/bn"
type: "BatchNorm"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/scale"
type: "Scale"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/relu"
type: "ReLU"
bottom: "conv13"
top: "conv13"
}

layer {
name: "conv16/dw"
type: "DepthwiseConvolution"
bottom: "conv13"
top: "conv16/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
group: 1024
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16/dw/bn"
type: "BatchNorm"
bottom: "conv16/dw"
top: "conv16/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv16/dw/scale"
type: "Scale"
bottom: "conv16/dw"
top: "conv16/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16/dw/relu"
type: "ReLU"
bottom: "conv16/dw"
top: "conv16/dw"
}
layer {
name: "conv16"
type: "Convolution"
bottom: "conv16/dw"
top: "conv16"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16/bn"
type: "BatchNorm"
bottom: "conv16"
top: "conv16"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv16/scale"
type: "Scale"
bottom: "conv16"
top: "conv16"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16/relu"
type: "ReLU"
bottom: "conv16"
top: "conv16"
}
layer {
name: "upsample"
type: "Deconvolution"
bottom: "conv16"
top: "upsample"
param { lr_mult: 0 decay_mult: 0 }
convolution_param {
num_output: 512
kernel_size: 4 stride: 2 pad: 1
group: 512
weight_filler: { type: "bilinear" }
bias_term: false
}
}
layer {
name: "conv17/dw"
type: "DepthwiseConvolution"
bottom: "conv11"
top: "conv17/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17/dw/bn"
type: "BatchNorm"
bottom: "conv17/dw"
top: "conv17/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv17/dw/scale"
type: "Scale"
bottom: "conv17/dw"
top: "conv17/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17/dw/relu"
type: "ReLU"
bottom: "conv17/dw"
top: "conv17/dw"
}
layer {
name: "conv17"
type: "Convolution"
bottom: "conv17/dw"
top: "conv17"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17/bn"
type: "BatchNorm"
bottom: "conv17"
top: "conv17"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv17/scale"
type: "Scale"
bottom: "conv17"
top: "conv17"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17/relu"
type: "ReLU"
bottom: "conv17"
top: "conv17"
}
layer {
name: "conv17/sum"
type: "Eltwise"
bottom: "conv17"
bottom: "upsample"
top: "conv17/sum"
}
layer {
name: "conv18/dw"
type: "DepthwiseConvolution"
bottom: "conv17/sum"
top: "conv18/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv18/dw/bn"
type: "BatchNorm"
bottom: "conv18/dw"
top: "conv18/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv18/dw/scale"
type: "Scale"
bottom: "conv18/dw"
top: "conv18/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv18/dw/relu"
type: "ReLU"
bottom: "conv18/dw"
top: "conv18/dw"
}
layer {
name: "conv18"
type: "Convolution"
bottom: "conv18/dw"
top: "conv18"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv18/bn"
type: "BatchNorm"
bottom: "conv18"
top: "conv18"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv18/scale"
type: "Scale"
bottom: "conv18"
top: "conv18"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv18/relu"
type: "ReLU"
bottom: "conv18"
top: "conv18"
}

layer {
name: "conv20"
type: "Convolution"
bottom: "conv16"
top: "conv20"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 75
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
value: 0
}
}
}

layer {
name: "conv21"
type: "Convolution"
bottom: "conv18"
top: "conv21"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 75
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
value: 0
}
}
}

layer {
name: "Yolov3Loss1"
type: "Yolov3"
bottom: "conv20"
bottom: "label"
top: "det_loss1"
loss_weight: 1
yolov3_param {
side: 13
num_class: 20
num: 3
object_scale: 5.0
noobject_scale: 1.0
class_scale: 1.0
coord_scale: 1.0
thresh: 0.6
anchors_scale : 32
use_logic_gradient : false
#10,14, 23,27, 37,58, 81,82, 135,169, 344,319
biases: 10
biases: 14
biases: 23
biases: 27
biases: 37
biases: 58
biases: 81
biases: 82
biases: 135
biases: 169
biases: 344
biases: 319

mask:3
mask:4
mask:5

}
}
layer {
name: "Yolov3Loss2"
type: "Yolov3"
bottom: "conv21"
bottom: "label"
top: "det_loss2"
loss_weight: 1
yolov3_param {
side: 26
num_class: 20
num: 3
object_scale: 5.0
noobject_scale: 1.0
class_scale: 1.0
coord_scale: 1.0
thresh: 0.6
anchors_scale : 16
use_logic_gradient : false
#10,14, 23,27, 37,58, 81,82, 135,169, 344,319
biases: 10
biases: 14
biases: 23
biases: 27
biases: 37
biases: 58
biases: 81
biases: 82
biases: 135
biases: 169
biases: 344
biases: 319

mask:0
mask:1
mask:2

}
}

name: "MobileNet-YOLO"
layer {
name: "data"
type: "AnnotatedData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.007843
mean_value: 127.5
mean_value: 127.5
mean_value: 127.5
resize_param {
prob: 1.0
resize_mode: WARP
height: 416
width: 416
interp_mode: LINEAR
}
}
data_param {
source: "examples/VOC0712/VOC0712_test_lmdb"
batch_size: 1
backend: LMDB
}
annotated_data_param {
batch_sampler {
}
label_map_file: "data/VOC0712/labelmap_voc.prototxt"
}
}

