-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
135 lines (128 loc) · 5.51 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from datasets import load_dataset
from sklearn import metrics
import matplotlib.pyplot as plt
import numpy as np
import glob
def get_dataset(dataset_name):
print(dataset_name)
if dataset_name == 'wikimia':
dataset = load_dataset("swj0419/WikiMIA", split=f"WikiMIA_length128")
X = dataset['input']
y = dataset['label']
members = dataset.filter(lambda d: d['label']==1)['input']
nonmembers = dataset.filter(lambda d: d['label']==0)['input']
elif dataset_name == 'bookmia':
dataset = load_dataset("swj0419/BookMIA")['train']
# print(dataset[0])
X = dataset['snippet']
y = dataset['label']
members = dataset.filter(lambda d: d['label']==1)['snippet']
nonmembers = dataset.filter(lambda d: d['label']==0)['snippet']
elif dataset_name == 'temporal_wiki':
dataset = load_dataset("iamgroot42/mimir", "temporal_wiki", split="none")
data_len = len(dataset)
X = dataset['member']+dataset['nonmember']
y = data_len*[1]+data_len*[0]
members = dataset['member']
nonmembers = dataset['nonmember']
elif dataset_name == 'temporal_arxiv':
dataset = load_dataset("iamgroot42/mimir", "temporal_arxiv", split="2021_06")
data_len = len(dataset)
X = dataset['member']+dataset['nonmember']
y = data_len*[1]+data_len*[0]
members = dataset['member']
nonmembers = dataset['nonmember']
elif dataset_name == 'arxiv_tection':
dataset = load_dataset("avduarte333/arXivTection")['train']
X = dataset['Example_A']
y = dataset['Label']
members = dataset.filter(lambda d: d['Label']==1)['Example_A']
nonmembers = dataset.filter(lambda d: d['Label']==0)['Example_A']
elif dataset_name == 'book_tection':
dataset = load_dataset("avduarte333/BookTection")['train']
filtered_dataset = dataset.filter(lambda d: d['Length']=='medium')
print(len(dataset), len(filtered_dataset))
X = dataset['Example_A']
y = dataset['Label']
members = dataset.filter(lambda d: d['Label']==1)['Example_A']
nonmembers = dataset.filter(lambda d: d['Label']==0)['Example_A']
elif dataset_name == 'arxiv_1m':
members = []
nonmembers = []
member_files = glob.glob("data/arxiv1m/member/*.txt")
nonmember_files = glob.glob("data/arxiv1m/nonmember/*.txt")
print(len(member_files), len(nonmember_files))
for m in member_files:
f = open(m, "r")
text = f.read()
members.append(text)
f.close()
for m in nonmember_files:
f = open(m, "r")
text = f.read()
nonmembers.append(text)
f.close()
X = members + nonmembers
y = [1]*len(members) + [0]*len(nonmembers)
elif dataset_name == 'arxiv1m_1m':
members = np.load("data/arxiv1m_1m/member.npy")
nonmembers = np.load("data/arxiv1m_1m/nonmember.npy")
X = list(members) + list(nonmembers)
y = [1]*len(members) + [0]*len(nonmembers)
elif dataset_name == 'multi_web':
f = open('data/multi_web/member.txt', 'r')
members = f.read().split('\n')
f = open('data/multi_web/nonmember.txt', 'r')
nonmembers = f.read().split('\n')
X = members + nonmembers
y = [1]*len(members) + [0]*len(nonmembers)
elif dataset_name == 'laion_mi':
f = open('data/laion_mi/member.txt', 'r')
members = f.read().split('\n')
f = open('data/laion_mi/nonmember.txt', 'r')
nonmembers = f.read().split('\n')
X = members + nonmembers
y = [1]*len(members) + [0]*len(nonmembers)
elif dataset_name == 'gutenberg':
members = []
nonmembers = []
member_files = glob.glob("data/gutenberg/member/*.txt")
nonmember_files = glob.glob("data/gutenberg/nonmember/*.txt")
# print(len(member_files), len(nonmember_files))
for m in member_files:
f = open(m, "r")
text = f.read()
members.append(text)
f.close()
for m in nonmember_files:
f = open(m, "r")
text = f.read()
nonmembers.append(text)
f.close()
X = members + nonmembers
y = [1]*len(members) + [0]*len(nonmembers)
return X, y, members, nonmembers
def get_roc_auc(y_true, y_pred_proba):
fpr, tpr, _ = metrics.roc_curve(y_true, y_pred_proba)
return metrics.auc(fpr, tpr)
def get_tpr_metric(y_true, y_pred_proba, fpr_budget):
fpr, tpr, _ = metrics.roc_curve(y_true, y_pred_proba)
tpr_at_low_fpr = np.interp(fpr_budget/100, fpr,tpr)
return tpr_at_low_fpr
def plot_tpr_fpr_curve(y_true, y_pred_proba, fpr_budget):
fpr, tpr, _ = metrics.roc_curve(y_true, y_pred_proba)
roc_auc = metrics.auc(fpr, tpr)
tpr_at_low_fpr = np.interp(fpr_budget/100, fpr,tpr)
plt.figure()
plt.plot(fpr, tpr, label='ROC curve (area = %0.3f)' % roc_auc)
plt.plot([0, 1], [0, 1], 'k--', label='No Skill')
plt.plot(fpr_budget/100, tpr_at_low_fpr, marker="x", markersize=10, markeredgecolor="red", markerfacecolor="green")
plt.plot(fpr_budget/100, 0, marker="o", markersize=5, markerfacecolor="red", markeredgecolor="red")
plt.vlines(fpr_budget/100, 0, tpr_at_low_fpr, color='r', linestyles='dashed')
plt.hlines(tpr_at_low_fpr, 0, fpr_budget/100, color='r', linestyles='dashed')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend()
plt.show()