-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathembed.py
1005 lines (816 loc) · 35.5 KB
/
embed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import abc
import collections
import numpy as np
import torch
from torch import nn
from torch import distributions as td
from torch.nn import functional as F
from envs import grid
import relabel
import utils
class Embedder(abc.ABC, nn.Module):
"""Defines the embedding of an object in the forward method.
Subclasses should register to the from_config method.
"""
def __init__(self, embed_dim):
"""Sets the embed dim.
Args:
embed_dim (int): the dimension of the outputted embedding.
"""
super().__init__()
self._embed_dim = embed_dim
@property
def embed_dim(self):
"""Returns the dimension of the output (int)."""
return self._embed_dim
@classmethod
def from_config(cls, config):
"""Constructs and returns Embedder from config.
Args:
config (Config): parameters for constructing the Embedder.
Returns:
Embedder
"""
config_type = config.get("type")
if config_type == "simple_grid_state":
return SimpleGridStateEmbedder.from_config(config)
elif config_type == "fixed_vocab":
return FixedVocabEmbedder.from_config(config)
elif config_type == "linear":
return LinearEmbedder.from_config(config)
else:
raise ValueError("Config type {} not supported".format(config_type))
def get_state_embedder(env):
"""Returns the appropriate type of embedder given the environment type."""
env = env.unwrapped
if isinstance(env.unwrapped, grid.GridEnv):
return SimpleGridStateEmbedder
# Dependencies on OpenGL, so only load if absolutely necessary
from envs.miniworld import sign
if isinstance(env, sign.MiniWorldSign):
return MiniWorldEmbedder
raise ValueError()
class TransitionEmbedder(Embedder):
def __init__(self, state_embedder, action_embedder, reward_embedder, embed_dim):
super().__init__(embed_dim)
self._state_embedder = state_embedder
self._action_embedder = action_embedder
self._reward_embedder = reward_embedder
reward_embed_dim = (
0 if reward_embedder is None else reward_embedder.embed_dim)
self._transition_embedder = nn.Sequential(
nn.Linear(
self._state_embedder.embed_dim * 2 +
self._action_embedder.embed_dim + reward_embed_dim,
128),
nn.ReLU(),
nn.Linear(128, embed_dim)
)
def forward(self, experiences):
state_embeds = self._state_embedder(
[exp.state.observation for exp in experiences])
next_state_embeds = self._state_embedder(
[exp.next_state.observation for exp in experiences])
action_embeds = self._action_embedder([exp.action for exp in experiences])
embeddings = [state_embeds, next_state_embeds, action_embeds]
if self._reward_embedder is not None:
embeddings.append(self._reward_embedder(
[exp.next_state.prev_reward for exp in experiences]))
transition_embeds = self._transition_embedder(torch.cat(embeddings, -1))
return transition_embeds
@classmethod
def from_config(cls, config, env):
state_embedder = get_state_embedder(env)(
env.observation_space["observation"],
config.get("experience_embedder").get("state_embed_dim"))
action_embedder = FixedVocabEmbedder(
env.action_space.n,
config.get("experience_embedder").get("action_embedder").get("embed_dim"))
return cls(state_embedder, action_embedder, config.get("embed_dim"))
class TrajectoryEmbedder(Embedder, relabel.RewardLabeler):
def __init__(self, transition_embedder, id_embedder, penalty, embed_dim):
super().__init__(embed_dim)
self._transition_embedder = transition_embedder
self._id_embedder = id_embedder
self._transition_lstm = nn.LSTM(transition_embedder.embed_dim, 128)
self._transition_fc_layer = nn.Linear(128, 128)
self._transition_output_layer = nn.Linear(128, embed_dim)
self._penalty = penalty
self._use_ids = True
def use_ids(self, use):
self._use_ids = use
def _compute_contexts(self, trajectories):
"""Returns contexts and masks.
Args:
trajectories (list[list[Experience]]): see forward().
Returns:
id_contexts (torch.FloatTensor): tensor of shape (batch_size, embed_dim)
embedding the id's in the trajectories.
all_transition_contexts (torch.FloatTensor): tensor of shape
(batch_size, max_len + 1, embed_dim) embedding the sequences of states
and actions in the trajectories.
transition_contexts (torch.FloatTensor): tensor of shape
(batch_size, embed_dim) equal to the last unpadded value in
all_transition_contexts.
mask (torch.BoolTensor): tensor of shape (batch_size, max_len + 1).
