diff --git a/README.md b/README.md index b695082..29de3ac 100644 --- a/README.md +++ b/README.md @@ -8,11 +8,37 @@ 3. [SSD](https://github.com/eric612/MobileNet-SSD-windows) -### YoloV2 Model download -download [here](https://drive.google.com/open?id=1pfGqD00STsauvBAnj6UyzNlgSJugm89q) -### YoloV2 Result +### Customize YOLOv2 + +1. Better performance on small vehicle detection , but will add false object more +2. light weight (30M , 27% size of full yolov2) +3. 1.5x faster of full yolov2 (CPU forward) +4. Only has conv,max pooling and region loss layer + +#### Result + +[![1](https://img.youtube.com/vi/9pS3Ov_b-Qg/0.jpg)](https://www.youtube.com/watch?v=9pS3Ov_b-Qg) + +[![1](https://img.youtube.com/vi/EU51rO3M6yo/0.jpg)](https://www.youtube.com/watch?v=EU51rO3M6yo) + +#### Training + +weights download [here](https://drive.google.com/open?id=1Ul8yRlvzcr8nsn5yfm9G_pdxqHVYsryY) + +train command +``` +darknet detector train data/voc.data yolo-voc-custom.cfg car.conv.14 +``` + +### Original YOLOv2 + +#### Model download + +weights download [here](https://drive.google.com/open?id=1pfGqD00STsauvBAnj6UyzNlgSJugm89q) + +#### Result [![1](https://img.youtube.com/vi/kuKnOTDIbq4/0.jpg)](https://www.youtube.com/watch?v=kuKnOTDIbq4) @@ -32,6 +58,16 @@ download [here](https://drive.google.com/open?id=1pfGqD00STsauvBAnj6UyzNlgSJugm8 ### FasterRCNN Result +####VGG19 + +[![IMAGE ALT TEXT HERE](https://img.youtube.com/vi/NhID_pNwgac/0.jpg)](https://www.youtube.com/watch?v=NhID_pNwgac) + +[![IMAGE ALT TEXT HERE](https://img.youtube.com/vi/AjnaTelt0KM/0.jpg)](https://www.youtube.com/watch?v=AjnaTelt0KM) + +[![IMAGE ALT TEXT HERE](https://img.youtube.com/vi/vxk77dicGAQ/0.jpg)](https://www.youtube.com/watch?v=vxk77dicGAQ) + +####VGG16 + [![IMAGE ALT TEXT HERE](https://img.youtube.com/vi/xjIB9t1tLOg/0.jpg)](https://www.youtube.com/watch?v=xjIB9t1tLOg) ### SSD Model diff --git a/YOLO/Customize Model/car.conv.14 b/YOLO/Customize Model/car.conv.14 new file mode 100644 index 0000000..f659079 Binary files /dev/null and b/YOLO/Customize Model/car.conv.14 differ diff --git a/YOLO/Customize Model/yolo-voc-custom.cfg b/YOLO/Customize Model/yolo-voc-custom.cfg new file mode 100644 index 0000000..0f0463e --- /dev/null +++ b/YOLO/Customize Model/yolo-voc-custom.cfg @@ -0,0 +1,163 @@ +[net] +# Testing +batch=16 +subdivisions=4 +# Training +# batch=64 +# subdivisions=8 +height=416 +width=416 +channels=3 +momentum=0.9 +decay=0.0005 +angle=0 +saturation = 1.5 +exposure = 1.5 +hue=.1 + +learning_rate=0.0001 +max_batches = 45000 +policy=steps +steps=100,25000,35000 +scales=10,.1,.1 + +[convolutional] +batch_normalize=1 +filters=32 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + + +####### + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=50 +activation=linear + +[region] +anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 +bias_match=1 +classes=5 +coords=4 +num=5 +softmax=1 +jitter=.2 +rescore=1 + +object_scale=5 +noobject_scale=1 +class_scale=1 +coord_scale=1 + +absolute=1 +thresh = .6 +random=0