|
| 1 | +using ParticleTypeMap = std::unorderd_map<int, int>; |
| 2 | + |
| 3 | +metatensor_torch::System |
| 4 | + : system_from_lmp(const TypeMapping &type_map, |
| 5 | + const std::vector<double> &engine_positions, |
| 6 | + const std::vector<double> &engine_particle_types, |
| 7 | + const Vector3d &box_size, bool do_virial, |
| 8 | + torch::ScalarType dtype, torch::Device device) { |
| 9 | + auto tensor_options = |
| 10 | + torch::TensorOptions().dtype(torch::kFloat64).device(torch::kCPU); |
| 11 | + if (engine_positions % 3 != 0) |
| 12 | + throw std::runtime_error( |
| 13 | + "Positoin array must have a multiple of 3 elements"); |
| 14 | + const int n_particles = engine_positions.size() / 3; |
| 15 | + if (engine_particle_types.size() != n_particles) |
| 16 | + throw std::runtime_error( |
| 17 | + "Length of positon and particle tyep arrays inconsistent"); |
| 18 | + |
| 19 | + auto positions = torch::from_blob( |
| 20 | + engien_positions.data(), {n_particles, 3}, |
| 21 | + // requires_grad=true since we always need gradients w.r.t. positions |
| 22 | + tensor_options.requires_grad(true)); |
| 23 | + std::vector<int> particle_types_ml; |
| 24 | + std::ranges::transform( |
| 25 | + particle_types_engine, std::back_inserter(particle_types_ml), |
| 26 | + [&type_map](int engine_type) { return type_map.at(engine_type); }); |
| 27 | + |
| 28 | + auto particle_types_ml_tensor = |
| 29 | + Torch::Tensor(particle_types_ml, tensor_options.requires_grad(true)); |
| 30 | + |
| 31 | + auto cell = torch::zeros({3, 3}, tensor_options); |
| 32 | + for (int i : {0, 1, 2}) |
| 33 | + cell[i][i] = box_size[i]; |
| 34 | + |
| 35 | + positions.to(dtype).to(device); |
| 36 | + cell = cell.to(dtype).to(device); |
| 37 | + |
| 38 | + return system = torch::make_intrusive<metatensor_torch::SystemHolder>( |
| 39 | + particle_types_ml_tensor.to(device), positions, cell); |
| 40 | +} |
0 commit comments