-
Notifications
You must be signed in to change notification settings - Fork 114
/
AIserver.py
90 lines (70 loc) · 3.15 KB
/
AIserver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from functools import wraps
from flask import Flask
from flask import request, Response
from subprocess import call
from flask import render_template
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
import random
from sklearn.feature_extraction.text import TfidfVectorizer
import sys
import os
from sklearn.linear_model import LogisticRegression
import math
from collections import Counter
app = Flask(__name__)
def entropy(s):
p, lns = Counter(s), float(len(s))
return -sum( count/lns * math.log(count/lns, 2) for count in p.values())
def getTokens(input):
tokensBySlash = str(input.encode('utf-8')).split('/') #get tokens after splitting by slash
allTokens = []
for i in tokensBySlash:
tokens = str(i).split('-') #get tokens after splitting by dash
tokensByDot = []
for j in range(0,len(tokens)):
tempTokens = str(tokens[j]).split('.') #get tokens after splitting by dot
tokensByDot = tokensByDot + tempTokens
allTokens = allTokens + tokens + tokensByDot
allTokens = list(set(allTokens)) #remove redundant tokens
if 'com' in allTokens:
allTokens.remove('com') #removing .com since it occurs a lot of times and it should not be included in our features
return allTokens
def TL():
allurls = './data/data.csv' #path to our all urls file
allurlscsv = pd.read_csv(allurls,',',error_bad_lines=False) #reading file
allurlsdata = pd.DataFrame(allurlscsv) #converting to a dataframe
allurlsdata = np.array(allurlsdata) #converting it into an array
random.shuffle(allurlsdata) #shuffling
y = [d[1] for d in allurlsdata] #all labels
corpus = [d[0] for d in allurlsdata] #all urls corresponding to a label (either good or bad)
vectorizer = TfidfVectorizer(tokenizer=getTokens) #get a vector for each url but use our customized tokenizer
X = vectorizer.fit_transform(corpus) #get the X vector
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) #split into training and testing set 80/20 ratio
lgs = LogisticRegression() #using logistic regression
lgs.fit(X_train, y_train)
print(lgs.score(X_test, y_test)) #pring the score. It comes out to be 98%
return vectorizer, lgs
@app.route('/<path:path>')
def show_index(path):
X_predict = []
X_predict.append(str(path))
X_predict = vectorizer.transform(X_predict)
y_Predict = lgs.predict(X_predict)
return '''
You asked for %s
AI output: %s
Entropy: %s
''' % (path, str(y_Predict), str(entropy(path)))
port = os.getenv('VCAP_APP_PORT', 5000)
if __name__ == "__main__":
vectorizer, lgs = TL()
app.run(host='0.0.0.0',port=int(port), debug=True)
#vectorizer, lgs = TL()
#checking some random URLs. The results come out to be expected. The first two are okay and the last four are malicious/phishing/bad
#X_predict = ['wikipedia.com','google.com/search=faizanahad','pakistanifacebookforever.com/getpassword.php/','www.radsport-voggel.de/wp-admin/includes/log.exe','ahrenhei.without-transfer.ru/nethost.exe','www.itidea.it/centroesteticosothys/img/_notes/gum.exe']
#X_predict = vectorizer.transform(X_predict)
#y_Predict = lgs.predict(X_predict)
#print(y_Predict) #printing predicted values