-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquality_computer.html
400 lines (380 loc) · 24.3 KB
/
quality_computer.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1">
<meta name="generator" content="pdoc3 0.11.1">
<title>selection.quality_computer API documentation</title>
<meta name="description" content="">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/sanitize.min.css" integrity="sha512-y1dtMcuvtTMJc1yPgEqF0ZjQbhnc/bFhyvIyVNb9Zk5mIGtqVaAB1Ttl28su8AvFMOY0EwRbAe+HCLqj6W7/KA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/typography.min.css" integrity="sha512-Y1DYSb995BAfxobCkKepB1BqJJTPrOp3zPL74AWFugHHmmdcvO+C48WLrUOlhGMc0QG7AE3f7gmvvcrmX2fDoA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:1.5em;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:2em 0 .50em 0}h3{font-size:1.4em;margin:1.6em 0 .7em 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .2s ease-in-out}a:visited{color:#503}a:hover{color:#b62}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900;font-weight:bold}pre code{font-size:.8em;line-height:1.4em;padding:1em;display:block}code{background:#f3f3f3;font-family:"DejaVu Sans Mono",monospace;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em 1em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul ul{padding-left:1em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js" integrity="sha512-D9gUyxqja7hBtkWpPWGt9wfbfaMGVt9gnyCvYa+jojwwPHLCzUm5i8rpk7vD7wNee9bA35eYIjobYPaQuKS1MQ==" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => {
hljs.configure({languages: ['bash', 'css', 'diff', 'graphql', 'ini', 'javascript', 'json', 'plaintext', 'python', 'python-repl', 'rust', 'shell', 'sql', 'typescript', 'xml', 'yaml']});
hljs.highlightAll();
})</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>selection.quality_computer</code></h1>
</header>
<section id="section-intro">
</section>
<section>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-classes">Classes</h2>
<dl>
<dt id="selection.quality_computer.BaseQualityComputer"><code class="flex name class">
<span>class <span class="ident">BaseQualityComputer</span></span>
<span>(</span><span>n_samples=100)</span>
</code></dt>
<dd>
<div class="desc"><p>Initialize the QualityComputer object.</p>
<h2 id="parameters">Parameters</h2>
<p>n_samples (int): The number of samples to be used for max quality computation of supermodels.
Default is 100.</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">class BaseQualityComputer(BaseComputer):
def __init__(self, n_samples=100):
"""
Initialize the QualityComputer object.
Parameters:
n_samples (int): The number of samples to be used for max quality computation of supermodels.
Default is 100.
"""
self.n_samples = n_samples
self.covariances_default = None
super().__init__()
def predict_supermodels(
self,
questions,
indices_models_supermodel,
qualities,
sigma_qualities,
model_answers
):
"""
Predicts the qualities of supermodels based on the given inputs.
Args:
questions (list): A list of questions.
indices_models_supermodel (list): A list of indices indicating the supermodels to consider for each question.
qualities (list): A list of qualities for each question and model.
sigma_qualities (list): A list of covariance matrices for the qualities of each question and supermodel.
model_answers (list): A list of model answers.
Returns:
qualities_supermodel (ndarray): An array of predicted qualities for each supermodel.
qualities_var_supermodel (ndarray): An array of variances for the predicted qualities of each supermodel.
"""
qualities_supermodel = []
qualities_var_supermodel = []
for i, question in enumerate(questions):
qualities_sample = qualities[i][indices_models_supermodel[i]]
if sigma_qualities[i] is None:
sigma_qualities_sample = None
else:
sigma_qualities_sample = sigma_qualities[i][np.ix_(indices_models_supermodel[i], indices_models_supermodel[i])]
qual, var = compute_expected_max(
qualities_sample,
sigma_qualities_sample,
independent=self.is_independent,
n_samples=self.n_samples
)
qualities_supermodel.append(qual)
qualities_var_supermodel.append(var)
return np.array(qualities_supermodel), np.array(qualities_var_supermodel)
def fit_covariances(self, questions, model_answers):
"""
Computes and stores the covariance matrices for different combinations of models.
This method calculates the covariance matrices for the predictions of different
combinations of models and stores them in the `covariances_default` attribute.
This is a default strategy that you can use to compute the covariance matrices.
Note that this assumes that your "predict" method is already implemented.
Args:
questions (list): A list of questions or input data for which predictions are made.
model_answers (list of lists): A list where each element is a list of answers
from different models. Assumes no `None` values
in `model_answers`.
Notes:
- The method assumes that `model_answers` contains no `None` values.
