-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmgan.py
44 lines (37 loc) · 1.55 KB
/
mgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import argparse
import os
import importlib
from train.wgan_gradient_penalty import Trainer
if __name__ == '__main__':
parser = argparse.ArgumentParser('')
parser.add_argument('data', type=str, help='data')
parser.add_argument('model', type=str, help='model type')
parser.add_argument('--gpus', type=str, default='')
parser.add_argument('--it', type=int, default=1000000, help='# iterations')
parser.add_argument('-b', type=int, default=4, help='burn in length')
parser.add_argument('-m', type=int, default=3, help='eval chain length')
parser.add_argument('-d', type=int, default=7, help='critic iterations')
parser.add_argument('--load', action='store_true')
args = parser.parse_args()
if args.gpus is not '':
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
dm = importlib.import_module('models.' + args.data)
mm = importlib.import_module('models.' + args.data + '.' + args.model)
data_sampler, noise_sampler = dm.data_sampler, dm.noise_sampler
transition_fn, discriminator, visualizer = mm.TransitionFunction(), mm.Discriminator(), mm.visualizer
path = 'logs/{}/{}'.format(args.data, args.model)
try:
os.makedirs(path)
except Exception:
pass
trainer = Trainer(transition_fn, discriminator, data_sampler, noise_sampler, args.b, args.m)
if args.load:
trainer.load(path)
trainer.train(
num_batches=args.it,
visualizer=visualizer,
path=path,
d_iters=args.d,
epoch_size=mm.epoch_size,
logging_freq=mm.logging_freq
)