-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsettings.py
137 lines (103 loc) · 4.38 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def gen_rs_list(rs_min,rs_max,nstep):
step = (rs_max - rs_min)/(nstep-1)
return [round(rs_min + i*step,0) for i in range(nstep)]
routine='ECFIT'
"""
routine options:
M3SR : third frequency-moment sum rule calculation, options set in third_mom_pars
FMT : arbitary frequency moment calculation, options set in moment_pars
HXFIT : fits the real part of the GKI kernel using the Kramers-Kronig relations
IFREQ : fits the analytic continuation of the GKI kernel to imaginary frequency
ECFIT : fits the TC kernel to jellium correlation energies per electron
KFC : finds the critical Fermi wavevector for onset of a static cdw
QVRSC : plot the critical rs such that no solutions exist to parametrize the QV kernel
GHPLAS : plots dynamic structure factor S(q,omega) to demonstrate ghost plasmon
PKER : plots the kernel and effective potential of Fermi liquid theory
PQMC : plots QMC static structure factor, S(q), data
PDISP : plots plasmon dispersion curves
PDFLUC : plots average and std. deviation of a density fluctuation
UNLOC : calculates the ultranonlocality coefficient for the crystal below
"""
# enter as scalar or vector
rs_list = [4,69]#range(1,20,6)#[4,10,30,69,100]#
if not hasattr(rs_list,'__len__'):
rs_list = [rs_list]
# 'ALDA', 'RPA', 'MCP07', 'static MCP07', 'TC' or 'rMCP07', 'QV', 'QV_MCP07', 'QV_TC'
fxc = 'TC'
"""
NB: fxc = TC and fxc = rMCP07 point to same kernel
Original name of kernel was TC, changed to rMCP07.
To make transition seamless in code, simply rewrap rMCP07 to TC
"""
if fxc == 'rMCP07':
fxc = 'TC'
TC_par_list = [3.846991, 0.471351, 4.346063, 0.881313]#[4.470217788196006, 1.4327137309889693, 0.04466295040605292, 2.918135781120395]
TC_par_names = ['a','b','c','d']
TC_pars = {}
for ipar,apar in enumerate(TC_par_names):
TC_pars[apar] = TC_par_list[ipar]
#{'a': 4.74, 'b': 1.73, 'c': 0.1, 'd': 0.8}#{'a': 4.01, 'b': 1.21, 'c': 0.11, 'd': 1.07}#{'a':4.01067394,'b': 1.21065643, 'c':0.10975759, 'd': 1.07043728}
# PZ81 or PW92
LDA = 'PW92'
q_bounds = {'min':0.01,'max':4.01,'step':0.01} # bounds and stepsize for wavevectors
moment_pars = {'calc': False,'plot': True,'sq_plots': 'single',
'order':0.0, 'prec':1.e-8,
'method':'original' # method can be gk_adap (Gauss-Kronrod), original (from PNAS), or adap when order = 0
}
third_mom_pars = {'calc':False,'plot':True,
'interp': 'spline' # interp can be spline or linear
}
"""
ec_fit_pars['method'] can be either
filter --> use small grids of increasing fineness to filter a good parameter set
fixed --> single search over a grid of constant spacing
lsq --> least squares search with scipy (fastest by far)
lsq_refine --> initial guess with least squares, refine by grid search
all methods leverage multicore processing for efficiency
"""
ec_fit = {'method': 'lsq'}
gen_opts = {'calc':False, 'plot': True}
# True: use Fortran libraries to plot jellium correlation energy; false, use python
eps_c_flib = True
# True: use a tabulated parameterization of the GKI kernel
# False: re-evaluate the Cauchy residue integral for each value of I*omega for omega real
gki_param = True
# number of points/interval in z = q/(2*kF) integration
z_pts = 10#10
# number of points/interval in lambda integration
lambda_pts = 5#10
# number of points/interval in u = omega/eps_F integration
u_pts = 10#20
# True: use three fit parameters (a,b,c); False: use two fit parameters (a,b)
fit_c = True
# True: use a fourth fit parameter
fit_d = True
if not fit_c:
fit_d = False
# optional multicore processing
nproc = 6
# initial bounds for parameters. If filter_search = True, step sizes are ignored
a_min = 3
a_max = 3.0
a_step = 0.5
# a and b bounds are required
b_min = 1
b_max = 2.0
b_step = 0.5
# if fit_c = False, these don't need to be set
c_min = 4
c_max = 2.0
c_step = 0.5
d_min = 1
d_max = 2.0
d_step = 0.5
"""
Some constants shared by other modules
"""
#from julia BigFloat(pi)
pi = 3.141592653589793238462643383279502884197169399375105820974944592307816406286198
Eh_to_eV = 27.211386245988 # https://physics.nist.gov/cgi-bin/cuu/Value?hr
bohr_to_ang = 0.529177210903 # https://physics.nist.gov/cgi-bin/cuu/Value?bohrrada0
crystal = 'Na' # the crystal to do ultranonlocality calculations with
# colors for plots
clist = ['darkblue','darkorange','darkgreen','darkred','black','tab:blue','tab:orange']