Skip to content

Latest commit

 

History

History
 
 

Tensorflow SSD-ResNet34 INFERENCE - Video Streamer

Description

This Pipeline provides the containerized implementation of the Video Streamer project.

The workload aims to implement end-to-end video streamer pipeline involving media and analytics segments using GStreamer and TensorFlow. The pipeline handles video decode and processing followed by object detection and classification using the ssd-mobilenet-resnet-34 model using TensorFlow for single and multiple instances in FP32, BF16 and INT8 precisions. The metadata generated is uploaded to VDMS.

Project Structure

├── video-streamer @ v1.0.0
├── DEVCATALOG.md
├── Dockerfile.video-streamer
├── Makefile
├── README.md
├── docker-compose.yml
└── images
    └── video-pipeline.png

Makefile

FINAL_IMAGE_NAME ?= vdms-video-streamer
OUTPUT_DIR ?= /output
VIDEO_PATH ?= $$(pwd)/classroom.mp4
MODEL_DIR ?= $$(pwd)/models
VIDEO = $(shell basename ${VIDEO_PATH})

vdms:
	numactl --physcpubind=51-55 --membind=1 docker compose up -d vdms

video-streamer: vdms
	mkdir -p ./video-streamer/models && cp -r ${MODEL_DIR}/* ./video-streamer/models
	FINAL_IMAGE_NAME=${FINAL_IMAGE_NAME} \
	OUTPUT_DIR=${OUTPUT_DIR} \
	VIDEO=${VIDEO} \
	VIDEO_PATH=${VIDEO_PATH} \
	docker compose up video-streamer --build

clean:
	docker compose down 
	rm -rf ./video-streamer/models ${VIDEO}

docker-compose.yml

services:
 services:
  vdms:
    image: vuiseng9/intellabs-vdms:demo-191220
    network_mode: "host"
    ports:
      - "55555:55555"
  ## Base
  video-streamer:
    build:
      args:
        http_proxy: ${http_proxy}
        https_proxy: ${https_proxy}
        no_proxy: ${no_proxy}
      dockerfile: Dockerfile.video-streamer
    command: sh -c "./benchmark.sh  && cp -r ../*.txt ${OUTPUT_DIR}"
    depends_on:
      - vdms
    environment:
      - OUTPUT_DIR=${OUTPUT_DIR}
      - VIDEO_FILE=/workspace/video-streamer/${VIDEO}
      - VIDEO_PATH=${VIDEO_PATH}
      - http_proxy=${http_proxy}
      - https_proxy=${https_proxy}
      - no_proxy=${no_proxy}
    healthcheck:
      test: netstat -lnpt | grep 55555 || exit 1
      interval: 10s
      timeout: 5s
      retries: 5
    image: ${FINAL_IMAGE_NAME}:inference-centos-8
    network_mode: "host"
    ports:
      - "55555:55555"
    privileged: true
    volumes:
      - ./video-streamer:/workspace/video-streamer
      - /${OUTPUT_DIR}:${OUTPUT_DIR}
      - /${VIDEO_PATH}:/workspace/video-streamer/${VIDEO}
    working_dir: /workspace/video-streamer

Video Streamer

End-to-end AI workflow utilizing the Video-Streamer. More Information here. The pipeline runs the benchmark.sh script of the Video-Streamer project.

Quick Start

  • Make sure that the enviroment setup pre-requisites are satisfied per the document here

  • Pull and configure the dependent repo submodule git submodule update --init --recursive .

