-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransformation.tex
executable file
·403 lines (394 loc) · 17.7 KB
/
Transformation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
For completeness we present the transformation developed by Dominguez et. al. in
this section. All notations and conventions are the same as those developed by
Dominguez, but we present the derivation of the transformation here, because of
the novelty and importance of this transformation to this thesis. For the
original derivation one should see \cite{Dominguez06} and \cite{Dominguez08}.
Now that we have the Argyris basis functions on the reference triangle we need
to relate those to the Argyris basis functions on a general triangle. First,
consider the affine transformation from $\hat{K}$ to $K$, i.e. $F: \hat{K} \to
K$ such that
\begin{equation}
F(\hat{\mathbf{x}}) = B\hat{\mathbf{x}} + \mathbf{b} :=
\begin{bmatrix}
x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1
\end{bmatrix} \begin{bmatrix}
\hat{x} \\ \hat{y}
\end{bmatrix} + \begin{bmatrix}
x_1 \\ y_1
\end{bmatrix}.
\label{eqn:Affine}
\end{equation}
Also denote the vectors representing the edge of the triangle as
\begin{equation*}
\mathbf{v}_1 = \mathbf{x}_2 - \mathbf{x}_1\quad \mathbf{v}_2 = \mathbf{x}_3 -
\mathbf{x}_1\quad \mathbf{v}_3 = \mathbf{x}_3 - \mathbf{x}_2.
\end{equation*}
Let $\mathbf{n}_i$ be the unit normal vector corresponding to the $i^{th}$ side
obtained by rotating the vector $\mathbf{v}_i$ by $\nicefrac{\pi}{2}$ in the
positive direction. Additionally, let $\mathbf{m}_i$ be the midpoint to the
$i^{th}$ side. Now consider the linear functionals corresponding to the
vertices of the triangle $K$ denoted as
\begin{align*}
\mathcal{L}_i(\varphi) &:= \varphi(\mathbf{x}_i), \\
\mathcal{L}_i^\circ(\varphi) &:= \partial_\circ \varphi(\mathbf{x}_i) \quad
\text{if }\circ \in
\{x,y\}, \\
\mathcal{L}_i^\circ(\varphi) &:= \partial_\circ \varphi(\mathbf{x}_i) \quad
\text{if }\circ \in
\{xx,xy,yy\}
\end{align*}
for $i\in \{1,2,3\}$. For the functionals corresponding to the sides define
\begin{equation*}
\mathcal{L}_i^n(\varphi) := \nabla_{\mathbf{x}} \phi(\mathbf{m}_i) \cdot
\mathbf{n}_i \quad i\in\{1,2,3\}.
\end{equation*}
Now renumber the linear functionals as $\mathcal{L}_j$ for
$j\in\{1,\dots,21\}$ as they are listed below
\begin{align*}
&\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \\
&\mathcal{L}_1^x, \mathcal{L}_1^y, \mathcal{L}_2^x, \mathcal{L}_2^y,
\mathcal{L}_3^x, \mathcal{L}_3^y, \\
&\mathcal{L}_1^{xx}, \mathcal{L}_1^{xy}, \mathcal{L}_1^{yy},
\mathcal{L}_2^{xx}, \mathcal{L}_2^{xy}, \mathcal{L}_2^{yy},
\mathcal{L}_3^{xx}, \mathcal{L}_3^{xy}, \mathcal{L}_3^{yy}, \\
&\mathcal{L}_1^n, \mathcal{L}_2^n, \mathcal{L}_3^n,
\end{align*}
where the linear functionals $\hat{\mathcal{L}}_i$ and $\hat{ \mathcal{L}_i^n}$
are the corresponding functionals on the reference triangle $\hat{K}$. The basis
functions of the Argyris triangle are fifth degree polynomials in
$\mathbb{P}_5(K)$
that satisfy
\begin{equation*}
\mathcal{L}_i(\varphi_j) = \delta_{ij} \quad i,j\in\{1,\dots,21\}
\end{equation*}
and similarly on the reference triangle
\begin{equation*}
\hat{\mathcal{L}}_i(\hat{\varphi}_j) = \delta_{ij} \quad
i,j\in\{1,\dots,21\}.
\end{equation*}
Now define a new set of functionals by
\begin{equation}
\tilde{\mathcal{L}}_i(\varphi) := \hat{\mathcal{L}}_i(\varphi\circ F).