layer {
name: "conv0"
type: "Convolution"
bottom: "data"
top: "conv0"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv0/bn"
type: "BatchNorm"
bottom: "conv0"
top: "conv0"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv0/scale"
type: "Scale"
bottom: "conv0"
top: "conv0"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv0/relu"
type: "ReLU"
bottom: "conv0"
top: "conv0"
}
layer {
name: "conv1/dw"
type: "DepthwiseConvolution"
bottom: "conv0"
top: "conv1/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
group: 32
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/dw/bn"
type: "BatchNorm"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/dw/scale"
type: "Scale"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/dw/relu"
type: "ReLU"
bottom: "conv1/dw"
top: "conv1/dw"
}
layer {
name: "conv1"
type: "Convolution"
bottom: "conv1/dw"
top: "conv1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/scale"
type: "Scale"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/relu"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv2/dw"
type: "DepthwiseConvolution"
bottom: "conv1"
top: "conv2/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 64
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/dw/bn"
type: "BatchNorm"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/dw/scale"
type: "Scale"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/dw/relu"
type: "ReLU"
bottom: "conv2/dw"
top: "conv2/dw"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "conv2/dw"
top: "conv2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/bn"
type: "BatchNorm"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/scale"
type: "Scale"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/relu"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "conv3/dw"
type: "DepthwiseConvolution"
bottom: "conv2"
top: "conv3/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
group: 128
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/dw/bn"
type: "BatchNorm"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/dw/scale"
type: "Scale"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/dw/relu"
type: "ReLU"
bottom: "conv3/dw"
top: "conv3/dw"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "conv3/dw"
top: "conv3"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/bn"
type: "BatchNorm"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/scale"
type: "Scale"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/relu"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4/dw"
type: "DepthwiseConvolution"
bottom: "conv3"
top: "conv4/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 128
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/dw/bn"
type: "BatchNorm"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/dw/scale"
type: "Scale"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/dw/relu"
type: "ReLU"
bottom: "conv4/dw"
top: "conv4/dw"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv4/dw"
top: "conv4"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/bn"
type: "BatchNorm"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/scale"
type: "Scale"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/relu"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5/dw"
type: "DepthwiseConvolution"
bottom: "conv4"
top: "conv5/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
group: 256
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/dw/bn"
type: "BatchNorm"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/dw/scale"
type: "Scale"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/dw/relu"
type: "ReLU"
bottom: "conv5/dw"
top: "conv5/dw"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv5/dw"
top: "conv5"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/bn"
type: "BatchNorm"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/scale"
type: "Scale"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/relu"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "conv6/dw"
type: "DepthwiseConvolution"
bottom: "conv5"
top: "conv6/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 256
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/dw/bn"
type: "BatchNorm"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/dw/scale"
type: "Scale"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/dw/relu"
type: "ReLU"
bottom: "conv6/dw"
top: "conv6/dw"
}
layer {
name: "conv6"
type: "Convolution"
bottom: "conv6/dw"
top: "conv6"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/bn"
type: "BatchNorm"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/scale"
type: "Scale"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/relu"
type: "ReLU"
bottom: "conv6"
top: "conv6"
}
layer {
name: "conv7/dw"
type: "DepthwiseConvolution"
bottom: "conv6"
top: "conv7/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/dw/bn"
type: "BatchNorm"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/dw/scale"
type: "Scale"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/dw/relu"
type: "ReLU"
bottom: "conv7/dw"
top: "conv7/dw"
}
layer {
name: "conv7"
type: "Convolution"
bottom: "conv7/dw"
top: "conv7"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/bn"
type: "BatchNorm"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/scale"
type: "Scale"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/relu"
type: "ReLU"
bottom: "conv7"
top: "conv7"
}
layer {
name: "conv8/dw"
type: "DepthwiseConvolution"
bottom: "conv7"
top: "conv8/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/dw/bn"
type: "BatchNorm"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/dw/scale"
type: "Scale"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/dw/relu"
type: "ReLU"
bottom: "conv8/dw"
top: "conv8/dw"
}
layer {
name: "conv8"
type: "Convolution"
bottom: "conv8/dw"
top: "conv8"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/bn"
type: "BatchNorm"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/scale"
type: "Scale"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/relu"
type: "ReLU"
bottom: "conv8"
top: "conv8"
}
layer {
name: "conv9/dw"
type: "DepthwiseConvolution"
bottom: "conv8"
top: "conv9/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/dw/bn"
type: "BatchNorm"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/dw/scale"
type: "Scale"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/dw/relu"
type: "ReLU"
bottom: "conv9/dw"
top: "conv9/dw"
}
layer {
name: "conv9"
type: "Convolution"
bottom: "conv9/dw"
top: "conv9"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/bn"
type: "BatchNorm"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/scale"
type: "Scale"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/relu"
type: "ReLU"
bottom: "conv9"
top: "conv9"
}
layer {
name: "conv10/dw"
type: "DepthwiseConvolution"
bottom: "conv9"
top: "conv10/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/dw/bn"
type: "BatchNorm"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/dw/scale"
type: "Scale"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/dw/relu"
type: "ReLU"
bottom: "conv10/dw"
top: "conv10/dw"
}
layer {
name: "conv10"
type: "Convolution"
bottom: "conv10/dw"
top: "conv10"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/bn"
type: "BatchNorm"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/scale"
type: "Scale"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/relu"
type: "ReLU"
bottom: "conv10"
top: "conv10"
}
layer {
name: "conv11/dw"
type: "DepthwiseConvolution"
bottom: "conv10"
top: "conv11/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/dw/bn"
type: "BatchNorm"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/dw/scale"
type: "Scale"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/dw/relu"
type: "ReLU"
bottom: "conv11/dw"
top: "conv11/dw"
}
layer {
name: "conv11"
type: "Convolution"
bottom: "conv11/dw"
top: "conv11"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/bn"
type: "BatchNorm"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/scale"
type: "Scale"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/relu"
type: "ReLU"
bottom: "conv11"
top: "conv11"
}
layer {
name: "conv12/dw"
type: "DepthwiseConvolution"
bottom: "conv11"
top: "conv12/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/dw/bn"
type: "BatchNorm"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/dw/scale"
type: "Scale"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/dw/relu"
type: "ReLU"
bottom: "conv12/dw"
top: "conv12/dw"
}
layer {
name: "conv12"
type: "Convolution"
bottom: "conv12/dw"
top: "conv12"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/bn"
type: "BatchNorm"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/scale"
type: "Scale"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/relu"
type: "ReLU"
bottom: "conv12"
top: "conv12"
}
layer {
name: "conv13/dw"
type: "DepthwiseConvolution"
bottom: "conv12"
top: "conv13/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
group: 1024
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/dw/bn"
type: "BatchNorm"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/dw/scale"
type: "Scale"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/dw/relu"
type: "ReLU"
bottom: "conv13/dw"
top: "conv13/dw"
}
layer {
name: "conv13"
type: "Convolution"
bottom: "conv13/dw"
top: "conv13"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/bn"
type: "BatchNorm"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/scale"
type: "Scale"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/relu"
type: "ReLU"
bottom: "conv13"
top: "conv13"
}

layer {
name: "conv16/dw"
type: "DepthwiseConvolution"
bottom: "conv13"
top: "conv16/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
group: 1024
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16/dw/bn"
type: "BatchNorm"
bottom: "conv16/dw"
top: "conv16/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv16/dw/scale"
type: "Scale"
bottom: "conv16/dw"
top: "conv16/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16/dw/relu"
type: "ReLU"
bottom: "conv16/dw"
top: "conv16/dw"
}
layer {
name: "conv16"
type: "Convolution"
bottom: "conv16/dw"
top: "conv16"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16/bn"
type: "BatchNorm"
bottom: "conv16"
top: "conv16"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv16/scale"
type: "Scale"
bottom: "conv16"
top: "conv16"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16/relu"
type: "ReLU"
bottom: "conv16"
top: "conv16"
}
layer {
name: "upsample"
type: "Deconvolution"
bottom: "conv16"
top: "upsample"
param { lr_mult: 0 decay_mult: 0 }
convolution_param {
num_output: 512
kernel_size: 4 stride: 2 pad: 1
group: 512
weight_filler: { type: "bilinear" }
bias_term: false
}
}
layer {
name: "conv17/dw"
type: "DepthwiseConvolution"
bottom: "conv11"
top: "conv17/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17/dw/bn"
type: "BatchNorm"
bottom: "conv17/dw"
top: "conv17/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv17/dw/scale"
type: "Scale"
bottom: "conv17/dw"
top: "conv17/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17/dw/relu"
type: "ReLU"
bottom: "conv17/dw"
top: "conv17/dw"
}
layer {
name: "conv17"
type: "Convolution"
bottom: "conv17/dw"
top: "conv17"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17/bn"
type: "BatchNorm"
bottom: "conv17"
top: "conv17"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv17/scale"
type: "Scale"
bottom: "conv17"
top: "conv17"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17/relu"
type: "ReLU"
bottom: "conv17"
top: "conv17"
}
layer {
name: "conv17/sum"
type: "Eltwise"
bottom: "conv17"
bottom: "upsample"
top: "conv17/sum"
}
layer {
name: "conv18/dw"
type: "DepthwiseConvolution"
bottom: "conv17/sum"
top: "conv18/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv18/dw/bn"
type: "BatchNorm"
bottom: "conv18/dw"
top: "conv18/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv18/dw/scale"
type: "Scale"
bottom: "conv18/dw"
top: "conv18/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv18/dw/relu"
type: "ReLU"
bottom: "conv18/dw"
top: "conv18/dw"
}
layer {
name: "conv18"
type: "Convolution"
bottom: "conv18/dw"
top: "conv18"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv18/bn"
type: "BatchNorm"
bottom: "conv18"
top: "conv18"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv18/scale"
type: "Scale"
bottom: "conv18"
top: "conv18"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv18/relu"
type: "ReLU"
bottom: "conv18"
top: "conv18"
}

