-
Notifications
You must be signed in to change notification settings - Fork 40
/
smithwaterman.c
257 lines (215 loc) · 6.33 KB
/
smithwaterman.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/*----------------------------------------------------------------------------
*
* smithwaterman.c
*
* Smith-Waterman is an algorithm that performs a global alignment on two
* sequences.
*
* It is a dynamic programming algorithm that is used to biological sequence
* comparison. The operation costs (scores) are specified by similarity
* matrix. It also uses a linear gap penalty (like Levenshtein).
*
* For example:
*
* similarity matrix
*
* +-------------------+
* | | A | C | A | C |
* +-------------------+
* | A | 2 | 1 | 2 | 1 |
* +-------------------+
* | G | 1 | 1 | 1 | 1 |
* +-------------------+
* | C | 0 | 3 | 2 | 3 |
* +-------------------+
* | A | 2 | 2 | 5 | 4 |
* +-------------------+
*
* x: ACACACTA
* y: AGCACACA
* match cost: 2
* mismatch cost: -1
* insertion cost: -1
* deletion cost: -1
*
* +---------------------------------------+
* | | | A | C | A | C | A | C | T | A |
* +-------------------------------------------+
* | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
* +-------------------------------------------+
* | A | 0 | 2 | 1 | 2 | 1 | 2 | 1 | 0 | 2 |
* +-------------------------------------------+
* | G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
* +-------------------------------------------+
* | C | 0 | 0 | 3 | 2 | 3 | 2 | 3 | 2 | 1 |
* +-------------------------------------------+
* | A | 0 | 2 | 2 | 5 | 4 | 5 | 4 | 3 | 4 |
* +-------------------------------------------+
* | C | 0 | 1 | 4 | 4 | 7 | 6 | 7 | 6 | 5 |
* +-------------------------------------------+
* | A | 0 | 2 | 3 | 6 | 6 | 9 | 8 | 7 | 8 |
* +-------------------------------------------+
* | C | 0 | 1 | 4 | 5 | 8 | 8 | 11 | 10 | 9 |
* +-------------------------------------------+
* | A | 0 | 2 | 3 | 6 | 7 | 10 | 10 | 10 | 12 |
* +-------------------------------------------+
*
* http://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm
*
*
* Copyright (c) 2008-2020, Euler Taveira de Oliveira
*
*----------------------------------------------------------------------------
*/
#include "similarity.h"
/* GUC variables */
double pgs_sw_threshold = 0.7f;
bool pgs_sw_is_normalized = true;
/*
* TODO move this function to similarity.c
*/
static double _smithwaterman(char *a, char *b)
{
float **matrix; /* dynamic programming matrix */
int alen, blen;
int i, j;
double maxvalue;
alen = strlen(a);
blen = strlen(b);
elog(DEBUG2, "alen: %d; blen: %d", alen, blen);
if (alen == 0)
return blen;
if (blen == 0)
return alen;
matrix = (float **) malloc((alen + 1) * sizeof(float *));
if (matrix == NULL)
elog(ERROR, "memory exhausted for array size %d", alen);
for (i = 0; i <= alen; i++)
{
matrix[i] = (float *) malloc((blen + 1) * sizeof(float));
if (matrix[i] == NULL)
elog(ERROR, "memory exhausted for array size %d", blen);
}
#ifdef PGS_IGNORE_CASE
elog(DEBUG2, "case-sensitive turns off");
for (i = 0; i < alen; i++)
a[i] = tolower(a[i]);
for (j = 0; j < blen; j++)
b[j] = tolower(b[j]);
#endif
maxvalue = 0.0;
/* initial values */
for (i = 0; i <= alen; i++)
{
/*
XXX why simmetrics does this way?
XXX original algorithm initializes first column with zeros
float c = swcost(a, b, i, 0);
if (i == 0)
matrix[0][0] = max3(0.0, -1 * PGS_SW_GAP_COST, c);
else
matrix[i][0] = max3(0.0, matrix[i-1][0] - PGS_SW_GAP_COST, c);
if (matrix[i][0] > maxvalue)
maxvalue = matrix[i][0];
*/
matrix[i][0] = 0.0;
}
for (j = 0; j <= blen; j++)
{
/*
XXX why simmetrics does this way?
XXX original algorithm initializes first row with zeros
float c = swcost(a, b, 0, j);
if (j == 0)
matrix[0][0] = max3(0.0, -1 * PGS_SW_GAP_COST, c);
else
matrix[0][j] = max3(0.0, matrix[0][j-1] - PGS_SW_GAP_COST, c);
if (matrix[0][j] > maxvalue)
maxvalue = matrix[0][j];
*/
matrix[0][j] = 0.0;
}
for (i = 1; i <= alen; i++)
{
for (j = 1; j <= blen; j++)
{
/* get operation cost */
float c = swcost(a, b, i - 1, j - 1);
matrix[i][j] = max4(0.0,
matrix[i - 1][j] + PGS_SW_GAP_COST,
matrix[i][j - 1] + PGS_SW_GAP_COST,
matrix[i - 1][j - 1] + c);
elog(DEBUG2,
"(i, j) = (%d, %d); cost(%c, %c): %.3f; max(zero, top, left, diag) = (0.0, %.3f, %.3f, %.3f) = %.3f -- %.3f (%d, %d)",
i, j, a[i - 1], b[j - 1], c,
matrix[i - 1][j] + PGS_SW_GAP_COST,
matrix[i][j - 1] + PGS_SW_GAP_COST,
matrix[i - 1][j - 1] + c, matrix[i][j], matrix[i][j - 1], i, j - 1);
if (matrix[i][j] > maxvalue)
maxvalue = matrix[i][j];
}
}
for (i = 0; i <= alen; i++)
for (j = 0; j <= blen; j++)
elog(DEBUG1, "(%d, %d) = %.3f", i, j, matrix[i][j]);
for (i = 0; i <= alen; i++)
free(matrix[i]);
free(matrix);
return maxvalue;
}
PG_FUNCTION_INFO_V1(smithwaterman);
Datum
smithwaterman(PG_FUNCTION_ARGS)
{
char *a, *b;
double maxvalue;
float8 res;
a = DatumGetPointer(DirectFunctionCall1(textout,
PointerGetDatum(PG_GETARG_TEXT_P(0))));
b = DatumGetPointer(DirectFunctionCall1(textout,
PointerGetDatum(PG_GETARG_TEXT_P(1))));
if (strlen(a) > PGS_MAX_STR_LEN || strlen(b) > PGS_MAX_STR_LEN)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("argument exceeds the maximum length of %d bytes",
PGS_MAX_STR_LEN)));
maxvalue = (float8) min2(strlen(a), strlen(b));
res = _smithwaterman(a, b);
elog(DEBUG1, "is normalized: %d", pgs_sw_is_normalized);
elog(DEBUG1, "maximum length: %.3f", maxvalue);
elog(DEBUG1, "swdistance(%s, %s) = %.3f", a, b, res);
if (maxvalue == 0.0)
res = 1.0;
if (pgs_sw_is_normalized)
{
if (PGS_SW_MAX_COST > (-1 * PGS_SW_GAP_COST))
maxvalue *= PGS_SW_MAX_COST;
else
maxvalue *= -1 * PGS_SW_GAP_COST;
/* paranoia ? */
if (maxvalue == 0.0)
res = 1.0;
else
res = (res / maxvalue);
}
elog(DEBUG1, "sw(%s, %s) = %.3f", a, b, res);
PG_RETURN_FLOAT8(res);
}
PG_FUNCTION_INFO_V1(smithwaterman_op);
Datum smithwaterman_op(PG_FUNCTION_ARGS)
{
float8 res;
/*
* store *_is_normalized value temporarily 'cause
* threshold (we're comparing against) is normalized
*/
bool tmp = pgs_sw_is_normalized;
pgs_sw_is_normalized = true;
res = DatumGetFloat8(DirectFunctionCall2(
smithwaterman,
PG_GETARG_DATUM(0),
PG_GETARG_DATUM(1)));
/* we're done; back to the previous value */
pgs_sw_is_normalized = tmp;
PG_RETURN_BOOL(res >= pgs_sw_threshold);
}