\label{eqn:Functional}
\end{equation}
Since $\{\tilde{\mathcal{L}}_i\}$ and $\{\hat{\mathcal{L}}_i\}$ are both basis
for the dual space of $\mathbb{P}_5(K)$ there is a nonsingular matrix $C$ such
that
\begin{equation}
\tilde{\mathcal{L}}_i = \sum_{j=1}^{21} c_{ij} \mathcal{L}_j \quad i\in
\{1,\dots,21\}.
\label{eqn:FunctionalsC}
\end{equation}
Therefore, it follows that (see \cite{Dominguez08})
\begin{equation}
\varphi_i\circ F = \sum_{j=1}^{21} c_{ij}\hat{\varphi}_j \quad i\in
\{1,\dots,21\}.
\label{eqn:PolyC}
\end{equation}
Thus we have shown there exists a $C$ which transforms any triangle $K$ to a
reference triangle $\hat{K}$.
Now, we must determine a simple expression for matrix $C$. To do this we
introduce a new set of linear functionals
\begin{equation*}
\mathcal{L}^*_i \quad i\in\{1,\dots,24\}.
\end{equation*}
We definie these functionals in the following way: first we let
$\mathcal{L}^*_i:=\mathcal{L}_i\; i=\{1,\dots,18\}$, and then introduce the new
functionals
\begin{equation*}
\mathcal{L}^\circ_i \quad \circ \in \{\perp,||\}\quad i\in \{1,2,3\}.
\end{equation*}
These functionals will be defined using the following relationship:
\begin{equation*}
\mathcal{L}_i^{\perp}(\varphi) := \nabla_{\mathbf{x}} \varphi(\mathbf{m}_i)
\cdot R\mathbf{v}_i, \quad
\mathcal{L}^{||}_i (\varphi) := \nabla_{\mathbf{x}} \varphi(\mathbf{m}_i)
\cdot \mathbf{v}_i,
\end{equation*}
where
\begin{equation*}
R = \begin{bmatrix}
0 & -1 \\ 1 & 0
\end{bmatrix}
\end{equation*}
is the matrix that rotates a vector $\nicefrac{\pi}{2}$ counter-clockwise. These
relationships will define a relationship of the edge and firsts derivatives at a
midpoint to the directional derivatives, i.e. the normal derivative and the
derivative pointing in the direction of the corresponding edge.
Now, order the linear functionals as
$\mathcal{L}^{\perp}_1,\mathcal{L}^{\perp}_2,\mathcal{L}^{\perp}_3,
\mathcal{L}^{||}_1,\mathcal{L}^{||}_2,\mathcal{L}^{||}_3$.
We can write each $\tilde{\mathcal{L}}_i$ as a linear combination of
$\mathcal{L}_j^*$ and therefore we have the relationship
\begin{equation}
\tilde{\mathcal{L}}_i = \sum_{j=1}^{24} d_{ij} \mathcal{L}^*_j, \quad
i\in\{1,\dots,21\},
\label{eqn:FunctionalsD}
\end{equation}
where $d_{ij}$ are constants.
Now from \eqref{eqn:Affine} we see that
\begin{align*}
&\frac{\partial x}{\partial \hat{x}} = B_{11} &\frac{\partial x}{\partial \hat{y}} = B_{12} \\
&\frac{\partial y}{\partial \hat{x}} = B_{21} &\frac{\partial y}{\partial
\hat{y}} = B_{22}.
\end{align*}
With this we can determine the relationship between the gradient of $\hat{\varphi}$ on the
triangle $\hat{K}$ to the gradient of $\varphi$ on the triangle $K$
\begin{align*}
\nabla_{\mathbf{\hat{x}}}\left( \varphi \circ F \right) &= \begin{bmatrix}
\dfrac{\partial \varphi\circ F}{\partial \hat{x}} \\[1em]
\dfrac{\partial \varphi\circ F}{\partial \hat{y}}
\end{bmatrix} \\
&=\begin{bmatrix}
\dfrac{\partial \varphi\circ F}{\partial x} \, \dfrac{\partial x}{\partial \hat{x}} +
\dfrac{\partial \varphi\circ F}{\partial y} \, \dfrac{\partial y}{\partial \hat{x}} \\[1em]
\dfrac{\partial \varphi\circ F}{\partial x} \, \dfrac{\partial x}{\partial \hat{y}} +
\dfrac{\partial \varphi\circ F}{\partial y} \, \dfrac{\partial y}{\partial \hat{y}}
\end{bmatrix} \\
&= \begin{bmatrix}
\dfrac{\partial x}{\partial \hat{x}} & \dfrac{\partial y}{\partial \hat{x}} \\[1em]
\dfrac{\partial x}{\partial \hat{y}} & \dfrac{\partial y}{\partial \hat{y}}
\end{bmatrix}\, \begin{bmatrix}
\dfrac{\partial \varphi\circ F}{\partial x} \\[1em] \dfrac{\partial \varphi\circ F}{\partial y}
\end{bmatrix}
\end{align*}
thus we have
\begin{equation}
\nabla_{\mathbf{\hat{x}}}\left( \varphi \circ F \right) = B^T \nabla_{\mathbf{x}} \varphi \circ F
\label{eqn:Gradient}
\end{equation}
If we define the condensed Hessian, in the same way as Dominguez et. al.