- The `predict` method is used to generate predictions for the given questions
and model answers.
- The covariance matrices are computed for all possible combinations of models
(including the empty set) and stored in a dictionary with keys representing
the combination of models.
"""
self.covariances_default = dict()
n_models = len(model_answers[0])
predictions_all_models = self.predict(
questions, model_answers
)[0]
for n_models_computed in range(n_models + 1):
for models_computed in combinations(range(n_models), n_models_computed):
str_rep = ','.join([str(model) for model in sorted(models_computed)])
model_answers_here = [
[answers[i] if i in models_computed else None for i in range(n_models)]
for answers in model_answers
]
predictions = self.predict(
questions, model_answers_here
)[0]
cov = np.cov(np.array(predictions) - np.array(predictions_all_models))
self.covariances_default[str_rep] = cov
def predict_covariances(self, questions, model_answers):
"""
Predicts the covariances for a given set of questions and model answers using the default strategies.
Args:
questions (list): A list of questions for which covariances are to be predicted.
model_answers (list of list): A list where each element is a list of answers from different models.
Returns:
list: A list of predicted covariances corresponding to each question. If `self.covariances_default` is None,
returns a list of None values with the same length as `questions`.
"""
if self.covariances_default is None:
return [None] * len(questions)
covariances = []
for answers in model_answers:
not_none_indices = [i for i, ans in enumerate(answers) if ans is not None]
str_rep = ','.join([str(i) for i in sorted(not_none_indices)])
covariances.append(self.covariances_default[str_rep])
return covariances</code></pre>
</details>
<h3>Ancestors</h3>
<ul class="hlist">
<li><a title="selection.base_computer.BaseComputer" href="base_computer.html#selection.base_computer.BaseComputer">BaseComputer</a></li>
</ul>
<h3>Subclasses</h3>
<ul class="hlist">
<li><a title="selection.classification.ClassificationQualityComputer" href="classification.html#selection.classification.ClassificationQualityComputer">ClassificationQualityComputer</a></li>
<li><a title="selection.quality_computer.GroundTruthQualityComputer" href="#selection.quality_computer.GroundTruthQualityComputer">GroundTruthQualityComputer</a></li>
</ul>
<h3>Methods</h3>
<dl>
<dt id="selection.quality_computer.BaseQualityComputer.fit_covariances"><code class="name flex">
<span>def <span class="ident">fit_covariances</span></span>(<span>self, questions, model_answers)</span>
</code></dt>
<dd>
<div class="desc"><p>Computes and stores the covariance matrices for different combinations of models.</p>
<p>This method calculates the covariance matrices for the predictions of different
combinations of models and stores them in the <code>covariances_default</code> attribute.</p>
<p>This is a default strategy that you can use to compute the covariance matrices.
Note that this assumes that your "predict" method is already implemented.</p>
<h2 id="args">Args</h2>
<dl>
<dt><strong><code>questions</code></strong> : <code>list</code></dt>
<dd>A list of questions or input data for which predictions are made.</dd>
<dt><strong><code>model_answers</code></strong> : <code>list</code> of <code>lists</code></dt>
<dd>A list where each element is a list of answers
from different models. Assumes no <code>None</code> values
in <code>model_answers</code>.</dd>
</dl>
<h2 id="notes">Notes</h2>
<ul>
<li>The method assumes that <code>model_answers</code> contains no <code>None</code> values.</li>
<li>The <code>predict</code> method is used to generate predictions for the given questions
and model answers.</li>
<li>The covariance matrices are computed for all possible combinations of models
(including the empty set) and stored in a dictionary with keys representing
the combination of models.</li>
</ul></div>
</dd>
<dt id="selection.quality_computer.BaseQualityComputer.predict_covariances"><code class="name flex">
<span>def <span class="ident">predict_covariances</span></span>(<span>self, questions, model_answers)</span>
</code></dt>
<dd>
<div class="desc"><p>Predicts the covariances for a given set of questions and model answers using the default strategies.</p>
<h2 id="args">Args</h2>
<dl>
<dt><strong><code>questions</code></strong> : <code>list</code></dt>
<dd>A list of questions for which covariances are to be predicted.</dd>
<dt><strong><code>model_answers</code></strong> : <code>list</code> of <code>list</code></dt>
<dd>A list where each element is a list of answers from different models.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>list</code></dt>
<dd>A list of predicted covariances corresponding to each question. If <code>self.covariances_default</code> is None,
returns a list of None values with the same length as <code>questions</code>.</dd>
</dl></div>
</dd>
<dt id="selection.quality_computer.BaseQualityComputer.predict_supermodels"><code class="name flex">
<span>def <span class="ident">predict_supermodels</span></span>(<span>self, questions, indices_models_supermodel, qualities, sigma_qualities, model_answers)</span>
</code></dt>
<dd>
<div class="desc"><p>Predicts the qualities of supermodels based on the given inputs.</p>
<h2 id="args">Args</h2>
<dl>
<dt><strong><code>questions</code></strong> : <code>list</code></dt>
<dd>A list of questions.</dd>
<dt><strong><code>indices_models_supermodel</code></strong> : <code>list</code></dt>
<dd>A list of indices indicating the supermodels to consider for each question.</dd>
<dt><strong><code>qualities</code></strong> : <code>list</code></dt>
<dd>A list of qualities for each question and model.</dd>
<dt><strong><code>sigma_qualities</code></strong> : <code>list</code></dt>
<dd>A list of covariance matrices for the qualities of each question and supermodel.</dd>
<dt><strong><code>model_answers</code></strong> : <code>list</code></dt>
<dd>A list of model answers.</dd>
</dl>
<h2 id="returns">Returns</h2>
<p>qualities_supermodel (ndarray): An array of predicted qualities for each supermodel.