The value is False if the trajectory_contexts value should be masked.
"""
# trajectories: (batch_size, max_len)
# mask: (batch_size, max_len)
padded_trajectories, mask = utils.pad(trajectories)
sequence_lengths = torch.tensor([len(traj) for traj in trajectories]).long()
# (batch_size * max_len, embed_dim)
transition_embed = self._transition_embedder(
[exp for traj in padded_trajectories for exp in traj])
# pack_padded_sequence relies on the default tensor type not
# being a CUDA tensor.
# TODO(evzliu): Could thread the device management w/o modifying default
# tensor type
torch.set_default_tensor_type(torch.FloatTensor)
# Sorted only required for ONNX
padded_transitions = nn.utils.rnn.pack_padded_sequence(
transition_embed.reshape(mask.shape[0], mask.shape[1], -1),
sequence_lengths, batch_first=True, enforce_sorted=False)
if torch.cuda.is_available():
torch.set_default_tensor_type(torch.cuda.FloatTensor)
transition_hidden_states = self._transition_lstm(padded_transitions)[0]
# (batch_size, max_len, hidden_dim)
transition_hidden_states, hidden_lengths = nn.utils.rnn.pad_packed_sequence(
transition_hidden_states, batch_first=True)
initial_hidden_states = torch.zeros(
transition_hidden_states.shape[0], 1,
transition_hidden_states.shape[-1])
# (batch_size, max_len + 1, hidden_dim)
transition_hidden_states = torch.cat(
(initial_hidden_states, transition_hidden_states), 1)
transition_hidden_states = F.relu(
self._transition_fc_layer(transition_hidden_states))
# (batch_size, max_len + 1, embed_dim)
all_transition_contexts = self._transition_output_layer(
transition_hidden_states)
# (batch_size, 1, embed_dim)
# Don't need to subtract 1 off of hidden_lengths as transition_contexts is
# padded with init hidden state at the beginning.
indices = hidden_lengths.unsqueeze(-1).unsqueeze(-1).expand(
hidden_lengths.shape[0], 1, all_transition_contexts.shape[2]).to(
all_transition_contexts.device)
transition_contexts = all_transition_contexts.gather(1, indices).squeeze(1)
# (batch_size, embed_dim)
id_contexts = self._id_embedder(
torch.tensor([traj[0].state.env_id for traj in trajectories]))
# don't mask the initial hidden states (batch_size, max_len + 1)
mask = torch.cat(
(torch.ones(transition_contexts.shape[0], 1).bool(), mask), -1)
return id_contexts, all_transition_contexts, transition_contexts, mask
def _compute_losses(
self, trajectories, id_contexts, all_transition_contexts,
transition_contexts, mask):
"""Computes losses based on the return values of _compute_contexts.
Args:
See return values of _compute_contexts.
Returns:
losses (dict(str: torch.FloatTensor)): see forward().
"""
del trajectories
transition_context_loss = (
(all_transition_contexts - id_contexts.unsqueeze(1).expand_as(
all_transition_contexts).detach()) ** 2).sum(-1)
transition_context_loss = (
transition_context_loss * mask).sum() / mask.sum()
cutoff = torch.ones(id_contexts.shape[0]) * 10
losses = {
"transition_context_loss": transition_context_loss,
"id_context_loss": torch.max((id_contexts ** 2).sum(-1), cutoff).mean()
}
return losses
def forward(self, trajectories):
"""Embeds a batch of trajectories.
Args:
trajectories (list[list[Experience]]): batch of trajectories, where each
trajectory comes from the same episode.
Returns:
embedding (torch.FloatTensor): tensor of shape (batch_size, embed_dim)
embedding the trajectories. This embedding is based on the ids if
use_ids is True, otherwise based on the transitions.
losses (dict(str: torch.FloatTensor)): maps auxiliary loss names to their
values.
"""
id_contexts, all_transition_contexts, transition_contexts, mask = (
self._compute_contexts(trajectories))
contexts = (id_contexts + 0.1 * torch.randn_like(id_contexts)
if self._use_ids else transition_contexts)
losses = self._compute_losses(
trajectories, id_contexts, all_transition_contexts,
transition_contexts, mask)
return contexts, losses
def label_rewards(self, trajectories):
"""Computes rewards for each experience in the trajectory.
Args:
trajectories (list[list[Experience]]): batch of trajectories.