\cite{Dominguez08}, as $H_x(\varphi) = \left[ \varphi_{xx},\, \varphi_{xy},\,
\varphi_{yy}\right]^T$ then using \eqref{eqn:Affine} we can determine the
relationship between the condensed Hessian of $\hat{\varphi}$ on the triangle
$\hat{K}$ to the condensed Hessian of $\varphi$ on the triangle $K$
\begin{align*}
H_{\mathbf{\hat{x}}}(\varphi\circ F) &= \begin{bmatrix}
\dfrac{\partial^2 \varphi\circ F}{\partial \hat{x}^2} \\[1em]
\dfrac{\partial^2 \varphi\circ F}{\partial \hat{x} \partial\hat{y}} \\[1em]
\dfrac{\partial^2 \varphi\circ F}{\partial \hat{y}^2}
\end{bmatrix} \\
&= \begin{bmatrix}
\dfrac{\partial}{\partial \hat{x}}\left( \dfrac{\partial \varphi\circ
F}{\partial x}\, \dfrac{\partial x}{\partial \hat{x}} + \dfrac{\partial
\varphi\circ F}{\partial y}\, \dfrac{\partial y}{\partial
\hat{x}} \right) \\[1em]
\dfrac{\partial}{\partial \hat{y}}\left( \dfrac{\partial \varphi\circ
F}{\partial x}\, \dfrac{\partial x}{\partial \hat{x}} + \dfrac{\partial
\varphi\circ F}{\partial y}\, \dfrac{\partial y}{\partial
\hat{x}} \right) \\[1em]
\dfrac{\partial}{\partial \hat{y}}\left( \dfrac{\partial \varphi\circ
F}{\partial x}\, \dfrac{\partial x}{\partial \hat{y}} + \dfrac{\partial
\varphi\circ F}{\partial y}\, \dfrac{\partial y}{\partial
\hat{y}} \right)
\end{bmatrix} \\
&= \begin{bmatrix}
\dfrac{\partial^2 \varphi\circ F}{\partial x^2}\, \left(\dfrac{\partial
x}{\partial \hat{x}}\right)^2 + 2 \dfrac{\partial^2 \varphi\circ F}{\partial x
\partial y} \, \dfrac{\partial x}{\partial \hat{x}} \,
\dfrac{\partial y}{\partial \hat{x}} + \dfrac{\partial \varphi\circ
F}{\partial y^2}\, \left(\dfrac{\partial y}{\partial \hat{x}}\right)^2 \\[1em]
\dfrac{\partial^2 \varphi\circ F}{\partial x^2}\, \dfrac{\partial
x}{\partial \hat{x}}\, \dfrac{\partial x}{\partial \hat{y}} + \left(
\dfrac{\partial x}{\partial \hat{x}}\, \dfrac{\partial y}{\partial
\hat{y}} + \dfrac{\partial x}{\partial \hat{y}}\,
\dfrac{\partial y}{\partial \hat{x}} \right) \dfrac{\partial^2 \varphi\circ F}{\partial x
\partial y} + \dfrac{\partial \varphi\circ F}{\partial y^2}\,
\dfrac{\partial y}{\partial \hat{x}} \, \dfrac{\partial y}{\partial
\hat{y}} \\[1em]
\dfrac{\partial^2 \varphi\circ F}{\partial x^2}\, \left(\dfrac{\partial
x}{\partial \hat{y}}\right)^2 + 2 \dfrac{\partial^2 \varphi\circ F}{\partial x
\partial \hat{y}} \, \dfrac{\partial x}{\partial \hat{y}} \,
\dfrac{\partial y}{\partial \hat{y}} + \dfrac{\partial \varphi\circ
F}{\partial y^2}\, \left(\dfrac{\partial y}{\partial \hat{y}}\right)^2