layer {
name: "conv20"
type: "Convolution"
bottom: "conv16"
top: "conv20"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 75
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
value: 0
}
}
}

layer {
name: "conv21"
type: "Convolution"
bottom: "conv18"
top: "conv21"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 75
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
value: 0
}
}
}

layer {
name: "detection_out"
type: "Yolov3DetectionOutput"
bottom: "conv20"
bottom: "conv21"
top: "detection_out"
include {
phase: TEST
}
yolov3_detection_output_param {
confidence_threshold: 0.01
nms_threshold: 0.55
num_classes: 20

#10,14,  23,27,  37,58,  81,82,  135,169,  344,319
biases: 10
biases: 14
biases: 23
biases: 27
biases: 37
biases: 58
biases: 81
biases: 82
biases: 135
biases: 169
biases: 344
biases: 319

mask:3
mask:4
mask:5	
mask:0
mask:1
mask:2
anchors_scale:32
anchors_scale:16
mask_group_num:2

}
}
layer {
name: "detection_eval"
type: "DetectionEvaluate"
bottom: "detection_out"
bottom: "label"
top: "detection_eval"
include {
phase: TEST
}
detection_evaluate_param {
num_classes: 21
background_label_id: 0
overlap_threshold: 0.5
evaluate_difficult_gt: false
}
}

here ,i am not using pre-caffemodel to train ,just
argc=3
argv[1]="train"
,argv[2]="--solver=***.prototxt "

when i test the train_model it is runing ok ,but not get good result ,here not merge bn in deploy ,and not change the model weights . it is some error in this way .

following is deploy file ;
name: "MobileNet-YOLO"
layer {
name: "data"
type: "Input"
top: "data"
input_param {
shape {
dim: 1
dim: 3
dim: 320
dim: 320
}
}
}

layer {
name: "conv0"
type: "Convolution"
bottom: "data"
top: "conv0"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv0/bn"
type: "BatchNorm"
bottom: "conv0"
top: "conv0"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv0/scale"
type: "Scale"
bottom: "conv0"
top: "conv0"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv0/relu"
type: "ReLU"
bottom: "conv0"
top: "conv0"
}
layer {
name: "conv1/dw"
type: "DepthwiseConvolution"
bottom: "conv0"
top: "conv1/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
group: 32
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/dw/bn"
type: "BatchNorm"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/dw/scale"
type: "Scale"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/dw/relu"
type: "ReLU"
bottom: "conv1/dw"
top: "conv1/dw"
}
layer {
name: "conv1"
type: "Convolution"
bottom: "conv1/dw"
top: "conv1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/scale"
type: "Scale"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/relu"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv2/dw"
type: "DepthwiseConvolution"
bottom: "conv1"
top: "conv2/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 64
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/dw/bn"
type: "BatchNorm"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/dw/scale"
type: "Scale"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/dw/relu"
type: "ReLU"
bottom: "conv2/dw"
top: "conv2/dw"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "conv2/dw"
top: "conv2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/bn"
type: "BatchNorm"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/scale"
type: "Scale"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/relu"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "conv3/dw"
type: "DepthwiseConvolution"
bottom: "conv2"
top: "conv3/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
group: 128
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/dw/bn"
type: "BatchNorm"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/dw/scale"
type: "Scale"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/dw/relu"
type: "ReLU"
bottom: "conv3/dw"
top: "conv3/dw"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "conv3/dw"
top: "conv3"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/bn"
type: "BatchNorm"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/scale"
type: "Scale"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/relu"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4/dw"
type: "DepthwiseConvolution"
bottom: "conv3"
top: "conv4/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 128
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/dw/bn"
type: "BatchNorm"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/dw/scale"
type: "Scale"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/dw/relu"
type: "ReLU"
bottom: "conv4/dw"
top: "conv4/dw"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv4/dw"
top: "conv4"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/bn"
type: "BatchNorm"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/scale"
type: "Scale"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/relu"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5/dw"
type: "DepthwiseConvolution"
bottom: "conv4"
top: "conv5/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
group: 256
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/dw/bn"
type: "BatchNorm"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/dw/scale"
type: "Scale"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/dw/relu"
type: "ReLU"
bottom: "conv5/dw"
top: "conv5/dw"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv5/dw"
top: "conv5"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/bn"
type: "BatchNorm"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/scale"
type: "Scale"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/relu"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "conv6/dw"
type: "DepthwiseConvolution"
bottom: "conv5"
top: "conv6/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 256
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/dw/bn"
type: "BatchNorm"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/dw/scale"
type: "Scale"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/dw/relu"
type: "ReLU"
bottom: "conv6/dw"
top: "conv6/dw"
}
layer {
name: "conv6"
type: "Convolution"
bottom: "conv6/dw"
top: "conv6"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/bn"
type: "BatchNorm"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/scale"
type: "Scale"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/relu"
type: "ReLU"
bottom: "conv6"
top: "conv6"
}
layer {
name: "conv7/dw"
type: "DepthwiseConvolution"
bottom: "conv6"
top: "conv7/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/dw/bn"
type: "BatchNorm"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/dw/scale"
type: "Scale"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/dw/relu"
type: "ReLU"
bottom: "conv7/dw"
top: "conv7/dw"
}
layer {
name: "conv7"
type: "Convolution"
bottom: "conv7/dw"
top: "conv7"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/bn"
type: "BatchNorm"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/scale"
type: "Scale"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/relu"
type: "ReLU"
bottom: "conv7"
top: "conv7"
}
layer {
name: "conv8/dw"
type: "DepthwiseConvolution"
bottom: "conv7"
top: "conv8/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/dw/bn"
type: "BatchNorm"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/dw/scale"
type: "Scale"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/dw/relu"
type: "ReLU"
bottom: "conv8/dw"
top: "conv8/dw"
}
layer {
name: "conv8"
type: "Convolution"
bottom: "conv8/dw"
top: "conv8"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/bn"
type: "BatchNorm"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/scale"
type: "Scale"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/relu"
type: "ReLU"
bottom: "conv8"
top: "conv8"
}
layer {
name: "conv9/dw"
type: "DepthwiseConvolution"
bottom: "conv8"
top: "conv9/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/dw/bn"
type: "BatchNorm"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/dw/scale"
type: "Scale"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/dw/relu"
type: "ReLU"
bottom: "conv9/dw"
top: "conv9/dw"
}
layer {
name: "conv9"
type: "Convolution"
bottom: "conv9/dw"
top: "conv9"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/bn"
type: "BatchNorm"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/scale"
type: "Scale"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/relu"
type: "ReLU"
bottom: "conv9"
top: "conv9"
}
layer {
name: "conv10/dw"
type: "DepthwiseConvolution"
bottom: "conv9"
top: "conv10/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/dw/bn"
type: "BatchNorm"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/dw/scale"
type: "Scale"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/dw/relu"
type: "ReLU"
bottom: "conv10/dw"
top: "conv10/dw"
}
layer {
name: "conv10"
type: "Convolution"
bottom: "conv10/dw"
top: "conv10"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/bn"
type: "BatchNorm"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/scale"
type: "Scale"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/relu"
type: "ReLU"
bottom: "conv10"
top: "conv10"
}
layer {
name: "conv11/dw"
type: "DepthwiseConvolution"
bottom: "conv10"
top: "conv11/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/dw/bn"
type: "BatchNorm"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/dw/scale"
type: "Scale"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/dw/relu"
type: "ReLU"
bottom: "conv11/dw"
top: "conv11/dw"
}
layer {
name: "conv11"
type: "Convolution"
bottom: "conv11/dw"
top: "conv11"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/bn"
type: "BatchNorm"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/scale"
type: "Scale"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/relu"
type: "ReLU"
bottom: "conv11"
top: "conv11"
}
layer {
name: "conv12/dw"
type: "DepthwiseConvolution"
bottom: "conv11"
top: "conv12/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/dw/bn"
type: "BatchNorm"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/dw/scale"
type: "Scale"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/dw/relu"
type: "ReLU"
bottom: "conv12/dw"
top: "conv12/dw"
}
layer {
name: "conv12"
type: "Convolution"
bottom: "conv12/dw"
top: "conv12"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/bn"
type: "BatchNorm"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/scale"
type: "Scale"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/relu"
type: "ReLU"
bottom: "conv12"
top: "conv12"
}
layer {
name: "conv13/dw"
type: "DepthwiseConvolution"
bottom: "conv12"
top: "conv13/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
group: 1024
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/dw/bn"
type: "BatchNorm"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/dw/scale"
type: "Scale"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/dw/relu"
type: "ReLU"
bottom: "conv13/dw"
top: "conv13/dw"
}
layer {
name: "conv13"
type: "Convolution"
bottom: "conv13/dw"
top: "conv13"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/bn"
type: "BatchNorm"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/scale"
type: "Scale"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/relu"
type: "ReLU"
bottom: "conv13"
top: "conv13"
}