Returns:
rewards (torch.FloatTensor): of shape (batch_size, max_seq_len) where
rewards[i][j] is the rewards for the experience trajectories[i][j].
This is padded with zeros and is detached from the graph.
distances (torch.FloatTensor): of shape (batch_size, max_seq_len + 1)
equal to ||f(e) - g(\tau^e_{:t})|| for each t.
"""
id_contexts, all_transition_contexts, _, mask = self._compute_contexts(
trajectories)
distances = (
(all_transition_contexts - id_contexts.unsqueeze(1).expand_as(
all_transition_contexts).detach()) ** 2).sum(-1)
# Add penalty
rewards = distances[:, :-1] - distances[:, 1:] - self._penalty
return (rewards * mask[:, 1:]).detach(), distances
class InstructionPolicyEmbedder(Embedder):
"""Embeds (s, i, \tau^e) where:
- s is the current state
- i is the current instruction
- \tau^e is an exploration trajectory (s_0, a_0, s_1, ..., s_T)
"""
def __init__(self, trajectory_embedder, obs_embedder, instruction_embedder,
embed_dim):
"""Constructs around embedders for each component.
Args:
trajectory_embedder (TrajectoryEmbedder): embeds batches of \tau^e
(list[list[rl.Experience]]).
obs_embedder (Embedder): embeds batches of states s.
instruction_embedder (Embedder): embeds batches of instructions i.
embed_dim (int): see Embedder.
"""
super().__init__(embed_dim)
self._obs_embedder = obs_embedder
self._instruction_embedder = instruction_embedder
self._trajectory_embedder = trajectory_embedder
self._fc_layer = nn.Linear(
obs_embedder.embed_dim + self._trajectory_embedder.embed_dim, 256)
self._final_layer = nn.Linear(256, embed_dim)
def forward(self, states, hidden_state):
obs_embed, hidden_state = self._obs_embedder(states, hidden_state)
trajectory_embed, _ = self._trajectory_embedder(
[state[0].trajectory for state in states])
if len(obs_embed.shape) > 2:
trajectory_embed = trajectory_embed.unsqueeze(1).expand(
-1, obs_embed.shape[1], -1)
hidden = F.relu(self._fc_layer(
torch.cat((obs_embed, trajectory_embed), -1)))
return self._final_layer(hidden), hidden_state
def aux_loss(self, experiences):
_, aux_losses = self._trajectory_embedder(
[exp[0].state.trajectory for exp in experiences])
return aux_losses
@classmethod
def from_config(cls, config, env):
"""Returns a configured InstructionPolicyEmbedder.
Args:
config (Config): see Embedder.from_config.
env (gym.Wrapper): the environment to run on. Expects this to be wrapped
with an InstructionWrapper.
Returns:
InstructionPolicyEmbedder: configured according to config.
"""
obs_embedder = get_state_embedder(env)(
env.observation_space["observation"],
config.get("obs_embedder").get("embed_dim"))
# Use SimpleGridEmbeder since these are just discrete vars
instruction_embedder = SimpleGridStateEmbedder(
env.observation_space["instructions"],
config.get("instruction_embedder").get("embed_dim"))
# Exploitation recurrence is not observing the rewards
exp_embedder = ExperienceEmbedder(
obs_embedder, instruction_embedder, None, None, None,
obs_embedder.embed_dim)
obs_embedder = RecurrentStateEmbedder(exp_embedder, obs_embedder.embed_dim)
transition_config = config.get("transition_embedder")
state_embedder = get_state_embedder(env)(
env.observation_space["observation"],
transition_config.get("state_embed_dim"))
action_embedder = FixedVocabEmbedder(
env.action_space.n, transition_config.get("action_embed_dim"))
reward_embedder = None
if transition_config.get("reward_embed_dim") is not None:
reward_embedder = LinearEmbedder(
1, transition_config.get("reward_embed_dim"))
transition_embedder = TransitionEmbedder(
state_embedder, action_embedder, reward_embedder,
transition_config.get("embed_dim"))
id_embedder = IDEmbedder(
env.observation_space["env_id"].high,
config.get("transition_embedder").get("embed_dim"))
if config.get("trajectory_embedder").get("type") == "ours":
trajectory_embedder = TrajectoryEmbedder(
transition_embedder, id_embedder,
config.get("trajectory_embedder").get("penalty"),
transition_embedder.embed_dim)
else:
raise ValueError("Unsupported trajectory embedder {}".format(
config.get("trajectory_embedder")))
return cls(trajectory_embedder, obs_embedder, instruction_embedder,
config.get("embed_dim"))
class RecurrentAndTaskIDEmbedder(Embedder):
"""Embedding used by IMPORT.