\end{bmatrix} \\
&= \begin{bmatrix}
\left(\dfrac{\partial x}{\partial \hat{x}}\right)^2
& 2 \dfrac{\partial x}{\partial \hat{x}}\, \dfrac{\partial y}{\partial \hat{x}}
& \left(\dfrac{\partial y}{\partial \hat{x}}\right)^2 \\[1em]
\dfrac{\partial x}{\partial \hat{x}}\, \dfrac{\partial x}{\partial \hat{y}}
& \left(\dfrac{\partial x}{\partial \hat{x}}\, \dfrac{\partial y}{\partial
\hat{y}} + \dfrac{\partial x}{\partial \hat{y}}\,
\dfrac{\partial y}{\partial \hat{x}} \right)
& \dfrac{\partial y}{\partial \hat{x}} \, \dfrac{\partial y}{\partial \hat{y}} \\[1em]
\left(\dfrac{\partial x}{\partial \hat{y}}\right)^2
& 2 \dfrac{\partial x}{\partial \hat{y}}\, \dfrac{\partial y}{\partial \hat{y}}
& \left(\dfrac{\partial y}{\partial \hat{y}}\right)^2 \\[1em]
\end{bmatrix}\, \begin{bmatrix}
\dfrac{\partial^2 \varphi\circ F}{\partial x^2} \\[1em]
\dfrac{\partial^2 \varphi\circ F}{\partial x \partial y} \\[1em]
\dfrac{\partial^2 \varphi\circ F}{\partial y^2}
\end{bmatrix}
\end{align*}
and so
\begin{equation}
H_{\mathbf{\hat{x}}}(\varphi\circ F) = \Theta H_{\mathbf{x}}(\varphi)\circ F,
\label{eqn:Hessian}
\end{equation}
where
\begin{equation*}
\Theta = \begin{bmatrix}
B_{11}^2 & 2B_{11}B_{21} & B_{21}^2 \\[0.5em]
B_{12}B_{11} & B_{12}B_{21} + B_{11}B_{22} & B_{21}B_{22} \\[0.5em]
B_{12}^2 & 2B_{22}B_{12} & B_{22}^2
\end{bmatrix}.
\end{equation*}
Therefore we see that
\begin{equation*}
\tilde{\mathcal{L}}_i = \mathcal{L}_i, \quad
\begin{bmatrix}
\tilde{\mathcal{L}}^x_i \\ \tilde{\mathcal{L}}^y_i
\end{bmatrix} = B^T \begin{bmatrix}
\mathcal{L}^x_i \\ \mathcal{L}^y_i
\end{bmatrix}, \quad
\begin{bmatrix}
\tilde{\mathcal{L}}^{xx}_i \\ \tilde{\mathcal{L}}^{xy}_i \\ \tilde{\mathcal{L}}^{yy}_i
\end{bmatrix} = \Theta \begin{bmatrix}
\mathcal{L}^{xx}_i \\ \mathcal{L}^{xy}_i \\ \mathcal{L}^{yy}_i
\end{bmatrix}.
\end{equation*}
Additionally, notice $\mathbf{v}_i = B\hat{\mathbf{v}}_i$ for
$i=\{1,2,3\}$ where $\hat{\mathbf{v}}_i$ are defined on the reference triangle
$\hat{K}$. It should also be noted that
\begin{equation*}
\begin{bmatrix}
\mathcal{L}^{\perp}_i \\ \mathcal{L}^{||}_i
\end{bmatrix} = \begin{bmatrix} -v^y_i & v^x_i \\ v^x_i & v^y_i \end{bmatrix}
\begin{bmatrix}
\mathcal{L}^x_i \\ \mathcal{L}^y_i
\end{bmatrix}
\end{equation*}
and therefore
\begin{equation*}
\begin{bmatrix}
\mathcal{L}^{x}_i \\ \mathcal{L}^{y}_i
\end{bmatrix} = \frac{1}{|v_i|^2}
\begin{bmatrix} -v^y_i & v^x_i \\ v^x_i & v^y_i \end{bmatrix}
\begin{bmatrix}
\mathcal{L}^{\perp}_i \\ \mathcal{L}^{||}_i
\end{bmatrix}.