layer {
name: "conv16/dw"
type: "DepthwiseConvolution"
bottom: "conv13"
top: "conv16/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
group: 1024
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16/dw/bn"
type: "BatchNorm"
bottom: "conv16/dw"
top: "conv16/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv16/dw/scale"
type: "Scale"
bottom: "conv16/dw"
top: "conv16/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16/dw/relu"
type: "ReLU"
bottom: "conv16/dw"
top: "conv16/dw"
}
layer {
name: "conv16"
type: "Convolution"
bottom: "conv16/dw"
top: "conv16"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16/bn"
type: "BatchNorm"
bottom: "conv16"
top: "conv16"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv16/scale"
type: "Scale"
bottom: "conv16"
top: "conv16"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16/relu"
type: "ReLU"
bottom: "conv16"
top: "conv16"
}
layer {
name: "upsample"
type: "Deconvolution"
bottom: "conv16"
top: "upsample"
param { lr_mult: 0 decay_mult: 0 }
convolution_param {
num_output: 512
kernel_size: 4 stride: 2 pad: 1
group: 512
weight_filler: { type: "bilinear" }
bias_term: false
}
}
layer {
name: "conv17/dw"
type: "DepthwiseConvolution"
bottom: "conv11"
top: "conv17/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17/dw/bn"
type: "BatchNorm"
bottom: "conv17/dw"
top: "conv17/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv17/dw/scale"
type: "Scale"
bottom: "conv17/dw"
top: "conv17/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17/dw/relu"
type: "ReLU"
bottom: "conv17/dw"
top: "conv17/dw"
}
layer {
name: "conv17"
type: "Convolution"
bottom: "conv17/dw"
top: "conv17"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17/bn"
type: "BatchNorm"
bottom: "conv17"
top: "conv17"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv17/scale"
type: "Scale"
bottom: "conv17"
top: "conv17"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17/relu"
type: "ReLU"
bottom: "conv17"
top: "conv17"
}
layer {
name: "conv17/sum"
type: "Eltwise"
bottom: "conv17"
bottom: "upsample"
top: "conv17/sum"
}
layer {
name: "conv18/dw"
type: "DepthwiseConvolution"
bottom: "conv17/sum"
top: "conv18/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv18/dw/bn"
type: "BatchNorm"
bottom: "conv18/dw"
top: "conv18/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv18/dw/scale"
type: "Scale"
bottom: "conv18/dw"
top: "conv18/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv18/dw/relu"
type: "ReLU"
bottom: "conv18/dw"
top: "conv18/dw"
}
layer {
name: "conv18"
type: "Convolution"
bottom: "conv18/dw"
top: "conv18"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv18/bn"
type: "BatchNorm"
bottom: "conv18"
top: "conv18"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv18/scale"
type: "Scale"
bottom: "conv18"
top: "conv18"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv18/relu"
type: "ReLU"
bottom: "conv18"
top: "conv18"
}

layer {
name: "conv20"
type: "Convolution"
bottom: "conv16"
top: "conv20"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 75
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
value: 0
}
}
}

layer {
name: "conv21"
type: "Convolution"
bottom: "conv18"
top: "conv21"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 75
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
value: 0
}
}
}

layer {
name: "detection_out"
type: "Yolov3DetectionOutput"
bottom: "conv20"
bottom: "conv21"
top: "detection_out"
include {
phase: TEST
}
yolov3_detection_output_param {
confidence_threshold: 0.01
nms_threshold: 0.45
num_classes: 20

#10,14,  23,27,  37,58,  81,82,  135,169,  344,319
biases: 10
biases: 14
biases: 23
biases: 27
biases: 37
biases: 58
biases: 81
biases: 82
biases: 135
biases: 169
biases: 344
biases: 319

mask:3
mask:4
mask:5	
mask:0
mask:1
mask:2
anchors_scale:32
anchors_scale:16
mask_group_num:2

}
}

thankes !!

