-
Notifications
You must be signed in to change notification settings - Fork 1
/
parwave.c
735 lines (621 loc) · 21.1 KB
/
parwave.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
/* An implementation of a Klatt cascade-parallel formant synthesizer.
*
* Copyright (C) 2011-2015 Reece H. Dunn
* (c) 1993,94 Jon Iles and Nick Ing-Simmons
*
* A re-implementation in C of Dennis Klatt's Fortran code, originally by:
*
* Jon Iles (j.p.iles@cs.bham.ac.uk)
* Nick Ing-Simmons (nicki@lobby.ti.com)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include "parwave.h"
#ifdef _MSC_VER
#define getrandom(min,max) ((rand()%(int)(((max)+1)-(min)))+(min))
#else
#define getrandom(min,max) ((rand()%(long)(((max)+1)-(min)))+(min))
#endif
/* function prototypes for functions private to this file */
static void flutter(klatt_global_ptr,klatt_frame_ptr);
static float sampled_source(klatt_global_ptr);
static float impulsive_source(klatt_global_ptr);
static float natural_source(klatt_global_ptr);
static void pitch_synch_par_reset(klatt_global_ptr,klatt_frame_ptr);
static float gen_noise(klatt_global_ptr);
static float DBtoLIN(long);
static void frame_init(klatt_global_ptr,klatt_frame_ptr);
static float resonator(resonator_ptr, float);
static float antiresonator(resonator_ptr, float);
static void setabc(long,long,resonator_ptr,klatt_global_ptr);
static void setzeroabc(long,long,resonator_ptr,klatt_global_ptr);
/** @brief A generic resonator.
*
* Internal memory for the resonator is stored in the globals structure.
*/
static float resonator(resonator_ptr r, float input)
{
register float x = r->a * input + r->b * r->p1 + r->c * r->p2;
r->p2 = r->p1;
r->p1 = x;
return x;
}
/** @brief A generic anti-resonator.
*
* The code is the same as resonator except that a,b,c need to be set with
* setzeroabc() and we save inputs in p1/p2 rather than outputs. There is
* currently only one of these - "rnz".
*/
static float antiresonator(resonator_ptr r, float input)
{
register float x = r->a * input + r->b * r->p1 + r->c * r->p2;
r->p2 = r->p1;
r->p1 = input;
return x;
}
/** @brief Add F0 flutter.
*
* See "Analysis, synthesis and perception of voice quality variations among
* female and male talkers" D.H. Klatt and L.C. Klatt JASA 87(2) February 1990.
*
* Flutter is added by applying a quasi-random element constructed from three
* slowly varying sine waves.
*/
static void flutter(klatt_global_ptr globals, klatt_frame_ptr frame)
{
static int time_count;
double delta_f0;
double fla,flb,flc,fld,fle;
fla = (double) globals->f0_flutter / 50;
flb = (double) globals->original_f0 / 100;
flc = sin(2*M_PI*12.7*time_count);
fld = sin(2*M_PI*7.1*time_count);
fle = sin(2*M_PI*4.7*time_count);
delta_f0 = fla * flb * (flc + fld + fle) * 10;
frame->F0hz10 = frame->F0hz10 + (long) delta_f0;
time_count++;
}
/** @brief Allows the use of a glottal excitation waveform sampled from a real voice.
*/
static float sampled_source(klatt_global_ptr globals)
{
int itemp;
float ftemp;
float result;
float diff_value;
int current_value;
int next_value;
float temp_diff;
if (globals->T0 != 0)
{
ftemp = (float)globals->nper;
ftemp = ftemp / globals->T0;
ftemp = ftemp * globals->num_samples;
itemp = (int)ftemp;
temp_diff = ftemp - (float)itemp;
current_value = globals->natural_samples[itemp];
next_value = globals->natural_samples[itemp+1];
diff_value = (float) next_value - (float) current_value;
diff_value = diff_value * temp_diff;
result = globals->natural_samples[itemp] + diff_value;
result = result * globals->sample_factor;
}
else
result = 0;
return(result);
}
/** @brief Converts synthesis parameters to a waveform.