\end{equation*}
Then
\begin{align*}
\tilde{\mathcal{L}}^n_i(\varphi) &= \hat{\mathcal{L}}^n_i(\varphi\circ F) \\
&= \frac{1}{|\hat{\mathbf{v}}_i|}R \hat{\mathbf{v}}_i \cdot
\nabla_{\hat{\mathbf{x}}}(\varphi \circ F)(\hat{\mathbf{m}}_i) \\
&= \frac{1}{|\hat{\mathbf{v}}_i|}R \hat{\mathbf{v}}_i \cdot B^T
\nabla_{\mathbf{x}} \varphi(\mathbf{m}_i) \\
&= \frac{1}{|\hat{\mathbf{v}}_i|}R \hat{\mathbf{v}}_i \cdot \ell_i^{-2} B^T
\begin{bmatrix} -v^y_i & v^x_i \\ v^x_i & v^y_i \end{bmatrix}
\begin{bmatrix}
\mathcal{L}^{\perp}_i \\ \mathcal{L}^{||}_i
\end{bmatrix},
\end{align*}
where $\ell_i$ is the length of the $i^{th}$ side of the triangle $K$. This can be written in the form
\begin{equation*}
\tilde{\mathcal{L}}_i^n = f_i \mathcal{L}^{\perp}_i + g_i \mathcal{L}^{||}_i,
\end{equation*}
where
\begin{equation*}
f_i = \frac{1}{\ell_i^2 |\hat{\mathbf{v}}_i|}R \hat{\mathbf{v}}_i \cdot B^T
R\mathbf{v}_i \quad
g_i = \frac{1}{\ell_i^2 |\hat{\mathbf{v}}_i|}R \hat{\mathbf{v}}_i \cdot B^T
\mathbf{v}_i .
\end{equation*}
Therefore, we can construct a $21\times 24$ the matrix $D$ in block diagonal
form in the following way:
\begin{equation*}
D = \text{diag}[I_3, B^T, B^T, B^T, \Theta, \Theta, \Theta, Q],
\end{equation*}
where
\begin{equation*}
Q = \left[\begin{array}{ccc|ccc}
f_1 & & & g_1 & & \\
& f_2 & & & g_2 &\\
& & f_3 & & & g_3
\end{array}\right].
\end{equation*}
It also holds that
\begin{equation}
\mathcal{L}^*_i = \sum_{j=1}^{21} e_{ij} \mathcal{L}_j \quad i\in
\{1,\dots,24\}.
\label{eqn:FunctionalsE}
\end{equation}
For the degrees of freedom corresponding to the vertices, i.e. function values,
first derivative values, and second/mixed derivative values, it should be clear
that $\mathcal{L}^*_i = \mathcal{L}_i$ for $i=1,\dots,18$. For the degrees of
freedom corresponding to the normal derivatives and tangential derivatives at
the midpoints we see that since $\ell_i \mathbf{n}_i = R \mathbf{v}_i$ and
$\mathcal{L}^{\perp}_i = \ell_i \mathcal{L}^n_i$. Now let $\phi$ be an arbitrary
polynomial in $\mathbb{P}_5(K)$ and define
\begin{equation*}
\psi(t) := \varphi(t\mathbf{x}_{\beta} + (1-t)\mathbf{x}_{\alpha}) \in
\mathbb{P}_5(t) \quad \alpha<\beta \text{ and } \alpha,\,\beta \in \{1,2,3\}.
\end{equation*}
Then, we get
\begin{equation}
\psi'(\nicefrac{1}{2}) = \frac{15}{8} (\psi(1)-\psi(0)) -
\frac{7}{16} (\psi'(1)+\psi'(0)) + \frac{1}{32} (\psi''(1)-\psi''(0)).