@LEXUSAPI
Copy link
Author

LEXUSAPI commented Jun 5, 2019

I0605 19:18:20.943547 3300 solver.cpp:273] Train net output #1: det_loss2 = 0.000832803 (* 1 = 0.000832803 loss)
I0605 19:18:20.944080 3300 sgd_solver.cpp:121] Iteration 12460, lr = 0.0005
I0605 19:18:22.859643 3300 yolov3_layer.cpp:350] avg_noobj: 0.00265248 avg_obj: 0.0310271 avg_iou: 0.645616 avg_cat: 0.182219 recall: 0.808538 recall75: 0.308882 count: 12
I0605 19:18:22.899511 3300 yolov3_layer.cpp:350] avg_noobj: 0.000263958 avg_obj: 0.00243713 avg_iou: 0.572827 avg_cat: 0.24511 recall: 0.678571 recall75: 0.160714 count: 3
I0605 19:18:26.603961 3300 yolov3_layer.cpp:350] avg_noobj: 0.00316648 avg_obj: 0.038487 avg_iou: 0.654488 avg_cat: 0.156267 recall: 0.882007 recall75: 0.235718 count: 11
I0605 19:18:26.643882 3300 yolov3_layer.cpp:350] avg_noobj: 0.000323673 avg_obj: 0.00709611 avg_iou: 0.604563 avg_cat: 0.248297 recall: 0.801073 recall75: 0.0942551 count: 7
I0605 19:18:31.597422 3300 yolov3_layer.cpp:350] avg_noobj: 0.0026287 avg_obj: 0.0299306 avg_iou: 0.61082 avg_cat: 0.192662 recall: 0.706834 recall75: 0.222176 count: 12
I0605 19:18:31.653295 3300 yolov3_layer.cpp:350] avg_noobj: 0.000298749 avg_obj: 0.00397734 avg_iou: 0.515808 avg_cat: 0.273514 recall: 0.523367 recall75: 0.0416667 count: 7
I0605 19:18:36.183598 3300 yolov3_layer.cpp:350] avg_noobj: 0.0028444 avg_obj: 0.0347357 avg_iou: 0.623817 avg_cat: 0.186791 recall: 0.835623 recall75: 0.197344 count: 13
I0605 19:18:36.206562 3300 yolov3_layer.cpp:350] avg_noobj: 0.000331346 avg_obj: 0.0167292 avg_iou: 0.509811 avg_cat: 0.24838 recall: 0.432576 recall75: 0.025 count: 7
Could not create logging file: Invalid argument
COULD NOT CREATE A LOGGINGFILE 20190605-191838.11712!I0605 19:18:38.221812 3300 solver.cpp:254] Iteration 12470 (0.578796 iter/s, 17.2773s/10 iters), loss = 8.12812
I0605 19:18:38.223780 3300 solver.cpp:273] Train net output #0: det_loss1 = 4.47542 (* 1 = 4.47542 loss)
I0605 19:18:38.223780 3300 solver.cpp:273] Train net output #1: det_loss2 = 1.50113 (* 1 = 1.50113 loss)
I0605 19:18:38.223780 3300 sgd_solver.cpp:121] Iteration 12470, lr = 0.0005
I0605 19:18:40.587811 3300 yolov3_layer.cpp:350] avg_noobj: 0.00254414 avg_obj: 0.0309991 avg_iou: 0.619606 avg_cat: 0.161684 recall: 0.846208 recall75: 0.170459 count: 9
I0605 19:18:40.604766 3300 yolov3_layer.cpp:350] avg_noobj: 0.000289791 avg_obj: 0.00290392 avg_iou: 0.480005 avg_cat: 0.24822 recall: 0.506173 recall75: 0.095679 count: 9
I0605 19:18:44.863792 3300 yolov3_layer.cpp:350] avg_noobj: 0.00232901 avg_obj: 0.0248103 avg_iou: 0.649525 avg_cat: 0.189379 recall: 0.900835 recall75: 0.252914 count: 9
I0605 19:18:44.876760 3300 yolov3_layer.cpp:350] avg_noobj: 0.000206504 avg_obj: 0.0149982 avg_iou: 0.511707 avg_cat: 0.282013 recall: 0.583333 recall75: 0 count: 2
I0605 19:18:48.945741 3300 yolov3_layer.cpp:350] avg_noobj: 0.00270699 avg_obj: 0.0483267 avg_iou: 0.667386 avg_cat: 0.225893 recall: 0.859401 recall75: 0.285593 count: 10
I0605 19:18:48.969678 3300 yolov3_layer.cpp:350] avg_noobj: 0.000200723 avg_obj: 0.00455505 avg_iou: 0.560183 avg_cat: 0.206003 recall: 0.579861 recall75: 0.0416667 count: 4
I0605 19:18:53.853471 3300 yolov3_layer.cpp:350] avg_noobj: 0.00223947 avg_obj: 0.023926 avg_iou: 0.595783 avg_cat: 0.208393 recall: 0.714516 recall75: 0.148311 count: 14
I0605 19:18:53.891368 3300 yolov3_layer.cpp:350] avg_noobj: 0.000156055 avg_obj: 0.00600492 avg_iou: 0.554579 avg_cat: 0.149696 recall: 0.731481 recall75: 0.111111 count: 7
I0605 19:18:55.819883 3300 solver.cpp:254] Iteration 12480 (0.568315 iter/s, 17.5959s/10 iters), loss = 6.52835
I0605 19:18:55.820880 3300 solver.cpp:273] Train net output #0: det_loss1 = 5.67403 (* 1 = 5.67403 loss)
I0605 19:18:55.820880 3300 solver.cpp:273] Train net output #1: det_loss2 = 0.45078 (* 1 = 0.45078 loss)
I0605 19:18:55.821877 3300 sgd_solver.cpp:121] Iteration 12480, lr = 0.0005
I0605 19:18:58.130084 3300 yolov3_layer.cpp:350] avg_noobj: 0.00329695 avg_obj: 0.051156 avg_iou: 0.62381 avg_cat: 0.21351 recall: 0.798148 recall75: 0.205259 count: 12
I0605 19:18:58.194357 3300 yolov3_layer.cpp:350] avg_noobj: 0.000303462 avg_obj: 0.00781951 avg_iou: 0.516708 avg_cat: 0.266599 recall: 0.578571 recall75: 0.0178571 count: 3
I0605 19:19:02.389202 3300 yolov3_layer.cpp:350] avg_noobj: 0.00302735 avg_obj: 0.0298257 avg_iou: 0.617936 avg_cat: 0.236452 recall: 0.821002 recall75: 0.152967 count: 13
I0605 19:19:02.462007 3300 yolov3_layer.cpp:350] avg_noobj: 0.000219126 avg_obj: 0.003597 avg_iou: 0.511626 avg_cat: 0.217333 recall: 0.611111 recall75: 0 count: 4
I0605 19:19:06.461671 3300 yolov3_layer.cpp:350] avg_noobj: 0.00392475 avg_obj: 0.0540566 avg_iou: 0.626273 avg_cat: 0.23 recall: 0.789026 recall75: 0.197008 count: 12
I0605 19:19:06.475636 3300 yolov3_layer.cpp:350] avg_noobj: 0.000282378 avg_obj: 0.00604608 avg_iou: 0.529508 avg_cat: 0.287539 recall: 0.714225 recall75: 0.0277778 count: 7
I0605 19:19:10.846474 3300 yolov3_layer.cpp:350] avg_noobj: 0.00313368 avg_obj: 0.039936 avg_iou: 0.658179 avg_cat: 0.293206 recall: 0.887963 recall75: 0.308808 count: 11