Compute both:
- g(\tau_{:t}) recurrently
- f(e)
Full embedding is:
\phi(s_t, z), where z is randomly chosen from g(\tau_{:t}) and f(e).
"""
def __init__(
self, recurrent_state_embedder, id_embedder, state_embedder, embed_dim):
super().__init__(embed_dim)
assert id_embedder.embed_dim == recurrent_state_embedder.embed_dim
self._recurrent_state_embedder = recurrent_state_embedder
self._id_embedder = id_embedder
self._state_embedder = state_embedder
self._final_layer = nn.Linear(
id_embedder.embed_dim + state_embedder.embed_dim, embed_dim)
self._use_id = False
def use_ids(self, use):
self._use_id = use
def _compute_embeddings(self, states, hidden_state=None):
# (batch_size, seq_len, embed_dim)
recurrent_embedding, hidden_state = self._recurrent_state_embedder(
states, hidden_state)
# (batch_size, embed_dim)
id_embedding = self._id_embedder(
torch.tensor([seq[0].env_id for seq in states]))
if len(recurrent_embedding.shape) > 2:
id_embedding = id_embedding.unsqueeze(1).expand_as(recurrent_embedding)
return recurrent_embedding, id_embedding, hidden_state
def forward(self, states, hidden_state=None):
recurrent_embedding, id_embedding, hidden_state = self._compute_embeddings(
states, hidden_state)
history_embed = recurrent_embedding
if self._use_id:
history_embed = id_embedding
# (batch_size, seq_len, state_embed_dim) or (batch_size, state_embed_dim)
state_embeds = self._state_embedder(
[state for seq in states for state in seq])
if len(history_embed.shape) > 2:
state_embeds = state_embeds.reshape(
history_embed.shape[0], history_embed.shape[1], -1)
return self._final_layer(
F.relu(torch.cat((history_embed, state_embeds), -1))), hidden_state
def aux_loss(self, trajectories):
# (batch_size, max_seq_len)
trajectories, mask = utils.pad(trajectories)
# (batch_size, max_seq_len, embed_dim)
recurrent_embeddings, id_embeddings, hidden_state = self._compute_embeddings(
[[exp.state for exp in traj] for traj in trajectories],
[traj[0].agent_state for traj in trajectories])
return {
"embedding_distance": (
((recurrent_embeddings - id_embeddings.detach()) ** 2)
.mean(0).sum())
}
@classmethod
def from_config(cls, config, env):
recurrent_state_embedder = RecurrentStateEmbedder.from_config(
config.get("recurrent_embedder"), env)
state_embed_config = config.get("state_embedder")
state_embedder = get_state_embedder(env)(
env.observation_space["observation"],
state_embed_config.get("embed_dim"))
instruction_embedder = SimpleGridStateEmbedder(
env.observation_space["instructions"],
state_embed_config.get("embed_dim"))
state_embedder = StateInstructionEmbedder(
state_embedder, instruction_embedder,
state_embed_config.get("embed_dim"))
id_embed_config = config.get("id_embedder")
id_embedder = IDEmbedder(
env.observation_space["env_id"].high,
id_embed_config.get("embed_dim"))
return cls(
recurrent_state_embedder, id_embedder, state_embedder,
config.get("embed_dim"))
class VariBADEmbedder(Embedder):
"""Embedding used by VariBAD.
Computes:
- g(\tau_{:t}) recurrently and applies fully connected heads on top to
produce q(z_t | \tau_{:t}) = N(head1(g(\tau_{:t})), head2(g(\tau_{:t})))
- embedding = \phi(z_t.detach(), embed(s_t))
Decoding auxiliary loss:
- \sum_t \sum_i ||decoder(z_i, e(s_t), e(a_t)) - r_t||_2^2
- \sum_t \sum_i ||decoder(z_i, e(s_t), e(a_t)) - s_{t + 1}||_2^2
"""
def __init__(
self, recurrent_state_embedder, z_dim, state_embedder, action_embedder,
state_dim, embed_dim, predict_state=True):
super().__init__(embed_dim)
self._recurrent_state_embedder = recurrent_state_embedder
self._fc_mu = nn.Linear(recurrent_state_embedder.embed_dim, z_dim)
self._fc_logvar = nn.Linear(recurrent_state_embedder.embed_dim, z_dim)
self._state_embedder = state_embedder
self._phi = nn.Linear(
z_dim + state_embedder.embed_dim, embed_dim)
self._action_embedder = action_embedder
self._decoder = nn.Sequential(
nn.Linear(z_dim + state_embedder.embed_dim + action_embedder.embed_dim,
128),
nn.ReLU(),
nn.Linear(128, 128),
)
# Predicts reward / state
self._reward_head = nn.Linear(128, 1)
self._state_head = nn.Linear(128, state_dim)
# If False, does not do state prediction
self._predict_state = predict_state
self._z_dim = z_dim
def _compute_z_distr(self, states, hidden_state=None):
embeddings, hidden_state = self._recurrent_state_embedder(
states, hidden_state=hidden_state)
# (batch_size, sequence_length, embed_dim)
mu = embeddings
std = torch.ones_like(mu) * 1e-6
q = td.Independent(td.Normal(mu, std), 1)
return q, hidden_state
def forward(self, states, hidden_state=None):
q, hidden_state = self._compute_z_distr(states, hidden_state)
# Don't backprop through encoder
z = q.rsample()
# (batch_size, seq_len, state_embed_dim) or (batch_size, state_embed_dim)
state_embeds = self._state_embedder(
[state for seq in states for state in seq])
if len(z.shape) > 2:
state_embeds = state_embeds.reshape(z.shape[0], z.shape[1], -1)
return self._phi(F.relu(torch.cat((z, state_embeds), -1))), hidden_state
def aux_loss(self, trajectories):
# The trajectories that we will try to decode
# (batch_size, max_trajectory_len)
trajectories_to_predict, predict_mask = utils.pad(
[traj[0].trajectory for traj in trajectories])
# The trajectories we're using to encode z
# They differ when we sample not the full trajectory
# (batch_size, max_sequence_len)
padded_trajectories, mask = utils.pad(trajectories)
q = self._compute_z_distr(
[[exp.state for exp in traj] for traj in padded_trajectories],
[traj[0].agent_state for traj in padded_trajectories])[0]
# (batch_size, max_sequence_len, z_dim)
z = q.rsample()
# (batch_size, max_trajectory_len, max_sequence_len, z_dim)
z = z.unsqueeze(1).expand(-1, predict_mask.shape[1], -1, -1)
# (batch_size, max_trajectory_len, embed_dim)
# e(s)
state_embeds = self._state_embedder(
[exp.state for trajectory in trajectories_to_predict
for exp in trajectory]).reshape(z.shape[0], z.shape[1], -1)
# e(a)
action_embeds = self._action_embedder(
[exp.action for trajectory in trajectories_to_predict
for exp in trajectory]).reshape(z.shape[0], z.shape[1], -1)
# (batch_size, max_trajectory_len, max_sequence_len, embed_dim)
state_embeds = state_embeds.unsqueeze(2).expand(-1, -1, z.shape[2], -1)
action_embeds = action_embeds.unsqueeze(2).expand(-1, -1, z.shape[2], -1)
decoder_input = torch.cat((z, state_embeds, action_embeds), -1)
decoder_embed = self._decoder(decoder_input)
# (batch_size, max_trajectory_len, max_sequence_len, 1)
predicted_rewards = self._reward_head(F.relu(decoder_embed))
# (batch_size, max_trajectory_len)
true_rewards = torch.tensor(
[[exp.next_state.prev_reward for exp in trajectory]
for trajectory in trajectories_to_predict])
# (batch_size, max_trajectory_len, max_sequence_len, 1)
true_rewards = true_rewards.unsqueeze(-1).unsqueeze(-1).expand_as(
predicted_rewards)
# (batch_size, max_trajectory_len, max_sequence_len, 1)
reward_decoding_loss = ((predicted_rewards - true_rewards) ** 2)
predict_mask = predict_mask.unsqueeze(2).expand(-1, -1, mask.shape[-1])
mask = mask.unsqueeze(1).expand_as(predict_mask)
# (batch_size, max_trajectory_len, max_sequence_len, 1)
aggregate_mask = (predict_mask * mask).unsqueeze(-1)
reward_decoding_loss = ((reward_decoding_loss * aggregate_mask).sum() /
reward_decoding_loss.shape[0])
state_decoding_loss = torch.tensor(0).float()
if self._predict_state:
# (batch_size, max_trajectory_len, max_sequence_len, state_dim)
predicted_states = self._state_head(F.relu(decoder_embed))
# (batch_size, max_trajectory_len, state_dim)
next_states_to_predict = torch.stack(
[torch.stack([exp.next_state.observation for exp in trajectory])
for trajectory in trajectories_to_predict])
# (batch_size, max_trajectory_len, max_sequence_len, state_dim)
next_states_to_predict = next_states_to_predict.unsqueeze(2).expand_as(
predicted_states)
# (batch_size, max_trajectory_len, max_sequence_len, state_dim)
state_decoding_loss = ((predicted_states - next_states_to_predict) ** 2)
state_decoding_loss = ((state_decoding_loss * aggregate_mask).sum() /
state_decoding_loss.shape[0])
#kl_loss = td.kl_divergence(q, self._prior(mask.shape[0], mask.shape[1]))
return {
"reward_decoding_loss": reward_decoding_loss,
"state_decoding_loss": state_decoding_loss * 0.01,
#"kl_loss": kl_loss * 0.1,
}
def _prior(self, batch_size, sequence_len):
mu = torch.zeros(batch_size, sequence_len, self._z_dim)
std = torch.ones_like(mu)
return td.Independent(td.Normal(mu, std), 1)
@classmethod
def from_config(cls, config, env):
recurrent_state_embedder = RecurrentStateEmbedder.from_config(
config.get("recurrent_embedder"), env)
state_embed_config = config.get("state_embedder")
state_embedder = get_state_embedder(env)(
env.observation_space["observation"],
state_embed_config.get("embed_dim"))
instruction_embedder = SimpleGridStateEmbedder(
env.observation_space["instructions"],
state_embed_config.get("embed_dim"))
state_embedder = StateInstructionEmbedder(
state_embedder, instruction_embedder,
state_embed_config.get("embed_dim"))
action_embed_config = config.get("action_embedder")
action_embedder = FixedVocabEmbedder(
env.action_space.n, action_embed_config.get("embed_dim"))
state_dim = len(env.observation_space["observation"].high)
return cls(
recurrent_state_embedder, config.get("z_dim"), state_embedder,
action_embedder, state_dim, config.get("embed_dim"),
config.get("predict_states"))
class RecurrentStateEmbedder(Embedder):
"""Applies an LSTM on top of a state embedding."""
def __init__(self, state_embedder, embed_dim):
super().__init__(embed_dim)
self._state_embedder = state_embedder
self._lstm_cell = nn.LSTMCell(state_embedder.embed_dim, embed_dim)
def forward(self, states, hidden_state=None):
"""Embeds a batch of sequences of contiguous states.
Args:
states (list[list[np.array]]): of shape
(batch_size, sequence_length, state_dim).
hidden_state (list[object] | None): batch of initial hidden states
to use with the LSTM. During inference, this should just be the
previously returned hidden state.
Returns:
embedding (torch.tensor): shape (batch_size, sequence_length, embed_dim)
hidden_state (object): hidden state after embedding every element in the
sequence.
"""
batch_size = len(states)
sequence_len = len(states[0])
# Stack batched hidden state
if batch_size > 1 and hidden_state is not None:
hs = []
cs = []
for hidden in hidden_state:
if hidden is None:
hs.append(torch.zeros(1, self.embed_dim))
cs.append(torch.zeros(1, self.embed_dim))
else:
hs.append(hidden[0])
cs.append(hidden[1])
hidden_state = (torch.cat(hs, 0), torch.cat(cs, 0))
flattened = [state for seq in states for state in seq]
# (batch_size * sequence_len, embed_dim)
state_embeds = self._state_embedder(flattened)
state_embeds = state_embeds.reshape(batch_size, sequence_len, -1)
embeddings = []
for seq_index in range(sequence_len):
hidden_state = self._lstm_cell(
state_embeds[:, seq_index, :], hidden_state)
# (batch_size, 1, embed_dim)
embeddings.append(hidden_state[0].unsqueeze(1))
# (batch_size, sequence_len, embed_dim)
# squeezed to (batch_size, embed_dim) if sequence_len == 1
embeddings = torch.cat(embeddings, 1).squeeze(1)