qualities_var_supermodel (ndarray): An array of variances for the predicted qualities of each supermodel.</p></div>
</dd>
</dl>
<h3>Inherited members</h3>
<ul class="hlist">
<li><code><b><a title="selection.base_computer.BaseComputer" href="base_computer.html#selection.base_computer.BaseComputer">BaseComputer</a></b></code>:
<ul class="hlist">
<li><code><a title="selection.base_computer.BaseComputer.fit" href="base_computer.html#selection.base_computer.BaseComputer.fit">fit</a></code></li>
<li><code><a title="selection.base_computer.BaseComputer.is_independent" href="base_computer.html#selection.base_computer.BaseComputer.is_independent">is_independent</a></code></li>
<li><code><a title="selection.base_computer.BaseComputer.predict" href="base_computer.html#selection.base_computer.BaseComputer.predict">predict</a></code></li>
<li><code><a title="selection.base_computer.BaseComputer.trigger_training" href="base_computer.html#selection.base_computer.BaseComputer.trigger_training">trigger_training</a></code></li>
</ul>
</li>
</ul>
</dd>
<dt id="selection.quality_computer.GroundTruthQualityComputer"><code class="flex name class">
<span>class <span class="ident">GroundTruthQualityComputer</span></span>
<span>(</span><span>noise_before_run=0.2, noise_after_run=0.05, n_samples=100)</span>
</code></dt>
<dd>
<div class="desc"><p>Initializes the GroundTruthQualityComputer object.
Computes the quality by adding noise to the ground truth quality values and
then fitting a linear model to the noisy values.</p>
<h2 id="args">Args</h2>
<dl>
<dt><strong><code>noise_before_run</code></strong> : <code>float</code></dt>
<dd>The amount of noise before running the computation. Defaults to 0.2.</dd>
<dt><strong><code>noise_after_run</code></strong> : <code>float</code></dt>
<dd>The amount of noise after running the computation. Defaults to 0.05.</dd>
<dt><strong><code>n_samples</code></strong> : <code>int</code></dt>
<dd>The number of samples. Defaults to 100.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">class GroundTruthQualityComputer(BaseQualityComputer):
def __init__(self, noise_before_run=0.2, noise_after_run=0.05, n_samples=100):
"""
Initializes the GroundTruthQualityComputer object.
Computes the quality by adding noise to the ground truth quality values and
then fitting a linear model to the noisy values.
Args:
noise_before_run (float): The amount of noise before running the computation. Defaults to 0.2.
noise_after_run (float): The amount of noise after running the computation. Defaults to 0.05.
n_samples (int): The number of samples. Defaults to 100.