I0605 19:19:10.884347 3300 yolov3_layer.cpp:350] avg_noobj: 0.000382866 avg_obj: 0.00453615 avg_iou: 0.506867 avg_cat: 0.248793 recall: 0.496074 recall75: 0.0148237 count: 9
I0605 19:19:12.377353 3300 solver.cpp:254] Iteration 12490 (0.604047 iter/s, 16.555s/10 iters), loss = 8.02961
I0605 19:19:12.377353 3300 solver.cpp:273] Train net output #0: det_loss1 = 4.84919 (* 1 = 4.84919 loss)
I0605 19:19:12.377353 3300 solver.cpp:273] Train net output #1: det_loss2 = 1.36246 (* 1 = 1.36246 loss)
I0605 19:19:12.378350 3300 sgd_solver.cpp:121] Iteration 12490, lr = 0.0005
I0605 19:19:14.582921 3300 yolov3_layer.cpp:350] avg_noobj: 0.00333838 avg_obj: 0.036755 avg_iou: 0.651256 avg_cat: 0.256216 recall: 0.89077 recall75: 0.236208 count: 11
I0605 19:19:14.595885 3300 yolov3_layer.cpp:350] avg_noobj: 0.000532896 avg_obj: 0.0108854 avg_iou: 0.519539 avg_cat: 0.2004 recall: 0.595767 recall75: 0 count: 4
I0605 19:19:18.971384 3300 yolov3_layer.cpp:350] avg_noobj: 0.00282901 avg_obj: 0.0556201 avg_iou: 0.636931 avg_cat: 0.200537 recall: 0.837536 recall75: 0.20425 count: 13
I0605 19:19:19.057150 3300 yolov3_layer.cpp:350] avg_noobj: 0.000246464 avg_obj: 0.00441543 avg_iou: 0.581093 avg_cat: 0.242356 recall: 0.811905 recall75: 0.0416667 count: 5
Could not create logging file: Invalid argument
COULD NOT CREATE A LOGGINGFILE 20190605-191922.11712!I0605 19:19:22.776623 3300 yolov3_layer.cpp:350] avg_noobj: 0.0033964 avg_obj: 0.044132 avg_iou: 0.59832 avg_cat: 0.259916 recall: 0.776648 recall75: 0.120015 count: 13
I0605 19:19:22.828485 3300 yolov3_layer.cpp:350] avg_noobj: 0.000378613 avg_obj: 0.00417216 avg_iou: 0.501294 avg_cat: 0.152246 recall: 0.552047 recall75: 0.157407 count: 6
I0605 19:19:27.216162 3300 yolov3_layer.cpp:350] avg_noobj: 0.00311634 avg_obj: 0.0462743 avg_iou: 0.629828 avg_cat: 0.180549 recall: 0.83356 recall75: 0.210415 count: 14
I0605 19:19:27.259021 3300 yolov3_layer.cpp:350] avg_noobj: 0.000310787 avg_obj: 0.00269606 avg_iou: 0.486832 avg_cat: 0.239308 recall: 0.35 recall75: 0.00625 count: 7
I0605 19:19:29.451915 3300 solver.cpp:254] Iteration 12500 (0.585719 iter/s, 17.073s/10 iters), loss = 8.03561
I0605 19:19:29.451915 3300 solver.cpp:273] Train net output #0: det_loss1 = 6.2078 (* 1 = 6.2078 loss)
I0605 19:19:29.452885 3300 solver.cpp:273] Train net output #1: det_loss2 = 1.89563 (* 1 = 1.89563 loss)
I0605 19:19:29.452885 3300 sgd_solver.cpp:121] Iteration 12500, lr = 0.0005
I0605 19:19:31.924057 3300 yolov3_layer.cpp:350] avg_noobj: 0.00276208 avg_obj: 0.0346788 avg_iou: 0.634167 avg_cat: 0.179232 recall: 0.859802 recall75: 0.155379 count: 11
I0605 19:19:31.947994 3300 yolov3_layer.cpp:350] avg_noobj: 0.000226774 avg_obj: 0.00218301 avg_iou: 0.452355 avg_cat: 0.116414 recall: 0.316667 recall75: 0 count: 3
I0605 19:19:36.020443 3300 yolov3_layer.cpp:350] avg_noobj: 0.0028489 avg_obj: 0.0421461 avg_iou: 0.624828 avg_cat: 0.200173 recall: 0.829125 recall75: 0.195354 count: 10
I0605 19:19:36.046401 3300 yolov3_layer.cpp:350] avg_noobj: 0.000331418 avg_obj: 0.0111531 avg_iou: 0.497412 avg_cat: 0.202312 recall: 0.48125 recall75: 0.00625 count: 4
I0605 19:19:40.397859 3300 yolov3_layer.cpp:350] avg_noobj: 0.00282483 avg_obj: 0.0304993 avg_iou: 0.633767 avg_cat: 0.175424 recall: 0.866694 recall75: 0.189815 count: 12
I0605 19:19:40.432792 3300 yolov3_layer.cpp:350] avg_noobj: 0.000247293 avg_obj: 0.0034656 avg_iou: 0.516862 avg_cat: 0.261066 recall: 0.591702 recall75: 0.0542208 count: 7
I0605 19:19:44.954481 3300 yolov3_layer.cpp:350] avg_noobj: 0.00242155 avg_obj: 0.0231582 avg_iou: 0.620893 avg_cat: 0.170172 recall: 0.822558 recall75: 0.155372 count: 10
I0605 19:19:44.979414 3300 yolov3_layer.cpp:350] avg_noobj: 0.000300307 avg_obj: 0.00297815 avg_iou: 0.487224 avg_cat: 0.179455 recall: 0.534318 recall75: 0 count: 6
I0605 19:19:47.230954 3300 solver.cpp:254] Iteration 12510 (0.562492 iter/s, 17.778s/10 iters), loss = 7.38494
I0605 19:19:47.231928 3300 solver.cpp:273] Train net output #0: det_loss1 = 4.81007 (* 1 = 4.81007 loss)
I0605 19:19:47.231928 3300 solver.cpp:273] Train net output #1: det_loss2 = 1.16328 (* 1 = 1.16328 loss)
I0605 19:19:47.232925 3300 sgd_solver.cpp:121] Iteration 12510, lr = 0.0005
I0605 19:19:49.022966 3300 yolov3_layer.cpp:350] avg_noobj: 0.00285788 avg_obj: 0.0443964 avg_iou: 0.634798 avg_cat: 0.199004 recall: 0.85553 recall75: 0.156816 count: 11
I0605 19:19:49.043910 3300 yolov3_layer.cpp:350] avg_noobj: 0.000372392 avg_obj: 0.00322275 avg_iou: 0.452622 avg_cat: 0.305551 recall: 0.404762 recall75: 0 count: 5
I0605 19:19:53.121110 3300 yolov3_layer.cpp:350] avg_noobj: 0.00291626 avg_obj: 0.0314833 avg_iou: 0.640478 avg_cat: 0.184493 recall: 0.863073 recall75: 0.209155 count: 10
I0605 19:19:53.155017 3300 yolov3_layer.cpp:350] avg_noobj: 0.000369423 avg_obj: 0.00877558 avg_iou: 0.493772 avg_cat: 0.183857 recall: 0.556878 recall75: 0 count: 3
I0605 19:19:57.379637 3300 yolov3_layer.cpp:350] avg_noobj: 0.00238114 avg_obj: 0.049195 avg_iou: 0.63194 avg_cat: 0.198527 recall: 0.843922 recall75: 0.152469 count: 11
