-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearchai.py
230 lines (183 loc) · 7.1 KB
/
searchai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Author: Fabian C. Annaheim
# Date: 01.11.2022
# Copyright: https://github.com/fabiancannaheim/2048
# Description: This script contains an implementation of expectimax algorithm
# which traverses a game tree depth-first and scores moves via
# several heuristic functions as well as probabilistic properties
# which are determined by the game itself (for 2048 the tile spawns)
import random
import game
import sys
import numpy as np
import itertools
from collections import Counter
UP, DOWN, LEFT, RIGHT = 0, 1, 2, 3
EXPECTIMAX_START_DEPTH = 0
HEURISTIC_WEIGHT_CORNERS = 1
HEURISTIC_WEIGHT_NEIGHBOURS = 1
HEURISTIC_WEIGHT_MONOTICITY = 1
HEURISTIC_WEIGHT_EMPTY_FIELDS = 1
HEURISTIC_WEIGHT_UNIFORMITY = 1
HEURISTIC_CORNERS_MIN, HEURISTIC_CORNERS_MAX = 0, 6
HEURISTIC_EMPTY_FIELDS_MIN, HEURISTIC_EMPTY_FIELDS_MAX = 0, 14
HEURISTIC_MONOTICITY_MIN, HEURISTIC_MONOTICITY_MAX = 0, 8
HEURISTIC_NEIGHBOURS_MIN, HEURISTIC_NEIGHBOURS_MAX = 0, 20
HEURISTIC_UNIFORMITY_MIN, HEURISTIC_UNIFORMITY_MAX = 0, 16
def find_best_move(board):
result = [score_toplevel_move(i, board, max_depth(board)) for i in [UP, DOWN, LEFT, RIGHT]]
bestmove = result.index(max(result))
for m in [UP, DOWN, LEFT, RIGHT]:
print("move: %d score: %.4f" % (m, result[m]))
return bestmove
def score_toplevel_move(move, board, max_depth):
newboard = execute_move(move, board)
if board_equals(board, newboard):
return 0
else:
return expectimax(newboard, EXPECTIMAX_START_DEPTH, max_depth, probabilistic=True)
def expectimax(board, depth, max_depth, probabilistic):
if depth == max_depth:
return board_score(board)
elif probabilistic:
score = 0
empty_fields = get_empty_fields(board)
len_empty_fields = len(empty_fields)
for i in range(len_empty_fields):
board_2_spawn = emit_tile(board.copy(), 2, empty_fields[i][0], empty_fields[i][1])
board_4_spawn = emit_tile(board.copy(), 4, empty_fields[i][0], empty_fields[i][1])
score += 0.9 * expectimax(board_2_spawn, depth + 1, max_depth, probabilistic=False)
score += 0.1 * expectimax(board_4_spawn, depth + 1, max_depth, probabilistic=False)
return score / len_empty_fields
else:
best_score = 0
for i in [UP, DOWN, LEFT, RIGHT]:
new_board = execute_move(i, board)
if board_equals(board, new_board):
continue
else:
score = expectimax(new_board, depth + 1, max_depth, probabilistic=True)
if score > best_score:
best_score = score
return best_score
# Score for a particular board
def board_score(board):
corners = check_corners(board)
empty_fields = count_empty_fields(board, normalize=True)
neighbours = count_neighbours(board)
monoticity = compute_monoticity(board)
uniformity = compute_uniformity(board)
return (
HEURISTIC_WEIGHT_CORNERS * corners
+ HEURISTIC_WEIGHT_EMPTY_FIELDS * empty_fields
+ HEURISTIC_WEIGHT_NEIGHBOURS * neighbours
+ HEURISTIC_WEIGHT_MONOTICITY * monoticity
+ HEURISTIC_WEIGHT_UNIFORMITY * uniformity
)
# Heuristics
def count_empty_fields(board, normalize=False):
zeros = 0
for i in range(0, len(board)):
for j in range(0, len(board[i])):
if board[i][j] == 0:
