-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathget_random_tweets.py
53 lines (41 loc) · 1.67 KB
/
get_random_tweets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Import the necessary package to process data in JSON format
try:
import json
except ImportError:
import simplejson as json
import time
# Import the necessary methods from "twitter" library
from twitter import Twitter, OAuth, TwitterHTTPError, TwitterStream
# Variables that contains the user credentials to access Twitter API
ACCESS_TOKEN = 'access-token'
ACCESS_SECRET = 'access-secret'
CONSUMER_KEY = 'cons-key'
CONSUMER_SECRET = 'cons-secret'
oauth = OAuth(ACCESS_TOKEN, ACCESS_SECRET, CONSUMER_KEY, CONSUMER_SECRET)
# Initiate the connection to Twitter Streaming API
twitter_stream = TwitterStream(auth=oauth)
# Get a sample of the public data following through Twitter
iterator = twitter_stream.statuses.sample(language='en')
# Print each tweet in the stream to the screen
# Here we set it to stop after getting 1000 tweets.
# You don't have to set it to stop, but can continue running
# the Twitter API to collect data for days or even longer.
j = 10
num_tweets = 100000
for alpha in range(0, j):
tweet_count = num_tweets
moment = time.strftime("%Y-%b-%d__%H_%M_%S", time.localtime())
file = "./raw_data/raw_" + moment + ".txt"
f = open(file, 'w')
for tweet in iterator:
tweet_count -= 1
# Twitter Python Tool wraps the data returned by Twitter
# as a TwitterDictResponse object.
# We convert it back to the JSON format to print/score
f.write(json.dumps(tweet))
f.write("\n")
# The command below will do pretty printing for JSON data, try it out
# print json.dumps(tweet, indent=4)
if tweet_count <= 0:
break
f.close()