I0605 19:19:57.453439 3300 yolov3_layer.cpp:350] avg_noobj: 0.000255439 avg_obj: 0.00362778 avg_iou: 0.458997 avg_cat: 0.19757 recall: 0.434259 recall75: 0 count: 9
I0605 19:20:01.836761 3300 yolov3_layer.cpp:350] avg_noobj: 0.00266701 avg_obj: 0.0311816 avg_iou: 0.638568 avg_cat: 0.227812 recall: 0.77353 recall75: 0.290579 count: 12
I0605 19:20:01.871668 3300 yolov3_layer.cpp:350] avg_noobj: 0.000326695 avg_obj: 0.00722598 avg_iou: 0.521178 avg_cat: 0.185146 recall: 0.623016 recall75: 0.0208333 count: 7
I0605 19:20:03.418504 3300 solver.cpp:254] Iteration 12520 (0.617859 iter/s, 16.1849s/10 iters), loss = 7.53383
I0605 19:20:03.418504 3300 solver.cpp:273] Train net output #0: det_loss1 = 2.87461 (* 1 = 2.87461 loss)
I0605 19:20:03.419502 3300 solver.cpp:273] Train net output #1: det_loss2 = 4.34306 (* 1 = 4.34306 loss)
I0605 19:20:03.419502 3300 sgd_solver.cpp:121] Iteration 12520, lr = 0.0005
Could not create logging file: Invalid argument
COULD NOT CREATE A LOGGINGFILE 20190605-192005.11712!I0605 19:20:05.818264 3300 yolov3_layer.cpp:350] avg_noobj: 0.00309157 avg_obj: 0.0532336 avg_iou: 0.649751 avg_cat: 0.162685 recall: 0.858502 recall75: 0.214735 count: 10
I0605 19:20:05.851202 3300 yolov3_layer.cpp:350] avg_noobj: 0.000403206 avg_obj: 0.00716492 avg_iou: 0.445854 avg_cat: 0.304836 recall: 0.412829 recall75: 0 count: 13
I0605 19:20:09.390074 3300 yolov3_layer.cpp:350] avg_noobj: 0.00312518 avg_obj: 0.0370927 avg_iou: 0.633618 avg_cat: 0.198188 recall: 0.850838 recall75: 0.160494 count: 11
I0605 19:20:09.431963 3300 yolov3_layer.cpp:350] avg_noobj: 0.000694415 avg_obj: 0.0104734 avg_iou: 0.474882 avg_cat: 0.264217 recall: 0.436111 recall75: 0.015873 count: 9
I0605 19:20:13.822546 3300 yolov3_layer.cpp:350] avg_noobj: 0.00259194 avg_obj: 0.0403508 avg_iou: 0.665718 avg_cat: 0.194452 recall: 0.860831 recall75: 0.292669 count: 9
I0605 19:20:13.842519 3300 yolov3_layer.cpp:350] avg_noobj: 0.000312286 avg_obj: 0.0053947 avg_iou: 0.459958 avg_cat: 0.193672 recall: 0.417659 recall75: 0.0138889 count: 4
I0605 19:20:17.691043 3300 yolov3_layer.cpp:350] avg_noobj: 0.00287202 avg_obj: 0.0291737 avg_iou: 0.647074 avg_cat: 0.153396 recall: 0.850703 recall75: 0.247723 count: 11
I0605 19:20:17.726924 3300 yolov3_layer.cpp:350] avg_noobj: 0.000309667 avg_obj: 0.0040057 avg_iou: 0.519263 avg_cat: 0.174034 recall: 0.545855 recall75: 0.0343915 count: 5
I0605 19:20:19.872403 3300 solver.cpp:254] Iteration 12530 (0.607809 iter/s, 16.4525s/10 iters), loss = 7.6842
I0605 19:20:19.873380 3300 solver.cpp:273] Train net output #0: det_loss1 = 7.65109 (* 1 = 7.65109 loss)
I0605 19:20:19.874377 3300 solver.cpp:273] Train net output #1: det_loss2 = 0.877699 (* 1 = 0.877699 loss)
I0605 19:20:19.874377 3300 sgd_solver.cpp:121] Iteration 12530, lr = 0.0005
I0605 19:20:22.845577 3300 yolov3_layer.cpp:350] avg_noobj: 0.00232477 avg_obj: 0.0431203 avg_iou: 0.651754 avg_cat: 0.203131 recall: 0.83947 recall75: 0.234785 count: 11
I0605 19:20:22.881479 3300 yolov3_layer.cpp:350] avg_noobj: 0.000257757 avg_obj: 0.00343921 avg_iou: 0.496588 avg_cat: 0.237333 recall: 0.510417 recall75: 0.0125 count: 5
I0605 19:20:27.404374 3300 yolov3_layer.cpp:350] avg_noobj: 0.00279358 avg_obj: 0.0319883 avg_iou: 0.609273 avg_cat: 0.179511 recall: 0.757692 recall75: 0.194499 count: 15
I0605 19:20:27.417367 3300 yolov3_layer.cpp:350] avg_noobj: 0.000316511 avg_obj: 0.00295685 avg_iou: 0.465988 avg_cat: 0.301883 recall: 0.453483 recall75: 0.0679012 count: 4
I0605 19:20:31.498841 3300 yolov3_layer.cpp:350] avg_noobj: 0.00359538 avg_obj: 0.0485006 avg_iou: 0.617241 avg_cat: 0.209228 recall: 0.7878 recall75: 0.150163 count: 10
I0605 19:20:31.525769 3300 yolov3_layer.cpp:350] avg_noobj: 0.000437292 avg_obj: 0.0134618 avg_iou: 0.551258 avg_cat: 0.153278 recall: 0.588624 recall75: 0.101852 count: 5
I0605 19:20:35.994704 3300 yolov3_layer.cpp:350] avg_noobj: 0.00283231 avg_obj: 0.0303469 avg_iou: 0.64724 avg_cat: 0.219677 recall: 0.892877 recall75: 0.175024 count: 12
I0605 19:20:36.017643 3300 yolov3_layer.cpp:350] avg_noobj: 0.000295402 avg_obj: 0.00658006 avg_iou: 0.458386 avg_cat: 0.210321 recall: 0.445218 recall75: 0.0592593 count: 7
I0605 19:20:37.947180 3300 solver.cpp:254] Iteration 12540 (0.553318 iter/s, 18.0728s/10 iters), loss = 8.33392
I0605 19:20:37.948176 3300 solver.cpp:273] Train net output #0: det_loss1 = 3.58086 (* 1 = 3.58086 loss)
I0605 19:20:37.948176 3300 solver.cpp:273] Train net output #1: det_loss2 = 0.347006 (* 1 = 0.347006 loss)
I0605 19:20:37.949173 3300 sgd_solver.cpp:121] Iteration 12540, lr = 0.0005
I0605 19:20:40.172420 3300 yolov3_layer.cpp:350] avg_noobj: 0.00293626 avg_obj: 0.0321759 avg_iou: 0.643307 avg_cat: 0.19418 recall: 0.881558 recall75: 0.198515 count: 12
I0605 19:20:40.194362 3300 yolov3_layer.cpp:350] avg_noobj: 0.00034704 avg_obj: 0.0100363 avg_iou: 0.500065 avg_cat: 0.257968 recall: 0.515476 recall75: 0.0178571 count: 6