  • Install Pipeline Repository Dependencies

  • Download the video file.The default assumes the video is located in the current directory.

  wget https://github.com/intel-iot-devkit/sample-videos/raw/master/classroom.mp4
  • Download pretrained ssd-resnet34 FP32 and INT8 models. The default assumes the models are located in models directory in the current directory.
  mkdir models
  wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/ssd_resnet34_fp32_1200x1200_pretrained_model.pb -P models
  wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/ssd_resnet34_int8_1200x1200_pretrained_model.pb -P models
  • Other Variables:
Variable Name Default Notes
FINAL_IMAGE_NAME vdms-video-streamer Final Docker Image Name
OUTPUT_DIR /output Output Directory
MODEL_DIR $$(pwd)/models Models Directory
VIDEO_PATH $$(pwd)/classroom.mp4 Path of the Video File

Build and Run

Build and run with defaults:

$ make video-streamer

Build and Run Example

#1 [internal] load build definition from Dockerfile.video-streamer
#1 transferring dockerfile: 47B done
#1 DONE 0.0s

#2 [internal] load .dockerignore
#2 transferring context: 2B done
#2 DONE 0.0s

#3 [internal] load metadata for docker.io/library/centos:8
#3 DONE 0.4s

#4 [1/9] FROM docker.io/library/centos:8@sha256:a27fd8080b517143cbbbab9dfb7c8571c40d67d534bbdee55bd6c473f432b177
#4 DONE 0.0s

#5 [internal] load build context
#5 transferring context: 6.25kB done
#5 DONE 0.0s

#6 [2/9] RUN sed -i.bak '/^mirrorlist=/s/mirrorlist=/#mirrorlist=/g' /etc/yum.repos.d/CentOS-Linux-* &&     sed -i.bak 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-Linux-* &&     yum distro-sync -y &&     yum --disablerepo '*' --enablerepo=extras swap centos-linux-repos centos-stream-repos -y &&     yum distro-sync -y &&     yum clean all
#6 CACHED

#7 [3/9] RUN yum update -y && yum install -y     python38     python38-pip     which     wget numactl mesa-libGL net-tools &&     yum clean all
#7 CACHED

#8 [4/9] RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py38_4.12.0-Linux-x86_64.sh -O miniconda.sh &&     chmod +x miniconda.sh &&     ./miniconda.sh -b -p ~/conda &&     rm ./miniconda.sh &&     ~/conda/bin/conda create -yn vdms-test python=3.8 &&     export PATH=~/conda/bin/:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin &&     source activate vdms-test &&     python3 -m pip --no-cache-dir install --upgrade pip     opencv-python==4.5.5.64     protobuf==3.20.1     pyyaml     setuptools     vdms     wheel
#8 CACHED

#9 [5/9] RUN ln -sf $(which python3) /usr/local/bin/python &&     ln -sf $(which python3) /usr/local/bin/python3 &&     ln -sf $(which python3) /usr/bin/python
#9 CACHED

#9 [6/9] RUN source activate vdms-test &&     pip install tensorflow-cpu &&     conda install -y -c conda-forge gst-libav==1.18.4 gst-plugins-good=1.18.4 gst-plugins-bad=1.18.4 gst-plugins-ugly=1.18.4 gst-python=1.18.4 pygobject=3.40.1 &&     conda clean --all
#9 0.993 Collecting tensorflow-cpu
#9 1.087   Downloading tensorflow_cpu-2.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (214.4 MB)
#9 3.630      ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 214.4/214.4 MB 10.7 MB/s eta 0:00:00
#9 4.771 Collecting grpcio<2.0,>=1.24.3
#9 4.787   Downloading grpcio-1.48.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB)
#9 4.844      ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.6/4.6 MB 86.2 MB/s eta 0:00:00
#9 4.857 Requirement already satisfied: numpy>=1.20 in /root/conda/envs/vdms-test/lib/python3.8/site-packages (from tensorflow-cpu) (1.23.3)
#9 4.877 Collecting absl-py>=1.0.0
#9 4.886   Downloading absl_py-1.2.0-py3-none-any.whl (123 kB)
#9 4.891      ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 123.4/123.4 kB 41.0 MB/s eta 0:00:00
#9 4.923 Collecting keras<2.11,>=2.10.0
#9 4.936   Downloading keras-2.10.0-py2.py3-none-any.whl (1.7 MB)
#9 4.956      ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.7/1.7 MB 94.3 MB/s eta 0:00:00
#9 4.983 Collecting keras-preprocessing>=1.1.1
#9 4.992   Downloading Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB)
#9 4.996      ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 42.6/42.6 kB 14.2 MB/s eta 0:00:00
#9 5.030 Collecting tensorboard<2.11,>=2.10
#9 5.038   Downloading tensorboard-2.10.0-py3-none-any.whl (5.9 MB)
#9 5.127      ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.9/5.9 MB 68.6 MB/s eta 0:00:00
#9 5.165 Collecting opt-einsum>=2.3.2
#9 5.185   Downloading opt_einsum-3.3.0-py3-none-any.whl (65 kB)
#9 5.191      ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 65.5/65.5 kB 12.7 MB/s eta 0:00:00
#9 5.193 Requirement already satisfied: setuptools in /root/conda/envs/vdms-test/lib/python3.8/site-packages (from tensorflow-cpu) (65.3.0)

...

cpu-video-streamer-1  |  
cpu-video-streamer-1  |         _     _              __ _                                      
cpu-video-streamer-1  |  /\   /(_) __| | ___  ___   / _\ |_ _ __ ___  __ _ _ __ ___   ___ _ __ 
cpu-video-streamer-1  |  \ \ / / |/ _` |/ _ \/ _ \  \ \| __| '__/ _ \/ _` | '_ ` _ \ / _ \ '__|
cpu-video-streamer-1  |   \ V /| | (_| |  __/ (_) | _\ \ |_| | |  __/ (_| | | | | | |  __/ |   
cpu-video-streamer-1  |    \_/ |_|\__,_|\___|\___/  \__/\__|_|  \___|\__,_|_| |_| |_|\___|_|  
cpu-video-streamer-1  | 
cpu-video-streamer-1  |  Intel optimized video streaming pipeline based on GSteamer and Tensorflow
cpu-video-streamer-1  | 
cpu-video-streamer-1  |  /root/conda/envs/vdms-test/lib/gstreamer-1.0:/workspace/vdms-streamer/gst-plugin
cpu-video-streamer-1  | 
cpu-video-streamer-1  | (gst-plugin-scanner:109): GStreamer-WARNING **: 17:44:22.414: Failed to load plugin '/root/conda/envs/vdms-test/lib/gstreamer-1.0/libgstmpg123.so': libmpg123.so.0: cannot open shared object file: No such file or directory
cpu-video-streamer-1  | 
cpu-video-streamer-1  | (gst-plugin-scanner:109): GStreamer-WARNING **: 17:44:22.420: Failed to load plugin '/root/conda/envs/vdms-test/lib/gstreamer-1.0/libgstximagesrc.so': libXdamage.so.1: cannot open shared object file: No such file or directory
cpu-video-streamer-1  | 
cpu-video-streamer-1  | (gst-plugin-scanner:109): GStreamer-WARNING **: 17:44:22.436: Failed to load plugin '/root/conda/envs/vdms-test/lib/gstreamer-1.0/libgstmpg123.so': libmpg123.so.0: cannot open shared object file: No such file or directory
cpu-video-streamer-1  | 
cpu-video-streamer-1  | (gst-plugin-scanner:109): GStreamer-WARNING **: 17:44:22.437: Failed to load plugin '/root/conda/envs/vdms-test/lib/gstreamer-1.0/libgstximagesrc.so': libXdamage.so.1: cannot open shared object file: No such file or directory
cpu-video-streamer-1  | + set +x
cpu-video-streamer-1  | + numactl --physcpubind=0-3 --localalloc gst-launch-1.0 filesrc location=/workspace/video-streamer/classroom.mp4 '!' decodebin '!' videoconvert '!' video/x-raw,format=RGB '!' videoconvert '!' queue '!' gst_detection_tf conf=config/settings.yaml '!' fakesink
cpu-video-streamer-1  | 
cpu-video-streamer-1  | (gst-launch-1.0:174): GStreamer-CRITICAL **: 17:44:24.178: The created element should be floating, this is probably caused by faulty bindings
cpu-video-streamer-1  | INFO:gst_detection_tf:Loading model: models/ssd_resnet34_fp32_1200x1200_pretrained_model.pb
cpu-video-streamer-1  | 2022-07-15 17:44:24.914324: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX512_VNNI
cpu-video-streamer-1  | To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
cpu-video-streamer-1  | INFO:gst_detection_tf:Parameters: {'device': 'CPU', 'preproc_fw': 'cv2', 'data_type': 'FP32', 'onednn': True, 'amx': True, 'inter_op_parallelism': '1', 'intra_op_parallelism': '4', 'database': 'VDMS', 'bounding_box': True, 'face_threshold': 0.7, 'label_file': 'dataset/coco.label', 'ssd_resnet34_fp32_model': 'models/ssd_resnet34_fp32_bs1_pretrained_model.pb', 'ssd_resnet34_bf16_model': 'models/ssd_resnet34_bf16_bs1_pretrained_model.pb', 'ssd_resnet34_int8_model': 'models/ssd_resnet34_int8_bs1_pretrained_model.pb', 'ssd_resnet34_fp16_model': 'models/ssd_resnet34_fp16_bs1_pretrained_model.pb', 'ssd_resnet34_fp32_1200x1200_model': 'models/ssd_resnet34_fp32_1200x1200_pretrained_model.pb', 'ssd_resnet34_int8_1200x1200_model': 'models/ssd_resnet34_int8_1200x1200_pretrained_model.pb', 'ssd_resnet34_bf16_1200x1200_model': 'models/ssd_resnet34_bf16_1200x1200_pretrained_model.pb', 'ssd_resnet34_fp16_gpu_model': 'models/gpu/resnet34_tf.22.1.pb', 'ssd_resnet34_fp32_gpu_model': 'models/gpu/resnet34_tf.22.1.pb'}
cpu-video-streamer-1  | Setting pipeline to PAUSED ...
cpu-video-streamer-1  | Pipeline is PREROLLING ...
cpu-video-streamer-1  | Redistribute latency...
cpu-video-streamer-1  | Redistribute latency...
cpu-video-streamer-1  | 2022-07-15 17:44:25.041257: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:354] MLIR V1 optimization pass is not enabled
cpu-video-streamer-1  | Pipeline is PREROLLED ...
cpu-video-streamer-1  | Setting pipeline to PLAYING ...
cpu-video-streamer-1  | New clock: GstSystemClock