# Detach to save GPU memory.
detached_hidden_state = (hidden_state[0].detach(), hidden_state[1].detach())
return embeddings, detached_hidden_state
@classmethod
def from_config(cls, config, env):
experience_embed_config = config.get("experience_embedder")
state_embedder = get_state_embedder(env)(
env.observation_space["observation"],
experience_embed_config.get("state_embed_dim"))
action_embedder = FixedVocabEmbedder(
env.action_space.n + 1, experience_embed_config.get("action_embed_dim"))
instruction_embedder = None
if experience_embed_config.get("instruction_embed_dim") is not None:
# Use SimpleGridEmbedder since these are just discrete vars
instruction_embedder = SimpleGridStateEmbedder(
env.observation_space["instructions"],
experience_embed_config.get("instruction_embed_dim"))
reward_embedder = None
if experience_embed_config.get("reward_embed_dim") is not None:
reward_embedder = LinearEmbedder(
1, experience_embed_config.get("reward_embed_dim"))
done_embedder = None
if experience_embed_config.get("done_embed_dim") is not None:
done_embedder = FixedVocabEmbedder(
2, experience_embed_config.get("done_embed_dim"))
experience_embedder = ExperienceEmbedder(
state_embedder, instruction_embedder, action_embedder,
reward_embedder, done_embedder,
experience_embed_config.get("embed_dim"))
return cls(experience_embedder, config.get("embed_dim"))
class StateInstructionEmbedder(Embedder):
"""Embeds instructions and states and applies a linear layer on top."""
def __init__(self, state_embedder, instruction_embedder, embed_dim):
super().__init__(embed_dim)
self._state_embedder = state_embedder
self._instruction_embedder = instruction_embedder
if instruction_embedder is not None:
self._final_layer = nn.Linear(
state_embedder.embed_dim + instruction_embedder.embed_dim, embed_dim)
assert self._state_embedder.embed_dim == embed_dim
def forward(self, states):
state_embeds = self._state_embedder([state.observation for state in states])
if self._instruction_embedder is not None:
instruction_embeds = self._instruction_embedder(
[torch.tensor(state.instructions) for state in states])
return self._final_layer(
F.relu(torch.cat((state_embeds, instruction_embeds), -1)))
return state_embeds
def init(module, weight_init, bias_init, gain=1):
weight_init(module.weight.data, gain=gain)
bias_init(module.bias.data)
return module
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class MiniWorldEmbedder(Embedder):
"""Embeds 80x60 MiniWorld inputs.
Network taken from gym-miniworld/.
"""
def __init__(self, observation_space, embed_dim):
super().__init__(embed_dim)
# Architecture from gym-miniworld
# For 80x60 input
num_inputs = observation_space.shape[0]
self._network = nn.Sequential(
nn.Conv2d(num_inputs, 32, kernel_size=5, stride=2),
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=5, stride=2),
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=4, stride=2),
nn.ReLU(),
Flatten(),
nn.Linear(32 * 7 * 5, embed_dim),
)
def forward(self, obs):
# (batch_size, 80, 60, 3)
tensor = torch.stack(obs) / 255.
return self._network(tensor)
class SimpleGridStateEmbedder(Embedder):
"""Embedder for SimpleGridEnv states.
Concretely, embeds (x, y) separately with different embeddings for each cell.
"""
def __init__(self, observation_space, embed_dim):
"""Constructs for SimpleGridEnv.
Args:
observation_space (spaces.Box): limits for the observations to embed.
"""
super().__init__(embed_dim)
assert all(dim == 0 for dim in observation_space.low)
assert observation_space.dtype == np.int
hidden_size = 32
self._embedders = nn.ModuleList(
[nn.Embedding(dim, hidden_size) for dim in observation_space.high])
self._fc_layer = nn.Linear(hidden_size * len(observation_space.high), 256)
self._final_fc_layer = nn.Linear(256, embed_dim)
def forward(self, obs):
tensor = torch.stack(obs)
embeds = []
for i in range(tensor.shape[1]):
embeds.append(self._embedders[i](tensor[:, i]))
return self._final_fc_layer(F.relu(self._fc_layer(torch.cat(embeds, -1))))
class IDEmbedder(Embedder):
"""Embeds N-dim IDs by embedding each component and applying a linear
layer."""
def __init__(self, observation_space, embed_dim):
"""Constructs for SimpleGridEnv.
Args:
observation_space (np.array): discrete max limits for each dimension of the
state (expects min is 0).