I0605 19:20:44.057361 3300 yolov3_layer.cpp:350] avg_noobj: 0.00313916 avg_obj: 0.0527417 avg_iou: 0.659828 avg_cat: 0.233123 recall: 0.86524 recall75: 0.239137 count: 10
I0605 19:20:44.103235 3300 yolov3_layer.cpp:350] avg_noobj: 0.000418076 avg_obj: 0.00766261 avg_iou: 0.495713 avg_cat: 0.224374 recall: 0.544444 recall75: 0.104938 count: 7
I0605 19:20:47.635077 3300 yolov3_layer.cpp:350] avg_noobj: 0.00355725 avg_obj: 0.0325799 avg_iou: 0.655993 avg_cat: 0.251627 recall: 0.915658 recall75: 0.217177 count: 12
I0605 19:20:47.650038 3300 yolov3_layer.cpp:350] avg_noobj: 0.00040842 avg_obj: 0.00592278 avg_iou: 0.491019 avg_cat: 0.202457 recall: 0.476871 recall75: 0 count: 5
I0605 19:20:52.118727 3300 yolov3_layer.cpp:350] avg_noobj: 0.00275538 avg_obj: 0.0323469 avg_iou: 0.646056 avg_cat: 0.215758 recall: 0.898798 recall75: 0.194672 count: 13
I0605 19:20:52.139672 3300 yolov3_layer.cpp:350] avg_noobj: 0.000349215 avg_obj: 0.00229965 avg_iou: 0.44785 avg_cat: 0.206496 recall: 0.315882 recall75: 0.0138889 count: 6
Could not create logging file: Invalid argument
COULD NOT CREATE A LOGGINGFILE 20190605-192053.11712!I0605 19:20:53.571318 3300 solver.cpp:254] Iteration 12550 (0.640119 iter/s, 15.6221s/10 iters), loss = 7.89049
I0605 19:20:53.573312 3300 solver.cpp:273] Train net output #0: det_loss1 = 3.84329 (* 1 = 3.84329 loss)
I0605 19:20:53.573312 3300 solver.cpp:273] Train net output #1: det_loss2 = 2.17349 (* 1 = 2.17349 loss)
I0605 19:20:53.574306 3300 sgd_solver.cpp:121] Iteration 12550, lr = 0.0005
I0605 19:20:56.050925 3300 yolov3_layer.cpp:350] avg_noobj: 0.00385313 avg_obj: 0.0378496 avg_iou: 0.614312 avg_cat: 0.225314 recall: 0.819727 recall75: 0.129331 count: 16
I0605 19:20:56.112759 3300 yolov3_layer.cpp:350] avg_noobj: 0.000424033 avg_obj: 0.00678592 avg_iou: 0.507608 avg_cat: 0.338597 recall: 0.507937 recall75: 0.031746 count: 5
I0605 19:21:00.417657 3300 yolov3_layer.cpp:350] avg_noobj: 0.00359072 avg_obj: 0.0333965 avg_iou: 0.651351 avg_cat: 0.197982 recall: 0.850168 recall75: 0.252022 count: 11
I0605 19:21:00.457552 3300 yolov3_layer.cpp:350] avg_noobj: 0.000331282 avg_obj: 0.00566017 avg_iou: 0.457309 avg_cat: 0.316339 recall: 0.295238 recall75: 0.0238095 count: 6
I0605 19:21:04.788831 3300 yolov3_layer.cpp:350] avg_noobj: 0.00282905 avg_obj: 0.029601 avg_iou: 0.647409 avg_cat: 0.212677 recall: 0.869678 recall75: 0.164323 count: 11
I0605 19:21:04.808776 3300 yolov3_layer.cpp:350] avg_noobj: 0.000245929 avg_obj: 0.00465359 avg_iou: 0.535713 avg_cat: 0.342484 recall: 0.717262 recall75: 0 count: 3
I0605 19:21:08.607992 3300 yolov3_layer.cpp:350] avg_noobj: 0.00301587 avg_obj: 0.0453556 avg_iou: 0.649629 avg_cat: 0.184469 recall: 0.868559 recall75: 0.306434 count: 11
I0605 19:21:08.650851 3300 yolov3_layer.cpp:350] avg_noobj: 0.000336037 avg_obj: 0.00359891 avg_iou: 0.468336 avg_cat: 0.107412 recall: 0.5 recall75: 0 count: 4
I0605 19:21:10.414767 3300 solver.cpp:254] Iteration 12560 (0.593801 iter/s, 16.8407s/10 iters), loss = 7.04955
I0605 19:21:10.415766 3300 solver.cpp:273] Train net output #0: det_loss1 = 4.34492 (* 1 = 4.34492 loss)
I0605 19:21:10.415766 3300 solver.cpp:273] Train net output #1: det_loss2 = 2.30185 (* 1 = 2.30185 loss)
I0605 19:21:10.415766 3300 sgd_solver.cpp:121] Iteration 12560, lr = 0.0005
I0605 19:21:12.959175 3300 yolov3_layer.cpp:350] avg_noobj: 0.00287661 avg_obj: 0.037193 avg_iou: 0.637186 avg_cat: 0.242921 recall: 0.84307 recall75: 0.218659 count: 10
I0605 19:21:12.986104 3300 yolov3_layer.cpp:350] avg_noobj: 0.000288361 avg_obj: 0.00429907 avg_iou: 0.566808 avg_cat: 0.341548 recall: 0.709524 recall75: 0 count: 3
I0605 19:21:18.145488 3300 yolov3_layer.cpp:350] avg_noobj: 0.00221051 avg_obj: 0.0170261 avg_iou: 0.609285 avg_cat: 0.229931 recall: 0.75377 recall75: 0.21076 count: 11
I0605 19:21:18.201313 3300 yolov3_layer.cpp:350] avg_noobj: 0.00013712 avg_obj: 0.00131666 avg_iou: 0.553459 avg_cat: 0.31128 recall: 0.690774 recall75: 0.0741071 count: 6
I0605 19:21:22.322890 3300 yolov3_layer.cpp:350] avg_noobj: 0.00284479 avg_obj: 0.0270393 avg_iou: 0.667795 avg_cat: 0.176689 recall: 0.923801 recall75: 0.305505 count: 10
I0605 19:21:22.372757 3300 yolov3_layer.cpp:350] avg_noobj: 0.000349923 avg_obj: 0.00619466 avg_iou: 0.504442 avg_cat: 0.260977 recall: 0.612037 recall75: 0 count: 6
I0605 19:21:26.330718 3300 yolov3_layer.cpp:350] avg_noobj: 0.00285011 avg_obj: 0.044199 avg_iou: 0.661605 avg_cat: 0.23663 recall: 0.868804 recall75: 0.290537 count: 11
I0605 19:21:26.359613 3300 yolov3_layer.cpp:350] avg_noobj: 0.00036655 avg_obj: 0.00700356 avg_iou: 0.538065 avg_cat: 0.170565 recall: 0.711806 recall75: 0 count: 2

@guods
Copy link

guods commented Jul 23, 2019

I met the same problem, did you sovle it ? could you tell me how to do it ?

@LEXUSAPI
Copy link
Author

I met the same problem, did you sovle it ? could you tell me how to do it ?

it is beacuse Whether in loading pre-trained model . if you is chinease,you can add my wechat , number is 13083501623 .

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants