Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MOO not respecting nonlinear constraints #2558

Closed
Abrikosoff opened this issue Jul 2, 2024 · 1 comment
Closed

MOO not respecting nonlinear constraints #2558

Abrikosoff opened this issue Jul 2, 2024 · 1 comment

Comments

@Abrikosoff
Copy link

Abrikosoff commented Jul 2, 2024

Dear Ax Team,

I have a use case where I need to impose "local" NChooseK constraints, e.g., for features x1-x6, I need to impose 2Choose1 only on features x5,x6 only. The following repro works:

import random
import torch
from ax import Data, Experiment, ParameterType, RangeParameter, SearchSpace
from ax.modelbridge.registry import Models
from ax.runners.synthetic import SyntheticRunner
from torch.quasirandom import SobolEngine
import copy
import numpy as np
from ax.service.ax_client import AxClient
from ax.modelbridge.registry import Models
from ax.core.observation import ObservationFeatures
from botorch.models.gp_regression import SingleTaskGP
from ax.utils.measurement.synthetic_functions import branin
from ax.models.torch.botorch_modular.surrogate import Surrogate
from botorch.acquisition.monte_carlo import qNoisyExpectedImprovement
from ax.modelbridge.generation_strategy import GenerationStrategy, GenerationStep
from botorch.test_functions import Hartmann
import numpy as np
from ax.service.ax_client import AxClient, ObjectiveProperties
from ax.utils.measurement.synthetic_functions import hartmann6

# Load our sample 2-objective problem
from botorch.test_functions.multi_objective import BraninCurrin, DTLZ2

branin_currin = BraninCurrin(negate=True).to(
    dtype=torch.double,
    device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
)

test_dtlz2 = DTLZ2(dim=6, negate=True)

# Example usage
n = 1000
dim_of_problem = 6

list_of_nck = [[3, 5]]  # 3-choose-1
list_of_non_zeros = [1]

var_idxs = list_of_nck
non_zeros = list_of_non_zeros

def create_ineq_constraint(var_idx: List[int], non_zero: int):
    def ineq_constraint_on_vars(x: torch.Tensor, ell: float = 1e-3):
        """
        Each callable is expected to take a `(num_restarts) x q x d`-dim tensor as an
        input and return a `(num_restarts) x q`-dim tensor with the constraint values.
        """
        x_slice = x[..., var_idx[0]:var_idx[1]]
        return narrow_gaussian(x_slice, ell).sum(dim=-1) - (x_slice.shape[-1] - non_zero)
    
    return ineq_constraint_on_vars

def setup_ineqs(var_idxs: List[List[int]], non_zeros: List[int]):
    """
    Setup the inequality constraints for the optimization problem.
    """
    return [create_ineq_constraint(var_idx, non_zero) 
            for var_idx, non_zero in zip(var_idxs, non_zeros)]

# Create a list of inequality constraint functions
ineq_constraints = setup_ineqs(var_idxs, non_zeros)

from botorch.utils.sampling import DelaunayPolytopeSampler
from botorch.sampling.normal import SobolQMCNormalSampler

# Nonsimple constraints
get_batch_initial_conditions_multitarget = get_batch_initial_conditions_multisubspace(num_restarts=1, raw_samples=512, q=q, list_of_nck=list_of_nck, list_of_non_zeros=list_of_non_zeros)

generation_strategy = GenerationStrategy(
                        steps=[
                            GenerationStep(
                                model=Models.SOBOL,
                                num_trials=1,  # https://github.com/facebook/Ax/issues/922
                                min_trials_observed=1,
                                max_parallelism=6,
                                model_kwargs={"seed": 9999},
                                model_gen_kwargs={
                                    "model_gen_options": {
                                        # "optimizer_kwargs": {
                                        #     "nonlinear_inequality_constraints": [ineq_constraint],
                                        #     "batch_initial_conditions": batch_initial_conditions,
                                        # }
                                    }
                                },
                            ), 
                            GenerationStep(
                                model=Models.BOTORCH_MODULAR,
                                num_trials=-1,
                                model_gen_kwargs={
                                    "model_gen_options": {
                                        "optimizer_kwargs": {
                                            # "nonlinear_inequality_constraints": [ineq_constraint_first_2, ineq_constraint_last_2],
                                            "nonlinear_inequality_constraints": ineq_constraints,
                                            "batch_initial_conditions": get_batch_initial_conditions_multitarget,
                                        },
                                        "acqf_kwargs":{
                                            "sampler": DelaunayPolytopeSampler,
                                        },
                                    }
                                },
                                should_deduplicate=True,
                            ),
                        ]
                    )

ax_client = AxClient(generation_strategy=generation_strategy)

ax_client.create_experiment(
    name="moo_experiment",
    parameters=[
        {
            "name": f"x{i+1}",
            "type": "range",
            "bounds": [0.0, 1.0],
        }
        for i in range(dim_of_problem)
    ],
    objectives={
        # `threshold` arguments are optional
        "a": ObjectiveProperties(minimize=False, threshold=test_dtlz2.ref_point[0]),
        "b": ObjectiveProperties(minimize=False, threshold=test_dtlz2.ref_point[1]),
    },
    overwrite_existing_experiment=True,
    is_test=True,
)

def evaluate(parameters):
    evaluation = test_dtlz2(
        torch.tensor([parameters.get("x1"), 
                      parameters.get("x2"),
                      parameters.get("x3"),
                      parameters.get("x4"),
                      parameters.get("x5"),
                      parameters.get("x6"),])
    )
    # In our case, standard error is 0, since we are computing a synthetic function.
    # Set standard error to None if the noise level is unknown.
    return {"a": (evaluation[0].item(), 0.0), "b": (evaluation[1].item(), 0.0)}

for i in range(20):
    parameters, trial_index = ax_client.get_next_trial()
    # Local evaluation here can be replaced with deployment to external system.
    ax_client.complete_trial(trial_index=trial_index, raw_data=evaluate(parameters))

where in this repro I impose 3Choose1 on x4,x5,x6. The resulting suggestions are shown

