-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopts.py
52 lines (43 loc) · 2.22 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import argparse
import torch
def parse_opt():
parser = argparse.ArgumentParser()
# train settings
parser.add_argument('--train_mode', type=str, default='xe', choices=['xe', 'rl'])
parser.add_argument('--learning_rate', type=float, default=4e-4) # 4e-4 for xe, 4e-5 for rl
parser.add_argument('--resume', type=str, default='')
parser.add_argument('--max_epochs', type=int, default=50)
parser.add_argument('--batch_size', type=int, default=20)
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--idx2word', type=str, default='./data/captions/idx2word.json')
parser.add_argument('--captions', type=str, default='./data/captions/captions.json')
parser.add_argument('--att_feats', type=str, default='./data/features/coco_att.h5')
parser.add_argument('--checkpoint', type=str, default='./checkpoint')
parser.add_argument('--result', type=str, default='./result/')
parser.add_argument('--grad_clip', type=float, default=0.1)
parser.add_argument('--label_smoothing', type=float, default=0.1) # 0 means the cross entropy loss
parser.add_argument('--beam_size', type=int, default=3)
# eval settings
parser.add_argument('-e', '--eval_model', type=str, default='')
parser.add_argument('-r', '--result_file', type=str, default='')
# test setting
parser.add_argument('-t', '--test_model', type=str, default='')
parser.add_argument('-i', '--image_file', type=str, default='')
# encoder settings
parser.add_argument('--resnet101_file', type=str, default='./data/pre_models/resnet101.pth',
help='Pre-trained resnet101 network for extracting image features')
args = parser.parse_args()
# decoder settings
settings = dict()
settings['att_feat_dim'] = 2048
settings['d_model'] = 512 # model dim
settings['d_ff'] = 2048 # feed forward dim
settings['h'] = 8 # multi heads num
settings['N_enc'] = 4 # encoder layers num
settings['N_dec'] = 4 # decoder layers num
settings['dropout_p'] = 0.1
settings['max_seq_len'] = 16
args.settings = settings
args.use_gpu = torch.cuda.is_available()
args.device = torch.device('cuda:1') if args.use_gpu else torch.device('cpu')
return args