...

Got EOS from element "pipeline0".
Execution ended after 1:18:36.476950000
Setting pipeline to NULL ...
INFO:gst_detection_tf:Pipeline completes: {'total': 4719.140006303787, 'tf': 4657.993880748749, 'cv': 46.518736600875854, 'np': 1.4765057563781738, 'py': 0.05692410469055176, 'vdms': 0.7926304340362549, 'tf/load_model': 0.4810307025909424, 'np/gst_buf_to_ndarray': 0.5167484283447266, 'cv/normalize': 30.608948469161987, 'cv/resize': 14.067937850952148, 'np/format_image': 0.36579012870788574, 'e2e/preprocess': 56.772953033447266, 'tf/inference': 4657.512850046158, 'np/process_inference_result': 0.5939671993255615, 'py/build_db_data': 0.05692410469055176, 'cv/bound_box': 1.8418502807617188, 'e2e/postprocess': 3.49407958984375, 'vdms/save2db': 0.7926304340362549, 'frames': 8344}
Finished all pipelines

Notices and Disclamiers

GStreamer is an open source framework licensed under LGPL. See https://gstreamer.freedesktop.org/documentation/frequently-asked-questions/licensing.html?gi-language=c. You are solely responsible for determining if your use of Gstreamer requires any additional licenses. Intel is not responsible for obtaining any such licenses, nor liable for any licensing fees due, in connection with your use of Gstreamer.