[INFO 07-02 17:13:50] ax.service.ax_client: Generated new trial 0 with parameters {'x1': 0.288336, 'x2': 0.699209, 'x3': 0.507989, 'x4': 0.692475, 'x5': 0.49404, 'x6': 0.184216}.
[INFO 07-02 17:13:50] ax.service.ax_client: Completed trial 0 with data: {'a': (-1.057924, 0.0), 'b': (-0.514846, 0.0)}.
[INFO 07-02 17:13:50] ax.modelbridge.transforms.standardize_y: Outcome a is constant, within tolerance.
[INFO 07-02 17:13:50] ax.modelbridge.transforms.standardize_y: Outcome b is constant, within tolerance.
[INFO 07-02 17:13:50] ax.service.ax_client: Generated new trial 1 with parameters {'x1': 0.815077, 'x2': 0.000158, 'x3': 1.0, 'x4': 0.0, 'x5': 0.931009, 'x6': 3e-05}.
[INFO 07-02 17:13:50] ax.service.ax_client: Completed trial 1 with data: {'a': (-0.625969, 0.0), 'b': (-2.094022, 0.0)}.
[INFO 07-02 17:13:51] ax.service.ax_client: Generated new trial 2 with parameters {'x1': 0.0, 'x2': 0.533964, 'x3': 0.0, 'x4': 0.026203, 'x5': 0.0, 'x6': 0.00677}.
[INFO 07-02 17:13:51] ax.service.ax_client: Completed trial 2 with data: {'a': (-1.968914, 0.0), 'b': (-0.0, 0.0)}.
[INFO 07-02 17:13:51] ax.service.ax_client: Generated new trial 3 with parameters {'x1': 0.518246, 'x2': 0.820945, 'x3': 0.654583, 'x4': 0.0, 'x5': 0.611085, 'x6': 0.312251}.
[INFO 07-02 17:13:51] ax.service.ax_client: Completed trial 3 with data: {'a': (-0.977989, 0.0), 'b': (-1.035719, 0.0)}.
[INFO 07-02 17:18:00] ax.service.ax_client: Generated new trial 4 with parameters {'x1': 0.580242, 'x2': 0.071386, 'x3': 0.780743, 'x4': 0.0, 'x5': 0.736197, 'x6': 0.0}.
[INFO 07-02 17:18:01] ax.service.ax_client: Completed trial 4 with data: {'a': (-1.113913, 0.0), 'b': (-1.437173, 0.0)}.
[INFO 07-02 17:22:05] ax.modelbridge.generation_node: The generator run produced duplicate arms. Re-running the generation step in an attempt to deduplicate. Candidates produced in the last generator run: [Arm(name='4_0', parameters={'x1': 0.5802415013313293, 'x2': 0.0713861957192421, 'x3': 0.7807427644729614, 'x4': 0.0, 'x5': 0.7361965179443359, 'x6': 0.0})].
[INFO 07-02 17:22:06] ax.service.ax_client: Generated new trial 5 with parameters {'x1': 0.328518, 'x2': 0.731405, 'x3': 0.569487, 'x4': 0.719355, 'x5': 0.0, 'x6': 0.207749}.
[INFO 07-02 17:22:06] ax.service.ax_client: Completed trial 5 with data: {'a': (-1.254143, 0.0), 'b': (-0.711487, 0.0)}.
[INFO 07-02 17:26:28] ax.modelbridge.generation_node: The generator run produced duplicate arms. Re-running the generation step in an attempt to deduplicate. Candidates produced in the last generator run: [Arm(name='4_0', parameters={'x1': 0.5802415013313293, 'x2': 0.0713861957192421, 'x3': 0.7807427644729614, 'x4': 0.0, 'x5': 0.7361965179443359, 'x6': 0.0})].
[INFO 07-02 17:26:29] ax.service.ax_client: Generated new trial 6 with parameters {'x1': 0.701085, 'x2': 0.73956, 'x3': 0.141509, 'x4': 0.818724, 'x5': 0.0, 'x6': 0.133479}.
[INFO 07-02 17:26:29] ax.service.ax_client: Completed trial 6 with data: {'a': (-0.756455, 0.0), 'b': (-1.4909, 0.0)}.
[INFO 07-02 17:30:30] ax.modelbridge.generation_node: The generator run produced duplicate arms. Re-running the generation step in an attempt to deduplicate. Candidates produced in the last generator run: [Arm(name='4_0', parameters={'x1': 0.5802415013313293, 'x2': 0.0713861957192421, 'x3': 0.7807427644729614, 'x4': 0.0, 'x5': 0.7361965179443359, 'x6': 0.0})].
[INFO 07-02 17:34:54] ax.modelbridge.generation_node: The generator run produced duplicate arms. Re-running the generation step in an attempt to deduplicate. Candidates produced in the last generator run: [Arm(name='4_0', parameters={'x1': 0.5802415013313293, 'x2': 0.0713861957192421, 'x3': 0.7807427644729614, 'x4': 0.0, 'x5': 0.7361965179443359, 'x6': 0.0})].
[INFO 07-02 17:39:21] ax.modelbridge.generation_node: The generator run produced duplicate arms. Re-running the generation step in an attempt to deduplicate. Candidates produced in the last generator run: [Arm(name='4_0', parameters={'x1': 0.5802415013313293, 'x2': 0.0713861957192421, 'x3': 0.7807427644729614, 'x4': 0.0, 'x5': 0.7361965179443359, 'x6': 0.0})].