\label{eqn:Psi}
\end{equation}
Now take $\gamma$ to be the index corresponding to $\mathbf{v}_{\gamma} =
\mathbf{x}_{\beta} - \mathbf{x}_{\alpha}$ and since
\begin{align*}
\psi'(\nicefrac{1}{2}) &= \mathcal{L}_{\gamma}(\varphi) \\
\psi(0) &= \mathcal{L}_{\alpha}(\varphi) \\
\psi(1) &= \mathcal{L}_{\beta}(\varphi) \\
\psi'(0) &= v^x_{\gamma}\mathcal{L}^x_{\alpha}(\varphi) +
v^y_{\gamma}\mathcal{L}^y_{\alpha}(\varphi) \\
\psi'(1) &= v^x_{\gamma}\mathcal{L}^x_{\beta}(\varphi) +
v^y_{\gamma}\mathcal{L}^y_{\beta}(\varphi) \\
\psi''(0) &= (v^x_{\gamma})^2\mathcal{L}^{xx}_{\alpha}(\varphi) +
2 v^x_{\gamma}v^y_{\gamma}\mathcal{L}^{xy}_{\alpha}(\varphi) +
(v^y_{\gamma})^2\mathcal{L}^{yy}_{\alpha}(\varphi) \\
\psi''(1) &= (v^x_{\gamma})^2\mathcal{L}^{xx}_{\beta}(\varphi) +
2 v^x_{\gamma}v^y_{\gamma}\mathcal{L}^{xy}_{\beta}(\varphi) +
(v^y_{\gamma})^2\mathcal{L}^{yy}_{\beta}(\varphi),
\end{align*}
we see that by applying this to \eqref{eqn:Psi} we get the following expression
\begin{equation*}
\begin{split}
\mathcal{L}^{||}_{\gamma} = \frac{15}{8}(-\mathcal{L}_{\alpha} +
\mathcal{L}_{\beta})
- \frac{7}{16} ( v^x_{\gamma}\mathcal{L}^x_{\alpha}(\varphi) +
v^y_{\gamma}\mathcal{L}^y_{\alpha}(\varphi) +
v^x_{\gamma}\mathcal{L}^x_{\beta}(\varphi) +
v^y_{\gamma}\mathcal{L}^y_{\beta}(\varphi))
\\
+ \frac{1}{32}(-(v^x_{\gamma})^2\mathcal{L}^{xx}_{\alpha}(\varphi) -
2 v^x_{\gamma}v^y_{\gamma}\mathcal{L}^{xy}_{\alpha}(\varphi) -
(v^y_{\gamma})^2\mathcal{L}^{yy}_{\alpha}(\varphi) \\
+ (v^x_{\gamma})^2\mathcal{L}^{xx}_{\beta}(\varphi) +
2 v^x_{\gamma}v^y_{\gamma}\mathcal{L}^{xy}_{\beta}(\varphi) +
(v^y_{\gamma})^2\mathcal{L}^{yy}_{\beta}(\varphi)).
\end{split}
\end{equation*}
Therefore, we have the $24\times 21$ matrix
\begin{equation*}
E = \begin{bmatrix} I_{18} & \mathbf{0} \\
\mathbf{0} & L \\
T & \mathbf{0}
\end{bmatrix}.
\end{equation*}
We then can define
\begin{equation*}
\quad L = \text{diag}[\ell_1,\ell_2,\ell_3]
\end{equation*}
and the $(3\times 18)$ block matrix T as being composed of three sub blocks
($3\times 3,\, 3\times 6,\text{ and } 3\times 9$ respectively)
\begin{equation*}
\frac{15}{8} \begin{bmatrix} -1 & 1 & 0\\ -1 & 0 & 1\\ 0 & -1 & 1\end{bmatrix}, \quad
-\frac{7}{16} \begin{bmatrix} \mathbf{v}_1^T & \mathbf{v}_1^T & \mathbf{0}\\
\mathbf{v}_2^T & \mathbf{0} & \mathbf{v}_2^T\\ \mathbf{0} & \mathbf{v}_3^2 & \mathbf{v}_3^T\end{bmatrix}, \quad
\frac{1}{32} \begin{bmatrix} -\mathbf{w}_1^T & \mathbf{w}_1^T & \mathbf{0}\\
-\mathbf{w}_2^T & \mathbf{0} & \mathbf{w}_2^T\\ \mathbf{0} & -\mathbf{w}_3^2 & \mathbf{w}_3^T\end{bmatrix},
\end{equation*}
where $\mathbf{w}_i^T = \left[ (v^x_i)^2, 2v^x_i v^y_i, (v^y_i)^2\right]$.
Finally, notice that by combining \eqref{eqn:FunctionalsD} and \eqref{eqn:FunctionalsE}
we get the matrix in \eqref{eqn:FunctionalsC} and
\begin{equation}
C=DE.
\label{eqn:Transformation}
\end{equation}
Thus, we have the transformation for the Argyris triangle $K$ into a reference
triangle $\hat{K}$.