*/
void parwave(klatt_global_ptr globals, klatt_frame_ptr frame, int *output)
{
static float glotlast;
static float vlast;
frame_init(globals,frame); /* get parameters for next frame of speech */
if (globals->f0_flutter != 0)
flutter(globals,frame); /* add f0 flutter */
/* MAIN LOOP, for each output sample of current frame: */
for (globals->ns=0; globals->ns<globals->nspfr; globals->ns++)
{
float noise;
long n4;
float out = 0.0;
float frics;
float glotout;
float aspiration;
float par_glotout;
float voice;
float sourc;
/* Get low-passed random number for aspiration and frication noise */
noise = gen_noise(globals);
/*
Amplitude modulate noise (reduce noise amplitude during
second half of glottal period) if voicing simultaneously present.
*/
if (globals->nper > globals->nmod)
noise *= (float) 0.5;
/* Compute frication noise */
frics = globals->amp_frica * noise;
/*
Compute voicing waveform. Run glottal source simulation at 4
times normal sample rate to minimize quantization noise in
period of female voice.
*/
for (n4=0; n4<4; n4++)
{
switch(globals->glsource)
{
case IMPULSIVE:
voice = impulsive_source(globals);
break;
case NATURAL:
voice = natural_source(globals);
break;
case SAMPLED:
voice = sampled_source(globals);
break;
}
/* Reset period when counter 'nper' reaches T0 */
if (globals->nper >= globals->T0)
{
globals->nper = 0;
pitch_synch_par_reset(globals,frame);
}
/*
Low-pass filter voicing waveform before downsampling from 4*samrate
to samrate samples/sec. Resonator f=.09*samrate, bw=.06*samrate
*/
voice = resonator(&(globals->rlp),voice);
/* Increment counter that keeps track of 4*samrate samples per sec */
globals->nper++;
}
/*
Tilt spectrum of voicing source down by soft low-pass filtering, amount
of tilt determined by TLTdb
*/
voice = (voice * globals->onemd) + (vlast * globals->decay);
vlast = voice;
/*
Add breathiness during glottal open phase. Amount of breathiness
determined by parameter Aturb Use nrand rather than noise because
noise is low-passed.
*/
if (globals->nper < globals->nopen)
voice += globals->amp_breth * globals->nrand;
/* Set amplitude of voicing */
glotout = globals->amp_voice * voice;
par_glotout = globals->par_amp_voice * voice;
/* Compute aspiration amplitude and add to voicing source */
aspiration = globals->amp_aspir * noise;
glotout += aspiration;
par_glotout += aspiration;
if (globals->synthesis_model != ALL_PARALLEL)
{
/*
* Cascade vocal tract, excited by laryngeal sources.
* Nasal antiresonator, then formants FNP, F5, F4, F3, F2, F1
*/
float rnzout = antiresonator(&(globals->rnz),glotout);
float casc_next_in = resonator(&(globals->rnpc),rnzout);
switch (globals->nfcascade)
{
case 8: casc_next_in = resonator(&(globals->r8c),casc_next_in);
case 7: casc_next_in = resonator(&(globals->r7c),casc_next_in);
case 6: casc_next_in = resonator(&(globals->r6c),casc_next_in);
case 5: casc_next_in = resonator(&(globals->r5c),casc_next_in);
case 4: casc_next_in = resonator(&(globals->r4c),casc_next_in);
case 3: casc_next_in = resonator(&(globals->r3c),casc_next_in);
case 2: casc_next_in = resonator(&(globals->r2c),casc_next_in);
case 1: out = resonator(&(globals->r1c),casc_next_in);
}
}
/* Excite parallel F1 and FNP by voicing waveform */
/*
Standard parallel vocal tract Formants F6,F5,F4,F3,F2,
outputs added with alternating sign. Sound sourc for other
parallel resonators is frication plus first difference of
voicing waveform.