"""
super().__init__(n_samples)
self.noise_before_run = noise_before_run
self.noise_after_run = noise_after_run
self.quality_mapping = None
self.sigmas = None
def fit(self, questions, model_answers, measure):
self.quality_mapping = dict()
noisy_values = []
for measure_value in measure:
noisy_value = []
for i in range(len(measure_value)):
val = measure_value[i]
noisy_value.append([
np.random.normal(val, self.noise_before_run),
np.random.normal(val, self.noise_after_run)
])
noisy_value = np.array(noisy_value)
noisy_values.append(noisy_value)
noisy_values = np.array(noisy_values)
actual_values = np.zeros(noisy_values.shape)
self.sigmas = [0 for _ in range(measure.shape[1])]
for model in range(noisy_values.shape[1]):
for i in range(noisy_values.shape[2]):
linear_model = LinearRegression()
linear_model.fit(noisy_values[:, model, i].reshape(-1, 1), measure[:, model])
actual_values[:, model, i] = linear_model.predict(noisy_values[:, model, i].reshape(-1, 1))
self.sigmas[model] = np.std(actual_values[:, model, 0] - actual_values[:, model, 1])
for q, a in zip(questions, actual_values):
self.quality_mapping[q] = a
def predict(self, questions, model_answers):
qualities = []
sigma_qualities = []
for question, model_answer in zip(questions, model_answers):
value = self.quality_mapping[question]
value = np.array([
value[i][0] if answer is None else value[i][1] for i, answer in enumerate(model_answer)
])
sigma_noise = np.diag([
self.sigmas[i] ** 2 if answer is None else 1e-6
for i, answer in enumerate(model_answer)
])
qualities.append(value)
sigma_qualities.append(sigma_noise)
return np.array(qualities), np.array(sigma_qualities)</code></pre>
</details>
<h3>Ancestors</h3>
<ul class="hlist">
<li><a title="selection.quality_computer.BaseQualityComputer" href="#selection.quality_computer.BaseQualityComputer">BaseQualityComputer</a></li>
<li><a title="selection.base_computer.BaseComputer" href="base_computer.html#selection.base_computer.BaseComputer">BaseComputer</a></li>
</ul>
<h3>Inherited members</h3>
<ul class="hlist">
<li><code><b><a title="selection.quality_computer.BaseQualityComputer" href="#selection.quality_computer.BaseQualityComputer">BaseQualityComputer</a></b></code>:
<ul class="hlist">
<li><code><a title="selection.quality_computer.BaseQualityComputer.fit" href="base_computer.html#selection.base_computer.BaseComputer.fit">fit</a></code></li>
<li><code><a title="selection.quality_computer.BaseQualityComputer.fit_covariances" href="#selection.quality_computer.BaseQualityComputer.fit_covariances">fit_covariances</a></code></li>
<li><code><a title="selection.quality_computer.BaseQualityComputer.is_independent" href="base_computer.html#selection.base_computer.BaseComputer.is_independent">is_independent</a></code></li>
<li><code><a title="selection.quality_computer.BaseQualityComputer.predict" href="base_computer.html#selection.base_computer.BaseComputer.predict">predict</a></code></li>
<li><code><a title="selection.quality_computer.BaseQualityComputer.predict_covariances" href="#selection.quality_computer.BaseQualityComputer.predict_covariances">predict_covariances</a></code></li>
<li><code><a title="selection.quality_computer.BaseQualityComputer.predict_supermodels" href="#selection.quality_computer.BaseQualityComputer.predict_supermodels">predict_supermodels</a></code></li>
<li><code><a title="selection.quality_computer.BaseQualityComputer.trigger_training" href="base_computer.html#selection.base_computer.BaseComputer.trigger_training">trigger_training</a></code></li>
</ul>
</li>
</ul>
</dd>
</dl>
</section>
</article>
<nav id="sidebar">
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="selection" href="index.html">selection</a></code></li>
</ul>
</li>
<li><h3><a href="#header-classes">Classes</a></h3>
<ul>
<li>
<h4><code><a title="selection.quality_computer.BaseQualityComputer" href="#selection.quality_computer.BaseQualityComputer">BaseQualityComputer</a></code></h4>
<ul class="">
<li><code><a title="selection.quality_computer.BaseQualityComputer.fit_covariances" href="#selection.quality_computer.BaseQualityComputer.fit_covariances">fit_covariances</a></code></li>
<li><code><a title="selection.quality_computer.BaseQualityComputer.predict_covariances" href="#selection.quality_computer.BaseQualityComputer.predict_covariances">predict_covariances</a></code></li>
<li><code><a title="selection.quality_computer.BaseQualityComputer.predict_supermodels" href="#selection.quality_computer.BaseQualityComputer.predict_supermodels">predict_supermodels</a></code></li>
</ul>
</li>
<li>
<h4><code><a title="selection.quality_computer.GroundTruthQualityComputer" href="#selection.quality_computer.GroundTruthQualityComputer">GroundTruthQualityComputer</a></code></h4>
</li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.11.1</a>.</p>
</footer>
</body>
</html>