-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathtrain.py
231 lines (196 loc) · 8.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import time
from collections import defaultdict
import numpy as np
import torch
import torch.cuda
import logging
from evaluate import evaluate
from src import dist_utils, slurm, util
from src.index_io import load_or_initialize_index, save_embeddings_and_index
from src.model_io import create_checkpoint_directories, load_or_initialize_atlas_model, save_atlas_model
from src.options import get_options
from src.tasks import get_task
os.environ["TOKENIZERS_PARALLELISM"] = "true"
GRAD_SCALE_UPPER_BOUND_MEAN: int = 1000
GRAD_SCALE_LOWER_BOUND_MEAN: float = 0.01
THRESHOLD_GRAD_STATS: int = 100
logger = logging.getLogger(__name__)
def train(
model,
index,
passages,
optimizer,
scheduler,
retr_optimizer,
retr_scheduler,
step,
opt,
checkpoint_path,
):
tb_logger = util.init_tb_logger(os.path.join(opt.checkpoint_dir, opt.name), is_main=opt.is_main)
run_stats = util.WeightedAvgStats()
unwrapped_model = util.get_unwrapped_model_if_wrapped(model)
# different seed for different sampling depending on global_rank
torch.manual_seed(opt.global_rank + opt.seed)
scale = 2.0
grad_stats = defaultdict(lambda: [])
task = get_task(opt, unwrapped_model.reader_tokenizer)
index_refresh_scheduler = util.IndexRefreshScheduler(
opt.refresh_index, opt.freeze_retriever_steps, opt.train_retriever
)
while step < opt.total_steps:
data_iterator = task.data_iterator(
opt.train_data, opt.global_rank, opt.world_size, repeat_if_less_than_world_size=True, opt=opt
)
data_iterator = filter(None, map(task.process, data_iterator))
data_iterator = task.batch_iterator(data_iterator, opt.per_gpu_batch_size, drop_last=True, shuffle=opt.shuffle)
for i, batch in enumerate(data_iterator):
iter_stats = {}
model.train()
if not opt.use_file_passages and index_refresh_scheduler.is_time_to_refresh(step):
if not (step == 0 and opt.load_index_path is not None): # Dont refresh index if just loaded it
indexing_start = time.time()
unwrapped_model.build_index(index, passages, opt.per_gpu_embedder_batch_size, logger)
iter_stats["runtime/indexing"] = (time.time() - indexing_start, 1)
if opt.save_index_path is not None:
save_embeddings_and_index(index, opt)
step += 1
train_step_start = time.time()
reader_loss, retriever_loss = model(
index=index,
query=batch["query"],
target=batch["target"],
target_tokens=batch.get("target_tokens"),
passages=batch["passages"] if opt.use_file_passages else None,
batch_metadata=batch.get("metadata"),
filtering_fun=task.filter,
train_retriever=opt.train_retriever and step > opt.freeze_retriever_steps,
iter_stats=iter_stats,
)
if retriever_loss is not None and opt.train_retriever:
train_loss = reader_loss.float() + retriever_loss
else:
train_loss = reader_loss
iter_stats["loss/train_loss"] = (train_loss.item(), len(batch["query"]))
backward_start = time.time()
train_loss = scale * train_loss
train_loss.backward()
iter_stats["runtime/backward"] = (time.time() - backward_start, 1)
model_update_start = time.time()
stats = util.compute_grad_stats(model)
if stats["skip_example"]:
model.zero_grad()
# continue
else:
for k, v in stats.items():
grad_stats[k].append(v)
if len(grad_stats["max"]) >= THRESHOLD_GRAD_STATS:
if np.mean(grad_stats["max"]) > GRAD_SCALE_UPPER_BOUND_MEAN:
scale /= 2
elif np.mean(grad_stats["mean"]) < GRAD_SCALE_LOWER_BOUND_MEAN:
scale *= 2
# print(f'Scale: {scale}')
grad_stats.clear()
if step % opt.accumulation_steps == 0 and not stats["skip_example"]:
if opt.is_distributed and opt.shard_optim:
optimizer.clip_grad_norm(scale * opt.clip)
if opt.train_retriever:
retr_optimizer.clip_grad_norm(scale * opt.clip)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), scale * opt.clip)
optimizer.step(scale=scale)
scheduler.step()
if opt.train_retriever:
retr_optimizer.step(scale=scale)
retr_scheduler.step()
model.zero_grad()
iter_stats["runtime/model_update"] = (time.time() - model_update_start, 1)
iter_stats["runtime/train_step"] = (time.time() - train_step_start, 1)
run_stats.update(iter_stats)
if step % opt.log_freq == 0:
log = f"{step} / {opt.total_steps}"
for k, v in sorted(run_stats.average_stats.items()):
log += f" | {k}: {v:.3g}"
if tb_logger:
tb_logger.add_scalar(k, v, step)
log += f" | lr: {scheduler.get_last_lr()[0]:0.2g}"
log += f" | Memory: {torch.cuda.max_memory_allocated()//1e9} GiB"
if tb_logger:
tb_logger.add_scalar("lr", scheduler.get_last_lr()[0], step)
logger.info(log)
run_stats.reset()
if step % opt.eval_freq == 0:
for data_path in opt.eval_data:
dataset_name = os.path.basename(data_path)
metrics = evaluate(model, index, opt, data_path, step)
log_message = f"Dataset: {dataset_name}"
for k, v in metrics.items():
log_message += f" | {v:.3f} {k}"
if tb_logger:
tb_logger.add_scalar(f"{dataset_name}/{k}", v, step)
logger.info(log_message)
if step % opt.save_freq == 0:
save_atlas_model(
unwrapped_model,
optimizer,
scheduler,
retr_optimizer,
retr_scheduler,
step,
opt,
checkpoint_path,
f"step-{step}",
)
if step > opt.total_steps:
exit()
if __name__ == "__main__":
options = get_options()
opt = options.parse()
torch.manual_seed(opt.seed)
slurm.init_distributed_mode(opt)
slurm.init_signal_handler()
checkpoint_path, saved_index_path = create_checkpoint_directories(opt)
logger = util.init_logger(opt.is_main, opt.is_distributed, os.path.join(checkpoint_path, "run.log"))
if opt.is_main:
options.print_options(opt)
logger.info(f"world size: {dist_utils.get_world_size()}")
index, passages = load_or_initialize_index(opt)
model, optimizer, scheduler, retr_optimizer, retr_scheduler, opt, step = load_or_initialize_atlas_model(opt)
if opt.is_distributed:
if opt.shard_grads:
import fairscale.nn.data_parallel
model.reader = fairscale.nn.data_parallel.ShardedDataParallel(
model.reader, optimizer, auto_refresh_trainable=False
)
if opt.train_retriever:
model.retriever = fairscale.nn.data_parallel.ShardedDataParallel(
model.retriever, retr_optimizer, auto_refresh_trainable=False
)
else:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[opt.local_rank],
output_device=opt.local_rank,
find_unused_parameters=True,
)
model._set_static_graph()
logger.info("Start training")
dist_utils.barrier()
train(
model,
index,
passages,
optimizer,
scheduler,
retr_optimizer,
retr_scheduler,
step,
opt,
checkpoint_path,
)