"""
super().__init__(embed_dim)
hidden_size = 32
self._embedders = nn.ModuleList(
[nn.Embedding(dim, hidden_size) for dim in observation_space])
self._fc_layer = nn.Linear(hidden_size * len(observation_space), embed_dim)
@classmethod
def from_config(cls, config, observation_space):
return cls(observation_space, config.get("embed_dim"))
def forward(self, obs):
tensor = obs
if len(tensor.shape) == 1: # 1-d IDs
tensor = tensor.unsqueeze(-1)
embeds = []
for i in range(tensor.shape[1]):
embeds.append(self._embedders[i](tensor[:, i]))
return self._fc_layer(torch.cat(embeds, -1))
class FixedVocabEmbedder(Embedder):
"""Wrapper around nn.Embedding obeying the Embedder interface."""
def __init__(self, vocab_size, embed_dim):
"""Constructs.
Args:
vocab_size (int): number of unique embeddings.
embed_dim (int): dimension of output embedding.
"""
super().__init__(embed_dim)
self._embedder = nn.Embedding(vocab_size, embed_dim)
@classmethod
def from_config(cls, config):
return cls(config.get("vocab_size"), config.get("embed_dim"))
def forward(self, inputs):
"""Embeds inputs according to the underlying nn.Embedding.
Args:
inputs (list[int]): list of inputs of length batch.
Returns:
embedding (torch.Tensor): of shape (batch, embed_dim)
"""
tensor_inputs = torch.tensor(np.stack(inputs)).long()
return self._embedder(tensor_inputs)
class LinearEmbedder(Embedder):
"""Wrapper around nn.Linear obeying the Embedder interface."""
def __init__(self, input_dim, embed_dim):
"""Wraps a nn.Linear(input_dim, embed_dim).
Args:
input_dim (int): dimension of inputs to embed.
embed_dim (int): dimension of output embedding.
"""
super().__init__(embed_dim)
self._embedder = nn.Linear(input_dim, embed_dim)
@classmethod
def from_config(cls, config):
return cls(config.get("input_dim"), config.get("embed_dim"))
def forward(self, inputs):
"""Embeds inputs according to the underlying nn.Linear.
Args:
inputs (list[np.array]): list of inputs of length batch.
Each input is an array of shape (input_dim).
Returns:
embedding (torch.Tensor): of shape (batch, embed_dim)
"""
inputs = np.stack(inputs)
if len(inputs.shape) == 1:
inputs = np.expand_dims(inputs, 1)
tensor_inputs = torch.tensor(inputs).float()
return self._embedder(tensor_inputs)
class ExperienceEmbedder(Embedder):
"""Optionally embeds each of:
- state s
- instructions i
- actions a
- rewards r
- done d
Then passes a single linear layer over their concatenation.
"""
def __init__(self, state_embedder, instruction_embedder, action_embedder,
reward_embedder, done_embedder, embed_dim):
"""Constructs.
Args:
state_embedder (Embedder | None)
instruction_embedder (Embedder | None)
action_embedder (Embedder | None)
reward_embedder (Embedder | None)
done_embedder (Embedder | None)
embed_dim (int): dimension of the output
"""
super().__init__(embed_dim)
self._embedders = collections.OrderedDict()
if state_embedder is not None:
self._embedders["state"] = state_embedder
if instruction_embedder is not None:
self._embedders["instruction"] = instruction_embedder
if action_embedder is not None:
self._embedders["action"] = action_embedder
if reward_embedder is not None:
self._embedders["reward"] = reward_embedder
if done_embedder is not None:
self._embedders["done"] = done_embedder
# Register the embedders so they get gradients
self._register_embedders = nn.ModuleList(self._embedders.values())
self._final_layer = nn.Linear(
sum(embedder.embed_dim for embedder in self._embedders.values()),
embed_dim)
def forward(self, instruction_states):
"""Embeds the components for which this has embedders.
Args:
instruction_states (list[InstructionState]): batch of states.
Returns:
embedding (torch.Tensor): of shape (batch, embed_dim)
"""
def get_inputs(key, states):
if key == "state":
return [state.observation for state in states]
elif key == "instruction":
return [torch.tensor(state.instructions) for state in states]
elif key == "action":
actions = np.array(
[state.prev_action if state.prev_action is not None else -1
for state in states])
return actions + 1
elif key == "reward":
return [state.prev_reward for state in states]
elif key == "done":
return [state.done for state in states]
else:
raise ValueError("Unsupported key: {}".format(key))