-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrn3d.py
143 lines (124 loc) · 4.43 KB
/
wrn3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
Reference: https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py
Implementation of Wide Resnet as NAS backbone architecture
"""
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
"""
first applies batch norm and relu before applying convolution
we can change the order of operations if needed
"""
def __init__(self, in_planes, out_planes, stride, dropRate=0.0):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm3d(in_planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv1 = nn.Conv3d(
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False
)
self.bn2 = nn.BatchNorm3d(out_planes)
self.relu2 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv3d(
out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False
)
self.droprate = dropRate
self.equalInOut = in_planes == out_planes
self.convShortcut = (
(not self.equalInOut)
and nn.Conv3d(
in_planes,
out_planes,
kernel_size=1,
stride=stride,
padding=0,
bias=False,
)
or None
)
def forward(self, x):
if not self.equalInOut:
x = self.relu1(self.bn1(x))
else:
out = self.relu1(self.bn1(x))
out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.conv2(out)
return torch.add(x if self.equalInOut else self.convShortcut(x), out)
class NetworkBlock(nn.Module):
def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
super(NetworkBlock, self).__init__()
self.layer = self._make_layer(
block, in_planes, out_planes, nb_layers, stride, dropRate
)
def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
layers = []
for i in range(int(nb_layers)):
layers.append(
block(
i == 0 and in_planes or out_planes,
out_planes,
i == 0 and stride or 1,
dropRate,
)
)
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class WideResNet3d(nn.Module):
"""
wide resnet
"""
def __init__(
self,
depth,
num_classes,
input_shape,
output_shape,
widen_factor=1,
dropRate=0.0,
in_channels=3,
):
super(WideResNet3d, self).__init__()
self.input_shape = input_shape
self.output_shape = output_shape
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert (depth - 4) % 6 == 0
n = (depth - 4) / 6
block = BasicBlock
# 1st conv before any network block
self.conv1 = nn.Conv3d(
in_channels, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False
)
# 1st block
self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate)
# 2nd block
self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate)
# 3rd block
self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate)
# global average pooling and classifier
self.bn1 = nn.BatchNorm3d(nChannels[3])
self.relu = nn.ReLU(inplace=True)
self.fc = nn.Linear(nChannels[3], num_classes)
self.nChannels = nChannels[3]
for m in self.modules():
if isinstance(m, nn.Conv3d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
def forward(self, x):
x = x.transpose(2, 1)
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out = nn.AdaptiveAvgPool3d((1, 1, 1))(out)
out = out.view(out.size(0), -1)
return self.fc(out)