-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_senti.py
141 lines (126 loc) · 5.18 KB
/
train_senti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# coding:utf8
import tqdm
import os
import h5py
import time
import json
import sys
import pdb
import traceback
from bdb import BdbQuit
import torch
from opts import parse_opt
from models.sentiment_detector import SentimentDetector
from dataloader import get_senti_image_dataloader
def clip_gradient(optimizer, grad_clip):
for group in optimizer.param_groups:
for param in group['params']:
param.grad.data.clamp_(-grad_clip, grad_clip)
def train():
senti_detector = SentimentDetector(opt.sentiment_categories, opt.settings)
senti_detector.to(opt.device)
lr = opt.senti_lr
optimizer, criterion = senti_detector.get_optim_criterion(lr)
if opt.senti_resume:
print("====> loading checkpoint '{}'".format(opt.senti_resume))
chkpoint = torch.load(opt.senti_resume, map_location=lambda s, l: s)
assert opt.settings == chkpoint['settings'], \
'opt.settings and resume model settings are different'
assert opt.sentiment_categories == chkpoint['sentiment_categories'], \
'sentiment_categories and resume model sentiment_categories are different'
senti_detector.load_state_dict(chkpoint['model'])
optimizer.load_state_dict(chkpoint['optimizer'])
lr = optimizer.param_groups[0]['lr']
print("====> loaded checkpoint '{}', epoch: {}"
.format(opt.senti_resume, chkpoint['epoch']))
img_senti_labels = json.load(open(opt.img_senti_labels, 'r'))
senti_label2idx = {}
for i, w in enumerate(opt.sentiment_categories):
senti_label2idx[w] = i
print('====> process image senti_labels begin')
senti_labels_id = {}
for split, senti_labels in img_senti_labels.items():
print('convert %s senti_labels to index' % split)
senti_labels_id[split] = []
for fn, senti_label in tqdm.tqdm(senti_labels):
senti_labels_id[split].append([fn, senti_label2idx[senti_label]])
img_senti_labels = senti_labels_id
print('====> process image senti_labels end')
f_senti_att = os.path.join(opt.feats_dir, 'sentiment', 'feats_att.h5')
train_data = get_senti_image_dataloader(
f_senti_att, img_senti_labels['train'],
opt.senti_bs, opt.senti_num_works)
val_data = get_senti_image_dataloader(
f_senti_att, img_senti_labels['val'],
opt.senti_bs, opt.senti_num_works, shuffle=False)
test_data = get_senti_image_dataloader(
f_senti_att, img_senti_labels['test'],
opt.senti_bs, opt.senti_num_works, shuffle=False)
def forward(data, training=True):
senti_detector.train(training)
loss_val = 0.0
for _, att_feats, labels in tqdm.tqdm(data):
att_feats = att_feats.to(opt.device)
labels = labels.to(opt.device)
# (det_out, cls_out), _ = senti_detector(att_feats)
# det_loss = criterion(det_out, labels)
# cls_loss = criterion(cls_out, labels)
# loss = det_loss + cls_loss
pred, _ = senti_detector(att_feats)
loss = criterion(pred, labels)
loss_val += loss.item()
if training:
optimizer.zero_grad()
loss.backward()
clip_gradient(optimizer, opt.grad_clip)
optimizer.step()
return loss_val / len(data)
checkpoint = os.path.join(opt.checkpoint, 'sentiment')
if not os.path.exists(checkpoint):
os.makedirs(checkpoint)
previous_loss = None
for epoch in range(opt.senti_epochs):
print('--------------------epoch: %d' % epoch)
# torch.cuda.empty_cache()
train_loss = forward(train_data)
with torch.no_grad():
val_loss = forward(val_data, training=False)
# test
corr_num = 0
all_num = 0
for _, att_feats, labels in tqdm.tqdm(test_data):
att_feats = att_feats.to(opt.device)
labels = labels.to(opt.device)
idx, _, _, _ = senti_detector.sample(att_feats)
corr_num += int(sum(labels == idx))
all_num += len(idx)
corr_rate = corr_num / all_num
if previous_loss is not None and val_loss > previous_loss:
lr = lr * 0.5
for param_group in optimizer.param_groups:
param_group['lr'] = lr
previous_loss = val_loss
print('train_loss: %.4f, val_loss: %.4f, corr_rate: %.4f' %
(train_loss, val_loss, corr_rate))
if epoch == 0 or epoch > 5:
chkpoint = {
'epoch': epoch,
'model': senti_detector.state_dict(),
'optimizer': optimizer.state_dict(),
'settings': opt.settings,
'sentiment_categories': opt.sentiment_categories,
}
checkpoint_path = os.path.join(checkpoint, 'model_%d_%.4f_%.4f_%s.pth' % (
epoch, train_loss, val_loss, time.strftime('%m%d-%H%M')))
torch.save(chkpoint, checkpoint_path)
if __name__ == '__main__':
try:
opt = parse_opt()
train()
except BdbQuit:
sys.exit(1)
except Exception:
traceback.print_exc()
print('')
pdb.post_mortem()
sys.exit(1)