-
Notifications
You must be signed in to change notification settings - Fork 3
/
atari_preprocessing.py
213 lines (170 loc) · 8.07 KB
/
atari_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# from https://github.com/facebookresearch/moolib/blob/06e7a3e80c9f52729b4a6159f3fb4fc78986c98e/examples/atari/atari_preprocessing.py
# coding=utf-8
# Copyright 2019 The SEED Authors
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A class implementing minimal Atari 2600 preprocessing.
Adapted from Dopamine.
"""
import cv2
import gym
import numpy as np
from gym.spaces.box import Box
class AtariPreprocessing(gym.Wrapper):
"""A class implementing image preprocessing for Atari 2600 agents.
Specifically, this provides the following subset from the JAIR paper
(Bellemare et al., 2013) and Nature DQN paper (Mnih et al., 2015):
* Frame skipping (defaults to 4).
* Terminal signal when a life is lost (off by default).
* Grayscale and max-pooling of the last two frames.
* Downsample the screen to a square image (defaults to 84x84).
More generally, this class follows the preprocessing guidelines set down in
Machado et al. (2018), "Revisiting the Arcade Learning Environment:
Evaluation Protocols and Open Problems for General Agents".
It also provides random starting no-ops, which are used in the Rainbow, Apex
and R2D2 papers.
"""
def __init__(self, env, frame_skip=4, terminal_on_life_loss=False, screen_size=84, max_random_noops=0):
"""Constructor for an Atari 2600 preprocessor.
Args:
env: Gym environment whose observations are preprocessed.
frame_skip: int, the frequency at which the agent experiences the game.
terminal_on_life_loss: bool, If True, the step() method returns
is_terminal=True whenever a life is lost. See Mnih et al. 2015.
screen_size: int, size of a resized Atari 2600 frame.
max_random_noops: int, maximum number of no-ops to apply at the beginning
of each episode to reduce determinism. These no-ops are applied at a
low-level, before frame skipping.
Raises:
ValueError: if frame_skip or screen_size are not strictly positive.
"""
super().__init__(env)
if frame_skip <= 0:
raise ValueError("Frame skip should be strictly positive, got {}".format(frame_skip))
if screen_size <= 0:
raise ValueError("Target screen size should be strictly positive, got {}".format(screen_size))
self.terminal_on_life_loss = terminal_on_life_loss
self.frame_skip = frame_skip
self.screen_size = screen_size
self.max_random_noops = max_random_noops
obs_dims = self.env.observation_space
# Stores temporary observations used for pooling over two successive
# frames.
self.screen_buffer = [
np.empty((obs_dims.shape[0], obs_dims.shape[1]), dtype=np.uint8),
np.empty((obs_dims.shape[0], obs_dims.shape[1]), dtype=np.uint8),
]
self.game_over = False
self.lives = 0 # Will need to be set by reset().
@property
def observation_space(self):
# Return the observation space adjusted to match the shape of the processed
# observations.
return Box(low=0, high=255, shape=(self.screen_size, self.screen_size), dtype=np.uint8)
def apply_random_noops(self):
"""Steps self.env with random no-ops."""
if self.max_random_noops <= 0:
return
# Other no-ops implementations actually always do at least 1 no-op. We
# follow them.
no_ops = self.env.np_random.integers(1, self.max_random_noops + 1)
for _ in range(no_ops):
_, _, game_over, _ = self.env.step(0)
if game_over:
self.env.reset()
def reset(self, **kwargs):
"""Resets the environment.
Returns:
observation: numpy array, the initial observation emitted by the
environment.
"""
self.env.reset(**kwargs)
self.apply_random_noops()
self.lives = self.env.ale.lives()
self._fetch_grayscale_observation(self.screen_buffer[0])
self.screen_buffer[1].fill(0)
return self._pool_and_resize()
def render(self, mode):
"""Renders the current screen, before preprocessing.
This calls the Gym API's render() method.
Args:
mode: Mode argument for the environment's render() method.
Valid values (str) are:
'rgb_array': returns the raw ALE image.
'human': renders to display via the Gym renderer.
Returns:
if mode='rgb_array': numpy array, the most recent screen.
if mode='human': bool, whether the rendering was successful.
"""
return self.env.render(mode)
def step(self, action):
"""Applies the given action in the environment.
Remarks:
* If a terminal state (from life loss or episode end) is reached, this may
execute fewer than self.frame_skip steps in the environment.
* Furthermore, in this case the returned observation may not contain valid
image data and should be ignored.
Args:
action: The action to be executed.
Returns:
observation: numpy array, the observation following the action.
reward: float, the reward following the action.
is_terminal: bool, whether the environment has reached a terminal state.
This is true when a life is lost and terminal_on_life_loss, or when the
episode is over.
info: Gym API's info data structure.
"""
accumulated_reward = 0.0
for time_step in range(self.frame_skip):
# We bypass the Gym observation altogether and directly fetch the
# grayscale image from the ALE. This is a little faster.
_, reward, game_over, info = self.env.step(action)
accumulated_reward += reward
if self.terminal_on_life_loss:
new_lives = self.env.ale.lives()
is_terminal = game_over or new_lives < self.lives
self.lives = new_lives
else:
is_terminal = game_over
if is_terminal:
break
# We max-pool over the last two frames, in grayscale.
elif time_step >= self.frame_skip - 2:
t = time_step - (self.frame_skip - 2)
self._fetch_grayscale_observation(self.screen_buffer[t])
# Pool the last two observations.
observation = self._pool_and_resize()
self.game_over = game_over
return observation, accumulated_reward, is_terminal, info
def _fetch_grayscale_observation(self, output):
"""Returns the current observation in grayscale.
The returned observation is stored in 'output'.
Args:
output: numpy array, screen buffer to hold the returned observation.
Returns:
observation: numpy array, the current observation in grayscale.
"""
self.env.ale.getScreenGrayscale(output)
return output
def _pool_and_resize(self):
"""Transforms two frames into a Nature DQN observation.
For efficiency, the transformation is done in-place in self.screen_buffer.
Returns:
transformed_screen: numpy array, pooled, resized screen.
"""
# Pool if there are enough screens to do so.
if self.frame_skip > 1:
np.maximum(self.screen_buffer[0], self.screen_buffer[1], out=self.screen_buffer[0])
transformed_image = cv2.resize(
self.screen_buffer[0], (self.screen_size, self.screen_size), interpolation=cv2.INTER_LINEAR
)
return np.asarray(transformed_image, dtype=np.uint8)