-
Notifications
You must be signed in to change notification settings - Fork 69
/
finetune_qa.py
182 lines (157 loc) · 5.1 KB
/
finetune_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
from typing import List
import argparse
import numpy as np
import random
import torch
import torch.cuda
import sys
from src.torchrun_utils import init_distributed_mode_torchrun
from src import dist_utils, slurm, util
from src.index_io import load_or_initialize_index
from src.model_io import create_checkpoint_directories, load_or_initialize_atlas_model
from src.options import get_options
from train import train
import torch.distributed as dist
os.environ["TOKENIZERS_PARALLELISM"] = "true"
NCONTEXT: str = "40"
PBSZ: str = "1"
PRECISION: str = "bf16"
GOLD_SCORE_MODE: str = "ppmean"
GPU_MAX_LENGTH: str = "384"
GEN_MAX_LENGTH: str = "32"
EPSILON: str = "0.01"
SMALL_EPSILON: str = "4e-5"
DROPOUT: str = "0.1"
WARMUP_STEPS: str = "5"
EVAL_FREQ: str = "10"
LOG_FREQ: str = "5"
NO_REFRESH: str = "-1"
CHECK_FREQS: List[str] = ["--warmup_steps", "--save_freq", "--eval_freq"]
PORT: str = str(random.randrange(15000, 16000))
def get_argument_value(all_args: List[str], argument_name: str) -> int:
argument_idx = all_args.index(argument_name)
return int(all_args[argument_idx + 1])
def check_valid_input_params(all_args: List[str], total_steps: int) -> None:
for freq in CHECK_FREQS:
try:
arg_val = get_argument_value(all_args, freq)
except ValueError:
print(f"List does not contain value {freq}")
assert arg_val < total_steps, f"The {freq} cannot be higher than the total steps {total_steps}. "
def set_parser_options(parser: argparse.Namespace, passed_args: List[str]) -> argparse.ArgumentParser:
"""
Sets the default options for finetuning an Atlas model for a q&a task.
"""
total_steps = get_argument_value(passed_args, "--total_steps")
all_args = [
"--write_results",
"--train_retriever",
"--query_side_retriever_training",
"--use_gradient_checkpoint_reader",
"--use_gradient_checkpoint_retriever",
"--shard_optim",
"--shard_grads",
"--temperature_gold",
EPSILON,
"--temperature_score",
EPSILON,
"--refresh_index",
"-1",
"--dropout",
DROPOUT,
"--lr",
SMALL_EPSILON,
"--lr_retriever",
SMALL_EPSILON,
"--scheduler",
"linear",
"--weight_decay",
EPSILON,
"--generation_max_length",
GEN_MAX_LENGTH,
"--target_maxlength",
GEN_MAX_LENGTH,
"--gold_score_mode",
GOLD_SCORE_MODE,
"--precision",
PRECISION,
"--text_maxlength",
GPU_MAX_LENGTH,
"--per_gpu_batch_size",
PBSZ,
"--n_context",
NCONTEXT,
"--retriever_n_context",
NCONTEXT,
"--task",
"qa",
"--refresh_index",
NO_REFRESH,
"--warmup_steps",
WARMUP_STEPS,
"--save_freq",
str(total_steps - 1),
"--eval_freq",
EVAL_FREQ,
"--log_freq",
LOG_FREQ,
"--main_port",
PORT,
] + passed_args
check_valid_input_params(all_args, total_steps)
return parser.parse_args(all_args)
if __name__ == "__main__":
options = get_options()
opt = set_parser_options(options.parser, sys.argv[1:])
torch.manual_seed(opt.seed)
if "TORCHELASTIC_RUN_ID" in os.environ:
init_distributed_mode_torchrun(opt)
torch.cuda.set_device(dist.get_rank())
else:
slurm.init_distributed_mode(opt)
slurm.init_signal_handler()
checkpoint_path, saved_index_path = create_checkpoint_directories(opt)
logger = util.init_logger(opt.is_main, opt.is_distributed, os.path.join(checkpoint_path, "run.log"))
if opt.is_main:
options.print_options(opt)
logger.info(f"world size: {dist_utils.get_world_size()}")
index, passages = load_or_initialize_index(opt)
model, optimizer, scheduler, retr_optimizer, retr_scheduler, opt, step = load_or_initialize_atlas_model(opt)
if opt.is_distributed:
if opt.shard_grads:
import fairscale.nn.data_parallel
model.reader = fairscale.nn.data_parallel.ShardedDataParallel(
model.reader, optimizer, auto_refresh_trainable=False
)
if opt.train_retriever:
model.retriever = fairscale.nn.data_parallel.ShardedDataParallel(
model.retriever, retr_optimizer, auto_refresh_trainable=False
)
else:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[opt.local_rank],
output_device=opt.local_rank,
find_unused_parameters=True,
)
model._set_static_graph()
logger.info("Start finetuning")
dist_utils.barrier()
train(
model,
index,
passages,
optimizer,
scheduler,
retr_optimizer,
retr_scheduler,
step,
opt,
checkpoint_path,
)