Let's take a quick view of what we've learnt.
- function
- limits
- applications of math
Well, that's not cool enough. What I want is to give you some ideas about things below:
- 0101 in computers(How does computer work)
- Proofs sequences logic and graphs(Discrete mathematics)
- Wave-particle duality(Calculus)
- Non-negative Matrix Factorization(Linear algebra)
- Information theory(Probability)
- Blockchain(HashTree and Cryptography)
- Recommendations clustering search ranking and document filtering(Thoughts)
- Natural language understanding and Digital image processing(Combined)
First of all, you should know some "fundamental concepts".
[TOC]
For Polynomials $$ \lim_\limits {x\to a} \frac{p(x)}{q(x)} $$
$p(x) > q(x)$ $p(x) < q(x)$ $p(x) = q(x)$
How about
A function f is continuous at
How about on an interval?
speed,
instantaneous velocity $$ f'(x) = \lim_\limits{\Delta x\to 0}\frac{f(x + \Delta x) - f(x)}{ \Delta x} = \frac{dy}{dx} $$
-
$h(x) = f(x)g(x)$ $h'(x) = f'(x)g(x) + f(x)g'(x)$ (P112) -
$h(x) = \frac{f(x)}{g(x)}$ $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$ -
$h(x) = f(g(x))$ ,$h'(x) = f'(g(x))g'(x)$ or$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
- Type A:
$0/0$ case - Type A:
$\infty/\infty$ case - Type B1: (
$\infty - \infty$ ) - Type B2: (
$0 \times \infty$ ) - Type C: (
$1^{\infty}$ ,$0^0 $ ,$\infty^{0}$ )
Review: P303
=>
......