-
Notifications
You must be signed in to change notification settings - Fork 1
/
dynamic.ml
134 lines (122 loc) · 3.94 KB
/
dynamic.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
(*
**
** ocaml module Dynamic
**
** Description: Dynamic programming examples
**
** Author: Eray Ozkural (exa) <erayo@cs.bilkent.edu.tr>, (C) 2003
**
** Copyright: See COPYING file that comes with this distribution
**
*)
open Array
open Printf
let print_intarray a = Array.iter (fun x->printf "%d " x) a
let print_intmatrix a = Array.iter (fun x->print_intarray x;printf"\n") a
(*let print_introw a i = for i=0
let print_intmatrix a = Array.iter (fun x->print_intarray x;printf"\n") a*)
(* compute optimal parenthesization of a matrix product sequence
* in O(n^3) time. The quintessential dynamic programming example.
* p is an array of matrix sizes where A_i has p[i].p[i+1] size
*)
let matrix_chain_order p =
let n = length p - 1 in (* n matrices in product sequence *)
let m = make_matrix n n 0 (* m[i,j] = min. cost of computing Ai..Aj *)
and s = make_matrix n n 0 (* s[i,j] = optimal parenthesization of Ai..Aj *)
in (* m has already minimum cost of chains of length 1 = 0 *)
for l = 2 to n do (* length runs from 2 to n *)
for i = 0 to n - l do (* start end for minimum chains of length l *)
let j = i + l - 1 in
(*printf "i=%d j=%d \n" i j;*)
m.(i).(j) <- max_int; (* initialize cost to +infinite *)
for k = i to j-1 do (* k in possible paren. split points *)
let q = m.(i).(k) + m.(k+1).(j) + p.(i)*p.(k+1)*p.(j+1) in
if q < m.(i).(j) then (* is cost lower than current? *)
begin
m.(i).(j) <- q; (* update cost *)
s.(i).(j) <- k (* determine optimal parenthesization *)
end
else ()
done
done
done;
(m,s)
let rec print_optimal_parens s i j =
if j > i then
begin
printf "(";
print_optimal_parens s i s.(i).(j);
print_optimal_parens s (s.(i).(j)+1) j;
printf ")"
end
else
printf "A_%d" i
(* longest common subsequence *)
(* compute the longest common subsequences of input strings x and y *)
(* c[i,j]=length of LCS in prefix X_i Y_j *)
(* b[i,j]=traversal info to construct subsequences *)
type subseq_arrow = NoArrow | UpLeft | Up | Left
let lcs_length x y =
let m = length x
and n = length y in
let c = make_matrix (m+1) (n+1) 0
and b = make_matrix (m+1) (n+1) NoArrow
in (* c[0..m-1,0] and c[0,0..n-1] already 0 *)
for i = 1 to m do
for j = 1 to n do
if x.(i-1) = y.(j-1) then (*i starts from 1, array ix starts from 0!*)
begin
c.(i).(j) <- c.(i-1).(j-1) + 1;
b.(i).(j) <- UpLeft
end
else
if c.(i-1).(j) > c.(i).(j-1) then
begin
c.(i).(j) <- c.(i-1).(j);
b.(i).(j) <- Up
end
else
begin
c.(i).(j) <- c.(i).(j-1);
b.(i).(j) <- Left
end
done
done;
(c, b)
let rec print_lcs b x i j =
if i = 0 || j = 0 then () else
match b.(i).(j) with
UpLeft -> print_lcs b x (i-1) (j-1); printf "%d " x.(i-1)
| Up -> print_lcs b x (i-1) j
| Left -> print_lcs b x i (j-1)
| NoArrow -> ()
let print_saarray a =
Array.iter
(fun x-> match x with
NoArrow -> printf "NoArrow "
| UpLeft -> printf "UpLeft "
| Left -> printf "Left "
| Up -> printf "Up ") a
let print_samatrix a = Array.iter (fun x->print_saarray x;printf"\n") a
let test () =
printf "dynamic programming test\n";
begin
let p = [| 5; 10; 3; 12; 5; 50; 6 |] in
let (m,s)=matrix_chain_order p in
printf "p="; print_intarray p; printf "\n";
printf "m=\n"; print_intmatrix m; printf "\n";
printf "s=\n"; print_intmatrix s; printf "\n";
printf "parenthesization="; print_optimal_parens s 0 (length p-2);
printf "\n"
end;
begin
let x = [| 1;0;0;1;0;1;0;1 |]
and y = [| 0;1;0;1;1;0;1;1;0 |] in
let (c,b)= lcs_length x y in
printf "x="; print_intarray x; printf "\n";
printf "y="; print_intarray y; printf "\n";
printf "c=\n"; print_intmatrix c; printf "\n";
printf "b=\n"; print_samatrix b; printf "\n";
printf "LCS(x,y)="; print_lcs b x (length x) (length y);
printf "\n"
end