-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrn2d.py
183 lines (159 loc) · 5.71 KB
/
wrn2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""
Reference: https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py
Implementation of Wide Resnet as NAS backbone architecture
Parameter count 28-10: 36.5M
Parameter count for 40-4: 8.9M
"""
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
"""
first applies batch norm and relu before applying convolution
we can change the order of operations if needed
"""
def __init__(self, in_planes, out_planes, stride, dropRate=0.0):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False
)
self.bn2 = nn.BatchNorm2d(out_planes)
self.relu2 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(
out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False
)
self.droprate = dropRate
self.equalInOut = in_planes == out_planes
self.convShortcut = (
(not self.equalInOut)
and nn.Conv2d(
in_planes,
out_planes,
kernel_size=1,
stride=stride,
padding=0,
bias=False,
)
or None
)
def forward(self, x):
if not self.equalInOut:
x = self.relu1(self.bn1(x))
else:
out = self.relu1(self.bn1(x))
out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.conv2(out)
return torch.add(x if self.equalInOut else self.convShortcut(x), out)
class NetworkBlock(nn.Module):
def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
super(NetworkBlock, self).__init__()
self.layer = self._make_layer(
block, in_planes, out_planes, nb_layers, stride, dropRate
)
def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
layers = []
for i in range(int(nb_layers)):
layers.append(
block(
i == 0 and in_planes or out_planes,
out_planes,
i == 0 and stride or 1,
dropRate,
)
)
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class WideResNet2d(nn.Module):
"""
wide resnet
"""
def __init__(
self,
depth,
num_classes,
input_shape,
output_shape,
widen_factor=1,
dropRate=0.0,
in_channels=3,
):
super(WideResNet2d, self).__init__()
self.input_shape = input_shape
self.output_shape = output_shape
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert (depth - 4) % 6 == 0
n = (depth - 4) / 6
block = BasicBlock
# 1st conv before any network block
self.conv1 = nn.Conv2d(
in_channels, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False
)
# 1st block
self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate)
# 2nd block
self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate)
# 3rd block
# self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate)
# global average pooling and classifier
self.bn1 = nn.BatchNorm2d(nChannels[2])
self.relu = nn.ReLU(inplace=True)
# wout, hout = self.find_lout()
if len(self.output_shape) == 2:
self.conv_last = nn.Conv2d(
nChannels[2], 1, kernel_size=3, stride=1, padding=1, bias=False,
)
else:
self.fc = nn.Linear(nChannels[2], num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
def pretty_x(self, x):
if self.input_shape[0] == 1:
# Sequence length 1.
# Treat input as normal channels + spatial dims.
x = x[:, 0, :, :, :]
elif self.input_shape[2] == 1:
# Sequence length 1.
# Treat input as normal channels + 1 spatial + 1 time.
x = x[:, :, :, 0, :]
elif self.input_shape[3] == 1:
# Sequence length 1.
# Treat input as normal channels + 1 spatial + 1 time.
x = x[:, :, :, :, 0]
return x
def find_lout(self):
x = torch.randn(1, *self.input_shape)
with torch.no_grad():
out = self.forward_partial(x)
return out.shape[2:4]
def forward_partial(self, x):
x = self.pretty_x(x)
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
# out = self.block3(out)
out = self.relu(self.bn1(out))
return out
def forward(self, x):
out = self.forward_partial(x)
if len(self.output_shape) == 2:
out = self.conv_last(out)
out = nn.AdaptiveAvgPool2d(self.output_shape)(out)
out = out.view(out.size(0), -1)
else:
out = nn.AdaptiveAvgPool2d((1, 1))(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out