[INFO 07-02 17:43:35] ax.modelbridge.generation_node: The generator run produced duplicate arms. Re-running the generation step in an attempt to deduplicate. Candidates produced in the last generator run: [Arm(name='4_0', parameters={'x1': 0.5802415013313293, 'x2': 0.0713861957192421, 'x3': 0.7807427644729614, 'x4': 0.0, 'x5': 0.7361965179443359, 'x6': 0.0})].
[INFO 07-02 17:47:46] ax.modelbridge.generation_node: The generator run produced duplicate arms. Re-running the generation step in an attempt to deduplicate. Candidates produced in the last generator run: [Arm(name='4_0', parameters={'x1': 0.5802415013313293, 'x2': 0.0713861957192421, 'x3': 0.7807427644729614, 'x4': 0.0, 'x5': 0.7361965179443359, 'x6': 0.0})].
[INFO 07-02 17:47:46] ax.service.ax_client: Generated new trial 7 with parameters {'x1': 0.052018, 'x2': 0.873592, 'x3': 0.467638, 'x4': 0.0, 'x5': 0.752633, 'x6': 0.160381}.
[INFO 07-02 17:47:46] ax.service.ax_client: Completed trial 7 with data: {'a': (-1.564546, 0.0), 'b': (-0.128124, 0.0)}.
[INFO 07-02 17:47:47] ax.service.ax_client: Generated new trial 8 with parameters {'x1': 0.720643, 'x2': 1.0, 'x3': 0.042758, 'x4': 0.0, 'x5': 0.44248, 'x6': 0.079273}.
[INFO 07-02 17:47:47] ax.service.ax_client: Completed trial 8 with data: {'a': (-0.802736, 0.0), 'b': (-1.710383, 0.0)}.
[INFO 07-02 17:47:47] ax.service.ax_client: Generated new trial 9 with parameters {'x1': 0.276204, 'x2': 0.890964, 'x3': 0.776269, 'x4': 0.0, 'x5': 1.0, 'x6': 0.707807}.
[INFO 07-02 17:47:48] ax.service.ax_client: Completed trial 9 with data: {'a': (-1.608152, 0.0), 'b': (-0.745059, 0.0)}.
[INFO 07-02 17:47:48] ax.service.ax_client: Generated new trial 10 with parameters {'x1': 0.0, 'x2': 0.122837, 'x3': 0.914065, 'x4': 0.0, 'x5': 0.302231, 'x6': 1.0}.
[INFO 07-02 17:47:48] ax.service.ax_client: Completed trial 10 with data: {'a': (-1.852815, 0.0), 'b': (-0.0, 0.0)}.
[INFO 07-02 17:47:49] ax.service.ax_client: Generated new trial 11 with parameters {'x1': 0.992469, 'x2': 1.0, 'x3': 1.0, 'x4': 0.0, 'x5': 0.634098, 'x6': 0.205465}.
[INFO 07-02 17:47:49] ax.service.ax_client: Completed trial 11 with data: {'a': (-0.021941, 0.0), 'b': (-1.854603, 0.0)}.
[INFO 07-02 17:47:49] ax.service.ax_client: Generated new trial 12 with parameters {'x1': 0.066958, 'x2': 0.841555, 'x3': 0.0, 'x4': 1.0, 'x5': 0.0, 'x6': 0.0}.
[INFO 07-02 17:47:49] ax.service.ax_client: Completed trial 12 with data: {'a': (-2.104963, 0.0), 'b': (-0.222213, 0.0)}.
[INFO 07-02 17:47:50] ax.service.ax_client: Generated new trial 13 with parameters {'x1': 1.0, 'x2': 1.0, 'x3': 1.0, 'x4': 0.0, 'x5': 0.41536, 'x6': 0.771124}.
[INFO 07-02 17:47:50] ax.service.ax_client: Completed trial 13 with data: {'a': (0.0, 0.0), 'b': (-1.830672, 0.0)}.

As can be seen, most of the suggestions do not conform to the imposed constraints (3Choose1 for x4, x5, x6). What could be the reason for this situation?

Edit: From the traceback one can see as well that there are a lot of duplicated suggestions. I found this from sometime ago, but it doesn't really address my specific question.

@Abrikosoff
Copy link
Author

For future reference of others who might have a use for this code, the error was a bug in the function

def create_ineq_constraint(var_idx: List[int], non_zero: int):
    def ineq_constraint_on_vars(x: torch.Tensor, ell: float = 1e-3):
        """
        Each callable is expected to take a `(num_restarts) x q x d`-dim tensor as an
        input and return a `(num_restarts) x q`-dim tensor with the constraint values.
        """
        x_slice = x[..., var_idx[0]:var_idx[1]]
        return narrow_gaussian(x_slice, ell).sum(dim=-1) - (x_slice.shape[-1] - non_zero)
    
    return ineq_constraint_on_vars

where instead of x_slice = x[..., var_idx[0]:var_idx[1]] this should have read x_slice = x[..., var_idx[0]:var_idx[1]+1]

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant