-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate.py
205 lines (177 loc) · 7.05 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import torch
from torchmetrics.classification import MulticlassAccuracy
from typing import List, Dict, Any
from transformers import AutoTokenizer
from tqdm import tqdm
def bitext_mining_accuracy(
src_cls_embeddings: torch.Tensor, trg_cls_embeddings: torch.Tensor
):
src_cls_embeddings_normalized = torch.nn.functional.normalize(
src_cls_embeddings, dim=-1, p=2
)
trg_cls_embeddings_normalized = torch.nn.functional.normalize(
trg_cls_embeddings, dim=-1, p=2
)
# scaled pairwise cosine similarities
distance = src_cls_embeddings_normalized @ trg_cls_embeddings_normalized.T
# Compute src and trg accuracy
labels = torch.arange(src_cls_embeddings.size(0), device=src_cls_embeddings.device)
metric1 = MulticlassAccuracy(num_classes=src_cls_embeddings.size(0)).to("cuda")
src_to_trg_accuracy = metric1(distance, labels)
trg_to_src_accuracy = metric1(distance.T, labels)
metric2 = MulticlassAccuracy(num_classes=src_cls_embeddings.size(0), top_k=3).to(
"cuda"
)
src_to_trg_top3_accuracy = metric2(distance, labels)
trg_to_src_top3_accuracy = metric2(distance.T, labels)
return {
"accuracy": 0.5 * (src_to_trg_accuracy + trg_to_src_accuracy),
"src_to_trg_accuracy": src_to_trg_accuracy,
"trg_to_src_accuracy": trg_to_src_accuracy,
"top3_accuracy": 0.5 * (src_to_trg_top3_accuracy + trg_to_src_top3_accuracy),
"src_to_trg_top3_accuracy": src_to_trg_top3_accuracy,
"trg_to_src_top3_accuracy": trg_to_src_top3_accuracy,
}
def xsim_accuracy(
device,
model,
languages,
batch_size,
block_eff_attention,
model_name="xlm-roberta-base",
flores_200_base_path: str = "data/flores200",
):
from evaluation.xsim.xsim import xSIM
all_trgs = []
dataset = xsimDataset(
language="eng_Latn", flores_200_base_path=flores_200_base_path
)
dataloader = torch.utils.data.DataLoader(
dataset,
sampler=torch.utils.data.SequentialSampler(dataset),
batch_size=batch_size,
collate_fn=DataCollatorWithPadding(
model_name=model_name, max_model_context_length=2048
),
num_workers=2,
)
for idx, data in enumerate(dataloader):
data = {k: v.to(device) for k, v in data.items()}
trg_outputs = model.encoder(
input_ids=data["trg_input_ids"],
attention_mask=data["trg_attention_mask"],
return_dict=True,
output_hidden_states=True,
)
if block_eff_attention:
all_trgs.append(
model.get_cls_embedding_from_hidden_state(
trg_outputs.hidden_states[-1], data["trg_attention_mask"]
)
.cpu()
.detach()
)
else:
all_trgs.append(trg_outputs.hidden_states[-1][:, 0, :].cpu().detach())
trg_outputs = torch.cat(all_trgs)
trg_outputs_np = trg_outputs.numpy()
language_error_rate_pairs = []
language_error_rate_dict = {}
for language in tqdm(
languages, total=len(languages), desc="Evaluating xsim on all languages: "
):
dataset = xsimDataset(
language=language, flores_200_base_path=flores_200_base_path
)
dataloader = torch.utils.data.DataLoader(
dataset,
sampler=torch.utils.data.SequentialSampler(dataset),
batch_size=batch_size,
collate_fn=DataCollatorWithPadding(
model_name=model_name, max_model_context_length=2048
),
num_workers=2,
)
all_srcs = []
for idx, data in enumerate(dataloader):
data = {k: v.to(device) for k, v in data.items()}
src_outputs = model.encoder(
input_ids=data["src_input_ids"],
attention_mask=data["src_attention_mask"],
return_dict=True,
output_hidden_states=True,
)
if block_eff_attention:
all_srcs.append(
model.get_cls_embedding_from_hidden_state(
src_outputs.hidden_states[-1], data["src_attention_mask"]
)
.cpu()
.detach()
)
else:
all_srcs.append(src_outputs.hidden_states[-1][:, 0, :].cpu().detach())
src_outputs = torch.cat(all_srcs)
src_outputs_np = src_outputs.numpy()
err, nbex, _ = xSIM(
src_outputs_np,
trg_outputs_np,
dim=trg_outputs.size(-1),
)
error_rate = 100 * err / nbex
language_error_rate_pairs.append((language, error_rate))
language_error_rate_dict["xsim_" + language] = error_rate
print("+==================+")
print(",".join([pair[0] for pair in language_error_rate_pairs]))
print(",".join([str(pair[1]) for pair in language_error_rate_pairs]))
print("+==================+")
return language_error_rate_dict
class xsimDataset(torch.utils.data.Dataset):
def __init__(
self, language: str = "por_Latn", flores_200_base_path: str = "data/flores200"
):
with open(os.path.join(flores_200_base_path, f"dev/{language}.dev")) as fp:
self.sources = [src.rstrip() for src in fp.readlines()]
with open(os.path.join(flores_200_base_path, f"dev/eng_Latn.dev")) as fp:
self.targets = [src.rstrip() for src in fp.readlines()]
def __len__(self):
return len(self.sources)
def __getitem__(self, idx):
return {
"src": self.sources[idx],
"trg": self.targets[idx],
}
class DataCollatorWithPadding:
def __init__(
self, model_name: str = "xlm-roberta-large", max_model_context_length: int = 512
) -> None:
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
self.max_model_context_length = max_model_context_length
def __call__(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
# Convert from list of dicts to dict of lists, i.e. group items by key in a list
data_changed = {k: [dic[k] for dic in data] for k in data[0]}
# Tokenize src and trg sentences, with padding to longest sentence in batch
src_inputs = self.tokenizer(
data_changed["src"],
return_tensors="pt",
truncation=True,
max_length=self.max_model_context_length,
padding="longest",
)
trg_inputs = self.tokenizer(
data_changed["trg"],
return_tensors="pt",
truncation=True,
max_length=self.max_model_context_length,
padding="longest",
)
src_inputs = {"src_" + k: v for k, v in src_inputs.items()}
trg_inputs = {"trg_" + k: v for k, v in trg_inputs.items()}
model_inputs = {**src_inputs, **trg_inputs}
return model_inputs