*/
out += resonator(&(globals->r1p),par_glotout);
out += resonator(&(globals->rnpp),par_glotout);
sourc = frics + par_glotout - glotlast;
glotlast = par_glotout;
out = resonator(&(globals->r6p),sourc) - out;
out = resonator(&(globals->r5p),sourc) - out;
out = resonator(&(globals->r4p),sourc) - out;
out = resonator(&(globals->r3p),sourc) - out;
out = resonator(&(globals->r2p),sourc) - out;
out = globals->amp_bypas * sourc - out;
out = resonator(&(globals->rout),out);
out = out * globals->amp_gain0; /* Convert back to integer */
if (out < SHRT_MIN) out = SHRT_MIN;
if (out > SHRT_MAX) out = SHRT_MAX;
*output++ = (int)out;
}
}
/** @brief Initialise all parameters used in parwave.
*
* This sets resonator internal memory to zero.
*/
void parwave_init(klatt_global_ptr globals)
{
globals->FLPhz = (950 * globals->samrate) / 10000;
globals->BLPhz = (630 * globals->samrate) / 10000;
setabc(globals->FLPhz,globals->BLPhz,&(globals->rlp),globals);
globals->nper = 0;
globals->T0 = 0;
globals->nopen = 0;
globals->nmod = 0;
globals->rnpp.p1=0;
globals->r1p.p1=0;
globals->r2p.p1=0;
globals->r3p.p1=0;
globals->r4p.p1=0;
globals->r5p.p1=0;
globals->r6p.p1=0;
globals->r1c.p1=0;
globals->r2c.p1=0;
globals->r3c.p1=0;
globals->r4c.p1=0;
globals->r5c.p1=0;
globals->r6c.p1=0;
globals->r7c.p1=0;
globals->r8c.p1=0;
globals->rnpc.p1=0;
globals->rnz.p1=0;
globals->rgl.p1=0;
globals->rlp.p1=0;
globals->rout.p1=0;
globals->rnpp.p2=0;
globals->r1p.p2=0;
globals->r2p.p2=0;
globals->r3p.p2=0;
globals->r4p.p2=0;
globals->r5p.p2=0;
globals->r6p.p2=0;
globals->r1c.p2=0;
globals->r2c.p2=0;
globals->r3c.p2=0;
globals->r4c.p2=0;
globals->r5c.p2=0;
globals->r6c.p2=0;
globals->r7c.p2=0;
globals->r8c.p2=0;
globals->rnpc.p2=0;
globals->rnz.p2=0;
globals->rgl.p2=0;
globals->rlp.p2=0;
globals->rout.p2=0;
}
/** @brief Use parameters from the input frame to set up resonator coefficients.
*/
static void frame_init(klatt_global_ptr globals, klatt_frame_ptr frame)
{
globals->original_f0 = frame->F0hz10 / 10;
frame->AVdb = frame->AVdb - 7;
if (frame->AVdb < 0)
frame->AVdb = 0;
globals->amp_aspir = DBtoLIN(frame->ASP) * 0.05;
globals->amp_frica = DBtoLIN(frame->AF) * 0.25;
globals->par_amp_voice = DBtoLIN(frame->AVpdb);
globals->amp_bypas = DBtoLIN(frame->AB) * 0.05;
frame->Gain0 = frame->Gain0 - 3;
if (frame->Gain0 <= 0)
frame->Gain0 = 57;
globals->amp_gain0 = DBtoLIN(frame->Gain0);
/* Set coefficients of variable cascade resonators */
if (globals->nfcascade >= 8)
{
if (globals->samrate >= 16000) /* Inside Nyquist rate? */
setabc(7500,600,&(globals->r8c),globals);
else
globals->nfcascade = 6;
}
if (globals->nfcascade >= 7)
{
if (globals->samrate >= 16000) /* Inside Nyquist rate? */
setabc(6500,500,&(globals->r7c),globals);
else
globals->nfcascade = 6;
}
if (globals->nfcascade >= 6)
setabc(frame->F6hz,frame->B6hz,&(globals->r6c),globals);
if (globals->nfcascade >= 5)
setabc(frame->F5hz,frame->B5hz,&(globals->r5c),globals);
setabc(frame->F4hz,frame->B4hz,&(globals->r4c),globals);
setabc(frame->F3hz,frame->B3hz,&(globals->r3c),globals);
setabc(frame->F2hz,frame->B2hz,&(globals->r2c),globals);
setabc(frame->F1hz,frame->B1hz,&(globals->r1c),globals);
/* Set coeficients of nasal resonator and zero antiresonator */
setabc(frame->FNPhz,frame->BNPhz,&(globals->rnpc),globals);
setzeroabc(frame->FNZhz,frame->BNZhz,&(globals->rnz),globals);
/* Set coefficients of parallel resonators, and amplitude of outputs */
setabc(frame->F1hz,frame->B1phz,&(globals->r1p),globals);
globals->r1p.a *= DBtoLIN(frame->A1) * 0.4;
setabc(frame->FNPhz,frame->BNPhz,&(globals->rnpp),globals);
globals->rnpp.a *= DBtoLIN(frame->ANP) * 0.6;
setabc(frame->F2hz,frame->B2phz,&(globals->r2p),globals);
globals->r2p.a *= DBtoLIN(frame->A2) * 0.15;
setabc(frame->F3hz,frame->B3phz,&(globals->r3p),globals);
globals->r3p.a *= DBtoLIN(frame->A3) * 0.06;
setabc(frame->F4hz,frame->B4phz,&(globals->r4p),globals);
globals->r4p.a *= DBtoLIN(frame->A4) * 0.04;
setabc(frame->F5hz,frame->B5phz,&(globals->r5p),globals);
globals->r5p.a *= DBtoLIN(frame->A5) * 0.022;
setabc(frame->F6hz,frame->B6phz,&(globals->r6p),globals);
globals->r6p.a *= DBtoLIN(frame->A6) * 0.03;
/* output low-pass filter */
setabc((long)0.0,(long)(globals->samrate/2),&(globals->rout),globals);
}
/** @brief Generate the glottal waveform from an impulse source.
*
* Generate a low pass filtered train of impulses as an approximation of a
* natural excitation waveform. Low-pass filter the differentiated impulse
* with a critically-damped second-order filter, time constant proportional
* to Kopen.
*/
static float impulsive_source(klatt_global_ptr globals)
{
static float doublet[] = {0.0,13000000.0,-13000000.0};
static float vwave;
if (globals->nper < 3)
vwave = doublet[globals->nper];
else
vwave = 0.0;
return resonator(&(globals->rgl),vwave);
}
/** @brief Generate the glottal waveform from a natural (sampled) source.
*
* Vwave is the differentiated glottal flow waveform, there is a weak
* spectral zero around 800 Hz, magic constants a,b reset pitch
* synchronously.
*/
static float natural_source(klatt_global_ptr globals)
{
float lgtemp;
static float vwave;
if (globals->nper < globals->nopen)
{
globals->pulse_shape_a -= globals->pulse_shape_b;
vwave += globals->pulse_shape_a;
lgtemp=vwave * 0.028;
return lgtemp;
}
else
{
vwave = 0.0;
return 0.0;
}
}
/** @brief Reset selected parameters pitch-synchronously.
*/
static void pitch_synch_par_reset(klatt_global_ptr globals, klatt_frame_ptr frame)
{
long temp;
float temp1;
static long skew;
/*
* Constant B0 controls shape of glottal pulse as a function
* of desired duration of open phase N0. (Note that N0 is
* specified in terms of 40,000 samples/sec of speech.)
*
* Assume voicing waveform V(t) has form: k1 t**2 - k2 t**3.
*
* If the radiation characterivative, a temporal derivative
* is folded in, and we go from continuous time to discrete
* integers n:
*
* dV/dt = vwave[n]
* = sum over i=1,2,...,n of { a - (i * b) }
* = a n - b/2 n**2
*
* where the constants a and b control the detailed shape
* and amplitude of the voicing waveform over the open
* potion of the voicing cycle "nopen".
*
* Let integral of dV/dt have no net dc flow --> a = (b * nopen) / 3.
*
* Let maximum of dUg(n)/dn be constant --> b = gain / (nopen * nopen)
* meaning as nopen gets bigger, V has bigger peak proportional to n.
*
* Thus, to generate the table below for 40 <= nopen <= 263:
*
* B0[nopen - 40] = 1920000 / (nopen * nopen)
*/
static short B0[224] = {
1200, 1142, 1088, 1038, 991, 948, 907, 869, 833, 799, 768, 738, 710, 683, 658,
634, 612, 590, 570, 551, 533, 515, 499, 483, 468, 454, 440, 427, 415, 403,
391, 380, 370, 360, 350, 341, 332, 323, 315, 307, 300, 292, 285, 278, 272,
265, 259, 253, 247, 242, 237, 231, 226, 221, 217, 212, 208, 204, 199, 195,
192, 188, 184, 180, 177, 174, 170, 167, 164, 161, 158, 155, 153, 150, 147,
145, 142, 140, 137, 135, 133, 131, 128, 126, 124, 122, 120, 119, 117, 115,
113, 111, 110, 108, 106, 105, 103, 102, 100, 99, 97, 96, 95, 93, 92, 91, 90,
88, 87, 86, 85, 84, 83, 82, 80, 79, 78, 77, 76, 75, 75, 74, 73, 72, 71,
70, 69, 68, 68, 67, 66, 65, 64, 64, 63, 62, 61, 61, 60, 59, 59, 58, 57,
57, 56, 56, 55, 55, 54, 54, 53, 53, 52, 52, 51, 51, 50, 50, 49, 49, 48, 48,
47, 47, 46, 46, 45, 45, 44, 44, 43, 43, 42, 42, 41, 41, 41, 41, 40, 40,
39, 39, 38, 38, 38, 38, 37, 37, 36, 36, 36, 36, 35, 35, 35, 35, 34, 34, 33,
33, 33, 33, 32, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 29,
28, 28, 28, 28, 27, 27
};
if (frame->F0hz10 > 0)
{
/* T0 is 4* the number of samples in one pitch period */
globals->T0 = (40 * globals->samrate) / frame->F0hz10;
globals->amp_voice = DBtoLIN(frame->AVdb);
/* Duration of period before amplitude modulation */
globals->nmod = globals->T0;
if (frame->AVdb > 0)
globals->nmod >>= 1;
/* Breathiness of voicing waveform */
globals->amp_breth = DBtoLIN(frame->Aturb) * 0.1;
/* Set open phase of glottal period where 40 <= open phase <= 263 */
globals->nopen = 4 * frame->Kopen;
if ((globals->glsource == IMPULSIVE) && (globals->nopen > 263))
globals->nopen = 263;
if (globals->nopen >= (globals->T0-1))
{
globals->nopen = globals->T0 - 2;
if(globals->quiet_flag == FALSE)
fprintf(stderr, "Warning: glottal open period cannot exceed T0, truncated\n");
}
if (globals->nopen < 40)
{
/* F0 max = 1000 Hz */
globals->nopen = 40;
if(globals->quiet_flag == FALSE)
{
fprintf(stderr, "Warning: minimum glottal open period is 10 samples.\n");
fprintf(stderr, "truncated, nopen = %i\n",(int)globals->nopen);
}
}
/* Reset a & b, which determine shape of "natural" glottal waveform */
globals->pulse_shape_b = B0[globals->nopen-40];
globals->pulse_shape_a = (globals->pulse_shape_b * globals->nopen) * 0.333;
/* Reset width of "impulsive" glottal pulse */
temp = globals->samrate / globals->nopen;
setabc((long)0,temp,&(globals->rgl),globals);
/* Make gain at F1 about constant */
temp1 = globals->nopen *.00833;
globals->rgl.a *= temp1 * temp1;
/*
Truncate skewness so as not to exceed duration of closed phase
of glottal period.