zeros = zeros + 1
if normalize:
return (zeros - HEURISTIC_EMPTY_FIELDS_MIN) / (HEURISTIC_EMPTY_FIELDS_MAX - HEURISTIC_EMPTY_FIELDS_MIN)
else:
return zeros
def check_corners(board):
sorted_board = np.sort(np.array(board).ravel())[::-1]
max_value = sorted_board[0]
podium_values = [sorted_board[1], sorted_board[2]]
areas = {
'ul': {'corner': board[0][0], 'neighbours': [board[1][0], board[0][1]]},
'ur': {'corner': board[0][3], 'neighbours': [board[0][2], board[1][3]]},
'll': {'corner': board[3][0], 'neighbours': [board[3][1], board[2][0]]},
'lr': {'corner': board[3][3], 'neighbours': [board[3][2], board[2][3]]}
}
score = 0
for i in areas:
if areas[i]['corner'] == max_value:
if all(item in areas[i]['neighbours'] for item in podium_values):
score = 12
elif any(item in areas[i]['neighbours'] for item in podium_values):
score = 6
else:
score = 3
break
return (score - HEURISTIC_CORNERS_MIN) / (HEURISTIC_CORNERS_MAX - HEURISTIC_CORNERS_MIN)
def count_neighbours(board):
neighbours = 0
transposed = board.T
for i in range(0, len(board)):
last = [False, False]
for j in range(0, len(board[i])):
if board[i][j] != 0 and last[0] and last[0] == board[i][j]:
neighbours = neighbours + 1
if transposed[i][j] != 0 and last[1] and last[1] == transposed[i][j]:
neighbours = neighbours + 1
last[0] = board[i][j]
last[1] = transposed[i][j]
return (neighbours - HEURISTIC_NEIGHBOURS_MIN) / (HEURISTIC_NEIGHBOURS_MAX - HEURISTIC_NEIGHBOURS_MIN)
def compute_monoticity(board):
transposed = board.T
score = 0
for i in range(0, len(board)):
if monotonic(board[i]) and not np.all(board[i] == 0):
score += 1
if monotonic(transposed[i]) and not np.all(transposed[i] == 0):
score += 1
return (score - HEURISTIC_MONOTICITY_MIN) / (HEURISTIC_MONOTICITY_MAX - HEURISTIC_MONOTICITY_MIN)
def compute_uniformity(board):
uniformity = Counter(i for i in list(itertools.chain.from_iterable(board)))
score = 0
for key in uniformity:
if key != 0:
score += uniformity[key]
return (score - HEURISTIC_UNIFORMITY_MIN) / (HEURISTIC_UNIFORMITY_MAX - HEURISTIC_UNIFORMITY_MIN)
# Helpers
def execute_move(move, board):
if move == UP:
return game.merge_up(board)
elif move == DOWN:
return game.merge_down(board)
elif move == LEFT:
return game.merge_left(board)
elif move == RIGHT:
return game.merge_right(board)
else:
sys.exit("No valid move")
def monotonic(x):
dx = np.diff(x)
return np.all(dx <= 0) or np.all(dx >= 0)
def emit_tile(board, val, x, y):
board[x][y] = val
return board
def find_best_move_random_agent():
return random.choice([UP, DOWN, LEFT, RIGHT])
def board_equals(board, newboard):
return (newboard == board).all()
def normalize(data):
xmin = min(data)
xmax = max(data)
if xmax - xmin == 0:
return data
for i in range(0, len(data)):
data[i] = (data[i] - xmin) / (xmax - xmin)
return data
def max_depth(board):
number_empty_fields = count_empty_fields(board, normalize=False)
if number_empty_fields > 8:
return 2
if number_empty_fields > 4:
return 3
elif number_empty_fields > 1:
return 4
else:
return 5
def get_empty_fields(board):
fields = []
for i in range(0, len(board)):
for j in range(0, len(board[i])):
if board[i][j] == 0:
fields.append([i, j])
return fields