*/
temp = globals->T0 - globals->nopen;
if (frame->Kskew > temp)
{
if (globals->quiet_flag == FALSE)
{
fprintf(stderr, "Kskew duration=%d > glottal closed period=%d, truncate\n",
(int)frame->Kskew, (int)(globals->T0 - globals->nopen));
}
frame->Kskew = temp;
}
if (skew >= 0)
skew = frame->Kskew;
else
skew = -frame->Kskew;
/* Add skewness to closed portion of voicing period */
globals->T0 = globals->T0 + skew;
skew = - skew;
}
else
{
globals->T0 = 4; /* Default for f0 undefined */
globals->amp_voice = 0.0;
globals->nmod = globals->T0;
globals->amp_breth = 0.0;
globals->pulse_shape_a = 0.0;
globals->pulse_shape_b = 0.0;
}
/* Reset these pars pitch synchronously or at update rate if f0=0 */
if ((globals->T0 != 4) || (globals->ns == 0))
{
/* Set one-pole low-pass filter that tilts glottal source */
globals->decay = (0.033 * frame->TLTdb);
if (globals->decay > 0.0)
globals->onemd = 1.0 - globals->decay;
else
globals->onemd = 1.0;
}
}
/** Convert formant freqencies and bandwidth into resonator difference equation constants.
*
* @param f Frequency of resonator in Hz
* @param bw Frequency of resonator in Hz
*/
static void setabc(long int f, long int bw, resonator_ptr rp, klatt_global_ptr globals)
{
float r;
r = exp(-M_PI / globals->samrate * bw);
rp->c = -(r * r);
rp->b = r * cos(2.0 * M_PI / globals->samrate * f) * 2.0;
rp->a = 1.0 - rp->b - rp->c;
}
/** @brief Convert formant freqencies and bandwidth into anti-resonator difference equation constants.
*
* @param f Frequency of resonator in Hz
* @param bw Frequency of resonator in Hz
*/
static void setzeroabc(long int f, long int bw, resonator_ptr rp, klatt_global_ptr globals)
{
float r;
/* First compute ordinary resonator coefficients */
r = exp(-M_PI / globals->samrate * bw);
rp->c = -(r * r);
rp->b = r * cos(2.0 * M_PI / globals->samrate * -f) * 2.0;
rp->a = 1.0 - rp->b - rp->c;
if (f != 0) /* prevent a', b' and c' going to INF! */
{
/* Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a) */
rp->a = 1.0 / rp->a;
rp->c *= -rp->a;
rp->b *= -rp->a;
}
}
/** @brief Random number (noise) generator.
*
* @return a number between -8191 and +8191.
*
* Noise spectrum is tilted down by soft low-pass filter having a pole near
* the origin in the z-plane, i.e. output = input + (0.75 * lastoutput)
*/
static float gen_noise(klatt_global_ptr globals)
{
long temp;
static float nlast;
temp = (long) getrandom(-8191,8191);
globals->nrand = (long) temp;
nlast = globals->nrand + (0.75 * nlast);
return nlast;
}
/** @brief Convert from decibels to a linear scale factor.
*
* Conversion table, db to linear:
*
* 87 dB --> 32767
* 86 dB --> 29491 (1 dB down = 0.5**1/6)
* ...
* 81 dB --> 16384 (6 dB down = 0.5)
* ...
* 0 dB --> 0
*
* The just noticeable difference for a change in intensity of a vowel
* is approximately 1 dB. Thus all amplitudes are quantized to 1 dB
* steps.
*/
static float DBtoLIN(long dB)
{
float lgtemp;
static float amptable[88] =
{
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.0, 7.0,
8.0, 9.0, 10.0, 11.0, 13.0, 14.0, 16.0, 18.0, 20.0, 22.0, 25.0, 28.0, 32.0,
35.0, 40.0, 45.0, 51.0, 57.0, 64.0, 71.0, 80.0, 90.0, 101.0, 114.0, 128.0,
142.0, 159.0, 179.0, 202.0, 227.0, 256.0, 284.0, 318.0, 359.0, 405.0,
455.0, 512.0, 568.0, 638.0, 719.0, 811.0, 911.0, 1024.0, 1137.0, 1276.0,
1438.0, 1622.0, 1823.0, 2048.0, 2273.0, 2552.0, 2875.0, 3244.0, 3645.0,
4096.0, 4547.0, 5104.0, 5751.0, 6488.0, 7291.0, 8192.0, 9093.0, 10207.0,
11502.0, 12976.0, 14582.0, 16384.0, 18350.0, 20644.0, 23429.0,
26214.0, 29491.0, 32767
};
if ((dB < 0) || (dB > 87))
return 0;
lgtemp = amptable[dB] * .001;
return lgtemp;
}